Linux Kernel User Documentation
Release 4.13.0-rc4+

The kernel development community

Sep 05, 2017

CONTENTS

1 Linux kernel release 4.x <http://kernel.org/> 3
2 The kernel’s command-line parameters 9
3 Linux allocated devices (4.x+ version) 91
4 Reporting bugs 149
5 Security bugs 153
6 Bug hunting 155
7 Bisecting a bug 161
8 Tainted kernels 163
9 Ramoops oops/panic logger 165
10Dynamic debug 169
11Explaining the dreaded “No init found.” boot hang message 175
12 Rules on how to access information in sysfs 177
13 Using the initial RAM disk (initrd) 181
1l4Linux Serial Console 187
15Linux Braille Console 189
16 Parport 191
17 RAID arrays 195
18Kernel module signing facility 205
19Linux Magic System Request Key Hacks 209
20Unicode support 215
21Software cursor for VGA 219
22Kernel Support for miscellaneous (your favourite) Binary Formats v1.1 221
23 Mono(tm) Binary Kernel Support for Linux 225

24)ava(tm) Binary Kernel Support for Linux v1.03 227

25Reliability, Availability and Serviceability
26 Power Management
27 Thunderbolt

28Linux Security Module Usage

235
251
271
275

ii

Linux Kernel User Documentation, Release 4.13.0-rc4+

The following is a collection of user-oriented documents that have been added to the kernel over time.
There is, as yet, little overall order or organization here — this material was not written to be a single,
coherent document! With luck things will improve quickly over time.

This initial section contains overall information, including the README file describing the kernel as a whole,
documentation on kernel parameters, etc.

CONTENTS 1

Linux Kernel User Documentation, Release 4.13.0-rc4+

2 CONTENTS

CHAPTER
ONE

LINUX KERNEL RELEASE 4.X <HTTP://KERNEL.ORG/>

These are the release notes for Linux version 4. Read them carefully, as they tell you what this is all about,
explain how to install the kernel, and what to do if something goes wrong.

1.1 What is Linux?

Linux is a clone of the operating system Unix, written from scratch by Linus Torvalds with as-
sistance from a loosely-knit team of hackers across the Net. It aims towards POSIX and Single
UNIX Specification compliance.

It has all the features you would expect in a modern fully-fledged Unix, including true multi-
tasking, virtual memory, shared libraries, demand loading, shared copy-on-write executables,
proper memory management, and multistack networking including IPv4 and IPv6.

It is distributed under the GNU General Public License v2 - see the accompanying COPYING file
for more details.

1.2 On what hardware does it run?

Although originally developed first for 32-bit x86-based PCs (386 or higher), today Linux also
runs on (at least) the Compagq Alpha AXP, Sun SPARC and UltraSPARC, Motorola 68000, PowerPC,
PowerPC64, ARM, Hitachi SuperH, Cell, IBM S5/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD
x86-64, AXIS CRIS, Xtensa, Tilera TILE, ARC and Renesas M32R architectures.

Linux is easily portable to most general-purpose 32- or 64-bit architectures as long as they have
a paged memory management unit (PMMU) and a port of the GNU C compiler (gcc) (part of The
GNU Compiler Collection, GCC). Linux has also been ported to a number of architectures without
a PMMU, although functionality is then obviously somewhat limited. Linux has also been ported
to itself. You can now run the kernel as a userspace application - this is called UserMode Linux
(UML).

1.3 Documentation

* There is a lot of documentation available both in electronic form on the Internet and in books, both
Linux-specific and pertaining to general UNIX questions. I'd recommend looking into the documen-
tation subdirectories on any Linux FTP site for the LDP (Linux Documentation Project) books. This
README is not meant to be documentation on the system: there are much better sources available.

* There are various README files in the Documentation/ subdirectory: these typically contain kernel-
specific installation notes for some drivers for example. See Documentation/00-INDEX for a list of
whatis contained in each file. Please read the Documentation/process/changes.rst file, as it contains
information about the problems, which may result by upgrading your kernel.

Linux Kernel User Documentation, Release 4.13.0-rc4+

1.4 Installing the kernel source

* If you install the full sources, put the kernel tarball in a directory where you have permissions (e.g.
your home directory) and unpack it:

’xz -cd linux-4.X.tar.xz | tar xvf -

Replace “X” with the version number of the latest kernel.

Do NOT use the /usr/src/linux area! This area has a (usually incomplete) set of kernel headers that are
used by the library header files. They should match the library, and not get messed up by whatever
the kernel-du-jour happens to be.

* You can also upgrade between 4.x releases by patching. Patches are distributed in the xz format. To
install by patching, get all the newer patch files, enter the top level directory of the kernel source
(linux-4.X) and execute:

xz -cd ../patch-4.x.xz | patch -pl

Replace “x” for all versions bigger than the version “X” of your current source tree, in_order, and you
should be ok. You may want to remove the backup files (some-file-name~ or some-file-name.orig),
and make sure that there are no failed patches (some-file-name# or some-file-name.rej). If there
are, either you or | have made a mistake.

Unlike patches for the 4.x kernels, patches for the 4.x.y kernels (also known as the -stable kernels)
are not incremental but instead apply directly to the base 4.x kernel. For example, if your base kernel
is 4.0 and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1 and 4.0.2 patches.
Similarly, if you are running kernel version 4.0.2 and want to jump to 4.0.3, you must first reverse
the 4.0.2 patch (that is, patch -R) before applying the 4.0.3 patch. You can read more on this in
Documentation/process/applying-patches.rst .

Alternatively, the script patch-kernel can be used to automate this process. It determines the current
kernel version and applies any patches found:

linux/scripts/patch-kernel linux

The first argument in the command above is the location of the kernel source. Patches are applied
from the current directory, but an alternative directory can be specified as the second argument.

* Make sure you have no stale .o files and dependencies lying around:

cd linux
make mrproper

You should now have the sources correctly installed.

1.5 Software requirements

Compiling and running the 4.x kernels requires up-to-date versions of various software pack-
ages. Consult Documentation/process/changes.rst for the minimum version numbers required
and how to get updates for these packages. Beware that using excessively old versions of these
packages can cause indirect errors that are very difficult to track down, so don’t assume that
you can just update packages when obvious problems arise during build or operation.

1.6 Build directory for the kernel

When compiling the kernel, all output files will per default be stored together with the kernel
source code. Using the option make O=output/dir allows you to specify an alternate place for

4 Chapter 1. Linux kernel release 4.x <http://kernel.org/>

Linux Kernel User Documentation, Release 4.13.0-rc4+

the output files (including .config). Example:

kernel source code: /usr/src/linux-4.X
build directory: /home/name/build/kernel

To configure and build the kernel, use:

cd /usr/src/linux-4.X

make 0=/home/name/build/kernel menuconfig

make O0=/home/name/build/kernel

sudo make 0=/home/name/build/kernel modules install install

Please note: If the O=output/dir option is used, then it must be used for all invocations of
make.

1.7 Configuring the kernel

Do not skip this step even if you are only upgrading one minor version. New configu-
ration options are added in each release, and odd problems will turn up if the configu-
ration files are not set up as expected. If you want to carry your existing configuration
to a new version with minimal work, use make oldconfig, which will only ask you for
the answers to new questions.

¢ Alternative configuration commands are:

"make config" Plain text interface.

"make menuconfig" Text based color menus, radiolists & dialogs.

"make nconfig" Enhanced text based color menus.

"make xconfig" Qt based configuration tool.

"make gconfig" GTK+ based configuration tool.

"make oldconfig" Default all questions based on the contents of

your existing ./.config file and asking about
new config symbols.

"make silentoldconfig"
Like above, but avoids cluttering the screen
with questions already answered.
Additionally updates the dependencies.

"make olddefconfig"
Like above, but sets new symbols to their default
values without prompting.

"make defconfig" Create a ./.config file by using the default
symbol values from either arch/$ARCH/defconfig
or arch/$ARCH/configs/${PLATFORM}_ defconfig,
depending on the architecture.

"make ${PLATFORM} defconfig"
Create a ./.config file by using the default
symbol values from
arch/$ARCH/configs/${PLATFORM} defconfig.
Use "make help" to get a list of all available
platforms of your architecture.

"make allyesconfig"

1.7. Configuring the kernel 5

Linux Kernel User Documentation, Release 4.13.0-rc4+

Create a ./.config file by setting symbol
values to 'y' as much as possible.

"make allmodconfig"
Create a ./.config file by setting symbol
values to 'm' as much as possible.

"make allnoconfig" Create a ./.config file by setting symbol
values to 'n' as much as possible.

"make randconfig" Create a ./.config file by setting symbol
values to random values.

"make localmodconfig" Create a config based on current config and
loaded modules (1lsmod). Disables any module
option that is not needed for the loaded modules.
To create a localmodconfig for another machine,
store the lsmod of that machine into a file
and pass it in as a LSMOD parameter.

target$ lsmod > /tmp/mylsmod
target$ scp /tmp/mylsmod host:/tmp

host$ make LSMOD=/tmp/mylsmod localmodconfig
The above also works when cross compiling.

"make localyesconfig" Similar to localmodconfig, except it will convert
all module options to built in (=y) options.

You can find more information on using the Linux kernel config tools in Documenta-
tion/kbuild/kconfig.txt.

* NOTES on make config:

- Having unnecessary drivers will make the kernel bigger, and can under some circum-
stances lead to problems: probing for a nonexistent controller card may confuse your
other controllers.

- A kernel with math-emulation compiled in will still use the coprocessor if one is present:
the math emulation will just never get used in that case. The kernel will be slightly
larger, but will work on different machines regardless of whether they have a math
coprocessor or not.

- The “kernel hacking” configuration details usually result in a bigger or slower kernel (or
both), and can even make the kernel less stable by configuring some routines to actively
try to break bad code to find kernel problems (kmalloc()). Thus you should probably an-
swer ‘n’ to the questions for “development”, “experimental”, or “debugging” features.

1.8 Compiling the kernel

* Make sure you have at least gcc 3.2 available. For more information, refer to Documenta-
tion/process/changes.rst .

Please note that you can still run a.out user programs with this kernel.

* Do a make to create a compressed kernel image. It is also possible to do make install if you have
lilo installed to suit the kernel makefiles, but you may want to check your particular lilo setup first.

To do the actual install, you have to be root, but none of the normal build should require that. Don’t
take the name of root in vain.

6 Chapter 1. Linux kernel release 4.x <http://kernel.org/>

Linux Kernel User Documentation, Release 4.13.0-rc4+

* If you configured any of the parts of the kernel as modules, you will also have to do make mod-
ules install.

* Verbose kernel compile/build output:

Normally, the kernel build system runs in a fairly quiet mode (but not totally silent). However, some-
times you or other kernel developers need to see compile, link, or other commands exactly as they
are executed. For this, use “verbose” build mode. This is done by passing V=1 to the make command,

e.g.:

make V=1 all

To have the build system also tell the reason for the rebuild of each target, use V=2. The default is
V=0.

* Keep a backup kernel handy in case something goes wrong. This is especially true for the devel-
opment releases, since each new release contains new code which has not been debugged. Make
sure you keep a backup of the modules corresponding to that kernel, as well. If you are installing a
new kernel with the same version number as your working kernel, make a backup of your modules
directory before you do a make modules install.

Alternatively, before compiling, use the kernel config option “LOCALVERSION” to append a unique
suffix to the regular kernel version. LOCALVERSION can be set in the “General Setup” menu.

* In order to boot your new kernel, you'll need to copy the kernel image (e.g.
.../linux/arch/x86/boot/bzlmage after compilation) to the place where your regular bootable
kernel is found.

* Booting a kernel directly from a floppy without the assistance of a bootloader such as LILO, is no
longer supported.

If you boot Linux from the hard drive, chances are you use LILO, which uses the kernel image as
specified in the file /etc/lilo.conf. The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzimage
or /boot/bzimage. To use the new kernel, save a copy of the old image and copy the new image over
the old one. Then, you MUST RERUN LILO to update the loading map! If you don’t, you won’t be able
to boot the new kernel image.

Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish to edit /etc/lilo.conf to specify
an entry for your old kernel image (say, /vmlinux.old) in case the new one does not work. See the
LILO docs for more information.

After reinstalling LILO, you should be all set. Shutdown the system, reboot, and enjoy!

If you ever need to change the default root device, video mode, ramdisk size, etc. in the kernel
image, use the rdev program (or alternatively the LILO boot options when appropriate). No need to
recompile the kernel to change these parameters.

* Reboot with the new kernel and enjoy.

1.9 If something goes wrong

* If you have problems that seem to be due to kernel bugs, please check the file MAINTAINERS to see
if there is a particular person associated with the part of the kernel that you are having trouble with.
If there isn’t anyone listed there, then the second best thing is to mail them to me (torvalds@linux-
foundation.org), and possibly to any other relevant mailing-list or to the newsgroup.

* In all bug-reports, please tell what kernel you are talking about, how to duplicate the problem, and
what your setup is (use your common sense). If the problem is new, tell me so, and if the problem is
old, please try to tell me when you first noticed it.

* If the bug results in a message like:

1.9. If something goes wrong 7

mailto:torvalds@linux-foundation.org
mailto:torvalds@linux-foundation.org

Linux Kernel User Documentation, Release 4.13.0-rc4+

unable to handle kernel paging request at address C0000010
Oops: 0002

EIP: 0010 : XXXXXXXX

eax: XXXXXXXX ebX: XXXXXXXX — eCX: XXXXXXXX edX: XXXXXXXX
esi: XXXXXXXX edi: XXXXXXXX ebp: XXXXXXXX

ds: Xxxx es: XxxX fs: XXXX gS: XXXX

Pid: xx, process nr: Xxx

XX XX XX XX XX XX XX XX XX XX

or similar kernel debugging information on your screen or in your system log, please duplicate it
exactly. The dump may look incomprehensible to you, but it does contain information that may help
debugging the problem. The text above the dump is also important: it tells something about why
the kernel dumped code (in the above example, it's due to a bad kernel pointer). More information
on making sense of the dump is in Documentation/admin-guide/oops-tracing.rst

If you compiled the kernel with CONFIG_KALLSYMS you can send the dump as is, otherwise you will
have to use the ksymoops program to make sense of the dump (but compiling with CONFIG_KALLSYMS
is usually preferred). This utility can be downloaded from https://www.kernel.org/pub/linux/utils/
kernel/ksymoops/ . Alternatively, you can do the dump lookup by hand:

In debugging dumps like the above, it helps enormously if you can look up what the EIP value means.
The hex value as such doesn’t help me or anybody else very much: it will depend on your particular
kernel setup. What you should do is take the hex value from the EIP line (ignore the 0010:), and look
it up in the kernel namelist to see which kernel function contains the offending address.

To find out the kernel function name, you’ll need to find the system binary associated with the kernel
that exhibited the symptom. This is the file ‘linux/vmlinux’. To extract the namelist and match it
against the EIP from the kernel crash, do:

nm vmlinux | sort | less

This will give you a list of kernel addresses sorted in ascending order, from which it is simple to
find the function that contains the offending address. Note that the address given by the kernel
debugging messages will not necessarily match exactly with the function addresses (in fact, that is
very unlikely), so you can’t just ‘grep’ the list: the list will, however, give you the starting point of
each kernel function, so by looking for the function that has a starting address lower than the one
you are searching for but is followed by a function with a higher address you will find the one you
want. In fact, it may be a good idea to include a bit of “context” in your problem report, giving a few
lines around the interesting one.

If you for some reason cannot do the above (you have a pre-compiled kernel image or similar), telling
me as much about your setup as possible will help. Please read the admin-guide/reporting-bugs.rst
document for details.

Alternatively, you can use gdb on a running kernel. (read-only; i.e. you cannot change values or set
break points.) To do this, first compile the kernel with -g; edit arch/x86/Makefile appropriately, then
do a make clean. You'll also need to enable CONFIG_PROC_FS (via make config).

After you've rebooted with the new kernel, do gdb vmlinux /proc/kcore. You can now use all
the usual gdb commands. The command to look up the point where your system crashed is 1
FOXXXXXXXXX. (Replace the XXXes with the EIP value.)

gdb’ing a non-running kernel currently fails because gdb (wrongly) disregards the starting offset for
which the kernel is compiled.

Chapter 1. Linux kernel release 4.x <http://kernel.org/>

https://www.kernel.org/pub/linux/utils/kernel/ksymoops/
https://www.kernel.org/pub/linux/utils/kernel/ksymoops/

CHAPTER
TWO

THE KERNEL'S COMMAND-LINE PARAMETERS

The following is a consolidated list of the kernel parameters as implemented by the _ setup(),
core_param() and module_param() macros and sorted into English Dictionary order (defined as ignor-
ing all punctuation and sorting digits before letters in a case insensitive manner), and with descriptions
where known.

The kernel parses parameters from the kernel command line up to “-”; if it doesn’t recognize a param-
eter and it doesn’t contain a ‘.’, the parameter gets passed to init: parameters with ‘=" go into init's
environment, others are passed as command line arguments to init. Everything after “-" is passed as an

argument to init.

Module parameters can be specified in two ways: via the kernel command line with a module name prefix,
or via modprobe, e.g.:

(kernel command line) usbcore.blinkenlights=1
(modprobe command line) modprobe usbcore blinkenlights=1

Parameters for modules which are built into the kernel need to be specified on the kernel command line.
modprobe looks through the kernel command line (/proc/cmdline) and collects module parameters when
it loads a module, so the kernel command line can be used for loadable modules too.

Hyphens (dashes) and underscores are equivalent in parameter names, so:

’1094buf71en=1M print-fatal-signals=1

can also be entered as:

’109-buf-1en=1M print fatal signals=1l

Double-quotes can be used to protect spaces in values, e.g.:

’ param="spaces in here"

2.1 cpu lists:

Some kernel parameters take a list of CPUs as a value, e.g. isolcpus, nohz_full, irgaffinity, rcu_nocbs. The
format of this list is:

<cpu number=>,...,<cpu number>
or

<cpu number>-<cpu number> (must be a positive range in ascending order)
or a mixture
<Cpu number=>,...,<cpu number>-<cpu number>

Note that for the special case of a range one can split the range into equal sized groups and for each
group use some amount from the beginning of that group:

Linux Kernel User Documentation, Release 4.13.0-rc4+

<cpu number>-cpu number>:<used size>/<group size>

For example one can add to the command line following parameter:
isolcpus=1,2,10-20,100-2000:2/25

where the final item represents CPUs 100,101,125,126,150,151,...

This document may not be entirely up to date and comprehensive. The command “modinfo -p ${mod-
ulename}” shows a current list of all parameters of a loadable module. Loadable modules, after being
loaded into the running kernel, also reveal their parameters in /sys/module/$ {modulename}/parameters/.
Some of these parameters may be changed at runtime by the command echo -n ${value} >
/sys/module/${modulename}/parameters/${parm}.

The parameters listed below are only valid if certain kernel build options were enabled and if respective
hardware is present. The textin square brackets at the beginning of each description states the restrictions
within which a parameter is applicable:

ACPI ACPI support is enabled.

AGP AGP (Accelerated Graphics Port) is enabled.
ALSA ALSA sound support is enabled.

APIC APIC support is enabled.

APM Advanced Power Management support is enabled.
ARM ARM architecture is enabled.

AX25 Appropriate AX.25 support is enabled.

BLACKFIN Blackfin architecture is enabled.

CLK Common clock infrastructure is enabled.
CMA Contiguous Memory Area support is enabled.
DRM Direct Rendering Management support is enabled.
DYNAMIC DEBUG Build in debug messages and enable them at runtime
EDD BIOS Enhanced Disk Drive Services (EDD) is enabled
EFI EFI Partitioning (GPT) is enabled
EIDE EIDE/ATAPI support is enabled.
EVM Extended Verification Module
FB The frame buffer device is enabled.
FTRACE Function tracing enabled.
GCov GCOV profiling is enabled.
HW Appropriate hardware is enabled.
IA-64 IA-64 architecture is enabled.
IMA Integrity measurement architecture is enabled.
IOSCHED More than one I/0 scheduler is enabled.
IP PNP IP DHCP, BOOTP, or RARP is enabled.
IPV6 IPv6 support is enabled.
ISAPNP ISA PnP code is enabled.
ISDN Appropriate ISDN support is enabled.
Joy Appropriate joystick support is enabled.
KGDB Kernel debugger support is enabled.
KVM Kernel Virtual Machine support is enabled.
LIBATA Libata driver is enabled
LP Printer support is enabled.
LOOP Loopback device support is enabled.
M68k M68k architecture is enabled.
These options have more detailed description inside of
Documentation/m68k/kernel-options.txt.
MDA MDA console support is enabled.
MIPS MIPS architecture is enabled.
MOUSE Appropriate mouse support is enabled.
MSI Message Signaled Interrupts (PCI).
MTD MTD (Memory Technology Device) support is enabled.
NET Appropriate network support is enabled.
NUMA NUMA support is enabled.
NFS Appropriate NFS support is enabled.
0SS 0SS sound support is enabled.
PV _OPS A paravirtualized kernel is enabled.
10 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

PARIDE The ParIDE (parallel port IDE) subsystem is enabled.
PARISC The PA-RISC architecture is enabled.

PCI PCI bus support is enabled.

PCIE PCI Express support is enabled.

PCMCIA The PCMCIA subsystem is enabled.

PNP Plug & Play support is enabled.

PPC PowerPC architecture is enabled.

PPT Parallel port support is enabled.
PS2 Appropriate PS/2 support is enabled.
RAM RAM disk support is enabled.

S390 S390 architecture is enabled.
SCSI Appropriate SCSI support is enabled.
A lot of drivers have their options described inside
the Documentation/scsi/ sub-directory.
SECURITY Different security models are enabled.
SELINUX SELinux support is enabled.
APPARMOR AppArmor support is enabled.
SERIAL Serial support is enabled.
SH SuperH architecture is enabled.
SMP The kernel is an SMP kernel.
SPARC Sparc architecture is enabled.
SWSUSP Software suspend (hibernation) is enabled.
SUSPEND System suspend states are enabled.

TPM TPM drivers are enabled.

TS Appropriate touchscreen support is enabled.
UMs USB Mass Storage support is enabled.

uUsB USB support is enabled.

USBHID USB Human Interface Device support is enabled.
V4L Video For Linux support is enabled.

VMMIO Driver for memory mapped virtio devices is enabled.
VGA The VGA console has been enabled.

VT Virtual terminal support is enabled.

WDT Watchdog support is enabled.

XT IBM PC/XT MFM hard disk support is enabled.

X86-32 X86-32, aka 1386 architecture is enabled.

X86-64 X86-64 architecture is enabled.
More X86-64 boot options can be found in
Documentation/x86/x86 64/boot-options.txt .

X86 Either 32-bit or 64-bit x86 (same as X86-32+X86-64)
X86 UV SGI UV support is enabled.
XEN Xen support is enabled

In addition, the following text indicates that the option:

BUGS= Relates to possible processor bugs on the said processor.
KNL Is a kernel start-up parameter.
BOOT Is a boot loader parameter.

Parameters denoted with BOOT are actually interpreted by the boot loader, and have no meaning to the
kernel directly. Do not modify the syntax of boot loader parameters without extreme need or coordination
with <Documentation/x86/boot.txt>.

There are also arch-specific kernel-parameters not documented here. See for example
<Documentation/x86/x86_64/boot-options.txt>.

Note that ALL kernel parameters listed below are CASE SENSITIVE, and that a trailing = on the name of any
parameter states that that parameter will be entered as an environment variable, whereas its absence
indicates that it will appear as a kernel argument readable via /proc/cmdline by programs running once
the system is up.

The number of kernel parameters is not limited, but the length of the complete command line (param-
eters including spaces etc.) is limited to a fixed number of characters. This limit depends on the ar-
chitecture and is between 256 and 4096 characters. It is defined in the file ./include/asm/setup.h as

2.1. cpu lists: 11

Linux Kernel User Documentation, Release 4.13.0-rc4+

COMMAND_LINE_SIZE

Finally, the [KMG] suffix is commonly described after a number of kernel parameter values. These ‘K’,
‘M’, and ‘G’ letters represent the _binary_multipliers ‘Kilo’, ‘Mega’, and ‘Giga’, equaling 2°10, 220, and
2730 bytes respectively. Such letter suffixes can also be entirely omitted:

acpi= [HW,ACPI,X86,ARM64]
Advanced Configuration and Power Interface
Format: { force | on | off | strict | noirq | rsdt |
copy _dsdt }
force -- enable ACPI if default was off
on -- enable ACPI but allow fallback to DT [arm64]
off -- disable ACPI if default was on
noirg -- do not use ACPI for IRQ routing
strict -- Be less tolerant of platforms that are not
strictly ACPI specification compliant.
rsdt -- prefer RSDT over (default) XSDT
copy dsdt -- copy DSDT to memory
For ARM64, ONLY " “acpi=off'', "““acpi=on'' or " “acpi=force''
are available

See also Documentation/power/runtime pm.txt, pci=noacpi

acpi apic instance= [ACPI, IOAPIC]
Format: <int>
2: use 2nd APIC table, if available
1,0: use 1st APIC table
default: 0

acpi backlight= [HW,ACPI]
acpi_backlight=vendor
acpi backlight=video
If set to vendor, prefer vendor specific driver
(e.g. thinkpad acpi, sony acpi, etc.) instead
of the ACPI video.ko driver.

acpi force 32bit fadt addr
force FADT to use 32 bit addresses rather than the
64 bit X * addresses. Some firmware have broken 64
bit addresses for force ACPI ignore these and use
the older legacy 32 bit addresses.

acpica no_return repair [HW, ACPI]
Disable AML predefined validation mechanism
This mechanism can repair the evaluation result to make
the return objects more ACPI specification compliant.
This option is useful for developers to identify the
root cause of an AML interpreter issue when the issue
has something to do with the repair mechanism.

acpi.debug layer= [HW,ACPI,ACPI DEBUG]

acpi.debug level= [HW,ACPI,ACPI DEBUG]
Format: <int>
CONFIG_ACPI DEBUG must be enabled to produce any ACPI
debug output. Bits in debug layer correspond to a

COMPONENT in an ACPI source file, e.g.,

#define COMPONENT ACPI_PCI_ COMPONENT
Bits in debug level correspond to a level in
ACPI DEBUG_PRINT statements, e.g.,

12 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

ACPI DEBUG PRINT((ACPI DB INFO,
The debug level mask defaults to " “info''. See
Documentation/acpi/debug.txt for more information about
debug layers and levels.

Enable processor driver info messages:
acpi.debug layer=0x20000000
Enable PCI/PCI interrupt routing info messages:
acpi.debug layer=0x400000
Enable AML " "Debug'' output, i.e., stores to the Debug
object while interpreting AML:
acpi.debug layer=0xffffffff acpi.debug level=0x2
Enable all messages related to ACPI hardware:
acpi.debug layer=0x2 acpi.debug level=0xffffffff

Some values produce so much output that the system is
unusable. The "““log buf len'' parameter may be useful
if you need to capture more output.

acpi enforce resources= [ACPI]

{ strict | lax | no }

Check for resource conflicts between native drivers
and ACPI OperationRegions (SystemIO and SystemMemory
only). IO ports and memory declared in ACPI might be
used by the ACPI subsystem in arbitrary AML code and
can interfere with legacy drivers.

strict (default): access to resources claimed by ACPI
is denied; legacy drivers trying to access reserved
resources will fail to bind to device using them.
lax: access to resources claimed by ACPI is allowed;
legacy drivers trying to access reserved resources
will bind successfully but a warning message is logged.
no: ACPI OperationRegions are not marked as reserved,
no further checks are performed.

acpi force table verification [HW,ACPI]

Enable table checksum verification during early stage.
By default, this is disabled due to x86 early mapping
size limitation.

acpi_irqg balance [HW,ACPI]

ACPI will balance active IRQs
default in APIC mode

acpi _irqg nobalance [HW,ACPI]

acpi irq isa=

acpi_irg pci=

acpi mask gpe=

ACPI will not move active IRQs (default)
default in PIC mode

[HW,ACPI] If irqg balance, mark listed IRQs used by ISA
Format: <irg>,<irg>...

[HW,ACPI] If irq_balance, clear listed IRQs for
use by PCI
Format: <irg>,<irg>...

[HW,ACPI]
Due to the existence of Lxx/ Exx, some GPEs triggered
by unsupported hardware/firmware features can result in

2.1. cpu lists:

13

Linux Kernel User Documentation, Release 4.13.0-rc4+

GPE floodings that cannot be automatically disabled by
the GPE dispatcher.

This facility can be used to prevent such uncontrolled
GPE floodings.

Format: <int>

Support masking of GPEs numbered from 0x00 to Ox7f.

acpi no_auto serialize [HW,ACPI]

Disable auto-serialization of AML methods

AML control methods that contain the opcodes to create
named objects will be marked as "~ “Serialized'' by the
auto-serialization feature.

This feature is enabled by default.

This option allows to turn off the feature.

acpi no _memhotplug [ACPI] Disable memory hotplug. Useful for kdump

kernels.

acpi no static ssdt [HW,ACPI]

acpi rsdp=

acpi _os name=

Disable installation of static SSDTs at early boot time
By default, SSDTs contained in the RSDT/XSDT will be
installed automatically and they will appear under
/sys/firmware/acpi/tables.

This option turns off this feature.

Note that specifying this option does not affect
dynamic table installation which will install SSDT
tables to /sys/firmware/acpi/tables/dynamic.

[ACPI,EFI,KEXEC]

Pass the RSDP address to the kernel, mostly used

on machines running EFI runtime service to boot the
second kernel for kdump.

[HW,ACPI] Tell ACPI BIOS the name of the 0S
Format: To spoof as Windows 98: =''Microsoft Windows''

acpi rev _override [ACPI] Override the REV object to return 5 (instead

acpi osi=

of 2 which is mandated by ACPI 6) as the supported ACPI
specification revision (when using this switch, it may
be necessary to carry out a cold reboot twice 1in a
row to make it take effect on the platform firmware).

[HW,ACPI] Modify list of supported 0S interface strings

acpi osi=''stringl'' # add stringl

acpi osi='"'l!string2"' # remove string2

acpi osi=!* # remove all strings

acpi osi=! # disable all built-in 0S vendor
strings

acpi osi=!! # enable all built-in 0S vendor
strings

acpi osi= # disable all strings

“acpi osi=!"' can be used in combination with single or

multiple “acpi osi=''stringl''' to support specific 0S

vendor string(s). Note that such command can only

affect the default state of the 0S vendor strings, thus
it cannot affect the default state of the feature group
strings and the current state of the 0S vendor strings,

14

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

acpi_pm_good

acpi_sci=

specifying it multiple times through kernel command line
is meaningless. This command is useful when one do not

care about the state of the feature group strings which

should be controlled by the OSPM.

Examples:
1. “acpi osi=! acpi osi=''Windows 2000''' is equivalent
to “acpi osi=''Windows 2000'' acpi osi=!', they all

can make ° 0SI(" "Windows 2000'')' TRUE.

"acpi_osi=' cannot be used in combination with other
“acpi osi=' command lines, the 0SI method will not
exist in the ACPI namespace. NOTE that such command can
only affect the O0SI support state, thus specifying it
multiple times through kernel command line is also
meaningless.
Examples:

1. “acpi osi=' can make “CondRefOf(0SI, Locall)'

FALSE.

“acpi _osi=!*' can be used in combination with single or
multiple "acpi osi=''stringl''' to support specific
string(s). Note that such command can affect the
current state of both the 0S vendor strings and the
feature group strings, thus specifying it multiple times
through kernel command line is meaningful. But it may
still not able to affect the final state of a string if
there are quirks related to this string. This command
is useful when one want to control the state of the
feature group strings to debug BIOS issues related to
the 0SPM features.
Examples:
1. “acpi osi=''Module Device'' acpi osi=!*' can make
* 0SI(" "Module Device'')' FALSE.
2. “acpi osi=!* acpi osi=''Module Device''' can make
* 0SI(® "Module Device'')' TRUE.

3. “acpi_osi=! acpi osi=!* acpi osi=''Windows 2000''' is

equivalent to

“acpi osi=!* acpi osi=! acpi osi=''Windows 2000'"''
and

“acpi osi=!* acpi osi=''Windows 2000'' acpi osi=!',
they all will make ° OSI("Windows 2000'')"' TRUE.

[X86]

Override the pmtimer bug detection: force the kernel

to assume that this machine's pmtimer latches its value
and always returns good values.

[HW,ACPI] ACPI System Control Interrupt trigger mode
Format: { level | edge | high | low }

acpi skip timer override [HW,ACPI]

acpi sleep=

Recognize and ignore IRQO/pin2 Interrupt Override.
For broken nForce2 BIOS resulting in XT-PIC timer.

[HW,ACPI] Sleep options
Format: { s3 bios, s3 mode, s3 beep, s4 nohwsig,

old ordering, nonvs, sci force enable }
See Documentation/power/video.txt for information on

2.1. cpu lists:

15

Linux Kernel User Documentation, Release 4.13.0-rc4+

s3 bios and s3 mode.

s3 beep is for debugging; it makes the PC's speaker beep
as soon as the kernel's real-mode entry point is called.
s4 nohwsig prevents ACPI hardware signature from being
used during resume from hibernation.

old ordering causes the ACPI 1.0 ordering of the PTS
control method, with respect to putting devices into

low power states, to be enforced (the ACPI 2.0 ordering
of PTS is used by default).

nonvs prevents the kernel from saving/restoring the

ACPI NVS memory during suspend/hibernation and resume.
sci force enable causes the kernel to set SCI EN directly
on resume from S1/S3 (which is against the ACPI spec,
but some broken systems don't work without it).

acpi use timer override [HW,ACPI]
Use timer override. For some broken Nvidia NF5 boards
that require a timer override, but don't have HPET

add efi memmap [EFI; X86] Include EFI memory map in
kernel's map of available physical RAM.

agp= [AGP]
{ off | try unsupported }
off: disable AGP support
try unsupported: try to drive unsupported chipsets
(may crash computer or cause data corruption)

ALSA [HW,ALSA]
See Documentation/sound/alsa/alsa-parameters.txt

alignment= [KNL, ARM]
Allow the default userspace alignment fault handler
behaviour to be specified. Bit 0 enables warnings,
bit 1 enables fixups, and bit 2 sends a segfault.

align va addr= [X86-64]
Align virtual addresses by clearing slice [14:12] when
allocating a VMA at process creation time. This option
gives you up to 3% performance improvement on AMD F15h
machines (where it is enabled by default) for a
CPU-intensive style benchmark, and it can vary highly in
a microbenchmark depending on workload and compiler.

32: only for 32-bit processes

64: only for 64-bit processes

on: enable for both 32- and 64-bit processes
off: disable for both 32- and 64-bit processes

alloc _snapshot [FTRACE]
Allocate the ftrace snapshot buffer on boot up when the
main buffer is allocated. This is handy if debugging
and you need to use tracing snapshot() on boot up, and
do not want to use tracing snapshot alloc() as it needs
to be done where GFP_KERNEL allocations are allowed.

amd iommu= [HW, X86-641]
Pass parameters to the AMD IOMMU driver in the system.

16 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

amd iommu_dump=

amd_iommu_intr=

amijoy.map=

analog.map=

apc=

apic=

apic_extnmi=

Possible values are:
fullflush - enable flushing of IO/TLB entries when
they are unmapped. Otherwise they are
flushed before they will be reused, which
is a lot of faster
off - do not initialize any AMD IOMMU found in
the system
force isolation - Force device isolation for all
devices. The IOMMU driver is not
allowed anymore to lift isolation
requirements as needed. This option
does not override iommu=pt

[HW, X86-64]

Enable AMD IOMMU driver option to dump the ACPI table
for AMD IOMMU. With this option enabled, AMD IOMMU
driver will print ACPI tables for AMD IOMMU during
IOMMU initialization.

[HW, X86-641]

Specifies one of the following AMD IOMMU interrupt

remapping modes:

legacy - Use legacy interrupt remapping mode.

vapic - Use virtual APIC mode, which allows IOMMU
to inject interrupts directly into guest.
This mode requires kvm-amd.avic=1l.
(Default when IOMMU HW support is present.)

[HW,JO0Y] Amiga joystick support

Map of devices attached to JOYODAT and JOY1DAT
Format: <a>,

See also Documentation/input/joystick.txt

[HW,JOY] Analog joystick and gamepad support
Specifies type or capabilities of an analog joystick
connected to one of 16 gameports

Format: <typel>,<type2>,..<typel6>

[HW, SPARC]

Power management functions (SPARCstation-4/5 + deriv.)
Format: noidle

Disable APC CPU standby support. SPARCstation-Fox does
not play well with APC CPU idle - disable it if you have
APC and your system crashes randomly.

[APIC,X86-32] Advanced Programmable Interrupt Controller
Change the output verbosity whilst booting

Format: { quiet (default) | verbose | debug }

Change the amount of debugging information output

when initialising the APIC and IO-APIC components.

[APIC,X86] External NMI delivery setting

Format: { bsp (default) | all | none }

bsp: External NMI is delivered only to CPU 0

all: External NMIs are broadcast to all CPUs as a
backup of CPU 0

none: External NMI is masked for all CPUs. This is
useful so that a dump capture kernel won't be

2.1. cpu lists:

17

Linux Kernel User Documentation, Release 4.13.0-rc4+

shot down by NMI

autoconf= [IPVG]
See Documentation/networking/ipv6.txt.

show lapic= [APIC,X86] Advanced Programmable Interrupt Controller
Limit apic dumping. The parameter defines the maximal
number of local apics being dumped. Also it is possible
to set it to ““all'' by meaning -- no limit here.
Format: { 1 (default) | 2 | ... | all }.
The parameter valid if only apic=debug or
apic=verbose is specified.
Example: apic=debug show lapic=all

apm= [APM] Advanced Power Management
See header of arch/x86/kernel/apm 32.c.

arcrimi= [HW,NET] ARCnet - ""RIM I'' (entirely mem-mapped) cards
Format: <io>,<irqg>,<nodeID>

ataflop= [HW,M68k]

atarimouse= [HW,MOUSE] Atari Mouse

atkbd.extra= [HW] Enable extra LEDs and keys on IBM RapidAccess,
EzKey and similar keyboards

atkbd.reset= [HW] Reset keyboard during initialization

atkbd.set= [HW] Select keyboard code set

Format: <int> (2 = AT (default), 3 = PS/2)

atkbd.scroll= [HW] Enable scroll wheel on MS Office and similar
keyboards

atkbd.softraw= [HW] Choose between synthetic and real raw mode
Format: <bool> (0 = real, 1 = synthetic (default))

atkbd.softrepeat= [HW]
Use software keyboard repeat

audit= [KNL] Enable the audit sub-system

Format: { ""0'' | ""1'' } (0 = disabled, 1 = enabled)

0 - kernel audit is disabled and can not be enabled
until the next reboot

unset - kernel audit is initialized but disabled and
will be fully enabled by the userspace auditd.

1 - kernel audit is initialized and partially enabled,
storing at most audit backlog limit messages in
RAM until it is fully enabled by the userspace
auditd.

Default: unset

audit backlog limit= [KNL] Set the audit queue size limit.
Format: <int> (must be >=0)
Default: 64

bau= [X86 UV] Enable the BAU on SGI UV. The default

18 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

baycom epp=

baycom par=

baycom ser fdx=

baycom ser hdx=

blkdevparts=

boot delay=

bootmem debug
bert disable
bttv.card=
bttv.radio=

bttv.pll=
bttv.tuner=

bulk remove=off

clol=

cachesize=

ca_keys=

behavior is to disable the BAU (i.e. bau=0).
Format: { ~"0'"' | ~"1'' }

0 - Disable the BAU.

1 - Enable the BAU.

unset - Disable the BAU.

[HW, AX25]
Format: <io>,<mode>

[HW,AX25] BayCom Parallel Port AX.25 Modem
Format: <io>,<mode>
See header of drivers/net/hamradio/baycom par.c.

[HW,AX25]

BayCom Serial Port AX.25 Modem (Full Duplex Mode)
Format: <io>,<irg>,<mode>[,<baud>]

See header of drivers/net/hamradio/baycom ser fdx.c.

[HW, AX25]

BayCom Serial Port AX.25 Modem (Half Duplex Mode)
Format: <io>,<irg>,<mode>

See header of drivers/net/hamradio/baycom ser hdx.c.

Manual partition parsing of block device(s) for
embedded devices based on command line input.
See Documentation/block/cmdline-partition.txt

Milliseconds to delay each printk during boot.
Values larger than 10 seconds (10000) are changed to
no delay (0).

Format: integer

[KNL] Enable bootmem allocator debug messages.

[ACPI]
Disable BERT 0S support on buggy BIOSes.

[HW,V4L] bttv (bt848 + bt878 based grabber cards)
Most important insmod options are available as
kernel args too.

See Documentation/video4linux/bttv/Insmod-options

[PPC] This parameter disables the use of the pSeries
firmware feature for flushing multiple hpte entries
at a time.

[NET] Moxa C101 synchronous serial card

[BUGS=X86-32] Override level 2 CPU cache size detection.
Sometimes CPU hardware bugs make them report the cache
size incorrectly. The kernel will attempt work arounds
to fix known problems, but for some CPUs it is not
possible to determine what the correct size should be.
This option provides an override for these situations.

[KEYS] This parameter identifies a specific key(s) on
the system trusted keyring to be used for certificate

2.1. cpu lists:

19

Linux Kernel User Documentation, Release 4.13.0-rc4+

trust validation.
format: { id:<keyid> | builtin }

CCa= [MIPS] Override the kernel pages' cache coherency
algorithm. Accepted values range from 0 to 7
inclusive. See arch/mips/include/asm/pgtable-bits.h
for platform specific values (SB1l, Loongson3 and
others).

ccw_timeout log [S390]
See Documentation/s390/CommonIO for details.

cgroup _disable= [KNL] Disable a particular controller

Format: {name of the controller(s) to disable}

The effects of cgroup disable=foo are:

- foo isn't auto-mounted if you mount all cgroups in
a single hierarchy

- foo isn't visible as an individually mountable
subsystem

{Currently only " “memory'' controller deal with this and

cut the overhead, others just disable the usage. So

only cgroup disable=memory is actually worthy}

cgroup_no vl= [KNL] Disable one, multiple, all cgroup controllers in vl
Format: { controller[,controller...] | ““all'' }
Like cgroup disable, but only applies to cgroup v1;
the blacklisted controllers remain available in cgroup2.

cgroup.memory= [KNL] Pass options to the cgroup memory controller.
Format: <string>
nosocket -- Disable socket memory accounting.
nokmem -- Disable kernel memory accounting.

checkreqgprot [SELINUX] Set initial checkregprot flag value.

Format: { ~"0'"' | ~"1'' }

See security/selinux/Kconfig help text.

0 -- check protection applied by kernel (includes
any implied execute protection).

1 -- check protection requested by application.

Default value is set via a kernel config option.

Value can be changed at runtime via
/selinux/checkregprot.

cio ignore= [S390]
See Documentation/s390/CommonI0 for details.

clk _ignore unused
[CLK]
Prevents the clock framework from automatically gating
clocks that have not been explicitly enabled by a Linux
device driver but are enabled in hardware at reset or
by the bootloader/firmware. Note that this does not
force such clocks to be always-on nor does it reserve
those clocks in any way. This parameter is useful for
debug and development, but should not be needed on a
platform with proper driver support. For more
information, see Documentation/clk.txt.

clock= [BUGS=X86-32, HW] gettimeofday clocksource override.

20 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

clocksource=

[Deprecated]

Forces specified clocksource (if available) to be used
when calculating gettimeofday(). If specified
clocksource is not available, it defaults to PIT.
Format: { pit | tsc | cyclone | pmtmr }

Override the default clocksource
Format: <string>
Override the default clocksource and use the clocksource
with the name specified.
Some clocksource names to choose from, depending on
the platform:
[all] jiffies (this is the base, fallback clocksource)
[ACPI] acpi pm
[ARM] imx_ timerl,0STS,netx timer,mpu_timer2,
pxa timer,timer3,32k counter,timer0 1
[X86-32] pit,hpet,tsc;
scx200_hrt on Geode; cyclone on IBM x440
[MIPS] MIPS
[PARISC] crl6
[S390] tod
[SH] SuperH
[SPARC64] tick
[X86-64] hpet,tsc

clocksource.arm arch _timer.evtstrm=

[ARM, ARM64]

Format: <bool>

Enable/disable the eventstream feature of the ARM
architected timer so that code using WFE-based polling
loops can be debugged more effectively on production
systems.

clearcpuid=BITNUM [X86]

Disable CPUID feature X for the kernel. See
arch/x86/include/asm/cpufeatures.h for the valid bit
numbers. Note the Linux specific bits are not necessarily
stable over kernel options, but the vendor specific
ones should be.

Also note that user programs calling CPUID directly
or using the feature without checking anything

will still see it. This just prevents it from

being used by the kernel or shown in /proc/cpuinfo.
Also note the kernel might malfunction if you disable
some critical bits.

cma=nn[MG]@[start[MG][-end[MG]]]

cmo_free hint=

[ARM, X86,KNL]

Sets the size of kernel global memory area for
contiguous memory allocations and optionally the
placement constraint by the physical address range of
memory allocations. A value of 0 disables CMA
altogether. For more information, see
include/linux/dma-contiguous.h

[PPC] Format: { yes | no }
Specify whether pages are marked as being inactive
when they are freed. This is used in CMO environments

2.1. cpu lists:

21

Linux Kernel User Documentation, Release 4.13.0-rc4+

to determine 0S memory pressure for page stealing by
a hypervisor.
Default: yes

coherent _pool=nn[KMG] [ARM, KNL]
Sets the size of memory pool for coherent, atomic dma
allocations, by default set to 256K.

code bytes [X86] How many bytes of object code to print
in an oops report.
Range: 0 - 8192

Default: 64
com20020= [HW,NET] ARCnet - COM20020 chipset
Format:

<io>[,<irg>[,<nodelD>[,<backplane>[,<ckp>[,<timeout>]]11]]

com90io= [HW,NET] ARCnet - COM90xx chipset (IO-mapped buffers)
Format: <io>[,<irg>]

com90xx= [HW,NET]
ARCnet - COM90xx chipset (memory-mapped buffers)
Format: <io>[,<irg>[,<memstart>]]

condev= [HW,S390] console device
conmode=
console= [KNL] Output console device and options.

tty<n> Use the virtual console device <n>.

ttyS<n>[,options]
ttyUSBO[,options]
Use the specified serial port. The options are of
the form " “bbbbpnf'', where "“bbbb'' is the baud rate,
p'' is parity ("°n'', “To'', or “e''), “'n'' is number of
bits, and "~ f'' is flow control (" "r'' for RTS or
omit it). Default is ~"9600n8''.

See Documentation/admin-guide/serial-console.rst for more
information. See

Documentation/networking/netconsole.txt for an
alternative.

uart[8250],io0,<addr>[,options]
uart[8250],mmio,<addr>[,options]
uart[8250],mmiol6,<addr>[,options]
uart[8250],mmio32,<addr>[,options]
uart[8250],0x<addr>[,options]
Start an early, polled-mode console on the 8250/16550
UART at the specified I/0 port or MMIO address,
switching to the matching ttyS device later.
MMIO inter-register address stride is either 8-bit
(mmio), 16-bit (mmiol6), or 32-bit (mmio32).
If none of [io|mmio|mmiol6|mmio32], <addr> is assumed
to be equivalent to "mmio'. “options' are specified in
the same format described for ttyS above; if unspecified,
the h/w is not re-initialized.

22 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

hvc<n> Use the hypervisor console device <n>. This is for
both Xen and PowerPC hypervisors.

If the device connected to the port is not a TTY but a braille

device, prepend “brl,'' before the device type, for instance
console=brl, ttySoO

For now, only VisioBraille is supported.

consoleblank= [KNL] The console blank (screen saver) timeout in
seconds. Defaults to 10*60 = 10mins. A value of 0
disables the blank timer.

coredump_filter=
[KNL] Change the default value for
/proc/<pid>/coredump filter.
See also Documentation/filesystems/proc.txt.

coresight cpu debug.enable
[ARM, ARM64]
Format: <bool>
Enable/disable the CPU sampling based debugging.
0: default value, disable debugging
1: enable debugging at boot time

cpuidle.off=1 [CPU_IDLE]
disable the cpuidle sub-system

cpufreq.off=1 [CPU_FREQ]
disable the cpufreq sub-system

cpu_init udelay=N
[X86] Delay for N microsec between assert and de-assert
of APIC INIT to start processors. This delay occurs
on every CPU online, such as boot, and resume from suspend.
Default: 10000

cpcihp generic= [HW,PCI] Generic port I/0 CompactPCI driver
Format:
<first slot>,<last slot>,<port>,<enum bit>[,<debug>]

crashkernel=size[KMG] [@offset [KMG]]
[KNL] Using kexec, Linux can switch to a “crash kernel'
upon panic. This parameter reserves the physical
memory region [offset, offset + size] for that kernel
image. If “@offset' is omitted, then a suitable offset
is selected automatically. Check
Documentation/kdump/kdump.txt for further details.

crashkernel=rangel:sizel[,range2:size2,...][@offset]
[KNL] Same as above, but depends on the memory
in the running system. The syntax of range is
start-[end] where start and end are both
a memory unit (amount[KMG]). See also
Documentation/kdump/kdump.txt for an example.

crashkernel=size[KMG],high
[KNL, x86 64] range could be above 4G. Allow kernel

2.1. cpu lists: 23

Linux Kernel User Documentation, Release 4.13.0-rc4+

to allocate physical memory region from top, so could

be above 4G if system have more than 4G ram installed.

Otherwise memory region will be allocated below 4G, if

available.

It will be ignored if crashkernel=X is specified.
crashkernel=size[KMG], low

[KNL, x86 64] range under 4G. When crashkernel=X,high

is passed, kernel could allocate physical memory region

above 4G, that cause second kernel crash on system

that require some amount of low memory, e.g. swiotlb

requires at least 64M+32K low memory, also enough extra

low memory is needed to make sure DMA buffers for 32-bit

devices won't run out. Kernel would try to allocate at

at least 256M below 4G automatically.

This one let user to specify own low range under 4G

for second kernel instead.

0: to disable low allocation.

It will be ignored when crashkernel=X,high is not used

or memory reserved is below 4G.

cryptomgr.notests
[KNL] Disable crypto self-tests

cs89x0_dma= [HW,NET]
Format: <dma>

€cs89x0 media= [HW,NET]
Format: { rj45 | aui | bnc }

dasd= [HW,NET]
See header of drivers/s390/block/dasd_devmap.c.

db9.dev[2]|3]= [HW,JOY] Multisystem joystick support via parallel port
(one device per port)
Format: <port#>,<type>
See also Documentation/input/joystick-parport.txt

ddebug query= [KNL,DYNAMIC DEBUG] Enable debug messages at early boot
time. See
Documentation/admin-guide/dynamic-debug-howto.rst for
details. Deprecated, see dyndbg.

debug [KNL] Enable kernel debugging (events log level).

debug locks verbose=
[KNL] verbose self-tests
Format=<0]|1>
Print debugging info while doing the locking API
self-tests.
We default to 0 (no extra messages), setting it to
1 will print _a lot_ more information - normally
only useful to kernel developers.

debug objects [KNL] Enable object debugging

no_debug objects
[KNL] Disable object debugging

24 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

debug guardpage minorder=
[KNL] When CONFIG DEBUG PAGEALLOC is set, this
parameter allows control of the order of pages that will
be intentionally kept free (and hence protected) by the
buddy allocator. Bigger value increase the probability
of catching random memory corruption, but reduce the
amount of memory for normal system use. The maximum
possible value is MAX ORDER/2. Setting this parameter
to 1 or 2 should be enough to identify most random
memory corruption problems caused by bugs in kernel or
driver code when a CPU writes to (or reads from) a
random memory location. Note that there exists a class
of memory corruptions problems caused by buggy H/W or
F/W or by drivers badly programing DMA (basically when
memory is written at bus level and the CPU MMU is
bypassed) which are not detectable by
CONFIG DEBUG PAGEALLOC, hence this option will not help
tracking down these problems.

debug pagealloc=
[KNL] When CONFIG DEBUG PAGEALLOC is set, this
parameter enables the feature at boot time. In
default, it is disabled. We can avoid allocating huge
chunk of memory for debug pagealloc if we don't enable
it at boot time and the system will work mostly same
with the kernel built without CONFIG DEBUG PAGEALLOC.
on: enable the feature

debugpat [X86] Enable PAT debugging

decnet.addr= [HW,NET]
Format: <area>[,<node>]
See also Documentation/networking/decnet.txt.

default hugepagesz=
[same as hugepagesz=] The size of the default
HugeTLB page size. This is the size represented by
the legacy /proc/ hugepages APIs, used for SHM, and
default size when mounting hugetlbfs filesystems.
Defaults to the default architecture's huge page size
if not specified.

dhash _entries= [KNL]
Set number of hash buckets for dentry cache.

disable 1tb segments [PPC]
Disables the use of 1TB hash page table segments. This
causes the kernel to fall back to 256MB segments which
can be useful when debugging issues that require an SLB
miss to occur.

disable= [IPV6]
See Documentation/networking/ipv6.txt.

disable radix [PPC]
Disable RADIX MMU mode on POWER9

disable cpu apicid= [X86,APIC,SMP]

2.1. cpu lists: 25

Linux Kernel User Documentation, Release 4.13.0-rc4+

Format: <int>

The number of initial APIC ID for the
corresponding CPU to be disabled at boot,
mostly used for the kdump 2nd kernel to
disable BSP to wake up multiple CPUs without
causing system reset or hang due to sending
INIT from AP to BSP.

disable ddw [PPC/PSERIES]
Disable Dynamic DMA Window support. Use this if
to workaround buggy firmware.

disable ipv6= [IPV6]
See Documentation/networking/ipv6.txt.

disable mtrr cleanup [X86]
The kernel tries to adjust MTRR layout from continuous
to discrete, to make X server driver able to add WB
entry later. This parameter disables that.

disable mtrr trim [X86, Intel and AMD only]
By default the kernel will trim any uncacheable
memory out of your available memory pool based on
MTRR settings. This parameter disables that behavior,
possibly causing your machine to run very slowly.

disable timer pin 1 [X86]
Disable PIN 1 of APIC timer
Can be useful to work around chipset bugs.

dis ucode ldr [X86] Disable the microcode loader.

dma_ debug=off If the kernel is compiled with DMA API DEBUG support,
this option disables the debugging code at boot.

dma debug entries=<number>
This option allows to tune the number of preallocated
entries for DMA-API debugging code. One entry is
required per DMA-API allocation. Use this if the
DMA-API debugging code disables itself because the
architectural default is too low.

dma_debug driver=<driver name>
With this option the DMA-API debugging driver
filter feature can be enabled at boot time. Just
pass the driver to filter for as the parameter.
The filter can be disabled or changed to another
driver later using sysfs.

drm_kms helper.edid firmware=[<connector>:]<file>[, [<connector>:]<file>]
Broken monitors, graphic adapters, KVMs and EDIDless
panels may send no or incorrect EDID data sets.
This parameter allows to specify an EDID data sets
in the /lib/firmware directory that are used instead.
Generic built-in EDID data sets are used, if one of
edid/1024x768.bin, edid/1280x1024.bin,
edid/1680x1050.bin, or edid/1920x1080.bin is given
and no file with the same name exists. Details and

26 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

dscc4.setup=

dt cpu ftrs=

instructions how to build your own EDID data are
available in Documentation/EDID/HOWTO.txt. An EDID
data set will only be used for a particular connector,
if its name and a colon are prepended to the EDID
name. Each connector may use a unique EDID data

set by separating the files with a comma. An EDID
data set with no connector name will be used for

any connectors not explicitly specified.

[NET]

[PPC]

Format: { “off'' | " “known''}

Control how the dt cpu ftrs device-tree binding is
used for CPU feature discovery and setup (if it
exists).

off: Do not use it, fall back to legacy cpu table.
known: Do not pass through unknown features to guests
or userspace, only those that the kernel is aware of.

dump _apple properties [X86]

dyndbg[=||va1||]

Dump name and content of EFI device properties on
x86 Macs. Useful for driver authors to determine
what data is available or for reverse-engineering.

[KNL,DYNAMIC DEBUG]

module.dyndbg[="'"'val'']

nompx

nopku

Enable debug messages at boot time. See
Documentation/admin-guide/dynamic-debug-howto.rst
for details.

[X86] Disables Intel Memory Protection Extensions.
See Documentation/x86/intel mpx.txt for more
information about the feature.

[X86] Disable Memory Protection Keys CPU feature found
in some Intel CPUs.

module.async _probe [KNL]

Enable asynchronous probe on this module.

early ioremap debug [KNL]

earlycon=

Enable debug messages in early ioremap support. This
is useful for tracking down temporary early mappings
which are not unmapped.

[KNL] Output early console device and options.
When used with no options, the early console is

determined by the stdout-path property in device
tree's chosen node.

cdns,<addr>[,options]

Start an early, polled-mode console on a Cadence
(xuartps) serial port at the specified address. Only
supported option is baud rate. If baud rate is not
specified, the serial port must already be setup and
configured.

2.1. cpu lists:

27

Linux Kernel User Documentation, Release 4.13.0-rc4+

uart[8250],io0,<addr>[,options]
uart[8250],mmio,<addr>[,options]
uart[8250],mmio32,<addr>[,options]
uart[8250] ,mmio32be,<addr>[,options]
uart[8250],0x<addr>[,options]
Start an early, polled-mode console on the 8250/16550
UART at the specified I/0 port or MMIO address.
MMIO inter-register address stride is either 8-bit
(mmio) or 32-bit (mmio32 or mmio32be).
If none of [io|mmio|mmio32|mmio32be], <addr> is assumed
to be equivalent to "mmio'. “options' are specified
in the same format described for "~ “console=ttyS<n>'"'; if
unspecified, the h/w is not initialized.

ploll,<addr>

plOll,mmio32,<addr>
Start an early, polled-mode console on a plOll serial
port at the specified address. The pl01l1l serial port
must already be setup and configured. Options are not
yet supported. If "mmio32' is specified, then only
the driver will use only 32-bit accessors to read/write
the device registers.

meson,<addr>
Start an early, polled-mode console on a meson serial
port at the specified address. The serial port must
already be setup and configured. Options are not yet
supported.

msm_serial,<addr>
Start an early, polled-mode console on an msm serial
port at the specified address. The serial port
must already be setup and configured. Options are not
yet supported.

msm_serial dm,<addr>
Start an early, polled-mode console on an msm serial
dm port at the specified address. The serial port
must already be setup and configured. Options are not
yet supported.

owl,<addr>
Start an early, polled-mode console on a serial port
of an Actions Semi SoC, such as S500 or S900, at the
specified address. The serial port must already be
setup and configured. Options are not yet supported.

smh Use ARM semihosting calls for early console.

$3c2410,<addr>

s3c2412,<addr>

s3c2440,<addr>

$3c6400,<addr>

s5pv210,<addr>

exynos4210,<addr>
Use early console provided by serial driver available
on Samsung SoCs, requires selecting proper type and

28

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

a correct base address of the selected UART port. The
serial port must already be setup and configured.
Options are not yet supported.

lantiq,<addr>

Start an early, polled-mode console on a lantiq serial
(lgasc) port at the specified address. The serial port
must already be setup and configured. Options are not
yet supported.

lpuart,<addr>
lpuart32,<addr>

Use early console provided by Freescale LP UART driver
found on Freescale Vybrid and QorIQ LS1021A processors.
A valid base address must be provided, and the serial
port must already be setup and configured.

ar3700 uart,<addr>

earlyprintk=

Start an early, polled-mode console on the
Armada 3700 serial port at the specified
address. The serial port must already be setup
and configured. Options are not yet supported.

[X86,SH,BLACKFIN, ARM,M68k,S3901]
earlyprintk=vga

earlyprintk=efi

earlyprintk=sclp

earlyprintk=xen
earlyprintk=serial[,ttySn[,baudrate]]
earlyprintk=serial[,0x...[,baudrate]]
earlyprintk=ttySn[,baudrate]
earlyprintk=dbgp[debugController#]
earlyprintk=pciserial,bus:device.function[,baudrate]
earlyprintk=xdbc[xhciController#]

earlyprintk is useful when the kernel crashes before
the normal console is initialized. It is not enabled by
default because it has some cosmetic problems.

Append '',keep'' to not disable it when the real console
takes over.

Only one of vga, efi, serial, or usb debug port can
be used at a time.

Currently only ttySO and ttyS1l may be specified by
name. Other I/0 ports may be explicitly specified
on some architectures (x86 and arm at least) by
replacing ttySn with an I/0 port address, like this:
earlyprintk=serial,b0x1008,115200
You can find the port for a given device in
/proc/tty/driver/serial:
2: uart:ST16650V2 port:00001008 irq:18 ...

Interaction with the standard serial driver is not
very good.

The VGA and EFI output is eventually overwritten by

2.1. cpu lists:

29

Linux Kernel User Documentation, Release 4.13.0-rc4+

the real console.
The xen output can only be used by Xen PV guests.
The sclp output can only be used on s390.

edac_report= [HW,EDAC] Control how to report EDAC event
Format: {""on'' | ““off'' | "~“force''}
on: enable EDAC to report H/W event. May be overridden
by other higher priority error reporting module.
off: disable H/W event reporting through EDAC.
force: enforce the use of EDAC to report H/W event.
default: on.

ekgdboc= [X86,KGDB] Allow early kernel console debugging
ekgdboc=kbd

This is designed to be used in conjunction with
the boot argument: earlyprintk=vga

edd= [EDD]
Format: { “off'' | ““on'' | ““skip[mbr]''}
efi= [EFI]
Format: { " “old map'', " “nochunk'', "~‘“noruntime'', "‘debug'' }

old map [X86-64]: switch to the old ioremap-based EFI
runtime services mapping. 32-bit still uses this one by
default.

nochunk: disable reading files in " “chunks'' in the EFI
boot stub, as chunking can cause problems with some
firmware implementations.

noruntime : disable EFI runtime services support

debug: enable misc debug output

efi no storage paranoia [EFI; X86]
Using this parameter you can use more than 50% of
your efi variable storage. Use this parameter only if
you are really sure that your UEFI does sane gc and
fulfills the spec otherwise your board may brick.

efi fake mem= nn[KMG]@ss[KMG] :aa[,nn[KMG]@ss[KMG]:aa,..] [EFI; X86]
Add arbitrary attribute to specific memory range by
updating original EFI memory map.
Region of memory which aa attribute is added to is
from ss to ss+nn.
If efi fake mem=2G@4G:0x10000,2GE0x10a0000000:0x10000
is specified, EFI MEMORY MORE RELIABLE(0x10000)
attribute is added to range 0x100000000-0x180000000 and
0x10a0000000-0x1120000000.

Using this parameter you can do debugging of EFI memmap
related feature. For example, you can do debugging of
Address Range Mirroring feature even if your box
doesn't support it.

efivar ssdt= [EFI; X86] Name of an EFI variable that contains an SSDT
that is to be dynamically loaded by Linux. If there are
multiple variables with the same name but with different

30 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

vendor GUIDs, all of them will be loaded. See
Documentation/acpi/ssdt-overlays.txt for details.

eisa irq edge= [PARISC,HW]
See header of drivers/parisc/eisa.c.

elanfreqg= [X86-32]
See comment before function elanfreq setup() in
arch/x86/kernel/cpu/cpufreqg/elanfreq.c.

elevator= [IOSCHED]
Format: { "cfq'' | " “deadline'' | "“noop''}
See Documentation/block/cfg-iosched.txt and
Documentation/block/deadline-iosched.txt for details.

elfcorehdr=[size[KMG]@]offset[KMG] [IA64,PPC,SH,X86,5390]
Specifies physical address of start of kernel core
image elf header and optionally the size. Generally
kexec loader will pass this option to capture kernel.
See Documentation/kdump/kdump.txt for details.

enable mtrr cleanup [X86]
The kernel tries to adjust MTRR layout from continuous
to discrete, to make X server driver able to add WB
entry later. This parameter enables that.

enable timer pin 1 [X86]
Enable PIN 1 of APIC timer
Can be useful to work around chipset bugs
(in particular on some ATI chipsets).
The kernel tries to set a reasonable default.

enforcing [SELINUX] Set initial enforcing status.
Format: {"°0'" | ~"1''}
See security/selinux/Kconfig help text.
0 -- permissive (log only, no denials).
1 -- enforcing (deny and log).
Default value is 0.
Value can be changed at runtime via /selinux/enforce.

erst disable [ACPI]
Disable Error Record Serialization Table (ERST)

support.
ether= [HW,NET] Ethernet cards parameters
This option is obsoleted by the " “netdev='' option, which

has equivalent usage. See its documentation for details.

evm= [EVM]
Format: { ~“fix'' }
Permit “security.evm' to be updated regardless of
current integrity status.

failslab=
fail page alloc=
fail make request=[KNL]
General fault injection mechanism.

2.1. cpu lists: 31

Linux Kernel User Documentation, Release 4.13.0-rc4+

Format: <interval>,<probability>,<space>,<times>
See also Documentation/fault-injection/.

floppy= [HW]
See Documentation/blockdev/floppy.txt.

force pal cache flush
[IA-64] Avoid check sal cache flush which may hang on
buggy SAL CACHE FLUSH implementations. Using this
parameter will force ia64 sal cache flush to call
ia64 pal cache flush instead of SAL CACHE FLUSH.

forcepae [X86-32]
Forcefully enable Physical Address Extension (PAE).
Many Pentium M systems disable PAE but may have a
functionally usable PAE implementation.
Warning: use of this parameter will taint the kernel
and may cause unknown problems.

ftrace=[tracer]
[FTRACE] will set and start the specified tracer
as early as possible in order to facilitate early
boot debugging.

ftrace dump on oops[=orig cpu]
[FTRACE] will dump the trace buffers on oops.
If no parameter is passed, ftrace will dump
buffers of all CPUs, but if you pass orig cpu, it will
dump only the buffer of the CPU that triggered the
00ps.

ftrace filter=[function-list]
[FTRACE] Limit the functions traced by the function
tracer at boot up. function-list is a comma separated
list of functions. This list can be changed at run
time by the set ftrace filter file in the debugfs
tracing directory.

ftrace notrace=[function-list]
[FTRACE] Do not trace the functions specified in
function-1list. This 1list can be changed at run time
by the set ftrace notrace file in the debugfs
tracing directory.

ftrace graph filter=[function-list]
[FTRACE] Limit the top level callers functions traced
by the function graph tracer at boot up.
function-list is a comma separated list of functions
that can be changed at run time by the
set graph function file in the debugfs tracing directory.

ftrace graph notrace=[function-list]
[FTRACE] Do not trace from the functions specified in
function-list. This list is a comma separated list of
functions that can be changed at run time by the
set graph notrace file in the debugfs tracing directory.

ftrace graph max depth=<uint>

32

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

[FTRACE] Used with the function graph tracer. This is

the max depth it will trace into a function. This value
can be changed at run time by the max graph depth file
in the tracefs tracing directory. default: 0 (no limit)

gamecon.map[2]|3]=
[HW,JOY] Multisystem joystick and NES/SNES/PSX pad
support via parallel port (up to 5 devices per port)
Format: <port#>,<padl>,<pad2>,<pad3>,<padd>,<pad5>
See also Documentation/input/joystick-parport.txt

gamma= [HW,DRM]

gart fix e820= [X86 64] disable the fix €820 for K8 GART
Format: off | on
default: on

gcov_persist= [GCOV] When non-zero (default), profiling data for
kernel modules is saved and remains accessible via
debugfs, even when the module is unloaded/reloaded.
When zero, profiling data is discarded and associated
debugfs files are removed at module unload time.

goldfish [X86] Enable the goldfish android emulator platform.
Don't use this when you are not running on the
android emulator

gpt [EFI] Forces disk with valid GPT signature but
invalid Protective MBR to be treated as GPT. If the
primary GPT is corrupted, it enables the backup/alternate
GPT to be used instead.

grcan.enable@= [HW] Configuration of physical interface 0. Determines
the ““Enable 0'' bit of the configuration register.
Format: 0 | 1
Default: ©

grcan.enablel= [HW] Configuration of physical interface 1. Determines
the ““Enable 0'' bit of the configuration register.
Format: 0 | 1

Default: O

grcan.select= [HW] Select which physical interface to use.
Format: 0 | 1
Default: 0O

grcan.txsize= [HW] Sets the size of the tx buffer.

Format: <unsigned int> such that (txsize & ~Ox1fffcO) == 0.
Default: 1024

grcan.rxsize= [HW] Sets the size of the rx buffer.
Format: <unsigned int> such that (rxsize & ~Ox1fffc0) == 0.
Default: 1024

gpio-mockup.gpio mockup ranges
[HW] Sets the ranges of gpiochip of for this device.
Format: <startl>,<endl>,<start2>,<end2>...

hardlockup all cpu backtrace=
[KNL] Should the hard-lockup detector generate
backtraces on all cpus.
Format: <integer>

2.1. cpu lists: 33

Linux Kernel User Documentation, Release 4.13.0-rc4+

hashdist=

hcl=

hd=

hest disable

highmem=nn[KMG]

highres=

hisax=

hlt

hpet=

hpet mmap=

hugepages=
hugepagesz=

hvc _iucv=

hvc _iucv_allow=

hwthread map=

[KNL,NUMA] Large hashes allocated during boot
are distributed across NUMA nodes. Defaults on
for 64-bit NUMA, off otherwise.

Format: @ | 1 (for off | on)

[IA-64] SGI's Hardware Graph compatibility layer

[EIDE] (E)IDE hard drive subsystem geometry
Format: <cyl>,<head>,<sect>

[ACPI]

Disable Hardware Error Source Table (HEST) support;
corresponding firmware-first mode error processing
logic will be disabled.

[KNL,BOOT] forces the highmem zone to have an exact

size of <nn>. This works even on boxes that have no

highmem otherwise. This also works to reduce highmem
size on bigger boxes.

[KNL] Enable/disable high resolution timer mode.
Valid parameters: ““on'', *Toff''
Default: ““on''

[HW, ISDN]
See Documentation/isdn/README.HiSax.

[BUGS=ARM, SH]

[X86-32,HPET] option to control HPET usage

Format: { enable (default) | disable | force |
verbose }

disable: disable HPET and use PIT instead

force: allow force enabled of undocumented chips (ICH4,
VIA, nVidia)

verbose: show contents of HPET registers during setup

[X86, HPET MMAP] Allow userspace to mmap HPET
registers. Default set by CONFIG HPET MMAP DEFAULT.

[HW,X86-32,IA-64] HugeTLB pages to allocate at boot.
[HW,IA-64,PPC,X86-64] The size of the HugeTLB pages.
On x86-64 and powerpc, this option can be specified
multiple times interleaved with hugepages= to reserve
huge pages of different sizes. Valid pages sizes on
x86-64 are 2M (when the CPU supports "~ “pse'') and 1G
(when the CPU supports the " “pdpelgb'' cpuinfo flag).

[S390] Number of z/VM IUCV hypervisor console (HVC)
terminal devices. Valid values: 0..8

[S390] Comma-separated list of z/VM user IDs.
If specified, z/VM IUCV HVC accepts connections
from listed z/VM user IDs only.

[METAG] Comma-separated list of Linux cpu id to
hardware thread id mappings.
Format: <cpu>:<hwthread>

34

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

keep bootcon

i2c_bus=

i8042.
i8042.

18042.
i8042.

i8042.
18042.
i8042.
i8042.
18042.

i8042.
i8042.

18042.
i8042.

i810=

debug

[KNL]

Do not unregister boot console at start. This is only
useful for debugging when something happens in the window
between unregistering the boot console and initializing
the real console.

[HW] Override the default board specific I2C bus speed
or register an additional I2C bus that is not
registered from board initialization code.
Format:
<bus id>,<clkrate>

[HW] Toggle i8042 debug mode

unmask kbd data

direct
dumbkbd

noaux
nokbd
noloop
nomux

nopnp

notimeout
reset

unlock
kbdreset

i8k.ignore_dmi

i8k.force

i8k.power status

i8k.restricted

[HW] Enable printing of interrupt data from the KBD port
(disabled by default, and as a pre-condition
requires that i8042.debug=1 be enabled)

[HW] Put keyboard port into non-translated mode

[HW] Pretend that controller can only read data from
keyboard and cannot control its state
(Don't attempt to blink the leds)

[HW] Don't check for auxiliary (== mouse) port

[HW] Don't check/create keyboard port

[HW] Disable the AUX Loopback command while probing
for the AUX port

[HW] Don't check presence of an active multiplexing
controller

[HW] Don't use ACPIPnP / PnPBIOS to discover KBD/AUX
controllers

[HW] Ignore timeout condition signalled by controller

[HW] Reset the controller during init, cleanup and
suspend-to-ram transitions, only during s2r
transitions, or never reset

Format: { 1 | Y|y | ©] N | n}

1, Y, y: always reset controller

0, N, n: don't ever reset controller

Default: only on s2r transitions on x86; most other

architectures force reset to be always executed

[HW] Unlock (ignore) the keylock

[HW] Reset device connected to KBD port

[HW, DRM]

[HW] Continue probing hardware even if DMI data
indicates that the driver is running on unsupported
hardware.

[HW] Activate i8k driver even if SMM BIOS signature
does not match list of supported models.

[HW] Report power status in /proc/i8k
(disabled by default)

[HW] Allow controlling fans only if SYS ADMIN
capability is set.

i915.invert _brightness=

[DRM] Invert the sense of the variable that is used to
set the brightness of the panel backlight. Normally a

2.1. cpu lists:

35

Linux Kernel User Documentation, Release 4.13.0-rc4+

brightness value of 0 indicates backlight switched off,
and the maximum of the brightness value sets the backlight
to maximum brightness. If this parameter is set to 0
(default) and the machine requires it, or this parameter
is set to 1, a brightness value of 0 sets the backlight

to maximum brightness, and the maximum of the brightness
value switches the backlight off.

