
Linux Kernel Documentation Guide
Release 4.13.0-rc4+

The kernel development community

Sep 05, 2017

CONTENTS

1 Introduction 1

2 Sphinx Install 3

3 Sphinx Build 5

4 Writing Documentation 7

5 Figures & Images 11

6 Including kernel-doc comments 13

7 Writing kernel-doc comments 15

8 Including uAPI header files 21

i

ii

CHAPTER

ONE

INTRODUCTION

The Linux kernel uses Sphinx to generate pretty documentation from reStructuredText files under Docu-
mentation. To build the documentation in HTML or PDF formats, use make htmldocs or make pdfdocs.
The generated documentation is placed in Documentation/output.
The reStructuredText files may contain directives to include structured documentation comments, or
kernel-doc comments, from source files. Usually these are used to describe the functions and types and
design of the code. The kernel-doc comments have some special structure and formatting, but beyond
that they are also treated as reStructuredText.
Finally, there are thousands of plain text documentation files scattered around Documentation. Some of
these will likely be converted to reStructuredText over time, but the bulk of them will remain in plain text.

1

http://www.sphinx-doc.org/
http://docutils.sourceforge.net/rst.html

Linux Kernel Documentation Guide, Release 4.13.0-rc4+

2 Chapter 1. Introduction

CHAPTER

TWO

SPHINX INSTALL

The ReST markups currently used by the Documentation/ files are meant to be built with Sphinx version
1.3 or upper. If you’re desiring to build PDF outputs, it is recommended to use version 1.4.6 or upper.
There’s a script that checks for the Spinx requirements. Please see Checking for Sphinx dependencies
for further details.
Most distributions are shipped with Sphinx, but its toolchain is fragile, and it is not uncommon that upgrad-
ing it or some other Python packages on your machine would cause the documentation build to break.
A way to get rid of that is to use a different version than the one shipped on your distributions. In order to do
that, it is recommended to install Sphinx inside a virtual environment, using virtualenv-3 or virtualenv,
depending on how your distribution packaged Python 3.

Note:

1. Sphinx versions below 1.5 don’t work properly with Python’s docutils version 0.13.1 or upper. So,
if you’re willing to use those versions, you should run pip install 'docutils==0.12'.

2. It is recommended to use the RTD theme for html output. Depending on the Sphinx version, it
should be installed in separate, with pip install sphinx_rtd_theme.

3. Some ReST pages contain math expressions. Due to the way Sphinx work, those expressions are
written using LaTeX notation. It needs texlive installed with amdfonts and amsmath in order to
evaluate them.

In summary, if you want to install Sphinx version 1.4.9, you should do:

$ virtualenv sphinx_1.4
$. sphinx_1.4/bin/activate
(sphinx_1.4) $ pip install -r Documentation/sphinx/requirements.txt

After running . sphinx_1.4/bin/activate, the prompt will change, in order to indicate that you’re using
the new environment. If you open a new shell, you need to rerun this command to enter again at the
virtual environment before building the documentation.

2.1 Image output

The kernel documentation build system contains an extension that handles images on both GraphViz and
SVG formats (see Figures & Images).
For it to work, you need to install both GraphViz and ImageMagick packages. If those packages are not
installed, the build system will still build the documentation, but won’t include any images at the output.

3

Linux Kernel Documentation Guide, Release 4.13.0-rc4+

2.2 PDF and LaTeX builds

Such builds are currently supported only with Sphinx versions 1.4 and upper.
For PDF and LaTeX output, you’ll also need XeLaTeX version 3.14159265.
Depending on the distribution, you may also need to install a series of texlive packages that provide the
minimal set of functionalities required for XeLaTeX to work.

2.3 Checking for Sphinx dependencies

There’s a script that automatically check for Sphinx dependencies. If it can recognize your distribution, it
will also give a hint about the install command line options for your distro:

$./scripts/sphinx-pre-install
Checking if the needed tools for Fedora release 26 (Twenty Six) are available
Warning: better to also install "texlive-luatex85".
You should run:

sudo dnf install -y texlive-luatex85
/usr/bin/virtualenv sphinx_1.4
. sphinx_1.4/bin/activate
pip install -r Documentation/sphinx/requirements.txt

Can't build as 1 mandatory dependency is missing at ./scripts/sphinx-pre-install line 468.

By default, it checks all the requirements for both html and PDF, including the requirements for images,
math expressions and LaTeX build, and assumes that a virtual Python environment will be used. The ones
needed for html builds are assumed to be mandatory; the others to be optional.
It supports two optional parameters:
--no-pdf Disable checks for PDF;
--no-virtualenv Use OS packaging for Sphinx instead of Python virtual environment.

4 Chapter 2. Sphinx Install

CHAPTER

THREE

SPHINX BUILD

The usual way to generate the documentation is to run make htmldocs or make pdfdocs. There are also
other formats available, see the documentation section of make help. The generated documentation is
placed in format-specific subdirectories under Documentation/output.
To generate documentation, Sphinx (sphinx-build) must obviously be installed. For prettier HTML output,
the Read the Docs Sphinx theme (sphinx_rtd_theme) is used if available. For PDF output you’ll also
need XeLaTeX and convert(1) from ImageMagick (https://www.imagemagick.org). All of these are widely
available and packaged in distributions.
To pass extra options to Sphinx, you can use the SPHINXOPTS make variable. For example, use make
SPHINXOPTS=-v htmldocs to get more verbose output.
To remove the generated documentation, run make cleandocs.