-1 -- never invert brightness

0 -- machine default

1 -- force brightness inversion
icn= [HW, ISDN]

Format: <io>[,<membase>[,<icn id>[,<icn id2>]]]

ide-core.nodma= [HW] (E)IDE subsystem
Format: =0.0 to prevent dma on hda, =0.1 hdb =1.0 hdc
.vlb clock .pci clock .noflush .nohpa .noprobe .nowerr
.cdrom .chs .ignore cable are additional options
See Documentation/ide/ide.txt.

ide-generic.probe-mask= [HW] (E)IDE subsystem
Format: <int>
Probe mask for legacy ISA IDE ports. Depending on
platform up to 6 ports are supported, enabled by
setting corresponding bits in the mask to 1. The
default value is 0x0, which has a special meaning.
On systems that have PCI, it triggers scanning the
PCI bus for the first and the second port, which
are then probed. O0n systems without PCI the value
of Ox0 enables probing the two first ports as if it
was 0x3.

ide-pci-generic.all-generic-ide [HW] (E)IDE subsystem
Claim all unknown PCI IDE storage controllers.

idle= [X86]
Format: idle=poll, idle=halt, idle=nomwait
Poll forces a polling idle loop that can slightly
improve the performance of waking up a idle CPU, but
will use a lot of power and make the system run hot.
Not recommended.
idle=halt: Halt is forced to be used for CPU idle.
In such case C2/C3 won't be used again.
idle=nomwait: Disable mwait for CPU C-states

ieee754= [MIPS] Select IEEE Std 754 conformance mode
Format: { strict | legacy | 2008 | relaxed }
Default: strict

Choose which programs will be accepted for execution
based on the IEEE 754 NaN encoding(s) supported by
the FPU and the NaN encoding requested with the value
of an ELF file header flag individually set by each
binary. Hardware implementations are permitted to
support either or both of the legacy and the 2008 NaN
encoding mode.

Available settings are as follows:

36 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

strict accept binaries that request a NaN encoding
supported by the FPU

legacy only accept legacy-NaN binaries, if supported
by the FPU

2008 only accept 2008-NaN binaries, if supported
by the FPU

relaxed accept any binaries regardless of whether
supported by the FPU

The FPU emulator is always able to support both NaN
encodings, so if no FPU hardware is present or it has
been disabled with “nofpu', then the settings of
“legacy' and "2008' strap the emulator accordingly,
“relaxed' straps the emulator for both legacy-NaN and
2008-NaN, whereas “strict' enables legacy-NaN only on
legacy processors and both NaN encodings on MIPS32 or
MIPS64 CPUs.

The setting for ABS.fmt/NEG.fmt instruction execution
mode generally follows that for the NaN encoding,
except where unsupported by hardware.

ignore loglevel [KNL]
Ignore loglevel setting - this will print /all/
kernel messages to the console. Useful for debugging.
We also add it as printk module parameter, so users
could change it dynamically, usually by
/sys/module/printk/parameters/ignore loglevel.

ignore rlimit data
Ignore RLIMIT DATA setting for data mappings,
print warning at first misuse. Can be changed via
/sys/module/kernel/parameters/ignore rlimit data.

ihash entries= [KNL]
Set number of hash buckets for inode cache.

ima appraise= [IMA] appraise integrity measurements
Format: { ““off'' | ““enforce'' | “~"fix'' | "“log'' }
default: " “enforce''

ima appraise tcb [IMA]
The builtin appraise policy appraises all files
owned by uid=0.

ima_canonical fmt [IMA]
Use the canonical format for the binary runtime
measurements, instead of host native format.

ima_hash= [IMA]
Format: { md5 | shal | rmd160 | sha256 | sha384
| sha512 | ... }
default: " “shal''

The list of supported hash algorithms is defined
in crypto/hash_info.h.

ima policy= [IMA]

2.1. cpu lists: 37

Linux Kernel User Documentation, Release 4.13.0-rc4+

ima tcb

ima_template=

The builtin policies to load during IMA setup.
Format: "~ “tcb | appraise tcb | secure boot''

The " “tcb'' policy measures all programs exec'd, files
mmap'd for exec, and all files opened with the read
mode bit set by either the effective uid (euid=0) or
uid=0.

The "“appraise tcb'' policy appraises the integrity of
all files owned by root. (This is the equivalent
of ima appraise tcb.)

The "“secure boot'' policy appraises the integrity
of files (eg. kexec kernel image, kernel modules,
firmware, policy, etc) based on file signatures.

[IMA] Deprecated. Use ima policy= instead.

Load a policy which meets the needs of the Trusted
Computing Base. This means IMA will measure all
programs exec'd, files mmap'd for exec, and all files
opened for read by uid=0.

[IMA]

Select one of defined IMA measurements template formats.
Formats: { "“ima'' | “~“ima-ng'' | "~ “ima-sig'' }

Default: " “ima-ng''

ima template fmt=

[IMA] Define a custom template format.
Format: { " fieldl|...|fieldN'' }

ima.ahash minsize= [IMA] Minimum file size for asynchronous hash usage

Format: <min file size>
Set the minimal file size for using asynchronous hash.
If left unspecified, ahash usage is disabled.

ahash performance varies for different data sizes on
different crypto accelerators. This option can be used
to achieve the best performance for a particular HW.

ima.ahash_bufsize= [IMA] Asynchronous hash buffer size

init=

initcall debug

Format: <bufsize>
Set hashing buffer size. Default: 4Kk.

ahash performance varies for different chunk sizes on
different crypto accelerators. This option can be used
to achieve best performance for particular HW.

[KNL]

Format: <full path>

Run specified binary instead of /sbin/init as init
process.

[KNL] Trace initcalls as they are executed. Useful
for working out where the kernel is dying during
startup.

initcall blacklist= [KNL] Do not execute a comma-separated list of

38

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

initrd=

init pkru=

inport.irg=

int pln_enable

initcall functions. Useful for debugging built-in
modules and initcalls.

[BOOT] Specify the location of the initial ramdisk
[x86] Specify the default memory protection keys rights
register contents for all processes. 0x55555554 by
default (disallow access to all but pkey 0). Can
override in debugfs after boot.

[HW] Inport (ATI XL and Microsoft) busmouse driver
Format: <irqg>

[x86] Enable power limit notification interrupt

integrity audit=[IMA]

intel iommu=

on

off

Format: { ~"0'' | “"1'' }
0 -- basic integrity auditing messages. (Default)
1 -- additional integrity auditing messages.

[DMAR] Intel IOMMU driver (DMAR) option
Enable intel iommu driver.

Disable intel iommu driver.

igfx_off [Default Off]

By default, gfx is mapped as normal device. If a gfx
device has a dedicated DMAR unit, the DMAR unit is
bypassed by not enabling DMAR with this option. In
this case, gfx device will use physical address for
DMA.

forcedac [x86 64]

With this option iommu will not optimize to look

for io virtual address below 32-bit forcing dual
address cycle on pci bus for cards supporting greater
than 32-bit addressing. The default is to look

for translation below 32-bit and if not available
then look in the higher range.

strict [Default Off]

With this option on every unmap single operation will
result in a hardware IOTLB flush operation as opposed
to batching them for performance.

sp_off [Default Off]

ecs off

By default, super page will be supported if Intel IOMMU
has the capability. With this option, super page will
not be supported.

[Default Off]

By default, extended context tables will be supported if
the hardware advertises that it has support both for the
extended tables themselves, and also PASID support. With
this option set, extended tables will not be used even
on hardware which claims to support them.

tboot noforce [Default 0ff]

Do not force the Intel IOMMU enabled under tboot.
By default, tboot will force Intel IOMMU on, which
could harm performance of some high-throughput
devices like 40GBit network cards, even if identity
mapping is enabled.

2.1. cpu lists:

39

Linux Kernel User Documentation, Release 4.13.0-rc4+

Note that using this option lowers the security
provided by tboot because it makes the system
vulnerable to DMA attacks.

intel idle.max cstate= [KNL,HW,ACPI,bX86]
0 disables intel idle and fall back on acpi idle.
1 to 9 specify maximum depth of C-state.

intel pstate= [X86]
disable
Do not enable intel pstate as the default
scaling driver for the supported processors
passive
Use intel pstate as a scaling driver, but configure it
to work with generic cpufreq governors (instead of
enabling its internal governor). This mode cannot be
used along with the hardware-managed P-states (HWP)
feature.
force
Enable intel pstate on systems that prohibit it by default
in favor of acpi-cpufreq. Forcing the intel pstate driver
instead of acpi-cpufreq may disable platform features, such
as thermal controls and power capping, that rely on ACPI
P-States information being indicated to OSPM and therefore
should be used with caution. This option does not work with
processors that aren't supported by the intel pstate driver
or on platforms that use pcc-cpufreq instead of acpi-cpufreq.
no_hwp
Do not enable hardware P state control (HWP)
if available.
hwp_only
Only load intel pstate on systems which support
hardware P state control (HWP) if available.
support_acpi ppc
Enforce ACPI PPC performance limits. If the Fixed ACPI
Description Table, specifies preferred power management
profile as " "Enterprise Server'' or "~ “Performance Server'',
then this feature is turned on by default.
per cpu perf limits
Allow per-logical-CPU P-State performance control limits using
cpufreq sysfs interface

intremap= [X86-64, Intel-IOMMU]
on enable Interrupt Remapping (default)
off disable Interrupt Remapping

nosid disable Source ID checking
no_x2apic_optout

BIOS x2APIC opt-out request will be ignored
nopost disable Interrupt Posting

iomem= Disable strict checking of access to MMIO memory
strict regions from userspace.
relaxed
iommu= [x86]
off
force
noforce

40 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

biomerge
panic
nopanic
merge
nomerge
forcesac
soft

pt
nobypass

iommu.passthroug

io7=

io delay=
0x80

Oxed
udelay

none

ip=

irgaffinity=

irgfixup

irgpoll

isapnp=

isolcpus=

[x86, IA-64]
[PPC/POWERNV]
Disable IOMMU bypass, using IOMMU for PCI devices.

h=
[ARM64] Configure DMA to bypass the IOMMU by default.
Format: { ~"0'"' | ~"1'' }

O - Use IOMMU translation for DMA.
1 - Bypass the IOMMU for DMA.
unset - Use IOMMU translation for DMA.

[HW] I07 for Marvel based alpha systems
See comment before marvel specify io7 in
arch/alpha/kernel/core marvel.c.

[X86] I/0 delay method

Standard port 0x80 based delay

Alternate port Oxed based delay (needed on some systems)
Simple two microseconds delay

No delay

[IP_PNP]
See Documentation/filesystems/nfs/nfsroot.txt.

[SMP] Set the default irq affinity mask
The argument is a cpu list, as described above.

[HW]

When an interrupt is not handled search all handlers
for it. Intended to get systems with badly broken
firmware running.

[HW]

When an interrupt is not handled search all handlers
for it. Also check all handlers each timer
interrupt. Intended to get systems with badly broken
firmware running.

[ISAPNP]
Format: <RDP>,<reset>,<pci scan>,<verbosity>

[KNL,SMP] Isolate CPUs from the general scheduler.
The argument is a cpu list, as described above.

This option can be used to specify one or more CPUs
to isolate from the general SMP balancing and scheduling
algorithms. You can move a process onto or off an

2.1. cpu lists:

41

Linux Kernel User Documentation, Release 4.13.0-rc4+

iucv=

ivrs ioapic

ivrs_hpet

ivrs _acpihid

js=

nokaslr

kasan multi_ shot

keepinitrd

kernelcore=

““isolated'' CPU via the CPU affinity syscalls or cpuset.
<cpu number> begins at 0 and the maximum value 1is
““number of CPUs in system - 1''.

This option is the preferred way to isolate CPUs. The
alternative -- manually setting the CPU mask of all
tasks in the system -- can cause problems and
suboptimal load balancer performance.

[HW,NET]

[HW, X86 64]
Provide an override to the IOAPIC-ID<->DEVICE-ID
mapping provided in the IVRS ACPI table. For
example, to map IOAPIC-ID decimal 10 to
PCI device 00:14.0 write the parameter as:

ivrs ioapic[10]=00:14.0

[HW,X86 64]

Provide an override to the HPET-ID<->DEVICE-ID

mapping provided in the IVRS ACPI table. For

example, to map HPET-ID decimal 0 to

PCI device 00:14.0 write the parameter as:
ivrs hpet[0]=00:14.0

[HW,X86 64]

Provide an override to the ACPI-HID:UID<->DEVICE-ID

mapping provided in the IVRS ACPI table. For

example, to map UART-HID:UID AMD0020:0 to

PCI device 00:14.5 write the parameter as:
ivrs_acpihid[00:14.5]=AMD0020:0

[HW,JOY] Analog joystick
See Documentation/input/joystick.txt.

[KNL]

When CONFIG _RANDOMIZE BASE is set, this disables
kernel and module base offset ASLR (Address Space
Layout Randomization).

[KNL] Enforce KASAN (Kernel Address Sanitizer) to print
report on every invalid memory access. Without this
parameter KASAN will print report only for the first
invalid access.

[HW, ARM]

[KNL, X86,IA-64,PPC]

Format: nn[KMGTPE] | "~ “mirror"'

This parameter

specifies the amount of memory usable by the kernel

for non-movable allocations. The requested amount is
spread evenly throughout all nodes in the system. The
remaining memory in each node is used for Movable
pages. In the event, a node is too small to have both
kernelcore and Movable pages, kernelcore pages will
take priority and other nodes will have a larger number

42

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

kgdbdbgp=

kgdboc=

kgdbwait

kmac=

kmemleak=

kmemcheck=

of Movable pages. The Movable zone is used for the
allocation of pages that may be reclaimed or moved
by the page migration subsystem. This means that
HugeTLB pages may not be allocated from this zone.
Note that allocations like PTEs-from-HighMem still
use the HighMem zone if it exists, and the Normal
zone if it does not.

Instead of specifying the amount of memory (nn[KMGTPE]),

you can specify "~ “mirror'' option. In case " mirror''

option is specified, mirrored (reliable) memory is used

for non-movable allocations and remaining memory is used

for Movable pages. nn[KMGTPE] and "~ “mirror'' are exclusive,
so you can NOT specify nn[KMGTPE] and "~ “mirror'' at the same
time.

[KGDB,HW] kgdb over EHCI usb debug port.

Format: <Controller#>[,poll interval]

The controller # is the number of the ehci usb debug
port as it is probed via PCI. The poll interval is
optional and is the number seconds in between

each poll cycle to the debug port in case you need

the functionality for interrupting the kernel with

gdb or control-c on the dbgp connection. When

not using this parameter you use sysrq-g to break into
the kernel debugger.

[KGDB,HW] kgdb over consoles.
Requires a tty driver that supports console polling,
or a supported polling keyboard driver (non-usb).
Serial only format: <serial device>[,baud]
keyboard only format: kbd
keyboard and serial format: kbd,<serial device>[,baud]
Optional Kernel mode setting:
kms, kbd format: kms,kbd
kms, kbd and serial format: kms,kbd,<ser dev>[,baud]

[KGDB] Stop kernel execution and enter the
kernel debugger at the earliest opportunity.

[MIPS] korina ethernet MAC address.
Configure the RouterBoard 532 series on-chip
Ethernet adapter MAC address.

[KNL] Boot-time kmemleak enable/disable

Valid arguments: on, off

Default: on

Built with CONFIG DEBUG KMEMLEAK DEFAULT OFF=y,
the default is off.

[X86] Boot-time kmemcheck enable/disable/one-shot mode
Valid arguments: 0, 1, 2

kmemcheck=0 (disabled)

kmemcheck=1 (enabled)

kmemcheck=2 (one-shot mode)

Default: 2 (one-shot mode)

kvm.ignore msrs=[KVM] Ignore guest accesses to unhandled MSRs.

2.1. cpu lists:

43

Linux Kernel User Documentation, Release 4.13.0-rc4+

Default is 0 (don't ignore, but inject #GP)

kvm.mmu_audit= [KVM] This is a R/W parameter which allows audit
KVM MMU at runtime.
Default is 0 (off)

kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM.
Default is 1 (enabled)

kvm-amd.npt= [KVM,AMD] Disable nested paging (virtualized MMU)
for all guests.
Default is 1 (enabled) if in 64-bit or 32-bit PAE mode.

kvm-arm.vgic v3 groupO trap=
[KVM,ARM] Trap guest accesses to GICv3 group-0
system registers

kvm-arm.vgic v3 groupl trap=
[KVM,ARM] Trap guest accesses to GICv3 group-1
system registers

kvm-arm.vgic v3 common trap=
[KVM,ARM] Trap guest accesses to GICv3 common
system registers

kvm-intel.ept= [KVM,Intel] Disable extended page tables
(virtualized MMU) support on capable Intel chips.
Default is 1 (enabled)

kvm-intel.emulate invalid guest state=
[KVM, Intel] Enable emulation of invalid guest states
Default is 0 (disabled)

kvm-intel.flexpriority=
[KVM, Intel] Disable FlexPriority feature (TPR shadow).
Default is 1 (enabled)

kvm-intel.nested=
[KVM, Intel] Enable VMX nesting (nVMX).
Default is 0 (disabled)

kvm-intel.unrestricted guest=
[KVM, Intel] Disable unrestricted guest feature
(virtualized real and unpaged mode) on capable
Intel chips. Default is 1 (enabled)

kvm-intel.vpid= [KVM,Intel] Disable Virtual Processor Identification
feature (tagged TLBs) on capable Intel chips.
Default is 1 (enabled)

12cr= [PPC]
13cr= [PPC]
lapic [X86-32,APIC] Enable the local APIC even if BIOS

disabled it.

lapic= [x86,APIC] "~ "notscdeadline'' Do not use TSC deadline

44 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

value for LAPIC timer one-shot implementation. Default
back to the programmable timer unit in the LAPIC.

lapic_timer c2 ok [X86,APIC] trust the local apic timer

in C2 power state.

libata.dma= [LIBATA] DMA control
libata.dma=0 Disable all PATA and SATA DMA
libata.dma=1 PATA and SATA Disk DMA only
libata.dma=2 ATAPI (CDROM) DMA only
libata.dma=4 Compact Flash DMA only
Combinations also work, so libata.dma=3 enables DMA
for disks and CDROMs, but not CFs.

libata.ignore_ hpa= [LIBATA] Ignore HPA limit
libata.ignore hpa=0 keep BIOS limits (default)
libata.ignore hpa=1 ignore limits, using full disk

libata.noacpi

libata.force=

[LIBATA] Disables use of ACPI in libata suspend/resume
when set.
Format: <int>

[LIBATA] Force configurations. The format is comma
separated list of " [ID:]VAL'' where ID is
PORT[.DEVICE]. PORT and DEVICE are decimal numbers
matching port, link or device. Basically, it matches
the ATA ID string printed on console by libata. If
the whole ID part is omitted, the last PORT and DEVICE
values are used. If ID hasn't been specified yet, the
configuration applies to all ports, links and devices.

If only DEVICE is omitted, the parameter applies to
the port and all links and devices behind it. DEVICE
number of 0 either selects the first device or the
first fan-out link behind PMP device. It does not
select the host link. DEVICE number of 15 selects the
host link and device attached to it.

The VAL specifies the configuration to force. As long
as there's no ambiguity shortcut notation is allowed.
For example, both 1.5 and 1.5G would work for 1.5Gbps.
The following configurations can be forced.

* Cable type: 40c, 80c, short40c, unk, ign or sata.
Any ID with matching PORT is used.

* SATA link speed limit: 1.5Gbps or 3.0Gbps.

* Transfer mode: pio[0-7], mwdma[0-4] and udma[0-7].
udmal[/]1[16,25,33,44,66,100,133] notation is also
allowed.

* [nolncqg: Turn on or off NCQ.

* [nolncqgtrim: Turn off queued DSM TRIM.

* nohrst, nosrst, norst: suppress hard, soft
and both resets.

2.1. cpu lists:

45

Linux Kernel User Documentation, Release 4.13.0-rc4+

* rstonce: only attempt one reset during
hot-unplug link recovery

* dump_id: dump IDENTIFY data.
* atapi dmadir: Enable ATAPI DMADIR bridge support

* disable: Disable this device.

If there are multiple matching configurations changing

the same attribute, the last one is used.

memblock=debug [KNL] Enable memblock debug messages.

load ramdisk= [RAM] List of ramdisks to load from floppy

See Documentation/blockdev/ramdisk.txt.

lockd.nlm grace period=P [NFS] Assign grace period.

Format: <integer>

lockd.nlm tcpport=N [NFS] Assign TCP port.

Format: <integer>

lockd.nlm_timeout=T [NFS] Assign timeout value.

Format: <integer>

lockd.nlm udpport=M [NFS] Assign UDP port.

locktorture.

locktorture.

locktorture.

locktorture.

locktorture.

locktorture.

locktorture.

locktorture.

Format: <integer>

nreaders stress= [KNL]

Set the number of locking read-acquisition kthreads.

Defaults to being automatically set based on the
number of online CPUs.

nwriters stress= [KNL]

Set the number of locking write-acquisition kthreads.

onoff holdoff= [KNL]
Set time (s) after boot for CPU-hotplug testing.

onoff interval= [KNL]
Set time (s) between CPU-hotplug operations, or
zero to disable CPU-hotplug testing.

shuffle interval= [KNL]
Set task-shuffle interval (jiffies). Shuffling
tasks allows some CPUs to go into dyntick-idle
mode during the locktorture test.

shutdown secs= [KNL]
Set time (s) after boot system shutdown. This
is useful for hands-off automated testing.

stat interval= [KNL]
Time (s) between statistics printk()s.

stutter= [KNL]

46

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

Time (s) to stutter testing, for example,
specifying five seconds causes the test to run for
five seconds, wait for five seconds, and so on.
This tests the locking primitive's ability to
transition abruptly to and from idle.

locktorture.torture runnable= [BOOT]

Start locktorture running at boot time.

locktorture.torture type= [KNL]

Specify the locking implementation to test.

locktorture.verbose= [KNL]

Enable additional printk() statements.

logibm.irg= [HW,MOUSE] Logitech Bus Mouse Driver
Format: <irg>

loglevel= All Kernel Messages with a loglevel smaller than the
console loglevel will be printed to the console. It can
also be changed with klogd or other programs. The
loglevels are defined as follows:
0 (KERN_EMERG) system is unusable
1 (KERN_ALERT) action must be taken immediately
2 (KERN_CRIT) critical conditions
3 (KERN_ERR) error conditions
4 (KERN WARNING) warning conditions
5 (KERN _NOTICE) normal but significant condition
6 (KERN_INFO) informational
7 (KERN_DEBUG) debug-level messages

log buf len=n[KMG] Sets the size of the printk ring buffer,

logo.nologo

1p=0

lp=port[,port..

lp=reset
lp=auto

in bytes. n must be a power of two and greater

than the minimal size. The minimal size is defined

by LOG BUF SHIFT kernel config parameter. There is
also CONFIG LOG CPU MAX BUF SHIFT config parameter
that allows to increase the default size depending on
the number of CPUs. See init/Kconfig for more details.

[FB] Disables display of the built-in Linux logo.
This may be used to provide more screen space for
kernel log messages and is useful when debugging

kernel boot problems.

[LP] Specify parallel ports to use, e.g,

.1 lp=none,parportd (lp® not configured, 1pl uses

first parallel port). “1p=0' disables the
printer driver. “1lp=reset' (which can be
specified in addition to the ports) causes
attached printers to be reset. Using
lp=portl,port2,... specifies the parallel ports
to associate 1p devices with, starting with
1p0. A port specification may be “none' to skip
that 1p device, or a parport name such as
“parport0'. Specifying “lp=auto' instead of a
port specification list means that device IDs
from each port should be examined, to see if

2.1. cpu lists:

47

Linux Kernel User Documentation, Release 4.13.0-rc4+

an IEEE 1284-compliant printer is attached; if
so, the driver will manage that printer.
See also header of drivers/char/1lp.c.

lpj=n [KNL]
Sets loops per jiffy to given constant, thus avoiding
time-consuming boot-time autodetection (up to 250 ms per
CPU). 0 enables autodetection (default). To determine
the correct value for your kernel, boot with normal
autodetection and see what value is printed. Note that
on SMP systems the preset will be applied to all CPUs,
which is likely to cause problems if your CPUs need
significantly divergent settings. An incorrect value
will cause delays in the kernel to be wrong, leading to
unpredictable I/0 errors and other breakage. Although
unlikely, in the extreme case this might damage your
hardware.

ltpc= [NET]
Format: <io>,<irg>,<dma>

machvec= [IA-64] Force the use of a particular machine-vector
(machvec) in a generic kernel.
Example: machvec=hpzxl swiotlb

machtype= [Loongson] Share the same kernel image file between different
yeeloong laptop.
Example: machtype=lemote-yeeloong-2f-7inch

max_addr=nn[KMG] [KNL,BOOT,ia64] All physical memory greater
than or equal to this physical address is ignored.

maxcpus= [SMP] Maximum number of processors that an SMP kernel
will bring up during bootup. maxcpus=n : n >= 0 limits
the kernel to bring up "n' processors. Surely after
bootup you can bring up the other plugged cpu by executing
““echo 1 > /sys/devices/system/cpu/cpuX/online''. So maxcpus
only takes effect during system bootup.
While n=0 is a special case, it is equivalent to " “nosmp'',
which also disables the IO APIC.

max_loop= [LOOP] The number of loop block devices that get

(Loop.max_loop) unconditionally pre-created at init time. The default
number is configured by BLK DEV LOOP_MIN COUNT. Instead
of statically allocating a predefined number, loop
devices can be requested on-demand with the
/dev/loop-control interface.

mce [X86-32] Machine Check Exception
mce=option [X86-64] See Documentation/x86/x86 64/boot-options.txt
md= [HW] RAID subsystems devices and level

See Documentation/admin-guide/md.rst.

mdacon= [MDA]
Format: <first>,<last>
Specifies range of consoles to be captured by the MDA.

48 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

mem=nn [KMG] [KNL,BOOT] Force usage of a specific amount of memory
Amount of memory to be used when the kernel is not able
to see the whole system memory or for test.
[X86] Work as limiting max address. Use together
with memmap= to avoid physical address space collisions.
Without memmap= PCI devices could be placed at addresses
belonging to unused RAM.

mem=nopentium [BUGS=X86-32] Disable usage of 4MB pages for kernel
memory .

memchunk=nn[KMG]
[KNL,SH] Allow user to override the default size for

per-device physically contiguous DMA buffers.

memhp default state=online/offline
[KNL] Set the initial state for the memory hotplug
onlining policy. If not specified, the default value is
set according to the
CONFIG MEMORY HOTPLUG DEFAULT ONLINE kernel config
option.
See Documentation/memory-hotplug.txt.

memmap=exactmap [KNL,X86] Enable setting of an exact
EB20 memory map, as specified by the user.
Such memmap=exactmap lines can be constructed based on
BIOS output or other requirements. See the memmap=nn@ss
option description.

memmap=nn[KMG]@ss [KMG]
[KNL] Force usage of a specific region of memory.
Region of memory to be used is from ss to ss+nn.
If @ss[KMG] is omitted, it is equivalent to mem=nn[KMG],
which limits max address to nn[KMG].
Multiple different regions can be specified,
comma delimited.
Example:
memmap=100M@2G, 100M#3G, 1G! 1024G

memmap=nn[KMG]#ss[KMG]
[KNL,ACPI] Mark specific memory as ACPI data.
Region of memory to be marked is from ss to ss+nn.

memmap=nn[KMG] $ss[KMG]
[KNL,ACPI] Mark specific memory as reserved.
Region of memory to be reserved is from ss to ss+nn.
Example: Exclude memory from 0x18690000-0x1869ffff
memmap=64K$0x18690000
or
memmap=0x10000$0x18690000
Some bootloaders may need an escape character before “$',
like Grub2, otherwise “$' and the following number
will be eaten.

memmap=nn[KMG] ! ss [KMG]
[KNL,X86] Mark specific memory as protected.
Region of memory to be used, from ss to ss+nn.

2.1. cpu lists: 49

Linux Kernel User Documentation, Release 4.13.0-rc4+

The memory region may be marked as €820 type 12 (0xc)
and is NVDIMM or ADR memory.

memory corruption check=0/1 [X86]
Some BIOSes seem to corrupt the first 64k of
memory when doing things like suspend/resume.
Setting this option will scan the memory
looking for corruption. Enabling this will
both detect corruption and prevent the kernel
from using the memory being corrupted.
However, its intended as a diagnostic tool; if
repeatable BIOS-originated corruption always
affects the same memory, you can use memmap=
to prevent the kernel from using that memory.

memory corruption check size=size [X86]
By default it checks for corruption in the low
64k, making this memory unavailable for normal
use. Use this parameter to scan for
corruption in more or less memory.

memory corruption check period=seconds [X86]
By default it checks for corruption every 60
seconds. Use this parameter to check at some
other rate. 0 disables periodic checking.

memtest= [KNL, X86,ARM] Enable memtest
Format: <integer>
default : 0 <disable>
Specifies the number of memtest passes to be
performed. Each pass selects another test
pattern from a given set of patterns. Memtest
fills the memory with this pattern, validates
memory contents and reserves bad memory
regions that are detected.

mem_sleep default= [SUSPEND] Default system suspend mode:
s2idle - Suspend-To-Idle
shallow - Power-0On Suspend or equivalent (if supported)
deep - Suspend-To-RAM or equivalent (if supported)
See Documentation/power/states.txt.

meye. *= [HW] Set MotionEye Camera parameters
See Documentation/video4linux/meye.txt.

mfgpt irg= [IA-32] Specify the IRQ to use for the
Multi-Function General Purpose Timers on AMD Geode
platforms.

mfgptfix [X86-32] Fix MFGPT timers on AMD Geode platforms when

the BIOS has incorrectly applied a workaround. TinyBIOS
version 0.98 is known to be affected, 0.99 fixes the
problem by letting the user disable the workaround.

mga= [HW, DRM]

min_addr=nn[KMG] [KNL,BOOT,ia64] ALl physical memory below this
physical address is ignored.

50 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

mini2440= [ARM, HW, KNL]
Format:[0..2]1[b]l[c]l[t]
Default: " "Otb''
MINI2440 configuration specification:
0 - The attached screen is the 3.5'' TFT
1 - The attached screen is the 7'' TFT
2 - The VGA Shield is attached (1024x768)
Leaving out the screen size parameter will not load
the TFT driver, and the framebuffer will be left
unconfigured.
b - Enable backlight. The TFT backlight pin will be
linked to the kernel VESA blanking code and a GPIO
LED. This parameter is not necessary when using the
VGA shield.
c - Enable the s3c camera interface.
t - Reserved for enabling touchscreen support. The
touchscreen support is not enabled in the mainstream
kernel as of 2.6.30, a preliminary port can be found
in the "“bleeding edge'' mini2440 support kernel at
http://repo.or.cz/w/linux-2.6/mini2440.git

mminit loglevel=
[KNL] When CONFIG DEBUG MEMORY INIT is set, this
parameter allows control of the logging verbosity for
the additional memory initialisation checks. A value
of O disables mminit logging and a level of 4 will
log everything. Information is printed at KERN DEBUG
so loglevel=8 may also need to be specified.

module.sig enforce
[KNL] When CONFIG MODULE SIG is set, this means that
modules without (valid) signatures will fail to load.
Note that if CONFIG _MODULE SIG FORCE is set, that
is always true, so this option does nothing.

module blacklist= [KNL] Do not load a comma-separated list of
modules. Useful for debugging problem modules.

mousedev.tap time=
[MOUSE] Maximum time between finger touching and
leaving touchpad surface for touch to be considered
a tap and be reported as a left button click (for
touchpads working in absolute mode only).
Format: <msecs>
mousedev.xres= [MOUSE] Horizontal screen resolution, used for devices
reporting absolute coordinates, such as tablets
mousedev.yres= [MOUSE] Vertical screen resolution, used for devices
reporting absolute coordinates, such as tablets

movablecore=nn[KMG] [KNL,X86,IA-64,PPC] This parameter

is similar to kernelcore except it specifies the
amount of memory used for migratable allocations.

If both kernelcore and movablecore is specified,
then kernelcore will be at *least* the specified
value but may be more. If movablecore on its own

is specified, the administrator must be careful

that the amount of memory usable for all allocations

2.1. cpu lists: 51

Linux Kernel User Documentation, Release 4.13.0-rc4+

is not too small.

movable node [KNL] Boot-time switch to make hotplugable memory
NUMA nodes to be movable. This means that the memory
of such nodes will be usable only for movable
allocations which rules out almost all kernel
allocations. Use with caution!

MTD Partition= [MTD]
Format: <name>,<region-number>,<size>,<offset>

MTD Region= [MTD] Format:
<name>,<region-number>[,<base>,<size>,<buswidth>,<altbuswidth>]
mtdparts= [MTD]
See drivers/mtd/cmdlinepart.c.
multitce=off [PPC] This parameter disables the use of the pSeries
firmware feature for updating multiple TCE entries
at a time.

onenand.bdry= [HW,MTD] Flex-0OneNAND Boundary Configuration
Format: [die® boundary][,die® lock][,diel boundary][,diel lock]

boundary - index of last SLC block on Flex-0neNAND.
The remaining blocks are configured as MLC blocks.
lock - Configure if Flex-0neNAND boundary should be locked.
Once locked, the boundary cannot be changed.
1 indicates lock status, 0 indicates unlock status.

mtdset= [ARM]
ARM/S3C2412 JIVE boot control

See arch/arm/mach-s3c2412/mach-jive.c

mtouchusb.raw coordinates=
[HW] Make the MicroTouch USB driver use raw coordinates
(y', default) or cooked coordinates ('n')

mtrr_chunk size=nn[KMG] [X86]
used for mtrr cleanup. It is largest continuous chunk
that could hold holes aka. UC entries.

mtrr_gran_size=nn[KMG] [X86]
Used for mtrr cleanup. It is granularity of mtrr block.
Default is 1.
Large value could prevent small alignment from
using up MTRRs.

mtrr_spare reg nr=n [X86]
Format: <integer>
Range: 0,7 : spare reg number
Default : 1
Used for mtrr cleanup. It is spare mtrr entries number.
Set to 2 or more if your graphical card needs more.

n2= [NET] SDL Inc. RISCom/N2 synchronous serial card

52

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

netdev= [NET] Network devices parameters

Format: <irg>,<io>,<mem start>,<mem_end>,<name>
Note that mem start is often overloaded to mean
something different and driver-specific.

This usage is only documented in each driver source
file if at all.

nf_conntrack.acct=

[NETFILTER] Enable connection tracking flow accounting
0 to disable accounting

1 to enable accounting

Default value is 0.

nfsaddrs= [NFS] Deprecated. Use ip= instead.

See Documentation/filesystems/nfs/nfsroot.txt.

nfsroot= [NFS] nfs root filesystem for disk-less boxes.

See Documentation/filesystems/nfs/nfsroot.txt.

nfsrootdebug [NFS] enable nfsroot debugging messages.

nfs.

nfs.

nfs.

nfs

nfs.

nfs.

nfs.

See Documentation/filesystems/nfs/nfsroot.txt.

callback nr_threads=
[NFSv4] set the total number of threads that the
NFS client will assign to service NFSv4 callback
requests.

callback tcpport=
[NFS] set the TCP port on which the NFSv4 callback
channel should listen.

cache getent=
[NFS] sets the pathname to the program which is used
to update the NFS client cache entries.

.cache getent timeout=

[NFS] sets the timeout after which an attempt to
update a cache entry is deemed to have failed.

idmap cache timeout=
[NFS] set the maximum lifetime for idmapper cache
entries.

enable ino64=
[NFS] enable 64-bit inode numbers.
If zero, the NFS client will fake up a 32-bit inode
number for the readdir() and stat() syscalls instead
of returning the full 64-bit number.
The default is to return 64-bit inode numbers.

max_session cb slots=
[NFSv4.1] Sets the maximum number of session
slots the client will assign to the callback
channel. This determines the maximum number of
callbacks the client will process in parallel for
a particular server.

2.1. cpu lists: 53

Linux Kernel User Documentation, Release 4.13.0-rc4+

nfs.max session slots=
[NFSv4.1] Sets the maximum number of session slots
the client will attempt to negotiate with the server.
This limits the number of simultaneous RPC requests
that the client can send to the NFSv4.1l server.
Note that there is little point in setting this
value higher than the max_tcp slot table limit.

nfs.nfs4 disable idmapping=
[NFSv4] When set to the default of "1', this option
ensures that both the RPC level authentication
scheme and the NFS level operations agree to use
numeric uids/gids if the mount is using the
“sec=sys' security flavour. In effect it is
disabling idmapping, which can make migration from
legacy NFSv2/v3 systems to NFSv4 easier.
Servers that do not support this mode of operation
will be autodetected by the client, and it will fall
back to using the idmapper.
To turn off this behaviour, set the value to "0'.
nfs.nfs4 unique id=
[NFS4] Specify an additional fixed unique ident-
ification string that NFSv4 clients can insert into
their nfs client id4 string. This is typically a
UUID that is generated at system install time.

nfs.send implementation id =
[NFSv4.1] Send client implementation identification
information in exchange id requests.
If zero, no implementation identification information
will be sent.
The default is to send the implementation identification
information.

nfs.recover lost locks =
[NFSv4] Attempt to recover locks that were lost due
to a lease timeout on the server. Please note that
doing this risks data corruption, since there are
no guarantees that the file will remain unchanged
after the locks are lost.
If you want to enable the kernel legacy behaviour of
attempting to recover these locks, then set this
parameter to "1'.
The default parameter value of "0' causes the kernel
not to attempt recovery of lost locks.

nfs4.layoutstats timer =
[NFSv4.2] Change the rate at which the kernel sends
layoutstats to the pNFS metadata server.

Setting this to value to 0 causes the kernel to use
whatever value is the default set by the layout
driver. A non-zero value sets the minimum interval
in seconds between layoutstats transmissions.

nfsd.nfs4 disable idmapping=
[NFSv4] When set to the default of "1', the NFSv4
server will return only numeric uids and gids to

54 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

nmi debug=

nmi_watchdog=

clients using auth sys, and will accept numeric uids
and gids from such clients. This is intended to ease
migration from NFSv2/v3.

[KNL,SH] Specify one or more actions to take
when a NMI is triggered.
Format: [state][,regs][,debounce][,die]

[KNL,BUGS=X86] Debugging features for SMP kernels
Format: [panic,][nopanic,][num]

Valid num: 0 or 1

0 - turn hardlockup detector in nmi watchdog off

1 - turn hardlockup detector in nmi watchdog on

When panic is specified, panic when an NMI watchdog
timeout occurs (or “nopanic' to override the opposite

default). To disable both hard and soft lockup detectors,

please see “nowatchdog'.
This is useful when you use a panic=... timeout and
need the box quickly up again.

netpoll.carrier timeout=

no387

[NET] Specifies amount of time (in seconds) that
netpoll should wait for a carrier. By default netpoll
waits 4 seconds.

[BUGS=X86-32] Tells the kernel to use the 387 maths
emulation library even if a 387 maths coprocessor
is present.

no_console_suspend

noaliencache

noalign

noapic

noautogroup

nobats

[HW] Never suspend the console

Disable suspending of consoles during suspend and
hibernate operations. Once disabled, debugging
messages can reach various consoles while the rest
of the system is being put to sleep (ie, while
debugging driver suspend/resume hooks). This may
not work reliably with all consoles, but is known
to work with serial and VGA consoles.

To facilitate more flexible debugging, we also add
console _suspend, a printk module parameter to control
it. Users could use console suspend (usually
/sys/module/printk/parameters/console suspend) to
turn on/off it dynamically.

[MM, NUMA, SLAB] Disables the allocation of alien
caches in the slab allocator. Saves per-node memory,
but will impact performance.

[KNL, ARM]

[SMP,APIC] Tells the kernel to not make use of any
IOAPICs that may be present in the system.

Disable scheduler automatic task group creation.

[PPC] Do not use BATs for mapping kernel lowmem
on "~ “Classic'' PPC cores.

2.1. cpu lists:

55

Linux Kernel User Documentation, Release 4.13.0-rc4+

nocache
noclflush
nodelayacct
nodsp

noefi
noexec

noexec

nosmap

nosmep

noexec32

nofpu

nofxsr

nohugeiomap

nosmt

noxsave

noxsaveopt

noxsaves

[ARM]

[BUGS=X86] Don't use the CLFLUSH instruction
[KNL] Disable per-task delay accounting

[SH] Disable hardware DSP at boot time.
Disable EFI runtime services support.
[IA-64]

[X86]

On X86-32 available only on PAE configured kernels.
noexec=on: enable non-executable mappings (default)
noexec=0ff: disable non-executable mappings

[X86]
Disable SMAP (Supervisor Mode Access Prevention)
even if it is supported by processor.

[X86]
Disable SMEP (Supervisor Mode Execution Prevention)
even if it is supported by processor.

[X86-64]
This affects only 32-bit executables.
noexec32=on: enable non-executable mappings (default)
read doesn't imply executable mappings
noexec32=0ff: disable non-executable mappings
read implies executable mappings

[MIPS,SH] Disable hardware FPU at boot time.

[BUGS=X86-32] Disables x86 floating point extended
register save and restore. The kernel will only save
legacy floating-point registers on task switch.

[KNL,x86] Disable kernel huge I/0 mappings.

[KNL,S390] Disable symmetric multithreading (SMT).
Equivalent to smt=1.

[BUGS=X86] Disables x86 extended register state save
and restore using xsave. The kernel will fallback to
enabling legacy floating-point and sse state.

[X86] Disables xsaveopt used in saving x86 extended
register states. The kernel will fall back to use
xsave to save the states. By using this parameter,
performance of saving the states is degraded because
xsave doesn't support modified optimization while
xsaveopt supports it on xsaveopt enabled systems.

[X86] Disables xsaves and xrstors used in saving and
restoring x86 extended register state in compacted
form of xsave area. The kernel will fall back to use
xsaveopt and xrstor to save and restore the states

56

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

nohlt

no file caps

nohalt

nohibernate

nohz=

nohz full=

noiotrap

noirgdebug

no_timer_ check

noisapnp

noinitrd

nointremap

nointroute
noinvpcid
nojitter

no-kvmclock

in standard form of xsave area. By using this
parameter, xsave area per process might occupy more
memory on xsaves enabled systems.

[BUGS=ARM,SH] Tells the kernel that the sleep(SH) or
wfi(ARM) instruction doesn't work correctly and not to
use it. This is also useful when using JTAG debugger.

Tells the kernel not to honor file capabilities. The
only way then for a file to be executed with privilege
is to be setuid root or executed by root.

[IA-64] Tells the kernel not to use the power saving
function PAL HALT LIGHT when idle. This increases
power-consumption. On the positive side, it reduces
interrupt wake-up latency, which may improve performance
in certain environments such as networked servers or
real-time systems.

[HIBERNATION] Disable hibernation and resume.

[KNL] Boottime enable/disable dynamic ticks
Valid arguments: on, off
Default: on

[KNL,BOOT]

The argument is a cpu list, as described above.

In kernels built with CONFIG NO HZ FULL=y, set

the specified list of CPUs whose tick will be stopped
whenever possible. The boot CPU will be forced outside
the range to maintain the timekeeping.

The CPUs in this range must also be included in the
rcu nocbs= set.

[SH] Disables trapped I/0 port accesses.

[X86-32] Disables the code which attempts to detect and
disable unhandled interrupt sources.

[X86,APIC] Disables the code which tests for
broken timer IRQ sources.

[ISAPNP] Disables ISA PnP code.

[RAM] Tells the kernel not to load any configured
initial RAM disk.

[X86-64, Intel-IOMMU] Do not enable interrupt
remapping.

[Deprecated - use intremap=off]

[IA-64]

[X86] Disable the INVPCID cpu feature.

[IA-64] Disables jitter checking for ITC timers.

[X86,KVM] Disable paravirtualized KVM clock driver

2.1. cpu lists:

57

Linux Kernel User Documentation, Release 4.13.0-rc4+

no-kvmapf

[X86,KVM] Disable paravirtualized asynchronous page
fault handling.

no-vmw-sched-clock

no-steal-acc

nolapic
nolapic_timer

noltlbs

nomca
nomce

nomfgpt

nonmi ipi

nomodule

nopat

norandmaps

noreplace-paravirt

noreplace-smp

nordrand

noresume

no-scroll

nosbagart

nosep

[X86,PV OPS] Disable paravirtualized VMware scheduler
clock and use the default one.

[X86,KVM] Disable paravirtualized steal time accounting.
steal time is computed, but won't influence scheduler
behaviour

[X86-32,APIC] Do not enable or use the local APIC.
[X86-32,APIC] Do not use the local APIC timer.

[PPC] Do not use large page/tlb entries for kernel
lowmem mapping on PPC40x and PPC8xx

[IA-64] Disable machine check abort handling
[X86-32] Disable Machine Check Exception

[X86-32] Disable Multi-Function General Purpose
Timer usage (for AMD Geode machines).

[X86] Disable using NMI IPIs during panic/reboot to
shutdown the other cpus. Instead use the REBOOT VECTOR
irq.

Disable module load

[X86] Disable PAT (page attribute table extension of
pagetables) support.

Don't use address space randomization. Equivalent to
echo 0 > /proc/sys/kernel/randomize va space

[X86,IA-64,PV OPS] Don't patch paravirt ops

[X86-32,SMP] Don't replace SMP instructions
with UP alternatives

[X86] Disable kernel use of the RDRAND and
RDSEED instructions even if they are supported
by the processor. RDRAND and RDSEED are still
available to user space applications.

[SWSUSP] Disables resume and restores original swap
space.

[VGA] Disables scrollback.

This is required for the Braillex ib80-piezo Braille
reader made by F.H. Papenmeier (Germany).

[IA-64]

[BUGS=X86-32] Disables x86 SYSENTER/SYSEXIT support.

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

nosmp

nosoftlockup
nosync
notsc

nowatchdog

nowb
nox2apic

cpu@ hotplug

nptcg=

nr_cpus=

nr_uarts=

numa_balancing=

[SMP] Tells an SMP kernel to act as a UP kernel,
and disable the I0 APIC. 1legacy for " “maxcpus=0'".

[KNL] Disable the soft-lockup detector.
[HW,M68K] Disables sync negotiation for all devices.
[BUGS=X86-32] Disable Time Stamp Counter

[KNL] Disable both lockup detectors, i.e.
soft-lockup and NMI watchdog (hard-lockup).

[ARM]
[X86-64,APIC] Do not enable x2APIC mode.

[X86] Turn on CPUO® hotplug feature when

CONFIG BOOTPARAM HOTPLUG CPU® is off.

Some features depend on CPUO. Known dependencies are:
1. Resume from suspend/hibernate depends on CPUO.
Suspend/hibernate will fail if CPUO is offline and you
need to online CPUO before suspend/hibernate.

2. PIC interrupts also depend on CPU®. CPU® can't be
removed if a PIC interrupt is detected.

It's said poweroff/reboot may depend on CPU® on some
machines although I haven't seen such issues so far
after CPUO is offline on a few tested machines.

If the dependencies are under your control, you can
turn on cpu® hotplug.

[IA-64] Override max number of concurrent global TLB
purges which is reported from either PAL VM SUMMARY or
SAL PALO.

[SMP] Maximum number of processors that an SMP kernel
could support. nr_cpus=n : n >= 1 limits the kernel to
support “n' processors. It could be larger than the
number of already plugged CPU during bootup, later in
runtime you can physically add extra cpu until it reaches
n. So during boot up some boot time memory for per-cpu
variables need be pre-allocated for later physical cpu
hot plugging.

[SERIAL] maximum number of UARTs to be registered.

[KNL,X86] Enable or disable automatic NUMA balancing.
Allowed values are enable and disable

numa_ zonelist order= [KNL, BOOT] Select zonelist order for NUMA.

ohcil394 dma=early

one of ['zone', “node', “default'] can be specified
This can be set from sysctl after boot.
See Documentation/sysctl/vm.txt for details.

[HW] enable debugging via the ohcil394 driver.
See Documentation/debugging-via-ohcil394.txt for more
info.

2.1. cpu lists:

59

Linux Kernel User Documentation, Release 4.13.0-rc4+

olpc ec timeout= [OLPC] ms delay when issuing EC commands

omap_mux=

oprofile.timer=

Rather than timing out after 20 ms if an EC
command is not properly ACKed, override the length
of the timeout. We have interrupts disabled while
waiting for the ACK, so if this is set too high
interrupts *may* be lost!

[OMAP] Override bootloader pin multiplexing.

Format: <mux _mode@.mode name=value>...

For example, to override I2C bus2:

omap mux=i2c2 scl.i2c2 scl=0x100,i2c2 sda.i2c2 sda=0x100

[HW]
Use timer interrupt instead of performance counters

oprofile.cpu_type= Force an oprofile cpu type

oops=panic

0SS

page owner=

page poison=

panic=

panic_on warn

This might be useful if you have an older oprofile
userland or if you want common events.
Format: { arch _perfmon }
arch perfmon: [X86] Force use of architectural
perfmon on Intel CPUs instead of the
CPU specific event set.
timer: [X86] Force use of architectural NMI
timer mode (see also oprofile.timer
for generic hr timer mode)

Always panic on oopses. Default is to just kill the
process, but there is a small probability of
deadlocking the machine.

This will also cause panics on machine check exceptions.
Useful together with panic=30 to trigger a reboot.

[HW,0SS]
See Documentation/sound/oss/oss-parameters.txt

[KNL] Boot-time page owner enabling option.

Storage of the information about who allocated
each page is disabled in default. With this switch,
we can turn it on.

on: enable the feature

[KNL] Boot-time parameter changing the state of
poisoning on the buddy allocator.

off: turn off poisoning

on: turn on poisoning

[KNL] Kernel behaviour on panic: delay <timeout>
timeout > 0: seconds before rebooting

timeout = 0: wait forever

timeout < 0: reboot immediately

Format: <timeout>

panic() instead of WARN(). Useful to cause kdump
on a WARN().

crash_kexec post notifiers

Run kdump after running panic-notifiers and dumping
kmsg. This only for the users who doubt kdump always

60

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

parkbd.port=

parkbd.mode=

parport=

succeeds in any situation.

Note that this also increases risks of kdump failure,
because some panic notifiers can make the crashed
kernel more unstable.

[HW] Parallel port number the keyboard adapter is
connected to, default is 0.

Format: <parport#>

[HW] Parallel port keyboard adapter mode of operation,
0 for XT, 1 for AT (default is AT).

Format: <mode>

[HW,PPT] Specify parallel ports. 0 disables.
Format: { @ | auto | OxBBB[,IRQ[,DMA]] }

Use “auto' to force the driver to use any
IRQ/DMA settings detected (the default is to
ignore detected IRQ/DMA settings because of
possible conflicts). You can specify the base
address, IRQ, and DMA settings; IRQ and DMA
should be numbers, or “auto' (for using detected
settings on that particular port), or “nofifo'
(to avoid using a FIFO even if it is detected).
Parallel ports are assigned in the order they
are specified on the command line, starting
with parporto.

parport _init mode= [HW, PPT]

pause_on

pcbit=

pcd.

_oops=

Configure VIA parallel port to operate in

a specific mode. This is necessary on Pegasos
computer where firmware has no options for setting
up parallel port mode and sets it to spp.
Currently this function knows 686a and 8231 chips.
Format: [spp|ps2]|epp|ecp]|ecpeppl

Halt all CPUs after the first oops has been printed for
the specified number of seconds. This is to be used if
your oopses keep scrolling off the screen.

[HW, ISDN]
[PARIDE]

See header of drivers/block/paride/pcd.c.
See also Documentation/blockdev/paride.txt.

pci=option[,option...] [PCI] various PCI subsystem options:

off
bios

nobios

confl

earlydump [X86] dump PCI config space before the kernel

changes anything

[X86] don't probe for the PCI bus

[X86-32] force use of PCI BIOS, don't access
the hardware directly. Use this if your machine
has a non-standard PCI host bridge.

[X86-32] disallow use of PCI BIOS, only direct
hardware access methods are allowed. Use this
if you experience crashes upon bootup and you
suspect they are caused by the BIOS.

[X86] Force use of PCI Configuration Access
Mechanism 1 (config address in I0 port OxCF8,

2.1. cpu lists:

61

Linux Kernel User Documentation, Release 4.13.0-rc4+

conf2

noaer

nodomains

nommconf

data in IO port OxCFC, both 32-bit).

[X86] Force use of PCI Configuration Access
Mechanism 2 (IO port OxCF8 is an 8-bit port for
the function, IO port OxCFA, also 8-bit, sets
bus number. The config space is then accessed
through ports 0xC000-0xCFFF).

See http://wiki.osdev.org/PCI for more info

on the configuration access mechanisms.

[PCIE] If the PCIEAER kernel config parameter is
enabled, this kernel boot option can be used to
disable the use of PCIE advanced error reporting.
[PCI] Disable support for multiple PCI

root domains (aka PCI segments, in ACPI-speak).
[X86] Disable use of MMCONFIG for PCI
Configuration

check enable amd mmconf [X86] check for and enable

nomsi

noioapicquirk

ioapicreroute

noioapicreroute

biosirg

rom

norom

nobar

irgmask=0xMMMM

properly configured MMIO access to PCI

config space on AMD family 10h CPU

[MSI] If the PCI_MSI kernel config parameter is
enabled, this kernel boot option can be used to
disable the use of MSI interrupts system-wide.
[APIC] Disable all boot interrupt quirks.
Safety option to keep boot IRQs enabled. This
should never be necessary.

[APIC] Enable rerouting of boot IRQs to the
primary IO-APIC for bridges that cannot disable
boot IRQs. This fixes a source of spurious IRQs
when the system masks IRQs.

[APIC] Disable workaround that uses the

boot IRQ equivalent of an IRQ that connects to
a chipset where boot IRQs cannot be disabled.
The opposite of ioapicreroute.

[X86-32] Use PCI BIOS calls to get the interrupt
routing table. These calls are known to be buggy
on several machines and they hang the machine
when used, but on other computers it's the only
way to get the interrupt routing table. Try
this option if the kernel is unable to allocate
IRQs or discover secondary PCI buses on your
motherboard.

[X86] Assign address space to expansion ROMs.
Use with caution as certain devices share
address decoders between ROMs and other
resources.

[X86] Do not assign address space to

expansion ROMs that do not already have

BIOS assigned address ranges.

[X86] Do not assign address space to the

BARs that weren't assigned by the BIOS.

[X86] Set a bit mask of IRQs allowed to be
assigned automatically to PCI devices. You can
make the kernel exclude IRQs of your ISA cards
this way.

pirqaddr=0xAAAAA [X86] Specify the physical address

lastbus=N

of the PIRQ table (normally generated

by the BIOS) if it is outside the
FOOOOh-100000h range.

[X86] Scan all buses thru bus #N. Can be

62

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

assign-busses

usepirgmask

noacpi

use crs

nocrs

routeirq

skip_isa align

noearly

bfsort

nobfsort

useful if the kernel is unable to find your
secondary buses and you want to tell it
explicitly which ones they are.

[X86] Always assign all PCI bus

numbers ourselves, overriding

whatever the firmware may have done.

[X86] Honor the possible IRQ mask stored

in the BIOS $PIR table. This is needed on

some systems with broken BIOSes, notably

some HP Pavilion N5400 and Omnibook XE3
notebooks. This will have no effect if ACPI
IRQ routing is enabled.

[X86] Do not use ACPI for IRQ routing

or for PCI scanning.

[X86] Use PCI host bridge window information
from ACPI. On BIOSes from 2008 or later, this
is enabled by default. If you need to use this,
please report a bug.

[X86] Ignore PCI host bridge windows from ACPI.
If you need to use this, please report a bug.
Do IRQ routing for all PCI devices.

This is normally done in pci enable device(),
so this option is a temporary workaround

for broken drivers that don't call it.

[X86] do not align io start addr, so can
handle more pci cards

[X86] Don't do any early type 1 scanning.

This might help on some broken boards which
machine check when some devices' config space
is read. But various workarounds are disabled
and some IOMMU drivers will not work.

Sort PCI devices into breadth-first order.
This sorting is done to get a device

order compatible with older (<= 2.4) kernels.
Don't sort PCI devices into breadth-first order.

pcie bus tune off Disable PCIe MPS (Max Payload Size)

pcie bus safe

pcie bus perf

tuning and use the BIOS-configured MPS defaults.
Set every device's MPS to the largest value
supported by all devices below the root complex.
Set device MPS to the largest allowable MPS
based on its parent bus. Also set MRRS (Max
Read Request Size) to the largest supported
value (no larger than the MPS that the device
or bus can support) for best performance.

pcie bus peer2peer Set every device's MPS to 128B, which

cbiosize=nn[KMG]

every device is guaranteed to support. This
configuration allows peer-to-peer DMA between
any pair of devices, possibly at the cost of
reduced performance. This also guarantees
that hot-added devices will work.

The fixed amount of bus space which is
reserved for the CardBus bridge's I0 window.
The default value is 256 bytes.

cbmemsize=nn[KMG] The fixed amount of bus space which is

reserved for the CardBus bridge's memory
window. The default value is 64 megabytes.

resource alignment=

Format:

2.1. cpu lists:

63

Linux Kernel User Documentation, Release 4.13.0-rc4+

ecrc=

hpiosize

hpmemsiz

hpbussiz

realloc=

realloc
noari
pcie sca

pcie aspm=
off
force

pcie hp=
nomsi

pcie ports=
auto

native

compat

[<order of align>@][<domain>:]<bus>:<slot>.<func>[; ...]
[<order of align>@]pci:<vendor>:<device>\
[:<subvendor>:<subdevice>][; ...]

Specifies alignment and device to reassign
aligned memory resources.
If <order of align> is not specified,
PAGE SIZE is used as alignment.
PCI-PCI bridge can be specified, if resource
windows need to be expanded.
To specify the alignment for several
instances of a device, the PCI vendor,
device, subvendor, and subdevice may be
specified, e.g., 4096@pci:8086:9c22:103c:198f
Enable/disable PCIe ECRC (transaction layer
end-to-end CRC checking).
bios: Use BIOS/firmware settings. This is the
the default.
off: Turn ECRC off
on: Turn ECRC on.

=nn[KMG] The fixed amount of bus space which is
reserved for hotplug bridge's I0 window.
Default size is 256 bytes.

e=nn[KMG] The fixed amount of bus space which is
reserved for hotplug bridge's memory window.
Default size is 2 megabytes.

e=nn The minimum amount of additional bus numbers
reserved for buses below a hotplug bridge.
Default is 1.
Enable/disable reallocating PCI bridge resources
if allocations done by BIOS are too small to
accommodate resources required by all child
devices.
off: Turn realloc off
on: Turn realloc on
same as realloc=on
do not use PCIe ARI.

n_all Scan all possible PCIe devices. Otherwise we
only look for one device below a PCIe downstream
port.

[PCIE] Forcibly enable or disable PCIe Active State Power
Management.

Disable ASPM.

Enable ASPM even on devices that claim not to support it.
WARNING: Forcing ASPM on may cause system lockups.

[PCIE] PCI Express Hotplug driver options:
Do not use MSI for PCI Express Native Hotplug (this
makes all PCIe ports use INTx for hotplug services).

[PCIE] PCIe ports handling:

Ask the BIOS whether or not to use native PCIe services
associated with PCIe ports (PME, hot-plug, AER). Use
them only if that is allowed by the BIOS.

Use native PCIe services associated with PCIe ports
unconditionally.

Treat PCIe ports as PCI-to-PCI bridges, disable the PCIe
ports driver.

64

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

pcie port pm=
of f
force

pcie pme=

nomsi

pcmy=

pd ignore unused

pd.

pdcchassis=

percpu_alloc=

pf.

Pg.

pirg=

plip=

pmtmr=

pnp.debug=1

pnpacpi=

[PCIE] PCIe port power management handling:
Disable power management of all PCIe ports
Forcibly enable power management of all PCIe ports

[PCIE,PM] Native PCIe PME signaling options:

Do not use MSI for native PCIe PME signaling (this makes

all PCIe root ports use INTx for all services).

[HW,PCMCIA] BadgePAD 4

[PM]

Keep all power-domains already enabled by bootloader on,

even if no driver has claimed them. This is useful
for debug and development, but should not be
needed on a platform with proper driver support.

[PARIDE]
See Documentation/blockdev/paride.txt.

[PARISC,HW] Disable/Enable PDC Chassis Status codes at
boot time.

Format: { @ | 1}

See arch/parisc/kernel/pdc_chassis.c

Select which percpu first chunk allocator to use.
Currently supported values are "~ “embed'' and " “page''.
Archs may support subset or none of the selections.
See comments in mm/percpu.c for details on each
allocator. This parameter is primarily for debugging
and performance comparison.

[PARIDE]
See Documentation/blockdev/paride.txt.

[PARIDE]
See Documentation/blockdev/paride.txt.

[SMP,APIC] Manual mp-table setup
See Documentation/x86/i386/I0-APIC.txt.

[PPT,NET] Parallel port network link
Format: { parport<nr> | timid | 0 }
See also Documentation/parport.txt.

[X86] Manual setup of pmtmr I/0 Port.
Override pmtimer IOPort with a hex value.
e.g. pmtmr=0x508

[PNP]

Enable PNP debug messages (depends on the

CONFIG PNP_DEBUG MESSAGES option). Change at run-time
via /sys/module/pnp/parameters/debug. We always show
current resource usage; turning this on also shows
possible settings and some assignment information.

[ACPI]

2.1. cpu lists:

65

Linux Kernel User Documentation, Release 4.13.0-rc4+

{ off }

pnpbios= [ISAPNP]
{ on | off | curr | res | no-curr | no-res }

pnp reserve irg=
[ISAPNP] Exclude IRQs for the autoconfiguration

pnp_reserve dma=
[ISAPNP] Exclude DMAs for the autoconfiguration

pnp reserve io= [ISAPNP] Exclude I/0 ports for the autoconfiguration
Ranges are in pairs (I/0 port base and size).

pnp_reserve_mem=
[ISAPNP] Exclude memory regions for the
autoconfiguration.
Ranges are in pairs (memory base and size).

ports= [IP_ VS FTP] IPVS ftp helper module
Default is 21.
Up to 8 (IP_VS APP_MAX PORTS) ports
may be specified.
Format: <port>,<port>....

powersave=o0ff [PPC] This option disables power saving features.
It specifically disables cpuidle and sets the
platform machine description specific power save
function to NULL. On Idle the CPU just reduces
execution priority.

ppc_strict facility enable
[PPC] This option catches any kernel floating point,
Altivec, VSX and SPE outside of regions specifically
allowed (eg kernel enable fpu()/kernel disable fpu()).
There is some performance impact when enabling this.

print-fatal-signals=
[KNL] debug: print fatal signals

If enabled, warn about various signal handling
related application anomalies: too many signals,
too many POSIX.1 timers, fatal signals causing a
coredump - etc.

If you hit the warning due to signal overflow,
you might want to try "~ “ulimit -i unlimited''.

default: off.

printk.always kmsg dump=
Trigger kmsg dump for cases other than kernel oops or
panics
Format: <bool> (1/Y/y=enable, 0/N/n=disable)
default: disabled

printk.devkmsg={on,off, ratelimit}
Control writing to /dev/kmsg.

66 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

on - unlimited logging to /dev/kmsg from userspace
off - logging to /dev/kmsg disabled

ratelimit - ratelimit the logging

Default: ratelimit

printk.time= Show timing data prefixed to each printk message line
Format: <bool> (1/Y/y=enable, 0/N/n=disable)
processor.max_cstate= [HW,ACPI]

processor.nocst

profile=

prompt ramdisk=

psmouse.

psmouse.

psmouse.

psmouse.

psmouse.

Limit processor to maximum C-state
max cstate=9 overrides any DMI blacklist limit.

[HW,ACPI]
Ignore the CST method to determine C-states,
instead using the legacy FADT method

[KNL] Enable kernel profiling via /proc/profile

Format: [schedule, J<number>

Param: " “schedule'' - profile schedule points.

Param: <number> - step/bucket size as a power of 2 for
statistical time based profiling.

Param: "““sleep'' - profile D-state sleeping (millisecs).
Requires CONFIG SCHEDSTATS
Param: ““kvm'' - profile VM exits.

[RAM] List of RAM disks to prompt for floppy disk
before loading.
See Documentation/blockdev/ramdisk.txt.

proto= [HW,MOUSE] Highest PS2 mouse protocol extension to
probe for; one of (bare|imps|exps]|lifebook]|any).
rate= [HW,MOUSE] Set desired mouse report rate, in reports
per second.
resetafter= [HW,MOUSE]
Try to reset the device after so many bad packets
(0 = never).
resolution=
[HW,MOUSE] Set desired mouse resolution, in dpi.
smartscroll=

[HW,MOUSE] Controls Logitech smartscroll autorepeat.
0 = disabled, 1 = enabled (default).

pstore.backend= Specify the name of the pstore backend to use

pt.

[PARIDE]
See Documentation/blockdev/paride.txt.

pty.legacy count=

quiet
ri28=

raid=

[KNL] Number of legacy pty's. Overwrites compiled-in
default number.

[KNL] Disable most log messages
[HW, DRM]

[HW,RAID]
See Documentation/admin-guide/md.rst.

2.1. cpu lists:

67

Linux Kernel User Documentation, Release 4.13.0-rc4+

ramdisk size=

[RAM] Sizes of RAM disks in kilobytes

See Documentation/blockdev/ramdisk.txt.

ras=option[,option,...] [KNL] RAS-specific options

cec disable [X86]
Disable

the Correctable Errors Collector,

see CONFIG RAS CEC help text.

rcu nocbs= [KNL]

The argument is

a cpu list, as described above.

In kernels built with CONFIG RCU NOCB CPU=y, set
the specified list of CPUs to be no-callback CPUs.
Invocation of these CPUs' RCU callbacks will

be offloaded to

““rcuox/N'' kthreads created for

that purpose, where ““x'' is “"b'' for RCU-bh, " "p''

for RCU-preempt

, and ““s'' for RCU-sched, and "~"N"'

is the CPU number. This reduces 0S jitter on the

offloaded CPUs,

which can be useful for HPC and

real-time workloads. It can also improve energy
efficiency for asymmetric multiprocessors.

rcu _noch poll [KNL]
Rather than requiring that offloaded CPUs
(specified by rcu nocbs= above) explicitly
awaken the corresponding " “rcuoN'' kthreads,
make these kthreads poll for callbacks.

This improves the real-time response for the
offloaded CPUs by relieving them of the need to
wake up the corresponding kthread, but degrades
energy efficiency by requiring that the kthreads
periodically wake up to do the polling.

rcutree.

rcutree.

rcutree

rcutree.

rcutree.

rcutree.

blimit= [KNL]

Set maximum number of finished RCU callbacks to
process in one batch.

dump tree= [KNL]

Dump the structure of the rcu node combining tree
out at early boot. This is used for diagnostic
purposes, to verify correct tree setup.

.gp_cleanup delay=

[KNL]

Set the number of jiffies to delay each step of
RCU grace-period cleanup.

gp_init delay= [KNL]

Set the number of jiffies to delay each step of
RCU grace-period initialization.

gp_preinit delay=

[KNL]

Set the number of jiffies to delay each step of
RCU grace-period pre-initialization, that is,

the propagation

of recent CPU-hotplug changes up

the rcu node combining tree.

rcu fanout exact= [KNL]

68

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

rcutree

rcutree.

rcutree.

rcutree

rcutree.

rcutree.

rcutree

rcutree.

rcutree.

Disable autobalancing of the rcu node combining
tree. This is used by rcutorture, and might
possibly be useful for architectures having high
cache-to-cache transfer latencies.

.rcu_fanout leaf= [KNL]

Change the number of CPUs assigned to each
leaf rcu node structure. Useful for very
large systems, which will choose the value 64,
and for NUMA systems with large remote-access
latencies, which will choose a value aligned
with the appropriate hardware boundaries.

jiffies till sched gs= [KNL]
Set required age in jiffies for a
given grace period before RCU starts
soliciting quiescent-state help from
rcu note context switch().

jiffies till first fqs= [KNL]
Set delay from grace-period initialization to
first attempt to force quiescent states.
Units are jiffies, minimum value is zero,
and maximum value is HZ.

.jiffies till next fgs= [KNL]

Set delay between subsequent attempts to force
guiescent states. Units are jiffies, minimum
value is one, and maximum value is HZ.

kthread prio= [KNL,BOOT]

Set the SCHED FIFO priority of the RCU per-CPU
kthreads (rcuc/N). This value is also used for
the priority of the RCU boost threads (rcub/N)
and for the RCU grace-period kthreads (rcu bh,
rcu preempt, and rcu sched). If RCU BOOST is
set, valid values are 1-99 and the default is 1
(the least-favored priority). Otherwise, when
RCU BOOST is not set, valid values are 0-99 and
the default is zero (non-realtime operation).

rcu nocb leader stride= [KNL]
Set the number of NOCB kthread groups, which
defaults to the square root of the number of
CPUs. Larger numbers reduces the wakeup overhead
on the per-CPU grace-period kthreads, but increases
that same overhead on each group's leader.

.qhimark= [KNL]

Set threshold of queued RCU callbacks beyond which
batch limiting is disabled.

glowmark= [KNL]
Set threshold of queued RCU callbacks below which
batch limiting is re-enabled.

rcu idle gp delay= [KNL]
Set wakeup interval for idle CPUs that have

2.1. cpu lists:

69

Linux Kernel User Documentation, Release 4.13.0-rc4+

rcutree.

rcutree.

rcuperft.

rcuperf.

rcuperft.

rcuperf.

rcuperft.

rcuperf.

rcuperf.

rcuperft.

rcuperf.

RCU callbacks (RCU FAST NO HZ=y).

rcu idle lazy gp delay= [KNL]
Set wakeup interval for idle CPUs that have
only ““lazy'' RCU callbacks (RCU FAST NO HZ=y).
Lazy RCU callbacks are those which RCU can
prove do nothing more than free memory.

rcu kick kthreads= [KNL]
Cause the grace-period kthread to get an extra
wake up() if it sleeps three times longer than
it should at force-quiescent-state time.
This wake up() will be accompanied by a
WARN ONCE() splat and an ftrace dump().

gp_async= [KNL]
Measure performance of asynchronous
grace-period primitives such as call rcu().

gp_async_max= [KNL]
Specify the maximum number of outstanding
callbacks per writer thread. When a writer
thread exceeds this limit, it invokes the
corresponding flavor of rcu barrier() to allow
previously posted callbacks to drain.

gp_exp= [KNL]
Measure performance of expedited synchronous
grace-period primitives.

holdoff= [KNL]
Set test-start holdoff period. The purpose of
this parameter is to delay the start of the
test until boot completes in order to avoid
interference.

nreaders= [KNL]
Set number of RCU readers. The value -1 selects
N, where N is the number of CPUs. A value
“"n'' less than -1 selects N-n+l, where N is again
the number of CPUs. For example, -2 selects N
(the number of CPUs), -3 selects N+1, and so on.
A value of ""'n'' less than or equal to -N selects
a single reader.

nwriters= [KNL]
Set number of RCU writers. The values operate
the same as for rcuperf.nreaders.
N, where N is the number of CPUs

perf runnable= [BOOT]
Start rcuperf running at boot time.

perf type= [KNL]
Specify the RCU implementation to test.

shutdown= [KNL]
Shut the system down after performance tests

70

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

complete. This is useful for hands-off automated
testing.

rcuperf.verbose= [KNL]

Enable additional printk() statements.

rcuperf.writer holdoff= [KNL]

rcutorture.

rcutorture.

rcutorture.

rcutorture.

rcutorture.

rcutorture.

rcutorture.

rcutorture.

rcutorture.

rcutorture.

rcutorture.

Write-side holdoff between grace periods,
in microseconds. The default of zero says
no holdoff.

cbflood inter holdoff= [KNL]
Set holdoff time (jiffies) between successive
callback-flood tests.

cbflood intra holdoff= [KNL]
Set holdoff time (jiffies) between successive
bursts of callbacks within a given callback-flood
test.

cbflood n burst= [KNL]
Set the number of bursts making up a given
callback-flood test. Set this to zero to
disable callback-flood testing.

cbflood n per burst= [KNL]
Set the number of callbacks to be registered
in a given burst of a callback-flood test.

fqs_duration= [KNL]
Set duration of force quiescent state bursts
in microseconds.

fqs_holdoff= [KNL]
Set holdoff time within force quiescent state bursts
in microseconds.

fgs stutter= [KNL]
Set wait time between force quiescent state bursts
in seconds.

gp_cond= [KNL]
Use conditional/asynchronous update-side
primitives, if available.

gp_exp= [KNL]
Use expedited update-side primitives, if available.

gp _normal= [KNL]
Use normal (non-expedited) asynchronous
update-side primitives, if available.

gp_sync= [KNL]
Use normal (non-expedited) synchronous
update-side primitives, if available. If all
of rcutorture.gp cond=, rcutorture.gp _exp=,
rcutorture.gp normal=, and rcutorture.gp _sync=
are zero, rcutorture acts as if is interpreted

2.1. cpu lists:

71

Linux Kernel User Documentation, Release 4.13.0-rc4+

rcutorture

rcutorture

rcutorture

rcutorture.

rcutorture

rcutorture

rcutorture.

rcutorture.

rcutorture.

rcutorture.

rcutorture

rcutorture.

rcutorture.

rcutorture.

they are all non-zero.

.n_barrier cbs= [KNL]
Set callbacks/threads for rcu_barrier() testing.

.nfakewriters= [KNL]
Set number of concurrent RCU writers. These just
stress RCU, they don't participate in the actual
test, hence the " fake''.

.nreaders= [KNL]
Set number of RCU readers. The value -1 selects
N-1, where N is the number of CPUs. A value
"n'' less than -1 selects N-n-2, where N is again
the number of CPUs. For example, -2 selects N
(the number of CPUs), -3 selects N+1, and so on.

object debug= [KNL]
Enable debug-object double-call rcu() testing.

.onoff holdoff= [KNL]
Set time (s) after boot for CPU-hotplug testing.

.onoff interval= [KNL]
Set time (s) between CPU-hotplug operations, or
zero to disable CPU-hotplug testing.

shuffle interval= [KNL]
Set task-shuffle interval (s). Shuffling tasks
allows some CPUs to go into dyntick-idle mode
during the rcutorture test.

shutdown secs= [KNL]
Set time (s) after boot system shutdown.
is useful for hands-off automated testing.

This

stall cpu= [KNL]
Duration of CPU stall (s) to test RCU CPU stall
warnings, zero to disable.

stall cpu holdoff= [KNL]
Time to wait (s) after boot before inducing stall.

.stat interval= [KNL]
Time (s) between statistics printk()s.

stutter= [KNL]
Time (s) to stutter testing, for example, specifying
five seconds causes the test to run for five seconds,
wait for five seconds, and so on. This tests RCU's
ability to transition abruptly to and from idle.

test boost= [KNL]
Test RCU priority boosting? 0=no, l=maybe, 2=yes.
"“Maybe'' means test if the RCU implementation
under test support RCU priority boosting.

test boost duration= [KNL]

72

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

rcutorture

rcutorture

rcutorture

rcutorture

Duration (s) of each individual boost test.

.test boost interval= [KNL]

Interval (s) between each boost test.

.test no idle hz= [KNL]

Test RCU's dyntick-idle handling. See also the
rcutorture.shuffle_interval parameter.

.torture runnable= [BOOT]

Start rcutorture running at boot time.

.torture type= [KNL]

Specify the RCU implementation to test.

rcutorture.verbose= [KNL]

Enable additional printk() statements.

rcupdate.rcu cpu stall suppress= [KNL]

Suppress RCU CPU stall warning messages.

rcupdate.rcu cpu stall timeout= [KNL]

Set timeout for RCU CPU stall warning messages.

rcupdate.rcu expedited= [KNL]

Use expedited grace-period primitives, for
example, synchronize rcu expedited() instead

of synchronize rcu(). This reduces latency,

but can increase CPU utilization, degrade
real-time latency, and degrade energy efficiency.
No effect on CONFIG_TINY RCU kernels.

rcupdate.rcu normal= [KNL]

Use only normal grace-period primitives,

for example, synchronize rcu() instead of
synchronize rcu expedited(). This improves
real-time latency, CPU utilization, and

energy efficiency, but can expose users to
increased grace-period latency. This parameter
overrides rcupdate.rcu_expedited. No effect on
CONFIG TINY RCU kernels.

rcupdate.rcu normal after boot= [KNL]

Once boot has completed (that is, after

rcu end inkernel boot() has been invoked), use
only normal grace-period primitives. No effect
on CONFIG TINY RCU kernels.

rcupdate.rcu task stall timeout= [KNL]

Set timeout in jiffies for RCU task stall warning
messages. Disable with a value less than or equal
to zero.

rcupdate.rcu self test= [KNL]

Run the RCU early boot self tests

rcupdate.rcu self test bh= [KNL]

Run the RCU bh early boot self tests

2.1. cpu lists:

73

Linux Kernel User Documentation, Release 4.13.0-rc4+

rcupdate.rcu _self test sched= [KNL]
Run the RCU sched early boot self tests

rdinit= [KNL]
Format: <full path>
Run specified binary instead of /init from the ramdisk,
used for early userspace startup. See initrd.

reboot= [KNL]

Format (x86 or x86 64):

[wlarm] | cl[old] | hl[ard] | s[oft]l | glpiol]l \
[[,]1s[mplasss \

[[,]bl[ios] | alcpi] | k[bd] | t[riple] | e[fi] | pl[ci]] \
[[,]1f[orce]

Where reboot mode is one of warm (soft) or cold (hard) or gpio,
reboot type is one of bios, acpi, kbd, triple, efi, or pci,
reboot force is either force or not specified,
reboot cpu is s[mpl#### with #### being the processor

to be used for rebooting.

relax domain level=
[KNL, SMP] Set scheduler's default relax domain level.
See Documentation/cgroup-vl/cpusets.txt.

reserve= [KNL,BUGS] Force the kernel to ignore some iomem area

reservetop= [X86-32]
Format: nn[KMG]
Reserves a hole at the top of the kernel virtual
address space.

reservelow= [X86]
Format: nn[K]
Set the amount of memory to reserve for BIOS at
the bottom of the address space.

reset devices [KNL] Force drivers to reset the underlying device
during initialization.

resume= [SWSUSP]
Specify the partition device for software suspend
Format:
{/dev/<dev> | PARTUUID=<uuid> | <int>:<int> | <hex>}

resume _offset= [SWSUSP]
Specify the offset from the beginning of the partition
given by " “resume='' at which the swap header is located,
in <PAGE SIZE> units (needed only for swap files).
See Documentation/power/swsusp-and-swap-files.txt

resumedelay= [HIBERNATION] Delay (in seconds) to pause before attempting to
read the resume files

resumewait [HIBERNATION] Wait (indefinitely) for resume device to show up.
Useful for devices that are detected asynchronously
(e.g. USB and MMC devices).

74 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

hibernate= [HIBERNATION]
noresume Don't check if there's a hibernation image
present during boot.
nocompress Don't compress/decompress hibernation images.
no Disable hibernation and resume.

protect image Turn on image protection during restoration
(that will set all pages holding image data
during restoration read-only).
retain initrd [RAM] Keep initrd memory after extraction

rfkill.default state=

0 ““airplane mode''. All wifi, bluetooth, wimax, gps, fm,
etc. communication is blocked by default.

1 Unblocked.

rfkill.master switch mode=

0 The "““airplane mode'' button does nothing.

1 The "““airplane mode'' button toggles between everything
blocked and the previous configuration.

2 The " “airplane mode'' button toggles between everything

blocked and everything unblocked.

rhash _entries= [KNL,NET]
Set number of hash buckets for route cache

ring3mwait=disable
[KNL] Disable ring 3 MONITOR/MWAIT feature on supported

CPUs.
ro [KNL] Mount root device read-only on boot
rodata= [KNL]
on Mark read-only kernel memory as read-only (default).
off Leave read-only kernel memory writable for debugging.

rockchip.usb uart
Enable the uart passthrough on the designated usb port
on Rockchip SoCs. When active, the signals of the
debug-uart get routed to the D+ and D- pins of the usb
port and the regular usb controller gets disabled.

root= [KNL] Root filesystem
See name to dev t comment in init/do mounts.c.
rootdelay= [KNL] Delay (in seconds) to pause before attempting to
mount the root filesystem
rootflags= [KNL] Set root filesystem mount option string
rootfstype= [KNL] Set root filesystem type
rootwait [KNL] Wait (indefinitely) for root device to show up.

Useful for devices that are detected asynchronously
(e.g. USB and MMC devices).

rproc_mem=nn[KMG] [@address]
[KNL,ARM, CMA] Remoteproc physical memory block.

2.1. cpu lists: 75

Linux Kernel User Documentation, Release 4.13.0-rc4+

rw
S
$390 iommu=

strict

salloOir

sbni=
sched debug

schedstats=

skew tick=

security=

selinux=

apparmor=

serialnumber

Memory area to be used by remote processor image,

managed by CMA.

[KNL] Mount root device read-write on boot

[KNL] Run init in single mode

[HW,S390]

Set s390 IOTLB flushing mode

With strict flushing every unmap operation will result in

an IOTLB flush.

Default is lazy flushing before reuse,

which is faster.

[NET]

See drivers/net/irda/salle0 ir.c.

[NET] Granch SBNI12 leased line adapter

[KNL] Enables verbose scheduler debug messages.

[KNL,X86] Enable or disable scheduled statistics.

Allowed values are enable and disable. This feature
incurs a small amount of overhead in the scheduler
but is useful for debugging and performance tuning.

[KNL] Offset the periodic timer tick per cpu to mitigate
xtime lock contention on larger systems, and/or RCU lock
contention on all systems with CONFIG_MAXSMP set.

Format: { ~"0''
0 -- disable.
1 -- enable.

| “1|| }

(may be 1 via CONFIG CMDLINE=''skew tick=1""

Note: increases power consumption, thus should only be
enabled if running jitter sensitive (HPC/RT) workloads.

[SECURITY] Choose a security module to enable at boot.
If this boot parameter is not specified, only the first
security module asking for security registration will be
loaded. An invalid security module name will be treated
as if no module has been chosen.

[SELINUX] Disable or enable SELinux at boot time.

Format: { 70"’

| 1)

See security/selinux/Kconfig help text.

0 -- disable.
1 -- enable.

Default value is set via kernel config option.
If enabled at boot time, /selinux/disable can be used
later to disable prior to initial policy load.

[APPARMOR] Disable or enable AppArmor at boot time

Format: { ~"0''

| 1}

See security/apparmor/Kconfig help text

0 -- disable.
1 -- enable.

Default value is set via kernel config option.

[BUGS=X86-32]

76

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

shapers=

simeth=
simscsi=

slram=

slab _nomerge

slab max order=

[NET]
Maximal number of shapers.

[IA-64]

[HW,MTD]

[MM]

Disable merging of slabs with similar size. May be
necessary if there is some reason to distinguish
allocs to different slabs, especially in hardened
environments where the risk of heap overflows and
layout control by attackers can usually be
frustrated by disabling merging. This will reduce
most of the exposure of a heap attack to a single
cache (risks via metadata attacks are mostly
unchanged). Debug options disable merging on their
own.

For more information see Documentation/vm/slub.txt.

[MM, SLAB]

Determines the maximum allowed order for slabs.
A high setting may cause 00Ms due to memory
fragmentation. Defaults to 1 for systems with
more than 32MB of RAM, 0 otherwise.

slub debug[=options[,slabs]] [MM, SLUB]

Enabling slub _debug allows one to determine the
culprit if slab objects become corrupted. Enabling
slub_debug can create guard zones around objects and
may poison objects when not in use. Also tracks the
last alloc / free. For more information see
Documentation/vm/slub.txt.

slub _memcg sysfs= [MM, SLUB]

slub max_order=

Determines whether to enable sysfs directories for
memory cgroup sub-caches. 1 to enable, 0 to disable.

The default is determined by CONFIG SLUB MEMCG_SYSFS ON.
Enabling this can lead to a very high number of debug
directories and files being created under
/sys/kernel/slub.

[MM, SLUB]

Determines the maximum allowed order for slabs.
A high setting may cause 00Ms due to memory
fragmentation. For more information see
Documentation/vm/slub.txt.

slub min objects= [MM, SLUB]

The minimum number of objects per slab. SLUB will
increase the slab order up to slub max order to
generate a sufficiently large slab able to contain

the number of objects indicated. The higher the number
of objects the smaller the overhead of tracking slabs
and the less frequently locks need to be acquired.

For more information see Documentation/vm/slub.txt.

2.1. cpu lists:

77

Linux Kernel User Documentation, Release 4.13.0-rc4+

slub min order= [MM, SLUB]
Determines the minimum page order for slabs. Must be
lower than slub_max_order.
For more information see Documentation/vm/slub.txt.

slub nomerge [MM, SLUB]
Same with slab nomerge. This is supported for legacy.
See slab nomerge for more information.

smart2= [HW]

Format: <iol>[,<io2>[,...,<io8>]]
smsc-ircc2.nopnp [HW] Don't use PNP to discover SMC devices
smsc-ircc2.ircc_cfg= [HW] Device configuration I/0 port
smsc-ircc2.ircc_sir= [HW] SIR base I/0 port
smsc-ircc2.ircc fir= [HW] FIR base I/0 port
smsc-ircc2.ircc_irg= [HW] IRQ line
smsc-ircc2.ircc_dma= [HW] DMA channel

smsc-ircc2.ircc_transceiver= [HW] Transceiver type:
0: Toshiba Satellite 1800 (GP data pin select)
1: Fast pin select (default)
2: ATC IRMode

smt [KNL,S390] Set the maximum number of threads (logical
CPUs) to use per physical CPU on systems capable of
symmetric multithreading (SMT). Will be capped to the
actual hardware limit.
Format: <integer>
Default: -1 (no limit)

softlockup panic=
[KNL] Should the soft-lockup detector generate panics.
Format: <integer>

softlockup all cpu backtrace=
[KNL] Should the soft-lockup detector generate
backtraces on all cpus.
Format: <integer>

sonypi.*= [HW] Sony Programmable I/0 Control Device driver
See Documentation/laptops/sonypi.txt

spia io base= [HW,MTD]
spia fio base=

spia pedr=

spia peddr=

srcutree.counter wrap check [KNL]
Specifies how frequently to check for
grace-period sequence counter wrap for the
srcu_data structure's ->srcu gp seq needed field.
The greater the number of bits set in this kernel
parameter, the less frequently counter wrap will
be checked for. Note that the bottom two bits
are ignored.

srcutree.exp holdoff [KNL]

78 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

stack guard gap=

stacktrace

Specifies how many nanoseconds must elapse
since the end of the last SRCU grace period for
a given srcu_struct until the next normal SRCU
grace period will be considered for automatic
expediting. Set to zero to disable automatic
expediting.

[MM]
override the default stack gap protection. The value
is in page units and it defines how many pages prior
to (for stacks growing down) resp. after (for stacks
growing up) the main stack are reserved for no other
mapping. Default value is 256 pages.

[FTRACE]
Enabled the stack tracer on boot up.

stacktrace filter=[function-list]

sti=

sti font=

stifb=

[FTRACE] Limit the functions that the stack tracer

will trace at boot up. function-list is a comma separated

list of functions. This list can be changed at run
time by the stack trace filter file in the debugfs
tracing directory. Note, this enables stack tracing
and the stacktrace above is not needed.

[PARISC,HW]
Format: <num>

Set the STI (builtin display/keyboard on the HP-PARISC

machines) console (graphic card) which should be used
as the initial boot-console.
See also comment in drivers/video/console/sticore.c.

[HW]
See comment in drivers/video/console/sticore.c.

[HW]
Format: bpp:<bppl>[:<bpp2>[:<bpp3>...]]

sunrpc.min_resvport=
sunrpc.max_resvport=

[NFS, SUNRPC]

SunRPC servers often require that client requests
originate from a privileged port (i.e. a port in the
range 0 < portnr < 1024).

An administrator who wishes to reserve some of these
ports for other uses may adjust the range that the
kernel's sunrpc client considers to be privileged
using these two parameters to set the minimum and
maximum port values.

sunrpc.svc_rpc_per_connection limit=

[NFS, SUNRPC]

Limit the number of requests that the server will
process in parallel from a single connection.

The default value is 0 (no limit).

sunrpc.pool mode=

[NFS]

2.1. cpu lists:

79

Linux Kernel User Documentation, Release 4.13.0-rc4+

Control how the NFS server code allocates CPUs to
service thread pools. Depending on how many NICs
you have and where their interrupts are bound, this
option will affect which CPUs will do NFS serving.
Note: this parameter cannot be changed while the
NFS server is running.

auto the server chooses an appropriate mode
automatically using heuristics

global a single global pool contains all CPUs

percpu one pool for each CPU

pernode one pool for each NUMA node (equivalent

to global on non-NUMA machines)

sunrpc.tcp slot table entries=
sunrpc.udp _slot table entries=

[NFS, SUNRPC]

Sets the upper limit on the number of simultaneous
RPC calls that can be sent from the client to a
server. Increasing these values may allow you to
improve throughput, but will also increase the
amount of memory reserved for use by the client.

suspend.pm_test delay=

[SUSPEND]

Sets the number of seconds to remain in a suspend test
mode before resuming the system (see

/sys/power/pm test). Only available when CONFIG PM DEBUG
is set. Default value is 5.

swapaccount=[0]1]

swiotlb=

switches=

[KNL] Enable accounting of swap in memory resource
controller if no parameter or 1 is given or disable
it if @ is given (See Documentation/cgroup-vl/memory.txt)

[ARM, IA-64,PPC,MIPS,X86]
Format: { <int> | force | noforce }
<int> -- Number of I/0 TLB slabs

force -- force using of bounce buffers even if they

wouldn't be automatically used by the kernel
noforce -- Never use bounce buffers (for debugging)
[HW,M68K]

sysfs.deprecated=0|1 [KNL]

Enable/disable old style sysfs layout for old udev

on older distributions. When this option is enabled
very new udev will not work anymore. When this option
is disabled (or CONFIG SYSFS DEPRECATED not compiled)
in older udev will not work anymore.

Default depends on CONFIG_SYSFS DEPRECATED V2 set in
the kernel configuration.

sysrq always enabled

[KNL]

Ignore sysrq setting - this boot parameter will
neutralize any effect of /proc/sys/kernel/sysrq.
Useful for debugging.

80

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

tcpmhash _entries= [KNL,NET]
Set the number of tcp metrics hash slots.
Default value is 8192 or 16384 depending on total
ram pages. This is used to specify the TCP metrics
cache size. See Documentation/networking/ip-sysctl.txt
““tcp no metrics save'' section for more details.

tdfx= [HW,DRM]

test suspend= [SUSPEND][,N]
Specify “~“mem'' (for Suspend-to-RAM) or "“standby'' (for
standby suspend) or " “freeze'' (for suspend type freeze)
as the system sleep state during system startup with
the optional capability to repeat N number of times.
The system is woken from this state using a
wakeup-capable RTC alarm.

thash _entries= [KNL,NET]
Set number of hash buckets for TCP connection

thermal.act= [HW,ACPI]
-1: disable all active trip points in all thermal zones
<degrees C>: override all lowest active trip points

thermal.crt= [HW,ACPI]
-1: disable all critical trip points in all thermal zones
<degrees C>: override all critical trip points

thermal.nocrt= [HW,ACPI]
Set to disable actions on ACPI thermal zone
critical and hot trip points.

thermal.off= [HW,ACPI]
1: disable ACPI thermal control

thermal.psv= [HW,ACPI]
-1: disable all passive trip points
<degrees C>: override all passive trip points to this
value

thermal.tzp= [HW,ACPI]
Specify global default ACPI thermal zone polling rate
<deci-seconds>: poll all this frequency
0: no polling (default)

threadirqgs [KNL]
Force threading of all interrupt handlers except those
marked explicitly IRQF NO THREAD.

tmem [KNL, XEN]
Enable the Transcendent memory driver if built-in.

tmem.cleancache=0|1 [KNL, XEN]
Default is on (1). Disable the usage of the cleancache
API to send anonymous pages to the hypervisor.

tmem. frontswap=0|1 [KNL, XEN]

2.1. cpu lists:

81

Linux Kernel User Documentation, Release 4.13.0-rc4+

Default is on (1). Disable the usage of the frontswap
API to send swap pages to the hypervisor. If disabled
the selfballooning and selfshrinking are force disabled.

tmem.selfballooning=0|1 [KNL, XEN]
Default is on (1). Disable the driving of swap pages
to the hypervisor.

tmem.selfshrinking=0|1 [KNL, XEN]
Default is on (1). Partial swapoff that immediately
transfers pages from Xen hypervisor back to the
kernel based on different criteria.

topology= [S390]
Format: {off | on}
Specify if the kernel should make use of the cpu
topology information if the hardware supports this.
The scheduler will make use of this information and
e.g. base its process migration decisions on it.
Default is on.

topology updates= [KNL, PPC, NUMA]
Format: {off}
Specify if the kernel should ignore (off)
topology updates sent by the hypervisor to this
LPAR.

tp720= [HW, PS2]

tpm suspend pcr=[HW,TPM]
Format: integer pcr id
Specify that at suspend time, the tpm driver
should extend the specified pcr with zeros,
as a workaround for some chips which fail to
flush the last written pcr on TPM SaveState.
This will guarantee that all the other pcrs
are saved.

trace buf size=nn[KMG]
[FTRACE] will set tracing buffer size on each cpu.

trace event=[event-list]
[FTRACE] Set and start specified trace events in order
to facilitate early boot debugging. The event-list is a
comma separated list of trace events to enable. See
also Documentation/trace/events.txt

trace options=[option-list]
[FTRACE] Enable or disable tracer options at boot.
The option-list is a comma delimited list of options
that can be enabled or disabled just as if you were
to echo the option name into

/sys/kernel/debug/tracing/trace options

For example, to enable stacktrace option (to dump the
stack trace of each event), add to the command line:

82 Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

trace options=stacktrace

See also Documentation/trace/ftrace.txt "~ “trace options''
section.

tp printk[FTRACE]
Have the tracepoints sent to printk as well as the
tracing ring buffer. This is useful for early boot up
where the system hangs or reboots and does not give the
option for reading the tracing buffer or performing a
ftrace dump on oops.

To turn off having tracepoints sent to printk,
echo 0 > /proc/sys/kernel/tracepoint printk
Note, echoing 1 into this file without the
tracepoint printk kernel cmdline option has no effect.

% CAUTION **

Having tracepoints sent to printk() and activating high
frequency tracepoints such as irq or sched, can cause
the system to live lock.

traceoff on warning
[FTRACE] enable this option to disable tracing when a
warning is hit. This turns off "~ “tracing on''. Tracing can
be enabled again by echoing "1' into the "“tracing on''
file located in /sys/kernel/debug/tracing/

This option is useful, as it disables the trace before
the WARNING dump is called, which prevents the trace to
be filled with content caused by the warning output.

This option can also be set at run time via the sysctl
option: kernel/traceoff on _warning

transparent hugepage=
[KNL]
Format: [always|madvise|never]
Can be used to control the default behavior of the system
with respect to transparent hugepages.
See Documentation/vm/transhuge.txt for more details.

tsc= Disable clocksource stability checks for TSC.
Format: <string>
[x86] reliable: mark tsc clocksource as reliable, this
disables clocksource verification at runtime, as well
as the stability checks done at bootup. Used to enable
high-resolution timer mode on older hardware, and in
virtualized environment.
[x86] noirqtime: Do not use TSC to do irq accounting.
Used to run time disable IRQ _TIME_ACCOUNTING on any
platforms where RDTSC is slow and this accounting
can add overhead.

turbografx.map[2|3]= [HW, JOY]
TurboGraFX parallel port interface
Format:

2.1. cpu lists: 83

Linux Kernel User Documentation, Release 4.13.0-rc4+

<port#>,<jsl>,<js2>,<js3>,<js4>,<js5>,<jsb6>,<js7>
See also Documentation/input/joystick-parport.txt

udbg-immortal [PPC] When debugging early kernel crashes that

happen after console init() and before a proper
console driver takes over, this boot options might
help "“seeing'' what's going on.

uhash entries= [KNL,NET]

Set number of hash buckets for UDP/UDP-Lite connections

uhci-hcd.ignore oc=

[USB] Ignore overcurrent events (default N).

Some badly-designed motherboards generate lots of
bogus events, for ports that aren't wired to
anything. Set this parameter to avoid log spamming.
Note that genuine overcurrent events won't be
reported either.

unknown_nmi_panic

usbcore

usbcore

usbcore

usbcore

usbcore

usbcore

usbcore

usbcore

usbcore

[X86] Cause panic on unknown NMI.

.authorized default=
[USB] Default USB device authorization:
(default -1 = authorized except for wireless USB,
0 = not authorized, 1 = authorized)

.autosuspend=
[USB] The autosuspend time delay (in seconds) used
for newly-detected USB devices (default 2). This
is the time required before an idle device will be
autosuspended. Devices for which the delay is set
to a negative value won't be autosuspended at all.
.usbfs snoop=

[USB] Set to log all usbfs traffic (default 0 = off).

.usbfs snoop max=
[USB] Maximum number of bytes to snoop in each URB
(default = 65536).

.blinkenlights=
[USB] Set to cycle leds on hubs (default 0 = off).

.old_scheme first=
[USB] Start with the old device initialization
scheme (default 0 = off).

.usbfs memory mb=
[USB] Memory limit (in MB) for buffers allocated by
usbfs (default = 16, 0 = max = 2047).

.use both schemes=
[USB] Try the other device initialization scheme
if the first one fails (default 1 = enabled).

.initial descriptor timeout=
[USB] Specifies timeout for the initial 64-byte

84

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

USB REQ GET DESCRIPTOR request in milliseconds
(default 5000 = 5.0 seconds).

usbcore.nousb [USB] Disable the USB subsystem

usbhid.mousepoll=
[USBHID] The interval which mice are to be polled at.

usbhid. jspoll=
[USBHID] The interval which joysticks are to be polled at.

usb-storage.delay use=
[UMS] The delay in seconds before a new device is
scanned for Logical Units (default 1).

usb-storage.quirks=
[UMS] A list of quirks entries to supplement or
override the built-in unusual devs list. List
entries are separated by commas. Each entry has
the form VID:PID:Flags where VID and PID are Vendor
and Product ID values (4-digit hex numbers) and
Flags is a set of characters, each corresponding
to a common usb-storage quirk flag as follows:
a = SANE SENSE (collect more than 18 bytes
of sense data);
b = BAD SENSE (don't collect more than 18
bytes of sense data);
¢ = FIX CAPACITY (decrease the reported
device capacity by one sector);
d = NO_READ DISC INFO (don't use
READ DISC INFO command);
e = NO READ CAPACITY 16 (don't use
READ CAPACITY 16 command);
f = NO_REPORT_OPCODES (don't use report opcodes
command, uas only);
g = MAX SECTORS 240 (don't transfer more than
240 sectors at a time, uas only);
h = CAPACITY HEURISTICS (decrease the
reported device capacity by one
sector if the number is odd);
i = IGNORE_DEVICE (don't bind to this
device);
j = NO_REPORT LUNS (don't use report luns
command, uas only);
1 = NOT_LOCKABLE (don't try to lock and
unlock ejectable media);
m = MAX SECTORS 64 (don't transfer more
than 64 sectors = 32 KB at a time);
n = INITIAL READ10O (force a retry of the
initial READ(10) command);
0 = CAPACITY OK (accept the capacity
reported by the device);
p = WRITE CACHE (the device cache is ON
by default);
r = IGNORE_RESIDUE (the device reports
bogus residue values);
s = SINGLE LUN (the device has only one
Logical Unit);

2.1. cpu lists: 85

Linux Kernel User Documentation, Release 4.13.0-rc4+

user_debug=

userpte=

vdso=

vdso32=

vector=

video=

y

NO ATA 1X (don't allow ATA(12) and ATA(16)
commands, uas only);

IGNORE _UAS (don't bind to the uas driver);

NO WP _DETECT (don't test whether the
medium is write-protected).

ALWAYS SYNC (issue a SYNCHRONIZE CACHE
even if the device claims no cache)

Example: quirks=0419:aaf5:rl,0421:0433:rc

[KNL, ARM]

Format: <int>
See arch/arm/Kconfig.debug help text.
1 -

2
4
8
16

undefined instruction events
system calls

invalid data aborts

SIGSEGV faults

SIGBUS faults

Example: user debug=31

[X86] Flags controlling user PTE allocations.

nohigh = do not allocate PTE pages in

[X86,SH]

HIGHMEM regardless of setting
of CONFIG HIGHPTE.

On X86 32, this is an alias for vdso32=. Otherwise:

vdso=1: enable VDSO (the default)
vdso=0: disable VDSO mapping

[X86] Control the 32-bit vDSO
enable 32-bit VDSO
vdso32=0 or vdso32=2: disable 32-bit VDSO

vdso32=1:

See the help text for CONFIG COMPAT VDSO for more
If CONFIG COMPAT VDSO is set, the default is
vdso32=0; otherwise, the default is vdso32=1.

details.

For compatibility with older kernels, vdso32=2 is an
alias for vdso32=0.

Try vdso32=0 if you encounter an error that says:

dl main: Assertion " (void *) ph->p vaddr == rtld local

[IA-64,SMP

]

vector=percpu: enable percpu vector domain

[FB] Frame buffer configuration
See Documentation/fb/modedb.txt.

video.brightness switch enabled= [0,1]

If set to 1, on receiving an ACPI notify event

generated by hotkey, video driver will adjust brightness
level and then send out the event to user space through
the allocated input device; If set to 0, video driver
will only send out the event without touching backlight

._dl sysinfo d

86

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

brightness level.
default: 1

virtio mmio.device=

vga=

vmalloc=nn[KMG]

vmhalt=

vmpanic=

vmpoff=

vsyscall=

[VMMIO] Memory mapped virtio (platform) device.

<size>@<baseaddr>:<irg>[:<id>]

where:
<size> = size (can use standard suffixes
like K, M and G)
<baseaddr> := physical base address
<irg> = interrupt number (as passed to
request _irq())
<id> = (optional) platform device id
example:

virtio mmio.device=1K@0x100b0000:48:7
Can be used multiple times for multiple devices.

[BOOT,X86-32] Select a particular video mode

See Documentation/x86/boot.txt and
Documentation/svga.txt.

Use vga=ask for menu.

This is actually a boot loader parameter; the value is
passed to the kernel using a special protocol.

[KNL,BOOT] Forces the vmalloc area to have an exact
size of <nn>. This can be used to increase the
minimum size (128MB on x86). It can also be used to
decrease the size and leave more room for directly
mapped kernel RAM.

[KNL,S390] Perform z/VM CP command after system halt.
Format: <command>

[KNL,S390] Perform z/VM CP command after kernel panic.
Format: <command>

[KNL,S390] Perform z/VM CP command after power off.
Format: <command>

[X86-64]

Controls the behavior of vsyscalls (i.e. calls to
fixed addresses of Oxffffffffffe00x00 from legacy
code). Most statically-linked binaries and older
versions of glibc use these calls. Because these
functions are at fixed addresses, they make nice

targets for exploits that can control RIP.

emulate [default] Vsyscalls turn into traps and are
emulated reasonably safely.

native Vsyscalls are native syscall instructions.
This is a little bit faster than trapping
and makes a few dynamic recompilers work
better than they would in emulation mode.
It also makes exploits much easier to write.

2.1. cpu lists:

87

Linux Kernel User Documentation, Release 4.13.0-rc4+

vt.color=

vt.cur_default=

vt.default blu=

vt.default grn=

vt.default red=

vt.default utf8=

none Vsyscalls don't work at all. This makes
them quite hard to use for exploits but
might break your system.

[VT] Default text color.
Format: OxYX, X = foreground, Y = background.
Default: 0x07 = light gray on black.

[VT] Default cursor shape.

Format: OxCCBBAA, where AA, BB, and CC are the same as
the parameters of the <Esc>[?A;B;Cc escape sequence;
see VGA-softcursor.txt. Default: 2 = underline.

[VT]

Format: <blue@>,<bluel>,<blue2>,...,<bluel5>
Change the default blue palette of the console.
This is a 16-member array composed of values
ranging from 0-255.

[VT]

Format: <green0>,<greenl>,<green2>,...,<greenl5>
Change the default green palette of the console.
This is a 16-member array composed of values
ranging from 0-255.

[VT]

Format: <red0>,<redl>,<red2>,...,<redl5>
Change the default red palette of the console.
This is a 16-member array composed of values
ranging from 0-255.

[VT]

Format=<0]|1>

Set system-wide default UTF-8 mode for all tty's.
Default is 1, i.e. UTF-8 mode is enabled for all
newly opened terminals.

vt.global cursor default=

vt.italic=

vt.underline=

watchdog timers

[VT]

Format=<-1|0|1>

Set system-wide default for whether a cursor
is shown on new VTs. Default is -1,

i.e. cursors will be created by default unless
overridden by individual drivers. 0 will hide
cursors, 1 will display them.

[VT] Default color for italic text; 0-15.
Default: 2 = green.

[VT] Default color for underlined text; 0-15.
Default: 3 = cyan.

[HW,WDT] For information on watchdog timers,

see Documentation/watchdog/watchdog-parameters.txt
or other driver-specific files in the
Documentation/watchdog/ directory.

88

Chapter 2. The kernel’s command-line parameters

Linux Kernel User Documentation, Release 4.13.0-rc4+

workqueue.watchdog thresh=

If CONFIG WQ WATCHDOG is configured, workqueue can
warn stall conditions and dump internal state to
help debugging. 0 disables workqueue stall
detection; otherwise, it's the stall threshold
duration in seconds. The default value is 30 and
it can be updated at runtime by writing to the
corresponding sysfs file.

workqueue.disable numa

By default, all work items queued to unbound
workqueues are affine to the NUMA nodes they're
issued on, which results in better behavior in
general. If NUMA affinity needs to be disabled for
whatever reason, this option can be used. Note
that this also can be controlled per-workqueue for
workqueues visible under /sys/bus/workqueue/.

workqueue.power efficient

Per-cpu workqueues are generally preferred because
they show better performance thanks to cache
locality; unfortunately, per-cpu workqueues tend to
be more power hungry than unbound workqueues.

Enabling this makes the per-cpu workqueues which
were observed to contribute significantly to power
consumption unbound, leading to measurably lower
power usage at the cost of small performance
overhead.

The default value of this parameter is determined by
the config option CONFIG WQ POWER EFFICIENT DEFAULT.

workqueue.debug force rr _cpu

x2apic_phys

Workqueue used to implicitly guarantee that work
items queued without explicit CPU specified are put
on the local CPU. This guarantee is no longer true
and while local CPU is still preferred work items
may be put on foreign CPUs. This debug option
forces round-robin CPU selection to flush out
usages which depend on the now broken guarantee.
When enabled, memory and cache locality will be
impacted.

[X86-64,APIC] Use x2apic physical mode instead of
default x2apic cluster mode on platforms
supporting x2apic.

x86 intel mid timer= [X86-32,APBT]

xen 512gb limit

Choose timer option for x86 Intel MID platform.

Two valid options are apbt timer only and lapic timer
plus one apbt timer for broadcast timer.

x86 intel mid timer=apbt only | lapic_and apbt

[KNL,X86-64,XEN]
Restricts the kernel running paravirtualized under Xen
to use only up to 512 GB of RAM. The reason to do so is
crash analysis tools and Xen tools for doing domain

2.1. cpu lists:

89

Linux Kernel User Documentation, Release 4.13.0-rc4+

save/restore/migration must be enabled to handle larger
domains.

xen_emul unplug= [HW, X86, XEN]

Unplug Xen emulated devices

Format: [unplug@,][unplugl]

ide-disks -- unplug primary master IDE devices

aux-ide-disks -- unplug non-primary-master IDE devices

nics -- unplug network devices

all -- unplug all emulated devices (NICs and IDE disks)

unnecessary -- unplugging emulated devices is
unnecessary even if the host did not respond to
the unplug protocol

never -- do not unplug even if version check succeeds

Xen_nopvspin [X86,XEN]
Disables the ticketlock slowpath using Xen PV
optimizations.

Xen_nopv [X86]
Disables the PV optimizations forcing the HVM guest to
run as generic HVM guest with no PV drivers.

xirc2ps cs= [NET,PCMCIA]

Format:
<irg>,<irqg mask>,<io>,<full duplex>,<do sound>,<lockup hack>[,<irg2>[

2.2 Todo

Add more DRM drivers.

90 Chapter 2. The kernel’s command-line parameters

CHAPTER
THREE

LINUX ALLOCATED DEVICES (4.X+ VERSION)

This list is the Linux Device List, the official registry of allocated device numbers and /dev directory nodes
for the Linux operating system.

The LaTeX version of this document is no longer maintained, nor is the document that used to reside at
lanana.org. This version in the mainline Linux kernel is the master document. Updates shall be sent as
patches to the kernel maintainers (see the Documentation/process/submitting-patches.rst document).
Specifically explore the sections titled “CHAR and MISC DRIVERS”, and “BLOCK LAYER"” in the MAINTAINERS
file to find the right maintainers to involve for character and block devices.

This document is included by reference into the Filesystem Hierarchy Standard (FHS). The FHS is available
from http://www.pathname.com/fhs/.

Allocations marked (68k/Amiga) apply to Linux/68k on the Amiga platform only. Allocations marked
(68k/Atari) apply to Linux/68k on the Atari platform only.

This document is in the public domain. The authors requests, however, that semantically altered versions
are not distributed without permission of the authors, assuming the authors can be contacted without an
unreasonable effort.

Attention:

DEVICE DRIVERS AUTHORS PLEASE READ THIS

Linux now has extensive support for dynamic allocation of device numbering and can use sysfs
and udev (systemd) to handle the naming needs. There are still some exceptions in the serial and
boot device area. Before asking for a device number make sure you actually need one.

To have a major number allocated, or a minor number in situations where that applies (e.g. bus-
mice), please submit a patch and send to the authors as indicated above.

Keep the description of the device in the same format as this list. The reason for this is that it is the
only way we have found to ensure we have all the requisite information to publish your device and
avoid confilicts.

Finally, sometimes we have to play “namespace police.” Please don’t be offended. We often get
submissions for /dev names that would be bound to cause conflicts down the road. We are trying
to avoid getting in a situation where we would have to suffer an incompatible forward change.
Therefore, please consult with us before you make your device names and numbers in any way
public, at least to the point where it would be at all difficult to get them changed.

Your cooperation is appreciated.

0 Unnamed devices (e.g. non-device mounts)
0 = reserved as null device number
See block major 144, 145, 146 for expansion areas.

1 char Memory devices
1 = /dev/mem Physical memory access
2 = /dev/kmem Kernel virtual memory access
3 = /dev/null Null device
4 = /dev/port I/0 port access
5 = /dev/zero Null byte source

91

http://www.pathname.com/fhs/

Linux Kernel User Documentation, Release 4.13.0-rc4+

6 = /dev/core OBSOLETE - replaced by /proc/kcore
7 = /dev/full Returns ENOSPC on write
8 = /dev/random Nondeterministic random number gen.
9 = /dev/urandom Faster, less secure random number gen.
10 = /dev/aio Asynchronous I/0 notification interface
11 = /dev/kmsg Writes to this come out as printk's, reads
export the buffered printk records.
12 = /dev/oldmem OBSOLETE - replaced by /proc/vmcore
1 block RAM disk
0 = /dev/ram0@ First RAM disk
1 = /dev/raml Second RAM disk
250 = /dev/initrd Initial RAM disk
Older kernels had /dev/ramdisk (1, 1) here.
/dev/initrd refers to a RAM disk which was preloaded
by the boot loader; newer kernels use /dev/ram@ for
the initrd.
2 char Pseudo-TTY masters
0 = /dev/ptyp0 First PTY master
1 = /dev/ptypl Second PTY master
255 = /dev/ptyef 256th PTY master
Pseudo-tty's are named as follows:
* Masters are "~ “pty'', slaves are " Ttty'';
* the fourth letter is one of pqrstuvwxyzabcde indicating
the 1st through 16th series of 16 pseudo-ttys each, and
* the fifth letter is one of 0123456789abcdef indicating
the position within the series.
These are the old-style (BSD) PTY devices; Unix98
devices are on major 128 and above and use the PTY
master multiplex (/dev/ptmx) to acquire a PTY on
demand.
2 block Floppy disks
0 = /dev/fdo Controller 0, drive 0, autodetect
1 = /dev/fdl Controller 0, drive 1, autodetect
2 = /dev/fd2 Controller 0, drive 2, autodetect
3 = /dev/fd3 Controller 0, drive 3, autodetect
128 = /dev/fd4 Controller 1, drive 0, autodetect
129 = /dev/fd5 Controller 1, drive 1, autodetect
130 = /dev/fd6 Controller 1, drive 2, autodetect
131 = /dev/fd7 Controller 1, drive 3, autodetect
To specify format, add to the autodetect device number:
0 = /dev/fd? Autodetect format
4 = /dev/fd?d360 5.25'' 360K in a 360K drive(1l)
20 = /dev/fd?h360 5.25'' 360K in a 1200K drive(1l)
48 = /dev/fd?h410 5.25''" 410K in a 1200K drive
64 = /dev/fd?h420 5.25'' 420K in a 1200K drive
24 = /dev/fd?h720 5.25'" 720K in a 1200K drive
80 = /dev/fd?h880 5.25'' 880K in a 1200K drive(1l)
8 = /dev/fd?h1200 5.25'" 1200K in a 1200K drive(1l)
40 = /dev/fd?h1440 5.25"''" 1440K in a 1200K drive(1l)
92 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

3 char

3 block

56
72
92

12
16
120
52
68
84
88
28
124
44
60
76
96
116
100
32
104
108
112

36

/dev/fd?h1476
/dev/fd?h1494
/dev/fd?h1600

/dev/fd?u360

/dev/fd?u720

/dev/fd?u800

/dev/fd?u820

/dev/fd?u830

/dev/fd?ul040
/dev/fd?ull20
/dev/fd?ul440
/dev/fd?ul600
/dev/fd?ul680
/dev/fd?ul722
/dev/fd?ul743
/dev/fd?ul760
/dev/fd?ul840
/dev/fd?u1920
/dev/fd?u2880
/dev/fd?u3200
/dev/fd?u3520
/dev/fd?u3840

5.25'' 1476K in a 1200K drive
5.25"" 1494K in a 1200K drive
5.25'' 1600K in a 1200K drive(1l)
3.5"! 360K Double Density(2)
3.5"! 720K Double Density(1)
3.5" 800K Double Density(2)
3.5"" 820K Double Density
3.5"! 830K Double Density
3.5'" 1040K Double Density(1)
3.5'" 1120K Double Density(1)
3.5'" 1440K High Density(1)
3.5'" 1600K High Density(1)
3.5'" 1680K High Density(3)
3.5'" 1722K High Density
3.5'" 1743K High Density
3.5'" 1760K High Density
3.5'"" 1840K High Density(3)
3.5'"" 1920K High Density(1)
3.5'" 2880K Extra Density(1)
3.5'" 3200K Extra Density
3.5'" 3520K Extra Density
3.5"" 3840K Extra Density(1)

/dev/fd?CompaQ Compaq 2880K drive; obsolete?

(1) Autodetectable format
(2) Autodetectable format in a Double Density (720K) drive only
(3) Autodetectable format in a High Density (1440K) drive only

NOTE: The letter in the device name (d, q, h or u)
signifies the type of drive: 5.25'' Double Density (d),
5.25'"' Quad Density (qg), 5.25'' High Density (h) or 3.5''

(any model, u).

The use of the capital letters D, H

and E for the 3.5'' models have been deprecated, since
the drive type is insignificant for these devices.

Pseudo-TTY slaves

0 =
1

255

These

First
0
64

For p
0:
1=
2:

63

/dev/ttyp0
/dev/ttypl

.)dev/ttyef

First PTY slave
Second PTY slave

256th PTY slave

are the old-style (BSD) PTY devices; Unix98
devices are on major 136 and above.

MFM, RLL and IDE hard disk/CD-ROM interface

/dev/hda
/dev/hdb

/dev/hd?
/dev/hd?1
/dev/hd?2

/dev/hd?63

Master: whole disk (or CD-ROM)
Slave: whole disk (or CD-ROM)

artitions, add to the whole disk device number:

Whole disk
First partition
Second partition

63rd partition

For Linux/i386, partitions 1-4 are the primary

93

Linux Kernel User Documentation, Release 4.13.0-rc4+

partitions, and 5 and above are logical partitions.
Other versions of Linux use partitioning schemes
appropriate to their respective architectures.

4 char TTY devices
0 = /dev/tty0 Current virtual console
1 = /dev/ttyl First virtual console

63 = /dev/tty63 63rd virtual console

64 = /dev/ttySo First UART serial port

255 = /dev/ttyS191 192nd UART serial port

UART serial ports refer to 8250/16450/16550 series devices.
Older versions of the Linux kernel used this major

number for BSD PTY devices. As of Linux 2.1.115, this

is no longer supported. Use major numbers 2 and 3.

4 block Aliases for dynamically allocated major devices to be used
when its not possible to create the real device nodes
because the root filesystem is mounted read-only.

0 = /dev/root
5 char Alternate TTY devices
0 = /dev/tty Current TTY device
1 = /dev/console System console
2 = /dev/ptmx PTY master multiplex
3 = /dev/ttyprintk User messages via printk TTY device
64 = /dev/cual Callout device for ttySoO
255 = /dev/cual9l Callout device for ttyS191
(5,1) is /dev/console starting with Linux 2.1.71. See
the section on terminal devices for more information
on /dev/console.
6 char Parallel printer devices
0 = /dev/1p0O Parallel printer on parport0
1 = /dev/1pl Parallel printer on parportl
Current Linux kernels no longer have a fixed mapping
between parallel ports and I/0 addresses. Instead,
they are redirected through the parport multiplex layer.
7 char Virtual console capture devices
0 = /dev/vcs Current vc text contents
1 = /dev/vcsl ttyl text contents
63 = /dev/vcs63 tty63 text contents
128 = /dev/vcsa Current vc text/attribute contents
129 = /dev/vcsal ttyl text/attribute contents
191 = /dev/vcsa63 tty63 text/attribute contents
94 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

7 block

8 block

9 char

9 block

NOTE: These devices permit both read and write access.

Loopback devices
0 = /dev/loop0® First loop device
1 = /dev/loopl Second loop device

The loop devices are used to mount filesystems not
associated with block devices. The binding to the
loop devices is handled by mount(8) or losetup(8).

SCSI disk devices (0-15)

0 = /dev/sda First SCSI disk whole disk
16 = /dev/sdb Second SCSI disk whole disk
32 = /dev/sdc Third SCSI disk whole disk
240 = /dev/sdp Sixteenth SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

SCSI tape devices

0 = /dev/st0O First SCSI tape, mode 0

1 = /dev/stl Second SCSI tape, mode 0
32 =)dev/st@l First SCSI tape, mode 1
33 = /dev/stll Second SCSI tape, mode 1
64 = /dev/stOm First SCSI tape, mode 2
65 = /dev/stlm Second SCSI tape, mode 2
96 = /dev/stOa First SCSI tape, mode 3
97 = /dev/stla Second SCSI tape, mode 3
128 = /dev/nst0 First SCSI tape, mode 0, no rewind
129 = /dev/nstl Second SCSI tape, mode 0, no rewind
160 = /dev/nstOl First SCSI tape, mode 1, no rewind
161 = /dev/nstll Second SCSI tape, mode 1, no rewind
192 = /dev/nstOm First SCSI tape, mode 2, no rewind
193 = /dev/nstlm Second SCSI tape, mode 2, no rewind
224 = /dev/nst0Oa First SCSI tape, mode 3, no rewind
225 = /dev/nstla Second SCSI tape, mode 3, no rewind

""No rewind'' refers to the omission of the default
automatic rewind on device close. The MTREW or MTOFFL
ioctl()'s can be used to rewind the tape regardless of
the device used to access it.

Metadisk (RAID) devices
0 = /dev/mdo First metadisk group
1 = /dev/mdl Second metadisk group

95

Linux Kernel User Documentation, Release 4.13.0-rc4+

The metadisk driver is used to span a
filesystem across multiple physical disks.

10 char Non-serial mice, misc features
0 = /dev/logibm Logitech bus mouse
1 = /dev/psaux PS/2-style mouse port
2 = /dev/inportbm Microsoft Inport bus mouse
3 = /dev/atibm ATI XL bus mouse
4 = /dev/jbm J-mouse
4 = /dev/amigamouse Amiga mouse (68k/Amiga)
5 = /dev/atarimouse Atari mouse
6 = /dev/sunmouse Sun mouse
7 = /dev/amigamousel Second Amiga mouse
8 = /dev/smouse Simple serial mouse driver
9 = /dev/pcllOpad IBM PC-110 digitizer pad
10 = /dev/adbmouse Apple Desktop Bus mouse
11 = /dev/vrtpanel Vr4lxx embedded touch panel
13 = /dev/vpcmouse Connectix Virtual PC Mouse
14 = /dev/touchscreen/uch1x00 UCB 1x00 touchscreen
15 = /dev/touchscreen/mk712 MK712 touchscreen
128 = /dev/beep Fancy beep device
129 =
130 = /dev/watchdog Watchdog timer port
131 = /dev/temperature Machine internal temperature
132 = /dev/hwtrap Hardware fault trap
133 = /dev/exttrp External device trap
134 = /dev/apm bios Advanced Power Management BIOS
135 = /dev/rtc Real Time Clock
137 = /dev/vhci Bluetooth virtual HCI driver
139 = /dev/openprom SPARC OpenBoot PROM
140 = /dev/relay8 Berkshire Products Octal relay card
141 = /dev/relayl6 Berkshire Products IS0-16 relay card
142 =
143 = /dev/pciconf PCI configuration space
144 = /dev/nvram Non-volatile configuration RAM
145 = /dev/hfmodem Soundcard shortwave modem control
146 = /dev/graphics Linux/SGI graphics device
147 = /dev/opengl Linux/SGI OpenGL pipe
148 = /dev/gfx Linux/SGI graphics effects device
149 = /dev/input/mouse Linux/SGI Irix emulation mouse
150 = /dev/input/keyboard Linux/SGI Irix emulation keyboard
151 = /dev/led Front panel LEDs
152 = /dev/kpoll Kernel Poll Driver
153 = /dev/mergemem Memory merge device
154 = /dev/pmu Macintosh PowerBook power manager
155 = /dev/isictl MultiTech ISICom serial control
156 = /dev/1lcd Front panel LCD display
157 = /dev/ac Applicom Intl Profibus card
158 = /dev/nwbutton Netwinder external button
159 = /dev/nwdebug Netwinder debug interface
160 = /dev/nwflash Netwinder flash memory
161 = /dev/userdma User-space DMA access
162 = /dev/smbus System Management Bus
163 = /dev/lik Logitech Internet Keyboard
164 = /dev/ipmo Intel Intelligent Platform Management
165 = /dev/vmmon VMware virtual machine monitor
166 = /dev/i20/ctl I20 configuration manager
167 = /dev/specialix sxctl Specialix serial control
96 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

/dev/tcldrv Technology Concepts serial control
/dev/specialix_rioctl Specialix RIO serial control
/dev/thinkpad/thinkpad IBM Thinkpad devices

/dev/srripc QNX4 API IPC manager

/dev/usemaclone Semaphore clone device

/dev/ipmikcs Intelligent Platform Management
/dev/uctrl SPARCbook 3 microcontroller
/dev/agpgart AGP Graphics Address Remapping Table
/dev/gtrsc Gorgy Timing radio clock

/dev/cbm Serial CBM bus

/dev/jsflash JavaStation 0S flash SIMM

/dev/xsvc High-speed shared-mem/semaphore service
/dev/vrbuttons Vr4lxx button input device
/dev/toshiba Toshiba laptop SMM support
/dev/perfctr Performance-monitoring counters
/dev/hwrng Generic random number generator
/dev/cpu/microcode CPU microcode update interface
/dev/atomicps Atomic shapshot of process state data
/dev/irnet IrNET device

/dev/smbusbios SMBus BIOS

/dev/ussp ctl User space serial port control
/dev/crash Mission Critical Linux crash dump facility
/dev/pcll181 <information missing>

/dev/nas_xbus NAS xbus LCD/buttons access

/dev/d7s SPARC 7-segment display

/dev/zkshim Zero-Knowledge network shim control
/dev/elographics/e2201 Elographics touchscreen E271-2201
/dev/vfio/vfio VFIO userspace driver interface
/dev/pxa3xx-gcu PXA3xx graphics controller unit driver
/dev/sexec Signed executable interface
/dev/scanners/cuecat :CueCat barcode scanner
/dev/net/tun TAP/TUN network device
/dev/button/gulpb Transmeta GULP-B buttons

/dev/emd/ctl Enhanced Metadisk RAID (EMD) control
/dev/cuse Cuse (character device in user-space)
/dev/video/em8300 EM8300 DVD decoder control
/dev/video/em8300 mv EM8300 DVD decoder video
/dev/video/em8300 ma EM8300 DVD decoder audio
/dev/video/em8300 sp EM8300 DVD decoder subpicture
/dev/compaq/cpgphpc Compag PCI Hot Plug Controller
/dev/compaq/cpqrid Compag Remote Insight Driver
/dev/impi/bt IMPI coprocessor block transfer
/dev/impi/smic IMPI coprocessor stream interface

/dev/watchdogs/0 First watchdog device
/dev/watchdogs/1 Second watchdog device
/dev/watchdogs/2 Third watchdog device
/dev/watchdogs/3 Fourth watchdog device

/dev/fujitsu/apanel Fujitsu/Siemens application panel
/dev/ni/natmotn National Instruments Motion
/dev/kchuid Inter-process chuid control
/dev/modems/mwave MWave modem firmware upload

/dev/mptctl Message passing technology (MPT) control
/dev/mvista/hssdsi Montavista PICMG hot swap system driver
/dev/mvista/hasi Montavista PICMG high availability
/dev/input/uinput User level driver support for input
/dev/tpm TCPA TPM driver

/dev/pps Pulse Per Second driver

/dev/systrace Systrace device

97

Linux Kernel User Documentation, Release 4.13.0-rc4+

227 = /dev/mcelog X86 64 Machine Check Exception driver
228 = /dev/hpet HPET driver
229 = /dev/fuse Fuse (virtual filesystem in user-space)
230 = /dev/midishare MidiShare driver
231 = /dev/snapshot System memory snapshot device
232 = /dev/kvm Kernel-based virtual machine (hardware virtual-
ization extensions)
233 = /dev/kmview View-0S A process with a view
234 = /dev/btrfs-control Btrfs control device
235 = /dev/autofs Autofs control device
236 = /dev/mapper/control Device-Mapper control device
237 = /dev/loop-control Loopback control device
238 = /dev/vhost-net Host kernel accelerator for virtio net
239 = /dev/uhid User-space I/0 driver support for HID subsystem
240 = /dev/userio Serio driver testing device
241 = /dev/vhost-vsock Host kernel driver for virtio vsock
242-254 Reserved for local use
255 Reserved for MISC DYNAMIC MINOR
11 char Raw keyboard device (Linux/SPARC only)
0 = /dev/kbd Raw keyboard device
11 char Serial Mux device (Linux/PA-RISC only)
0 = /dev/ttyBo First mux port
1 = /dev/ttyBl Second mux port
11 block SCSI CD-ROM devices
0 = /dev/scd0 First SCSI CD-ROM
1 = /dev/scdl Second SCSI CD-ROM
The prefix /dev/sr (instead of /dev/scd) has been deprecated.
12 char QIC-02 tape
2 = /dev/ntpgicll QIC-11, no rewind-on-close
3 = /dev/tpgicll QIC-11, rewind-on-close
4 = /dev/ntpgic24 QIC-24, no rewind-on-close
5 = /dev/tpqic24 QIC-24, rewind-on-close
6 = /dev/ntpqicl20 QIC-120, no rewind-on-close
7 = /dev/tpgicl20 QIC-120, rewind-on-close
8 = /dev/ntpgicl50 QIC-150, no rewind-on-close
9 = /dev/tpqicl50 QIC-150, rewind-on-close
The device names specified are proposed -- if there
are " “standard'' names for these devices, please let me know.
12 block
13 char Input core
0 = /dev/input/js0O First joystick
1 = /dev/input/jsl Second joystick
32 = /dev/input/mouse@ First mouse
33 = /dev/input/mousel Second mouse
63 = /dev/input/mice Unified mouse
98 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

13

14

14

15

15

16

16

17

17

18

18

block

char

block

char

block

char

block

char

block

char

block

64
65

/dev/input/event0 First event queue
/dev/input/eventl Second event queue

Each device type has 5 bits (32 minors).

Previously used for the XT disk (/dev/xdN)
Deleted in kernel v3.9.

Open Sound System (0SS)

0 = /dev/mixer Mixer control
1 = /dev/sequencer Audio sequencer
2 = /dev/midi00 First MIDI port
3 = /dev/dsp Digital audio
4 = /dev/audio Sun-compatible digital audio
6:
7 = /dev/audioctl SPARC audio control device
8 = /dev/sequencer? Sequencer -- alternate device
16 = /dev/mixerl Second soundcard mixer control
17 = /dev/patmgr0 Sequencer patch manager
18 = /dev/midi0l Second MIDI port
19 = /dev/dspl Second soundcard digital audio
20 = /dev/audiol Second soundcard Sun digital audio
33 = /dev/patmgrl Sequencer patch manager
34 = /dev/midi02 Third MIDI port
50 = /dev/midi@3 Fourth MIDI port
Joystick
0 = /dev/js0 First analog joystick
1 = /dev/jsl Second analog joystick
128 = /dev/djs0 First digital joystick
129 = /dev/djsl Second digital joystick

Sony CDU-31A/CDU-33A CD-ROM

0 = /dev/sonycd

Non-SCSI scanners
0 = /dev/gs4500

GoldStar CD-ROM
0 = /dev/gscd

OBSOLETE (was Chase
0 = /dev/ttyHoO
1 = /dev/ttyH1

Sony CDU-31a CD-ROM

Genius 4500 handheld scanner

GoldStar CD-ROM

serial card)
First Chase port
Second Chase port

Optics Storage CD-ROM

0 = /dev/optcd

OBSOLETE (was Chase
0 /dev/cuh0
1 /dev/cuhl

Sanyo CD-ROM
0 = /dev/sjcd

Optics Storage CD-ROM
serial card - alternate devices)

Callout device for ttyHO
Callout device for ttyH1

Sanyo CD-ROM

99

Linux Kernel User Documentation, Release 4.13.0-rc4+

19 char Cyclades serial card
0 = /dev/ttyCo First Cyclades port
31 = /dev/tty(C31 32nd Cyclades port
19 block ““Double'' compressed disk
0 = /dev/double0 First compressed disk
7 = /dev/double? Eighth compressed disk
128 = /dev/cdouble0 Mirror of first compressed disk
135 = /dev/cdouble? Mirror of eighth compressed disk

See the Double documentation for the meaning of the
mirror devices.

20 char Cyclades serial card - alternate devices

0 = /dev/cub0 Callout device for ttyCo

31 = /dev/cub3l Callout device for ttyC31
20 block Hitachi CD-ROM (under development)

0 = /dev/hitcd Hitachi CD-ROM
21 char Generic SCSI access

0 = /dev/sg0 First generic SCSI device

1 =

/dev/sgl Second generic SCSI device

Most distributions name these /dev/sga, /dev/sgb...;
this sets an unnecessary limit of 26 SCSI devices in
the system and is counter to standard Linux
device-naming practice.

21 block Acorn MFM hard drive interface
0 = /dev/mfma First MFM drive whole disk
64 = /dev/mfmb Second MFM drive whole disk

This device is used on the ARM-based Acorn RiscPC.
Partitions are handled the same way as for IDE disks
(see major number 3).

22 char Digiboard serial card
0 = /dev/ttyDO First Digiboard port
1 = /dev/ttyD1 Second Digiboard port
22 block Second IDE hard disk/CD-ROM interface
0 = /dev/hdc Master: whole disk (or CD-ROM)
64 = /dev/hdd Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

23 char Digiboard serial card - alternate devices
0 = /dev/cud0 Callout device for ttyDO
1 = /dev/cudl Callout device for ttyDl

100 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

23 block Mitsumi proprietary CD-ROM
0 = /dev/mcd Mitsumi CD-ROM
24 char Stallion serial card
0 = /dev/ttyEO Stallion port 0 card 0
1 = /dev/ttyEl Stallion port 1 card 0
64 = /dev/ttyE64 Stallion port 0 card 1
65 = /dev/ttyE65 Stallion port 1 card 1
128 = /dev/ttyE128 Stallion port 0 card 2
129 = /dev/ttyE129 Stallion port 1 card 2
192 = /dev/ttyE192 Stallion port 0 card 3
193 = /dev/ttyE193 Stallion port 1 card 3
24 block Sony CDU-535 CD-ROM
0 = /dev/cdu535 Sony CDU-535 CD-ROM
25 char Stallion serial card - alternate devices
0 = /dev/cue0d Callout device for ttyEO
1 = /dev/cuel Callout device for ttyEl
64 = /dev/cueb4d Callout device for ttyE64
65 = /dev/cueb5 Callout device for ttyE65
128 = /dev/cuel28 Callout device for ttyE128
129 = /dev/cuel29 Callout device for ttyE129
192 = /dev/cuel92 Callout device for ttyE192
193 = /dev/cuel93 Callout device for ttyE193
25 block First Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcdo Panasonic CD-ROM controller 0 unit 0
1 = /dev/sbpcdl Panasonic CD-ROM controller 0 unit 1
2 = /dev/sbpcd2 Panasonic CD-ROM controller 0 unit 2
3 = /dev/sbpcd3 Panasonic CD-ROM controller 0 unit 3
26 char
26 block Second Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcd4 Panasonic CD-ROM controller 1 unit O
1 = /dev/sbpcd5 Panasonic CD-ROM controller 1 unit 1
2 = /dev/sbpcd6 Panasonic CD-ROM controller 1 unit 2
3 = /dev/sbpcd7 Panasonic CD-ROM controller 1 unit 3
27 char QIC-117 tape
0 = /dev/qfto Unit 0, rewind-on-close
1 = /dev/qftl Unit 1, rewind-on-close
2 = /dev/qft2 Unit 2, rewind-on-close
3 = /dev/qft3 Unit 3, rewind-on-close
4 = /dev/ngfto Unit 0, no rewind-on-close
5 = /dev/ngftl Unit 1, no rewind-on-close
6 = /dev/nqft2 Unit 2, no rewind-on-close
7 = /dev/nqgft3 Unit 3, no rewind-on-close
16 = /dev/zqft0O Unit 0, rewind-on-close, compression
17 = /dev/zqftl Unit 1, rewind-on-close, compression
18 = /dev/zqft2 Unit 2, rewind-on-close, compression

101

Linux Kernel User Documentation, Release 4.13.0-rc4+

19 = /dev/zqft3 Unit 3, rewind-on-close, compression
20 = /dev/nzqftoO Unit 0, no rewind-on-close, compression
21 = /dev/nzqftl Unit 1, no rewind-on-close, compression
22 = /dev/nzqft2 Unit 2, no rewind-on-close, compression
23 = /dev/nzqft3 Unit 3, no rewind-on-close, compression
32 = /dev/rawqfto Unit 0, rewind-on-close, no file marks
33 = /dev/rawgftl Unit 1, rewind-on-close, no file marks
34 = /dev/rawqft2 Unit 2, rewind-on-close, no file marks
35 = /dev/rawqft3 Unit 3, rewind-on-close, no file marks
36 = /dev/nrawqfto Unit 0, no rewind-on-close, no file marks
37 = /dev/nrawqftl Unit 1, no rewind-on-close, no file marks
38 = /dev/nrawqft2 Unit 2, no rewind-on-close, no file marks
39 = /dev/nrawqft3 Unit 3, no rewind-on-close, no file marks
27 block Third Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcd8 Panasonic CD-ROM controller 2 unit 0
1 = /dev/sbpcd9 Panasonic CD-ROM controller 2 unit 1
2 = /dev/sbpcdl0o Panasonic CD-ROM controller 2 unit 2
3 = /dev/sbpcdll Panasonic CD-ROM controller 2 unit 3
28 char Stallion serial card - card programming
0 = /dev/staliomem@ First Stallion card I/0 memory
1 = /dev/staliomeml Second Stallion card I/0 memory
2 = /dev/staliomem2 Third Stallion card I/0 memory
3 = /dev/staliomem3 Fourth Stallion card I/0 memory
28 char Atari SLM ACSI laser printer (68k/Atari)
0 = /dev/slmO First SLM laser printer
1 = /dev/slml Second SLM laser printer
28 block Fourth Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcdl2 Panasonic CD-ROM controller 3 unit 0
1 = /dev/sbpcdl3 Panasonic CD-ROM controller 3 unit 1
2 = /dev/sbpcdl4 Panasonic CD-ROM controller 3 unit 2
3 = /dev/sbpcdl5 Panasonic CD-ROM controller 3 unit 3
28 block ACSI disk (68k/Atari)
0 = /dev/ada First ACSI disk whole disk
16 = /dev/adb Second ACSI disk whole disk
32 = /dev/adc Third ACSI disk whole disk
240 = /dev/adp 16th ACSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15, like SCSI.
29 char Universal frame buffer
0 = /dev/fb0 First frame buffer
1 = /dev/fbl Second frame buffer
31 = /dev/fb31 32nd frame buffer
29 block Aztech/Orchid/0Okano/Wearnes CD-ROM
0 = /dev/aztcd Aztech CD-ROM
30 char iBCS-2 compatibility devices
0 = /dev/socksys Socket access

102 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

1 = /dev/spx SVR3 local X interface
32 = /dev/inet/ip Network access
33 = /dev/inet/icmp
34 = /dev/inet/ggp
35 = /dev/inet/ipip
36 = /dev/inet/tcp
37 = /dev/inet/egp
38 = /dev/inet/pup
39 = /dev/inet/udp
40 = /dev/inet/idp
41 = /dev/inet/rawip

Additionally, iBCS-2 requires the following links:

/dev/ip -> /dev/inet/ip
/dev/icmp -> /dev/inet/icmp
/dev/ggp -> /dev/inet/ggp
/dev/ipip -> /dev/inet/ipip
/dev/tcp -> /dev/inet/tcp
/dev/egp -> /dev/inet/egp
/dev/pup -> /dev/inet/pup
/dev/udp -> /dev/inet/udp
/dev/idp -> /dev/inet/idp
/dev/rawip -> /dev/inet/rawip
/dev/inet/arp -> /dev/inet/udp
/dev/inet/rip -> /dev/inet/udp
/dev/nfsd -> /dev/socksys
/dev/XOR -> /dev/null (? apparently not required ?)

30 block Philips LMS CM-205 CD-ROM
0 = /dev/cm205cd Philips LMS CM-205 CD-ROM
/dev/lmscd is an older name for this device. This
driver does not work with the CM-205MS CD-ROM.
31 char MPU-401 MIDI
0 = /dev/mpud40ldata MPU-401 data port
1 = /dev/mpud0lstat MPU-401 status port
31 block ROM/flash memory card

0 = /dev/rom0

)dév/rom7

First ROM card (rw)

7 = Eighth ROM card (rw)
8 = /dev/rromo@ First ROM card (ro)
15 = /dev/rrom7 Eighth ROM card (ro)
16 = /dev/flash0 First flash memory card (rw)
23 = /dev/flash7 Eighth flash memory card (rw)
24 = /dev/rflasho First flash memory card (ro)
31 = /dev/rflash7 Eighth flash memory card (ro)

The read-write (rw) devices support back-caching
written data in RAM, as well as writing to flash RAM
devices. The read-only devices (ro) support reading
only.

103

Linux Kernel User Documentation, Release 4.13.0-rc4+

32 char Specialix serial card
0 = /dev/ttyXo First Specialix port
1 = /dev/ttyX1 Second Specialix port
32 block Philips LMS CM-206 CD-ROM
0 = /dev/cm206cd Philips LMS CM-206 CD-ROM
33 char Specialix serial card - alternate devices
0 = /dev/cux0 Callout device for ttyXe
1 = /dev/cuxl Callout device for ttyXl
33 block Third IDE hard disk/CD-ROM interface
0 = /dev/hde Master: whole disk (or CD-ROM)
64 = /dev/hdf Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

34 char 28530 HDLC driver
0 = /dev/sccO First 78530, first port
1 = /dev/sccl First Z8530, second port
2 = /dev/scc2 Second Z8530, first port
3 = /dev/scc3 Second Z8530, second port
In a previous version these devices were named
/dev/scl for /dev/sccO, /dev/sc2 for /dev/sccl, and so
on.
34 block Fourth IDE hard disk/CD-ROM interface
0 = /dev/hdg Master: whole disk (or CD-ROM)
64 = /dev/hdh Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
35 char tclmidi MIDI driver
0 = /dev/midi0 First MIDI port, kernel timed
1 = /dev/midil Second MIDI port, kernel timed
2 = /dev/midi2 Third MIDI port, kernel timed
3 = /dev/midi3 Fourth MIDI port, kernel timed
64 = /dev/rmidi® First MIDI port, untimed
65 = /dev/rmidil Second MIDI port, untimed
66 = /dev/rmidi2 Third MIDI port, untimed
67 = /dev/rmidi3 Fourth MIDI port, untimed
128 = /dev/smpte0 First MIDI port, SMPTE timed
129 = /dev/smptel Second MIDI port, SMPTE timed
130 = /dev/smpte2 Third MIDI port, SMPTE timed
131 = /dev/smpte3 Fourth MIDI port, SMPTE timed
35 block Slow memory ramdisk
0 = /dev/slram Slow memory ramdisk
36 char Netlink support
0 = /dev/route Routing, device updates, kernel to user
1 = /dev/skip enSKIP security cache control
3 = /dev/fwmonitor Firewall packet copies
16 = /dev/tap0 First Ethertap device

104 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

36

37

37

38

38

39

39

40

40

41

41

block

char

block

char

block

char

block

char

block

char

block

31 = /dev/tapl5 16th Ethertap device

OBSOLETE (was MCA ESDI hard disk)

IDE tape

0 = /dev/ht0 First IDE tape

1 = /dev/htl Second IDE tape
128 = /dev/nht0 First IDE tape, no rewind-on-close
129 =

/dev/nhtl Second IDE tape, no rewind-on-close

Currently, only one IDE tape drive is supported.

Zorro II ramdisk
0 = /dev/z2ram Zorro II ramdisk

Myricom PCI Myrinet board
0 = /dev/mlanai0® First Myrinet board
1 = /dev/mlanail Second Myrinet board

This device is used for status query, board control
and " “user level packet I/0.'' This board is also
accessible as a standard networking " “eth'' device.
OBSOLETE (was Linux/AP+)

ML-16P experimental I/0 board

0 = /dev/mll6pa-a0d First card, first analog channel

1 = /dev/mll6pa-al First card, second analog channel
15 = /dev/mll6pa-al5 First card, 16th analog channel
16 = /dev/mll6pa-d First card, digital lines

17 = /dev/mll6pa-cO First card, first counter/timer
18 = /dev/mll6pa-cl First card, second counter/timer
19 = /dev/mll6pa-c2 First card, third counter/timer
32 = /dev/mll6pb-a0 Second card, first analog channel
33 = /dev/mll6pb-al Second card, second analog channel
47 = /dev/mllébpb-al5 Second card, 16th analog channel
48 = /dev/mll6pb-d Second card, digital lines
49 = /dev/ml1l6pb-cO Second card, first counter/timer
50 = /dev/mllépb-cl Second card, second counter/timer
51 =

/dev/mll6pb-c2 Second card, third counter/timer

Yet Another Micro Monitor
0 = /dev/yamm Yet Another Micro Monitor

105

Linux Kernel User Documentation, Release 4.13.0-rc4+

42 char

42 block

43 char

43 block

44 char

44 block

45 char

Demo/sample use
Demo/sample use

This number is intended for use in sample code, as
well as a general " “example'' device number. It
should never be used for a device driver that is being
distributed; either obtain an official number or use
the local/experimental range. The sudden addition or
removal of a driver with this number should not cause
ill effects to the system (bugs excepted.)

IN PARTICULAR, ANY DISTRIBUTION WHICH CONTAINS A
DEVICE DRIVER USING MAJOR NUMBER 42 IS NONCOMPLIANT.

isdn4linux virtual modem
0 = /dev/ttyIo First virtual modem

63 = /dev/ttyI63 64th virtual modem
Network block devices

0 /dev/nb0 First network block device
1 /dev/nbl Second network block device

Network Block Device is somehow similar to loopback
devices: If you read from it, it sends packet across
network asking server for data. If you write to it, it
sends packet telling server to write. It could be used
to mounting filesystems over the net, swapping over
the net, implementing block device in userland etc.

isdn4linux virtual modem - alternate devices
0 = /dev/cui0 Callout device for ttyIO

63 = /dev/cui63 Callout device for ttyI63

Flash Translation Layer (FTL) filesystems

0 = /dev/ftla FTL on first Memory Technology Device
16 = /dev/ftlb FTL on second Memory Technology Device
32 /dev/ftlc FTL on third Memory Technology Device

240 = /dev/ftlp FTL on 16th Memory Technology Device

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the partition
limit is 15 rather than 63 per disk (same as SCSI.)

isdn4linux ISDN BRI driver
0 = /dev/isdn0 First virtual B channel raw data

63
64

/dev/isdn63 64th virtual B channel raw data
/dev/isdnctrlo First channel control/debug

127 = /dev/isdnctr1l63 64th channel control/debug

128

/dev/ippp0 First SyncPPP device

106

Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

45 block

46 char

46 block

47 char

47 block

48 char

48 block

49 char

49 block

191 = /dev/ippp63 64th SyncPPP device
255 = /dev/isdninfo ISDN monitor interface
Parallel port IDE disk devices
0 = /dev/pda First parallel port IDE disk
16 = /dev/pdb Second parallel port IDE disk
32 = /dev/pdc Third parallel port IDE disk
48 = /dev/pdd Fourth parallel port IDE disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the partition
limit is 15 rather than 63 per disk.

Comtrol Rocketport serial card

0 = /dev/ttyRO First Rocketport port
1 = /dev/ttyR1 Second Rocketport port
Parallel port ATAPI CD-ROM devices
0 = /dev/pcd0O First parallel port ATAPI CD-ROM
1 = /dev/pcdl Second parallel port ATAPI CD-ROM
2 = /dev/pcd2 Third parallel port ATAPI CD-ROM
3 = /dev/pcd3 Fourth parallel port ATAPI CD-ROM
Comtrol Rocketport serial card - alternate devices
0 = /dev/cur@ Callout device for ttyRO
1 = /dev/curl Callout device for ttyRl
Parallel port ATAPI disk devices
0 = /dev/pf0O First parallel port ATAPI disk
1 = /dev/pfl Second parallel port ATAPI disk
2 = /dev/pf2 Third parallel port ATAPI disk
3 = /dev/pf3 Fourth parallel port ATAPI disk

This driver is intended for floppy disks and similar
devices and hence does not support partitioning.

SDL RISCom serial card

0 = /dev/ttyLO First RISCom port
1 = /dev/ttyLl Second RISCom port
Mylex DAC960 PCI RAID controller; first controller
0 = /dev/rd/c0do First disk, whole disk
8 = /dev/rd/codl Second disk, whole disk
248 = /dev/rd/c0d31 32nd disk, whole disk

For partitions add:

0 = /dev/rd/c?d? Whole disk
1 = /dev/rd/c?d?pl First partition
7 = /dev/rd/c?d?p7 Seventh partition
SDL RISCom serial card - alternate devices
0 = /dev/cul@ Callout device for ttyL®O
1 = /dev/cull Callout device for ttylLl

Mylex DAC960 PCI RAID controller; second controller

107

Linux Kernel User Documentation, Release 4.13.0-rc4+

0 = /dev/rd/cldo First disk, whole disk
8 = /dev/rd/cldl Second disk, whole disk
248 = /dev/rd/cld31 32nd disk, whole disk

Partitions are handled as for major 48.

50 char Reserved for GLINT
50 block Mylex DAC960 PCI RAID controller; third controller
0 = /dev/rd/c2d0 First disk, whole disk
8 = /dev/rd/c2d1 Second disk, whole disk
248 = /dev/rd/c2d31 32nd disk, whole disk
51 char Baycom radio modem OR Radio Tech BIM-XXX-RS232 radio modem
0 = /dev/bcO First Baycom radio modem
1 = /dev/bcl Second Baycom radio modem
51 block Mylex DAC960 PCI RAID controller; fourth controller
0 = /dev/rd/c3d0 First disk, whole disk
8 = /dev/rd/c3dl Second disk, whole disk
248 = /dev/rd/c3d31 32nd disk, whole disk
Partitions are handled as for major 48.
52 char Spellcaster DataComm/BRI ISDN card
0 = /dev/dcbrio First DataComm card
1 = /dev/dcbril Second DataComm card
2 = /dev/dcbri2 Third DataComm card
3 = /dev/dcbri3 Fourth DataComm card
52 block Mylex DAC960 PCI RAID controller; fifth controller
0 = /dev/rd/c4do First disk, whole disk
8 = /dev/rd/c4dl Second disk, whole disk
248 = /dev/rd/c4d31 32nd disk, whole disk
Partitions are handled as for major 48.
53 char BDM interface for remote debugging MC683xx microcontrollers
0 = /dev/pd bdmo PD BDM interface on 1p0
1 = /dev/pd_bdml PD BDM interface on 1pl
2 = /dev/pd_bdm2 PD BDM interface on 1p2
4 = /dev/icd _bdm@ ICD BDM interface on 1p0@
5 = /dev/icd bdml ICD BDM interface on 1pl
6 = /dev/icd bdm2 ICD BDM interface on 1p2
This device is used for the interfacing to the MC683xx
microcontrollers via Background Debug Mode by use of a
Parallel Port interface. PD is the Motorola Public
Domain Interface and ICD is the commercial interface
by P&E.
53 block Mylex DAC960 PCI RAID controller; sixth controller
0 = /dev/rd/c5do First disk, whole disk
8 = /dev/rd/c5dl Second disk, whole disk
108 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

54

54

55

55

56

56

57

57

char

block

char

block

char

block

char

block

248 = /dev/rd/c5d31 32nd disk, whole disk
Partitions are handled as for major 48.

Electrocardiognosis Holter serial card

0 = /dev/holtero® First Holter port
1 = /dev/holterl Second Holter port
2 = /dev/holter2 Third Holter port

A custom serial card used by Electrocardiognosis SRL
<mseritan@ottonel.pub.ro> to transfer data from Holter
24-hour heart monitoring equipment.

Mylex DAC960 PCI RAID controller; seventh controller

0 = /dev/rd/c6d0 First disk, whole disk
8 = /dev/rd/c6dl Second disk, whole disk
248 = /dev/rd/c6d31 32nd disk, whole disk

Partitions are handled as for major 48.

DSP56001 digital signal processor

0 = /dev/dsp56k First DSP56001

Mylex DAC960 PCI RAID controller; eighth controller
0 = /dev/rd/c7d0 First disk, whole disk
8 = /dev/rd/c7d1 Second disk, whole disk

248 = /dev/rd/c7d31 32nd disk, whole disk

Partitions are handled as for major 48.

Apple Desktop Bus
0 = /dev/adb ADB bus control

Additional devices will be added to this number, all
starting with /dev/adb.

Fifth IDE hard disk/CD-ROM interface
0 /dev/hdi Master: whole disk (or CD-ROM)
64 = /dev/hdj Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

Hayes ESP serial card
0 = /dev/ttyP0O First ESP port
1 = /dev/ttyP1 Second ESP port

Sixth IDE hard disk/CD-ROM interface
0 /dev/hdk Master: whole disk (or CD-ROM)
64 /dev/hdl Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

109

Linux Kernel User Documentation, Release 4.13.0-rc4+

58 char

58 block

59 char

59 block

60-63 char

60-63 block

64 char

64 block

65 char

Hayes ESP serial card - alternate devices
0 = /dev/cup0® Callout device for ttyPoO
1 = /dev/cupl Callout device for ttyPl

Reserved for logical volume manager

sf firewall package
0 = /dev/firewall Communication with sf kernel module

Generic PDA filesystem device
0 = /dev/pda0 First PDA device
1 = /dev/pdal Second PDA device

The pda devices are used to mount filesystems on
remote pda's (basically slow handheld machines with
proprietary 0S's and limited memory and storage
running small fs translation drivers) through serial /
IRDA / parallel links.

NAMING CONFLICT -- PROPOSED REVISED NAME /dev/rpda® etc
LOCAL/EXPERIMENTAL USE

LOCAL/EXPERIMENTAL USE

Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be

used in order to avoid conflicting with future assignments.

ENskip kernel encryption package
0 = /dev/enskip Communication with ENskip kernel module

Scramdisk/DriveCrypt encrypted devices
0 = /dev/scramdisk/master Master node for ioctls
1 = /dev/scramdisk/1 First encrypted device
2 /dev/scramdisk/2 Second encrypted device

255

/dev/scramdisk/255 255th encrypted device

The filename of the encrypted container and the passwords
are sent via ioctls (using the sdmount tool) to the master
node which then activates them via one of the
/dev/scramdisk/x nodes for loop mounting (all handled
through the sdmount tool).

Requested by: andy@scramdisklinux.org

Sundance " “plink'' Transputer boards (obsolete, unused)
0 = /dev/plink0 First plink device
1 = /dev/plinkl Second plink device
2 = /dev/plink2 Third plink device
3 = /dev/plink3 Fourth plink device
64 = /dev/rplink0 First plink device, raw
65 = /dev/rplinkl Second plink device, raw
66 = /dev/rplink2 Third plink device, raw
67 /dev/rplink3 Fourth plink device, raw
128 = /dev/plink0d First plink device, debug

110

Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

65 block

66 char

66 block

67 char

67 block

68 char

129 = /dev/plinkld Second plink device, debug
130 = /dev/plink2d Third plink device, debug
131 = /dev/plink3d Fourth plink device, debug
192 = /dev/rplink0@d First plink device, raw, debug
193 = /dev/rplinkld Second plink device, raw, debug
194 = /dev/rplink2d Third plink device, raw, debug
195 = /dev/rplink3d Fourth plink device, raw, debug

This is a commercial driver; contact James Howes
<jth@prosig.demon.co.uk> for information.

SCSI disk devices (16-31)

0 = /dev/sdq 17th SCSI disk whole disk
16 = /dev/sdr 18th SCSI disk whole disk
32 = /dev/sds 19th SCSI disk whole disk

240 = /dev/sdaf 32nd SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

YARC PowerPC PCI coprocessor card
0 = /dev/yppcpci0 First YARC card
1 = /dev/yppcpcil Second YARC card

SCSI disk devices (32-47)

0 = /dev/sdag 33th SCSI disk whole disk
16 = /dev/sdah 34th SCSI disk whole disk
32 = /dev/sdai 35th SCSI disk whole disk

240 = /dev/sdav 48nd SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

Coda network file system
0 = /dev/cfs0 Coda cache manager

See http://www.coda.cs.cmu.edu for information about Coda.

SCSI disk devices (48-63)

0 = /dev/sdaw 49th SCSI disk whole disk
16 = /dev/sdax 50th SCSI disk whole disk
32 = /dev/sday 51st SCSI disk whole disk

240 = /dev/sdbl 64th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

CAPI 2.0 interface

0 = /dev/capi20 Control device
1 = /dev/capi20.00 First CAPI 2.0 application
2 = /dev/capi20.01 Second CAPI 2.0 application

111

Linux Kernel User Documentation, Release 4.13.0-rc4+

20 = /dev/capi20.19 19th CAPI 2.0 application

ISDN CAPI 2.0 driver for use with CAPI 2.0
applications; currently supports the AVM Bl card.

68 block SCSI disk devices (64-79)
0 = /dev/sdbm 65th SCSI disk whole disk
16 = /dev/sdbn 66th SCSI disk whole disk
32 = /dev/sdbo 67th SCSI disk whole disk
240 = /dev/sdcb 80th SCSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
69 char MA16 numeric accelerator card
0 = /dev/mal6 Board memory access
69 block SCSI disk devices (80-95)
0 = /dev/sdcc 81st SCSI disk whole disk
16 = /dev/sdcd 82nd SCSI disk whole disk
32 = /dev/sdce 83th SCSI disk whole disk
240 = /dev/sdcr 96th SCSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
70 char SpellCaster Protocol Services Interface
0 = /dev/apscfg Configuration interface
1 = /dev/apsauth Authentication interface
2 = /dev/apslog Logging interface
3 = /dev/apsdbg Debugging interface
64 = /dev/apsisdn ISDN command interface
65 = /dev/apsasync Async command interface
128 = /dev/apsmon Monitor interface
70 block SCSI disk devices (96-111)
0 = /dev/sdcs 97th SCSI disk whole disk
16 = /dev/sdct 98th SCSI disk whole disk
32 = /dev/sdcu 99th SCSI disk whole disk
240 = /dev/sddh 112nd SCSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
71 char Computone IntelliPort II serial card
0 = /dev/ttyFoO IntelliPort II board 0, port O
1 = /dev/ttyFl IntelliPort II board 0, port 1
63 = /dev/ttyF63 IntelliPort II board 0, port 63
64 = /dev/ttyF64 IntelliPort II board 1, port ©
65 = /dev/ttyF65 IntelliPort II board 1, port 1
112 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

71 block

72 char

72 block

73 char

IntelliPort
IntelliPort
IntelliPort

IntelliPort
IntelliPort
IntelliPort

IntelliPort

IT
IT
II

II
IT
IT

II

board 1, po
board 2, po
board 2, po
board 2, po
board 3, po
board 3, po
board 3, po

113th SCSI disk whole disk
114th SCSI disk whole disk
115th SCSI disk whole disk

127 =)dev/ttyF127
128 = /dev/ttyF128
129 = /dev/ttyF129
191 =)dev/ttyF191
192 = /dev/ttyF192
193 = /dev/ttyF193
255 =)dev/ttyF255
SCSI disk devices (112-127)
0 = /dev/sddi
16 = /dev/sddj
32 = /dev/sddk
240 = /dev/sddx

128th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

Computone IntelliPort II serial
Callout device
Callout device

0 = /dev/cufod
1 = /dev/cufl
63 =)dev/cuf63
64 = /dev/cuf64
65 = /dev/cuf65
127 =)dev/cuf127
128 = /dev/cufl28
129 = /dev/cufl29
191 =)dev/cuf191
192 = /dev/cufl92
193 = /dev/cufl193
255 = /dev/cuf255
Compaqg Intelligent Drive Array,
0 = /dev/ida/c0d0
16 = /dev/ida/c0dl
240 = /dev/ida/c0d15

Callout device
Callout device
Callout device

Callout device
Callout device
Callout device

Callout device
Callout device
Callout device

Callout device

card -

alternate d
for ttyFoO
for ttyFl

for ttyF63
for ttyF64
for ttyF65

for ttyF127
for ttyF128
for ttyF129

for ttyF191
for ttyF192
for ttyF193

for ttyF255

first controller

rt 63
rt 0
rt 1

rt 63
rt 0
rt 1

rt 63

evices

First logical drive whole disk
Second logical drive whole disk

16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

Computone IntelliPort II serial card - control devices
Loadware device for board
Status device for board 0
Loadware device for board
Status device for board 1
Loadware device for board
Status device for board 2
Loadware device for board

NOOOU bhRFHO
L | | [| A ||

/dev/ip2iplo

/dev/ip2stat0

/dev/ip2ipll

/dev/ip2statl

/dev/ip2ipl2

/dev/ip2stat2

/dev/ip2ipl3

0

1

2

3

113

Linux Kernel User Documentation, Release 4.13.0-rc4+

13 = /dev/ip2stat3 Status device for board 3
73 block Compaq Intelligent Drive Array, second controller
0 = /dev/ida/c1do First logical drive whole disk
16 = /dev/ida/cldl Second logical drive whole disk
240 = /dev/ida/c1d1l5 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

74 char SCI bridge
0 = /dev/SCI/0 SCI device 0

1 = /dev/SCI/1 SCI device 1

Currently for Dolphin Interconnect Solutions' PCI-SCI

bridge.
74 block Compaq Intelligent Drive Array, third controller
0 = /dev/ida/c2d0O First logical drive whole disk
16 = /dev/ida/c2dl Second logical drive whole disk
240 = /dev/ida/c2d15 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

75 char Specialix I08+ serial card
0 = /dev/ttywo First I08+ port, first card
1 = /dev/ttyWl Second I08+ port, first card
8 = /dev/ttyW8 First I08+ port, second card
75 block Compaq Intelligent Drive Array, fourth controller
0 = /dev/ida/c3d0o First logical drive whole disk
16 = /dev/ida/c3dl Second logical drive whole disk
240 = /dev/ida/c3d15 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

76 char Specialix I08+ serial card - alternate devices
0 = /dev/cuw0 Callout device for ttywo
1 = /dev/cuwl Callout device for ttywl
8 = /dev/cuw8 Callout device for ttyW8
76 block Compaq Intelligent Drive Array, fifth controller
0 = /dev/ida/c4do First logical drive whole disk
16 = /dev/ida/c4dl Second logical drive whole disk

114 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

77 char

77 block

78 char

78 block

79 char

79 block

80 char

80 block

240 = /dev/ida/c4d15 16th logical drive whole disk
Partitions are handled the same way as for Mylex

DAC960 (see major number 48) except that the limit on
partitions is 15.

ComScire Quantum Noise Generator
0 = /dev/qgng ComScire Quantum Noise Generator

Compaq Intelligent Drive Array, sixth controller

0 = /dev/ida/c5do First logical drive whole disk
16 = /dev/ida/c5dl Second logical drive whole disk
240 = /dev/ida/c5d15 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

PAM Software's multimodem boards
0 = /dev/ttyMO First PAM modem
1 = /dev/ttyMl Second PAM modem

Compaq Intelligent Drive Array, seventh controller

0 = /dev/ida/c6d0 First logical drive whole disk
16 = /dev/ida/c6dl Second logical drive whole disk
240 = /dev/ida/c6d15 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

PAM Software's multimodem boards - alternate devices
0 = /dev/cum0® Callout device for ttyMo
1 = /dev/cuml Callout device for ttyM1

Compaq Intelligent Drive Array, eighth controller

0 = /dev/ida/c7d0O First logical drive whole disk
16 = /dev/ida/c7dl Second logical drive whole disk
240 = /dev/ida/c715 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

Photometrics AT200 CCD camera

0 = /dev/at200 Photometrics AT200 CCD camera
I20 hard disk

0 = /dev/i2o0/hda First I20 hard disk, whole disk

16 = /dev/i20/hdb Second I20 hard disk, whole disk
240 = /dev/i20/hdp 16th I20 hard disk, whole disk

115

Linux Kernel User Documentation, Release 4.13.0-rc4+

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

81 char video4linux

0 = /dev/video0 Video capture/overlay device
63 = /dev/video63 Video capture/overlay device
64 = /dev/radio0® Radio device
127 = /dev/radio63 Radio device
128 = /dev/swradio® Software Defined Radio device
191 = /dev/swradio63 Software Defined Radio device
224 = /dev/vbi0 Vertical blank interrupt
255 = /dev/vbi3l Vertical blank interrupt

Minor numbers are allocated dynamically unless
CONFIG VIDEO FIXED MINOR RANGES (default n)
configuration option is set.

81 block I20 hard disk
0 = /dev/i20/hdq 17th I20 hard disk, whole disk
16 = /dev/i2o0/hdr 18th I20 hard disk, whole disk
240 = /dev/i2o0/hdaf 32nd I20 hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

82 char WiNRADiO communications receiver card
0 = /dev/winradio0 First WiNRADiO card
1 = /dev/winradiol Second WiNRADiO card

The driver and documentation may be obtained from
http://www.winradio.com/

82 block I20 hard disk
0 = /dev/i20/hdag 33rd I20 hard disk, whole disk
16 = /dev/i20/hdah 34th I20 hard disk, whole disk
240 =.)dev/120/hdav 48th I20 hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

83 char Matrox mga vid video driver
0 = /dev/mga vido 1st video card
1 = /dev/mga vidl 2nd video card
2 = /dev/mga vid2 3rd video card
15 = /dev/mga_vid1l5 16th video card

116 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

83 block

84 char

84 block

85 char

85 block

86 char

86 block

87 char

I20 hard disk

0 = /dev/i20/hdaw 49th I20 hard disk, whole disk
16 = /dev/i20/hdax 50th I20 hard disk, whole disk
240 = /dev/i20/hdbl 64th 120 hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

Ikon 1011[57] Versatec Greensheet Interface

0 = /dev/ihcp0 First Greensheet port
1 = /dev/ihcpl Second Greensheet port
I20 hard disk
0 = /dev/i20/hdbm 65th I20 hard disk, whole disk
16 = /dev/i20/hdbn 66th I20 hard disk, whole disk
240 = /dev/i20/hdcb 80th I20 hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

Linux/SGI shared memory input queue

0 = /dev/shmiq Master shared input queue
1 = /dev/qcntl0 First device pushed
2 =

/dev/qcntll Second device pushed

I20 hard disk

0 = /dev/i20/hdcc 81st I20 hard disk, whole disk
16 = /dev/i20/hdcd 82nd I20 hard disk, whole disk
240 =.)dev/120/hdcr 96th I20 hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

SCSI media changer
0 = /dev/schO First SCSI media changer
1 = /dev/schl Second SCSI media changer

I20 hard disk

0 = /dev/i20/hdcs 97th I20 hard disk, whole disk
16 = /dev/i20/hdct 98th I20 hard disk, whole disk
240 =')dev/120/hddh 112th I20 hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

Sony Control-Al stereo control bus
0 /dev/controla0 First device on chain
1 /dev/controlal Second device on chain

117

Linux Kernel User Documentation, Release 4.13.0-rc4+

87 block I20 hard disk
0 = /dev/i2o0/hddi 113rd I20 hard disk, whole disk
16 = /dev/i20/hddj 114th I20 hard disk, whole disk
240 =.)dev/120/hddx 128th I20 hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

88 char COMX synchronous serial card
0 = /dev/comx0 COMX channel 0
1 = /dev/comxl COMX channel 1
88 block Seventh IDE hard disk/CD-ROM interface
0 = /dev/hdm Master: whole disk (or CD-ROM)
64 = /dev/hdn Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

89 char I2C bus interface
0 = /dev/i2c-0 First I2C adapter
1 = /dev/i2c-1 Second I2C adapter
89 block Eighth IDE hard disk/CD-ROM interface
0 = /dev/hdo Master: whole disk (or CD-ROM)
64 = /dev/hdp Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

90 char Memory Technology Device (RAM, ROM, Flash)
0 = /dev/mtd0 First MTD (rw)
1 = /dev/mtdro0 First MTD (ro)
30 = /dev/mtd15 16th MTD (rw)
31 = /dev/mtdrl5 16th MTD (ro)
90 block Ninth IDE hard disk/CD-ROM interface
0 = /dev/hdqg Master: whole disk (or CD-ROM)
64 = /dev/hdr Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

91 char CAN-Bus devices
® = /dev/can0 First CAN-Bus controller
1 = /dev/canl Second CAN-Bus controller
91 block Tenth IDE hard disk/CD-ROM interface
0 = /dev/hds Master: whole disk (or CD-ROM)
64 = /dev/hdt Slave: whole disk (or CD-ROM)

118 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

92

92

93

93

94

94

95

96

96

97

char

block

char

block

char

block

char

char

block

char

Partitions are handled the same way as for the first
interface (see major number 3).

Reserved for ith Kommunikationstechnik MIC ISDN card
PPDD encrypted disk driver

0 = /dev/ppddO First encrypted disk
1 = /dev/ppddl Second encrypted disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

NAND Flash Translation Layer filesystem

0 = /dev/nftla First NFTL layer
16 = /dev/nftlb Second NFTL layer
240 = /dev/nftlp 16th NTFL layer

IBM S/390 DASD block storage

/dev/dasda First DASD device, major
/dev/dasdal First DASD device, block 1
/dev/dasda2 First DASD device, block 2
/dev/dasda3 First DASD device, block 3
/dev/dasdb Second DASD device, major
/dev/dasdbl Second DASD device, block 1
/dev/dasdb2 Second DASD device, block 2
/dev/dasdb3 Second DASD device, block 3

Nouhk, WNREO

IP filter

/dev/ipl Filter control device/log file
/dev/ipnat NAT control device/log file
/dev/ipstate State information log file

/dev/ipauth Authentication control device/log file

WNEREO
LI | I TR |

Parallel port ATAPI tape devices

0 = /dev/ptoO First parallel port ATAPI tape

1 = /dev/ptl Second parallel port ATAPI tape
128 = /dev/npto First p.p. ATAPI tape, no rewind
129 =

/dev/nptl Second p.p. ATAPI tape, no rewind

Inverse NAND Flash Translation Layer

0 = /dev/inftla First INFTL layer
16 = /dev/inftlb Second INFTL layer
240 = /dev/inftlp 16th INTFL layer

Parallel port generic ATAPI interface

119

Linux Kernel User Documentation, Release 4.13.0-rc4+

0 = /dev/pg0 First parallel port ATAPI device
1 = /dev/pgl Second parallel port ATAPI device
2 = /dev/pg2 Third parallel port ATAPI device
3 = /dev/pg3 Fourth parallel port ATAPI device
These devices support the same API as the generic SCSI
devices.
98 char Control and Measurement Device (comedi)
0 = /dev/comedi® First comedi device
1 = /dev/comedil Second comedi device

See http://stm.lbl.gov/comedi.

98 block User-mode virtual block device
0 = /dev/ubda First user-mode block device
16 =

/dev/udbb Second user-mode block device

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

This device is used by the user-mode virtual kernel port.

99 char Raw parallel ports
0 = /dev/parport0 First parallel port
1 = /dev/parportl Second parallel port
99 block JavaStation flash disk
0 = /dev/jsfd JavaStation flash disk
100 char Telephony for Linux
0 = /dev/phone0® First telephony device
1 = /dev/phonel Second telephony device
101 char Motorola DSP 56xxx board
0 = /dev/mdspstat Status information
1 = /dev/mdspl First DSP board I/0 controls
16 = /dev/mdspl6 16th DSP board I/0 controls
101 block AMI HyperDisk RAID controller
0 = /dev/amiraid/ar® First array whole disk
16 = /dev/amiraid/arl Second array whole disk
240 = /dev/amiraid/arl5 16th array whole disk

For each device, partitions are added as:

0 = /dev/amiraid/ar? Whole disk

1 = /dev/amiraid/ar?pl First partition
2 = /dev/amiraid/ar?p2 Second partition
15 = /dev/amiraid/ar?pl5 15th partition

120 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

102 char

102 block

103 char

103 block

104 char

104 block

105 char

105 block

106 char

Compressed block device

0 = /dev/cbd/a First compressed block device, whole device
16 = /dev/cbd/b Second compressed block device, whole device
240 = /dev/cbd/p 16th compressed block device, whole device

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

Arla network file system
0 = /dev/nnpfs0O First NNPFS device

1 = /dev/nnpfsl Second NNPFS device

Arla is a free clone of the Andrew File System, AFS.
The NNPFS device gives user mode filesystem
implementations a kernel presence for caching and easy
mounting. For more information about the project,
write to <arla-drinkers@stacken.kth.se> or see
http://www.stacken.kth.se/project/arla/

Audit device
0 = /dev/audit Audit device

Flash BIOS support

Compaq Next Generation Drive Array, first controller

0 = /dev/cciss/cOd® First logical drive, whole disk
16 = /dev/cciss/c0dl Second logical drive, whole disk
240 = /dev/cciss/c0d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

Comtrol VS-1000 serial controller
0 = /dev/ttyVo First VS-1000 port
1 = /dev/ttyVl Second VS-1000 port

Compag Next Generation Drive Array, second controller

0 = /dev/cciss/cld® First logical drive, whole disk
16 = /dev/cciss/cldl Second logical drive, whole disk
240 = /dev/cciss/cld1l5 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

Comtrol VS-1000 serial controller - alternate devices
0 = /dev/cuv0 First VS-1000 port
1 = /dev/cuvl Second VS-1000 port

121

Linux Kernel User Documentation, Release 4.13.0-rc4+

106 block Compag Next Generation Drive Array, third controller
0 = /dev/cciss/c2d® First logical drive, whole disk
16 = /dev/cciss/c2dl Second logical drive, whole disk
240 = /dev/cciss/c2d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

107 char 3Dfx Voodoo Graphics device
0 = /dev/3dfx Primary 3Dfx graphics device
107 block Compaq Next Generation Drive Array, fourth controller
0 = /dev/cciss/c3d0® First logical drive, whole disk
16 = /dev/cciss/c3dl Second logical drive, whole disk
240 = /dev/cciss/c3d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

108 char Device independent PPP interface
0 = /dev/ppp Device independent PPP interface
108 block Compag Next Generation Drive Array, fifth controller
0 = /dev/cciss/c4d0 First logical drive, whole disk
16 = /dev/cciss/c4dl Second logical drive, whole disk
240 = /dev/cciss/c4dl5 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

109 char Reserved for logical volume manager
109 block Compag Next Generation Drive Array, sixth controller
® = /dev/cciss/c5d0® First logical drive, whole disk
16 = /dev/cciss/c5d1 Second logical drive, whole disk
240 = /dev/cciss/c5d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

110 char miroMEDIA Surround board
0 = /dev/srnd0O First miroMEDIA Surround board
1 = /dev/srndl Second miroMEDIA Surround board
110 block Compag Next Generation Drive Array, seventh controller
0 = /dev/cciss/c6d® First logical drive, whole disk
16 = /dev/cciss/c6dl Second logical drive, whole disk
240 = /dev/cciss/c6dl5 16th logical drive, whole disk

122 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

111 char

111 block

112 char

112 block

113 char

113 block

114 char

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

Compaq Next Generation Drive Array, eighth controller

0 = /dev/cciss/c7d® First logical drive, whole disk
16 = /dev/cciss/c7d1 Second logical drive, whole disk
240 = /dev/cciss/c7d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

ISI serial card
0 = /dev/ttyMo First ISI port
1 = /dev/ttyMl Second ISI port

There is currently a device-naming conflict between
these and PAM multimodems (major 78).

IBM iSeries virtual disk

0 = /dev/iseries/vda First virtual disk, whole disk

8 = /dev/iseries/vdb Second virtual disk, whole disk
200 = /dev/iseries/vdz 26th virtual disk, whole disk
208 = /dev/iseries/vdaa 27th virtual disk, whole disk
248 = /dev/iseries/vdaf 32nd virtual disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 7.

ISI serial card - alternate devices
/dev/cum@ Callout device for ttyMo
/dev/cuml Callout device for ttyM1

=
I

IBM iSeries virtual CD-ROM
/dev/iseries/vcda First virtual CD-ROM
/dev/iseries/vcdb Second virtual CD-ROM

=
I

Picture Elements ISE board

0 = /dev/ise0 First ISE board

1 = /dev/isel Second ISE board
128 = /dev/isex0 Control node for first ISE board
129 = /dev/isexl Control node for second ISE board

The ISE board is an embedded computer, optimized for
image processing. The /dev/iseN nodes are the general

123

Linux Kernel User Documentation, Release 4.13.0-rc4+

114 block

115 char

115 block

116 char

116 block

I/0 access to the board, the /dev/isex0® nodes command
nodes used to control the board.

IDE BIOS powered software RAID interfaces such as the
Promise Fastrak

0
1
2

/dev/ataraid/do
/dev/ataraid/dopl
/dev/ataraid/dop2

16
17
18

/dev/ataraid/dl
/dev/ataraid/dlpl
/dev/ataraid/d1p2

255

/dev/ataraid/d15p15

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

TI link cable devices (115 was formerly the console driver speaker)
0 = /dev/tipar0 Parallel cable on first parallel port

7

/dev/tipar7 Parallel cable on seventh parallel port

8 = /dev/tiser0 Serial cable on first serial port

15

/dev/tiser7 Serial cable on seventh serial port

16 /dev/tiush0 First USB cable

47 /dev/tiusb31 32nd USB cable

NetWare (NWFS) Devices (0-255)

The NWFS (NetWare) devices are used to present a
collection of NetWare Mirror Groups or NetWare
Partitions as a logical storage segment for

use in mounting NetWare volumes. A maximum of
256 NetWare volumes can be supported in a single

machine.

http://cgfa.telepac.pt/ftp2/kernel.org/linux/kernel/people/jmerkey/nwfs/
0

1
2

/dev/nwfs/v0 First NetWare (NWFS) Logical Volume
/dev/nwfs/vl Second NetWare (NWFS) Logical Volume
/dev/nwfs/v2 Third NetWare (NWFS) Logical Volume

255 = /dev/nwfs/v255 Last NetWare (NWFS) Logical Volume
Advanced Linux Sound Driver (ALSA)

MicroMemory battery backed RAM adapter (NVRAM)

Supports 16 boards, 15 partitions each.

Requested by neilb at cse.unsw.edu.au.

0
1

/dev/umem/do Whole of first board
/dev/umem/dOpl First partition of first board

124

Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

2 = /dev/umem/dOp2 Second partition of first board
15 = /dev/umem/dOpl5 15th partition of first board
16 = /dev/umem/dl Whole of second board
17 = /dev/umem/d1lpl First partition of second board

255= /dev/umem/d15p15 15th partition of 16th board.

117 char COSA/SRP synchronous serial card
0 = /dev/cosafOcO 1st board, 1st channel
1 = /dev/cosalcl 1st board, 2nd channel
16 = /dev/cosalcO 2nd board, 1st channel
17 = /dev/cosalcl 2nd board, 2nd channel
117 block Enterprise Volume Management System (EVMS)

The EVMS driver uses a layered, plug-in model to provide
unparalleled flexibility and extensibility in managing
storage. This allows for easy expansion or customization
of various levels of volume management. Requested by
Mark Peloquin (peloquin at us.ibm.com).

Note: EVMS populates and manages all the devnodes in
/dev/evms.

http://sf.net/projects/evms

0 = /dev/evms/block device EVMS block device
1 = /dev/evms/legacynamel First EVMS legacy device
2 = /dev/evms/legacyname2 Second EVMS legacy device

Both ranges can grow (down or up) until they meet.

/dev/evms/EVMSname?2 Second EVMS native device
/dev/evms/EVMSnamel First EVMS native device

254
255

Note: legacyname(s) are derived from the normal legacy
device names. For example, /dev/hda5 would become

/dev/evms/hda5.
118 char IBM Cryptographic Accelerator
0 = /dev/ica Virtual interface to all IBM Crypto Accelerators
1 = /dev/ica® IBMCA Device 0
2 = /dev/ical IBMCA Device 1
119 char VMware virtual network control
0 = /dev/vnet0 1st virtual network
1 = /dev/vnetl 2nd virtual network

120-127 char LOCAL/EXPERIMENTAL USE

120-127 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be

125

Linux Kernel User Documentation, Release 4.13.0-rc4+

used in order to avoid conflicting with future assignments.
128-135 char Unix98 PTY masters
These devices should not have corresponding device

nodes; instead they should be accessed through the
/dev/ptmx cloning interface.

128 block SCSI disk devices (128-143)
0 = /dev/sddy 129th SCSI disk whole disk
16 = /dev/sddz 130th SCSI disk whole disk
32 = /dev/sdea 131th SCSI disk whole disk
240 =./dev/sden 144th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

129 block SCSI disk devices (144-159)
0 = /dev/sdeo 145th SCSI disk whole disk
16 = /dev/sdep 146th SCSI disk whole disk
32 = /dev/sdeq 147th SCSI disk whole disk
240 = /dev/sdfd 160th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

130 char (Misc devices)
130 block SCSI disk devices (160-175)
0 = /dev/sdfe 161st SCSI disk whole disk
16 = /dev/sdff 162nd SCSI disk whole disk
32 = /dev/sdfg 163rd SCSI disk whole disk
240 = /dev/sdft 176th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

131 block SCSI disk devices (176-191)
0 = /dev/sdfu 177th SCSI disk whole disk
16 = /dev/sdfv 178th SCSI disk whole disk
32 = /dev/sdfw 179th SCSI disk whole disk
240 = /dev/sdgj 192nd SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

132 block SCSI disk devices (192-207)
0 = /dev/sdgk 193rd SCSI disk whole disk
16 = /dev/sdgl 194th SCSI disk whole disk
32 = /dev/sdgm 195th SCSI disk whole disk

126 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

133 block

134 block

135 block

136-143 char

136 block

240 = /dev/sdgz 208th SCSI disk whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

SCSI disk devices (208-223)

0 = /dev/sdha 209th SCSI disk whole disk
16 = /dev/sdhb 210th SCSI disk whole disk
32 = /dev/sdhc 211th SCSI disk whole disk

240 ='/dev/sdhp 224th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

SCSI disk devices (224-239)

0 = /dev/sdhq 225th SCSI disk whole disk
16 = /dev/sdhr 226th SCSI disk whole disk
32 = /dev/sdhs 227th SCSI disk whole disk

240 =./dev/sdif 240th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

SCSI disk devices (240-255)

0 = /dev/sdig 241st SCSI disk whole disk
16 = /dev/sdih 242nd SCSI disk whole disk
32 = /dev/sdih 243rd SCSI disk whole disk

240 = /dev/sdiv 256th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

Unix98 PTY slaves
0 = /dev/pts/0 First Unix98 pseudo-TTY
1 = /dev/pts/1 Second Unix98 pseudo-TTY

These device nodes are automatically generated with
the proper permissions and modes by mounting the
devpts filesystem onto /dev/pts with the appropriate
mount options (distribution dependent, however, on
most distributions the appropriate options are

" "mode=0620,gid=<gid of the ““tty'' group>'"'.)

Mylex DAC960 PCI RAID controller; ninth controller

0 = /dev/rd/c8d0 First disk, whole disk
8 = /dev/rd/c8dl Second disk, whole disk
248 = /dev/rd/c8d31 32nd disk, whole disk

127

Linux Kernel User Documentation, Release 4.13.0-rc4+

Partitions are handled as for major 48.

137 block Mylex DAC960 PCI RAID controller; tenth controller
0 = /dev/rd/c9do First disk, whole disk
8 = /dev/rd/c9dl Second disk, whole disk
248 = /dev/rd/c9d31 32nd disk, whole disk
Partitions are handled as for major 48.
138 block Mylex DAC960 PCI RAID controller; eleventh controller
0 = /dev/rd/cl0odo First disk, whole disk
8 = /dev/rd/clodl Second disk, whole disk
248 = /dev/rd/cl0d31 32nd disk, whole disk
Partitions are handled as for major 48.
139 block Mylex DAC960 PCI RAID controller; twelfth controller
0 = /dev/rd/c11do First disk, whole disk
8 = /dev/rd/clldl Second disk, whole disk
248 = /dev/rd/clld31l 32nd disk, whole disk
Partitions are handled as for major 48.
140 block Mylex DAC960 PCI RAID controller; thirteenth controller
0 = /dev/rd/cl2do First disk, whole disk
8 = /dev/rd/cl2dl Second disk, whole disk
248 = /dev/rd/cl2d31 32nd disk, whole disk
Partitions are handled as for major 48.
141 block Mylex DAC960 PCI RAID controller; fourteenth controller
0 = /dev/rd/cl3do First disk, whole disk
8 = /dev/rd/cl3d1l Second disk, whole disk
248 = /dev/rd/cl3d31 32nd disk, whole disk
Partitions are handled as for major 48.
142 block Mylex DAC960 PCI RAID controller; fifteenth controller
0 = /dev/rd/cl4do First disk, whole disk
8 = /dev/rd/cl4dl Second disk, whole disk
248 = /dev/rd/cl4d31 32nd disk, whole disk
Partitions are handled as for major 48.
143 block Mylex DAC960 PCI RAID controller; sixteenth controller
0 = /dev/rd/cl5d0 First disk, whole disk
8 = /dev/rd/cl5d1 Second disk, whole disk
248 = /dev/rd/cl5d31 32nd disk, whole disk
Partitions are handled as for major 48.
128 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

144

144

145

145

146

146

147

147

char

block

char

block

char

block

char

block

Encapsulated PPP
0 = /dev/pppox0 First PPP over Ethernet

63 = /dev/pppox63 64th PPP over Ethernet
This is primarily used for ADSL.

The SST 5136-DN DeviceNet interface driver has been
relocated to major 183 due to an unfortunate conflict.

Expansion Area #1 for more non-device (e.g. NFS) mounts
0 = mounted device 256
255 = mounted device 511

SAM9407-based soundcard

0 = /dev/sam@ mixer

1 = /dev/sam@_sequencer

2 = /dev/samO@ _midi@0O

3 = /dev/samO_dsp

4 = /dev/sam@_audio

6 = /dev/sam@ sndstat
18 = /dev/samO@ midi0l
34 = /dev/sam@ midi02
50 = /dev/sam@ midi@3
64 = /dev/saml mixer
128 = /dev/sam2_mixer

192 = /dev/sam3_mixer

Device functions match 0SS, but offer a number of
addons, which are sam9407 specific. 0SS can be
operated simultaneously, taking care of the codec.

Expansion Area #2 for more non-device (e.g. NFS) mounts
0 = mounted device 512
255 = mounted device 767

SYSTRAM SCRAMNet mirrored-memory network
0 = /dev/scramnet0 First SCRAMNet device
1 /dev/scramnetl Second SCRAMNet device

Expansion Area #3 for more non-device (e.g. NFS) mounts
0 = mounted device 768
255 = mounted device 1023

Aureal Semiconductor Vortex Audio device
0 = /dev/aureal0d First Aureal Vortex
1 /dev/aureall Second Aureal Vortex

Distributed Replicated Block Device (DRBD)
0 /dev/drbd0 First DRBD device
1 /dev/drbdl Second DRBD device

129

Linux Kernel User Documentation, Release 4.13.0-rc4+

148 char Technology Concepts serial card
0 = /dev/ttyTO First TCL port
1 = /dev/ttyT1l Second TCL port
149 char Technology Concepts serial card - alternate devices
0 = /dev/cut0 Callout device for ttyToO
1 = /dev/cut0 Callout device for ttyTl
150 char Real-Time Linux FIFOs
0 = /dev/rtfo First RTLinux FIFO
1 = /dev/rtfl Second RTLinux FIFO
151 char DPT I20 SmartRaid V controller
0 = /dev/dpti0 First DPT I20 adapter
1 = /dev/dptil Second DPT I20 adapter
152 char EtherDrive Control Device
0 = /dev/etherd/ctl Connect/Disconnect an EtherDrive
1 = /dev/etherd/err Monitor errors
2 = /dev/etherd/raw Raw AoE packet monitor
152 block EtherDrive Block Devices
0 = /dev/etherd/0 EtherDrive 0
255 = /dev/etherd/255 EtherDrive 255
153 char SPI Bus Interface (sometimes referred to as MicroWire)
0 = /dev/spi0d First SPI device on the bus
1 = /dev/spil Second SPI device on the bus
15 = /dev/spil5 Sixteenth SPI device on the bus
153 block Enhanced Metadisk RAID (EMD) storage units
0 = /dev/emd/0 First unit
1 = /dev/emd/0pl Partition 1 on First unit
2 = /dev/emd/0p2 Partition 2 on First unit
15 = /dev/emd/0pl5 Partition 15 on First unit
16 = /dev/emd/1 Second unit
32 = /dev/emd/2 Third unit
240 = /dev/emd/15 Sixteenth unit

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

154 char Specialix RIO serial card
0 = /dev/ttySRO First RIO port
255 = /dev/ttySR255 256th RIO port
155 char Specialix RIO serial card - alternate devices

130 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

156 char

157 char

158 char

159 char
159 block

160 char

160 block

161 char

161 block

0

255

/dev/cusr0

/dev/cusr255

Callout device for ttySRO

Callout device for ttySR255

Specialix RIO serial card
0 = /dev/ttySR256

255 = /dev/ttySR511

257th RIO port

512th RIO port

Specialix RIO serial card - alternate devices
0 = /dev/cusr256

255 = /dev/cusr511

Callout device for ttySR256

Callout device for ttySR511

Dialogic GammalLink fax driver

GammaLink channel 0
GammaLink channel 1

General Purpose Instrument Bus (GPIB)

0 = /dev/gfax0

1 = /dev/gfaxl
RESERVED
RESERVED

0 = /dev/gpib0o

1 =

/dev/gpibl

First GPIB bus
Second GPIB bus

Carmel 8-port SATA Disks on First Controller

0
1

31

32
64

224

/dev/carmel/0

SATA disk 0 whole disk

/dev/carmel/0pl SATA disk 0 partition 1

/dev/carmel/0p31 SATA disk 0 partition 31

/dev/carmel/1
/dev/carmel/2

.)dev/carmel/7

SATA disk 1 whole disk
SATA disk 2 whole disk

SATA disk 7 whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 31.

IrCOMM devices (IrDA serial/parallel emulation)

0
1

16
17

/dev/ircomm@
/dev/ircomml

.)dev/irlpto
/dev/irlptl

First IrCOMM device
Second IrCOMM device

First IrLPT device
Second IrLPT device

Carmel 8-port SATA Disks on Second Controller

0
1

31

32

/dev/carmel/8

SATA disk 8 whole disk

/dev/carmel/8pl SATA disk 8 partition 1

/dev/carmel/8p31 SATA disk 8 partition 31

/dev/carmel/9

SATA disk 9 whole disk

131

Linux Kernel User Documentation, Release 4.13.0-rc4+

64 /dev/carmel/10 SATA disk 10 whole disk

224 /dev/carmel/15 SATA disk 15 whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 31.

162 char Raw block device interface
0 = /dev/rawctl Raw I/0 control device
1 = /dev/raw/rawl First raw I/0 device
2 = /dev/raw/raw2 Second raw I/0 device
max minor number of raw device is set by kernel config
MAX RAW DEVS or raw module parameter “max raw_devs'
163 char
164 char Chase Research AT/PCI-Fast serial card
0 = /dev/ttyCHO AT/PCI-Fast board 0, port 0
15 = /dev/ttyCH15 AT/PCI-Fast board 0, port 15
16 = /dev/ttyCH16 AT/PCI-Fast board 1, port O
31 = /dev/ttyCH31 AT/PCI-Fast board 1, port 15
32 = /dev/ttyCH32 AT/PCI-Fast board 2, port 0
47 = /dev/ttyCH47 AT/PCI-Fast board 2, port 15
48 = /dev/ttyCH48 AT/PCI-Fast board 3, port O
63 = /dev/ttyCH63 AT/PCI-Fast board 3, port 15
165 char Chase Research AT/PCI-Fast serial card - alternate devices
0 = /dev/cuch0® Callout device for ttyCHO
63 = /dev/cuch63 Callout device for ttyCH63
166 char ACM USB modems
0 = /dev/ttyACMO First ACM modem
1 = /dev/ttyACM1 Second ACM modem
167 char ACM USB modems - alternate devices
0 = /dev/cuacm0@ Callout device for ttyACMO
1 = /dev/cuacml Callout device for ttyACM1
168 char Eracom CSA7000 PCI encryption adaptor
0 = /dev/ecsa0d First CSA7000
1 = /dev/ecsal Second CSA7000
169 char Eracom CSA8000 PCI encryption adaptor
0 = /dev/ecsa8-0 First CSA8000
1 = /dev/ecsa8-1 Second CSA8000
170 char AMI MegaRAC remote access controller
132 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

171

172

173

174

175

176

177

178

179 block

char

char

char

char

char

char

char

char

=
I

/dev/megaracO
/dev/megaracl

First MegaRAC card
Second MegaRAC card

Reserved for IEEE 1394 (Firewire)

Moxa Intellio serial card

First Moxa port
Second Moxa port

128th Moxa port
Moxa control port

Moxa Intellio serial card - alternate devices

0 = /dev/ttyMXo

1 = /dev/ttyMx1
127 = /dev/ttyMX127
128 = /dev/moxactl

0 = /dev/cumx0

1 = /dev/cumxl
127 =')dev/cumx127
SmartIO serial card

0 = /dev/ttySIO

1 =

/dev/ttySI1

SmartIO serial card

0
1

/dev/cusi®
/dev/cusil

Callout device for ttyMXo
Callout device for ttyMX1

Callout device for ttyMX127

First SmartIO port
Second SmartIO port

- alternate devices
Callout device for ttySIO
Callout device for ttySI1

nCipher nFast PCI crypto accelerator
0 = /dev/nfastpci0 First nFast PCI device
/dev/nfastpcil First nFast PCI device

1 =

TI PCILynx memory spaces
/dev/pcilynx/aux0® AUX space of first PCILynx card

0

15
16

31
32

47

/dev/pcilynx/aux15 AUX space of 16th PCILynx card
/dev/pcilynx/rom@ ROM space of first PCILynx card

/dev/pcilynx/roml5 ROM space of 16th PCILynx card
/dev/pcilynx/ram@ RAM space of first PCILynx card

/dev/pcilynx/raml5 RAM space of 16th PCILynx card

Giganet cLAN1xxx virtual interface adapter

0
1

/dev/clanvi0
/dev/clanvil

MMC block devices

0
1
8

/dev/mmcblk0

First cLAN adapter
Second cLAN adapter

First SD/MMC card

/dev/mmcb1lkOpl First partition on first MMC card

/dev/mmcblkl

Second SD/MMC card

The start of next SD/MMC card can be configured with
CONFIG _MMC BLOCK MINORS, or overridden at boot/modprobe

133

Linux Kernel User Documentation, Release 4.13.0-rc4+

time using the mmcblk.perdev _minors option. That would
bump the offset between each card to be the configured

value instead of the default 8.
179 char CCube DVXChip-based PCI products
0 = /dev/dvxirq0@ First DVX device
1 = /dev/dvxirql Second DVX device
180 char USB devices
0 = /dev/usb/1p0o First USB printer
15 = /dev/usb/1pl5 16th USB printer
48 = /dev/usb/scanner® First USB scanner
63 =)dev/usb/scannerlS 16th USB scanner
64 = /dev/usb/rio500 Diamond Rio 500
65 = /dev/usb/usblcd USBLCD Interface (info@usblcd.de)
66 = /dev/usb/cpad® Synaptics cPad (mouse/LCD)
96 = /dev/usb/hiddev0® 1st USB HID device
111 =)dev/usb/hiddevlS 16th USB HID device
112 = /dev/usb/auer0 1st auerswald ISDN device
127 = /dev/usb/auerl5 16th auerswald ISDN device
128 = /dev/usb/brlvgr® First Braille Voyager device
131 = /dev/usb/brlvgr3 Fourth Braille Voyager device
132 = /dev/usb/idmouse ID Mouse (fingerprint scanner) device
133 = /dev/usb/sisusbvgal First SiSUSB VGA device
140 = /dev/usb/sisusbvga8 Eighth SISUSB VGA device
144 = /dev/usb/lcd USB LCD device
160 = /dev/usb/legousbtowero 1st USB Legotower device
175 = /dev/usb/legousbtowerl5 16th USB Legotower device
176 = /dev/usb/usbtmcl First USB TMC device
191 = /dev/usb/usbtmcl6 16th USB TMC device
192 = /dev/usb/yurexl First USB Yurex device
209 = /dev/usb/yurex1l6 16th USB Yurex device
180 block USB block devices
0 = /dev/uba First USB block device
8 = /dev/ubb Second USB block device
16 = /dev/ubc Third USB block device
181 char Conrad Electronic parallel port radio clocks
0 = /dev/pcfclocko First Conrad radio clock
1 = /dev/pcfclockl Second Conrad radio clock
182 char Picture Elements THR2 binarizer
0 = /dev/pethro First THR2 board
1 = /dev/pethrl Second THR2 board
134 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

183 char SST 5136-DN DeviceNet interface
0 = /dev/ss5136dn0 First DeviceNet interface
1 =

/dev/ss5136dn1l Second DeviceNet interface

This device used to be assigned to major number 144.
It had to be moved due to an unfortunate conflict.

184 char Picture Elements' video simulator/sender
0 = /dev/pevssO First sender board
1 = /dev/pevssl Second sender board
185 char InterMezzo high availability file system

0 = /dev/intermezzo0® First cache manager
1 = /dev/intermezzol Second cache manager

See http://web.archive.org/web/20080115195241/
http://inter-mezzo.org/index.html

186 char Object-based storage control device
0 = /dev/obd0O First obd control device

1 = /dev/obdl Second obd control device

See ftp://ftp.lustre.org/pub/obd for code and information.

187 char DESkey hardware encryption device
0 = /dev/deskey0 First DES key
1 = /dev/deskeyl Second DES key
188 char USB serial converters
0 = /dev/ttyUSBoO First USB serial converter
1 = /dev/ttyUSB1 Second USB serial converter
189 char USB serial converters - alternate devices
0 = /dev/cuush0O Callout device for ttyUSBO
1 = /dev/cuusbl Callout device for ttyUSB1
190 char Kansas City tracker/tuner card
0 = /dev/kctto First KCT/T card
1 = /dev/kcttl Second KCT/T card
191 char Reserved for PCMCIA
192 char Kernel profiling interface
0 = /dev/profile Profiling control device
1 = /dev/profile0 Profiling device for CPU 0
2 = /dev/profilel Profiling device for CPU 1
193 char Kernel event-tracing interface

135

Linux Kernel User Documentation, Release 4.13.0-rc4+

0 = /dev/trace Tracing control device
1 = /dev/trace0 Tracing device for CPU 0
2 = /dev/tracel Tracing device for CPU 1
194 char linVideoStreams (LINVS)
0 = /dev/mvideo/status0 Video compression status
1 = /dev/mvideo/stream0O Video stream
2 = /dev/mvideo/frame0 Single compressed frame
3 = /dev/mvideo/rawframe0 Raw uncompressed frame
4 = /dev/mvideo/codecO Direct codec access
5 = /dev/mvideo/video4linux0® Video4lLinux compatibility
16 = /dev/mvideo/statusl Second device
32 = /dev/mvideo/status2 Third device
240 = /dev/mvideo/statusl5 16th device
195 char Nvidia graphics devices
0 = /dev/nvidia0 First Nvidia card
1 = /dev/nvidial Second Nvidia card
255 = /dev/nvidiactl Nvidia card control device
196 char Tormenta T1 card
0 = /dev/tor/0 Master control channel for all cards
1 = /dev/tor/1 First DSO
2 = /dev/tor/2 Second DSO
48 = /dev/tor/48 48th DSO
49 = /dev/tor/49 First pseudo-channel
50 = /dev/tor/50 Second pseudo-channel
197 char OpenTNF tracing facility
0 = /dev/tnf/t0O Trace 0 data extraction
1 = /dev/tnf/tl Trace 1 data extraction
128 = /dev/tnf/status Tracing facility status
130 = /dev/tnf/trace Tracing device
198 char Total Impact TPMP2 quad coprocessor PCI card
0 = /dev/tpmp2/0 First card
1 = /dev/tpmp2/1 Second card
199 char Veritas volume manager (VxVM) volumes
0 = /dev/vx/rdsk/*/* First volume
1 = /dev/vx/rdsk/*/* Second volume
199 block Veritas volume manager (VxVM) volumes
0 = /dev/vx/dsk/*/* First volume
1 = /dev/vx/dsk/*/* Second volume
136 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

200 char

201 char

201 block

202 char

202 block

203 char

204 char

The namespace in these directories is maintained by
the user space VxVM software.

Veritas VxVM configuration interface

O WNRE

/dev/vx/config Configuration access node
/dev/vx/trace Volume i/0 trace access node
/dev/vx/iod Volume i/o daemon access node
/dev/vx/info Volume information access node
/dev/vx/task Volume tasks access node
/dev/vx/taskmon Volume tasks monitor daemon

Veritas VxVM dynamic multipathing driver

0 = /dev/vx/rdmp/*

First multipath device
Second multipath device

Veritas VxVM dynamic multipathing driver

1 = /dev/vx/rdmp/*
0 = /dev/vx/dmp/*
1 = /dev/vx/dmp/*
The
the

Cp

Xe

U

n

First multipath device
Second multipath device

namespace in these directories is maintained by
user space VxVM software.

model-specific registers

/dev/cpu/0/msr
/dev/cpu/1/msr

MSRs on CPU 0
MSRs on CPU 1

Virtual Block Device

0 = /dev/xvda

16
32

/dev/xvdb
/dev/xvdc

240 = /dev/xvdp

First Xen VBD whole disk
Second Xen VBD whole disk
Third Xen VBD whole disk

Sixteenth Xen VBD whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

CPU CPUID information

Low-

==

0
1

HFoOWooONOULRARWNREO

/dev/cpu/0/cpuid
/dev/cpu/1/cpuid

CPUID on CPU 0O
CPUID on CPU 1

density serial ports

/dev/ttyLUO
/dev/ttyLUl
/dev/ttyLU2
/dev/ttyLU3
/dev/ttyFB0O
/dev/ttySA0
/dev/ttySAl
/dev/ttySA2
/dev/ttySCoO
/dev/ttySCl
/dev/ttySC2
/dev/ttySC3

LinkUp Systems L72xx UART - port 0
LinkUp Systems L72xx UART - port 1
LinkUp Systems L72xx UART - port 2
LinkUp Systems L72xx UART - port 3
Intel Footbridge (ARM)

StrongARM builtin serial port 0
StrongARM builtin serial port 1
StrongARM builtin serial port 2
SCI serial port (SuperH) - port O
SCI serial port (SuperH) - port 1
SCI serial port (SuperH) - port 2
SCI serial port (SuperH) - port 3

137

Linux Kernel User Documentation, Release 4.13.0-rc4+

12
13
14
15
16

31
32

39
40
41
42
43
44
45
46

47
50

81
82
83
84

115

116

147
148

153
154

169
170

185
186

rial port emulation

187

190
191
192

195
196

204
205
206
207
208
209
210
211

/dev/ttyFwo
/dev/ttyFwl
/dev/ttyFw2
/dev/ttyFW3
/dev/ttyAMO

/dev/ttyAM15
/dev/ttyDB0O

/dev/ttyDB7
/dev/ttySGo
/dev/ttySMX0
/dev/ttySMX1
/dev/ttySMX2
/dev/ttyMMO
/dev/ttyMM1
/dev/ttyCPMO

/dev/ttyCPM5
/dev/ttyI0CO

/dev/ttyIO0C31
/dev/ttyVRO
/dev/ttyVR1

/dev/ttyI0C84

/dev/ttyI0C115
/dev/ttySIOCO

/dev/ttySI0C31

/dev/ttyPSCO

/dev/ttyPSC5
/dev/ttyATo

/dev/ttyAT15
/dev/ttyNXxo

/dev/ttyNX15
/dev/ttyJo

/dev/ttyULO

/dev/ttyUL3
/dev/xvcO
/dev/ttyPZ0

/dev/ttyPZ3
/dev/ttyTX0

/dev/ttyTX7
/dev/ttySCoO
/dev/ttySCl
/dev/ttySC2
/dev/ttySC3
/dev/ttyMAXo
/dev/ttyMAX1
/dev/ttyMAX2

Firmware console - port O
Firmware console - port 1
Firmware console - port 2
Firmware console - port 3
ARM " “AMBA'' serial port 0

ARM ““AMBA'' serial port 15
DataBooster serial port 0

DataBooster serial port 7
SGI Altix console port
Motorola i.MX - port O
Motorola i.MX - port 1
Motorola i.MX - port 2
Marvell MPSC - port O
Marvell MPSC - port 1
PPC CPM (SCC or SMC) -

PPC CPM (SCC or SMC) -

Altix serial

Altix serial

card

card

NEC VR4100 series
NEC VR4100 series
Altix ioc4 serial

Altix ioc4 serial
Altix ioc3 serial

Altix ioc3 serial
PPC PSC - port 0

PPC PSC - port 5
ATMEL serial port 0

SIU
DSIU
card

card
card

card

ATMEL serial port 15
Hilscher netX serial port 0

port O

port 5

Hilscher netX serial port 15
JTAGL1 DCC protocol based se-

Xilinx uartlite - port 0

Xilinx uartlite - port 3
Xen virtual console - port 0
pmac_zilog - port O

pmac_zilog - port 3
TX39/49 serial port 0

TX39/49 serial port 7
SC26xx serial port 0
SC26xx serial port 1
SC26xx serial port 2
SC26xx serial port 3

MAX3100 serial port 0
MAX3100 serial port 1
MAX3100 serial port 2

138

Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

205 char

206 char

212 = /dev/ttyMAX3

MAX3100 serial por

Low-density serial ports (alternate device)

Callout device for
Callout device for
Callout device for
Callout device for
Callout device for
Callout device for
Callout device for
Callout device for
Callout device for
Callout device for
Callout device for
Callout device for
Callout device for
Callout device for
Callout device for
Callout device for
Callout device for

CoNOULLRRWNEFEO

39
40
41
42
43
46

49
50

81
82
83

/dev/culu@
/dev/culul
/dev/culu?2
/dev/culu3
/dev/cufbo
/dev/cusal
/dev/cusal
/dev/cusa2
/dev/cuscO
/dev/cuscl
/dev/cusc?2
/dev/cusc3
/dev/cufwo
/dev/cufwl
/dev/cufw2
/dev/cufw3
/dev/cuam0

)dev/cuamlS
/dev/cudb0

)dev/cudb7
/dev/cusg0

/dev/ttycusmx0
/dev/ttycusmxl
/dev/ttycusmx2

/dev/cucpm@

)dev/cucpmS

/dev/cuioc40

/dev/cuioc431

/dev/cuvro
/dev/cuvrl

Callout device for
Callout device for

Callout device for
Callout device for

Callout device for
Callout device for
Callout device for

Callout device for

Callout device for
Callout device for

Callout device for
Callout device for
Callout device for

OnStream SC-x0 tape devices

0
1

32
33

64
65

96
97

128
129

160
161

192

/dev/osst0
/dev/osstl

)dev/osst@l
/dev/osstll

/dev/osstOm
/dev/osstlm

/dev/osst0@a
/dev/osstla

/dev/nosst0
/dev/nosstl

/dev/nosstol
/dev/nosstll

/dev/nosstOm

t3

ttyLUO
ttyLUl
ttyLU2
ttyLU3
ttyFBO
ttySAOQ
ttySAl
ttySA2
ttySCoO
ttySCl
ttySC2
ttysSC3
ttyFWo
ttyFWl
ttyFw2
ttyFW3
ttyAMO

ttyAM15
ttyDBO

ttyDB7
ttySGO
ttySMX0
ttySMX1
ttySMX2
ttyCPMO

ttyCPM5
ttyI0C40

ttyI0C431
ttyVRO
ttyVR1

First OnStream SCSI tape, mode 0
Second OnStream SCSI tape, mode 0

First OnStream SCSI tape, mode 1
Second OnStream SCSI tape, mode 1

First OnStream SCSI tape, mode 2
Second OnStream SCSI tape, mode 2

First OnStream SCSI tape, mode 3
Second OnStream SCSI tape, mode 3

No
No

No
No

No

rewind version
rewind version

rewind version
rewind version

rewind version

of /dev/osst0
of /dev/osstl

of /dev/osstOl
of /dev/osstll

of /dev/osstOm

139

Linux Kernel User Documentation, Release 4.13.0-rc4+

193 = /dev/nosstlm No rewind version of /dev/osstlm
224 = /dev/nosstOa No rewind version of /dev/osstOa
225 = /dev/nosstla No rewind version of /dev/osstla

The OnStream SC-x0 SCSI tapes do not support the
standard SCSI SASD command set and therefore need
their own driver "“osst''. Note that the IDE, USB (and
maybe ParPort) versions may be driven via ide-scsi or
usb-storage SCSI emulation and this osst device and
driver as well. The ADR-x0 drives are QIC-157
compliant and don't need osst.

207 char Compaq ProLiant health feature indicate
0 = /dev/cpghealth/cpgw Redirector interface
1 = /dev/cpghealth/crom EISA CROM
2 = /dev/cpghealth/cdt Data Table
3 = /dev/cpghealth/cevt Event Log
4 = /dev/cpghealth/casr Automatic Server Recovery
5 = /dev/cpghealth/cecc ECC Memory
6 = /dev/cpghealth/cmca Machine Check Architecture
7 = /dev/cpghealth/ccsm Deprecated CDT
8 = /dev/cpghealth/cnmi NMI Handling
9 = /dev/cpghealth/css Sideshow Management
10 = /dev/cpghealth/cram CMOS interface
11 = /dev/cpghealth/cpci PCI IRQ interface
208 char User space serial ports
0 = /dev/ttyUo First user space serial port
1 = /dev/ttyUl Second user space serial port
209 char User space serial ports (alternate devices)
0 = /dev/cuu0d Callout device for ttyUo
1 = /dev/cuul Callout device for ttyUl
210 char SBE, Inc. sync/async serial card
0 = /dev/sbei/wxcfg0O Configuration device for board 0
1 = /dev/sbei/d1d0O Download device for board 0
2 = /dev/sbei/wan00 WAN device, port 0, board 0
3 = /dev/sbei/wan01l WAN device, port 1, board 0
4 = /dev/sbei/wan02 WAN device, port 2, board 0
5 = /dev/sbei/wan03 WAN device, port 3, board 0
6 = /dev/sbei/wanc00 WAN clone device, port 0, board 0
7 = /dev/sbei/wanc01l WAN clone device, port 1, board 0
8 = /dev/sbei/wanc0?2 WAN clone device, port 2, board 0
9 = /dev/sbei/wanc03 WAN clone device, port 3, board 0
10 = /dev/sbei/wxcfgl Configuration device for board 1
11 = /dev/sbei/dld1 Download device for board 1
12 = /dev/sbei/wanl0® WAN device, port 0, board 1
13 = /dev/sbei/wanll WAN device, port 1, board 1
14 = /dev/sbei/wanl2 WAN device, port 2, board 1
15 = /dev/sbei/wanl3 WAN device, port 3, board 1
16 = /dev/sbei/wancl0 WAN clone device, port 0, board 1
17 = /dev/sbei/wancll WAN clone device, port 1, board 1
18 = /dev/sbei/wancl? WAN clone device, port 2, board 1
140 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

211

212

vice

cess

vice

216

217

218

219

220

19 = /dev/sbei/wancl3 WAN clone device, port 3, board 1

Yes, each board is really spaced 10 (decimal) apart.

char Addinum CPCI1500 digital I/0 card
0 = /dev/addinum/cpcil500/0 First CPCI1500 card
1 = /dev/addinum/cpcil500/1 Second CPCI1500 card
char LinuxTV.org DVB driver subsystem
0 = /dev/dvb/adapter0/video0 first video decoder of first card
1 = /dev/dvb/adapter0/audio® first audio decoder of first card
2 = /dev/dvb/adapter0/sec0O (obsolete/unused)
3 = /dev/dvb/adapter@/frontend® first frontend device of first card
4 = /dev/dvb/adapter0/demux0 first demux device of first card
5 = /dev/dvb/adapter0/dvro first digital video recoder de-
of first card
6 = /dev/dvb/adapter0/ca0 first common ac-
port of first card
7 = /dev/dvb/adapter0/net0 first network device of first card
8 = /dev/dvb/adapter0/osd0 first on-screen-display de-
of first card
9 = /dev/dvb/adapter@/videol second video decoder of first card
64 = /dev/dvb/adapterl/video0 first video decoder of second card
128 = /dev/dvb/adapter2/video0 first video decoder of third card
196 = /dev/dvb/adapter3/video0 first video decoder of fourth card

char

char

char

char

char

Bluetooth RFCOMM TTY devices
0 /dev/rfcomm@ First Bluetooth RFCOMM TTY device
1 /dev/rfcomml Second Bluetooth RFCOMM TTY device

Bluetooth RFCOMM TTY devices (alternate devices)
/dev/curf0 Callout device for rfcomm@
/dev/curfl Callout device for rfcomml

The Logical Company bus Unibus/Qbus adapters
/dev/logicalco/bci/0 First bus adapter
/dev/logicalco/bci/1l First bus adapter

o
I

The Logical Company DCI-1300 digital I/0 card
0 = /dev/logicalco/dcil300/0 First DCI-1300 card
1 = /dev/logicalco/dcil300/1 Second DCI-1300 card

Myricom Myrinet " "GM'' board

0 = /dev/myricom/gm0 First Myrinet GM board

1 = /dev/myricom/gmp0 First board " "root access''
2 = /dev/myricom/gml Second Myrinet GM board

3 =

/dev/myricom/gmpl Second board " root access''

141

Linux Kernel User Documentation, Release 4.13.0-rc4+

221 char VME bus
0 = /dev/bus/vme/mO First master image
1 = /dev/bus/vme/ml Second master image
2 = /dev/bus/vme/m2 Third master image
3 = /dev/bus/vme/m3 Fourth master image
4 = /dev/bus/vme/s0O First slave image
5 = /dev/bus/vme/sl Second slave image
6 = /dev/bus/vme/s2 Third slave image
7 = /dev/bus/vme/s3 Fourth slave image
8 = /dev/bus/vme/ctl Control
It is expected that all VME bus drivers will use the
same interface. For interface documentation see
http://www.vmelinux.org/.
224 char A2232 serial card
0 = /dev/ttyYo First A2232 port
1 = /dev/ttyYl Second A2232 port
225 char A2232 serial card (alternate devices)
0 = /dev/cuy0 Callout device for ttyYo
1 = /dev/cuyl Callout device for ttyYl
226 char Direct Rendering Infrastructure (DRI)
0 = /dev/dri/cardo First graphics card
1 = /dev/dri/cardl Second graphics card
227 char IBM 3270 terminal Unix tty access
1 = /dev/3270/ttyl First 3270 terminal
2 = /dev/3270/tty2 Seconds 3270 terminal
228 char IBM 3270 terminal block-mode access
0 = /dev/3270/tub Controlling interface
1 = /dev/3270/tubl First 3270 terminal
2 = /dev/3270/tub2 Second 3270 terminal
229 char IBM iSeries/pSeries virtual console
0 = /dev/hvcO First console port
1 = /dev/hvcl Second console port
230 char IBM iSeries virtual tape
0 = /dev/iseries/vt0O First virtual tape, mode 0
1 = /dev/iseries/vtl Second virtual tape, mode 0
32 = /dev/iseries/vtOl First virtual tape, mode 1
33 = /dev/iseries/vtll Second virtual tape, mode 1
64 = /dev/iseries/vtOm First virtual tape, mode 2
65 = /dev/iseries/vtlm Second virtual tape, mode 2
96 = /dev/iseries/vt0Oa First virtual tape, mode 3
97 = /dev/iseries/vtla Second virtual tape, mode 3
142 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

231 char

232 char

sor on first

sor

sor

sor

sor

sor

sor

sor

on

on

on

on

on

on

on

first

first

first

first

first

128 = /dev/iseries/nvt0 First virtual tape, mode 0, no rewind
129 = /dev/iseries/nvtl Second virtual tape, mode 0, no rewind
160 = /dev/iseries/nvtOl First virtual tape, mode 1, no rewind
161 = /dev/iseries/nvtll Second virtual tape, mode 1, no rewind
192 = /dev/iseries/nvtOm First virtual tape, mode 2, no rewind
193 = /dev/iseries/nvtlm Second virtual tape, mode 2, no rewind
224 = /dev/iseries/nvt0a First virtual tape, mode 3, no rewind
225 = /dev/iseries/nvtla Second virtual tape, mode 3, no rewind

""No rewind'' refers to the omission of the default
automatic rewind on device close. The MTREW or MTOFFL
ioctl()'s can be used to rewind the tape regardless of
the device used to access it.

InfiniBand
0 = /dev/infiniband/umad0
1 = /dev/infiniband/umadl

63 /dev/infiniband/umad63 63rd InfiniBandMad device

64 = /dev/infiniband/issm@ First InfiniBand IsSM device
65 = /dev/infiniband/issml Second InfiniBand IsSM device
127 = /dev/infiniband/issm63 63rd InfiniBand IsSM device
128 = /dev/infiniband/uverbs0 First InfiniBand verbs device
129 = /dev/infiniband/uverbsl Second InfiniBand verbs device
159 = /dev/infiniband/uverbs31 31st InfiniBand verbs device

Biometric Devices
0 = /dev/biometric/sensor0/fingerprint first fingerprint sen-
device

1 = /dev/biometric/sensor@/iris first iris sen-
device

2 = /dev/biometric/sensor@/retina first retina sen-
device

3 = /dev/biometric/sensor@/voiceprint first voiceprint sen-
device

4 = /dev/biometric/sensor@/facial first facial sen-
device

5 = /dev/biometric/sensor@/hand first hand sen-
device

10 = /dev/biometric/sensorl/fingerprint first fingerprint sen-

second device

third

233 char

20 = /dev/biometric/sensor2/fingerprint first fingerprint sen-
device

PathScale InfiniPath interconnect

0 = /dev/ipath Primary device for programs (any unit)
1 = /dev/ipath0 Access specifically to unit 0
2 = /dev/ipathl Access specifically to unit 1

143

Linux Kernel User Documentation, Release 4.13.0-rc4+

234-254

ber will

240-254 block

255 char

255 block

char

ev/ipath3 Access specifically to unit 3
/dev/ipath _sma Device used by Subnet Management Agent
/dev/ipath diag Device used by diagnostics programs

RESERVED FOR DYNAMIC ASSIGNMENT

Character devices that request a dynamic allocation of major num-

take numbers starting from 254 and downward.

LOCAL/EXPERIMENTAL USE

Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be

used in order to avoid conflicting with future assignments.

RESERVED

RESERVED

This major is reserved to assist the expansion to a
larger number space. No device nodes with this major
should ever be created on the filesystem.

(This is probably not true anymore, but I'll leave it
for now /Torben)

256 char Equinox SST multi-port serial boards
0 = /dev/ttyEQO First serial port on first Equinox SST board
127 = /dev/ttyEQ127 Last serial port on first Equinox SST board
128 = /dev/ttyEQ128 First serial port on second Equinox SST board
1027 = /dev/ttyEQ1027 Last serial port on eighth Equinox SST board
256 block Resident Flash Disk Flash Translation Layer
0 = /dev/rfda First RFD FTL layer
16 = /dev/rfdb Second RFD FTL layer
240 = /dev/rfdp 16th RFD FTL layer
257 char Phoenix Technologies Cryptographic Services Driver
0 = /dev/ptlsec Crypto Services Driver
257 block SSFDC Flash Translation Layer filesystem
0 = /dev/ssfdca First SSFDC layer
8 = /dev/ssfdcb Second SSFDC layer
16 = /dev/ssfdcc Third SSFDC layer
24 = /dev/ssfdcd 4th SSFDC layer
32 = /dev/ssfdce 5th SSFDC layer
40 = /dev/ssfdcf 6th SSFDC layer
48 = /dev/ssfdcg 7th SSFDC layer
56 = /dev/ssfdch 8th SSFDC layer
258 block ROM/Flash read-only translation layer
0 = /dev/blockromO First ROM card's translation layer interface
1 = /dev/blockroml Second ROM card's translation layer interface
144 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

259 block Block Extended Major
Used dynamically to hold additional partition minor
numbers and allow large numbers of partitions per device

259 char FPGA configuration interfaces
0 = /dev/icap0 First Xilinx internal configuration
1 = /dev/icapl Second Xilinx internal configuration
260 char 0SD (Object-based-device) SCSI Device
0 = /dev/o0sd0O First 0SD Device
1 = /dev/osdl Second 0SD Device
255 = /dev/0sd255 256th 0SD Device

3.1 Additional /dev/ directory entries

This section details additional entries that should or may exist in the /dev directory. It is preferred that
symbolic links use the same form (absolute or relative) as is indicated here. Links are classified as “hard”
or “symbolic” depending on the preferred type of link; if possible, the indicated type of link should be
used.

3.1.1 Compulsory links

These links should exist on all systems:

/dev/fd /proc/self/fd | symbolic | File descriptors
/dev/stdin fd/0 symbolic | stdin file descriptor
/dev/stdout | fd/1 symbolic | stdout file descriptor
/dev/stderr | fd/2 symbolic | stderr file descriptor
/dev/nfsd socksys symbolic | Required by iBCS-2
/dev/XOR null symbolic | Required by iBCS-2

Note: /dev/XOR is <letter X>-<digit 0>-<letter R>.

3.1.2 Recommended links

It is recommended that these links exist on all systems:

/dev/core /proc/kcore | symbolic | Backward compatibility
/dev/ramdisk | ramO symbolic | Backward compatibility
/dev/ftape qfto symbolic | Backward compatibility
/dev/bttv0 videoO symbolic | Backward compatibility
/dev/radio radio0 symbolic | Backward compatibility
/dev/i20* /[dev/i2o/* symbolic | Backward compatibility
/dev/scd? sr? hard Alternate SCSI CD-ROM name

3.1.3 Locally defined links

The following links may be established locally to conform to the configuration of the system. This is merely
a tabulation of existing practice, and does not constitute a recommendation. However, if they exist, they
should have the following uses.

3.1. Additional /dev/ directory entries 145

Linux Kernel User Documentation, Release 4.13.0-rc4+

/dev/mouse mouse port symbolic | Current mouse device
/dev/tape tape device symbolic | Current tape device
/dev/cdrom CD-ROM device | symbolic | Current CD-ROM device
/dev/cdwriter | CD-writer symbolic | Current CD-writer device
/dev/scanner | scanner symbolic | Current scanner device
/dev/modem | modem port symbolic | Current dialout device
/dev/root root device symbolic | Current root filesystem
/dev/swap swap device symbolic | Current swap device

/dev/modem should not be used for a modem which supports dialin as well as dialout, as it tends to cause
lock file problems. If it exists, /dev/modem should point to the appropriate primary TTY device (the use of
the alternate callout devices is deprecated).

For SCSl devices, /dev/tape and /dev/cdrom should point to the cooked devices (/dev/st* and /dev/sr¥*,
respectively), whereas /dev/cdwriter and /dev/scanner should point to the appropriate generic SCSI
devices (/dev/sg*).

/dev/mouse may point to a primary serial TTY device, a hardware mouse device, or a socket for a mouse
driver program (e.g. /dev/gpmdata).

3.1.4 Sockets and pipes

Non-transient sockets and named pipes may exist in /dev. Common entries are:

/dev/printer socket | Ipd local socket
/dev/log socket | syslog local socket
/dev/gpmdata | socket | gpm mouse multiplexer

3.1.5 Mount points

The following names are reserved for mounting special filesystems under /dev. These special filesystems
provide kernel interfaces that cannot be provided with standard device nodes.

/dev/pts
/dev/shm

devpts
tmpfs

PTY slave filesystem
POSIX shared memory maintenance access

3.2 Terminal devices

Terminal, or TTY devices are a special class of character devices. A terminal device is any device that could
act as a controlling terminal for a session; this includes virtual consoles, serial ports, and pseudoterminals
(PTYs).

All terminal devices share a common set of capabilities known as line disciplines; these include the com-
mon terminal line discipline as well as SLIP and PPP modes.

All terminal devices are named similarly; this section explains the naming and use of the various types of
ITYs. Note that the naming conventions include several historical warts; some of these are Linux-specific,
some were inherited from other systems, and some reflect Linux outgrowing a borrowed convention.

A hash mark (#) in a device name is used here to indicate a decimal number without leading zeroes.

3.2.1 Virtual consoles and the console device

Virtual consoles are full-screen terminal displays on the system video monitor. Virtual consoles are named
/dev/tty#, with numbering starting at /dev/ttyl; /dev/tty0 is the current virtual console. /dev/tty0
is the device that should be used to access the system video card on those architectures for which the
frame buffer devices (/dev/fb*) are not applicable. Do not use /dev/console for this purpose.

146 Chapter 3. Linux allocated devices (4.x+ version)

Linux Kernel User Documentation, Release 4.13.0-rc4+

The console device, /dev/console, is the device to which system messages should be sent, and on which
logins should be permitted in single-user mode. Starting with Linux 2.1.71, /dev/console is managed by
the kernel; for previous versions it should be a symbolic link to either /dev/tty0, a specific virtual console
such as /dev/ttyl, or to a serial port primary (tty*, not cu*) device, depending on the configuration of
the system.

3.2.2 Serial ports

Serial ports are RS-232 serial ports and any device which simulates one, either in hardware (such as
internal modems) or in software (such as the ISDN driver.) Under Linux, each serial ports has two device
names, the primary or callin device and the alternate or callout one. Each kind of device is indicated by a
different letter. For any letter X, the names of the devices are /dev/ttyX#and /dev/cux#, respectively; for
historical reasons, /dev/ttyS# and /dev/ttyC# correspond to /dev/cua# and /dev/cub#. In the future,
it should be expected that multiple letters will be used; all letters will be upper case for the “tty” device
(e.g. /dev/ttyDP#) and lower case for the “cu” device (e.g. /dev/cudp#).

The names /dev/ttyQ# and /dev/cug# are reserved for local use.

The alternate devices provide for kernel-based exclusion and somewhat different defaults than the primary
devices. Their main purpose is to allow the use of serial ports with programs with no inherent or broken
support for serial ports. Their use is deprecated, and they may be removed from a future version of Linux.

Arbitration of serial ports is provided by the use of lock files with the names /var/lock/LCK. .ttyX#. The
contents of the lock file should be the PID of the locking process as an ASCIl number.

It is common practice to install links such as /dev/modem which point to serial ports. In order to ensure
proper locking in the presence of these links, it is recommended that software chase symlinks and lock all
possible names; additionally, it is recommended that a lock file be installed with the corresponding alter-
nate device. In order to avoid deadlocks, it is recommended that the locks are acquired in the following
order, and released in the reverse:

1. The symbolic link name, if any (/var/lock/LCK. .modem)
2. The “tty” name (/var/lock/LCK. .ttyS2)
3. The alternate device name (/var/lock/LCK. . cua2)
In the case of nested symbolic links, the lock files should be installed in the order the symlinks are resolved.

Under no circumstances should an application hold a lock while waiting for another to be released. In
addition, applications which attempt to create lock files for the corresponding alternate device names
should take into account the possibility of being used on a non-serial port TTY, for which no alternate
device would exist.

3.2.3 Pseudoterminals (PTYSs)

Pseudoterminals, or PTYs, are used to create login sessions or provide other capabilities requiring a TTY
line discipline (including SLIP or PPP capability) to arbitrary data-generation processes. Each PTY has a
master side, named /dev/pty[p-za-e][0-9a-f], and a slave side, named /dev/tty[p-za-e][0-9a-f].
The kernel arbitrates the use of PTYs by allowing each master side to be opened only once.

Once the master side has been opened, the corresponding slave device can be used in the same manner
as any TTY device. The master and slave devices are connected by the kernel, generating the equivalent
of a bidirectional pipe with TTY capabilities.

Recent versions of the Linux kernels and GNU libc contain support for the System V/Unix98 naming scheme
for PTYs, which assigns a common device, /dev/ptmx, to all the masters (opening it will automatically give
you a previously unassigned PTY) and a subdirectory, /dev/pts, for the slaves; the slaves are named with
decimal integers (/dev/pts/# in our notation). This removes the problem of exhausting the namespace
and enables the kernel to automatically create the device nodes for the slaves on demand using the
“devpts” filesystem.

3.2. Terminal devices 147

Linux Kernel User Documentation, Release 4.13.0-rc4+

Here is a set of documents aimed at users who are trying to track down problems and bugs in particular.

148 Chapter 3. Linux allocated devices (4.x+ version)

CHAPTER
FOUR

REPORTING BUGS

4.1 Background

The upstream Linux kernel maintainers only fix bugs for specific kernel versions. Those versions include
the current “release candidate” (or -rc) kernel, any “stable” kernel versions, and any “long term” kernels.

Please see https://www.kernel.org/ for a list of supported kernels. Any kernel marked with [EOL] is “end
of life” and will not have any fixes backported to it.

If you've found a bug on a kernel version that isn’t listed on kernel.org, contact your Linux distribution or
embedded vendor for support. Alternatively, you can attempt to run one of the supported stable or -rc
kernels, and see if you can reproduce the bug on that. It's preferable to reproduce the bug on the latest
-rc kernel.

4.2 How to report Linux kernel bugs

4.2.1 Identify the problematic subsystem

Identifying which part of the Linux kernel might be causing your issue increases your chances of getting
your bug fixed. Simply posting to the generic linux-kernel mailing list (LKML) may cause your bug report
to be lost in the noise of a mailing list that gets 1000+ emails a day.

Instead, try to figure out which kernel subsystem is causing the issue, and email that subsystem’s main-
tainer and mailing list. If the subsystem maintainer doesn’t answer, then expand your scope to mailing
lists like LKML.

4.2.2 Identify who to notify

Once you know the subsystem that is causing the issue, you should send a bug report. Some maintain-
ers prefer bugs to be reported via bugzilla (https://bugzilla.kernel.org), while others prefer that bugs be
reported via the subsystem mailing list.

To find out where to send an emailed bug report, find your subsystem or device driver in the MAINTAINERS
file. Search in the file for relevant entries, and send your bug report to the person(s) listed in the “M:”
lines, making sure to Cc the mailing list(s) in the “L:” lines. When the maintainer replies to you, make
sure to ‘Reply-all’ in order to keep the public mailing list(s) in the email thread.

If you know which driver is causing issues, you can pass one of the driver files to the get_maintainer.pl
script:

perl scripts/get maintainer.pl -f <filename>

If it is a security bug, please copy the Security Contact listed in the MAINTAINERS file. They can help co-
ordinate bugfix and disclosure. See Documentation/admin-guide/security-bugs.rst for more information.

149

https://www.kernel.org/
https://bugzilla.kernel.org

Linux Kernel User Documentation, Release 4.13.0-rc4+

If you can’t figure out which subsystem caused the issue, you should file a bug in kernel.org bugzilla and
send email to linux-kernel@vger.kernel.org, referencing the bugzilla URL. (For more information on the
linux-kernel mailing list see http://www.tux.org/lkml/).

4.2.3 Tips for reporting bugs

If you haven’t reported a bug before, please read:
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.catb.org/esr/fags/smart-questions.html

It’'s REALLY important to report bugs that seem unrelated as separate email threads or separate bugzilla
entries. If you report several unrelated bugs at once, it's difficult for maintainers to tease apart the
relevant data.

4.2.4 Gather information

The most important information in a bug report is how to reproduce the bug. This includes system infor-
mation, and (most importantly) step-by-step instructions for how a user can trigger the bug.

If the failure includes an “O0PS:”, take a picture of the screen, capture a netconsole trace, or type the mes-
sage from your screen into the bug report. Please read “Documentation/admin-guide/oops-tracing.rst”
before posting your bug report. This explains what you should do with the “Oops” information to make it
useful to the recipient.

This is a suggested format for a bug report sent via email or bugzilla. Having a standardized bug report
form makes it easier for you not to overlook things, and easier for the developers to find the pieces of
information they’re really interested in. If some information is not relevant to your bug, feel free to exclude
it.

First run the ver_linux script included as scripts/ver_linux, which reports the version of some important
subsystems. Run this script with the command awk -f scripts/ver linux.

Use that information to fill in all fields of the bug report form, and post it to the mailing list with a subject
of “PROBLEM: <one line summary from [1.]>" for easy identification by the developers:

[1.] One line summary of the problem:

[2.] Full description of the problem/report:

[3.] Keywords (i.e., modules, networking, kernel):

[4.] Kernel information

[4.1.] Kernel version (from /proc/version):

[4.2.] Kernel .config file:

[5.]1 Most recent kernel version which did not have the bug:

[6.] Output of Oops.. message (if applicable) with symbolic information
resolved (see Documentation/admin-guide/oops-tracing.rst)

[7.1 A small shell script or example program which triggers the
problem (if possible)

[8.] Environment

[8.1.] Software (add the output of the ver linux script here)

[8.2.] Processor information (from /proc/cpuinfo):

[8.3.] Module information (from /proc/modules):

[8.4.] Loaded driver and hardware information (/proc/ioports, /proc/iomem)

[8.5.] PCI information ('lspci -vvv' as root)

[8.6.] SCSI information (from /proc/scsi/scsi)

[8.7.] Other information that might be relevant to the problem

(please look in /proc and include all information that you
think to be relevant):
[X.] Other notes, patches, fixes, workarounds:

150 Chapter 4. Reporting bugs

mailto:linux-kernel@vger.kernel.org
http://www.tux.org/lkml/
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.catb.org/esr/faqs/smart-questions.html

Linux Kernel User Documentation, Release 4.13.0-rc4+

4.3 Follow up

4.3.1 Expectations for bug reporters

Linux kernel maintainers expect bug reporters to be able to follow up on bug reports. That may include
running new tests, applying patches, recompiling your kernel, and/or re-triggering your bug. The most
frustrating thing for maintainers is for someone to report a bug, and then never follow up on a request to
try out a fix.

That said, it's still useful for a kernel maintainer to know a bug exists on a supported kernel, even if you
can't follow up with retests. Follow up reports, such as replying to the email thread with “I tried the latest
kernel and | can’t reproduce my bug anymore” are also helpful, because maintainers have to assume
silence means things are still broken.

4.3.2 Expectations for kernel maintainers

Linux kernel maintainers are busy, overworked human beings. Some times they may not be able to
address your bug in a day, a week, or two weeks. If they don’t answer your email, they may be on
vacation, or at a Linux conference. Check the conference schedule at https://LWN.net for more info:

https://lwn.net/Calendar/

In general, kernel maintainers take 1 to 5 business days to respond to bugs. The majority of kernel
maintainers are employed to work on the kernel, and they may not work on the weekends. Maintainers
are scattered around the world, and they may not work in your time zone. Unless you have a high priority
bug, please wait at least a week after the first bug report before sending the maintainer a reminder email.

The exceptions to this rule are regressions, kernel crashes, security holes, or userspace breakage caused
by new kernel behavior. Those bugs should be addressed by the maintainers ASAP. If you suspect a
maintainer is not responding to these types of bugs in a timely manner (especially during a merge window),
escalate the bug to LKML and Linus Torvalds.

Thank you!
[Some of this is taken from Frohwalt Egerer’s original linux-kernel FAQ]

4.3. Follow up 151

https://LWN.net
https://lwn.net/Calendar/

Linux Kernel User Documentation, Release 4.13.0-rc4+

152 Chapter 4. Reporting bugs

CHAPTER
FIVE

SECURITY BUGS

Linux kernel developers take security very seriously. As such, we’d like to know when a security bug is
found so that it can be fixed and disclosed as quickly as possible. Please report security bugs to the Linux
kernel security team.

5.1 Contact

The Linux kernel security team can be contacted by email at <security@kernel.org>. This is a private
list of security officers who will help verify the bug report and develop and release a fix. If you already
have a fix, please include it with your report, as that can speed up the process considerably. It is possible
that the security team will bring in extra help from area maintainers to understand and fix the security
vulnerability.

As it is with any bug, the more information provided the easier it will be to diagnose and fix. Please review
the procedure outlined in admin-guide/reporting-bugs.rst if you are unclear about what information is
helpful. Any exploit code is very helpful and will not be released without consent from the reporter unless
it has already been made public.

5.2 Disclosure

The goal of the Linux kernel security team is to work with the bug submitter to bug resolution as well as
disclosure. We prefer to fully disclose the bug as soon as possible. It is reasonable to delay disclosure when
the bug or the fix is not yet fully understood, the solution is not well-tested or for vendor coordination.
However, we expect these delays to be short, measurable in days, not weeks or months. A disclosure
date is negotiated by the security team working with the bug submitter as well as vendors. However, the
kernel security team holds the final say when setting a disclosure date. The timeframe for disclosure is
from immediate (esp. if it’s already publicly known) to a few weeks. As a basic default policy, we expect
report date to disclosure date to be on the order of 7 days.

5.3 Coordination

Fixes for sensitive bugs, such as those that might lead to privilege escalations, may need to be coor-
dinated with the private <linux-distros@vs.openwall.org> mailing list so that distribution vendors are
well prepared to issue a fixed kernel upon public disclosure of the upstream fix. Distros will need
some time to test the proposed patch and will generally request at least a few days of embargo, and
vendor update publication prefers to happen Tuesday through Thursday. When appropriate, the secu-
rity team can assist with this coordination, or the reporter can include linux-distros from the start. In
this case, remember to prefix the email Subject line with “[vs]” as described in the linux-distros wiki:
<http://oss-security.openwall.org/wiki/mailing-lists/distros#how-to-use-the-lists>

153

mailto:security@kernel.org
mailto:linux-distros@vs.openwall.org
http://oss-security.openwall.org/wiki/mailing-lists/distros#how-to-use-the-lists

Linux Kernel User Documentation, Release 4.13.0-rc4+

5.4 CVE assignment

The security team does not normally assign CVEs, nor do we require them for reports or fixes, as this
can needlessly complicate the process and may delay the bug handling. If a reporter wishes to have a
CVE identifier assigned ahead of public disclosure, they will need to contact the private linux-distros list,
described above. When such a CVE identifier is known before a patch is provided, it is desirable to mention
it in the commit message, though.

5.5 Non-disclosure agreements

The Linux kernel security team is not a formal body and therefore unable to enter any non-disclosure
agreements.

154 Chapter 5. Security bugs

CHAPTER
SIX

BUG HUNTING

Kernel bug reports often come with a stack dump like the one below:

------------ [cut here J------------

WARNING: CPU: 1 PID: 28102 at kernel/module.c:1108 module put+0x57/0x70

Modules linked in: dvb usb gp8psk(-) dvb usb dvb core nvidia drm(PO) nvidia modeset(PO) snd hda
—codec_hdmi snd hda intel snd hda codec snd hwdep snd hda core snd pcm snd timer snd soundcore
—nvidia(PO) [last unloaded: rc_core]

CPU: 1 PID: 28102 Comm: rmmod Tainted: P WC 0 4.8.4-build.1 #1

Hardware name: MSI MS-7309/MS-7309, BIOS V1.12 02/23/2009

00000000 c12ba080 00OOOOOO 0OOOOOOO clO3edba cl616014 000001 0OOO6dCH
1615862 00000454 c109e8a7 cl109e8a7 00000009 ffffffff 00OOOOOO fl3f6ald
f5f5a600 c103ee33 00000009 00000000 00000000 cl@9e8a7 f80caddd cl09f617

Call Trace:
[<c12ba080>] ? dump stack+0x44/0x64
[<cl03edba>] ? _ warn+0xfa/0x120
[<c109e8a7>] ? module put+0x57/0x70
[<c109e8a7>] ? module put+0x57/0x70
[<c103ee33>] ? warn_slowpath null+0x23/0x30
[<c109e8a7>] ? module put+0x57/0x70
[<f80cad4d0>] ? gp8psk fe set frontend+0x460/0x460 [dvb usb gp8psk]
[<c109f617>] ? symbol put addr+0x27/0x50
[<f80bc9ca>] ? dvb _usb adapter_ frontend exit+0x3a/0x70 [dvb_usb]
[<f80bb3bf>] ? dvb usb exit+0x2f/0xd0 [dvb usb]
[<c13d03bc>] ? usb disable endpoint+0x7c/0xb0
[<f80bb48a>] ? dvb usb device exit+0x2a/0x50 [dvb usb]
[<c13d2882>] ? usb unbind interface+0x62/0x250
[<c136b514>] ? _ pm_runtime_ idle+0x44/0x70
[<c13620d8>] ? _ device release driver+0x78/0x120
[<c1362907>] ? driver detach+0x87/0x90
[<c1361c48>] ? bus remove driver+0x38/0x90
[<c13d1c18>] ? usb deregister+0x58/0xb0
[<c109fbbO>] ? SyS delete module+0x130/0x1f0
[<c1055654>] ? task work run+0x64/0x80
[<cl000fa5>] ? exit to usermode loop+0x85/0x90
[<c10013f0>] ? do fast syscall 32+0x80/0x130
[<c1549f43>] ? sysenter past esp+0x40/0x6a

---[end trace 6ebc60ef3981792f]---

Such stack traces provide enough information to identify the line inside the Kernel's source code where
the bug happened. Depending on the severity of the issue, it may also contain the word Oops, as on this
one:

BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<c06969d4>] iret exc+0x7d0/0xa59

*pdpt = 000000002258a001 *pde = 0OOOOOOOEEOOOOOO

Oops: 0002 [#1] PREEMPT SMP

Despite being an Oops or some other sort of stack trace, the offended line is usually required to identify

155

Linux Kernel User Documentation, Release 4.13.0-rc4+

and handle the bug. Along this chapter, we’ll refer to “Oops” for all kinds of stack traces that need to be
analized.

Note:

ksymoops is useless on 2.6 or upper. Please use the Oops in its original format (from dmesg, etc).

Ignore any references in this or other docs to “decoding the Oops” or “running it through ksymoops”.
If you post an Oops from 2.6+ that has been run through ksymoops, people will just tell you to repost
it.

6.1 Where is the Oops message is located?

Normally the Oops text is read from the kernel buffers by klogd and handed to syslogd which writes it to
a syslog file, typically /var/log/messages (depends on /etc/syslog.conf). On systems with systemd,
it may also be stored by the journald daemon, and accessed by running journalctl command.

Sometimes klogd dies, in which case you can run dmesg > file to read the data from the kernel buffers
and save it. Oryou can cat /proc/kmsg > file, however you have to break in to stop the transfer, kmsg
is a “never ending file".

If the machine has crashed so badly that you cannot enter commands or the disk is not available then
you have three options:

1. Hand copy the text from the screen and type it in after the machine has restarted. Messy but it is the
only option if you have not planned for a crash. Alternatively, you can take a picture of the screen
with a digital camera - not nice, but better than nothing. If the messages scroll off the top of the
console, you may find that booting with a higher resolution (eg, vga=791) will allow you to read more
of the text. (Caveat: This needs vesafb, so won’t help for ‘early’ oopses)

2. Boot with a serial console (see Documentation/admin-guide/serial-console.rst), run a null modem
to a second machine and capture the output there using your favourite communication program.
Minicom works well.

3. Use Kdump (see Documentation/kdump/kdump.txt), extract the kernel ring buffer from old memory
with using dmesg gdbmacro in Documentation/kdump/gdbmacros.txt.

6.2 Finding the bug’s location

Reporting a bug works best if you point the location of the bug at the Kernel source file. There are two
methods for doing that. Usually, using gdb is easier, but the Kernel should be pre-compiled with debug
info.

6.2.1 gdb

The GNU debug (gdb) is the best way to figure out the exact file and line number of the OOPS from the
vmlinux file.

The usage of gdb works best on a kernel compiled with CONFIG_DEBUG_INFO. This can be set by running:

’$./scripts/config -d COMPILE TEST -e DEBUG KERNEL -e DEBUG_INFO ‘

On a kernel compiled with CONFIG_DEBUG_INFO, you can simply copy the EIP value from the OOPS:

’EIP: 0060: [<cO21e50e>] Not tainted VLI ‘

And use GDB to translate that to human-readable form:

156 Chapter 6. Bug hunting

Linux Kernel User Documentation, Release 4.13.0-rc4+

$ gdb vmlinux
(gdb) 1 *0xc021le50e

If you don’t have CONFIG_DEBUG INFO enabled, you use the function offset from the OOPS:

EIP is at vt ioctl+0xda8/0x1482

And recompile the kernel with CONFIG DEBUG INFO enabled:

$./scripts/config -d COMPILE TEST -e DEBUG KERNEL -e DEBUG_ INFO
$ make vmlinux

$ gdb vmlinux

(gdb) 1 *vt ioctl+0xda8

0x1888 is in vt ioctl (drivers/tty/vt/vt ioctl.c:293).

288 {

289 struct vc_data *vc = NULL;

290 int ret = 0;

291

292 console_lock();

293 if (VT _BUSY(vc_num))

294 ret = -EBUSY;

295 else if (vc_num)

296 vc = vc_deallocate(vc_num);
297 console unlock();

or, if you want to be more verbose:

(gdb) p vt ioctl
$1 = {int (struct tty struct *, unsigned int, unsigned long)} 0Oxae® <vt ioctl>
(gdb) 1 *0xae0+0xda8

You could, instead, use the object file:

$ make drivers/tty/
$ gdb drivers/tty/vt/vt ioctl.o
(gdb) 1 *vt ioctl+0xda8

If you have a call trace, such as:

Call Trace:
[<ffffffff8802c8e9>] :jbd:log wait commit+0xa3/0xf5
[<ffffffff810482d9>] autoremove wake function+0x0/0x2e
[<ffffffff8802770b>] :jbd:journal stop+0xlbe/Oxlee

this shows the problem likely in the :jbd: module. You can load that module in gdb and list the relevant
code:

$ gdb fs/jbd/jbd.ko
(gdb) 1 *log wait commit+0xa3

6.2. Finding the bug’s location 157

Linux Kernel User Documentation, Release 4.13.0-rc4+

Note:

You can also do the same for any function call at the stack trace, like this one:

[<f80bc9ca>] ? dvb usb adapter frontend exit+0x3a/0x70 [dvb usb]

The position where the above call happened can be seen with:

$ gdb drivers/media/usb/dvb-usb/dvb-usb.o
(gdb) 1 *dvb _usb_adapter frontend exit+0x3a

6.2.2 objdump

To debug a kernel, use objdump and look for the hex offset from the crash output to find the valid line of
code/assembler. Without debug symbols, you will see the assembler code for the routine shown, but if
your kernel has debug symbols the C code will also be available. (Debug symbols can be enabled in the
kernel hacking menu of the menu configuration.) For example:

$ objdump -r -S -1 --disassemble net/dccp/ipvé4.o

Note:

You need to be at the top level of the kernel tree for this to pick up your C files.

If you don’t have access to the code you can also debug on some crash dumps e.g. crash dump output
as shown by Dave Miller:

EIP is at +0x14/0x4c0

Code: 44 24 04 e8 6f 05 00 00 €9 e8 fe ff ff 8d 76 00 8d bc 27 00 00
00 00 55 57 56 53 81 ec bc 00 00 00 8b ac 24 dO 00 00 00 8b 5d 08
<8b> 83 3c 01 00 00 89 44 24 14 8b 45 28 85 cO 89 44 24 18 Of 85

Put the bytes into a "foo.s" file like this:

.text
.globl foo
foo:
.byte /* bytes from Code: part of 00PS dump */

Compile it with "gcc -c -o foo.o foo.s" then look at the output of
"objdump --disassemble foo.o0".

Output:
ip _queue xmit:
push %ebp
push %sedi
push %esi
push %ebx
sub $0xbc, %esp
mov 0xd0O (%esp), %ebp I %ebp = arg0 (skb)
mov 0x8(%ebp), %ebx I %ebx = skb->sk
mov 0x13c(%ebx), %eax I %eax = inet sk(sk)->opt

158 Chapter 6. Bug hunting

Linux Kernel User Documentation, Release 4.13.0-rc4+

6.3 Reporting the bug

Once you find where the bug happened, by inspecting its location, you could either try to fix it yourself or
report it upstream.

In order to report it upstream, you should identify the mailing list used for the development of the affected
code. This can be done by using the get maintainer.pl script.

For example, if you find a bug at the gspca’s conex.c file, you can get their maintainers with:

$./scripts/get maintainer.pl -f drivers/media/usb/gspca/sonixj.c

Hans Verkuil <hverkuil@xs4all.nl> (odd fixer:GSPCA USB WEBCAM DRIVER,commit signer:1/1=100%)

Mauro Carvalho Chehab <mchehab@kernel.org> (maintainer:MEDIA INPUT INFRASTRUCTURE (V4L/DVB),
—commit signer:1/1=100%)

Tejun Heo <tj@kernel.org> (commit signer:1/1=100%)

Bhaktipriya Shridhar <bhaktipriya96@gmail.com> (commit signer:1/1=100%,authored:1/1=100%,added
—1lines:4/4=100%, removed 1lines:9/9=100%)

linux-media@vger.kernel.org (open 1list:GSPCA USB WEBCAM DRIVER)

linux-kernel@vger.kernel.org (open list)

Please notice that it will point to:

* The last developers that touched on the source code. On the above example, Tejun and Bhaktipriya
(in this specific case, none really envolved on the development of this file);

e The driver maintainer (Hans Verkuil);

* The subsystem maintainer (Mauro Carvalho Chehab)

* The driver and/or subsystem mailing list (linux-media@vger.kernel.org);
* the Linux Kernel mailing list (linux-kernel@vger.kernel.org).

Usually, the fastest way to have your bug fixed is to report it to mailing list used for the development of
the code (linux-media ML) copying the driver maintainer (Hans).

If you are totally stumped as to whom to send the report, and get maintainer.pl didn’'t provide you
anything useful, send it to linux-kernel@vger.kernel.org.

Thanks for your help in making Linux as stable as humanly possible.

6.4 Fixing the bug

If you know programming, you could help us by not only reporting the bug, but also providing us with a
solution. After all open source is about sharing what you do and don’t you want to be recognised for your
genius?

If you decide to take this way, once you have worked out a fix please submit it upstream.

Please do read ref:Documentation/process/submitting-patches.rst <submittingpatches> though to help
your code get accepted.

6.5 Notes on Oops tracing with klogd

In order to help Linus and the other kernel developers there has been substantial support incorporated
into klogd for processing protection faults. In order to have full support for address resolution at least
version 1.3-pl3 of the sysklogd package should be used.

When a protection fault occurs the klogd daemon automatically translates important addresses in the
kernel log messages to their symbolic equivalents. This translated kernel message is then forwarded

6.3. Reporting the bug 159

mailto:linux-media@vger.kernel.org
mailto:linux-kernel@vger.kernel.org
mailto:linux-kernel@vger.kernel.org

Linux Kernel User Documentation, Release 4.13.0-rc4+

through whatever reporting mechanism klogd is using. The protection fault message can be simply cut
out of the message files and forwarded to the kernel developers.

Two types of address resolution are performed by klogd. The first is static translation and the second is
dynamic translation. Static translation uses the System.map file in much the same manner that ksymoops
does. In order to do static translation the klogd daemon must be able to find a system map file at daemon
initialization time. See the klogd man page for information on how klogd searches for map files.

Dynamic address translation is important when kernel loadable modules are being used. Since memory
for kernel modules is allocated from the kernel’s dynamic memory pools there are no fixed locations for
either the start of the module or for functions and symbols in the module.

The kernel supports system calls which allow a program to determine which modules are loaded and their
location in memory. Using these system calls the klogd daemon builds a symbol table which can be used
to debug a protection fault which occurs in a loadable kernel module.

At the very minimum klogd will provide the name of the module which generated the protection fault.
There may be additional symbolic information available if the developer of the loadable module chose to
export symbol information from the module.

Since the kernel module environment can be dynamic there must be a mechanism for notifying the klogd
daemon when a change in module environment occurs. There are command line options available which
allow klogd to signal the currently executing daemon that symbol information should be refreshed. See
the klogd manual page for more information.

A patch is included with the sysklogd distribution which modifies the modules-2.0.0 package to auto-
matically signal klogd whenever a module is loaded or unloaded. Applying this patch provides essentially
seamless support for debugging protection faults which occur with kernel loadable modules.

The following is an example of a protection fault in a loadable module processed by klogd:

Aug 29 09:51:01 blizard kernel: Unable to handle kernel paging request at virtual address,
—f15e97cc

Aug 29 09:51:01 blizard kernel: current->tss.cr3 = 0062d000, %cr3 = 0062d000

Aug 29 09:51:01 blizard kernel: *pde = 00000000

Aug 29 09:51:01 blizard kernel: Oops: 0002

Aug 29 09:51:01 blizard kernel: CPU: 0

Aug 29 09:51:01 blizard kernel: EIP: 0010: [oops: oops+16/3868]

Aug 29 09:51:01 blizard kernel: EFLAGS: 00010212

Aug 29 09:51:01 blizard kernel: eax: 315e97cc ebx: 003a6f80 ecx: 001lbe77b edx: 00237cOc

Aug 29 09:51:01 blizard kernel: esi: 00000000 edi: bffffdb3 ebp: 00589f90 esp: 00589f8c

Aug 29 09:51:01 blizard kernel: ds: 0018 es: 0018 fs: 002b gs: 002b ss: 0018

Aug 29 09:51:01 blizard kernel: Process oops test (pid: 3374, process nr: 21,
—stackpage=00589000)

Aug 29 09:51:01 blizard kernel: Stack: 315e97cc 00589198 0100b0Ob4 bffffed4 0012e38e 00240c64
—003a6f80 00000001

Aug 29 09:51:01 blizard kernel: 00000000 00237810 bfffffo0 0010a7fa 00000003 00000001
00000000 bfffffoO
Aug 29 09:51:01 blizard kernel: bffffdb3 bffffed4 ffffffda 0000002b 0007002b 0000002b, ,

-,0000002b 00000036

Aug 29 09:51:01 blizard kernel: Call Trace: [oops: oops_ioct1+48/80] [sys ioctl+254/272] [_
—system call+82/128]

Aug 29 09:51:01 blizard kernel: Code: c7 00 05 00 00 00 eb 08 90 90 90 90 90 90 90 90 89 ec 5d,
—Cc3

Dr. G.W. Wettstein Oncology Research Div. Computing Facility
Roger Maris Cancer Center INTERNET: greg@wind.rmcc.com

820 4th St. N.

Fargo, ND 58122

Phone: 701-234-7556

160 Chapter 6. Bug hunting

CHAPTER
SEVEN

BISECTING A BUG

Last updated: 28 October 2016

7.1 Introduction

Always try the latest kernel from kernel.org and build from source. If you are not confident in doing that
please report the bug to your distribution vendor instead of to a kernel developer.

Finding bugs is not always easy. Have a go though. If you can’t find it don’t give up. Report as much as
you have found to the relevant maintainer. See MAINTAINERS for who that is for the subsystem you have
worked on.

Before you submit a bug report read Documentation/admin-guide/reporting-bugs.rst .

7.2 Devices not appearing

Often this is caused by udev/systemd. Check that first before blaming it on the kernel.

7.3 Finding patch that caused a bug

Using the provided tools with git makes finding bugs easy provided the bug is reproducible.
Steps to do it:
* build the Kernel from its git source

 start bisect with :

’$ git bisect start

* mark the broken changeset with:

]$ git bisect bad [commit]

* mark a changeset where the code is known to work with:

’$ git bisect good [commit]

* rebuild the Kernel and test

* interact with git bisect by using either:

1 You can, optionally, provide both good and bad arguments at git start with git bisect start [BAD] [GOOD]

161

Linux Kernel User Documentation, Release 4.13.0-rc4+

’$ git bisect good

or.

’$ git bisect bad

depending if the bug happened on the changeset you're testing

» After some interactions, git bisect will give you the changeset that likely caused the bug.

* For example, if you know that the current version is bad, and version 4.8 is good, you could do:

$ git bisect start

$ git bisect bad # Current version is bad
$ git bisect good v4.8

For further references, please read:
* The man page for git-bisect
* Fighting regressions with git bisect
* Fully automated bisecting with “git bisect run”

* Using Git bisect to figure out when brokenness was introduced

162 Chapter 7. Bisecting a bug

https://www.kernel.org/pub/software/scm/git/docs/git-bisect-lk2009.html
https://lwn.net/Articles/317154
http://webchick.net/node/99

CHAPTER
EIGHT

TAINTED KERNELS

Some oops reports contain the string ‘Tainted: ‘ after the program counter. This indicates that the kernel
has been tainted by some mechanism. The string is followed by a series of position-sensitive characters,
each representing a particular tainted value.

1. ‘G’ if all modules loaded have a GPL or compatible license, ‘P’ if any proprietary module has
been loaded. Modules without a MODULE_LICENSE or with a MODULE_LICENSE that is not
recognised by insmod as GPL compatible are assumed to be proprietary.

2. F if any module was force loaded by insmod -f, ' ' if all modules were loaded normally.

3. S if the oops occurred on an SMP kernel running on hardware that hasn’t been certified as
safe to run multiprocessor. Currently this occurs only on various Athlons that are not SMP

capable.
4. R if a module was force unloaded by rmmod -f, ' ' if all modules were unloaded normally.
5. M if any processor has reported a Machine Check Exception, ' ' if no Machine Check Ex-

ceptions have occurred.
6. Bif a page-release function has found a bad page reference or some unexpected page flags.

7. U if a user or user application specifically requested that the Tainted flag be set, ' ' other-
wise.

8. D if the kernel has died recently, i.e. there was an OOPS or BUG.
9. A if the ACPI table has been overridden.

10. W if a warning has previously been issued by the kernel. (Though some warnings may set
more specific taint flags.)

11. Cif a staging driver has been loaded.

12. I if the kernel is working around a severe bug in the platform firmware (BIOS or similar).
13. 0 if an externally-built (“out-of-tree”) module has been loaded.

14. E if an unsigned module has been loaded in a kernel supporting module signature.

15. L if a soft lockup has previously occurred on the system.

16. K if the kernel has been live patched.

The primary reason for the ‘Tainted: ‘ string is to tell kernel debuggers if this is a clean kernel or if
anything unusual has occurred. Tainting is permanent: even if an offending module is unloaded, the
tainted value remains to indicate that the kernel is not trustworthy.

163

Linux Kernel User Documentation, Release 4.13.0-rc4+

164 Chapter 8. Tainted kernels

CHAPTER
NINE

RAMOOPS OOPS/PANIC LOGGER

Sergiu lordache <sergiu@chromium.org>
Updated: 17 November 2011

9.1 Introduction

Ramoops is an oops/panic logger that writes its logs to RAM before the system crashes. It works by logging
oopses and panics in a circular buffer. Ramoops needs a system with persistent RAM so that the content
of that area can survive after a restart.

9.2 Ramoops concepts

Ramoops uses a predefined memory area to store the dump. The start and size and type of the memory
area are set using three variables:

* mem_address for the start
* mem_size for the size. The memory size will be rounded down to a power of two.
* mem_type to specifiy if the memory type (default is pgprot_writecombine).

Typically the default value of mem type=0 should be used as that sets the pstore mapping to pg-
prot_writecombine. Setting mem type=1 attempts to use pgprot _noncached, which only works on some
platforms. This is because pstore depends on atomic operations. At least on ARM, pgprot_noncached
causes the memory to be mapped strongly ordered, and atomic operations on strongly ordered memory
are implementation defined, and won’t work on many ARMs such as omaps.

The memory area is divided into record size chunks (also rounded down to power of two) and each
oops/panic writes a record size chunk of information.

Dumping both oopses and panics can be done by setting 1 in the dump_oops variable while setting 0 in
that variable dumps only the panics.

The module uses a counter to record multiple dumps but the counter gets reset on restart (i.e. new dumps
after the restart will overwrite old ones).

Ramoops also supports software ECC protection of persistent memory regions. This might be useful when
a hardware reset was used to bring the machine back to life (i.e. a watchdog triggered). In such cases,
RAM may be somewhat corrupt, but usually it is restorable.

9.3 Setting the parameters

Setting the ramoops parameters can be done in several different manners:

165

mailto:sergiu@chromium.org

Linux Kernel User Documentation, Release 4.13.0-rc4+

A. Use the module parameters (which have the names of the variables described as before). For
quick debugging, you can also reserve parts of memory during boot and then use the reserved
memory for ramoops. For example, assuming a machine with > 128 MB of memory, the follow-
ing kernel command line will tell the kernel to use only the first 128 MB of memory, and place
ECC-protected ramoops region at 128 MB boundary:

mem=128M ramoops.mem_address=0x8000000 ramoops.ecc=1

B. Use Device Tree bindings, as described in Documentation/device-
tree/bindings/reserved-memory/admin-guide/ramoops.rst. For example:

reserved-memory {
#address-cells = <2>;
#size-cells = <2>;
ranges;

ramoops@8f000000 {
compatible = "ramoops";
reg = <0 0x8f000000 0 0x100OO0>;
record-size = <0x4000>;
console-size = <0x4000>;
}
}

C. Use a platform device and set the platform data. The parameters can then be set through
that platform data. An example of doing that is:

#include <linux/pstore ram.h>

[...]

static struct ramoops platform data ramoops data = {

.mem_size = <,..>,
.mem_address = <,..>,
.mem_type = <...>,
.record size = <,..>,
.dump_oops = <...>,
.ecc = <...>,

}

static struct platform device ramoops dev = {
.hame = "ramoops",
.dev = {

.platform_data = &ramoops data,

}I

}

[... inside a function ...]

int ret;

ret = platform device register(&ramoops dev);

if (ret) {
printk(KERN_ERR "unable to register platform device\n");
return ret;

}

You can specify either RAM memory or peripheral devices’ memory. However, when specifying RAM, be
sure to reserve the memory by issuing memblock reserve() very early in the architecture code, e.g.:

#include <linux/memblock.h>

memblock reserve(ramoops data.mem address, ramoops data.mem size);

166 Chapter 9. Ramoops oops/panic logger

Linux Kernel User Documentation, Release 4.13.0-rc4+

9.4 Dump format

The data dump begins with a header, currently defined as ==== followed by a timestamp and a new line.
The dump then continues with the actual data.

9.5 Reading the data

The dump data can be read from the pstore filesystem. The format for these files is dmesg-ramoops-N,
where N is the record number in memory. To delete a stored record from RAM, simply unlink the respective
pstore file.

9.6 Persistent function tracing

Persistent function tracing might be useful for debugging software or hardware related hangs. The func-
tions call chain log is stored in a ftrace-ramoops file. Here is an example of usage:

mount -t debugfs debugfs /sys/kernel/debug/

echo 1 > /sys/kernel/debug/pstore/record ftrace

reboot -f

.1

mount -t pstore pstore /mnt/

tail /mnt/ftrace-ramoops

ffffffff81l0leabd Ffffffff8l0lbcda native apic mem read <- disconnect bsp APIC+0x6a/0xcO

ffffffff8l0leadd ffffffff8l0lbcf6 native apic mem write <- disconnect bsp APIC+0x86/0xc0O

ffffffff81020084 ffffffff8101a4b5 hpet disable <- native machine shutdown+0x75/0x90

ffffffff81005f94 ffffffff81l0ladbb iommu shutdown noop <- native machine shutdown+0x7b/0x90

ffffffff8l0labal ffffffff8101a437 native machine emergency restart <- native machine
—restart+0x37/0x40

0 ffffffff811f9876 ffffffff8l0la73a acpi reboot <- native machine emergency restart+0xaa/0x1le0

0 ffffffff8101a514 ffffffff8101a772 mach reboot fixups <- native machine_emergency
—restart+0xe2/0x1e0

0 ffffffff811d9c54 ffffffff81l01a7a®@ const udelay <- native machine emergency restart+0x110/
—0x1e0

0 ffffffff81l1d9c34 Ffffffff811d9c80 delay <- _ const udelay+0x30/0x40

0 ffffffff811d9d1l4 Ffffffff811d9c3f delay tsc <- delay+0xf/0x20

Co0CO0OH H—HHH

9.4. Dump format 167

Linux Kernel User Documentation, Release 4.13.0-rc4+

168 Chapter 9. Ramoops oops/panic logger

CHAPTER
TEN

DYNAMIC DEBUG

10.1 Introduction

This document describes how to use the dynamic debug (dyndbg) feature.

Dynamic debug is designed to allow you to dynamically enable/disable kernel code to obtain additional
kernel information. Currently, if CONFIG DYNAMIC DEBUG is set, then all pr_debug()/dev _dbg() and
print hex dump debug()/print hex dump bytes() calls can be dynamically enabled per-callsite.

If CONFIG DYNAMIC DEBUG is not set, print hex dump debug() is just shortcut for
print _hex_ dump(KERN DEBUG).

For print _hex dump_debug()/print hex dump bytes(), format string is its prefix_str argument, if it
is constant string; or hexdump in case prefix_str is build dynamically.

Dynamic debug has even more useful features:

e Simple query language allows turning on and off debugging statements by matching any combination
of 0 or 1 of:

source filename

function name

line number (including ranges of line numbers)

module name

format string

* Provides a debugfs control file: <debugfs>/dynamic_debug/control which can be read to display
the complete list of known debug statements, to help guide you

10.2 Controlling dynamic debug Behaviour

The behaviour of pr_debug()/dev_dbg() are controlled via writing to a control file in the ‘debugfs’ filesys-
tem. Thus, you must first mount the debugfs filesystem, in order to make use of this feature. Subse-
quently, we refer to the control file as: <debugfs>/dynamic debug/control. For example, if you want to
enable printing from source file svcsock. ¢, line 1603 you simply do:

nullarbor:~ # echo 'file svcsock.c line 1603 +p' >
<debugfs>/dynamic_debug/control

If you make a mistake with the syntax, the write will fail thus:

nullarbor:~ # echo 'file svcsock.c wtf 1 +p' >
<debugfs>/dynamic_debug/control
-bash: echo: write error: Invalid argument

169

Linux Kernel User Documentation, Release 4.13.0-rc4+

10.3 Viewing Dynamic Debug Behaviour

You can view the currently configured behaviour of all the debug statements via:

nullarbor:~ # cat <debugfs>/dynamic_debug/control

filename:1lineno [module]function flags format

/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:323 [svcxprt rdma]svc
—rdma_cleanup = "SVCRDMA Module Removed, deregister RPC RDMA transport\012"

/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:341 [svcxprt _rdma]svc
—rdma_init = "\0@llmax_ inline 1 %d\012"

/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:340 [svcxprt _rdma]svc
—rdma_init = "\01lsq depth T %d\012"

/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:338 [svcxprt _rdma]svc
—rdma_init =_ "\0@llmax_requests 1 %d\012"

You can also apply standard Unix text manipulation filters to this data, e.qg.:

nullarbor:~ # grep -i rdma <debugfs>/dynamic_debug/control | wc -1
62

nullarbor:~ # grep -i tcp <debugfs>/dynamic_debug/control | wc -1
42

The third column shows the currently enabled flags for each debug statement callsite (see below for
definitions of the flags). The default value, with no flags enabled, is = . So you can view all the debug
statement callsites with any non-default flags:

nullarbor:~ # awk '$3 != "= "' <debugfs>/dynamic_debug/control

filename:lineno [module]function flags format

/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c:1603 [sunrpc]svc_send
—p "svc_process: st sendto returned %d\012"

10.4 Command Language Reference

At the lexical level, a command comprises a sequence of words separated by spaces or tabs. So these
are all equivalent:

nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
<debugfs>/dynamic_debug/control

nullarbor:~ # echo -n ' file svcsock.c line 1603 +p
<debugfs>/dynamic_debug/control

nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
<debugfs>/dynamic_debug/control

>

Command submissions are bounded by a write() system call. Multiple commands can be written together,
separated by ; or \n:

~# echo "func pnpacpi_get resources +p; func pnp_assign mem +p" \
> <debugfs>/dynamic_debug/control

If your query set is big, you can batch them too:

~# cat query-batch-file > <debugfs>/dynamic_debug/control

A another way is to use wildcard. The match rule support * (matches zero or more characters) and ?
(matches exactly one character).For example, you can match all usb drivers:

170 Chapter 10. Dynamic debug

Linux Kernel User Documentation, Release 4.13.0-rc4+

’~# echo "file drivers/usb/* +p" > <debugfs>/dynamic_debug/control

|

At the syntactical level, a command comprises a sequence of match specifications, followed by a flags
change specification:

’command ::= match-spec* flags-spec

|

The match-spec’s are used to choose a subset of the known pr_debug() callsites to which to apply the
flags-spec. Think of them as a query with implicit ANDs between each pair. Note that an empty list of
match-specs will select all debug statement callsites.

A match specification comprises a keyword, which controls the attribute of the callsite to be compared,
and a value to compare against. Possible keywords are::

match-spec ::= 'func' string |
‘file' string |
'module' string |
'format' string |
'line' line-range

line-range ::= lineno |
'-'lineno |
lineno'-"' |
lineno'-'lineno

lineno ::= unsigned-int

Note:

line-range cannot contain space, e.g. “1-30” is valid range but “1 - 30” is not.

The meanings of each keyword are:

func The given string is compared against the function name of each callsite. Example:

func svc_tcp accept

file The given string is compared against either the full pathname, the src-root relative pathname, or the
basename of the source file of each callsite. Examples:

file svcsock.c
file kernel/freezer.c
file /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c

module The given string is compared against the module name of each callsite. The module name is
the string as seen in lsmod, i.e. without the directory or the .ko suffix and with - changed to .
Examples:

module sunrpc
module nfsd

format The given string is searched for in the dynamic debug format string. Note that the string does
not need to match the entire format, only some part. Whitespace and other special characters
can be escaped using C octal character escape \ooo notation, e.g. the space character is \040.
Alternatively, the string can be enclosed in double quote characters (") or single quote characters
('). Examples:

format svcrdma: // many of the NFS/RDMA server pr_debugs
format readahead // some pr_debugs in the readahead cache
format nfsd:\040SETATTR // one way to match a format with whitespace

10.4. Command Language Reference 171

Linux Kernel User Documentation, Release 4.13.0-rc4+

format "nfsd: SETATTR" // a neater way to match a format with whitespace
format 'nfsd: SETATTR' // yet another way to match a format with whitespace

line The given line number or range of line numbers is compared against the line nhumber of each
pr_debug() callsite. A single line number matches the callsite line humber exactly. A range of
line numbers matches any callsite between the first and last line number inclusive. An empty first
number means the first line in the file, an empty line number means the last number in the file.

Examples:

line 1603 // exactly line 1603

line 1600-1605 // the six lines from line 1600 to line 1605

line -1605 // the 1605 lines from line 1 to line 1605

line 1600- // all lines from line 1600 to the end of the file

The flags specification comprises a change operation followed by one or more flag characters. The change
operation is one of the characters:

remove the given flags
add the given flags
set the flags to the given flags

n +

The flags are:

enables the pr_debug() callsite.

Include the function name in the printed message

Include line number in the printed message

Include module name in the printed message

Include thread ID in messages not generated from interrupt context
No flags are set. (Or'd with others on input)

+ 3 —~ T

For print hex dump debug() and print hex dump bytes(), only p flag have meaning, other flags ig-
nored.

For display, the flags are preceded by = (mnemonic: what the flags are currently equal to).

Note the regexp ~[-+=][flmpt]+$ matches a flags specification. To clear all flags at once, use = or
-flmpt.

10.5 Debug messages during Boot Process

To activate debug messages for core code and built-in modules during the boot process, even
before userspace and debugfs exists, use dyndbg="QUERY", module.dyndbg="QUERY", or dde-
bug query="QUERY" (ddebug query is obsoleted by dyndbg, and deprecated). QUERY follows the syntax
described above, but must not exceed 1023 characters. Your bootloader may impose lower limits.

These dyndbg params are processed just after the ddebug tables are processed, as part of the arch_initcall.
Thus you can enable debug messages in all code run after this arch_initcall via this boot parameter.

On an x86 system for example ACPI enablement is a subsys _initcall and:

dyndbg="file ec.c +p"

will show early Embedded Controller transactions during ACPI setup if your machine (typically a laptop)
has an Embedded Controller. PCI (or other devices) initialization also is a hot candidate for using this boot
parameter for debugging purposes.

If foo module is not built-in, foo.dyndbg will still be processed at boot time, without effect, but will be
reprocessed when module is loaded later. dyndbg query= and bare dyndbg= are only processed at boot.

172 Chapter 10. Dynamic debug

Linux Kernel User Documentation, Release 4.13.0-rc4+

10.6 Debug Messages at Module Initialization Time

When modprobe foo is called, modprobe scans /proc/cmdline for foo.params, strips foo., and passes
them to the kernel along with params given in modprobe args or /etc/modprob.d/*.conf files, in the
following order:

1. parameters given via /etc/modprobe.d/*.conf:

options foo dyndbg=+pt
options foo dyndbg # defaults to +p

2. foo.dyndbg as given in boot args, foo. is stripped and passed:

’foo.dyndbg=" func bar +p; func buz +mp" ‘

3. args to modprobe:

’modprobe foo dyndbg==pmf # override previous settings ‘

These dyndbg queries are applied in order, with last having final say. This allows boot args to override or
modify those from /etc/modprobe.d (sensible, since 1 is system wide, 2 is kernel or boot specific), and
modprobe args to override both.

In the foo.dyndbg="QUERY" form, the query must exclude module foo. foo is extracted from the param-
name, and applied to each query in QUERY, and only 1 match-spec of each type is allowed.

The dyndbg option is a “fake” module parameter, which means:
* modules do not need to define it explicitly
* every module gets it tacitly, whether they use pr_debug or not

* it doesn’t appear in /sys/module/$module/parameters/ To see it, grep the control file, or inspect
/proc/cmdline.

For CONFIG_DYNAMIC DEBUG kernels, any settings given at boot-time (or enabled by -DDEBUG flag during
compilation) can be disabled later via the sysfs interface if the debug messages are no longer needed:

’echo "module module name -p" > <debugfs>/dynamic_debug/control

10.7 Examples

// enable the message at line 1603 of file svcsock.c
nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
<debugfs>/dynamic_debug/control

// enable all the messages in file svcsock.c
nullarbor:~ # echo -n 'file svcsock.c +p' >
<debugfs>/dynamic_debug/control

// enable all the messages in the NFS server module
nullarbor:~ # echo -n 'module nfsd +p' >
<debugfs>/dynamic_debug/control

// enable all 12 messages in the function svc _process()
nullarbor:~ # echo -n 'func svc _process +p' >
<debugfs>/dynamic_debug/control

// disable all 12 messages in the function svc process()
nullarbor:~ # echo -n 'func svc_process -p' >
<debugfs>/dynamic_debug/control

10.6. Debug Messages at Module Initialization Time 173

Linux Kernel User Documentation, Release 4.13.0-rc4+

// enable messages for NFS calls READ, READLINK, READDIR and READDIR+.
nullarbor:~ # echo -n 'format "nfsd: READ" +p' >
<debugfs>/dynamic_debug/control

// enable messages in files of which the paths include string "usb"
nullarbor:~ # echo -n '*usb* +p' > <debugfs>/dynamic_debug/control

// enable all messages
nullarbor:~ # echo -n '+p' > <debugfs>/dynamic_debug/control

// add module, function to all enabled messages
nullarbor:~ # echo -n '+mf' > <debugfs>/dynamic_debug/control

// boot-args example, with newlines and comments for readability
Kernel command line:
// see whats going on in dyndbg=value processing
dynamic_debug.verbose=1
// enable pr _debugs in 2 builtins, #cmt is stripped
dyndbg="module params +p #cmt ; module sys +p"
// enable pr_debugs in 2 functions in a module loaded later
pc87360.dyndbg="func pc87360 init device +p; func pc87360 find +p"

174 Chapter 10. Dynamic debug

CHAPTER
ELEVEN

EXPLAINING THE DREADED “NO INIT FOUND.” BOOT HANG
MESSAGE

OK, so you’'ve got this pretty unintuitive message (currently located in init/main.c) and are wondering
what the H** went wrong. Some high-level reasons for failure (listed roughly in order of execution) to
load the init binary are:

1. Unable to mount root FS
2. init binary doesn’t exist on rootfs
3. broken console device
4. binary exists but dependencies not available
5. binary cannot be loaded
Detailed explanations:

1. Set “debug” kernel parameter (in bootloader config file or CONFIG_CMDLINE) to get more detailed
kernel messages.

2. make sure you have the correct root FS type (and root= kernel parameter points to the correct
partition), required drivers such as storage hardware (such as SCSI or USB!) and filesystem (ext3,
jffs2 etc.) are builtin (alternatively as modules, to be pre-loaded by an initrd)

3. Possibly a conflict in console= setup -> initial console unavailable. E.g. some serial consoles are
unreliable due to serial IRQ issues (e.g. missing interrupt-based configuration). Try using a different
console= device or e.g. netconsole=.

4. e.g. required library dependencies of the init binary such as /1ib/1d-linux.so0.2 missing or broken.
Use readelf -d <INIT>|grep NEEDED to find out which libraries are required.

5. make sure the binary’s architecture matches your hardware. E.g. i386 vs. x86_64 mismatch, or
trying to load x86 on ARM hardware. In case you tried loading a non-binary file here (shell script?),
you should make sure that the script specifies an interpreter in its shebang header line (#!/...) that
is fully working (including its library dependencies). And before tackling scripts, better first test a
simple non-script binary such as /bin/sh and confirm its successful execution. To find out more, add
code to init/main.c to display kernel _execve()s return values.

Please extend this explanation whenever you find new failure causes (after all loading the init binary is a
CRITICAL and hard transition step which needs to be made as painless as possible), then submit patch to
LKML. Further TODOs:

* Implement the various run_init process() invocations via a struct array which can then store the
kernel execve() result value and on failure log it all by iterating over all results (very important
usability fix).

* try to make the implementation itself more helpful in general, e.g. by providing additional error
messages at affected places.

Andreas Mohr <andi at lisas period de>

This is the beginning of a section with information of interest to application developers. Documents cov-
ering various aspects of the kernel ABI will be found here.

175

Linux Kernel User Documentation, Release 4.13.0-rc4+

176 Chapter 11. Explaining the dreaded “No init found.” boot hang message

CHAPTER
TWELVE

RULES ON HOW TO ACCESS INFORMATION IN SYSFS

The kernel-exported sysfs exports internal kernel implementation details and depends on internal kernel
structures and layout. It is agreed upon by the kernel developers that the Linux kernel does not provide a
stable internal API. Therefore, there are aspects of the sysfs interface that may not be stable across kernel
releases.

To minimize the risk of breaking users of sysfs, which are in most cases low-level userspace applications,
with a new kernel release, the users of sysfs must follow some rules to use an as-abstract-as-possible
way to access this filesystem. The current udev and HAL programs already implement this and users are
encouraged to plug, if possible, into the abstractions these programs provide instead of accessing sysfs
directly.

But if you really do want or need to access sysfs directly, please follow the following rules and then your
programs should work with future versions of the sysfs interface.

* Do not use libsysfs It makes assumptions about sysfs which are not true. Its APl does not offer any
abstraction, it exposes all the kernel driver-core implementation details in its own API. Therefore
it is not better than reading directories and opening the files yourself. Also, it is not actively
maintained, in the sense of reflecting the current kernel development. The goal of providing a
stable interface to sysfs has failed; it causes more problems than it solves. It violates many of
the rules in this document.

* sysfs is always at /sys Parsing /proc/mounts is a waste of time. Other mount points are a system
configuration bug you should not try to solve. For test cases, possibly support a SYSFS_PATH
environment variable to overwrite the application’s behavior, but never try to search for sysfs.
Never try to mount it, if you are not an early boot script.

» devices are only “devices” There is no such thing like class-, bus-, physical devices, interfaces,
and such that you can rely on in userspace. Everything is just simply a “device”. Class-, bus-
, physical, ... types are just kernel implementation details which should not be expected by
applications that look for devices in sysfs.

The properties of a device are:
- devpath (/devices/pci0000:00/0000:00:1d.1/usb2/2-2/2-2:1.0)

* jdentical to the DEVPATH value in the event sent from the kernel at device creation and
removal

* the unique key to the device at that point in time

* the kernel’s path to the device directory without the leading /sys, and always starting
with a slash

* all elements of a devpath must be real directories. Symlinks pointing to /sys/devices must
always be resolved to their real target and the target path must be used to access the
device. That way the devpath to the device matches the devpath of the kernel used at
event time.

* using or exposing symlink values as elements in a devpath string is a bug in the applica-
tion

- kernel name (sda, tty, 0000:00:1f.2, ...)

177

Linux Kernel User Documentation, Release 4.13.0-rc4+

* a directory name, identical to the last element of the devpath

* applications need to handle spaces and characters like ! in the name
- subsystem (block, tty, pci, ...)

* simple string, never a path or a link

* retrieved by reading the “subsystem”-link and using only the last element of the target
path

- driver (tg3, ata piix, uhci hcd)
* a simple string, which may contain spaces, never a path or a link

* it is retrieved by reading the “driver”-link and using only the last element of the target
path

* devices which do not have “driver”-link just do not have a driver; copying the driver value
in a child device context is a bug in the application

- attributes
* the files in the device directory or files below subdirectories of the same device directory

* accessing attributes reached by a symlink pointing to another device, like the “device”-
link, is a bug in the application

Everything else is just a kernel driver-core implementation detail that should not be assumed to
be stable across kernel releases.

* Properties of parent devices never belong into a child device. Always look at the parent de-
vices themselves for determining device context properties. If the device eth0 or sda does not
have a “driver”-link, then this device does not have a driver. lts value is empty. Never copy
any property of the parent-device into a child-device. Parent device properties may change
dynamically without any notice to the child device.

* Hierarchy in a single device tree There is only one valid place in sysfs where hierarchy can be
examined and this is below: /sys/devices. Itis planned that all device directories will end up
in the tree below this directory.

* Classification by subsystem There are currently three places for classification of devices:
/sys/block, /sys/class and /sys/bus. Itis planned that these will not contain any device di-
rectories themselves, but only flat lists of symlinks pointing to the unified /sys/devices tree. All
three places have completely different rules on how to access device information. It is planned
to merge all three classification directories into one place at /sys/subsystenm, following the lay-
out of the bus directories. All buses and classes, including the converted block subsystem, will
show up there. The devices belonging to a subsystem will create a symlink in the “devices”
directory at /sys/subsystem/<name>/devices,

If /sys/subsystem exists, /sys/bus, /sys/class and /sys/block can be ignored. If it does not
exist, you always have to scan all three places, as the kernel is free to move a subsystem from
one place to the other, as long as the devices are still reachable by the same subsystem name.

Assuming /sys/class/<subsystem> and /sys/bus/<subsystem>, or /sys/block and
/sys/class/block are not interchangeable is a bug in the application.

* Block The converted block subsystem at /sys/class/block or /sys/subsystem/block will contain
the links for disks and partitions at the same level, never in a hierarchy. Assuming the block
subsystem to contain only disks and not partition devices in the same flat list is a bug in the
application.

» “device”-link and <subsystem>:<kernel name>-links Never depend on the “device”-link.
The “device”-link is a workaround for the old layout, where class devices are not created in
/sys/devices/ like the bus devices. If the link-resolving of a device directory does not end
in /sys/devices/, you can use the “device”-link to find the parent devices in /sys/devices/,

178 Chapter 12. Rules on how to access information in sysfs

Linux Kernel User Documentation, Release 4.13.0-rc4+

That is the single valid use of the “device”-link; it must never appear in any path as an ele-
ment. Assuming the existence of the “device”-link for a device in /sys/devices/ is a bug in the
application. Accessing /sys/class/net/eth@/device is a bug in the application.

Never depend on the class-specific links back to the /sys/class directory. These links are also
a workaround for the design mistake that class devices are not created in /sys/devices. If a
device directory does not contain directories for child devices, these links may be used to find
the child devices in /sys/class. That is the single valid use of these links; they must never
appear in any path as an element. Assuming the existence of these links for devices which are
real child device directories in the /sys/devices tree is a bug in the application.

It is planned to remove all these links when all class device directories live in /sys/devices.

* Position of devices along device chain can change. Never depend on a specific parent device
position in the devpath, or the chain of parent devices. The kernel is free to insert devices into
the chain. You must always request the parent device you are looking for by its subsystem value.
You need to walk up the chain until you find the device that matches the expected subsystem.
Depending on a specific position of a parent device or exposing relative paths using . ./ to access
the chain of parents is a bug in the application.

* When reading and writing sysfs device attribute files, avoid dependency on specific error
codes wherever possible. This minimizes coupling to the error handling implementation within
the kernel.

In general, failures to read or write sysfs device attributes shall propagate errors wherever pos-
sible. Common errors include, but are not limited to:

-EIO: The read or store operation is not supported, typically returned by the sysfs system
itself if the read or store pointer is NULL.

-ENXIO: The read or store operation failed

Error codes will not be changed without good reason, and should a change to error codes result
in user-space breakage, it will be fixed, or the the offending change will be reverted.

Userspace applications can, however, expect the format and contents of the attribute files to
remain consistent in the absence of a version attribute change in the context of a given attribute.

The rest of this manual consists of various unordered guides on how to configure specific aspects of kernel
behavior to your liking.

179

Linux Kernel User Documentation, Release 4.13.0-rc4+

180 Chapter 12. Rules on how to access information in sysfs

CHAPTER
THIRTEEN

USING THE INITIAL RAM DISK (INITRD)

Written 1996,2000 by Werner Almesberger <werner.almesberger@epfl.ch> and Hans Lermen <ler-
men@fgan.de>

initrd provides the capability to load a RAM disk by the boot loader. This RAM disk can then be mounted
as the root file system and programs can be run from it. Afterwards, a new root file system can be
mounted from a different device. The previous root (from initrd) is then moved to a directory and can be
subsequently unmounted.

initrd is mainly designed to allow system startup to occur in two phases, where the kernel comes up with
a minimum set of compiled-in drivers, and where additional modules are loaded from initrd.

This document gives a brief overview of the use of initrd. A more detailed discussion of the boot process
can be found in *.

13.1 Operation

When using initrd, the system typically boots as follows:
1. the boot loader loads the kernel and the initial RAM disk
2. the kernel converts initrd into a “normal” RAM disk and frees the memory used by initrd

3. if the root device is not /dev/ram0, the old (deprecated) change_root procedure is followed. see the
“Obsolete root change mechanism” section below.

4. root device is mounted. if it is /dev/ram0, the initrd image is then mounted as root

5. /sbin/init is executed (this can be any valid executable, including shell scripts; it is run with uid 0 and
can do basically everything init can do).

init mounts the “real” root file system

init places the root file system at the root directory using the pivot_root system call

@ N o

init execs the /sbin/init on the new root filesystem, performing the usual boot sequence
9. the initrd file system is removed

Note that changing the root directory does not involve unmounting it. It is therefore possible to leave pro-
cesses running on initrd during that procedure. Also note that file systems mounted under initrd continue
to be accessible.

13.2 Boot command-line options

initrd adds the following new options:

1 Almesberger, Werner; “Booting Linux: The History and the Future” http://www.almesberger.net/cv/papers/ols2k-9.ps.gz

181

mailto:werner.almesberger@epfl.ch
mailto:lermen@fgan.de
mailto:lermen@fgan.de
http://www.almesberger.net/cv/papers/ols2k-9.ps.gz

Linux Kernel User Documentation, Release 4.13.0-rc4+

initrd=<path> (e.g. LOADLIN)

Loads the specified file as the initial RAM disk. When using LILO, you
have to specify the RAM disk image file in /etc/lilo.conf, using the
INITRD configuration variable.

noinitrd

initrd data is preserved but it is not converted to a RAM disk and
the "normal" root file system is mounted. initrd data can be read
from /dev/initrd. Note that the data in initrd can have any structure
in this case and doesn't necessarily have to be a file system image.
This option is used mainly for debugging.

Note: /dev/initrd is read-only and it can only be used once. As soon
as the last process has closed it, all data is freed and /dev/initrd
can't be opened anymore.

root=/dev/ramo

initrd is mounted as root, and the normal boot procedure is followed,
with the RAM disk mounted as root.

13.3 Compressed cpio images

Recent kernels have support for populating a ramdisk from a compressed cpio archive. On such systems,
the creation of a ramdisk image doesn’t need to involve special block devices or loopbacks; you merely
create a directory on disk with the desired initrd content, cd to that directory, and run (as an example):

find . | cpio --quiet -H newc -o | gzip -9 -n > /boot/imagefile.img

Examining the contents of an existing image file is just as simple:

mkdir /tmp/imagefile
cd /tmp/imagefile
gzip -cd /boot/imagefile.img | cpio -imd --quiet

13.4 Installation

First, a directory for the initrd file system has to be created on the “normal” root file system, e.g.:

]# mkdir /initrd

The name is not relevant. More details can be found on the pivot root(2) man page.

If the root file system is created during the boot procedure (i.e. if you're building an install floppy), the
root file system creation procedure should create the /initrd directory.

If initrd will not be mounted in some cases, its content is still accessible if the following device has been
created:

mknod /dev/initrd b 1 250
chmod 400 /dev/initrd

Second, the kernel has to be compiled with RAM disk support and with support for the initial RAM disk
enabled. Also, at least all components needed to execute programs from initrd (e.g. executable format
and file system) must be compiled into the kernel.

182 Chapter 13. Using the initial RAM disk (initrd)

Linux Kernel User Documentation, Release 4.13.0-rc4+

Third, you have to create the RAM disk image. This is done by creating a file system on a block device,
copying files to it as needed, and then copying the content of the block device to the initrd file. With
recent kernels, at least three types of devices are suitable for that:

* a floppy disk (works everywhere but it’'s painfully slow)
* a RAM disk (fast, but allocates physical memory)
* a loopback device (the most elegant solution)
We'll describe the loopback device method:
1. make sure loopback block devices are configured into the kernel

2. create an empty file system of the appropriate size, e.g.:

dd if=/dev/zero of=initrd bs=300k count=1
mke2fs -F -m0@ initrd

(if space is critical, you may want to use the Minix FS instead of Ext2)

3. mount the file system, e.qg.:

mount -t ext2 -o loop initrd /mnt

4. create the console device:

mkdir /mnt/dev
mknod /mnt/dev/console c 51

5. copy all the files that are needed to properly use the initrd environment. Don’t forget the most
important file, /sbin/init

Note:

/sbin/init permissions must include “x” (execute).

6. correct operation the initrd environment can frequently be tested even without rebooting with the
command:

chroot /mnt /sbin/init

This is of course limited to initrds that do not interfere with the general system state (e.g. by recon-
figuring network interfaces, overwriting mounted devices, trying to start already running demons,
etc. Note however that it is usually possible to use pivot_root in such a chroot’ed initrd environment.)

7. unmount the file system:

’# umount /mnt

8. the initrd is now in the file “initrd”. Optionally, it can now be compressed:

’# gzip -9 initrd

For experimenting with initrd, you may want to take a rescue floppy and only add a symbolic link from
/sbin/init to /bin/sh. Alternatively, you can try the experimental newlib environment ? to create a
small initrd.

Finally, you have to boot the kernel and load initrd. Almost all Linux boot loaders support initrd. Since the
boot process is still compatible with an older mechanism, the following boot command line parameters
have to be given:

2 newlib package (experimental), with initrd example https://www.sourceware.org/newlib/

13.4. Installation 183

https://www.sourceware.org/newlib/

Linux Kernel User Documentation, Release 4.13.0-rc4+

’ root=/dev/ram@ rw ‘

(rw is only necessary if writing to the initrd file system.)

With LOADLIN, you simply execute:

’LOADLIN <kernel> initrd=<disk image> ‘

e.g.:
’LOADLIN C:\LINUX\BZIMAGE initrd=C:\LINUX\INITRD.GZ root=/dev/ram0 rw ‘

With LILO, you add the option INITRD=<path> to either the global section or to the section of the respective
kernel in /etc/1ilo.conf, and pass the options using APPEND, e.qg.:

image = /bzImage
initrd = /boot/initrd.gz
append "root=/dev/ram0 rw"

and run /sbin/1lilo
For other boot loaders, please refer to the respective documentation.
Now you can boot and enjoy using initrd.

13.5 Changing the root device

When finished with its duties, init typically changes the root device and proceeds with starting the Linux
system on the “real” root device.

The procedure involves the following steps:
* mounting the new root file system
¢ turning it into the root file system
* removing all accesses to the old (initrd) root file system
* unmounting the initrd file system and de-allocating the RAM disk

Mounting the new root file system is easy: it just needs to be mounted on a directory under the current
root. Example:

mkdir /new-root
mount -o ro /dev/hdal /new-root

The root change is accomplished with the pivot_root system call, which is also available via the pivot root
utility (see pivot root(8) man page; pivot root is distributed with util-linux version 2.10h or higher 3).
pivot root moves the current root to a directory under the new root, and puts the new root at its place.
The directory for the old root must exist before calling pivot root. Example:

cd /new-root
mkdir initrd
pivot root . initrd

Now, the init process may still access the old root via its executable, shared libraries, standard in-
put/output/error, and its current root directory. All these references are dropped by the following com-
mand:

exec chroot . what-follows <dev/console >dev/console 2>&1

3 util-linux: Miscellaneous utilities for Linux https://www.kernel.org/pub/linux/utils/util-linux/

184 Chapter 13. Using the initial RAM disk (initrd)

https://www.kernel.org/pub/linux/utils/util-linux/

Linux Kernel User Documentation, Release 4.13.0-rc4+

Where what-follows is a program under the new root, e.g. /sbin/init If the new root file system will be
used with udev and has no valid /dev directory, udev must be initialized before invoking chroot in order
to provide /dev/console.

Note: implementation details of pivot_root may change with time. In order to ensure compatibility, the
following points should be observed:

* before calling pivot_root, the current directory of the invoking process should point to the new root
directory

» use . as the first argument, and the relative path of the directory for the old root as the second
argument

* a chroot program must be available under the old and the new root
* chroot to the new root afterwards
* use relative paths for dev/console in the exec command
Now, the initrd can be unmounted and the memory allocated by the RAM disk can be freed:

umount /initrd
blockdev --flushbufs /dev/ram0

It is also possible to use initrd with an NFS-mounted root, see the pivot root(8) man page for details.

13.6 Usage scenarios

The main motivation for implementing initrd was to allow for modular kernel configuration at system
installation. The procedure would work as follows:

1. system boots from floppy or other media with a minimal kernel (e.g. support for RAM disks, initrd,
a.out, and the Ext2 FS) and loads initrd

2. /sbin/init determines what is needed to (1) mount the “real” root FS (i.e. device type, device
drivers, file system) and (2) the distribution media (e.g. CD-ROM, network, tape, ...). This can be
done by asking the user, by auto-probing, or by using a hybrid approach.

3. /sbin/init loads the necessary kernel modules

4. /sbin/init creates and populates the root file system (this doesn’t have to be a very usable system
yet)

5. /sbin/init invokes pivot root to change the root file system and execs - via chroot - a program
that continues the installation

6. the boot loader is installed

7. the boot loader is configured to load an initrd with the set of modules that was used to bring up
the system (e.g. /initrd can be modified, then unmounted, and finally, the image is written from
/dev/ram0 or /dev/rd/0 to a file)

8. now the system is bootable and additional installation tasks can be performed

The key role of initrd here is to re-use the configuration data during normal system operation without
requiring the use of a bloated “generic” kernel or re-compiling or re-linking the kernel.

A second scenario is for installations where Linux runs on systems with different hardware configurations
in a single administrative domain. In such cases, it is desirable to generate only a small set of kernels
(ideally only one) and to keep the system-specific part of configuration information as small as possible.
In this case, a common initrd could be generated with all the necessary modules. Then, only /sbin/init
or a file read by it would have to be different.

A third scenario is more convenient recovery disks, because information like the location of the root FS
partition doesn’t have to be provided at boot time, but the system loaded from initrd can invoke a user-
friendly dialog and it can also perform some sanity checks (or even some form of auto-detection).

13.6. Usage scenarios 185

Linux Kernel User Documentation, Release 4.13.0-rc4+

Last not least, CD-ROM distributors may use it for better installation from CD, e.g. by using a boot floppy
and bootstrapping a bigger RAM disk via initrd from CD; or by booting via a loader like LOADLIN or directly
from the CD-ROM, and loading the RAM disk from CD without need of floppies.

13.7 Obsolete root change mechanism

The following mechanism was used before the introduction of pivot root. Current kernels still support it,
but you should _not_rely on its continued availability.

It works by mounting the “real” root device (i.e. the one set with rdev in the kernel image or with root=... at
the boot command line) as the root file system when linuxrc exits. The initrd file system is then unmounted,
or, if it is still busy, moved to a directory /initrd, if such a directory exists on the new root file system.

In order to use this mechanism, you do not have to specify the boot command options root, init, or rw. (If
specified, they will affect the real root file system, not the initrd environment.)

If /proc is mounted, the “real” root device can be changed from within linuxrc by writing the number of
the new root FS device to the special file /proc/sys/kernel/real-root-dev, e.qg.:

echo 0x301 >/proc/sys/kernel/real-root-dev

Note that the mechanism is incompatible with NFS and similar file systems.

This old, deprecated mechanism is commonly called change_root, while the new, supported mechanism
is called pivot_root.

13.8 Mixed change root and pivot_root mechanism

In case you did not want to use root=/dev/ram0 to trigger the pivot_root mechanism, you may create
both /linuxrc and /sbin/init in your initrd image.

/linuxrc would contain only the following:

#! /bin/sh

mount -n -t proc proc /proc

echo 0x0100 >/proc/sys/kernel/real-root-dev
umount -n /proc

Once linuxrc exited, the kernel would mount again your initrd as root, this time executing /sbin/init.
Again, it would be the duty of this init to build the right environment (maybe using the root= device
passed on the cmdline) before the final execution of the real /sbin/init.

13.9 Resources

186 Chapter 13. Using the initial RAM disk (initrd)

CHAPTER
FOURTEEN

LINUX SERIAL CONSOLE

To use a serial port as console you need to compile the support into your kernel - by default it is not
compiled in. For PC style serial ports it’s the config option next to menu option:

Character devices — Serial drivers — 8250/16550 and compatible serial support — Console on 8250/16550
and compatible serial port

You must compile serial support into the kernel and not as a module.

It is possible to specify multiple devices for console output. You can define a new kernel command line
option to select which device(s) to use for console output.

The format of this option is:

console=device,options

device: tty® for the foreground virtual console
ttyX for any other virtual console
ttySx for a serial port
1p® for the first parallel port
ttyUSBO for the first USB serial device

options: depend on the driver. For the serial port this
defines the baudrate/parity/bits/flow control of
the port, in the format BBBBPNF, where BBBB is the
speed, P is parity (n/o/e), N is number of bits,
and F is flow control ('r' for RTS). Default is
9600n8. The maximum baudrate is 115200.

You can specify multiple console= options on the kernel command line. Output will appear on all of them.
The last device will be used when you open /dev/console. So, for example:

console=ttyS1,9600 console=tty0

defines that opening /dev/console will get you the current foreground virtual console, and kernel mes-
sages will appear on both the VGA console and the 2nd serial port (ttyS1 or COM2) at 9600 baud.

Note that you can only define one console per device type (serial, video).

If no console device is specified, the first device found capable of acting as a system console will be used.
At this time, the system first looks for a VGA card and then for a serial port. So if you don’t have a VGA
card in your system the first serial port will automatically become the console.

You will need to create a new device to use /dev/console. The official /dev/console is now character
device 5,1.

(You can also use a network device as a console. See Documentation/networking/netconsole.txt for
information on that.)

Here’s an example that will use /dev/ttyS1 (COM2) as the console. Replace the sample values as needed.

1. Create /dev/console (real console) and /dev/tty0 (master virtual console):

187

Linux Kernel User Documentation, Release 4.13.0-rc4+

cd /dev

rm -f console tty0

mknod -m 622 console c 51
mknod -m 622 tty0 c 4 0

2. LILO can also take input from a serial device. This is a very useful option. To tell LILO to use the serial
port: In lilo.conf (global section):

’serial = 1,9600n8 (ttyS1l, 9600 bd, no parity, 8 bits)

3. Adjust to kernel flags for the new kernel, again in lilo.conf (kernel section):

’append = "console=ttyS1,9600"

4. Make sure a getty runs on the serial port so that you can login to it once the system is done booting.
This is done by adding a line like this to /etc/inittab (exact syntax depends on your getty):

’51:23:respawn:/sbin/getty -L ttyS1 9600 vt100

5. Init and /etc/ioctl.save

Sysvinit remembers its stty settings in a file in /etc, called /etc/ioctl.save. REMOVE THIS FILE
before using the serial console for the first time, because otherwise init will probably set the baudrate
to 38400 (baudrate of the virtual console).

6. /dev/console and X Programs that want to do something with the virtual console usually open
/dev/console. If you have created the new /dev/console device, and your console is NOT the
virtual console some programs will fail. Those are programs that want to access the VT interface,
and use /dev/console instead of /dev/tty0. Some of those programs are:

Xfree86, svgalib, gpm, SVGATextMode

It should be fixed in modern versions of these programs though.

Note that if you boot without a console= option (or with console=/dev/tty0), /dev/console is the
same as /dev/tty0. In that case everything will still work.

7. Thanks

Thanks to Geert Uytterhoeven <geert@linux-m68k.org> for porting the patches from 2.1.4x to 2.1.6x
for taking care of the integration of these patches into m68k, ppc and alpha.

Miquel van Smoorenburg <miquels@cistron.nl>, 11-Jun-2000

188 Chapter 14. Linux Serial Console

mailto:geert@linux-m68k.org
mailto:miquels@cistron.nl

CHAPTER
FIFTEEN

LINUX BRAILLE CONSOLE

To get early boot messages on a braille device (before userspace screen readers can start), you first need
to compile the support for the usual serial console (see Documentation/admin-quide/serial-console.rst),
and for braille device (in Device Drivers — Accessibility support — Console on braille device).

Then you need to specify a console=br1, option on the kernel command line, the format is:

console=brl,serial options...

where serial_options... are the same as described in Documentation/admin-guide/serial-console.rst

So for instance you can use console=br1, ttyS0 if the braille device is connected to the first serial port,
and console=brl,ttyS0,115200 to override the baud rate to 115200, etc.

By default, the braille device will just show the last kernel message (console mode). To review previous
messages, press the Insert key to switch to the VT review mode. In review mode, the arrow keys permit
to browse in the VT content, PAGE -UP/PAGE-DOWN keys go at the top/bottom of the screen, and the HOME
key goes back to the cursor, hence providing very basic screen reviewing facility.

Sound feedback can be obtained by adding the braille console.sound=1 kernel parameter.

For simplicity, only one braille console can be enabled, other uses of console=brl,... will be dis-
carded. Also note that it does not interfere with the console selection mechanism described in
Documentation/admin-guide/serial-console.rst .

For now, only the VisioBraille device is supported.

Samuel Thibault <samuel.thibault@ens-lyon.org>

189

mailto:samuel.thibault@ens-lyon.org

Linux Kernel User Documentation, Release 4.13.0-rc4+

190 Chapter 15. Linux Braille Console

CHAPTER
SIXTEEN

PARPORT

The parport code provides parallel-port support under Linux. This includes the ability to share one port
between multiple device drivers.

You can pass parameters to the parport code to override its automatic detection of your hardware. This
is particularly useful if you want to use IRQs, since in general these can’t be autoprobed successfully. By
default IRQs are not used even if they can be probed. This is because there are a lot of people using the
same IRQ for their parallel port and a sound card or network card.

The parport code is split into two parts: generic (which deals with port-sharing) and architecture-
dependent (which deals with actually using the port).

16.1 Parport as modules

If you load the parport’ code as a module, say:

’# insmod parport ‘

to load the generic parport code. You then must load the architecture-dependent code with (for example):

’# insmod parport pc io=0x3bc,0x378,0x278 irg=none,7,auto ‘

to tell the parport code that you want three PC-style ports, one at 0x3bc with no IRQ, one at 0x378 using
IRQ 7, and one at 0x278 with an auto-detected IRQ. Currently, PC-style (parport pc), Sun bpp, Amiga,
Atari, and MFC3 hardware is supported.

PCI parallel 1/0O card support comes from parport pc. Base I/O addresses should not be specified for
supported PCI cards since they are automatically detected.

16.1.1 modprobe

If you use modprobe , you will find it useful to add lines as below to a configuration file in /etc/modprobe.d/
directory:

alias parport lowlevel parport pc
options parport pc 10=0x378,0x278 irqg=7,auto

modprobe will load parport pc (with the options 10=0x378,0x278 irq=7,auto) whenever a parallel port
device driver (such as 1p) is loaded.

Note that these are example lines only! You shouldn’tin general need to specify any options to parport pc
in order to be able to use a parallel port.

191

Linux Kernel User Documentation, Release 4.13.0-rc4+

16.1.2 Parport probe [optional]

In 2.2 kernels there was a module called parport _probe, which was used for collecting IEEE 1284 device
ID information. This has now been enhanced and now lives with the IEEE 1284 support. When a parallel
port is detected, the devices that are connected to it are analysed, and information is logged like this:

Iparporto: Printer, BJC-210 (Canon)

The probe information is available from files in /proc/sys/dev/parport/.

16.2 Parport linked into the kernel statically

If you compile the parport code into the kernel, then you can use kernel boot parameters to get the same

effect. Add something like the following to your LILO command line:

Iparport=0x3bc parport=0x378,7 parport=0x278,auto,nofifo

You can have many parport=...

statements, one for each port you want to add. Adding parport=0

to the kernel command-line will disable parport support entirely. Adding parport=auto to the kernel
command-line will make parport use any IRQ lines or DMA channels that it auto-detects.

16.3 Files in /proc

If you have configured the /proc filesystem into your kernel, you will see a new directory entry:

/proc/sys/dev/parport.

In there will be a directory entry for each parallel port for which parport is

configured. In each of those directories are a collection of files describing that parallel port.

The /proc/sys/dev/parport directory tree looks like:

parport
-- default

p
I
I
I
|__
I
I
I
I
I
I
I
I

N

spintime
timeslice

arport0

autoprobe
autoprobe0
autoprobel
autoprobe2
autoprobe3
devices

| -- active

T 1p

“-- timeslice

base-addr
irq

dma

modes
spintime

- parportl

autoprobe
autoprobe0
autoprobel

autoprobe3
devices

--

| - -

| -- autoprobe2
I--

I

I

I

active
ppa

“-- timeslice

192

Chapter 16. Parport

Linux Kernel User Documentation, Release 4.13.0-rc4+

| -- base-addr
|-- irq
|-- dma
| -- modes
“-- spintime
File Contents
devices/active A list of the device drivers using that port. A “+" will appear by the name
of the device currently using the port (it might not appear against any). The
string “none” means that there are no device drivers using that port.
base-addr Parallel port's base address, or addresses if the port has more than one in
which case they are separated with tabs. These values might not have any
sensible meaning for some ports.
irqg Parallel port's IRQ, or -1 if none is being used.
dma Parallel port’s DMA channel, or -1 if none is being used.
modes Parallel port's hardware modes, comma-separated, meaning:
* PCSPP PC-style SPP registers are available.
* TRISTATE Port is bidirectional.
¢ COMPAT Hardware acceleration for printers is available and will be
used.
 EPP Hardware acceleration for EPP protocol is available and will be used.
 ECP Hardware acceleration for ECP protocol is available and will be
used.
« DMA DMA is available and will be used.
Note that the current implementation will only take advantage of COMPAT and
ECP modes if it has an IRQ line to use.
autoprobe Any IEEE-1284 device ID information that has been acquired from the (non-
IEEE 1284.3) device.
autoprobe[0-3] IEEE 1284 device ID information retrieved from daisy-chain devices that con-
form to IEEE 1284.3.
spintime The number of microseconds to busy-loop while waiting for the peripheral to
respond. You might find that adjusting this improves performance, depending
on your peripherals. This is a port-wide setting, i.e. it applies to all devices
on a particular port.
timeslice The number of milliseconds that a device driver is allowed to keep a port
claimed for. This is advisory, and driver can ignore it if it must.
default/* The defaults for spintime and timeslice. When a new port is registered, it
picks up the default spintime. When a new device is registered, it picks up
the default timeslice.

16.4 Device drivers

Once the parport code is initialised, you can attach device drivers to specific ports. Normally this happens
automatically; if the Ip driver is loaded it will create one Ip device for each port found. You can override
this, though, by using parameters either when you load the Ip driver:

’# insmod lp parport=0,2

or on the LILO command line:

’1p=parport0 lp=parport2

Both the above examples would inform Ip that you want /dev/1p0 to be the first parallel port, and /dev/Ip1
to be the third parallel port, with no Ip device associated with the second port (parportl). Note that this
is different to the way older kernels worked; there used to be a static association between the I/O port
address and the device name, so /dev/1p0 was always the port at 0x3bc. This is no longer the case - if
you only have one port, it will default to being /dev/1p0, regardless of base address.

16.4. Device drivers 193

Linux Kernel User Documentation, Release 4.13.0-rc4+

Also:

* If you selected the IEEE 1284 support at compile time, you can say lp=auto on the kernel command
line, and Ip will create devices only for those ports that seem to have printers attached.

* If you give PLIP the timid parameter, either with plip=timid on the command line, or with insmod
plip timid=1 when using modules, it will avoid any ports that seem to be in use by other devices.

* IRQ autoprobing works only for a few port types at the moment.

16.5 Reporting printer problems with parport

If you are having problems printing, please go through these steps to try to narrow down where the
problem area is.

When reporting problems with parport, really you need to give all of the messages that parport pc spits
out when it initialises. There are several code paths:

e polling

* interrupt-driven, protocol in software

* interrupt-driven, protocol in hardware using PIO
* interrupt-driven, protocol in hardware using DMA

The kernel messages that parport pc logs give an indication of which code path is being used. (They
could be a lot better actually..)

For normal printer protocol, having IEEE 1284 modes enabled or not should not make a difference.

To turn off the ‘protocol in hardware’ code paths, disable CONFIG PARPORT PC FIFO0. Note that when they
are enabled they are not necessarily used; it depends on whether the hardware is available, enabled by
the BIOS, and detected by the driver.

So, to start with, disable CONFIG PARPORT PC FIFO, and load parport pc with irg=none. See if printing
works then. It really should, because this is the simplest code path.

If that works fine, try with 10=0x378 irqg=7 (adjust for your hardware), to make it use interrupt-driven
in-software protocol.

If that works fine, then one of the hardware modes isn’t working right. Enable CONFIG FIFO (no, it isn’t
a module option, and yes, it should be), set the port to ECP mode in the BIOS and note the DMA channel,
and try with:

10=0x378 irqg=7 dma=none (for PIO)
10=0x378 irq=7 dma=3 (for DMA)

philb@gnu.org tim@cyberelk.net

194 Chapter 16. Parport

mailto:philb@gnu.org
mailto:tim@cyberelk.net

CHAPTER
SEVENTEEN

RAID ARRAYS

17.1 Boot time assembly of RAID arrays

Tools that manage md devices can be found at http://www.kernel.org/pub/linux/utils/raid/
You can boot with your md device with the following kernel command lines:

for old raid arrays without persistent superblocks:

’md=<md device no.>,<raid level>,<chunk size factor>,<fault level>,dev0,devl,...,devn

for raid arrays with persistent superblocks:

’md=<md device no.>,dev0,devl,...,devn

or, to assemble a partitionable array:

’md=d<md device no.>,dev0,devl,...,devn

17.1.1 md device no.

The number of the md device

md device no. | device
0 mdO
1 mdl
2 md?2
3 md3
4 md4

17.1.2 raid level

level of the RAID array

raid level | level
-1 linear mode
0 striped mode

other modes are only supported with persistent super blocks

17.1.3 chunk size factor

(raid-0 and raid-1 only)
Set the chunk size as 4k << n.

195

http://www.kernel.org/pub/linux/utils/raid/

Linux Kernel User Documentation, Release 4.13.0-rc4+

17.1.4 fault level

Totally ignored

17.1.5 dev0O to devn

e.g. /dev/hdal, /dev/hdcl, /dev/sdal, /dev/sdbl
A possible loadlin line (Harald Hoyer <HarryH@Royal.Net>) looks like this:

’e:\loadlin\loadlin e:\zimage root=/dev/md0 md=0,0,4,0,/dev/hdb2,/dev/hdc3 ro

17.2 Boot time autodetection of RAID arrays

When md is compiled into the kernel (not as module), partitions of type 0xfd are scanned and auto-
matically assembled into RAID arrays. This autodetection may be suppressed with the kernel parameter
raid=noautodetect. As of kernel 2.6.9, only drives with a type 0 superblock can be autodetected and

run at boot time.
The kernel parameter raid=partitionable (or raid=part) means that all auto-detected arrays are as-
sembled as partitionable.

17.3 Boot time assembly of degraded/dirty arrays

If a raid5 or raid6 array is both dirty and degraded, it could have undetectable data corruption. This is
because the fact that it is dirty means that the parity cannot be trusted, and the fact that it is degraded
means that some datablocks are missing and cannot reliably be reconstructed (due to no parity).

For this reason, md will normally refuse to start such an array. This requires the sysadmin to take action
to explicitly start the array despite possible corruption. This is normally done with:

mdadm --assemble --force

This option is not really available if the array has the root filesystem on it. In order to support this booting
from such an array, md supports a module parameter start dirty degraded which, when set to 1,
bypassed the checks and will allows dirty degraded arrays to be started.

So, to boot with a root filesystem of a dirty degraded raid 5 or 6, use:

’ md-mod.start _dirty degraded=1

17.4 Superblock formats

The md driver can support a variety of different superblock formats. Currently, it supports superblock
formats 0.90.0 and the md-1 format introduced in the 2.5 development series.

The kernel will autodetect which format superblock is being used.
Superblock format 0 is treated differently to others for legacy reasons - it is the original superblock format.

196 Chapter 17. RAID arrays

mailto:HarryH@Royal.Net

Linux Kernel User Documentation, Release 4.13.0-rc4+

17.5 General Rules - apply for all superblock formats

An array is created by writing appropriate superblocks to all devices.

It is assembled by associating each of these devices with an particular md virtual device. Once it is
completely assembled, it can be accessed.

An array should be created by a user-space tool. This will write superblocks to all devices. It will usu-
ally mark the array as unclean, or with some devices missing so that the kernel md driver can create
appropriate redundancy (copying in raid 1, parity calculation in raid 4/5).

When an array is assembled, it is first initialized with the SET_ARRAY_INFO ioctl. This contains, in particular,
a major and minor version number. The major version number selects which superblock format is to be
used. The minor number might be used to tune handling of the format, such as suggesting where on each
device to look for the superblock.

Then each device is added using the ADD_NEW _DISK ioctl. This provides, in particular, a major and minor
number identifying the device to add.

The array is started with the RUN_ARRAY ioctl.

Once started, new devices can be added. They should have an appropriate superblock written to them,
and then be passed in with ADD_NEW_DISK.

Devices that have failed or are not yet active can be detached from an array using HOT_REMOVE_DISK.

17.6 Specific Rules that apply to format-0 super block arrays, and
arrays with no superblock (non-persistent)

An array can be created by describing the array (level, chunksize etc) in a SET_ARRAY_INFO ioctl. This
must have major _version==0 and raid disks != 0.

Then uninitialized devices can be added with ADD_NEW DISK. The structure passed to ADD_NEW_DISK
must specify the state of the device and its role in the array.

Once started with RUN_ARRAY, uninitialized spares can be added with HOT_ADD_DISK.

17.7 MD devices in sysfs

md devices appear in sysfs (/sys) as regular block devices, e.g.:

’ /sys/block/md0@

Each md device will contain a subdirectory called md which contains further md-specific information about
the device.

All md devices contain:

level a text file indicating the raid level. e.qg. raid0, raidl, raid5, linear, multipath, faulty. If
no raid level has been set yet (array is still being assembled), the value will reflect whatever
has been written to it, which may be a name like the above, or may be a number such as
0, 5, etc.

raid_disks a text file with a simple number indicating the number of devices in a fully functional
array. If this is not yet known, the file will be empty. If an array is being resized this will
contain the new number of devices. Some raid levels allow this value to be set while the
array is active. This will reconfigure the array. Otherwise it can only be set while assembling
an array. A change to this attribute will not be permitted if it would reduce the size of the
array. To reduce the number of drives in an e.g. raid5, the array size must first be reduced
by setting the array size attribute.

17.5. General Rules - apply for all superblock formats 197

Linux Kernel User Documentation, Release 4.13.0-rc4+

chunk_size This is the size in bytes for chunks and is only relevant to raid levels that involve
striping (0,4,5,6,10). The address space of the array is conceptually divided into chunks
and consecutive chunks are striped onto neighbouring devices. The size should be at least
PAGE_SIZE (4k) and should be a power of 2. This can only be set while assembling an array

layout The layout for the array for the particular level. This is simply a number that is inter-
pretted differently by different levels. It can be written while assembling an array.

array_size This can be used to artificially constrain the available space in the array to be less
than is actually available on the combined devices. Writing a number (in Kilobytes) which
is less than the available size will set the size. Any reconfiguration of the array (e.g. adding
devices) will not cause the size to change. Writing the word default will cause the effective
size of the array to be whatever size is actually available based on level, chunk size and
component_size.

This can be used to reduce the size of the array before reducing the number of devices in
a raid4/5/6, or to support external metadata formats which mandate such clipping.

reshape_position This is either none or a sector number within the devices of the array where
reshape is up to. If this is set, the three attributes mentioned above (raid_disks, chunk_size,
layout) can potentially have 2 values, an old and a new value. If these values differ, reading
the attribute returns:

new (old)

and writing will effect the new value, leaving the old unchanged.

component_size For arrays with data redundancy (i.e. not raidO, linear, faulty, multipath),
all components must be the same size - or at least there must a size that they all provide
space for. This is a key part or the geometry of the array. It is measured in sectors and can
be read from here. Writing to this value may resize the array if the personality supports it
(raidl, raid5, raid6), and if the component drives are large enough.

metadata_version This indicates the format that is being used to record metadata about the
array. It can be 0.90 (traditional format), 1.0, 1.1, 1.2 (newer format in varying locations)
or none indicating that the kernel isn’t managing metadata at all. Alternately it can be
external: followed by a string which is set by user-space. This indicates that metadata
is managed by a user-space program. Any device failure or other event that requires a
metadata update will cause array activity to be suspended until the event is acknowledged.

resync_start The point at which resync should start. If no resync is needed, this will be a very
large number (or none since 2.6.30-rcl). At array creation it will default to 0, though starting
the array as clean will set it much larger.

new_dev This file can be written but not read. The value written should be a block device
number as major:minor. e.g. 8:0 This will cause that device to be attached to the array, if it
is available. It will then appear at md/dev-XXX (depending on the name of the device) and
further configuration is then possible.

safe_mode_delay When an md array has seen no write requests for a certain period of time,
it will be marked as clean. When another write request arrives, the array is marked as
dirty before the write commences. This is known as safe mode. The certain period
is controlled by this file which stores the period as a number of seconds. The default is
200msec (0.200). Writing a value of 0 disables safemode.

array_state This file contains a single word which describes the current state of the array. In
many cases, the state can be set by writing the word for the desired state, however some
states cannot be explicitly set, and some transitions are not allowed.

Select/poll works on this file. All changes except between Active_idle and active (which can
be frequent and are not very interesting) are notified. active->active_idle is reported if the
metadata is externally managed.

clear No devices, no size, no level

198 Chapter 17. RAID arrays

Linux Kernel User Documentation, Release 4.13.0-rc4+

Writing is equivalent to STOP_ARRAY ioctl
inactive May have some settings, but array is not active all 10 results in error
When written, doesn’t tear down array, but just stops it

suspended (not supported yet) All IO requests will block. The array can be reconfig-
ured.

Writing this, if accepted, will block until array is quiessent
readonly no resync can happen. no superblocks get written.

Write requests fail
read-auto like readonly, but behaves like clean on a write request.
clean no pending writes, but otherwise active.

When written to inactive array, starts without resync

If a write request arrives then if metadata is known, mark dirty and switch to active.
if not known, block and switch to write-pending

If written to an active array that has pending writes, then fails.

active fully active: 10 and resync can be happening. When written to inactive array, starts
with resync

write-pending clean, but writes are blocked waiting for active to be written.
active-idle like active, but no writes have been seen for a while (safe_mode_delay).
bitmap/location This indicates where the write-intent bitmap for the array is stored.

It can be one of none, file or [+-]N. file may later be extended to file:/file/name
[+-IN means that many sectors from the start of the metadata.

This is replicated on all devices. For arrays with externally managed metadata, the offset
is from the beginning of the device.

bitmap/chunksize The size, in bytes, of the chunk which will be represented by a single bit.
For RAID456, it is a portion of an individual device. For RAID10, it is a portion of the array.
For RAID1, it is both (they come to the same thing).

bitmap/time_base The time, in seconds, between looking for bits in the bitmap to be cleared.
In the current implementation, a bit will be cleared between 2 and 3 times time base after
all the covered blocks are known to be in-sync.

bitmap/backlog When write-mostly devices are active in a RAID1, write requests to those
devices proceed in the background - the filesystem (or other user of the device) does not
have to wait for them. backlog sets a limit on the number of concurrent background writes.
If there are more than this, new writes will by synchronous.

bitmap/metadata This can be either internal or external.

internal is the default and means the metadata for the bitmap is stored in the first 256
bytes of the allocated space and is managed by the md module.

external means that bitmap metadata is managed externally to the kernel (i.e. by some
userspace program)

bitmap/can_clear This is either true or false. If true, then bits in the bitmap will be cleared
when the corresponding blocks are thought to be in-sync. If false, bits will never be
cleared. This is automatically set to false if a write happens on a degraded array, or if the
array becomes degraded during a write. When metadata is managed externally, it should
be set to true once the array becomes non-degraded, and this fact has been recorded in
the metadata.

consistency_policy This indicates how the array maintains consistency in case of unexpected
shutdown. It can be:

17.7. MD devices in sysfs 199

Linux Kernel User Documentation, Release 4.13.0-rc4+

none Array has no redundancy information, e.g. raid0, linear.

resync Full resyncis performed and all redundancy is regenerated when the array is started
after unclean shutdown.

bitmap Resync assisted by a write-intent bitmap.

journal For raid4/5/6, journal device is used to log transactions and replay after unclean
shutdown.

ppl For raid5 only, Partial Parity Log is used to close the write hole and eliminate resync.

The accepted values when writing to this file are ppl and resync, used to enable and disable
PPL.

As component devices are added to an md array, they appear in the md directory as new directories
named:

’dev-XXX

where XXX is a name that the kernel knows for the device, e.g. hdbl. Each directory contains:

block a symlink to the block device in /sys/block, e.qg.:

’/sys/block/md@/md/dev-hdbl/block -> ../../../../block/hdb/hdbl ‘

super A file containing an image of the superblock read from, or written to, that device.

state A file recording the current state of the device in the array which can be a comma sepa-
rated list of:

faulty device has been kicked from active use due to a detected fault, or it has
unacknowledged bad blocks

in_sync device is a fully in-sync member of the array

writemostly device will only be subject to read requests if there are no other op-
tions.

This applies only to raidl arrays.

blocked device has failed, and the failure hasn’t been acknowledged yet by the
metadata handler.

Writes that would write to this device if it were not faulty are blocked.
spare device is working, but not a full member.

This includes spares that are in the process of being recovered to
write_error device has ever seen a write error.

want_replacement device is (mostly) working but probably should be replaced,
either due to errors or due to user request.

replacement device is a replacement for another active device with same
raid_disk.

This list may grow in future.

This can be written to.

Writing faulty simulates a failure on the device.
Writing remove removes the device from the array.
Writing writemostly sets the writemostly flag.
Writing -writemostly clears the writemostly flag.
Writing blocked sets the blocked flag.

200 Chapter 17. RAID arrays

Linux Kernel User Documentation, Release 4.13.0-rc4+

Writing -blocked clears the blocked flags and allows writes to complete and possibly sim-
ulates an error.

Writing in_sync sets the in_sync flag.
Writing write error sets writeerrorseen flag.
Writing -write error clears writeerrorseen flag.

Writingwant _replacement is allowed at any time except to a replacement device or a spare.
It sets the flag.

Writing -want_replacement is allowed at any time. It clears the flag.

Writing replacement or -replacement is only allowed before starting the array. It sets or
clears the flag.

This file responds to select/poll. Any change to faulty or blocked causes an event.

errors An approximate count of read errors that have been detected on this device but have
not caused the device to be evicted from the array (either because they were corrected or
because they happened while the array was read-only). When using version-1 metadata,
this value persists across restarts of the array.

This value can be written while assembling an array thus providing an ongoing count for
arrays with metadata managed by userspace.

slot This gives the role that the device has in the array. It will either be none if the device is
not active in the array (i.e. is a spare or has failed) or an integer less than the raid disks
number for the array indicating which position it currently fills. This can only be set while
assembling an array. A device for which this is set is assumed to be working.

offset This gives the location in the device (in sectors from the start) where data from the array
will be stored. Any part of the device before this offset is not touched, unless it is used for
storing metadata (Formats 1.1 and 1.2).

size The amount of the device, after the offset, that can be used for storage of data. This will
normally be the same as the component_size. This can be written while assembling an
array. If a value less than the current component_size is written, it will be rejected.

recovery_start When the device is not in_sync, this records the number of sectors from the
start of the device which are known to be correct. This is normally zero, but during a
recovery operation it will steadily increase, and if the recovery is interrupted, restoring this
value can cause recovery to avoid repeating the earlier blocks. With v1.x metadata, this
value is saved and restored automatically.

This can be set whenever the device is not an active member of the array, either before
the array is activated, or before the slot is set.

Setting this to none is equivalent to setting in_sync. Setting to any other value also clears
the in sync flag.

bad_blocks This gives the list of all known bad blocks in the form of start address and length
(in sectors respectively). If output is too big to fit in a page, it will be truncated. Writing
sector length to this file adds new acknowledged (i.e. recorded to disk safely) bad blocks.

unacknowledged bad blocks This gives the list of known-but-not-yet-saved-to-disk bad
blocks in the same form of bad blocks. If output is too big to fit in a page, it will be
truncated. Writing to this file adds bad blocks without acknowledging them. This is largely
for testing.

ppl_sector, ppl_size Location and size (in sectors) of the space used for Partial Parity Log on
this device.

An active md device will also contain an entry for each active device in the array. These are named:

rdNN

17.7. MD devices in sysfs 201

Linux Kernel User Documentation, Release 4.13.0-rc4+

where NN is the position in the array, starting from 0. So for a 3 drive array there will be rd0, rd1, rd2.
These are symbolic links to the appropriate dev-XXX entry. Thus, for example:

cat /sys/block/md*/md/rd*/state

will show in_sync on every line.
Active md devices for levels that support data redundancy (1,4,5,6,10) also have

sync_action a text file that can be used to monitor and control the rebuild process. It contains
one word which can be one of:

resync redundancy is being recalculated after unclean shutdown or creation
recover a hot spare is being built to replace a failed/missing device
idle nothing is happening

check A full check of redundancy was requested and is happening. This
reads all blocks and checks them. A repair may also happen for some raid
levels.

repair A full check and repairis happening. This is similar to resync, but was
requested by the user, and the write-intent bitmap is NOT used to optimise
the process.

This file is writable, and each of the strings that could be read are meaningful for
writing.

idle will stop an active resync/recovery etc. There is no guarantee that an-
other resync/recovery may not be automatically started again, though some
event will be needed to trigger this.

resync or recovery can be used to restart the corresponding operation if it
was stopped with idle.

check and repair will start the appropriate process providing the current
state is idle.

This file responds to select/poll. Any important change in the value triggers a poll
event. Sometimes the value will briefly be recover if a recovery seems to be
needed, but cannot be achieved. In that case, the transition to recover isn’t noti-
fied, but the transition away is.

degraded This contains a count of the number of devices by which the arrays is degraded. So
an optimal array will show 0. A single failed/missing drive will show 1, etc.

This file responds to select/poll, any increase or decrease in the count of missing devices
will trigger an event.

mismatch_count When performing check and repair, and possibly when performing resync,
md will count the number of errors that are found. The countinmismatch cntis the number
of sectors that were re-written, or (for check) would have been re-written. As most raid
levels work in units of pages rather than sectors, this may be larger than the number of
actual errors by a factor of the number of sectors in a page.

bitmap_set_bits If the array has a write-intent bitmap, then writing to this attribute can set bits
in the bitmap, indicating that a resync would need to check the corresponding blocks. Either
individual numbers or start-end pairs can be written. Multiple numbers can be separated
by a space.

Note that the numbers are bit numbers, not block numbers. They should be scaled by the
bitmap_chunksize.

sync_speed_min, sync_speed_max This aresimilarto /proc/sys/dev/raid/speed limit {min,max}
however they only apply to the particular array.

202 Chapter 17. RAID arrays

Linux Kernel User Documentation, Release 4.13.0-rc4+

If no value has been written to these, or if the word system is written, then the system-wide
value is used. If a value, in kibibytes-per-second is written, then it is used.

When the files are read, they show the currently active value followed by (local) or (sys-
tem) depending on whether it is a locally set or system-wide value.

sync_completed This shows the number of sectors that have been completed of whatever the
current sync_action is, followed by the number of sectors in total that could need to be
processed. The two numbers are separated by a / thus effectively showing one value, a
fraction of the process that is complete.

A select on this attribute will return when resync completes, when it reaches the current
sync_max (below) and possibly at other times.

sync_speed This shows the current actual speed, in K/sec, of the current sync_action. It is
averaged over the last 30 seconds.

suspend_lo, suspend_hi The two values, given as numbers of sectors, indicate a range within
the array where 10 will be blocked. This is currently only supported for raid4/5/6.

sync_min, sync_max The two values, given as numbers of sectors, indicate a range within
the array where check/repair will operate. Must be a multiple of chunk size. When it
reaches sync_max it will pause, rather than complete. You can use select or poll on
sync_completed to wait for that number to reach sync_max. Then you can either increase
sync_max, or can write idle to sync_action.

The value of max for sync_max effectively disables the limit. When a resync is active, the
value can only ever be increased, never decreased. The value of 0 is the minimum for
sync_min.

Each active md device may also have attributes specific to the personality module that manages it. These
are specific to the implementation of the module and could change substantially if the implementation
changes.

These currently include:

stripe_cache_size (currently raid5 only) number of entries in the stripe cache. This is
writable, but there are upper and lower limits (32768, 17). Default is 256.

strip_cache_active (currently raid5 only) number of active entries in the stripe cache

preread_bypass_threshold (currently raid5 only) number of times a stripe requiring pre-
read will be bypassed by a stripe that does not require preread. For fairness defaults to 1.
Setting this to 0 disables bypass accounting and requires preread stripes to wait until all
full-width stripe- writes are complete. Valid values are 0 to stripe_cache_size.

journal_mode (currently raid5 only) The cache mode for raid5. raid5 could include an extra
disk for caching. The mode can be “write-throuth” and “write-back”. The default is “write-
through”.

17.7. MD devices in sysfs 203

Linux Kernel User Documentation, Release 4.13.0-rc4+

204 Chapter 17. RAID arrays

CHAPTER
EIGHTEEN

KERNEL MODULE SIGNING FACILITY

18.1 Overview

The kernel module signing facility cryptographically signs modules during installation and then checks
the signature upon loading the module. This allows increased kernel security by disallowing the loading
of unsigned modules or modules signed with an invalid key. Module signing increases security by making
it harder to load a malicious module into the kernel. The module signature checking is done by the kernel
so that it is not necessary to have trusted userspace bits.

This facility uses X.509 ITU-T standard certificates to encode the public keys involved. The signatures
are not themselves encoded in any industrial standard type. The facility currently only supports the RSA
public key encryption standard (though it is pluggable and permits others to be used). The possible
hash algorithms that can be used are SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512 (the algorithm is
selected by data in the signature).

18.2 Configuring module signing

The module signing facility is enabled by going to the Enable Loadable Module Support section of the
kernel configuration and turning on:

’CONFIG_MODULE_SIG "Module signature verification"

This has a number of options available:
1. Require modules to be validly signed (CONFIG MODULE SIG FORCE)

This specifies how the kernel should deal with a module that has a signature for which the key is not
known or a module that is unsigned.

If this is off (ie. “permissive”), then modules for which the key is not available and modules that are
unsigned are permitted, but the kernel will be marked as being tainted, and the concerned modules
will be marked as tainted, shown with the character ‘E’.

If this is on (ie. “restrictive”), only modules that have a valid signature that can be verified by a public
key in the kernel’s possession will be loaded. All other modules will generate an error.

Irrespective of the setting here, if the module has a signature block that cannot be parsed, it will be
rejected out of hand.

2. Automatically sign all modules (CONFIG_MODULE SIG ALL)

If this is on then modules will be automatically signed during the modules_install phase of a build. If
this is off, then the modules must be signed manually using:

scripts/sign-file

3. Which hash algorithm should modules be signed with?

This presents a choice of which hash algorithm the installation phase will sign the modules with:

205

Linux Kernel User Documentation, Release 4.13.0-rc4+

CONFIG MODULE SIG SHA1l Sign modules with SHA-1

CONFIG MODULE SIG SHA224 | Sign modules with SHA-224
CONFIG_MODULE SIG SHA256 | Sign modules with SHA-256
CONFIG_MODULE SIG SHA384 | Sign modules with SHA-384
CONFIG_MODULE SIG SHA512 | Sign modules with SHA-512

The algorithm selected here will also be built into the kernel (rather than being a module) so that
modules signed with that algorithm can have their signatures checked without causing a dependency
loop.

4. File name or PKCS#11 URI of module signing key (CONFIG_MODULE SIG KEY)

Setting this option to something other than its default of certs/signing key.pem will disable the
autogeneration of signing keys and allow the kernel modules to be signed with a key of your choos-
ing. The string provided should identify a file containing both a private key and its corresponding
X.509 certificate in PEM form, or — on systems where the OpenSSL ENGINE_ pkcs11 is functional —
a PKCS#11 URI as defined by RFC7512. In the latter case, the PKCS#11 URI should reference both a
certificate and a private key.

If the PEM file containing the private key is encrypted, or if the PKCS#11 token requries a PIN, this
can be provided at build time by means of the KBUILD SIGN PIN variable.

5. Additional X.509 keys for default system keyring (CONFIG_SYSTEM TRUSTED KEYS)

This option can be set to the filename of a PEM-encoded file containing additional certificates which
will be included in the system keyring by default.

Note that enabling module signing adds a dependency on the OpenSSL devel packages to the kernel build
processes for the tool that does the signing.

18.3 Generating signing keys

Cryptographic keypairs are required to generate and check signatures. A private key is used to generate
a signature and the corresponding public key is used to check it. The private key is only needed during
the build, after which it can be deleted or stored securely. The public key gets built into the kernel so that
it can be used to check the signatures as the modules are loaded.

Under normal conditions, when CONFIG MODULE SIG KEY is unchanged from its default, the kernel build
will automatically generate a new keypair using openssl if one does not exist in the file:

’certs/signingikey.pem ‘

during the building of vmlinux (the public part of the key needs to be built into vmlinux) using parameters
in the:

’certs/x509.genkey ‘

file (which is also generated if it does not already exist).
It is strongly recommended that you provide your own x509.genkey file.

Most notably, in the x509.genkey file, the req_distinguished_name section should be altered from the
default:

[req distinguished name]

#0 = Unspecified company

CN = Build time autogenerated kernel key
#emailAddress = unspecified.user@unspecified.company

The generated RSA key size can also be set with:

[req]
default bits = 4096

206 Chapter 18. Kernel module signing facility

Linux Kernel User Documentation, Release 4.13.0-rc4+

[]

It is also possible to manually generate the key private/public files using the x509.genkey key generation
configuration file in the root node of the Linux kernel sources tree and the openssl command. The following
is an example to generate the public/private key files:

openssl req -new -nodes -utf8 -sha256 -days 36500 -batch -x509 \
-config x509.genkey -outform PEM -out kernel key.pem \
-keyout kernel key.pem

The full pathname for the resulting kernel key.pem file can then be specified in the CON-
FIG _MODULE SIG KEY option, and the certificate and key therein will be used instead of an autogenerated
keypair.

18.4 Public keys in the kernel

The kernel contains a ring of public keys that can be viewed by root. They’'re in a keyring called ”.sys-
tem_keyring” that can be seen by:

[root@deneb ~]# cat /proc/keys

223c¢7853 I------ 1 perm 1030000 0 0 keyring .system keyring: 1
302d2d52 I------ 1 perm 1f010000 0 0 asymmetri Fedora kernel signing key: ,
—.d69a84e6bce3d216b979e9505b3e3ef9a7118079: X509.RSA a7118079 []

Beyond the public key generated specifically for module signing, additional trusted certificates can be
provided in a PEM-encoded file referenced by the CONFIG_SYSTEM TRUSTED KEYS configuration option.

Further, the architecture code may take public keys from a hardware store and add those in also (e.qg.
from the UEFI key database).

Finally, it is possible to add additional public keys by doing:

’keyctl padd asymmetric "" [.system keyring-ID] <[key-file] ‘

e.g.:
’keyctl padd asymmetric "" 0x223c7853 <my public_key.x509 ‘

Note, however, that the kernel will only permit keys to be added to .system keyring if the new key’s
X.509 wrapper is validly signed by a key that is already resident in the .system_keyring at the time the
key was added.

18.5 Manually signing modules

To manually sign a module, use the scripts/sign-file tool available in the Linux kernel source tree. The
script requires 4 arguments:

1. The hash algorithm (e.g., sha256)

2. The private key filename or PKCS#11 URI
3. The public key filename

4. The kernel module to be signed

The following is an example to sign a kernel module:

18.4. Public keys in the kernel 207

Linux Kernel User Documentation, Release 4.13.0-rc4+

scripts/sign-file sha512 kernel-signkey.priv \
kernel-signkey.x509 module.ko

The hash algorithm used does not have to match the one configured, but if it doesn’t, you should make
sure that hash algorithm is either built into the kernel or can be loaded without requiring itself.

If the private key requires a passphrase or PIN, it can be provided in the $KBUILD_SIGN_PIN environment
variable.

18.6 Signed modules and stripping

A signed module has a digital signature simply appended at the end. The string ~Module signature
appended~. at the end of the module’s file confirms that a signature is present but it does not confirm
that the signature is valid!

Signed modules are BRITTLE as the signature is outside of the defined ELF container. Thus they MAY NOT
be stripped once the signature is computed and attached. Note the entire module is the signed payload,
including any and all debug information present at the time of signing.

18.7 Loading signed modules

Modules are loaded with insmod, modprobe, init module() or finit module(), exactly as for unsigned
modules as no processing is done in userspace. The signature checking is all done within the kernel.

18.8 Non-valid signatures and unsigned modules

If CONFIG_MODULE_SIG FORCE is enabled or module.sig_enforce=1 is supplied on the kernel command
line, the kernel will only load validly signed modules for which it has a public key. Otherwise, it will also
load modules that are unsigned. Any module for which the kernel has a key, but which proves to have a
signature mismatch will not be permitted to load.

Any module that has an unparseable signature will be rejected.

18.9 Administering/protecting the private key

Since the private key is used to sign modules, viruses and malware could use the private key to sign
modules and compromise the operating system. The private key must be either destroyed or moved to a
secure location and not kept in the root node of the kernel source tree.

If you use the same private key to sign modules for multiple kernel configurations, you must ensure that
the module version information is sufficient to prevent loading a module into a different kernel. Either set
CONFIG_MODVERSIONS=y or ensure that each configuration has a different kernel release string by changing
EXTRAVERSION or CONFIG_LOCALVERSION.

208 Chapter 18. Kernel module signing facility

CHAPTER
NINETEEN

LINUX MAGIC SYSTEM REQUEST KEY HACKS

Documentation for sysrq.c

19.1 What is the magic SysRq key?

It is a ‘magical’ key combo you can hit which the kernel will respond to regardless of whatever else it is
doing, unless it is completely locked up.

19.2 How do I enable the magic SysRq key?

You need to say “yes” to ‘Magic SysRqgq key (CONFIG_MAGIC SYSRQ)' when configuring the ker-
nel. When running a kernel with SysRq compiled in, /proc/sys/kernel/sysrq controls the functions
allowed to be invoked via the SysRq key. The default value in this file is set by the CON-
FIG_MAGIC_SYSRQ DEFAULT _ENABLE config symbol, which itself defaults to 1. Here is the list of possible
values in /proc/sys/kernel/sysrq:

* 0 - disable sysrg completely
* 1 - enable all functions of sysrq

e >1 - bitmask of allowed sysrq functions (see below for detailed function description):

2 = 0x2 - enable control of console logging level
4 = 0x4 - enable control of keyboard (SAK, unraw)
8 = 0Ox8 - enable debugging dumps of processes etc.
16 = 0x10 - enable sync command
32 = 0x20 - enable remount read-only
64 = 0x40 - enable signalling of processes (term, kill, oom-kill)
128 = 0x80 - allow reboot/poweroff
256 = 0x100 - allow nicing of all RT tasks

You can set the value in the file by the following command:

echo "number" >/proc/sys/kernel/sysrq

The number may be written here either as decimal or as hexadecimal with the Ox prefix. CON-
FIG_MAGIC_SYSRQ_DEFAULT_ENABLE must always be written in hexadecimal.

Note that the value of /proc/sys/kernel/sysrqginfluences only the invocation via a keyboard. Invocation
of any operation via /proc/sysrq-trigger is always allowed (by a user with admin privileges).

19.3 How do I use the magic SysRq key?

On x86 - You press the key combo ALT-SysRqg-<command key>.

209

Linux Kernel User Documentation, Release 4.13.0-rc4+

Note:

Some keyboards may not have a key labeled ‘SysRq’. The ‘SysRq’ key is also known as the ‘Print
Screen’ key. Also some keyboards cannot handle so many keys being pressed at the same time, so
you might have better luck with press Alt, press SysRq, release SysRq, press <command key>, release
everything.

On SPARC - You press ALT-STOP-<command key>, | believe.

On the serial console (PC style standard serial ports only) You send a BREAK, then within 5 sec-
onds a command key. Sending BREAK twice is interpreted as a normal BREAK.

On PowerPC Press ALT -Print Screen (or F13) - <command key>, Print Screen (or F13) - <command
key> may suffice.

On other If you know of the key combos for other architectures, please let me know so | can add them
to this section.

On all write a character to /proc/sysrg-trigger. e.qg.:

echo t > /proc/sysrq-trigger

210 Chapter 19. Linux Magic System Request Key Hacks

Linux Kernel User Documentation, Release 4.13.0-rc4+

19.4 What are the ‘command’ keys?

Com- Function
mand
b Will immediately reboot the system without syncing or unmounting your disks.

C Will perform a system crash by a NULL pointer dereference. A crashdump will be taken if
configured.

Shows all locks that are held.

Send a SIGTERM to all processes, except for init.

Will call the oom killer to kill a memory hog process, but do not panic if nothing can be killed.
Used by kgdb (kernel debugger)

Will display help (actually any other key than those listed here will display help. but h is easy
to remember :-)

Send a SIGKILL to all processes, except for init.

Forcibly “Just thaw it” - filesystems frozen by the FIFREEZE ioctl.

Secure Access Key (SAK) Kills all programs on the current virtual console. NOTE: See
important comments below in SAK section.

Shows a stack backtrace for all active CPUs.

Will dump current memory info to your console.

Used to make RT tasks nice-able

Will shut your system off (if configured and supported).

Will dump the current registers and flags to your console.

Will dump per CPU lists of all armed hrtimers (but NOT regular timer_list timers) and detailed
information about all clockevent devices.

Turns off keyboard raw mode and sets it to XLATE.

Will attempt to sync all mounted filesystems.

Will dump a list of current tasks and their information to your console.

Will attempt to remount all mounted filesystems read-only.

Forcefully restores framebuffer console

Causes ETM buffer dump [ARM-specific]

Dumps tasks that are in uninterruptable (blocked) state.

Used by xmon interface on ppc/powerpc platforms. Show global PMU Registers on sparc64.
Dump all TLB entries on MIPS.

Show global CPU Registers [SPARC-64 specific]

Dump the ftrace buffer

-9 Sets the console log level, controlling which kernel messages will be printed to your console.
(0, for example would make it so that only emergency messages like PANICs or OOPSes
would make it to your console.)

SQ|—h D

-

x| =

QO T|O|35|3|

Xl g <|<|c|H 0|

OIN <<

19.5 Okay, so what can I use them for?

Well, unraw(r) is very handy when your X server or a svgalib program crashes.

sak(k) (Secure Access Key) is useful when you want to be sure there is no trojan program running at
console which could grab your password when you would try to login. It will kill all programs on given
console, thus letting you make sure that the login prompt you see is actually the one from init, not some
trojan program.

Important:

In its true form it is not a true SAK like the one in a c2 compliant system, and it should not be mistaken
as such.

It seems others find it useful as (System Attention Key) which is useful when you want to exit a program

19.4. What are the ‘command’ keys? 211

Linux Kernel User Documentation, Release 4.13.0-rc4+

that will not let you switch consoles. (For example, X or a svgalib program.)
reboot (b) is good when you're unable to shut down. But you should also sync(s) and umount (u) first.

crash(c) can be used to manually trigger a crashdump when the system is hung. Note that this just
triggers a crash if there is no dump mechanism available.

sync(s) is great when your system is locked up, it allows you to sync your disks and will certainly lessen
the chance of data loss and fscking. Note that the sync hasn’t taken place until you see the “OK” and
“Done” appear on the screen. (If the kernel is really in strife, you may not ever get the OK or Done
message...)

umount(u) is basically useful in the same ways as sync(s). | generally sync(s), umount(u), then re-
boot (b) when my system locks. It's saved me many a fsck. Again, the unmount (remount read-only)
hasn’t taken place until you see the “OK” and “Done” message appear on the screen.

The loglevels 0-9 are useful when your console is being flooded with kernel messages you do not want to
see. Selecting 0 will prevent all but the most urgent kernel messages from reaching your console. (They
will still be logged if syslogd/klogd are alive, though.)

term(e) and kill(1i) are useful if you have some sort of runaway process you are unable to kill any other
way, especially if it's spawning other processes.

“justthaw it (j)" is useful if your system becomes unresponsive due to a frozen (probably root) filesystem
via the FIFREEZE ioctl.

19.6 Sometimes SysRq seems to get ‘stuck’ after using it, what
can I do?

That happens to me, also. I've found that tapping shift, alt, and control on both sides of the keyboard, and
hitting an invalid sysrq sequence again will fix the problem. (i.e., something like alt-sysrqg-z). Switching
to another virtual console (ALT+Fn) and then back again should also help.

19.7 1 hit SysRq, but nothing seems to happen, what’s wrong?

There are some keyboards that produce a different keycode for SysRq than the pre-defined value of 99
(see KEY _SYSRQ in include/uapi/linux/input-event-codes.h), or which don't have a SysRqg key at
all. In these cases, run showkey -s to find an appropriate scancode sequence, and use setkeycodes
<sequence> 99 to map this sequence to the usual SysRq code (e.g., setkeycodes e05b 99). It’'s probably
best to put this command in a boot script. Oh, and by the way, you exit showkey by not typing anything
for ten seconds.

19.8 T want to add SysRQ key events to a module, how does it
work?

In order to register a basic function with the table, you must first include the header in-
clude/linux/sysrq.h, this will define everything else you need. Next, you must create a sysrq_key op
struct, and populate it with A) the key handler function you will use, B) a help_msg string, that will print
when SysRQ prints help, and C) an action_msg string, that will print right before your handler is called.
Your handler must conform to the prototype in ‘sysrg.h’.

After the sysrq key op is created, you can call the kernel function register sysrq key(int
key,struct sysrq key op *op p); this will register the operation pointed to by op p at table key
‘key’, if that slot in the table is blank. At module unload time, you must call the function unregis-
ter sysrq key(int key,struct sysrq key op *op p), which will remove the key op pointed to by

212 Chapter 19. Linux Magic System Request Key Hacks

Linux Kernel User Documentation, Release 4.13.0-rc4+

‘op_p’ from the key ‘key’, if and only if it is currently registered in that slot. This is in case the slot has
been overwritten since you registered it.

The Magic SysRQ system works by registering key operations against a key op lookup table, which is
defined in ‘drivers/tty/sysrg.c’. This key table has a number of operations registered into it at compile
time, but is mutable, and 2 functions are exported for interface to it:

register sysrq key and unregister sysrqg key.

Of course, never ever leave an invalid pointer in the table. l.e., when your module that called regis-
ter_sysrq_key() exits, it must call unregister_sysrqg_key() to clean up the sysrq key table entry that it used.
Null pointers in the table are always safe. :)

If for some reason you feel the need to call the handle_sysrq function from within a function called by
handle_sysrqg, you must be aware that you are in a lock (you are also in an interrupt handler, which means
don’t sleep!), so you must call handle sysrq nolock instead.

19.9 When I hit a SysRq key combination only the header appears
on the console?

Sysrq output is subject to the same console loglevel control as all other console output. This means that
if the kernel was booted ‘quiet’ as is common on distro kernels the output may not appear on the actual
console, even though it will appear in the dmesg buffer, and be accessible via the dmesg command and to
the consumers of /proc/kmsg. As a specific exception the header line from the sysrqg command is passed
to all console consumers as if the current loglevel was maximum. If only the header is emitted it is almost
certain that the kernel loglevel is too low. Should you require the output on the console channel then you
will need to temporarily up the console loglevel using alt-sysrqg-8 or:

’echo 8 > /proc/sysrq-trigger

Remember to return the loglevel to normal after triggering the sysrqg command you are interested in.

19.10 I have more questions, who can I ask?

Just ask them on the linux-kernel mailing list: linux-kernel@vger.kernel.org

19.11 Credits

Written by Mydraal <vulpyne@vulpyne.net> Updated by Adam Sulmicki <adam@cfar.umd.edu> Up-
dated by Jeremy M. Dolan <jmd@turbogeek.org> 2001/01/28 10:15:59 Added to by Crutcher Dunnavant
<crutcher+kernel@datastacks.com>

19.9. When I hit a SysRq key combination only the header appears on the console? 213

mailto:linux-kernel@vger.kernel.org
mailto:vulpyne@vulpyne.net
mailto:adam@cfar.umd.edu
mailto:jmd@turbogeek.org
mailto:crutcher+kernel@datastacks.com

Linux Kernel User Documentation, Release 4.13.0-rc4+

214 Chapter 19. Linux Magic System Request Key Hacks

CHAPTER
TWENTY

UNICODE SUPPORT

Last update: 2005-01-17, version 1.4

This file is maintained by H. Peter Anvin <unicode@lanana.org> as part of the Linux Assigned Names And
Numbers Authority (LANANA) project. The current version can be found at:

http://www.lanana.org/docs/unicode/admin-guide/unicode.rst

20.1 Introduction

The Linux kernel code has been rewritten to use Unicode to map characters to fonts. By downloading a
single Unicode-to-font table, both the eight-bit character sets and UTF-8 mode are changed to use the
font as indicated.

This changes the semantics of the eight-bit character tables subtly. The four character tables are now:

Map symbol | Map name Escape code (GO)
LAT1_MAP Latin-1 (ISO 8859-1) ESC (B
GRAF_MAP DEC VT100 pseudographics | ESC (0
IBMPC_MAP | IBM code page 437 ESC (U
USER_MAP User defined ESC (K

In particular, ESC (U is no longer “straight to font”, since the font might be completely different than the
IBM character set. This permits for example the use of block graphics even with a Latin-1 font loaded.

Note that although these codes are similar to ISO 2022, neither the codes nor their uses match ISO 2022;
Linux has two 8-bit codes (GO and G1), whereas ISO 2022 has four 7-bit codes (G0-G3).

In accordance with the Unicode standard/ISO 10646 the range U+F000 to U+F8FF has been reserved for
OS-wide allocation (the Unicode Standard refers to this as a “Corporate Zone"”, since this is inaccurate for
Linux we call it the “Linux Zone"”). U+F000 was picked as the starting point since it lets the direct-mapping
area start on a large power of two (in case 1024- or 2048-character fonts ever become necessary). This
leaves U+EO000 to U+EFFF as End User Zone.

[v1.2]: The Unicodes range from U+F000 and up to U+F7FF have been hard-coded to map directly to the
loaded font, bypassing the translation table. The user-defined map now defaults to U+F000 to U+FOFF,
emulating the previous behaviour. In practice, this range might be shorter; for example, vgacon can only
handle 256-character (U+F000..U+FOFF) or 512-character (U+F000..U+F1FF) fonts.

20.2 Actual characters assigned in the Linux Zone

In addition, the following characters not present in Unicode 1.1.4 have been defined; these are used by
the DEC VT graphics map. [v1.2] THIS USE IS OBSOLETE AND SHOULD NO LONGER BE USED; PLEASE SEE
BELOW.

215

mailto:unicode@lanana.org
http://www.lanana.org/docs/unicode/admin-guide/unicode.rst

Linux Kernel User Documentation, Release 4.13.0-rc4+

U+F800 | DEC VT GRAPHICS HORIZONTAL LINE SCAN 1
U+F801 | DEC VT GRAPHICS HORIZONTAL LINE SCAN 3
U+F803 | DEC VT GRAPHICS HORIZONTAL LINE SCAN 7
U+F804 | DEC VT GRAPHICS HORIZONTAL LINE SCAN 9

The DEC VT220 uses a 6x10 character matrix, and these characters form a smooth progression in the
DEC VT graphics character set. | have omitted the scan 5 line, since it is also used as a block-graphics
character, and hence has been coded as U+2500 FORMS LIGHT HORIZONTAL.

[v1.3]: These characters have been officially added to Unicode 3.2.0; they are added at U+23BA, U+23BB,
U+23BC, U+23BD. Linux now uses the new values.

[v1.2]: The following characters have been added to represent common keyboard symbols that are un-
likely to ever be added to Unicode proper since they are horribly vendor-specific. This, of course, is an
excellent example of horrible design.

U+F810 | KEYBOARD SYMBOL FLYING FLAG
U+F811 | KEYBOARD SYMBOL PULLDOWN MENU
U+F812 | KEYBOARD SYMBOL OPEN APPLE
U+F813 | KEYBOARD SYMBOL SOLID APPLE

20.3 Klingon language support

In 1996, Linux was the first operating system in the world to add support for the artificial language Klingon,
created by Marc Okrand for the “Star Trek” television series. This encoding was later adopted by the
ConScript Unicode Registry and proposed (but ultimately rejected) for inclusion in Unicode Plane 1. Thus,
it remains as a Linux/CSUR private assignment in the Linux Zone.

This encoding has been endorsed by the Klingon Language Institute. For more information, contact them
at:

http://www.kli.org/

Since the characters in the beginning of the Linux CZ have been more of the dingbats/symbols/forms type
and this is a language, | have located it at the end, on a 16-cell boundary in keeping with standard Unicode
practice.

Note:

This range is now officially managed by the ConScript Unicode Registry. The normative reference is
at:
http://www.evertype.com/standards/csur/klingon.html|

Klingon has an alphabet of 26 characters, a positional numeric writing system with 10 digits, and is written
left-to-right, top-to-bottom.

Several glyph forms for the Klingon alphabet have been proposed. However, since the set of symbols
appear to be consistent throughout, with only the actual shapes being different, in keeping with standard
Unicode practice these differences are considered font variants.

U+F8DO0 | KLINGON LETTER A
U+F8D1 | KLINGON LETTER B
U+F8D2 | KLINGON LETTER CH
U+F8D3 | KLINGON LETTER D
U+F8D4 | KLINGON LETTER E
U+F8D5 | KLINGON LETTER GH
U+F8D6 | KLINGON LETTER H
U+F8D7 | KLINGON LETTER |

Continued on next page

216 Chapter 20. Unicode support

http://www.kli.org/
http://www.evertype.com/standards/csur/klingon.html

Linux Kernel User Documentation, Release 4.13.0-rc4+

Table 20.1 - continued from previous page

U+F8D8 | KLINGON LETTER]

U+F8D9 | KLINGON LETTER L

U+F8DA | KLINGON LETTER M

U+F8DB | KLINGON LETTER N

U+F8DC | KLINGON LETTER NG

U+F8DD | KLINGON LETTER O

U+F8DE | KLINGON LETTER P

U+F8DF | KLINGON LETTER Q - Written <g> in standard Okrand Latin transliteration

U+FBEO | KLINGON LETTER QH - Written <Q> in standard Okrand Latin transliteration

U+F8E1 | KLINGON LETTER R

U+F8E2 | KLINGON LETTER S

U+F8E3 | KLINGON LETTER T

U+F8E4 | KLINGON LETTER TLH

U+F8E5 | KLINGON LETTER U

U+F8E6 | KLINGON LETTER V

U+F8E7 | KLINGON LETTER W

U+F8E8 | KLINGON LETTERY

U+F8E9 | KLINGON LETTER GLOTTAL STOP

U+F8FO | KLINGON DIGIT ZERO

U+F8F1 | KLINGON DIGIT ONE

U+F8F2 | KLINGON DIGIT TWO

U+F8F3 | KLINGON DIGIT THREE

U+F8F4 | KLINGON DIGIT FOUR

U+F8F5 | KLINGON DIGIT FIVE

U+F8F6 | KLINGON DIGIT SIX

U+F8F7 | KLINGON DIGIT SEVEN

U+F8F8 | KLINGON DIGIT EIGHT

U+F8F9 | KLINGON DIGIT NINE

U+F8FD | KLINGON COMMA

U+F8FE | KLINGON FULL STOP

U+F8FF | KLINGON SYMBOL FOR EMPIRE

20.4 Other Fictional and Artificial Scripts

Since the assignment of the Klingon Linux Unicode block, a registry of fictional and artificial scripts
has been established by John Cowan <jcowan@reutershealth.com> and Michael Everson <ever-

son@evertype.com>. The ConScript Unicode Registry is accessible at:

http://www.evertype.com/standards/csur/

The ranges used fall at the low end of the End User Zone and can hence not be normatively assigned,
but it is recommended that people who wish to encode fictional scripts use these codes, in the interest of
interoperability. For Klingon, CSUR has adopted the Linux encoding. The CSUR people are driving adding
Tengwar and Cirth into Unicode Plane 1; the addition of Klingon to Unicode Plane 1 has been rejected and

so the above encoding remains official.

20.4. Other Fictional and Artificial Scripts

217

mailto:jcowan@reutershealth.com
mailto:everson@evertype.com
mailto:everson@evertype.com
http://www.evertype.com/standards/csur/

Linux Kernel User Documentation, Release 4.13.0-rc4+

218 Chapter 20. Unicode support

CHAPTER
TWENTYONE

SOFTWARE CURSOR FOR VGA

by Pavel Machek <pavel@atrey.karlin.mff.cuni.cz> and Martin Mares <mj@atrey.karlin.mff.cuni.cz>

Linux now has some ability to manipulate cursor appearance. Normally, you can set the size of hardware
cursor. You can now play a few new tricks: you can make your cursor look like a non-blinking red block,
make it inverse background of the character it’s over or to highlight that character and still choose whether
the original hardware cursor should remain visible or not. There may be other things | have never thought
of.

The cursor appearance is controlled by a <ESC>[?1;2;3c escape sequence where 1, 2 and 3 are param-
eters described below. If you omit any of them, they will default to zeroes.

first Parameter specifies cursor size:

O=default
l=invisible
2=underline,

8=full block

+ 16 if you want the software cursor to be applied

+ 32 if you want to always change the background color

+ 64 if you dislike having the background the same as the
foreground.

Highlights are ignored for the last two flags.

second parameter selects character attribute bits you want to change (by simply XORing them with
the value of this parameter). On standard VGA, the high four bits specify background and the low
four the foreground. In both groups, low three bits set color (as in normal color codes used by the
console) and the most significant one turns on highlight (or sometimes blinking - it depends on the
configuration of your VGA).

third parameter consists of character attribute bits you want to set.

Bit setting takes place before bit toggling, so you can simply clear a bit by including it in both the set
mask and the toggle mask.

21.1 Examples

To get normal blinking underline, use:

’echo -e "\033[?2C"

To get blinking block, use:

’echo ~e "\033[?6C"

To get red non-blinking block, use:

219

mailto:pavel@atrey.karlin.mff.cuni.cz
mailto:mj@atrey.karlin.mff.cuni.cz

Linux Kernel User Documentation, Release 4.13.0-rc4+

echo -e '\033[?17;0;64c"'

220 Chapter 21. Software cursor for VGA

CHAPTER
TWENTYTWO

KERNEL SUPPORT FOR MISCELLANEOUS (YOUR FAVOURITE)
BINARY FORMATS V1.1

This Kernel feature allows you to invoke almost (for restrictions see below) every program by simply typing
its name in the shell. This includes for example compiled Java(TM), Python or Emacs programs.

To achieve this you must tell binfmt_misc which interpreter has to be invoked with which binary.
Binfmt_misc recognises the binary-type by matching some bytes at the beginning of the file with a magic
byte sequence (masking out specified bits) you have supplied. Binfmt_misc can also recognise a filename
extension aka .com or .exe.

First you must mount binfmt_misc:

mount binfmt misc -t binfmt misc /proc/sys/fs/binfmt misc

To actually register a new binary type, you have to set up a string looking like
:name:type:offset:magic:mask:interpreter:flags (where you can choose the : upon your needs)
and echo it to /proc/sys/fs/binfmt misc/register.

Here is what the fields mean:

* name is an identifier string. A new /proc file will be created with this name below
/proc/sys/fs/binfmt _misc; cannot contain slashes / for obvious reasons.

* type is the type of recognition. Give M for magic and E for extension.

* offset is the offset of the magic/mask in the file, counted in bytes. This defaults to 0 if you omit it
(i.e. you write :name:type::magic...). Ignored when using filename extension matching.

* magic is the byte sequence binfmt_misc is matching for. The magic string may contain hex-encoded
characters like \x0a or \xA4. Note that you must escape any NUL bytes; parsing halts at the first
one. In a shell environment you might have to write \\x0a to prevent the shell from eating your
\. If you chose filename extension matching, this is the extension to be recognised (without the
., the \x0a specials are not allowed). Extension matching is case sensitive, and slashes / are
not allowed!

* mask is an (optional, defaults to all 0xff) mask. You can mask out some bits from matching by sup-
plying a string like magic and as long as magic. The mask is anded with the byte sequence of
the file. Note that you must escape any NUL bytes; parsing halts at the first one. Ignored when
using filename extension matching.

» interpreter is the program that should be invoked with the binary as first argument (specify the
full path)

* flags is an optional field that controls several aspects of the invocation of the interpreter. It is a
string of capital letters, each controls a certain aspect. The following flags are supported:

P - preserve-argv[0] Legacy behavior of binfmt misc is to overwrite the original
argv[0] with the full path to the binary. When this flag is included, binfmt misc
will add an argument to the argument vector for this purpose, thus preserving the
original argv[0]. e.g. If your interp is set to /bin/foo and you run blah (which
is in /usr/local/bin), then the kernel will execute /bin/foo with argv[] set to

221

Linux Kernel User Documentation, Release 4.13.0-rc4+

["/bin/foo","/usr/local/bin/blah","blah"]. The interp has to be aware of this
so it can execute /usr/local/bin/blah with argv[] setto ["blah"].

0 - open-binary Legacy behavior of binfmt_misc is to pass the full path of the binary
to the interpreter as an argument. When this flag is included, binfmt_misc will open
the file for reading and pass its descriptor as an argument, instead of the full path,
thus allowing the interpreter to execute non-readable binaries. This feature should
be used with care - the interpreter has to be trusted not to emit the contents of the
non-readable binary.

C - credentials Currently, the behavior of binfmt_misc is to calculate the credentials
and security token of the new process according to the interpreter. When this flag
is included, these attributes are calculated according to the binary. It also implies
the 0 flag. This feature should be used with care as the interpreter will run with root
permissions when a setuid binary owned by root is run with binfmt_misc.

F - fix binary The usual behaviour of binfmt_misc is to spawn the binary lazily when
the misc format file is invoked. However, this doesn'‘t work very well in the face of
mount namespaces and changeroots, so the F mode opens the binary as soon as the
emulation is installed and uses the opened image to spawn the emulator, meaning it
is always available once installed, regardless of how the environment changes.

There are some restrictions:
* the whole register string may not exceed 1920 characters

* the magic must reside in the first 128 bytes of the file, i.e. offset+size(magic) has to be less than
128

* the interpreter string may not exceed 127 characters

To use binfmt_misc you have to mount it first. You can mount it with mount -t binfmt misc
none /proc/sys/fs/binfmt misc command, or you can add a line none /proc/sys/fs/binfmt misc
binfmt_misc defaults 0 0O to your /etc/fstab so it auto mounts on boot.

You may want to add the binary formats in one of your /etc/rc scripts during boot-up. Read the manual
of your init program to figure out how to do this right.

Think about the order of adding entries! Later added entries are matched first!
A few examples (assumed you are in /proc/sys/fs/binfmt _misc):
* enable support for em86 (like binfmt_em86, for Alpha AXP only):

echo ':1386:M::\x7fELF\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x03:
SAXFRAXFFAXTFFAXTFFAXTFAXFe\xfe\xffAXFFAXFFAXFFAXFFAXFFAXFFAXFFAXFAAXFb\XFf\XxFff:/bin/em86:" |
—> register

echo ':1486:M::\x7fELF\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x06:
SAXFFAXTFAXTFAXFFAXTFAXFe\xfe\xffAXFFAXFFAXFFAXFFAXFFAXFFAXFFAXFAAXFb\XFf\XxFff:/bin/em86:" |
—> register

* enable support for packed DOS applications (pre-configured dosemu hdimages):

’echo ':DEXE:M: :\x0eDEX: :/usr/bin/dosexec:' > register

* enable support for Windows executables using wine:

’echo ':DOSWin:M::MZ::/usr/local/bin/wine:"' > register

For java support see Documentation/admin-guide/java.rst

You can enable/disable binfmt_misc or one binary type by echoing 0 (to disable) or 1 (to enable) to
/proc/sys/fs/binfmt misc/status or /proc/.../the name. Catting the file tells you the current status
of binfmt _misc/the entry.

You can remove one entry or all entries by echoing -1 to /proc/.../the name or
/proc/sys/fs/binfmt misc/status.

222 Chapter 22. Kernel Support for miscellaneous (your favourite) Binary Formats v1.1

Linux Kernel User Documentation, Release 4.13.0-rc4+

22.1 Hints

If you want to pass special arguments to your interpreter, you can write a wrapper script for it. See
Documentation/admin-guide/java.rst for an example.

Your interpreter should NOT look in the PATH for the filename; the kernel passes it the full filename (or the
file descriptor) to use. Using $PATH can cause unexpected behaviour and can be a security hazard.

Richard Gunther <rguenth@tat.physik.uni-tuebingen.de>

22.1. Hints 223

mailto:rguenth@tat.physik.uni-tuebingen.de

Linux Kernel User Documentation, Release 4.13.0-rc4+

224 Chapter 22. Kernel Support for miscellaneous (your favourite) Binary Formats v1.1

CHAPTER
TWENTYTHREE

MONO(TM) BINARY KERNEL SUPPORT FOR LINUX

To configure Linux to automatically execute Mono-based .NET binaries (in the form of .exe files) without
the need to use the mono CLR wrapper, you can use the BINFMT_MISC kernel support.

This will allow you to execute Mono-based .NET binaries just like any other program after you have done
the following:

1. You MUST FIRST install the Mono CLR support, either by downloading a binary package, a source
tarball or by installing from CVS. Binary packages for several distributions can be found at:

http://go-mono.com/download.html
Instructions for compiling Mono can be found at:
http://www.go-mono.com/compiling.html

Once the Mono CLR support has been installed, just check that /usr/bin/mono (which could be
located elsewhere, for example /usr/local/bin/mono) is working.

2. You have to compile BINFMT_MISC either as a module or into the kernel (CONFIG_BINFMT MISC) and
set it up properly. If you choose to compile it as a module, you will have to insert it manually with mod-
probe/insmod, as kmod cannot be easily supported with binfmt_misc. Read the file binfmt misc.txt
in this directory to know more about the configuration process.

3. Add the following entries to /etc/rc.local or similar script to be run at system startup:

Insert BINFMT MISC module into the kernel
if [! -e /proc/sys/fs/binfmt misc/register]; then
/sbin/modprobe binfmt misc
Some distributions, like Fedora Core, perform
the following command automatically when the
binfmt _misc module is loaded into the kernel
or during normal boot up (systemd-based systems).
Thus, it is possible that the following line
1s not needed at all.
mount -t binfmt_misc none /proc/sys/fs/binfmt_misc
fi

H R HHH®

Register support for .NET CLR binaries
if [-e /proc/sys/fs/binfmt misc/register]; then
Replace /usr/bin/mono with the correct pathname to
the Mono CLR runtime (usually /usr/local/bin/mono
when compiling from sources or CVS).
echo ':CLR:M::MZ::/usr/bin/mono:"' > /proc/sys/fs/binfmt misc/register
else
echo "No binfmt misc support"
exit 1
fi

4. Check that .exe binaries can be ran without the need of a wrapper script, simply by launching the
.exe file directly from a command prompt, for example:

225

http://go-mono.com/download.html
http://www.go-mono.com/compiling.html

Linux Kernel User Documentation, Release 4.13.0-rc4+

/usr/bin/xsd.exe

Note:

If this fails with a permission denied error, check that the . exe file has execute permissions.

226 Chapter 23. Mono(tm) Binary Kernel Support for Linux

CHAPTER
TWENTYFOUR

JAVA(TM) BINARY KERNEL SUPPORT FOR LINUX V1.03

Linux beats them ALL! While all other OS’s are TALKING about direct support of Java Binaries in the OS,
Linux is doing it!

You can execute Java applications and Java Applets just like any other program after you have done the
following:

1. You MUST FIRST install the Java Developers Kit for Linux. The Java on Linux HOWTO gives the details
on getting and installing this. This HOWTO can be found at:

ftp://sunsite.unc.edu/pub/Linux/docs/HOWTO/Java-HOWTO

You should also set up a reasonable CLASSPATH environment variable to use Java applications that
make use of any nonstandard classes (not included in the same directory as the application itself).

. You have to compile BINFMT_MISC either as a module or into the kernel (CONFIG BINFMT MISC) and
set it up properly. If you choose to compile it as a module, you will have to insert it manually with mod-
probe/insmod, as kmod cannot easily be supported with binfmt_misc. Read the file ‘binfmt_misc.txt’
in this directory to know more about the configuration process.

. Add the following configuration items to binfmt_misc (you should really have read binfmt misc.txt
now): support for Java applications:

":Java:M::\xca\xfe\xba\xbe::/usr/local/bin/javawrapper:'

support for executable Jar files:

":ExecutableJAR:E::jar::/usr/local/bin/jarwrapper:'

support for Java Applets:

":Applet:E::html::/usr/bin/appletviewer:'

or the following, if you want to be more selective:

":Applet:M::<!--app1et::/usr/bin/appletviewer:'

|

Of course you have to fix the path names. The path/file names given in this document match the
Debian 2.1 system. (i.e. jdk installed in /usr, custom wrappers from this document in /usr/local)

Note, that for the more selective applet support you have to modify existing html-files to contain
<!--applet-->in the first line (< has to be the first character!) to let this work!

For the compiled Java programs you need a wrapper script like the following (this is because Java
is broken in case of the filename handling), again fix the path names, both in the script and in the
above given configuration string.

You, too, need the little program after the script. Compile like:

gcc -02 -o javaclassname javaclassname.c

227

ftp://sunsite.unc.edu/pub/Linux/docs/HOWTO/Java-HOWTO

Linux Kernel User Documentation, Release 4.13.0-rc4+

and stick it to /usr/local/bin.

Both the javawrapper shellscript and the javaclassname program were supplied by Colin J. Watson
<cjw44@cam.ac.uk>.

Javawrapper shell script:

#!/bin/bash
/usr/local/bin/javawrapper - the wrapper for binfmt misc/java

if [-z "$1"]; then
exec 1>&2
echo Usage: $0 class-file
exit 1

fi

CLASS=$1

FQCLASS="/usr/local/bin/javaclassname $1°
FQCLASSN="echo $FQCLASS | sed -e 's/~.*\.\([".]*\)$/\1/""
FQCLASSP="echo $FQCLASS | sed -e 's-\.-/-g' -e 's-"["/]*$--' -e 's-/["/]*$--""

for example:

CLASS=Test.class

FQCLASS=foo.bar.Test
FQCLASSN=Test

FQCLASSP=foo/bar

unset CLASSBASE

declare -i LINKLEVEL=0

while :; do
if [" basename $CLASS .class " == "$FQCLASSN"]1; then
See if this directory works straight off
cd -L “dirname $CLASS®
CLASSDIR=$PWD
cd $OLDPWD
if echo $CLASSDIR | grep -q "$FQCLASSP$"; then
CLASSBASE="echo $CLASSDIR | sed -e "s.$FQCLASSP$..""
break;
fi
Try dereferencing the directory name
cd -P “dirname $CLASS®
CLASSDIR=$PWD
cd $O0LDPWD
if echo $CLASSDIR | grep -q "$FQCLASSP$"; then
CLASSBASE="echo $CLASSDIR | sed -e "s.$FQCLASSP$..""
break;
fi
If no other possible filename exists
if [! -L $CLASS]; then
exec 1>&2
echo $0:
echo " $CLASS should be in a" \
"directory tree called $FQCLASSP"
exit 1
fi
fi

if [! -L $CLASS 1; then break; fi
Go down one more level of symbolic links
let LINKLEVEL+=1
if [$LINKLEVEL -gt 5 1; then
exec 1>&2
echo $0:

228 Chapter 24. Java(tm) Binary Kernel Support for Linux v1.03

mailto:cjw44@cam.ac.uk

Linux Kernel User Documentation, Release 4.13.0-rc4+

echo " Too many symbolic links encountered"
exit 1
fi
CLASS="1s --color=no -1 $CLASS | sed -e 's/~.* \ ([~ 1*\)$/\1/""
done
if [-z "$CLASSBASE"]; then
if [-z "$FQCLASSP"]; then
GOODNAME=$FQCLASSN.class
else
GOODNAME=$FQCLASSP/$FQCLASSN.class
fi
exec 1>&2
echo $0:
echo " $FQCLASS should be in a file called $GOODNAME"
exit 1
fi
if ! echo $CLASSPATH | grep -q "~\(.*:\)*$CLASSBASE\(:.*\)*"; then

fi

class is not in CLASSPATH, so prepend dir of class to CLASSPATH
if [-z "${CLASSPATH}" 1 ; then
export CLASSPATH=$CLASSBASE
else
export CLASSPATH=$CLASSBASE:$CLASSPATH
fi

shift
/usr/bin/java $FQCLASS "s$@"

javaclassname.c:

~
¥ K K X X K X X X K X X XK X X X X X X X

*
~

javaclassname. c

Extracts the class name from a Java class file; intended for use in a Java
wrapper of the type supported by the binfmt misc option in the Linux kernel.

Copyright (C) 1999 Colin J. Watson <cjw44@cam.ac.uk>.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/types.h>

/*

From Sun's Java VM Specification, as tag entries in the constant pool. */

#define CP_UTF8 1
#define CP_INTEGER 3

229

Linux Kernel User Documentation, Release 4.13.0-rc4+

#define CP_FLOAT 4

#define CP_LONG 5

#define CP_DOUBLE 6

#define CP _CLASS 7

#define CP STRING 8

#define CP_FIELDREF 9
#define CP_METHODREF 10
#define CP INTERFACEMETHODREF 11
#define CP_NAMEANDTYPE 12
#define CP_METHODHANDLE 15
#define CP METHODTYPE 16
#define CP_INVOKEDYNAMIC 18

/* Define some commonly used error messages */

#define seek error() error("%s: Cannot seek\n", program)

#define corrupt _error() error("%s: Class file corrupt\n", program)
#define eof error() error("%s: Unexpected end of file\n", program)
#define utf8 error() error("%s: Only ASCII 1-255 supported\n", program);

char *program;
long *pool;

u int8 t read 8(FILE *classfile);

u intl6 t read 16(FILE *classfile);

void skip constant(FILE *classfile, u_intl6 t *cur);
void error(const char *format, ...);

int main(int argc, char **argv);

/* Reads in an unsigned 8-bit integer. */
u_int8 t read 8(FILE *classfile)

{
int b = fgetc(classfile);
if(b == EOF)
eof error();
return (u int8 t)b;
}

/* Reads in an unsigned 16-bit integer. */
u intl6 t read 16(FILE *classfile)

{
int bl, b2;
bl = fgetc(classfile);
if(bl == EOF)
eof error();
b2 = fgetc(classfile);
if(b2 == EOF)
eof error();
return (u_intl6 t)((bl << 8) | b2);
}

/* Reads in a value from the constant pool. */
void skip constant(FILE *classfile, u_intl6 t *cur)
{
u intl6_t len;
int seekerr = 1;
pool[*cur] = ftell(classfile);
switch(read 8(classfile))
{
case CP_UTF8:
len = read 16(classfile);
seekerr = fseek(classfile, len, SEEK CUR);

230 Chapter 24. Java(tm) Binary Kernel Support for Linux v1.03

Linux Kernel User Documentation, Release 4.13.0-rc4+

break;

case CP_CLASS:

case CP_STRING:

case CP_METHODTYPE:
seekerr = fseek(classfile, 2, SEEK CUR);
break;

case CP_METHODHANDLE:
seekerr = fseek(classfile, 3, SEEK CUR);
break;

case CP_INTEGER:

case CP_FLOAT:

case CP_FIELDREF:

case CP_METHODREF:

case CP_INTERFACEMETHODREF:

case CP_NAMEANDTYPE:

case CP_INVOKEDYNAMIC:
seekerr = fseek(classfile, 4, SEEK CUR);
break;

case CP_LONG:

case CP_DOUBLE:
seekerr = fseek(classfile, 8, SEEK CUR);
++(*cur);
break;

default:
corrupt _error();

}

if(seekerr)
seek error();

}
void error(const char *format, ...)
{
va_list ap;
va start(ap, format);
vfprintf(stderr, format, ap);
va_end(ap);
exit(1);
}

int main(int argc, char **argv)
{
FILE *classfile;
u intlé t cp count, i, this class, classinfo ptr;
u int8 t length;

program = argv[0];

if(largv[1])

error("%ss: Missing input file\n", program);
classfile = fopen(argv[1l], "rb");
if(!'classfile)

error("%ss: Error opening %s\n", program, argv[1]);

if(fseek(classfile, 8, SEEK SET)) /* skip magic and version numbers */
seek error();

cp_count = read 1l6(classfile);

pool = calloc(cp_count, sizeof(long));

if(!pool)
error("%ss: Out of memory for constant pool\n", program);

for(i = 1; i < cp_count; ++1)
skip_constant(classfile, &i);
if(fseek(classfile, 2, SEEK CUR)) /* skip access flags */

231

Linux Kernel User Documentation, Release 4.13.0-rc4+

seek error();

this class = read 1l6(classfile);

if(this class < 1 || this class >= cp_count)
corrupt_error();
if(!pool[this class] || pool[this class] == -1)

corrupt_error();
if(fseek(classfile, pool[this class] + 1, SEEK SET))
seek error();

classinfo ptr = read 16(classfile);

if(classinfo ptr < 1 || classinfo ptr >= cp_count)
corrupt_error();
if(!poolfclassinfo ptr] || pool[classinfo ptr] == -1)

corrupt_error();
if(fseek(classfile, pool[classinfo ptr] + 1, SEEK SET))
seek error();

length = read 16(classfile);
for(i = 0; i < length; ++i)

{
u int8 t x = read 8(classfile);
if((x & 0x80) || !'x)
{
if((x & OxEOQ) == 0xCO)
{
u int8 t y = read 8(classfile);
if((y & 0xCO) == 0x80)
{
int ¢ = ((x & Ox1f) << 6) + (y & Ox3f);
if(c) putchar(c);
else utf8 error();
}
else utf8 error();
}
else utf8 error();
else if(x == '/") putchar('.");
else putchar(x);
}

putchar('\n');
free(pool);

fclose(classfile);
return 0;

}

jarwrapper:

#!/bin/bash
/usr/local/java/bin/jarwrapper - the wrapper for binfmt misc/jar

java -jar $1

Now simply chmod +x the .class, .jar and/or .html files you want to execute.

To add a Java program to your path best put a symbolic link to the main .class file into /usr/bin (or another
place you like) omitting the .class extension. The directory containing the original .class file will be added
to your CLASSPATH during execution.

To test your new setup, enter in the following simple Java app, and name it “HelloWorld.java”:

class HelloWorld {
public static void main(String args[]) {

232 Chapter 24. Java(tm) Binary Kernel Support for Linux v1.03

Linux Kernel User Documentation, Release 4.13.0-rc4+

System.out.println("Hello World!");

}

Now compile the application with:

’ javac HelloWorld.java

Set the executable permissions of the binary file, with:

’chmod 755 HelloWorld.class

And then execute it:

’ ./HelloWorld.class

To execute Java Jar files, simple chmod the *. jar files to include the execution bit, then just do:

’ ./Application.jar

To execute Java Applets, simple chmod the *.html files to include the execution bit, then just do:

’ ./Applet.html

originally by Brian A. Lantz, brian@lantz.com heavily edited for binfmt_misc by Richard Gunther new
scripts by Colin J. Watson <cjw44@cam.ac.uk> added executable Jar file support by Kurt Huwig <kurt@iku-
netz.de>

233

mailto:brian@lantz.com
mailto:cjw44@cam.ac.uk
mailto:kurt@iku-netz.de
mailto:kurt@iku-netz.de

Linux Kernel User Documentation, Release 4.13.0-rc4+

234 Chapter 24. Java(tm) Binary Kernel Support for Linux v1.03

CHAPTER
TWENTYFIVE

RELIABILITY, AVAILABILITY AND SERVICEABILITY

25.1 RAS concepts

Reliability, Availability and Serviceability (RAS) is a concept used on servers meant to measure their ro-
bustness.

Reliability is the probability that a system will produce correct outputs.

* Generally measured as Mean Time Between Failures (MTBF)

* Enhanced by features that help to avoid, detect and repair hardware faults
Availability is the probability that a system is operational at a given time

¢ Generally measured as a percentage of downtime per a period of time

» Often uses mechanisms to detect and correct hardware faults in runtime;

Serviceability (or maintainability) is the simplicity and speed with which a system can be repaired or
maintained

¢ Generally measured on Mean Time Between Repair (MTBR)

25.1.1 Improving RAS

In order to reduce systems downtime, a system should be capable of detecting hardware errors, and, when
possible correcting them in runtime. It should also provide mechanisms to detect hardware degradation,
in order to warn the system administrator to take the action of replacing a component before it causes
data loss or system downtime.

Among the monitoring measures, the most usual ones include:
* CPU - detect errors at instruction execution and at L1/L2/L3 caches;
* Memory - add error correction logic (ECC) to detect and correct errors;
* 1/O - add CRC checksums for transferred data;

» Storage - RAID, journal file systems, checksums, Self-Monitoring, Analysis and Reporting Technology
(SMART).

By monitoring the number of occurrences of error detections, it is possible to identify if the probability
of hardware errors is increasing, and, on such case, do a preventive maintenance to replace a degraded
component while those errors are correctable.

25.1.2 Types of errors

Most mechanisms used on modern systems use use technologies like Hamming Codes that allow error
correction when the number of errors on a bit packet is below a threshold. If the number of errors is above,

235

Linux Kernel User Documentation, Release 4.13.0-rc4+

those mechanisms can indicate with a high degree of confidence that an error happened, but they can’t
correct.

Also, sometimes an error occur on a component that it is not used. For example, a part of the memory
that it is not currently allocated.

That defines some categories of errors:

e Correctable Error (CE) - the error detection mechanism detected and corrected the error. Such
errors are usually not fatal, although some Kernel mechanisms allow the system administrator to
consider them as fatal.

* Uncorrected Error (UE) - the amount of errors happened above the error correction threshold, and
the system was unable to auto-correct.

* Fatal Error - when an UE error happens on a critical component of the system (for example, a piece
of the Kernel got corrupted by an UE), the only reliable way to avoid data corruption is to hang or
reboot the machine.

* Non-fatal Error - when an UE error happens on an unused component, like a CPU in power down
state or an unused memory bank, the system may still run, eventually replacing the affected hard-
ware by a hot spare, if available.

Also, when an error happens on a userspace process, it is also possible to kill such process and let
userspace restart it.

The mechanism for handling non-fatal errors is usually complex and may require the help of some
userspace application, in order to apply the policy desired by the system administrator.

25.1.3 Identifying a bad hardware component

Just detecting a hardware flaw is usually not enough, as the system needs to pinpoint to the minimal
replaceable unit (MRU) that should be exchanged to make the hardware reliable again.

So, it requires not only error logging facilities, but also mechanisms that will translate the error message
to the silkscreen or component label for the MRU.

Typically, it is very complex for memory, as modern CPUs interlace memory from different memory mod-
ules, in order to provide a better performance. The DMI BIOS usually have a list of memory module labels,
with can be obtained using the dmidecode tool. For example, on a desktop machine, it shows:

Memory Device
Total Width: 64 bits
Data Width: 64 bits
Size: 16384 MB
Form Factor: SODIMM
Set: None
Locator: ChannelA-DIMMO
Bank Locator: BANK 0
Type: DDR4
Type Detail: Synchronous
Speed: 2133 MHz
Rank: 2
Configured Clock Speed: 2133 MHz

On the above example, a DDR4 SO-DIMM memory module is located at the system’s memory labeled as
“BANK 0", as given by the bank locator field. Please notice that, on such system, the total width is equal to
the data width. It means that such memory module doesn’t have error detection/correction mechanisms.

Unfortunately, not all systems use the same field to specify the memory bank. On this example, from an
older server, dmidecode shows:

Memory Device
Array Handle: 0x1000

236 Chapter 25. Reliability, Availability and Serviceability

Linux Kernel User Documentation, Release 4.13.0-rc4+

Error Information Handle: Not Provided
Total Width: 72 bits

Data Width: 64 bits

Size: 8192 MB

Form Factor: DIMM

Set: 1

Locator: DIMM Al

Bank Locator: Not Specified

Type: DDR3

Type Detail: Synchronous Registered (Buffered)
Speed: 1600 MHz

Rank: 2

Configured Clock Speed: 1600 MHz

There, the DDR3 RDIMM memory module is located at the system’s memory labeled as “DIMM_A1l", as
given by the locator field. Please notice that this memory module has 64 bits of data width and 72 bits of
total width. So, it has 8 extra bits to be used by error detection and correction mechanisms. Such kind of
memory is called Error-correcting code memory (ECC memory).

To make things even worse, it is not uncommon that systems with different labels on their system’s board
to use exactly the same BIOS, meaning that the labels provided by the BIOS won’t match the real ones.

25.1.4 ECC memory

As mentioned on the previous section, ECC memory has extra bits to be used for error correction. So, on
64 bit systems, a memory module has 64 bits of data width, and 74 bits of total width. So, there are 8
bits extra bits to be used for the error detection and correction mechanisms. Those extra bits are called
syndrome'?.

So, when the cpu requests the memory controller to write a word with data width, the memory controller
calculates the syndrome in real time, using Hamming code, or some other error correction code, like
SECDED+, producing a code with total width size. Such code is then written on the memory modules.

At read, the total width bits code is converted back, using the same ECC code used on write, producing
a word with data width and a syndrome. The word with data width is sent to the CPU, even when errors
happen.

The memory controller also looks at the syndrome in order to check if there was an error, and if the ECC
code was able to fix such error. If the error was corrected, a Corrected Error (CE) happened. If not, an
Uncorrected Error (UE) happened.

The information about the CE/UE errors is stored on some special registers at the memory controller and
can be accessed by reading such registers, either by BIOS, by some special CPUs or by Linux EDAC driver.
On x86 64 bit CPUs, such errors can also be retrieved via the Machine Check Architecture (MCA)3.

1 Please notice that several memory controllers allow operation on a mode called “Lock-Step”, where it groups two memory
modules together, doing 128-bit reads/writes. That gives 16 bits for error correction, with significantly improves the error correction
mechanism, at the expense that, when an error happens, there’s no way to know what memory module is to blame. So, it has to
blame both memory modules.

2 Some memory controllers also allow using memory in mirror mode. On such mode, the same data is written to two memory
modules. At read, the system checks both memory modules, in order to check if both provide identical data. On such configuration,
when an error happens, there’s no way to know what memory module is to blame. So, it has to blame both memory modules (or 4
memory modules, if the system is also on Lock-step mode).

3 For more details about the Machine Check Architecture (MCA), please read Documentation/x86/x86_64/machinecheck at the
Kernel tree.

25.1. RAS concepts 237

Linux Kernel User Documentation, Release 4.13.0-rc4+

25.2 EDAC - Error Detection And Correction

Note:

“bluesmoke” was the name for this device driver subsystem when it was “out-of-tree” and maintained
at http://bluesmoke.sourceforge.net. That site is mostly archaic now and can be used only for historical
purposes.

When the subsystem was pushed upstream for the first time, on Kernel 2.6.16, for the first time, it was
renamed to EDAC.

25.2.1 Purpose

The edac kernel module’s goal is to detect and report hardware errors that occur within the computer
system running under linux.

25.2.2 Memory

Memory Correctable Errors (CE) and Uncorrectable Errors (UE) are the primary errors being harvested.
These types of errors are harvested by the edac_mc device.

Detecting CE events, then harvesting those events and reporting them, can but must not necessarily be
a predictor of future UE events. With CE events only, the system can and will continue to operate as no
data has been damaged yet.

However, preventive maintenance and proactive part replacement of memory modules exhibiting CEs can
reduce the likelihood of the dreaded UE events and system panics.

25.2.3 Other hardware elements

A new feature for EDAC, the edac_device class of device, was added in the 2.6.23 version of the kernel.

This new device type allows for non-memory type of ECC hardware detectors to have their states harvested
and presented to userspace via the sysfs interface.

Some architectures have ECC detectors for L1, L2 and L3 caches, along with DMA engines, fabric switches,
main data path switches, interconnections, and various other hardware data paths. If the hardware reports
it, then a edac_device device probably can be constructed to harvest and present that to userspace.

25.2.4 PCI bus scanning

In addition, PCI devices are scanned for PCl Bus Parity and SERR Errors in order to determine if errors are
occurring during data transfers.

The presence of PCl Parity errors must be examined with a grain of salt. There are several add-in adapters
that do not follow the PCI specification with regards to Parity generation and reporting. The specification
says the vendor should tie the parity status bits to 0 if they do not intend to generate parity. Some vendors
do not do this, and thus the parity bit can “float” giving false positives.

There is a PCl device attribute located in sysfs that is checked by the EDAC PCI scanning code. If that
attribute is set, PCl parity/error scanning is skipped for that device. The attribute is:

broken parity status

and is located in /sys/devices/pci<XXX>/0000:XX:YY.Z directories for PCl devices.

238 Chapter 25. Reliability, Availability and Serviceability

http://bluesmoke.sourceforge.net

Linux Kernel User Documentation, Release 4.13.0-rc4+

25.2.5 Versioning

EDAC is composed of a “core” module (edac_core. ko) and several Memory Controller (MC) driver mod-
ules. On a given system, the CORE is loaded and one MC driver will be loaded. Both the CORE and the MC
driver (or edac_device driver) have individual versions that reflect current release level of their respective
modules.

Thus, to “report” on what version a system is running, one must report both the CORE’s and the MC
driver’s versions.

25.2.6 Loading

If edac was statically linked with the kernel then no loading is necessary. If edac was built as modules
then simply modprobe the edac pieces that you need. You should be able to modprobe hardware-specific
modules and have the dependencies load the necessary core modules.

Example:

$ modprobe amd76x_edac

loads both the amd76x_edac. ko memory controller module and the edac_mc. ko core module.

25.2.7 Sysfts interface

EDAC presents a sysfs interface for control and reporting purposes. It lives in the
/sys/devices/system/edac directory.

Within this directory there currently reside 2 components:

mc | memory controller(s) system
pci | PCI control and status system

25.2.8 Memory Controller (mc) Model

Each mc device controls a set of memory modules . These modules are laid out in a Chip-Select Row
(csrowX) and Channel table (chX). There can be multiple csrows and multiple channels.

Memory controllers allow for several csrows, with 8 csrows being a typical value. Yet, the actual num-
ber of csrows depends on the layout of a given motherboard, memory controller and memory module
characteristics.

Dual channels allow for dual data length (e. g. 128 bits, on 64 bit systems) data transfers to/from the
CPU from/to memory. Some newer chipsets allow for more than 2 channels, like Fully Buffered DIMMs
(FB-DIMMs) memory controllers. The following example will assume 2 channels:

CS Rows | Channels

cho chl
csrowd | pvm A0 | DIMM BO
csrowl - -
csrow2 | 5um A1 | DIMM B1
csrow3 - -

In the above example, there are 4 physical slots on the motherboard for memory DIMMs:

DIMM_AO | DIMM_BO
DIMM_A1 | DIMM_B1

4 Nowadays, the term DIMM (Dual In-line Memory Module) is widely used to refer to a memory module, although there are other
memory packaging alternatives, like SO-DIMM, SIMM, etc. Along this document, and inside the EDAC system, the term “dimm” is
used for all memory modules, even when they use a different kind of packaging.

25.2. EDAC - Error Detection And Correction 239

Linux Kernel User Documentation, Release 4.13.0-rc4+

Labels for these slots are usually silk-screened on the motherboard. Slots labeled A are channel 0 in this
example. Slots labeled B are channel 1. Notice that there are two csrows possible on a physical DIMM,
These csrows are allocated their csrow assignment based on the slot into which the memory DIMM is
placed. Thus, when 1 DIMM is placed in each Channel, the csrows cross both DIMMs.

Memory DIMMs come single or dual “ranked”. A rank is a populated csrow. Thus, 2 single ranked DIMMs,
placed in slots DIMM_AO and DIMM_BO above will have just one csrow (csrow0). csrowl will be empty.
On the other hand, when 2 dual ranked DIMMs are similarly placed, then both csrow0 and csrowl will be
populated. The pattern repeats itself for csrow2 and csrow3.

The representation of the above is reflected in the directory tree in EDAC'’s sysfs interface. Starting in
directory /sys/devices/system/edac/mc, each memory controller will be represented by its own mcX
directory, where X is the index of the MC:

..../edac/mc/
I
| ->mco
| ->mcl
| ->mc2

Under each mcX directory each csrowX is again represented by a csrowX, where X is the csrow index:

.../mc/mcO/
I
| ->csrow0
| ->csrow2
| ->csrow3

Notice that there is no csrowl, which indicates that csrow0 is composed of a single ranked DIMMs. This
should also apply in both Channels, in order to have dual-channel mode be operational. Since both csrow2
and csrow3 are populated, this indicates a dual ranked set of DIMMs for channels 0 and 1.

Within each of the mcX and csrowX directories are several EDAC control and attribute files.

25.2.9 mcX directories

In mcX directories are EDAC control and attribute files for this X instance of the memory controllers.
For a description of the sysfs API, please see:

Documentation/ABI/testing/sysfs-devices-edac

25.2.10 dimmX or rankX directories

The recommended way to use the EDAC subsystem is to look at the information provided by the dimmX or
rankX directories °.

A typical EDAC system has the following structure under /sys/devices/system/edac/®:

/sys/devices/system/edac/
F-- mc

| F-- mco

| | }-- ce count

| | F-- ce noinfo count

5 On some systems, the memory controller doesn’t have any logic to identify the memory module. On such systems, the directory
is called rankX and works on a similar way as the csrowX directories. On modern Intel memory controllers, the memory controller
identifies the memory modules directly. On such systems, the directory is called dimmX.

6 There are also some power directories and subsystem symlinks inside the sysfs mapping that are automatically created by the
sysfs subsystem. Currently, they serve no purpose.

240 Chapter 25. Reliability, Availability and Serviceability

Linux Kernel User Documentation, Release 4.13.0-rc4+

I|
[
o
-
3
3
(o}

-- dimm_ce count
dimm_dev type
dimm_edac_mode
dimm_ Tlabel
dimm_location
dimm_mem type
dimm_ue count
size

uevent

-- max_location

-- mC_name

-- reset counters

-- seconds _since reset
-- size mb

-- ue_count

|
|
|
|
|
|
|
|
|
¥
F
¥
¥
¥
F
F-- ue noinfo count
L
F
¥
F
:
|
|
|
|
|
|
|
-

r—T— Tt T T "1 T -1 "1
[
1

-- uevent
F--
-- ce_count
-- ce_noinfo_count
-- dimmoO

F-- dimm ce count
-- dimm_dev_type
-- dimm_edac_mode
-- dimm_Tlabel
-- dimm_location
-- dimm_mem_ type
-- dimm_ue count
-- size
-- uevent
-- max_location
F-- mC_name
--- reset counters
|- - seconds since reset
F-- size mb
r-- ue_count
r-- ue _noinfo_ count
L.. uevent
L. uevent
L.. uevent

r—r T T "1 "1 ~T ~T1

In the dimmX directories are EDAC control and attribute files for this X memory module:

* size - Total memory managed by this csrow attribute file

This attribute file displays, in count of megabytes, the memory that this csrow contains.

* dimm_ue_ count - Uncorrectable Errors count attribute file

This attribute file displays the total count of uncorrectable errors that have occurred on this
DIMM. If panic_on_ue is set this counter will not have a chance to increment, since EDAC will
panic the system.

* dimm_ce count - Correctable Errors count attribute file

This attribute file displays the total count of correctable errors that have occurred on this
DIMM. This count is very important to examine. CEs provide early indications that a DIMM is
beginning to fail. This count field should be monitored for non-zero values and report such
information to the system administrator.

» dimm_dev_type - Device type attribute file

25.2. EDAC - Error Detection And Correction

241

Linux Kernel User Documentation, Release 4.13.0-rc4+

This attribute file will display what type of DRAM device is being utilized on this DIMM. Ex-
amples:

- x1
- X2
- x4
- x8
* dimm_edac_mode - EDAC Mode of operation attribute file
This attribute file will display what type of Error detection and correction is being utilized.
* dimm_label - memory module label control file

This control file allows this DIMM to have a label assigned to it. With this label in the module,
when errors occur the output can provide the DIMM label in the system log. This becomes
vital for panic events to isolate the cause of the UE event.

DIMM Labels must be assigned after booting, with information that correctly identifies the
physical slot with its silk screen label. This information is currently very motherboard specific
and determination of this information must occur in userland at this time.

* dimm_location - location of the memory module

The location can have up to 3 levels, and describe how the memory controller identifies the
location of a memory module. Depending on the type of memory and memory controller, it
can be:

- csrow and channel - used when the memory controller doesn’t identify a single DIMM -
e. g. in rankX dir;

- branch, channel, slot - typically used on FB-DIMM memory controllers;
- channel, slot - used on Nehalem and newer Intel drivers.
* dimm_mem_type - Memory Type attribute file

This attribute file will display what type of memory is currently on this csrow. Normally,
either buffered or unbuffered memory. Examples:

- Registered-DDR
- Unbuffered-DDR

25.2.11 csrowX directories

When CONFIG_EDAC _LEGACY_SYSFS is enabled, sysfs will contain the csrowX directories. As this API
doesn’t work properly for Rambus, FB-DIMMs and modern Intel Memory Controllers, this is being depre-
cated in favor of dimmX directories.

In the csrowX directories are EDAC control and attribute files for this X instance of csrow:
* ue count - Total Uncorrectable Errors count attribute file

This attribute file displays the total count of uncorrectable errors that have occurred on this
csrow. If panic_on_ue is set this counter will not have a chance to increment, since EDAC
will panic the system.

* ce count - Total Correctable Errors count attribute file

This attribute file displays the total count of correctable errors that have occurred on this
csrow. This count is very important to examine. CEs provide early indications that a DIMM is
beginning to fail. This count field should be monitored for non-zero values and report such
information to the system administrator.

* size mb - Total memory managed by this csrow attribute file

242 Chapter 25. Reliability, Availability and Serviceability

Linux Kernel User Documentation, Release 4.13.0-rc4+

This attribute file displays, in count of megabytes, the memory that this csrow contains.
* mem_type - Memory Type attribute file

This attribute file will display what type of memory is currently on this csrow. Normally,
either buffered or unbuffered memory. Examples:

- Registered-DDR
- Unbuffered-DDR
» edac_mode - EDAC Mode of operation attribute file
This attribute file will display what type of Error detection and correction is being utilized.
* dev_type - Device type attribute file

This attribute file will display what type of DRAM device is being utilized on this DIMM. Ex-
amples:

-x1
- X2
- x4
- x8
* ch@ _ce count - Channel 0 CE Count attribute file
This attribute file will display the count of CEs on this DIMM located in channel 0.
* chO ue count - Channel 0 UE Count attribute file
This attribute file will display the count of UEs on this DIMM located in channel 0.
* ch@_dimm_label - Channel O DIMM Label control file

This control file allows this DIMM to have a label assigned to it. With this label in the module,
when errors occur the output can provide the DIMM label in the system log. This becomes
vital for panic events to isolate the cause of the UE event.

DIMM Labels must be assigned after booting, with information that correctly identifies the
physical slot with its silk screen label. This information is currently very motherboard specific
and determination of this information must occur in userland at this time.

* chl ce count - Channel 1 CE Count attribute file

This attribute file will display the count of CEs on this DIMM located in channel 1.
* chl ue count - Channel 1 UE Count attribute file

This attribute file will display the count of UEs on this DIMM located in channel 0.
* chl dimm_label - Channel 1 DIMM Label control file

This control file allows this DIMM to have a label assigned to it. With this label in the module,
when errors occur the output can provide the DIMM label in the system log. This becomes
vital for panic events to isolate the cause of the UE event.

DIMM Labels must be assigned after booting, with information that correctly identifies the
physical slot with its silk screen label. This information is currently very motherboard specific
and determination of this information must occur in userland at this time.

25.2.12 System Logging

If logging for UEs and CEs is enabled, then system logs will contain information indicating that errors have
been detected:

25.2. EDAC - Error Detection And Correction 243

Linux Kernel User Documentation, Release 4.13.0-rc4+

EDAC MCO: CE page 0x283, offset Oxce0®, grain 8, syndrome 0x6ec3, row 0, channel 1 "DIMM B1": |
—amd76x_edac

EDAC MCO: CE page 0Oxle5, offset Oxfb0, grain 8, syndrome 0xb741, row 0, channel 1 "DIMM B1":
—amd76x_edac

The structure of the message is:

Content Example
The memory controller MCO
Error type CE
Memory page 0x283
Offset in the page OxceO
The byte granularity or resolution of the error grain 8
The error syndrome 0xb741
Memory row row 0
Memory channel channel
1
DIMM label, if set prior DIMM B1
And then an optional, driver-specific message that may have additional
information.

Both UEs and CEs with no info will lack all but memory controller, error type, a notice of “no info” and then
an optional, driver-specific error message.

25.2.13 PCI Bus Parity Detection

On Header Type 00 devices, the primary status is looked at for any parity error regardless of whether
parity is enabled on the device or not. (The spec indicates parity is generated in some cases). On Header
Type 01 bridges, the secondary status register is also looked at to see if parity occurred on the bus on the
other side of the bridge.

25.2.14 Sysfs configuration

Under /sys/devices/system/edac/pci are control and attribute files as follows:
* check pci parity - Enable/Disable PCI Parity checking control file

This control file enables or disables the PCl Bus Parity scanning operation. Writing a 1 to
this file enables the scanning. Writing a 0 to this file disables the scanning.

Enable:

’ echo "1" >/sys/devices/system/edac/pci/check pci parity ‘

Disable:

’ echo "0" >/sys/devices/system/edac/pci/check pci parity ‘

* pci parity count - Parity Count

This attribute file will display the number of parity errors that have been detected.

25.2.15 Module parameters

* edac_mc_panic_on_ue - Panic on UE control file

An uncorrectable error will cause a machine panic. This is usually desirable. It is a bad idea
to continue when an uncorrectable error occurs - it is indeterminate what was uncorrected

244 Chapter 25. Reliability, Availability and Serviceability

Linux Kernel User Documentation, Release 4.13.0-rc4+

and the operating system context might be so mangled that continuing will lead to further
corruption. If the kernel has MCE configured, then EDAC will never notice the UE.

LOAD TIME:

’ module/kernel parameter: edac mc panic on ue=[0]|1] ‘

RUN TIME:

’echo "1" > /sys/module/edac core/parameters/edac_mc panic on ue ‘

» edac_mc_log ue - Log UE control file

Generate kernel messages describing uncorrectable errors. These errors are reported
through the system message log system. UE statistics will be accumulated even when UE
logging is disabled.

LOAD TIME:

’ module/kernel parameter: edac mc log ue=[0]|1] ‘

RUN TIME:

’echo "1" > /sys/module/edac_core/parameters/edac_mc_log ue ‘

» edac_mc_log ce - Log CE control file

Generate kernel messages describing correctable errors. These errors are reported through
the system message log system. CE statistics will be accumulated even when CE logging is
disabled.

LOAD TIME:

’ module/kernel parameter: edac mc log ce=[0]1] ‘

RUN TIME:

’echo "1" > /sys/module/edac_core/parameters/edac_mc_log ce ‘

» edac_mc_poll msec - Polling period control file

The time period, in milliseconds, for polling for error information. Too small a value wastes
resources. Too large a value might delay necessary handling of errors and might loose
valuable information for locating the error. 1000 milliseconds (once each second) is the
current default. Systems which require all the bandwidth they can get, may increase this.

LOAD TIME:

’ module/kernel parameter: edac_mc _poll msec=[0]|1] ‘

RUN TIME:

’echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll msec ‘

* panic_on pci parity - Panic on PCl PARITY Error
This control file enables or disables panicking when a parity error has been detected.

module/kernel parameter:

edac_panic_on pci pe=[0]|1]

Enable:

25.2. EDAC - Error Detection And Correction 245

Linux Kernel User Documentation, Release 4.13.0-rc4+

’echo "1" > /sys/module/edac_core/parameters/edac_panic on pci pe ‘

Disable:

’echo "0" > /sys/module/edac_core/parameters/edac_panic_on pci pe ‘

25.2.16 EDAC device type

In the header file, edac_pci.h, there is a series of edac_device structures and APIs for the EDAC_DEVICE.
User space access to an edac_device is through the sysfs interface.
At the location /sys/devices/system/edac (sysfs) new edac_device devices will appear.

There is a three level tree beneath the above edac directory. For example, the test device edac device
(found at the http://bluesmoke.sourceforget.net website) installs itself as:

/sys/devices/system/edac/test-instance

in this directory are various controls, a symlink and one or more instance directories.

The standard default controls are:

log ce boolean to log CE events

log _ue boolean to log UE events

panic_on_ueboolean to panic the system if an UE is encountered (default off, can be set
true via startup script)

poll_msec | time period between POLL cycles for events

The test_device_edac device adds at least one of its own custom control:

test_bitsvhich in the current test driver does nothing but show how it is installed. A ported
driver can add one or more such controls and/or attributes for specific uses. One
out-of-tree driver uses controls here to allow for ERROR INJECTION operations to
hardware injection registers

The symlink points to the ‘struct dev’ that is registered for this edac_device.

25.2.17 Instances

One or more instance directories are present. For the test device edac case:

| test-instance0 |

In this directory there are two default counter attributes, which are totals of counter in deeper subdirec-
tories.

ce_count | total of CE events of subdirectories
ue_count | total of UE events of subdirectories

25.2.18 Blocks

At the lowest directory level is the block directory. There can be 0, 1 or more blocks specified in each
instance:

test-block0

In this directory the default attributes are:

ce_count | which is counter of CE events for this block of hardware being monitored
ue_count | which is counter of UE events for this block of hardware being monitored

The test device edac device adds 4 attributes and 1 control:

246 Chapter 25. Reliability, Availability and Serviceability

http://bluesmoke.sourceforget.net

Linux Kernel User Documentation, Release 4.13.0-rc4+

test-block-bits- | for every POLL cycle this counter is incremented

’?est—block—bits— every 10 cycles, this counter is bumped once, and test-block-bits-0 is set

tlest—block—bits— 1<:a?/(—(z)ry 100 cycles, this counter is bumped once, and test-block-bits-1 is set

tiest-block-bits- te?/gry (1)000 cycles, this counter is bumped once, and test-block-bits-2 is
set to

| reset-counters | writing ANY thing to this control will reset all the above counters. |

Use of the test device edac driver should enable any others to create their own unique drivers for their
hardware systems.

The test device edac sample driver is located at the http://bluesmoke.sourceforge.net project site for
EDAC.

25.2.19 Usage of EDAC APIs on Nehalem and newer Intel CPUs

On older Intel architectures, the memory controller was part of the North Bridge chipset. Nehalem, Sandy
Bridge, Ivy Bridge, Haswell, Sky Lake and newer Intel architectures integrated an enhanced version of the
memory controller (MC) inside the CPUs.

This chapter will cover the differences of the enhanced memory controllers found on newer Intel CPUs,
such as i7core_edac, sb_edac and sbx_edac drivers.

Note:

The Xeon E7 processor families use a separate chip for the memory controller, called Intel Scalable
Memory Buffer. This section doesn’t apply for such families.

1. There is one Memory Controller per Quick Patch Interconnect (QPI). At the driver, the term “socket”
means one QPI. This is associated with a physical CPU socket.

Each MC have 3 physical read channels, 3 physical write channels and 3 logic channels. The driver
currently sees it as just 3 channels. Each channel can have up to 3 DIMMs.

The minimum known unity is DIMMs. There are no information about csrows. As EDAC APl maps the
minimum unity is csrows, the driver sequentially maps channel/DIMM into different csrows.

For example, supposing the following layout:

ChO phy rd0, wr0® (0x063f4031): 2 ranks, UDIMMs

dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400

dimm 1 1024 Mb offset: 4, bank: 8, rank: 1, row: 0x4000, col: 0x400
Chl phy rdl, wrl (0x063f4031): 2 ranks, UDIMMs

dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
Ch2 phy rd3, wr3 (0x063f4031): 2 ranks, UDIMMs

dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400

The driver will map it as:

csrow@: channel 0, dimmO
csrowl: channel 0, dimml
csrow2: channel 1, dimmO
csrow3: channel 2, dimmO

exports one DIMM per csrow.

Each QPI is exported as a different memory controller.

25.2. EDAC - Error Detection And Correction 247

http://bluesmoke.sourceforge.net

Linux Kernel User Documentation, Release 4.13.0-rc4+

2. The MC has the ability to inject errors to test drivers. The drivers implement this functionality via
some error injection nodes:

For injecting a memory error, there are some sysfs nodes, under
/sys/devices/system/edac/mc/mc?/:

» inject_addrmatch/*: Controls the errorinjection mask register. It is possible to specify several
characteristics of the address to match an error code:

dimm the affected dimm. Numbers are relative to a channel;
rank the memory rank;

channel = the channel that will generate an error;

bank = the affected bank;

page = the page address;

column (or col) = the address column.

each of the above values can be set to “any” to match any valid value.
At driver init, all values are set to any.

For example, to generate an error at rank 1 of dimm 2, for any channel, any bank, any page,
any column:

echo 2 >/sys/devices/system/edac/mc/mcO/inject addrmatch/dimm
echo 1 >/sys/devices/system/edac/mc/mcO/inject addrmatch/rank

To return to the default behaviour of matching any, you can do::

echo any >/sys/devices/system/edac/mc/mc0@/inject addrmatch/dimm
echo any >/sys/devices/system/edac/mc/mcO/inject addrmatch/rank

* inject_eccmask: specifies what bits will have troubles,

» inject_section: specifies what ECC cache section will get the error:

3 for both
2 for the highest
1 for the lowest

* inject_type: specifies the type of error, being a combination of the following bits:

bit 0 - repeat
bit 1 - ecc
bit 2 - parity

* inject_enable: starts the error generation when something different than 0 is written.
All inject vars can be read. root permission is needed for write.

Datasheet states that the error will only be generated after a write on an address that matches
inject_addrmatch. It seems, however, that reading will also produce an error.

For example, the following code will generate an error for any write access at socket 0, on any
DIMM/address on channel 2:

echo 2 >/sys/devices/system/edac/mc/mcO/inject addrmatch/channel
echo 2 >/sys/devices/system/edac/mc/mcO/inject type

echo 64 >/sys/devices/system/edac/mc/mc0/inject eccmask

echo 3 >/sys/devices/system/edac/mc/mcO/inject section

echo 1 >/sys/devices/system/edac/mc/mcO/inject enable

dd if=/dev/mem of=/dev/null seek=16k bs=4k count=1 >& /dev/null

For socket 1, it is needed to replace “mc0” by “mcl” at the above commands.

The generated error message will look like:

248 Chapter 25. Reliability, Availability and Serviceability

Linux Kernel User Documentation, Release 4.13.0-rc4+

EDAC MCO: UE row 0, channel-a= 0 channel-b= 0 labels "-": NON_FATAL (addr = 0x0075b980, ,
—~socket=0, Dimm=0, Channel=2, syndrome=0x00000040, count=1, Err=8c0000400001009f:
4000080482 (read error: read ECC error))

3. Corrected Error memory register counters

Those newer MCs have some registers to count memory errors. The driver uses those registers to
report Corrected Errors on devices with Registered DIMMs.

However, those counters don’t work with Unregistered DIMM. As the chipset offers some counters
that also work with UDIMMs (but with a worse level of granularity than the default ones), the driver
exposes those registers for UDIMM memories.

They can be read by looking at the contents of all channel counts/:

$ for i in /sys/devices/system/edac/mc/mcO/all channel counts/*; do echo $i; cat $i; done
/sys/devices/system/edac/mc/mcO/all_channel counts/udimm@
0
/sys/devices/system/edac/mc/mcO/all_channel counts/udimml
0
/sys/devices/system/edac/mc/mcO/all channel counts/udimm2
0

What happens here is that errors on different csrows, but at the same dimm number will increment
the same counter. So, in this memory mapping:

csrow@: channel 0, dimmO
csrowl: channel 0, dimml
csrow2: channel 1, dimmO
csrow3: channel 2, dimmO

The hardware will increment udimmO for an error at the first dimm at either csrow0Q, csrow2 or csrow3;

The hardware will increment udimm1 for an error at the second dimm at either csrow0Q, csrow2 or
CSrow3;

The hardware will increment udimm?2 for an error at the third dimm at either csrow0Q, csrow2 or
CSrow3;

. Standard error counters

The standard error counters are generated when an mcelog error is received by the driver. Since,
with UDIMM, this is counted by software, it is possible that some errors could be lost. With RDIMM'’s,
they display the contents of the registers

25.2.20 Reference documents used on amd64_edac

amd64 edac module is based on the following documents (available from http://support.amd.com/en-us/
search/tech-docs):

1.

Title BIOS and Kernel Developer’s Guide for AMD Athlon 64 and AMD Opteron Processors
AMD publication # 26094

Revision 3.26

Link http://support.amd.com/TechDocs/26094.PDF

Title BIOS and Kernel Developer’s Guide for AMD NPT Family OFh Processors

AMD publication # 32559

Revision 3.00

Issue Date May 2006

25.2. EDAC - Error Detection And Correction 249

http://support.amd.com/en-us/search/tech-docs
http://support.amd.com/en-us/search/tech-docs
http://support.amd.com/TechDocs/26094.PDF

Linux Kernel User Documentation, Release 4.13.0-rc4+

Link http://support.amd.com/TechDocs/32559.pdf
3. Title BIOS and Kernel Developer’s Guide (BKDG) For AMD Family 10h Processors
AMD publication # 31116
Revision 3.00
Issue Date September 07, 2007
Link http://support.amd.com/TechDocs/31116.pdf

4, Title BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models 30h-3Fh Pro-
cessors

AMD publication # 49125

Revision 3.06

Issue Date 2/12/2015 (latest release)

Link http://support.amd.com/TechDocs/49125_15h_Models_30h-3Fh_BKDG.pdf

5. Title BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models 60h-6Fh Pro-
cessors

AMD publication # 50742

Revision 3.01

Issue Date 7/23/2015 (latest release)

Link http://support.amd.com/TechDocs/50742_15h_Models_60h-6Fh_BKDG.pdf

6. Title BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 16h Models 00h-OFh Pro-
cessors

AMD publication # 48751

Revision 3.03

Issue Date 2/23/2015 (latest release)

Link http://support.amd.com/TechDocs/48751_16h_bkdg.pdf

Credits

e Written by Doug Thompson <dougthompson@xmission.com>
- 7 Dec 2005
- 17 Jul 2007 Updated
* © Mauro Carvalho Chehab
- 05 Aug 2009 Nehalem interface
- 26 Oct 2016 Converted to ReST and cleanups at the Nehalem section

e EDAC authors/maintainers:

Doug Thompson, Dave Jiang, Dave Peterson et al,

Mauro Carvalho Chehab

Borislav Petkov

original author: Thayne Harbaugh

250 Chapter 25. Reliability, Availability and Serviceability

http://support.amd.com/TechDocs/32559.pdf
http://support.amd.com/TechDocs/31116.pdf
http://support.amd.com/TechDocs/49125_15h_Models_30h-3Fh_BKDG.pdf
http://support.amd.com/TechDocs/50742_15h_Models_60h-6Fh_BKDG.pdf
http://support.amd.com/TechDocs/48751_16h_bkdg.pdf
mailto:dougthompson@xmission.com

CHAPTER
TWENTYSIX

POWER MANAGEMENT

26.1 CPU Performance Scaling

’Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

26.1.1 The Concept of CPU Performance Scaling

The majority of modern processors are capable of operating in a number of different clock frequency and
voltage configurations, often referred to as Operating Performance Points or P-states (in ACPI terminology).
As a rule, the higher the clock frequency and the higher the voltage, the more instructions can be retired
by the CPU over a unit of time, but also the higher the clock frequency and the higher the voltage, the
more energy is consumed over a unit of time (or the more power is drawn) by the CPU in the given P-state.
Therefore there is a natural tradeoff between the CPU capacity (the number of instructions that can be
executed over a unit of time) and the power drawn by the CPU.

In some situations it is desirable or even necessary to run the program as fast as possible and then
there is no reason to use any P-states different from the highest one (i.e. the highest-performance fre-
quency/voltage configuration available). In some other cases, however, it may not be necessary to exe-
cute instructions so quickly and maintaining the highest available CPU capacity for a relatively long time
without utilizing it entirely may be regarded as wasteful. It also may not be physically possible to maintain
maximum CPU capacity for too long for thermal or power supply capacity reasons or similar. To cover those
cases, there are hardware interfaces allowing CPUs to be switched between different frequency/voltage
configurations or (in the ACPI terminology) to be put into different P-states.

Typically, they are used along with algorithms to estimate the required CPU capacity, so as to decide which
P-states to put the CPUs into. Of course, since the utilization of the system generally changes over time,
that has to be done repeatedly on a regular basis. The activity by which this happens is referred to as CPU
performance scaling or CPU frequency scaling (because it involves adjusting the CPU clock frequency).

26.1.2 CPU Performance Scaling in Linux

The Linux kernel supports CPU performance scaling by means of the CPUFreq (CPU Frequency scaling)
subsystem that consists of three layers of code: the core, scaling governors and scaling drivers.

The CPUFreq core provides the common code infrastructure and user space interfaces for all platforms
that support CPU performance scaling. It defines the basic framework in which the other components
operate.

Scaling governors implement algorithms to estimate the required CPU capacity. As a rule, each governor
implements one, possibly parametrized, scaling algorithm.

Scaling drivers talk to the hardware. They provide scaling governors with information on the available
P-states (or P-state ranges in some cases) and access platform-specific hardware interfaces to change
CPU P-states as requested by scaling governors.

251

Linux Kernel User Documentation, Release 4.13.0-rc4+

In principle, all available scaling governors can be used with every scaling driver. That design is based on
the observation that the information used by performance scaling algorithms for P-state selection can be
represented in a platform-independent form in the majority of cases, so it should be possible to use the
same performance scaling algorithm implemented in exactly the same way regardless of which scaling
driver is used. Consequently, the same set of scaling governors should be suitable for every supported
platform.

However, that observation may not hold for performance scaling algorithms based on information provided
by the hardware itself, for example through feedback registers, as that information is typically specific
to the hardware interface it comes from and may not be easily represented in an abstract, platform-
independent way. For this reason, CPUFreq allows scaling drivers to bypass the governor layer and im-
plement their own performance scaling algorithms. That is done by the intel pstate scaling driver.

26.1.3 CPUFreq Policy Objects

In some cases the hardware interface for P-state control is shared by multiple CPUs. That is, for example,
the same register (or set of registers) is used to control the P-state of multiple CPUs at the same time and
writing to it affects all of those CPUs simultaneously.

Sets of CPUs sharing hardware P-state control interfaces are represented by CPUFreq as struct
cpufreq_policy objects. For consistency, struct cpufreq policy is also used when there is only one
CPU in the given set.

The CPUFreq core maintains a pointerto a struct cpufreq policy objectfor every CPU in the system, in-
cluding CPUs that are currently offline. If multiple CPUs share the same hardware P-state control interface,
all of the pointers corresponding to them point to the same struct cpufreq policy object.

CPUFreq uses struct cpufreq_policy as its basic data type and the design of its user space interface is
based on the policy concept.

26.1.4 CPU Initialization

First of all, a scaling driver has to be registered for CPUFreq to work. It is only possible to register one
scaling driver at a time, so the scaling driver is expected to be able to handle all CPUs in the system.

The scaling driver may be registered before or after CPU registration. If CPUs are registered earlier,
the driver core invokes the CPUFreq core to take a note of all of the already registered CPUs during the
registration of the scaling driver. In turn, if any CPUs are registered after the registration of the scaling
driver, the CPUFreq core will be invoked to take note of them at their registration time.

In any case, the CPUFreq core is invoked to take note of any logical CPU it has not seen so far as soon as itis
ready to handle that CPU. [Note that the logical CPU may be a physical single-core processor, or a single
core in a multicore processor, or a hardware thread in a physical processor or processor core. In what
follows “CPU"” always means “logical CPU” unless explicitly stated otherwise and the word “processor” is
used to refer to the physical part possibly including multiple logical CPUs.]

Once invoked, the CPUFreq core checks if the policy pointer is already set for the given CPU and if so, it
skips the policy object creation. Otherwise, a new policy object is created and initialized, which involves
the creation of a new policy directory in sysfs, and the policy pointer corresponding to the given CPU is
set to the new policy object’s address in memory.

Next, the scaling driver’s ->init () callback is invoked with the policy pointer of the new CPU passed to
it as the argument. That callback is expected to initialize the performance scaling hardware interface
for the given CPU (or, more precisely, for the set of CPUs sharing the hardware interface it belongs to,
represented by its policy object) and, if the policy object it has been called for is new, to set parameters of
the policy, like the minimum and maximum frequencies supported by the hardware, the table of available
frequencies (if the set of supported P-states is not a continuous range), and the mask of CPUs that belong
to the same policy (including both online and offline CPUs). That mask is then used by the core to populate
the policy pointers for all of the CPUs in it.

252 Chapter 26. Power Management

Linux Kernel User Documentation, Release 4.13.0-rc4+

The next major initialization step for a new policy object is to attach a scaling governor to it (to begin with,
that is the default scaling governor determined by the kernel configuration, but it may be changed later
via sysfs). First, a pointer to the new policy object is passed to the governor’s ->init () callback which
is expected to initialize all of the data structures necessary to handle the given policy and, possibly, to
add a governor sysTs interface to it. Next, the governor is started by invoking its ->start() callback.

That callback it expected to register per-CPU utilization update callbacks for all of the online CPUs belong-
ing to the given policy with the CPU scheduler. The utilization update callbacks will be invoked by the
CPU scheduler on important events, like task enqueue and dequeue, on every iteration of the scheduler
tick or generally whenever the CPU utilization may change (from the scheduler’s perspective). They are
expected to carry out computations needed to determine the P-state to use for the given policy going
forward and to invoke the scaling driver to make changes to the hardware in accordance with the P-state
selection. The scaling driver may be invoked directly from scheduler context or asynchronously, via a
kernel thread or workqueue, depending on the configuration and capabilities of the scaling driver and the
governor.

Similar steps are taken for policy objects that are not new, but were “inactive” previously, meaning that all
of the CPUs belonging to them were offline. The only practical difference in that case is that the CPUFreq
core will attempt to use the scaling governor previously used with the policy that became “inactive” (and
is re-initialized now) instead of the default governor.

In turn, if a previously offline CPU is being brought back online, but some other CPUs sharing the policy
object with it are online already, there is no need to re-initialize the policy object at all. In that case, it only
is necessary to restart the scaling governor so that it can take the new online CPU into account. That is
achieved by invoking the governor’s ->stop and ->start() callbacks, in this order, for the entire policy.

As mentioned before, the intel pstate scaling driver bypasses the scaling governor layer of CPUFreq and
provides its own P-state selection algorithms. Consequently, if intel pstate is used, scaling governors are
not attached to new policy objects. Instead, the driver’'s ->setpolicy() callback is invoked to register
per-CPU utilization update callbacks for each policy. These callbacks are invoked by the CPU scheduler in
the same way as for scaling governors, but in the intel pstate case they both determine the P-state to
use and change the hardware configuration accordingly in one go from scheduler context.

The policy objects created during CPU initialization and other data structures associated with them are
torn down when the scaling driver is unregistered (which happens when the kernel module containing it
is unloaded, for example) or when the last CPU belonging to the given policy in unregistered.

26.1.5 Policy Interface in sysfs

During the initialization of the kernel, the CPUFreq core creates a sysfs directory (kobject) called cpufreq
under /sys/devices/system/cpu/.

That directory contains a policyX subdirectory (where X represents an integer number) for every policy
object maintained by the CPUFreq core. Each policyX directory is pointed to by cpufreq symbolic links
under /sys/devices/system/cpu/cpuY/ (where Y represents an integer that may be different from the
one represented by X) for all of the CPUs associated with (or belonging to) the given policy. The policyX
directories in /sys/devices/system/cpu/cpufreq each contain policy-specific attributes (files) to control
CPUFreq behavior for the corresponding policy objects (that is, for all of the CPUs associated with them).

Some of those attributes are generic. They are created by the CPUFreq core and their behavior generally
does not depend on what scaling driver is in use and what scaling governor is attached to the given
policy. Some scaling drivers also add driver-specific attributes to the policy directories in sysfs to control
policy-specific aspects of driver behavior.

The generic attributes under /sys/devices/system/cpu/cpufreq/policyX/ are the following:

affected_cpus List of online CPUs belonging to this policy (i.e. sharing the hardware performance scaling
interface represented by the policyX policy object).

bios_limit If the platform firmware (BIOS) tells the OS to apply an upper limit to CPU frequencies, that
limit will be reported through this attribute (if present).

26.1. CPU Performance Scaling 253

Linux Kernel User Documentation, Release 4.13.0-rc4+

The existence of the limit may be a result of some (often unintentional) BIOS settings, restrictions
coming from a service processor or another BIOS/HW-based mechanisms.

This does not cover ACPI thermal limitations which can be discovered through a generic thermal
driver.

This attribute is not present if the scaling driver in use does not support it.

cpuinfo_cur_freq Current frequency of the CPUs belonging to this policy as obtained from the hardware
(in KHz).

This is expected to be the frequency the hardware actually runs at. If that frequency cannot be
determined, this attribute should not be present.

cpuinfo_max_freq Maximum possible operating frequency the CPUs belonging to this policy can run at
(in kHz).

cpuinfo_min_freq Minimum possible operating frequency the CPUs belonging to this policy can run at
(in kHz).

cpuinfo_transition_latency The time it takes to switch the CPUs belonging to this policy from one
P-state to another, in nanoseconds.

If unknown or if known to be so high that the scaling driver does not work with the ondemand gov-
ernor, -1 (CPUFREQ_ETERNAL) will be returned by reads from this attribute.

related_cpus List of all (online and offline) CPUs belonging to this policy.

scaling_available_governors List of CPUFreq scaling governors present in the kernel that can be at-
tached to this policy or (if the intel pstate scaling driver is in use) list of scaling algorithms provided
by the driver that can be applied to this policy.

[Note that some governors are modular and it may be necessary to load a kernel module for the
governor held by it to become available and be listed by this attribute.]

scaling_cur_freq Current frequency of all of the CPUs belonging to this policy (in kHz).

In the majority of cases, this is the frequency of the last P-state requested by the scaling driver from
the hardware using the scaling interface provided by it, which may or may not reflect the frequency
the CPU is actually running at (due to hardware design and other limitations).

Some architectures (e.g. x86) may attempt to provide information more precisely reflecting the cur-
rent CPU frequency through this attribute, but that still may not be the exact current CPU frequency
as seen by the hardware at the moment.

scaling_driver The scaling driver currently in use.

scaling_governor The scaling governor currently attached to this policy or (if the intel pstate scaling
driver is in use) the scaling algorithm provided by the driver that is currently applied to this policy.

This attribute is read-write and writing to it will cause a new scaling governor to be attached to this
policy or a new scaling algorithm provided by the scaling driver to be applied to it (in the intel pstate
case), as indicated by the string written to this attribute (which must be one of the names listed by
the scaling_available governors attribute described above).

scaling_max_freq Maximum frequency the CPUs belonging to this policy are allowed to be running at
(in kHz).

This attribute is read-write and writing a string representing an integer to it will cause a new limit to
be set (it must not be lower than the value of the scaling min_ freq attribute).

scaling_min_freq Minimum frequency the CPUs belonging to this policy are allowed to be running at (in
kHz).

This attribute is read-write and writing a string representing a non-negative integer to it will cause a
new limit to be set (it must not be higher than the value of the scaling max_ freq attribute).

scaling_setspeed This attribute is functional only if the userspace scaling governor is attached to the
given policy.

254 Chapter 26. Power Management

Linux Kernel User Documentation, Release 4.13.0-rc4+

It returns the last frequency requested by the governor (in kHz) or can be written to in order to set a
new frequency for the policy.

26.1.6 Generic Scaling Governors

CPUFreq provides generic scaling governors that can be used with all scaling drivers. As stated before,
each of them implements a single, possibly parametrized, performance scaling algorithm.

Scaling governors are attached to policy objects and different policy objects can be handled by different
scaling governors at the same time (although that may lead to suboptimal results in some cases).

The scaling governor for a given policy object can be changed at any time with the help of the scal-
ing_governor policy attribute in sysfs.

Some governors expose sysfs attributes to control or fine-tune the scaling algorithms implemented by
them. Those attributes, referred to as governor tunables, can be either global (system-wide) or per-
policy, depending on the scaling driver in use. If the driver requires governor tunables to be per-policy,
they are located in a subdirectory of each policy directory. Otherwise, they are located in a subdirectory
under /sys/devices/system/cpu/cpufreq/. In either case the name of the subdirectory containing the
governor tunables is the name of the governor providing them.

performance

When attached to a policy object, this governor causes the highest frequency, within the scal-
ing max_freq policy limit, to be requested for that policy.

The request is made once at that time the governor for the policy is set to performance and whenever
the scaling max_freqor scaling min_ freq policy limits change after that.

powersave

When attached to a policy object, this governor causes the lowest frequency, within the scal-
ing min_ freq policy limit, to be requested for that policy.

The request is made once at that time the governor for the policy is set to powersave and whenever the
scaling max_freq or scaling min_ freq policy limits change after that.

userspace

This governor does not do anything by itself. Instead, it allows user space to set the CPU frequency for
the policy it is attached to by writing to the scaling_ setspeed attribute of that policy.

schedutil

This governor uses CPU utilization data available from the CPU scheduler. It generally is regarded as a
part of the CPU scheduler, so it can access the scheduler’s internal data structures directly.

It runs entirely in scheduler context, although in some cases it may need to invoke the scaling driver
asynchronously when it decides that the CPU frequency should be changed for a given policy (that depends
on whether or not the driver is capable of changing the CPU frequency from scheduler context).

The actions of this governor for a particular CPU depend on the scheduling class invoking its utilization
update callback for that CPU. If it is invoked by the RT or deadline scheduling classes, the governor will
increase the frequency to the allowed maximum (that is, the scaling max freq policy limit). In turn,
if it is invoked by the CFS scheduling class, the governor will use the Per-Entity Load Tracking (PELT)
metric for the root control group of the given CPU as the CPU utilization estimate (see the Per-entity load
tracking LWN.net article for a description of the PELT mechanism). Then, the new CPU frequency to apply
is computed in accordance with the formula

26.1. CPU Performance Scaling 255

https://lwn.net/Articles/531853/
https://lwn.net/Articles/531853/

Linux Kernel User Documentation, Release 4.13.0-rc4+

f=1.25*f 0*util /max

where util is the PELT number, max is the theoretical maximum of util, and f_0 is either the maximum
possible CPU frequency for the given policy (if the PELT number is frequency-invariant), or the current CPU
frequency (otherwise).

This governor also employs a mechanism allowing it to temporarily bump up the CPU frequency for
tasks that have been waiting on I/O most recently, called “IO-wait boosting”. That happens when the
SCHED CPUFREQ_IOWAIT flag is passed by the scheduler to the governor callback which causes the fre-
quency to go up to the allowed maximum immediately and then draw back to the value returned by the
above formula over time.

This governor exposes only one tunable:

rate_limit_us Minimum time (in microseconds) that has to pass between two consecutive runs of gov-
ernor computations (default: 1000 times the scaling driver’s transition latency).

The purpose of this tunable is to reduce the scheduler context overhead of the governor which might
be excessive without it.

This governor generally is regarded as a replacement for the older ondemand and conservative governors
(described below), as itis simpler and more tightly integrated with the CPU scheduler, its overhead in terms
of CPU context switches and similar is less significant, and it uses the scheduler’'s own CPU utilization
metric, so in principle its decisions should not contradict the decisions made by the other parts of the
scheduler.

ondemand

This governor uses CPU load as a CPU frequency selection metric.

In order to estimate the current CPU load, it measures the time elapsed between consecutive invocations
of its worker routine and computes the fraction of that time in which the given CPU was not idle. The ratio
of the non-idle (active) time to the total CPU time is taken as an estimate of the load.

If this governor is attached to a policy shared by multiple CPUs, the load is estimated for all of them and
the greatest result is taken as the load estimate for the entire policy.

The worker routine of this governor has to run in process context, so it is invoked asynchronously (via
a workqueue) and CPU P-states are updated from there if necessary. As a result, the scheduler context
overhead from this governor is minimum, but it causes additional CPU context switches to happen rela-
tively often and the CPU P-state updates triggered by it can be relatively irregular. Also, it affects its own
CPU load metric by running code that reduces the CPU idle time (even though the CPU idle time is only
reduced very slightly by it).

It generally selects CPU frequencies proportional to the estimated load, so that the value of the
cpuinfo_max_freq policy attribute corresponds to the load of 1 (or 100%), and the value of the
cpuinfo_min_ freq policy attribute corresponds to the load of 0, unless when the load exceeds a (config-
urable) speedup threshold, in which case it will go straight for the highest frequency it is allowed to use
(the scaling max_ freq policy limit).

This governor exposes the following tunables:
sampling_rate This is how often the governor’s worker routine should run, in microseconds.

Typically, it is set to values of the order of 10000 (10 ms). Its default value is equal to the value of
cpuinfo transition latency for each policy this governor is attached to (but since the unit here
is greater by 1000, this means that the time represented by sampling rate is 1000 times greater
than the transition latency by default).

If this tunable is per-policy, the following shell command sets the time represented by it to be 750
times as high as the transition latency:

echo "$(($(cat cpuinfo transition latency) * 750 / 1000)) > ondemand/sampling rate

256 Chapter 26. Power Management

Linux Kernel User Documentation, Release 4.13.0-rc4+

min_sampling_rate The minimum value of sampling rate.

Equal to 10000 (10 ms) if CONFIG_NO HZ COMMON and tick nohz_active are both set or to 20 times
the value of jiffies in microseconds otherwise.

up_threshold If the estimated CPU load is above this value (in percent), the governor will set the fre-
quency to the maximum value allowed for the policy. Otherwise, the selected frequency will be
proportional to the estimated CPU load.

ignore_nice_load If set to 1 (default 0), it will cause the CPU load estimation code to treat the CPU time
spent on executing tasks with “nice” levels greater than 0 as CPU idle time.

This may be useful if there are tasks in the system that should not be taken into account when
deciding what frequency to run the CPUs at. Then, to make that happen it is sufficient to increase
the “nice” level of those tasks above 0 and set this attribute to 1.

sampling_down_factor Temporary multiplier, between 1 (default) and 100 inclusive, to apply to the sam-
pling rate value if the CPU load goes above up_threshold.

This causes the next execution of the governor’s worker routine (after setting the frequency to the
allowed maximum) to be delayed, so the frequency stays at the maximum level for a longer time.

Frequency fluctuations in some bursty workloads may be avoided this way at the cost of additional
energy spent on maintaining the maximum CPU capacity.

powersave bias Reduction factor to apply to the original frequency target of the governor (includ-
ing the maximum value used when the up threshold value is exceeded by the estimated
CPU load) or sensitivity threshold for the AMD frequency sensitivity powersave bias driver
(drivers/cpufreq/amd freq sensitivity.c), between 0 and 1000 inclusive.

If the AMD frequency sensitivity powersave bias driver is not loaded, the effective frequency to apply
is given by

f* (1 - powersave bias/1000)

where f is the governor’s original frequency target. The default value of this attribute is 0 in that
case.

If the AMD frequency sensitivity powersave bias driver is loaded, the value of this attribute is 400 by
default and it is used in a different way.

On Family 16h (and later) AMD processors there is a mechanism to get a measured workload sensi-
tivity, between 0 and 100% inclusive, from the hardware. That value can be used to estimate how
the performance of the workload running on a CPU will change in response to frequency changes.

The performance of a workload with the sensitivity of 0 (memory-bound or 10-bound) is not expected
to increase at all as a result of increasing the CPU frequency, whereas workloads with the sensitivity
of 100% (CPU-bound) are expected to perform much better if the CPU frequency is increased.

If the workload sensitivity is less than the threshold represented by the powersave bias value, the
sensitivity powersave bias driver will cause the governor to select a frequency lower than its original
target, so as to avoid over-provisioning workloads that will not benefit from running at higher CPU
frequencies.

conservative

This governor uses CPU load as a CPU frequency selection metric.

It estimates the CPU load in the same way as the ondemand governor described above, but the CPU
frequency selection algorithm implemented by it is different.

Namely, it avoids changing the frequency significantly over short time intervals which may not be suitable
for systems with limited power supply capacity (e.g. battery-powered). To achieve that, it changes the
frequency in relatively small steps, one step at a time, up or down - depending on whether or not a
(configurable) threshold has been exceeded by the estimated CPU load.

26.1. CPU Performance Scaling 257

Linux Kernel User Documentation, Release 4.13.0-rc4+

This governor exposes the following tunables:

freq_step Frequency step in percent of the maximum frequency the governor is allowed to set (the
scaling max_freq policy limit), between 0 and 100 (5 by default).

This is how much the frequency is allowed to change in one go. Setting it to 0 will cause the de-
fault frequency step (5 percent) to be used and setting it to 100 effectively causes the governor
to periodically switch the frequency between the scaling min freq and scaling max_freq policy
limits.

down_threshold Threshold value (in percent, 20 by default) used to determine the frequency change
direction.

If the estimated CPU load is greater than this value, the frequency will go up (by freq step). If
the load is less than this value (and the sampling down_ factor mechanism is not in effect), the
frequency will go down. Otherwise, the frequency will not be changed.

sampling_down_factor Frequency decrease deferral factor, between 1 (default) and 10 inclusive.

It effectively causes the frequency to go down sampling down factor times slower than it ramps
up.

26.1.7 Frequency Boost Support

Background

Some processors support a mechanism to raise the operating frequency of some cores in a multicore
package temporarily (and above the sustainable frequency threshold for the whole package) under certain
conditions, for example if the whole chip is not fully utilized and below its intended thermal or power
budget.

Different names are used by different vendors to refer to this functionality. For Intel processors it is referred
to as “Turbo Boost”, AMD calls it “Turbo-Core” or (in technical documentation) “Core Performance Boost”
and so on. As a rule, it also is implemented differently by different vendors. The simple term “frequency
boost” is used here for brevity to refer to all of those implementations.

The frequency boost mechanism may be either hardware-based or software-based. If it is hardware-based
(e.g. on x86), the decision to trigger the boosting is made by the hardware (although in general it requires
the hardware to be put into a special state in which it can control the CPU frequency within certain limits).
If it is software-based (e.g. on ARM), the scaling driver decides whether or not to trigger boosting and
when to do that.

The boost File in sysfs

This file is located under /sys/devices/system/cpu/cpufreq/ and controls the “boost” setting for the
whole system. It is not present if the underlying scaling driver does not support the frequency boost
mechanism (or supports it, but provides a driver-specific interface for controlling it, like intel pstate).

If the value in this file is 1, the frequency boost mechanism is enabled. This means that either the hardware
can be put into states in which it is able to trigger boosting (in the hardware-based case), or the software
is allowed to trigger boosting (in the software-based case). It does not mean that boosting is actually in
use at the moment on any CPUs in the system. It only means a permission to use the frequency boost
mechanism (which still may never be used for other reasons).

If the value in this file is 0, the frequency boost mechanism is disabled and cannot be used at all.

The only values that can be written to this file are 0 and 1.

258 Chapter 26. Power Management

Linux Kernel User Documentation, Release 4.13.0-rc4+

Rationale for Boost Control Knob

The frequency boost mechanism is generally intended to help to achieve optimum CPU performance on
time scales below software resolution (e.g. below the scheduler tick interval) and it is demonstrably
suitable for many workloads, but it may lead to problems in certain situations.

For this reason, many systems make it possible to disable the frequency boost mechanism in the platform
firmware (BIOS) setup, but that requires the system to be restarted for the setting to be adjusted as
desired, which may not be practical at least in some cases. For example:

1. Boosting means overclocking the processor, although under controlled conditions. Generally, the
processor’s energy consumption increases as a result of increasing its frequency and voltage, even
temporarily. That may not be desirable on systems that switch to power sources of limited capacity,
such as batteries, so the ability to disable the boost mechanism while the system is running may
help there (but that depends on the workload too).

2. Insome situations deterministic behavior is more important than performance or energy consumption
(or both) and the ability to disable boosting while the system is running may be useful then.

3. To examine the impact of the frequency boost mechanism itself, it is useful to be able to run tests
with and without boosting, preferably without restarting the system in the meantime.

4. Reproducible results are important when running benchmarks. Since the boosting functionality de-
pends on the load of the whole package, single-thread performance may vary because of it which
may lead to unreproducible results sometimes. That can be avoided by disabling the frequency boost
mechanism before running benchmarks sensitive to that issue.

Legacy AMD cpb Knob

The AMD powernow-k8 scaling driver supports a sysfs knob very similar to the global boost one. It is
used for disabling/enabling the “Core Performance Boost” feature of some AMD processors.

If present, that knob is located in every CPUFreq ©policy directory in sysfs
(/sys/devices/system/cpu/cpufreq/policyX/) and is called cpb, which indicates a more fine grained
control interface. The actual implementation, however, works on the system-wide basis and setting that
knob for one policy causes the same value of it to be set for all of the other policies at the same time.

That knob is still supported on AMD processors that support its underlying hardware feature, but it may be
configured out of the kernel (via the CONFIG _X86 ACPI CPUFREQ_CPB configuration option) and the global
boost knob is present regardless. Thus it is always possible use the boost knob instead of the cpb one
which is highly recommended, as that is more consistent with what all of the other systems do (and the
cpb knob may not be supported any more in the future).

The cpb knob is never present for any processors without the underlying hardware feature (e.g. all Intel
ones), even if the CONFIG _X86 ACPI CPUFREQ CPB configuration option is set.

26.2 intel pstate CPU Performance Scaling Driver

’Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

26.2.1 General Information

intel pstateis a part of the CPU performance scaling subsystem in the Linux kernel (CPUFreq). Itis a
scaling driver for the Sandy Bridge and later generations of Intel processors. Note, however, that some
of those processors may not be supported. [To understand intel pstate it is necessary to know how
CPUFreq works in general, so this is the time to read CPU Performance Scaling if you have not done that
yet.]

26.2. intel_pstate CPU Performance Scaling Driver 259

Linux Kernel User Documentation, Release 4.13.0-rc4+

For the processors supported by intel pstate, the P-state concept is broader than just an operating fre-
quency or an operating performance point (see the LinuxCon Europe 2015 presentation by Kristen Accardi
for more information about that). For this reason, the representation of P-states used by intel pstatein-
ternally follows the hardware specification (for details refer to Intel® 64 and IA-32 Architectures Software
Developer’'s Manual Volume 3: System Programming Guide). However, the CPUFreq core uses frequen-
cies for identifying operating performance points of CPUs and frequencies are involved in the user space
interface exposed by it, so intel pstate maps its internal representation of P-states to frequencies too
(fortunately, that mapping is unambiguous). At the same time, it would not be practical for intel pstate
to supply the CPUFreq core with a table of available frequencies due to the possible size of it, so the driver
does not do that. Some functionality of the core is limited by that.

Since the hardware P-state selection interface used by intel pstate is available at the logical CPU level,
the driver always works with individual CPUs. Consequently, if intel pstate is in use, every CPUFreq
policy object corresponds to one logical CPU and CPUFreq policies are effectively equivalent to CPUs. In
particular, this means that they become “inactive” every time the corresponding CPU is taken offline and
need to be re-initialized when it goes back online.

intel pstate is not modular, so it cannot be unloaded, which means that the only way to pass early-
configuration-time parameters to it is via the kernel command line. However, its configuration can be
adjusted via sysfs to a great extent. In some configurations it even is possible to unregister it via sysfs
which allows another CPUFreq scaling driver to be loaded and registered (see below).

26.2.2 Operation Modes

intel pstate can operate in three different modes: in the active mode with or without hardware-
managed P-states support and in the passive mode. Which of them will be in effect depends on what
kernel command line options are used and on the capabilities of the processor.

Active Mode

This is the default operation mode of intel pstate. If it works in this mode, the scaling driver policy
attribute in sysfs for all CPUFreq policies contains the string “intel_pstate”.

In this mode the driver bypasses the scaling governors layer of CPUFreq and provides its own scaling
algorithms for P-state selection. Those algorithms can be applied to CPUFreq policies in the same way as
generic scaling governors (that is, through the scaling governor policy attribute in sysfs). [Note that
different P-state selection algorithms may be chosen for different policies, but that is not recommended.]

They are not generic scaling governors, but their names are the same as the names of some of those
governors. Moreover, confusingly enough, they generally do not work in the same way as the generic
governors they share the names with. For example, the powersave P-state selection algorithm provided
by intel pstate is not a counterpart of the generic powersave governor (roughly, it corresponds to the
schedutil and ondemand governors).

There are two P-state selection algorithms provided by intel pstate in the active mode: powersave and
performance. The way they both operate depends on whether or not the hardware-managed P-states
(HWP) feature has been enabled in the processor and possibly on the processor model.

Which of the P-state selection algorithms is used by default depends on the CON-
FIG CPU FREQ DEFAULT GOV _PERFORMANCE kernel configuration option. Namely, if that option is
set, the performance algorithm will be used by default, and the other one will be used by default if it is
not set.

Active Mode With HWP

If the processor supports the HWP feature, it will be enabled during the processor initialization and cannot
be disabled after that. It is possible to avoid enabling it by passing the intel pstate=no hwp argument
to the kernel in the command line.

260 Chapter 26. Power Management

http://events.linuxfoundation.org/sites/events/files/slides/LinuxConEurope_2015.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html

Linux Kernel User Documentation, Release 4.13.0-rc4+

If the HWP feature has been enabled, intel pstate relies on the processor to select P-states by itself,
but still it can give hints to the processor’s internal P-state selection logic. What those hints are depends
on which P-state selection algorithm has been applied to the given policy (or to the CPU it corresponds
to).

Even though the P-state selection is carried out by the processor automatically, intel pstate registers
utilization update callbacks with the CPU scheduler in this mode. However, they are not used for running a
P-state selection algorithm, but for periodic updates of the current CPU frequency information to be made
available from the scaling cur freq policy attribute in sysfs.

HWP + performance

In this configuration intel pstate will write 0 to the processor’s Energy-Performance Preference (EPP)
knob (if supported) or its Energy-Performance Bias (EPB) knob (otherwise), which means that the proces-
sor’s internal P-state selection logic is expected to focus entirely on performance.

This will override the EPP/EPB setting coming from the sysfs interface (see Energy vs Performance Hints
below).

Also, in this configuration the range of P-states available to the processor’s internal P-state selection logic
is always restricted to the upper boundary (that is, the maximum P-state that the driver is allowed to use).

HWP + powersave

In this configuration intel pstate will set the processor’s Energy-Performance Preference (EPP) knob (if
supported) or its Energy-Performance Bias (EPB) knob (otherwise) to whatever value it was previously set
to via sysfs (or whatever default value it was set to by the platform firmware). This usually causes the
processor’s internal P-state selection logic to be less performance-focused.

Active Mode Without HWP

This is the default operation mode for processors that do not support the HWP feature. It also is used
by default with the intel pstate=no hwp argument in the kernel command line. However, in this mode
intel pstate may refuse to work with the given processor if it does not recognize it. [Note that in-
tel pstate will never refuse to work with any processor with the HWP feature enabled.]

In this mode intel pstate registers utilization update callbacks with the CPU scheduler in order to run a P-
state selection algorithm, either powersave or performance, depending on the scaling cur freq policy
setting in sysfs. The current CPU frequency information to be made available from the scaling cur_ freq
policy attribute in sysfs is periodically updated by those utilization update callbacks too.

performance

Without HWP, this P-state selection algorithm is always the same regardless of the processor model and
platform configuration.

It selects the maximum P-state it is allowed to use, subject to limits set via sysfs, every time the driver
configuration for the given CPU is updated (e.g. via sysfs).

This is the default P-state selection algorithm if the CONFIG _CPU _FREQ DEFAULT GOV PERFORMANCE kernel
configuration option is set.

powersave

Without HWP, this P-state selection algorithm generally depends on the processor model and/or the system
profile setting in the ACPI tables and there are two variants of it.

26.2. intel_pstate CPU Performance Scaling Driver 261

Linux Kernel User Documentation, Release 4.13.0-rc4+

One of them is used with processors from the Atom line and (regardless of the processor model) on
platforms with the system profile in the ACPI tables set to “mobile” (laptops mostly), “tablet”, “appliance
PC”, “desktop”, or “workstation”. It is also used with processors supporting the HWP feature if that feature
has not been enabled (that is, with the intel pstate=no hwp argument in the kernel command line). Itis
similar to the algorithm implemented by the generic schedutil scaling governor except that the utilization
metric used by it is based on numbers coming from feedback registers of the CPU. It generally selects
P-states proportional to the current CPU utilization, so it is referred to as the “proportional” algorithm.

The second variant of the powersave P-state selection algorithm, used in all of the other cases (generally,
on processors from the Core line, so it is referred to as the “Core” algorithm), is based on the values read
from the APERF and MPERF feedback registers and the previously requested target P-state. It does not
really take CPU utilization into account explicitly, but as a rule it causes the CPU P-state to ramp up very
quickly in response to increased utilization which is generally desirable in server environments.

Regardless of the variant, this algorithm is run by the driver’s utilization update callback for the given CPU
when it is invoked by the CPU scheduler, but not more often than every 10 ms (that can be tweaked via
debugfs in this particular case). Like in the performance case, the hardware configuration is not touched
if the new P-state turns out to be the same as the current one.

This is the default P-state selection algorithm if the CONFIG_CPU_FREQ DEFAULT GOV _PERFORMANCE kernel
configuration option is not set.

Passive Mode

This mode is used if the intel pstate=passive argument is passed to the kernel in the command line
(it implies the intel pstate=no_ hwp setting too). Like in the active mode without HWP support, in this
mode intel pstate may refuse to work with the given processor if it does not recognize it.

If the driver works in this mode, the scaling driver policy attribute in sysfs for all CPUFreq policies
contains the string “intel_cpufreq”. Then, the driver behaves like a regular CPUFreq scaling driver. That
is, it is invoked by generic scaling governors when necessary to talk to the hardware in order to change
the P-state of a CPU (in particular, the schedutil governor can invoke it directly from scheduler context).

While in this mode, intel pstate can be used with all of the (generic) scaling governors listed by the
scaling available governors policy attribute in sysfs (and the P-state selection algorithms described
above are not used). Then, it is responsible for the configuration of policy objects corresponding to CPUs
and provides the CPUFreq core (and the scaling governors attached to the policy objects) with accurate
information on the maximum and minimum operating frequencies supported by the hardware (including
the so-called “turbo” frequency ranges). In other words, in the passive mode the entire range of available
P-states is exposed by intel pstate to the CPUFreq core. However, in this mode the driver does not
register utilization update callbacks with the CPU scheduler and the scaling cur freqinformation comes
from the CPUFreq core (and is the last frequency selected by the current scaling governor for the given

policy).

26.2.3 Turbo P-states Support

In the majority of cases, the entire range of P-states available to intel pstate can be divided into two
sub-ranges that correspond to different types of processor behavior, above and below a boundary that
will be referred to as the “turbo threshold” in what follows.

The P-states above the turbo threshold are referred to as “turbo P-states” and the whole sub-range of
P-states they belong to is referred to as the “turbo range”. These names are related to the Turbo Boost
technology allowing a multicore processor to opportunistically increase the P-state of one or more cores
if there is enough power to do that and if that is not going to cause the thermal envelope of the processor
package to be exceeded.

Specifically, if software sets the P-state of a CPU core within the turbo range (that is, above the turbo
threshold), the processor is permitted to take over performance scaling control for that core and put it
into turbo P-states of its choice going forward. However, that permission is interpreted differently by
different processor generations. Namely, the Sandy Bridge generation of processors will never use any

262 Chapter 26. Power Management

Linux Kernel User Documentation, Release 4.13.0-rc4+

P-states above the last one set by software for the given core, even if it is within the turbo range, whereas
all of the later processor generations will take it as a license to use any P-states from the turbo range,
even above the one set by software. In other words, on those processors setting any P-state from the
turbo range will enable the processor to put the given core into all turbo P-states up to and including the
maximum supported one as it sees fit.

One important property of turbo P-states is that they are not sustainable. More precisely, there is no guar-
antee that any CPUs will be able to stay in any of those states indefinitely, because the power distribution
within the processor package may change over time or the thermal envelope it was designed for might
be exceeded if a turbo P-state was used for too long.

In turn, the P-states below the turbo threshold generally are sustainable. In fact, if one of them is set by
software, the processor is not expected to change it to a lower one unless in a thermal stress or a power
limit violation situation (a higher P-state may still be used if it is set for another CPU in the same package
at the same time, for example).

Some processors allow multiple cores to be in turbo P-states at the same time, but the maximum P-state
that can be set for them generally depends on the number of cores running concurrently. The maximum
turbo P-state that can be set for 3 cores at the same time usually is lower than the analogous maximum
P-state for 2 cores, which in turn usually is lower than the maximum turbo P-state that can be set for 1
core. The one-core maximum turbo P-state is thus the maximum supported one overall.

The maximum supported turbo P-state, the turbo threshold (the maximum supported non-turbo P-state)
and the minimum supported P-state are specific to the processor model and can be determined by reading
the processor’'s model-specific registers (MSRs). Moreover, some processors support the Configurable TDP
(Thermal Design Power) feature and, when that feature is enabled, the turbo threshold effectively becomes
a configurable value that can be set by the platform firmware.

Unlike PSS objects in the ACPI tables, intel pstate always exposes the entire range of available P-
states, including the whole turbo range, to the CPUFreq core and (in the passive mode) to generic scaling
governors. This generally causes turbo P-states to be set more often when intel pstate is used relative
to ACPI-based CPU performance scaling (see below for more information).

Moreover, since intel pstate always knows what the real turbo threshold is (even if the Configurable
TDP feature is enabled in the processor), its no_turbo attribute in sysfs (described below) should work
as expected in all cases (that is, if set to disable turbo P-states, it always should prevent intel pstate
from using them).

26.2.4 Processor Support
To handle a given processor intel pstate requires a number of different pieces of information on it to
be known, including:

* The minimum supported P-state.

* The maximum supported non-turbo P-state.

* Whether or not turbo P-states are supported at all.

* The maximum supported one-core turbo P-state (if turbo P-states are supported).

* The scaling formula to translate the driver’s internal representation of P-states into frequencies and
the other way around.

Generally, ways to obtain that information are specific to the processor model or family. Although it often
is possible to obtain all of it from the processor itself (using model-specific registers), there are cases in
which hardware manuals need to be consulted to get to it too.

For this reason, there is a list of supported processors in intel pstate and the driver initialization will fail
if the detected processor is not in that list, unless it supports the HWP feature. [The interface to obtain
all of the information listed above is the same for all of the processors supporting the HWP feature, which
is why they all are supported by intel pstate.]

26.2. intel_pstate CPU Performance Scaling Driver 263

Linux Kernel User Documentation, Release 4.13.0-rc4+

26.2.5 User Space Interface in sysfs

Global Attributes

intel pstate exposes several global attributes (files) in sysfs to control its functionality at the system
level. They are located in the /sys/devices/system/cpu/cpufreq/intel pstate/ directory and affect
all CPUs.

Some of them are not present if the intel pstate=per cpu perf limits argument is passed to the
kernel in the command line.

max_perf_pct Maximum P-state the driver is allowed to set in percent of the maximum supported per-
formance level (the highest supported turbo P-state).

This attribute will not be exposed if the intel pstate=per cpu perf limits argument is present
in the kernel command line.

min_perf_pct Minimum P-state the driver is allowed to set in percent of the maximum supported perfor-
mance level (the highest supported turbo P-state).

This attribute will not be exposed if the intel pstate=per cpu perf limits argument is present
in the kernel command line.

num_pstates Number of P-states supported by the processor (between 0 and 255 inclusive) including
both turbo and non-turbo P-states (see Turbo P-states Support).

The value of this attribute is not affected by the no_turbo setting described below.
This attribute is read-only.

turbo_pct Ratio of the turbo range size to the size of the entire range of supported P-states, in percent.
This attribute is read-only.

no_turbo If set (equal to 1), the driver is not allowed to set any turbo P-states (see Turbo P-states Sup-
port). If unset (equalt to 0, which is the default), turbo P-states can be set by the driver. [Note
that intel pstate does not support the general boost attribute (supported by some other scaling
drivers) which is replaced by this one.]

This attrubute does not affect the maximum supported frequency value supplied to the CPUFreq core
and exposed via the policy interface, but it affects the maximum possible value of per-policy P-state
limits (see Interpretation of Policy Attributes below for details).

nou

status Operation mode of the driver: “active”, “passive” or “off”.
“active” The driver is functional and in the active mode.
“passive” The driver is functional and in the passive mode.
“off” The driver is not functional (it is not registered as a scaling driver with the CPUFreq core).

This attribute can be written to in order to change the driver’'s operation mode or to unregister it.
The string written to it must be one of the possible values of it and, if successful, the write will cause
the driver to switch over to the operation mode represented by that string - or to be unregistered in
the “off” case. [Actually, switching over from the active mode to the passive mode or the other way
around causes the driver to be unregistered and registered again with a different set of callbacks,
so all of its settings (the global as well as the per-policy ones) are then reset to their default values,
possibly depending on the target operation mode.]

That only is supported in some configurations, though (for example, if the HWP feature is enabled in
the processor, the operation mode of the driver cannot be changed), and if it is not supported in the
current configuration, writes to this attribute with fail with an appropriate error.

264 Chapter 26. Power Management

Linux Kernel User Documentation, Release 4.13.0-rc4+

Interpretation of Policy Attributes

The interpretation of some CPUFreq policy attributes described in CPU Performance Scaling is special
with intel pstate as the current scaling driver and it generally depends on the driver’s operation mode.

First of all, the values of the cpuinfo max freq, cpuinfo min freq and scaling cur freq attributes
are produced by applying a processor-specific multiplier to the internal P-state representation used by
intel pstate. Also, the values of the scaling max freq and scaling min_ freq attributes are capped
by the frequency corresponding to the maximum P-state that the driver is allowed to set.

Ifthe no_turbo global attribute is set, the driver is not allowed to use turbo P-states, so the maximum value
of scaling max freq and scaling min freq is limited to the maximum non-turbo P-state frequency.
Accordingly, setting no_turbo causes scaling max_ freqandscaling min freqto go down to that value
if they were above it before. However, the old values of scaling max_ freq and scaling min freq will
be restored after unsetting no_turbo, unless these attributes have been written to after no_turbo was
set.

If no_turbo is not set, the maximum possible value of scaling max freq and scaling min freq corre-
sponds to the maximum supported turbo P-state, which also is the value of cpuinfo_max freq in either
case.

Next, the following policy attributes have special meaning if intel pstate works in the active mode:
scaling_available _governors List of P-state selection algorithms provided by intel pstate.

scaling_governor P-state selection algorithm provided by intel pstate currently in use with the given
policy.

scaling_cur_freq Frequency of the average P-state of the CPU represented by the given policy for the
time interval between the last two invocations of the driver’s utilization update callback by the CPU
scheduler for that CPU.

The meaning of these attributes in the passive mode is the same as for other scaling drivers.

Additionally, the value of the scaling driver attribute for intel pstate depends on the operation mode
of the driver. Namely, it is either “intel_pstate” (in the active mode) or “intel_cpufreq” (in the passive
mode).

Coordination of P-State Limits

intel pstate allows P-state limits to be set in two ways: with the help of the max perf pct and
min_perf pct global attributes or via the scaling max_freq and scaling min freq CPUFreq policy at-
tributes. The coordination between those limits is based on the following rules, regardless of the current
operation mode of the driver:

1. All CPUs are affected by the global limits (that is, none of them can be requested to run faster than
the global maximum and none of them can be requested to run slower than the global minimum).

2. Eachindividual CPU is affected by its own per-policy limits (that is, it cannot be requested to run faster
than its own per-policy maximum and it cannot be requested to run slower than its own per-policy
minimum).

3. The global and per-policy limits can be set independently.

If the HWP feature is enabled in the processor, the resulting effective values are written into its registers
whenever the limits change in order to request its internal P-state selection logic to always set P-states
within these limits. Otherwise, the limits are taken into account by scaling governors (in the passive mode)
and by the driver every time before setting a new P-state for a CPU.

Additionally, ifthe intel pstate=per cpu perf limits command line argumentis passed to the kernel,
max_perf pct andmin perf pct are not exposed at all and the only way to set the limits is by using the
policy attributes.

26.2. intel_pstate CPU Performance Scaling Driver 265

Linux Kernel User Documentation, Release 4.13.0-rc4+

Energy vs Performance Hints

If intel pstate works in the active mode with the HWP feature enabled in the processor, additional
attributes are present in every CPUFreq policy directory in sysfs. They are intended to allow user space to
help intel pstate to adjust the processor’s internal P-state selection logic by focusing it on performance
or on energy-efficiency, or somewhere between the two extremes:

energy_performance_preference Current value of the energy vs performance hint for the given policy
(or the CPU represented by it).

The hint can be changed by writing to this attribute.

energy_performance_available_preferences List of strings that can be written to the en-
ergy _performance preference attribute.

They represent different energy vs performance hints and should be self-explanatory, except that
default represents whatever hint value was set by the platform firmware.

Strings written to the energy performance preference attribute are internally translated to integer val-
ues written to the processor’s Energy-Performance Preference (EPP) knob (if supported) or its Energy-
Performance Bias (EPB) knob.

[Note that tasks may by migrated from one CPU to another by the scheduler’s load-balancing algorithm
and if different energy vs performance hints are set for those CPUs, that may lead to undesirable outcomes.
To avoid such issues it is better to set the same energy vs performance hint for all CPUs or to pin every
task potentially sensitive to them to a specific CPU.]

26.2.6 intel pstate vs acpi-cpufreq

On the majority of systems supported by intel pstate, the ACPI tables provided by the platform firmware
contain PSS objects returning information that can be used for CPU performance scaling (refer to the ACPI
specification for details on the PSS objects and the format of the information returned by them).

The information returned by the ACPI PSS objects is used by the acpi-cpufreq scaling driver. On systems
supported by intel pstate the acpi-cpufreq driver uses the same hardware CPU performance scaling
interface, but the set of P-states it can use is limited by the PSS output.

On those systems each PSS object returns a list of P-states supported by the corresponding CPU which
basically is a subset of the P-states range that can be used by intel pstate on the same system, with
one exception: the whole turbo range is represented by one item in it (the topmost one). By conven-
tion, the frequency returned by PSS for that item is greater by 1 MHz than the frequency of the highest
non-turbo P-state listed by it, but the corresponding P-state representation (following the hardware specifi-
cation) returned for it matches the maximum supported turbo P-state (or is the special value 255 meaning
essentially “go as high as you can get”).

The list of P-states returned by PSS is reflected by the table of available frequencies supplied by acpi-
cpufreq to the CPUFreq core and scaling governors and the minimum and maximum supported frequen-
cies reported by it come from that list as well. In particular, given the special representation of the turbo
range described above, this means that the maximum supported frequency reported by acpi-cpufreqis
higher by 1 MHz than the frequency of the highest supported non-turbo P-state listed by PSS which, of
course, affects decisions made by the scaling governors, except for powersave and performance.

For example, if a given governor attempts to select a frequency proportional to estimated CPU load and
maps the load of 100% to the maximum supported frequency (possibly multiplied by a constant), then
it will tend to choose P-states below the turbo threshold if acpi-cpufreq is used as the scaling driver,
because in that case the turbo range corresponds to a small fraction of the frequency band it can use
(1 MHz vs 1 GHz or more). In consequence, it will only go to the turbo range for the highest loads and
the other loads above 50% that might benefit from running at turbo frequencies will be given non-turbo
P-states instead.

One more issue related to that may appear on systems supporting the Configurable TDP feature allowing
the platform firmware to set the turbo threshold. Namely, if that is not coordinated with the lists of P-
states returned by PSS properly, there may be more than one item corresponding to a turbo P-state in

266 Chapter 26. Power Management

http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf

Linux Kernel User Documentation, Release 4.13.0-rc4+

those lists and there may be a problem with avoiding the turbo range (if desirable or necessary). Usually,
to avoid using turbo P-states overall, acpi-cpufreq simply avoids using the topmost state listed by PSS,
but that is not sufficient when there are other turbo P-states in the list returned by it.

Apart from the above, acpi-cpufreq works like intel pstate in the passive mode, except that the num-
ber of P-states it can set is limited to the ones listed by the ACPI _PSS objects.

26.2.7 Kernel Command Line Options for intel pstate

Several kernel command line options can be used to pass early-configuration-time parameters to in-
tel pstate in order to enforce specific behavior of it. All of them have to be prepended with the in-
tel pstate= prefix.

disable Do not register intel pstate as the scaling driver even if the processor is supported by it.
passive Register intel pstate in the passive mode to start with.
This option implies the no_hwp one described below.

force Register intel pstate as the scaling driver instead of acpi-cpufreq even if the latter is preferred
on the given system.

This may prevent some platform features (such as thermal controls and power capping) that rely on
the availability of ACPI P-states information from functioning as expected, so it should be used with
caution.

This option does not work with processors that are not supported by intel pstate and on platforms
where the pcc-cpufreq scaling driver is used instead of acpi-cpufreq.

no_hwp Do not enable the hardware-managed P-states (HWP) feature even if it is supported by the pro-
cessor.

hwp_only Register intel pstate as the scaling driver only if the hardware-managed P-states (HWP) fea-
ture is supported by the processor.

support_acpi_ppc Take ACPI PPC performance limits into account.

If the preferred power management profile in the FADT (Fixed ACPI Description Table) is set to “En-
terprise Server” or “Performance Server”, the ACPlI _PPC limits are taken into account by default and
this option has no effect.

per_cpu_perf_limits Use per-logical-CPU P-State limits (see Coordination of P-state Limits for details).

26.2.8 Diagnostics and Tuning
Trace Events

There are two static trace events that can be used for intel pstate diagnostics. One of them is the
cpu_frequency trace event generally used by CPUFreq, and the other one is the pstate sample trace
event specific to intel pstate. Both of them are triggered by intel pstate only if it works in the active
mode.

The following sequence of shell commands can be used to enable them and see their output (if the kernel
is generally configured to support event tracing):

cd /sys/kernel/debug/tracing/

echo 1 > events/power/pstate sample/enable

echo 1 > events/power/cpu_frequency/enable

cat trace

gnome-terminal--4510 [001] ..s. 1177.680733: pstate sample: core busy=107 scaled=94 from=26_
—10=26 mperf=1143818 aperf=1230607 tsc=29838618 freq=2474476

cat-5235 [002] ..s. 1177.681723: cpu_frequency: state=2900000 cpu_ id=2

26.2. intel_pstate CPU Performance Scaling Driver 267

Linux Kernel User Documentation, Release 4.13.0-rc4+

If intel pstate works in the passive mode, the cpu frequency trace event will be triggered either by
the schedutil scaling governor (for the policies it is attached to), or by the CPUFreq core (for the policies
with other scaling governors).

ftrace

The ftrace interface can be used for low-level diagnostics of intel pstate. For example, to check how
often the function to set a P-state is called, the ftracefilter can be settoto intel pstate set pstate():

cd /sys/kernel/debug/tracing/

cat available filter functions | grep -i pstate
intel pstate set pstate

intel pstate cpu init

echo intel pstate set pstate > set ftrace filter

#

echo function > current tracer

cat trace | head -15

tracer: function

#

entries-in-buffer/entries-written: 80/80 #P:4

#

EEEEE => irqs-off

/ _----=> need-resched

| / ---=> hardirg/softirq

|| / _--=> preempt-depth

[7 delay

TASK-PID CPU# ||| TIMESTAMP FUNCTION

|| |11 I

Xorg-3129 [000] ..s. 2537.644844: intel pstate set pstate <-intel pstate timer

—func

gnome-terminal--4510 [002] ..s. 2537.649844: intel pstate set pstate <-intel pstate timer
—func
gnome-shell-3409 [001] ..s. 2537.650850: intel pstate set pstate <-intel pstate timer_
—func
<idle>-0 [000] ..s. 2537.654843: intel pstate set pstate <-intel pstate timer
—func

Tuning Interface in debugfs

The powersave algorithm provided by intel pstate for the Core line of processors in the active mode is
based on a PID controller whose parameters were chosen to address a number of different use cases at
the same time. However, it still is possible to fine-tune it to a specific workload and the debugfs interface
under /sys/kernel/debug/pstate snb/ is provided for this purpose. [Note that the pstate snb direc-
tory will be present only if the specific P-state selection algorithm matching the interface in it actually is
in use.]

The following files present in that directory can be used to modify the PID controller parameters at run
time:

deadband

d gain pct

i gain pct
p_gain pct
sample rate ms
setpoint

268 Chapter 26. Power Management

https://en.wikipedia.org/wiki/PID_controller

Linux Kernel User Documentation, Release 4.13.0-rc4+

Note, however, that achieving desirable results this way generally requires expert-level understanding of
the power vs performance tradeoff, so extra care is recommended when attempting to do that.

26.2. intel_pstate CPU Performance Scaling Driver 269

Linux Kernel User Documentation, Release 4.13.0-rc4+

270 Chapter 26. Power Management

CHAPTER
TWENTYSEVEN

THUNDERBOLT

The interface presented here is not meant for end users. Instead there should be a userspace tool that
handles all the low-level details, keeps database of the authorized devices and prompts user for new
connections.

More details about the sysfs interface for Thunderbolt devices can be found in Documenta-
tion/ABI/testing/sysfs-bus-thunderbolt.

Those users who just want to connect any device without any sort of manual work, can add following line
to /etc/udev/rules.d/99-1local. rules:

ACTION=="add", SUBSYSTEM=="thunderbolt", ATTR{authorized}=="0", ATTR{authorized}="1"

This will authorize all devices automatically when they appear. However, keep in mind that this bypasses
the security levels and makes the system vulnerable to DMA attacks.

27.1 Security levels and how to use them

Starting from Intel Falcon Ridge Thunderbolt controller there are 4 security levels available. The reason
for these is the fact that the connected devices can be DMA masters and thus read contents of the host
memory without CPU and OS knowing about it. There are ways to prevent this by setting up an IOMMU
but it is not always available for various reasons.

The security levels are as follows:

none All devices are automatically connected by the firmware. No user approval is needed. In
BIOS settings this is typically called Legacy mode.

user User is asked whether the device is allowed to be connected. Based on the device identi-
fication information available through /sys/bus/thunderbolt/devices. user then can do
the decision. In BIOS settings this is typically called Unique ID.

secure User is asked whether the device is allowed to be connected. In addition to UUID the
device (if it supports secure connect) is sent a challenge that should match the expected
one based on a random key written to key sysfs attribute. In BIOS settings this is typically
called One time saved key.

dponly The firmware automatically creates tunnels for Display Port and USB. No PCle tunneling
is done. In BIOS settings this is typically called Display Port Only.

The current security level can be read from /sys/bus/thunderbolt/devices/domainX/security where
domainX is the Thunderbolt domain the host controller manages. There is typically one domain per Thun-
derbolt host controller.

If the security level reads as user or secure the connected device must be authorized by the user before
PCle tunnels are created (e.g the PCle device appears).

Each Thunderbolt device plugged in will appear in sysfs under /sys/bus/thunderbolt/devices. The
device directory carries information that can be used to identify the particular device, including its name
and UUID.

271

Linux Kernel User Documentation, Release 4.13.0-rc4+

27.2 Authorizing devices when security level is user or secure

When a device is plugged in it will appear in sysfs as follows:

/sys/bus/thunderbolt/devices/0-1/authorized -0
/sys/bus/thunderbolt/devices/0-1/device - 0x8004
/sys/bus/thunderbolt/devices/0-1/device name - Thunderbolt to FireWire Adapter
/sys/bus/thunderbolt/devices/0-1/vendor - 0x1
/sys/bus/thunderbolt/devices/0-1/vendor name - Apple, Inc.
/sys/bus/thunderbolt/devices/0-1/unique_id - e0376f00-0300-0100-ffff-ffffffffffff

The authorized attribute reads 0 which means no PCle tunnels are created yet. The user can authorize
the device by simply:

echo 1 > /sys/bus/thunderbolt/devices/0-1/authorized

This will create the PCle tunnels and the device is now connected.

If the device supports secure connect, and the domain security level is set to secure, it has an additional
attribute key which can hold a random 32 byte value used for authorization and challenging the device
in future connects:

/sys/bus/thunderbolt/devices/0-3/authorized 0
/sys/bus/thunderbolt/devices/0-3/device - 0x305
/sys/bus/thunderbolt/devices/0-3/device name - AKiTiO Thunder3 PCIe Box
/sys/bus/thunderbolt/devices/0-3/key -

/sys/bus/thunderbolt/devices/0-3/vendor - 0x41
/sys/bus/thunderbolt/devices/0-3/vendor name - inXtron
/sys/bus/thunderbolt/devices/0-3/unique id - dc010000-0000-8508-a22d-32cab421cbl6

Notice the key is empty by default.

If the user does not want to use secure connect it can just echo 1 to the authorized attribute and the
PCle tunnels will be created in the same way than in user security level.

If the user wants to use secure connect, the first time the device is plugged a key needs to be created
and send to the device:

key=$(openssl rand -hex 32)
echo $key > /sys/bus/thunderbolt/devices/0-3/key
echo 1 > /sys/bus/thunderbolt/devices/0-3/authorized

Now the device is connected (PCle tunnels are created) and in addition the key is stored on the device
NVM.

Next time the device is plugged in the user can verify (challenge) the device using the same key:

echo $key > /sys/bus/thunderbolt/devices/0-3/key
echo 2 > /sys/bus/thunderbolt/devices/0-3/authorized

If the challenge the device returns back matches the one we expect based on the key, the device is
connected and the PCle tunnels are created. However, if the challenge failed no tunnels are created and
error is returned to the user.

If the user still wants to connect the device it can either approve the device without a key or write new
key and write 1 to the authorized file to get the new key stored on the device NVM.

27.3 Upgrading NVM on Thunderbolt device or host

Since most of the functionality is handled in a firmware running on a host controller or a device, it is
important that the firmware can be upgraded to the latest where possible bugs in it have been fixed.

272 Chapter 27. Thunderbolt

Linux Kernel User Documentation, Release 4.13.0-rc4+

Typically OEMs provide this firmware from their support site.
There is also a central site which has links where to download firmwares for some machines:
Thunderbolt Updates

Before you upgrade firmware on a device or host, please make sure it is the suitable. Failing to do that
may render the device (or host) in a state where it cannot be used properly anymore without special tools!

Host NVM upgrade on Apple Macs is not supported.

Once the NVM image has been downloaded, you need to plug in a Thunderbolt device so that the host
controller appears. It does not matter which device is connected (unless you are upgrading NVM on a
device - then you need to connect that particular device).

Note OEM-specific method to power the controller up (“force power”) may be available for your system in
which case there is no need to plug in a Thunderbolt device.

After that we can write the firmware to the non-active parts of the NVM of the host or device. As an
example here is how Intel NUC6i7KYK (Skull Canyon) Thunderbolt controller NVM is upgraded:

’# dd if=KYK TBT FW 0018.bin of=/sys/bus/thunderbolt/devices/0-0/nvm_non_ actived/nvmem

Once the operation completes we can trigger NVM authentication and upgrade process as follows:

’# echo 1 > /sys/bus/thunderbolt/devices/0-0/nvm authenticate

|

If no errors are returned, the host controller shortly disappears. Once it comes back the driver notices it
and initiates a full power cycle. After a while the host controller appears again and this time it should be
fully functional.

We can verify that the new NVM firmware is active by running following commands:

cat /sys/bus/thunderbolt/devices/0-0/nvm _authenticate
0x0

cat /sys/bus/thunderbolt/devices/0-0/nvm _version

18.0

If nvm_authenticate contains anything else than 0xO0 it is the error code from the last authentication
cycle, which means the authentication of the NVM image failed.

Note names of the NVMem devices nvm_activeN and nvm_non_activeN depends on the order they are
registered in the NVMem subsystem. N in the name is the identifier added by the NVMem subsystem.

27.4 Upgrading NVM when host controller is in safe mode

If the existing NVM is not properly authenticated (or is missing) the host controller goes into safe mode
which means that only available functionality is flashing new NVM image. When in this mode the reading
nvm_version fails with ENODATA and the device identification information is missing.

To recover from this mode, one needs to flash a valid NVM image to the host host controller in the same
way it is done in the previous chapter.

27.4. Upgrading NVM when host controller is in safe mode 273

https://thunderbolttechnology.net/updates

Linux Kernel User Documentation, Release 4.13.0-rc4+

274 Chapter 27. Thunderbolt

CHAPTER
TWENTYEIGHT

LINUX SECURITY MODULE USAGE

The Linux Security Module (LSM) framework provides a mechanism for various security checks to be
hooked by new kernel extensions. The name “module” is a bit of a misnomer since these exten-
sions are not actually loadable kernel modules. Instead, they are selectable at build-time via CON-
FIG_DEFAULT_SECURITY and can be overridden at boot-time via the "security=..." kernel command
line argument, in the case where multiple LSMs were built into a given kernel.

The primary users of the LSM interface are Mandatory Access Control (MAC) extensions which provide a
comprehensive security policy. Examples include SELinux, Smack, Tomoyo, and AppArmor. In addition
to the larger MAC extensions, other extensions can be built using the LSM to provide specific changes to
system operation when these tweaks are not available in the core functionality of Linux itself.

Without a specific LSM built into the kernel, the default LSM will be the Linux capabilities system. Most
LSMs choose to extend the capabilities system, building their checks on top of the defined capability
hooks. For more details on capabilities, see capabilities(7) in the Linux man-pages project.

A list of the active security modules can be found by reading /sys/kernel/security/lsm. This is a
comma separated list, and will always include the capability module. The list reflects the order in which
checks are made. The capability module will always be first, followed by any “minor” modules (e.g. Yama)
and then the one “major” module (e.g. SELinux) if there is one configured.

28.1 AppArmor

28.1.1 What is AppArmor?
AppArmor is MAC style security extension for the Linux kernel. It implements a task centered policy, with

task “profiles” being created and loaded from user space. Tasks on the system that do not have a profile
defined for them run in an unconfined state which is equivalent to standard Linux DAC permissions.

28.1.2 How to enable/disable

set CONFIG_SECURITY_ APPARMOR=y

If AppArmor should be selected as the default security module then set:

CONFIG DEFAULT SECURITY="apparmor"
CONFIG SECURITY APPARMOR BOOTPARAM VALUE=1

Build the kernel

If AppArmor is not the default security module it can be enabled by passing security=apparmor on the
kernel’s command line.

If AppArmor is the default security module it can be disabled by passing apparmor=0, security=XXXX
(where XXXX is valid security module), on the kernel’s command line.

275

Linux Kernel User Documentation, Release 4.13.0-rc4+

For AppArmor to enforce any restrictions beyond standard Linux DAC permissions policy must be loaded
into the kernel from user space (see the Documentation and tools links).

28.1.3 Documentation

Documentation can be found on the wiki, linked below.

28.1.4 Links

Mailing List - apparmor@lists.ubuntu.com
Wiki - http://apparmor.wiki.kernel.org/
User space tools - https://launchpad.net/apparmor

Kernel module - git://git.kernel.org/pub/scm/linux/kernel/git/jj/apparmor-dev.git

28.2 LoadPin

LoadPin is a Linux Security Module that ensures all kernel-loaded files (modules, firmware, etc) all originate
from the same filesystem, with the expectation that such a filesystem is backed by a read-only device
such as dm-verity or CDROM. This allows systems that have a verified and/or unchangeable filesystem to
enforce module and firmware loading restrictions without needing to sign the files individually.

The LSM is selectable at build-time with CONFIG_SECURITY_ LOADPIN, and can be controlled at boot-time
with the kernel command line option “loadpin.enabled”. By default, it is enabled, but can be disabled
at boot (“loadpin.enabled=0").

LoadPin starts pinning when it sees the first file loaded. If the block device backing the filesystem is not
read-only, a sysctl is created to toggle pinning: /proc/sys/kernel/loadpin/enabled. (Having a mutable
filesystem means pinning is mutable too, but having the sysctl allows for easy testing on systems with a
mutable filesystem.)

28.3 SELinux

If you want to use SELinux, chances are you will want to use the distro-provided policies, or install the
latest reference policy release from

http://oss.tresys.com/projects/refpolicy

However, if you want to install a dummy policy for testing, you can do using mdp provided under
scripts/selinux. Note that this requires the selinux userspace to be installed - in particular you will need
checkpolicy to compile a kernel, and setfiles and fixfiles to label the filesystem.

1. Compile the kernel with selinux enabled.
2. Type make to compile mdp.

3. Make sure that you are not running with SELinux enabled and a real policy. If you are, reboot with
selinux disabled before continuing.

4. Run install_policy.sh:

cd scripts/selinux
sh install policy.sh

Step 4 will create a new dummy policy valid for your kernel, with a single selinux user, role, and type. It
will compile the policy, will set your SELINUXTYPE to dummy in /etc/selinux/config, install the compiled
policy as dummy, and relabel your filesystem.

276 Chapter 28. Linux Security Module Usage

mailto:apparmor@lists.ubuntu.com
http://apparmor.wiki.kernel.org/
https://launchpad.net/apparmor
http://oss.tresys.com/projects/refpolicy

Linux Kernel User Documentation, Release 4.13.0-rc4+

28.4 Smack

“Good for you, you've decided to clean the elevator!” - The Elevator, from Dark Star

Smack is the Simplified Mandatory Access Control Kernel. Smack is a kernel based implementation of
mandatory access control that includes simplicity in its primary design goals.

Smack is not the only Mandatory Access Control scheme available for Linux. Those new to Mandatory
Access Control are encouraged to compare Smack with the other mechanisms available to determine
which is best suited to the problem at hand.

Smack consists of three major components:
* The kernel
» Basic utilities, which are helpful but not required
* Configuration data

The kernel component of Smack is implemented as a Linux Security Modules (LSM) module. It requires
netlabel and works best with file systems that support extended attributes, although xattr support is not
strictly required. It is safe to run a Smack kernel under a “vanilla” distribution.

Smack kernels use the CIPSO IP option. Some network configurations are intolerant of IP options and can
impede access to systems that use them as Smack does.

Smack is used in the Tizen operating system. Please go to http://wiki.tizen.org for information about how
Smack is used in Tizen.

The current git repository for Smack user space is:
git://github.com/smack-team/smack.git

This should make and install on most modern distributions. There are five commands included in smacku-
til:

chsmack: display or set Smack extended attribute values
smackctl: load the Smack access rules
smackaccess: report if a process with one label has access to an object with another

These two commands are obsolete with the introduction of the smackfs/load2 and smackfs/cipso2 inter-
faces.

smackload: properly formats data for writing to smackfs/load
smackcipso: properly formats data for writing to smackfs/cipso

In keeping with the intent of Smack, configuration data is minimal and not strictly required. The most
important configuration step is mounting the smackfs pseudo filesystem. If smackutil is installed the
startup script will take care of this, but it can be manually as well.

Add this line to /etc/fstab:

smackfs /sys/fs/smackfs smackfs defaults 0 0

The /sys/fs/smackfs directory is created by the kernel.

Smack uses extended attributes (xattrs) to store labels on filesystem objects. The attributes are stored
in the extended attribute security name space. A process must have CAP_MAC ADMIN to change any of
these attributes.

The extended attributes that Smack uses are:

SMACK®64 Used to make access control decisions. In almost all cases the label given to a new filesystem
object will be the label of the process that created it.

SMACKG64EXEC The Smack label of a process that execs a program file with this attribute set will run
with this attribute’s value.

28.4. Smack 277

http://wiki.tizen.org

Linux Kernel User Documentation, Release 4.13.0-rc4+

SMACK64MMAP Don’t allow the file to be mmapped by a process whose Smack label does not allow all
of the access permitted to a process with the label contained in this attribute. This is a very specific
use case for shared libraries.

SMACK64TRANSMUTE Can only have the value “TRUE". If this attribute is present on a directory when
an object is created in the directory and the Smack rule (more below) that permitted the write access
to the directory includes the transmute (“t”) mode the object gets the label of the directory instead of
the label of the creating process. If the object being created is a directory the SMACK64TRANSMUTE
attribute is set as well.

SMACKG64IPIN This attribute is only available on file descriptors for sockets. Use the Smack label in this
attribute for access control decisions on packets being delivered to this socket.

SMACKG64IPOUT This attribute is only available on file descriptors for sockets. Use the Smack label in
this attribute for access control decisions on packets coming from this socket.

There are multiple ways to set a Smack label on a file:

attr -S -s SMACK64 -V "value" path
chsmack -a value path

A process can see the Smack label it is running with by reading /proc/self/attr/current. A process
with CAP_MAC_ADMIN can set the process Smack by writing there.

Most Smack configuration is accomplished by writing to files in the smackfs filesystem. This pseudo-
filesystem is mounted on /sys/fs/smackfs.

access Provided for backward compatibility. The access2 interface is preferred and should be used in-
stead. This interface reports whether a subject with the specified Smack label has a particular access
to an object with a specified Smack label. Write a fixed format access rule to this file. The next read
will indicate whether the access would be permitted. The text will be either “1” indicating access, or
“0” indicating denial.

access2 This interface reports whether a subject with the specified Smack label has a particular access
to an object with a specified Smack label. Write a long format access rule to this file. The next read
will indicate whether the access would be permitted. The text will be either “1” indicating access, or
“0" indicating denial.

ambient This contains the Smack label applied to unlabeled network packets.

change-rule This interface allows modification of existing access control rules. The format accepted on
write is:

no [[) och
%S %8S 6S %S

where the first string is the subject label, the second the object label, the third the access to allow
and the fourth the access to deny. The access strings may contain only the characters “rwxat-". If a
rule for a given subject and object exists it will be modified by enabling the permissions in the third
string and disabling those in the fourth string. If there is no such rule it will be created using the
access specified in the third and the fourth strings.

cipso Provided for backward compatibility. The cipso2 interface is preferred and should be used instead.
This interface allows a specific CIPSO header to be assigned to a Smack label. The format accepted
on write is:

"%245%4d%4d" ["%4d"] . ..

The first string is a fixed Smack label. The first number is the level to use. The second number is the
number of categories. The following numbers are the categories:

"'1evel-3-cats-5-19 3 2 5 19" ‘

cipso2 This interface allows a specific CIPSO header to be assigned to a Smack label. The format accepted
on write is:

278 Chapter 28. Linux Security Module Usage

Linux Kernel User Documentation, Release 4.13.0-rc4+

"%s%Ad%4d" ["%4d"] . . .

|

The first string is a long Smack label. The first number is the level to use. The second number is the
number of categories. The following numbers are the categories:

’"leve1-3-cats-5-19 3 2 5 19"

direct This contains the CIPSO level used for Smack direct label representation in network packets.
doi This contains the CIPSO domain of interpretation used in network packets.

ipv6host This interface allows specific IPv6 internet addresses to be treated as single label hosts. Packets
are sent to single label hosts only from processes that have Smack write access to the host label. All

packets received from single label hosts are given the specified label. The format accepted on write
is:

:%h label" or
:%h/%d label".

The "::” address shortcut is not supported. If label is “-DELETE” a matched entry will be deleted.

load Provided for backward compatibility. The load2 interface is preferred and should be used instead.
This interface allows access control rules in addition to the system defined rules to be specified. The
format accepted on write is:

"%245%245%5s"

where the first string is the subject label, the second the object label, and the third the requested
access. The access string may contain only the characters “rwxat-", and specifies which sort of
access is allowed. The “-” is a placeholder for permissions that are not allowed. The string “r-x-"
would specify read and execute access. Labels are limited to 23 characters in length.

load2 This interface allows access control rules in addition to the system defined rules to be specified.
The format accepted on write is:

"%S %S %S"

where the first string is the subject label, the second the object label, and the third the requested
access. The access string may contain only the characters “rwxat-", and specifies which sort of
access is allowed. The “-” is a placeholder for permissions that are not allowed. The string “r-x-"
would specify read and execute access.

load-self Provided for backward compatibility. The load-self2 interface is preferred and should be used
instead. This interface allows process specific access rules to be defined. These rules are only
consulted if access would otherwise be permitted, and are intended to provide additional restrictions
on the process. The format is the same as for the load interface.

load-self2 This interface allows process specific access rules to be defined. These rules are only con-
sulted if access would otherwise be permitted, and are intended to provide additional restrictions on
the process. The format is the same as for the load2 interface.

logging This contains the Smack logging state.
mapped This contains the CIPSO level used for Smack mapped label representation in network packets.

netlabel This interface allows specific internet addresses to be treated as single label hosts. Packets are
sent to single label hosts without CIPSO headers, but only from processes that have Smack write
access to the host label. All packets received from single label hosts are given the specified label.
The format accepted on write is:

"%d.%d.%d.%d label" or "%d.%d.%d.%d/%d label".

If the label specified is “-CIPSO” the address is treated as a host that supports CIPSO headers.

28.4. Smack 279

Linux Kernel User Documentation, Release 4.13.0-rc4+

onlycap This contains labels processes must have for CAP_MAC_ADMIN and CAP_MAC OVERRIDE to be
effective. If this file is empty these capabilities are effective at for processes with any label. The
values are set by writing the desired labels, separated by spaces, to the file or cleared by writing “-”
to the file.

ptrace This is used to define the current ptrace policy

0 - default: this is the policy that relies on Smack access rules. For the PTRACE READ a subject
needs to have a read access on object. For the PTRACE_ATTACH a read-write access is required.

1 - exact: this is the policy that limits PTRACE_ATTACH. Attach is only allowed when subject’s and
object’s labels are equal. PTRACE_READ is not affected. Can be overridden with CAP_SYS PTRACE.

2 - draconian: this policy behaves like the ‘exact’ above with an exception that it can’t be overrid-
den with CAP_SYS PTRACE.

revoke-subject Writing a Smack label here sets the access to ‘- for all access rules with that subject
label.

unconfined If the kernel is configured with CONFIG SECURITY SMACK BRINGUP a process with
CAP_MAC_ADMIN can write a label into this interface. Thereafter, accesses that involve that label
will be logged and the access permitted if it wouldn’t be otherwise. Note that this is dangerous and
can ruin the proper labeling of your system. It should never be used in production.

relabel-self This interface contains a list of labels to which the process can transition to, by writing to
/proc/self/attr/current. Normally a process can change its own label to any legal value, but only
if it has CAP_MAC_ADMIN. This interface allows a process without CAP_MAC ADMIN to relabel itself to
one of labels from predefined list. A process without CAP_MAC_ADMIN can change its label only once.
When it does, this list will be cleared. The values are set by writing the desired labels, separated by
spaces, to the file or cleared by writing “-" to the file.

If you are using the smackload utility you can add access rules in /etc/smack/accesses. They take the
form:

subjectlabel objectlabel access

access is a combination of the letters rwxatb which specify the kind of access permitted a subject with
subjectlabel on an object with objectlabel. If there is no rule no access is allowed.

Look for additional programs on http://schaufler-ca.com

28.4.1 The Simplified Mandatory Access Control Kernel (Whitepaper)

Casey Schaufler casey@schaufler-ca.com

Mandatory Access Control

Computer systems employ a variety of schemes to constrain how information is shared among the people
and services using the machine. Some of these schemes allow the program or user to decide what other
programs or users are allowed access to pieces of data. These schemes are called discretionary access
control mechanisms because the access control is specified at the discretion of the user. Other schemes
do not leave the decision regarding what a user or program can access up to users or programs. These
schemes are called mandatory access control mechanisms because you don't have a choice regarding
the users or programs that have access to pieces of data.

Bell & LaPadula

From the middle of the 1980’s until the turn of the century Mandatory Access Control (MAC) was very
closely associated with the Bell & LaPadula security model, a mathematical description of the United
States Department of Defense policy for marking paper documents. MAC in this form enjoyed a following

280 Chapter 28. Linux Security Module Usage

http://schaufler-ca.com
mailto:casey@schaufler-ca.com

Linux Kernel User Documentation, Release 4.13.0-rc4+

within the Capital Beltway and Scandinavian supercomputer centers but was often sited as failing to
address general needs.

Domain Type Enforcement

Around the turn of the century Domain Type Enforcement (DTE) became popular. This scheme organizes
users, programs, and data into domains that are protected from each other. This scheme has been widely
deployed as a component of popular Linux distributions. The administrative overhead required to maintain
this scheme and the detailed understanding of the whole system necessary to provide a secure domain
mapping leads to the scheme being disabled or used in limited ways in the majority of cases.

Smack

Smack is a Mandatory Access Control mechanism designed to provide useful MAC while avoiding the pit-
falls of its predecessors. The limitations of Bell & LaPadula are addressed by providing a scheme whereby
access can be controlled according to the requirements of the system and its purpose rather than those
imposed by an arcane government policy. The complexity of Domain Type Enforcement and avoided by
defining access controls in terms of the access modes already in use.

Smack Terminology

The jargon used to talk about Smack will be familiar to those who have dealt with other MAC systems and
shouldn’t be too difficult for the uninitiated to pick up. There are four terms that are used in a specific
way and that are especially important:

Subject: A subject is an active entity on the computer system. On Smack a subject is a task,
which is in turn the basic unit of execution.

Object: An object is a passive entity on the computer system. On Smack files of all types, IPC,
and tasks can be objects.

Access: Any attempt by a subject to put information into or get information from an object is
an access.

Label: Data that identifies the Mandatory Access Control characteristics of a subject or an
object.

These definitions are consistent with the traditional use in the security community. There are also some
terms from Linux that are likely to crop up:

Capability: Ataskthatpossesses a capability has permission to violate an aspect of the system
security policy, as identified by the specific capability. A task that possesses one or more
capabilities is a privileged task, whereas a task with no capabilities is an unprivileged task.

Privilege: A task that is allowed to violate the system security policy is said to have privilege.
As of this writing a task can have privilege either by possessing capabilities or by having
an effective user of root.

Smack Basics

Smack is an extension to a Linux system. It enforces additional restrictions on what subjects can access
which objects, based on the labels attached to each of the subject and the object.

Labels

Smack labels are ASCIl character strings. They can be up to 255 characters long, but keeping them to
twenty-three characters is recommended. Single character labels using special characters, that being
anything other than a letter or digit, are reserved for use by the Smack development team. Smack

28.4. Smack 281

Linux Kernel User Documentation, Release 4.13.0-rc4+

labels are unstructured, case sensitive, and the only operation ever performed on them is comparison
for equality. Smack labels cannot contain unprintable characters, the “/” (slash), the “” (backslash), the
“"" (quote) and ‘"’ (double-quote) characters. Smack labels cannot begin with a ‘-*. This is reserved for
special options.

There are some predefined labels:

Pronounced "floor", a single underscore character.

~ Pronounced "hat", a single circumflex character.

* Pronounced "star", a single asterisk character.

? Pronounced "huh", a single question mark character.
@ Pronounced "web", a single at sign character.

Every task on a Smack system is assigned a label. The Smack label of a process will usually be assigned
by the system initialization mechanism.

Access Rules

Smack uses the traditional access modes of Linux. These modes are read, execute, write, and occasionally
append. There are a few cases where the access mode may not be obvious. These include:

Signals: A signal is a write operation from the subject task to the object task.

Internet Domain IPC: Transmission of a packet is considered a write operation from the
source task to the destination task.

Smack restricts access based on the label attached to a subject and the label attached to the object it is
trying to access. The rules enforced are, in order:

1. Any access requested by a task labeled “*” is denied.

A read or execute access requested by a task labeled “~” is permitted.

A read or execute access requested on an object labeled “_" is permitted.
Any access requested on an object labeled “*” is permitted.

Any access requested by a task on an object with the same label is permitted.

Any access requested that is explicitly defined in the loaded rule set is permitted.

N e Uk wNN

Any other access is denied.

Smack Access Rules

With the isolation provided by Smack access separation is simple. There are many interesting cases where
limited access by subjects to objects with different labels is desired. One example is the familiar spy model
of sensitivity, where a scientist working on a highly classified project would be able to read documents
of lower classifications and anything she writes will be “born” highly classified. To accommodate such
schemes Smack includes a mechanism for specifying rules allowing access between labels.

Access Rule Format

The format of an access rule is:

subject-label object-label access

Where subject-label is the Smack label of the task, object-label is the Smack label of the thing being
accessed, and access is a string specifying the sort of access allowed. The access specification is searched
for letters that describe access modes:

282 Chapter 28. Linux Security Module Usage

Linux Kernel User Documentation, Release 4.13.0-rc4+

a: indicates that append access should be granted. r: indicates that read access should be
granted. w: indicates that write access should be granted. x: indicates that execute access
should be granted. t: indicates that the rule requests transmutation. b: indicates that the rule
should be reported for bring-up.

Uppercase values for the specification letters are allowed as well. Access mode specifications can be in
any order. Examples of acceptable rules are:

TopSecret Secret rx

Secret Unclass R
Manager Game X

User HR w

Snap Crackle rwxatb
New old rRrRr
Closed off -

Examples of unacceptable rules are:

Top Secret Secret rx
Ace Ace r
0dd spells waxbeans

Spaces are not allowed in labels. Since a subject always has access to files with the same label specifying
a rule for that case is pointless. Only valid letters (rwxatbRWXATB) and the dash (‘-*) character are allowed
in access specifications. The dash is a placeholder, so “a-r” is the same as “ar”. A lone dash is used to
specify that no access should be allowed.

Applying Access Rules

The developers of Linux rarely define new sorts of things, usually importing schemes and concepts from
other systems. Most often, the other systems are variants of Unix. Unix has many endearing properties,
but consistency of access control models is not one of them. Smack strives to treat accesses as uniformly
as is sensible while keeping with the spirit of the underlying mechanism.

File system objects including files, directories, named pipes, symbolic links, and devices require access
permissions that closely match those used by mode bit access. To open a file for reading read access
is required on the file. To search a directory requires execute access. Creating a file with write access
requires both read and write access on the containing directory. Deleting a file requires read and write
access to the file and to the containing directory. It is possible that a user may be able to see that a file
exists but not any of its attributes by the circumstance of having read access to the containing directory
but not to the differently labeled file. This is an artifact of the file name being data in the directory, not a
part of the file.

If a directory is marked as transmuting (SMACK64TRANSMUTE=TRUE) and the access rule that allows a
process to create an object in that directory includes ‘t’ access the label assigned to the new object will be
that of the directory, not the creating process. This makes it much easier for two processes with different
labels to share data without granting access to all of their files.

IPC objects, message queues, semaphore sets, and memory segments existin flat namespaces and access
requests are only required to match the object in question.

Process objects reflect tasks on the system and the Smack label used to access them is the same Smack
label that the task would use for its own access attempts. Sending a signal via the kill() system call is a
write operation from the signaler to the recipient. Debugging a process requires both reading and writing.
Creating a new task is an internal operation that results in two tasks with identical Smack labels and
requires no access checks.

Sockets are data structures attached to processes and sending a packet from one process to another
requires that the sender have write access to the receiver. The receiver is not required to have read
access to the sender.

28.4. Smack 283

Linux Kernel User Documentation, Release 4.13.0-rc4+

Setting Access Rules

The configuration file /etc/smack/accesses contains the rules to be set at system startup. The contents
are written to the special file /sys/fs/smackfs/load2. Rules can be added at any time and take effect
immediately. For any pair of subject and object labels there can be only one rule, with the most recently
specified overriding any earlier specification.

Task Attribute

The Smack label of a process can be read from /proc/<pid>/attr/current. A process can read its own
Smack label from /proc/self/attr/current. A privileged process can change its own Smack label by writing
to /proc/self/attr/current but not the label of another process.

File Attribute

The Smack label of a filesystem object is stored as an extended attribute named SMACK64 on the file.
This attribute is in the security namespace. It can only be changed by a process with privilege.

Privilege

A process with CAP_MAC_OVERRIDE or CAP_MAC_ADMIN is privileged. CAP_MAC_OVERRIDE allows the
process access to objects it would be denied otherwise. CAP_MAC_ADMIN allows a process to change
Smack data, including rules and attributes.

Smack Networking

As mentioned before, Smack enforces access control on network protocol transmissions. Every packet
sent by a Smack process is tagged with its Smack label. This is done by adding a CIPSO tag to the header
of the IP packet. Each packet received is expected to have a CIPSO tag that identifies the label and if it
lacks such a tag the network ambient label is assumed. Before the packet is delivered a check is made
to determine that a subject with the label on the packet has write access to the receiving process and if
that is not the case the packet is dropped.

CIPSO Configuration

It is normally unnecessary to specify the CIPSO configuration. The default values used by the system
handle all internal cases. Smack will compose CIPSO label values to match the Smack labels being used
without administrative intervention. Unlabeled packets that come into the system will be given the am-
bient label.

Smack requires configuration in the case where packets from a system that is not Smack that speaks CIPSO
may be encountered. Usually this will be a Trusted Solaris system, but there are other, less widely deployed
systems out there. CIPSO provides 3 important values, a Domain Of Interpretation (DOI), a level, and a
category set with each packet. The DOI is intended to identify a group of systems that use compatible
labeling schemes, and the DOI specified on the Smack system must match that of the remote system or
packets will be discarded. The DOl is 3 by default. The value can be read from /sys/fs/smackfs/doi and
can be changed by writing to /sys/fs/smackfs/doi.

The label and category set are mapped to a Smack label as defined in /etc/smack/cipso.

A Smack/CIPSO mapping has the form:

smack level [category [category]*]

284 Chapter 28. Linux Security Module Usage

Linux Kernel User Documentation, Release 4.13.0-rc4+

Smack does not expect the level or category sets to be related in any particular way and does not assume
or assign accesses based on them. Some examples of mappings:

TopSecret 7
TS:A,B 712
SecBDE 5246
RAFTERS 7 12 26

The ”:” and ”,” characters are permitted in a Smack label but have no special meaning.
The mapping of Smack labels to CIPSO values is defined by writing to /sys/fs/smackfs/cipso2.

In addition to explicit mappings Smack supports direct CIPSO mappings. One CIPSO level is used to
indicate that the category set passed in the packet is in fact an encoding of the Smack label. The level
used is 250 by default. The value can be read from /sys/fs/smackfs/direct and changed by writing to
/sys/fs/smackfs/direct.

Socket Attributes

There are two attributes that are associated with sockets. These attributes can only be set by privileged
tasks, but any task can read them for their own sockets.

SMACKG64IPIN: The Smack label of the task object. A privileged program that will enforce
policy may set this to the star label.

SMACKG64IPOUT: The Smack label transmitted with outgoing packets. A privileged program
may set this to match the label of another task with which it hopes to communicate.

Smack Netlabel Exceptions

You will often find that your labeled application has to talk to the outside, unlabeled world. To do this
there’s a special file /sys/fs/smackfs/netlabel where you can add some exceptions in the form of:

@IP1 LABEL1 or
@IP2/MASK LABEL2

It means that your application will have unlabeled access to @IP1 if it has write access on LABEL1, and
access to the subnet @IP2/MASK if it has write access on LABEL2.

Entries in the /sys/fs/smackfs/netlabel file are matched by longest mask first, like in classless IPv4 routing.

A special label ‘@’ and an option ‘-CIPSO’ can be used there:

Q@ means Internet, any application with any label has access to it
-CIPSO means standard CIPSO networking

If you don’t know what CIPSO is and don’t plan to use it, you can just do:

echo 127.0.0.1 -CIPSO > /sys/fs/smackfs/netlabel
echo 0.0.0.0/0 @ > /sys/fs/smackfs/netlabel

If you use CIPSO on your 192.168.0.0/16 local network and need also unlabeled Internet access, you can
have:

echo 127.0.0.1 -CIPSO > /sys/fs/smackfs/netlabel
echo 192.168.0.0/16 -CIPSO > /sys/fs/smackfs/netlabel
echo 0.0.0.0/0 @ > /sys/fs/smackfs/netlabel

28.4. Smack 285

Linux Kernel User Documentation, Release 4.13.0-rc4+

Writing Applications for Smack

There are three sorts of applications that will run on a Smack system. How an application interacts with
Smack will determine what it will have to do to work properly under Smack.

Smack Ignorant Applications
By far the majority of applications have no reason whatever to care about the unique properties of Smack.

Since invoking a program has no impact on the Smack label associated with the process the only concern
likely to arise is whether the process has execute access to the program.

Smack Relevant Applications

Some programs can be improved by teaching them about Smack, but do not make any security decisions
themselves. The utility Is(1) is one example of such a program.

Smack Enforcing Applications
These are special programs that not only know about Smack, but participate in the enforcement of system

policy. In most cases these are the programs that set up user sessions. There are also network services
that provide information to processes running with various labels.

File System Interfaces

Smack maintains labels on file system objects using extended attributes. The Smack label of a file, direc-
tory, or other file system object can be obtained using getxattr(2):

len = getxattr("/", "security.SMACK64", value, sizeof (value));

will put the Smack label of the root directory into value. A privileged process can set the Smack label of
a file system object with setxattr(2):

len = strlen("Rubble");
rc = setxattr("/foo", "security.SMACK64", "Rubble", len, 0);

will set the Smack label of /foo to “Rubble” if the program has appropriate privilege.

Socket Interfaces

The socket attributes can be read using fgetxattr(2).

A privileged process can set the Smack label of outgoing packets with fsetxattr(2):

len = strlen("Rubble");
rc = fsetxattr(fd, "security.SMACK64IPOUT", "Rubble", len, 0);

will set the Smack label “Rubble” on packets going out from the socket if the program has appropriate
privilege:

rc = fsetxattr(fd, "security.SMACK64IPIN, "*", strlen("*"), 0);

will set the Smack label “*” as the object label against which incoming packets will be checked if the
program has appropriate privilege.

286 Chapter 28. Linux Security Module Usage

Linux Kernel User Documentation, Release 4.13.0-rc4+

Administration

Smack supports some mount options:

smackfsdef=Ilabel: specifies the label to give files that lack the Smack label extended at-
tribute.

smackfsroot=Ilabel: specifies the label to assign the root of the file system if it lacks the
Smack extended attribute.

smackfshat=label: specifies a label that must have read access to all labels set on the filesys-
tem. Not yet enforced.

smackfsfloor=label: specifies a label to which all labels set on the filesystem must have read
access. Not yet enforced.

These mount options apply to all file system types.

Smack auditing

If you want Smack auditing of security events, you need to set CONFIG_AUDIT in your kernel configuration.
By default, all denied events will be audited. You can change this behavior by writing a single character
to the /sys/fs/smackfs/logging file:

0 : no logging

1 : log denied (default)
2 : log accepted

3 : log denied & accepted

Events are logged as ‘key=value’ pairs, for each event you at least will get the subject, the object, the
rights requested, the action, the kernel function that triggered the event, plus other pairs depending on
the type of event audited.

Bringup Mode

Bringup mode provides logging features that can make application configuration and system bringup
easier. Configure the kernel with CONFIG_SECURITY_SMACK BRINGUP to enable these features. When
bringup mode is enabled accesses that succeed due to rules marked with the “b” access mode will logged.
When a new label is introduced for processes rules can be added aggressively, marked with the “b”. The
logging allows tracking of which rules actual get used for that label.

Another feature of bringup mode is the “unconfined” option. Writing a label to /sys/fs/smackfs/unconfined
makes subjects with that label able to access any object, and objects with that label accessible to all
subjects. Any access that is granted because a label is unconfined is logged. This feature is dangerous,
as files and directories may be created in places they couldn't if the policy were being enforced.

28.5 TOMOYO

28.5.1 What is TOMOYO?

TOMOYO is a name-based MAC extension (LSM module) for the Linux kernel.
LiveCD-based tutorials are available at

http://tomoyo.sourceforge.jp/1.7/1st-step/ubuntul0.04-live/ http://tomoyo.sourceforge.jp/1.7/1st-step/
centos5-live/

Though these tutorials use non-LSM version of TOMOYO, they are useful for you to know what TOMOYO is.

28.5. TOMOYO 287

http://tomoyo.sourceforge.jp/1.7/1st-step/ubuntu10.04-live/
http://tomoyo.sourceforge.jp/1.7/1st-step/centos5-live/
http://tomoyo.sourceforge.jp/1.7/1st-step/centos5-live/

Linux Kernel User Documentation, Release 4.13.0-rc4+

28.5.2 How to enable TOMOYO?

Build the kernel with CONFIG_SECURITY TOMOYO=y and pass security=tomoyo on kernel’s command line.

Please see http://tomoyo.sourceforge.jp/2.3/ for details.

28.5.3 Where is documentation?

User <-> Kernel interface documentation is available at http://tomoyo.sourceforge.jp/2.3/
policy-reference.html .

Materials we prepared for seminars and symposiums are available at http://sourceforge.jp/projects/
tomoyo/docs/?category id=532&language_id=1 . Below lists are chosen from three aspects.

What is TOMOYO?
TOMOYO Linux Overview http://sourceforge.jp/projects/tomoyo/docs/lca2009-takeda.pdf

TOMOYO Linux: pragmatic and manageable security for Linux http://sourceforge.jp/
projects/tomoyo/docs/freedomhectaipei-tomoyo.pdf

TOMOYO Linux: A Practical Method to Understand and Protect Your Own Linux Box
http://sourceforge.jp/projects/tomoyo/docs/PacSec2007-en-no-demo.pdf

What can TOMOYO do?
Deep inside TOMOYO Linux http://sourceforge.jp/projects/tomoyo/docs/lca2009-kumaneko.pdf

The role of “pathname based access control” in security. http://sourceforge.jp/projects/
tomoyo/docs/Ifj2008-bof.pdf

History of TOMOYO?
Realities of Mainlining http://sourceforge.jp/projects/tomoyo/docs/Ifj2008.pdf

28.5.4 What is future plan?

We believe that inode based security and name based security are complementary and both should be
used together. But unfortunately, so far, we cannot enable multiple LSM modules at the same time. We
feel sorry that you have to give up SELinux/SMACK/AppArmor etc. when you want to use TOMOYO.

We hope that LSM becomes stackable in future. Meanwhile, you can use non-LSM version of TOMOYO,
available at http://tomoyo.sourceforge.jp/1.7/ . LSM version of TOMOQOYO is a subset of non-LSM version of
TOMOYO. We are planning to port non-LSM version’s functionalities to LSM versions.

28.6 Yama

Yama is a Linux Security Module that collects system-wide DAC security protections that are not handled by
the core kernel itself. This is selectable at build-time with CONFIG_SECURITY YAMA, and can be controlled
at run-time through sysctls in /proc/sys/kernel/yama:

28.6.1 ptrace_scope

As Linux grows in popularity, it will become a larger target for malware. One particularly troubling weak-
ness of the Linux process interfaces is that a single user is able to examine the memory and running
state of any of their processes. For example, if one application (e.g. Pidgin) was compromised, it would
be possible for an attacker to attach to other running processes (e.g. Firefox, SSH sessions, GPG agent,
etc) to extract additional credentials and continue to expand the scope of their attack without resorting
to user-assisted phishing.

288 Chapter 28. Linux Security Module Usage

http://tomoyo.sourceforge.jp/2.3/
http://tomoyo.sourceforge.jp/2.3/policy-reference.html
http://tomoyo.sourceforge.jp/2.3/policy-reference.html
http://sourceforge.jp/projects/tomoyo/docs/?category_id=532&language_id=1
http://sourceforge.jp/projects/tomoyo/docs/?category_id=532&language_id=1
http://sourceforge.jp/projects/tomoyo/docs/lca2009-takeda.pdf
http://sourceforge.jp/projects/tomoyo/docs/freedomhectaipei-tomoyo.pdf
http://sourceforge.jp/projects/tomoyo/docs/freedomhectaipei-tomoyo.pdf
http://sourceforge.jp/projects/tomoyo/docs/PacSec2007-en-no-demo.pdf
http://sourceforge.jp/projects/tomoyo/docs/lca2009-kumaneko.pdf
http://sourceforge.jp/projects/tomoyo/docs/lfj2008-bof.pdf
http://sourceforge.jp/projects/tomoyo/docs/lfj2008-bof.pdf
http://sourceforge.jp/projects/tomoyo/docs/lfj2008.pdf
http://tomoyo.sourceforge.jp/1.7/

Linux Kernel User Documentation, Release 4.13.0-rc4+

This is not a theoretical problem. SSH session hijacking (http://www.storm.net.nz/projects/7) and arbi-
trary code injection (http://c-skills.blogspot.com/2007/05/injectso.html) attacks already exist and remain
possible if ptrace is allowed to operate as before. Since ptrace is not commonly used by non-developers
and non-admins, system builders should be allowed the option to disable this debugging system.

For a solution, some applications use prctl1(PR_SET DUMPABLE, ...) to specifically disallow such ptrace
attachment (e.g. ssh-agent), but many do not. A more general solution is to only allow ptrace directly from
a parent to a child process (i.e. direct “gdb EXE” and “strace EXE" still work), or with CAP_SYS PTRACE
(i.e. “gdb -pid=PID”, and “strace -p PID” still work as root).

In mode 1, software that has defined application-specific relationships between a debugging process
and its inferior (crash handlers, etc), prctl(PR SET PTRACER,pid,...) can be used. An inferior
can declare which other process (and its descendants) are allowed to call PTRACE _ATTACH against it.
Only one such declared debugging process can exists for each inferior at a time. For example, this
is used by KDE, Chromium, and Firefox’s crash handlers, and by Wine for allowing only Wine pro-
cesses to ptrace each other. If a process wishes to entirely disable these ptrace restrictions, it can call
prctl(PR_SET PTRACER,PR SET PTRACER ANY,...) so that any otherwise allowed process (even those
in external pid namespaces) may attach.

The sysctl settings (writable only with CAP_SYS PTRACE) are:

0 - classic ptrace permissions: a process can PTRACE_ATTACH to any other process running under the
same uid, as long as it is dumpable (i.e. did not transition uids, start privileged, or have called
prctl(PR _SET DUMPABLE...) already). Similarly, PTRACE TRACEME is unchanged.

1 - restricted ptrace: a process must have a predefined relationship with the inferior it wants to
call PTRACE_ATTACH on. By default, this relationship is that of only its descendants when
the above classic criteria is also met. To change the relationship, an inferior can call
prctl(PR_SET PTRACER,debugger,...) to declare an allowed debugger PID to call PTRACE_ATTACH
on the inferior. Using PTRACE TRACEME is unchanged.

2 - admin-only attach: only processes with CAP_SYS PTRACE may use ptrace with PTRACE_ATTACH, or
through children calling PTRACE_TRACEME.

3 - no attach: no processes may use ptrace with PTRACE_ATTACH nor via PTRACE_TRACEME. Once set, this
sysctl value cannot be changed.

The original children-only logic was based on the restrictions in grsecurity.

28.6. Yama 289

http://www.storm.net.nz/projects/7
http://c-skills.blogspot.com/2007/05/injectso.html

	Linux kernel release 4.x <http://kernel.org/>
	The kernel's command-line parameters
	Linux allocated devices (4.x+ version)
	Reporting bugs
	Security bugs
	Bug hunting
	Bisecting a bug
	Tainted kernels
	Ramoops oops/panic logger
	Dynamic debug
	Explaining the dreaded ``No init found.'' boot hang message
	Rules on how to access information in sysfs
	Using the initial RAM disk (initrd)
	Linux Serial Console
	Linux Braille Console
	Parport
	RAID arrays
	Kernel module signing facility
	Linux Magic System Request Key Hacks
	Unicode support
	Software cursor for VGA
	Kernel Support for miscellaneous (your favourite) Binary Formats v1.1
	Mono(tm) Binary Kernel Support for Linux
	Java(tm) Binary Kernel Support for Linux v1.03
	Reliability, Availability and Serviceability
	Power Management
	Thunderbolt
	Linux Security Module Usage