5

https://www.imagemagick.org

Linux Kernel Documentation Guide, Release 4.13.0-rc4+

6 Chapter 3. Sphinx Build

CHAPTER

FOUR

WRITING DOCUMENTATION

Adding new documentation can be as simple as:
1. Add a new .rst file somewhere under Documentation.
2. Refer to it from the Sphinx main TOC tree in Documentation/index.rst.

This is usually good enough for simple documentation (like the one you’re reading right now), but for
larger documents it may be advisable to create a subdirectory (or use an existing one). For example, the
graphics subsystem documentation is under Documentation/gpu, split to several .rst files, and has a
separate index.rst (with a toctree of its own) referenced from the main index.
See the documentation for Sphinx and reStructuredText on what you can do with them. In particular, the
Sphinx reStructuredText Primer is a good place to get started with reStructuredText. There are also some
Sphinx specific markup constructs.

4.1 Specific guidelines for the kernel documentation

Here are some specific guidelines for the kernel documentation:
• Please don’t go overboard with reStructuredText markup. Keep it simple. For the most part the doc-
umentation should be plain text with just enough consistency in formatting that it can be converted
to other formats.

• Please keep the formatting changes minimal when converting existing documentation to reStruc-
turedText.

• Also update the content, not just the formatting, when converting documentation.
• Please stick to this order of heading adornments:

1. = with overline for document title:

==============
Document title
==============

2. = for chapters:

Chapters
========

3. - for sections:

Section

4. ~ for subsections:

7

http://www.sphinx-doc.org/en/stable/markup/toctree.html
http://www.sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/stable/rest.html
http://www.sphinx-doc.org/en/stable/markup/index.html

Linux Kernel Documentation Guide, Release 4.13.0-rc4+

Subsection
~~~~~~~~~~

Although RST doesn’t mandate a specific order (“Rather than imposing a fixed number and order of
section title adornment styles, the order enforced will be the order as encountered.”), having the
higher levels the same overall makes it easier to follow the documents.

• For inserting fixed width text blocks (for code examples, use case examples, etc.), use :: for anything
that doesn’t really benefit from syntax highlighting, especially short snippets. Use .. code-block::
<language> for longer code blocks that benefit from highlighting.

4.2 the C domain

The Sphinx C Domain (name c) is suited for documentation of C API. E.g. a function prototype:

.. c:function:: int ioctl( int fd, int request )

The C domain of the kernel-doc has some additional features. E.g. you can rename the reference name
of a function with a common name like open or ioctl:

.. c:function:: int ioctl( int fd, int request )
:name: VIDIOC_LOG_STATUS

The func-name (e.g. ioctl) remains in the output but the ref-name changed from ioctl to VID-
IOC_LOG_STATUS. The index entry for this function is also changed to VIDIOC_LOG_STATUS and the function
can now referenced by:

:c:func:`VIDIOC_LOG_STATUS`

4.3 list tables

We recommend the use of list table formats. The list table formats are double-stage lists. Compared to
the ASCII-art they might not be as comfortable for readers of the text files. Their advantage is that they
are easy to create or modify and that the diff of a modification is much more meaningful, because it is
limited to the modified content.
The flat-table is a double-stage list similar to the list-table with some additional features:

• column-span: with the role cspan a cell can be extended through additional columns
• row-span: with the role rspan a cell can be extended through additional rows
• auto span rightmost cell of a table row over the missing cells on the right side of that table-row. With
Option :fill-cells: this behavior can changed from auto span to auto fill, which automatically
inserts (empty) cells instead of spanning the last cell.

options:
• :header-rows: [int] count of header rows
• :stub-columns: [int] count of stub columns
• :widths: [[int] [int] ... ] widths of columns
• :fill-cells: instead of auto-spanning missing cells, insert missing cells

roles:
• :cspan: [int] additional columns (morecols)
• :rspan: [int] additional rows (morerows)

8 Chapter 4. Writing Documentation



Linux Kernel Documentation Guide, Release 4.13.0-rc4+

The example below shows how to use this markup. The first level of the staged list is the table-row. In the
table-row there is only one markup allowed, the list of the cells in this table-row. Exceptions are comments
( .. ) and targets (e.g. a ref to :ref:`last row <last row>` / last row ).

.. flat-table:: table title
:widths: 2 1 1 3

* - head col 1
- head col 2
- head col 3
- head col 4

* - column 1
- field 1.1
- field 1.2 with autospan

* - column 2
- field 2.1
- :rspan:`1` :cspan:`1` field 2.2 - 3.3

* .. _`last row`:

- column 3

Rendered as:

Table 4.1: table title
head col 1 head col 2 head col 3 head col 4
column 1 field 1.1 field 1.2 with autospan
column 2 field 2.1 field 2.2 - 3.3
column 3

4.3. list tables 9



Linux Kernel Documentation Guide, Release 4.13.0-rc4+

10 Chapter 4. Writing Documentation



CHAPTER

FIVE

FIGURES & IMAGES

If you want to add an image, you should use the kernel-figure and kernel-image directives. E.g. to
insert a figure with a scalable image format use SVG ( SVG image example ):

.. kernel-figure:: svg_image.svg
:alt: simple SVG image

SVG image example

Fig. 5.1: SVG image example

The kernel figure (and image) directive support DOT formated files, see
• DOT: http://graphviz.org/pdf/dotguide.pdf
• Graphviz: http://www.graphviz.org/content/dot-language

A simple example ( DOT’s hello world example ):

.. kernel-figure:: hello.dot
:alt: hello world

DOT's hello world example

Hello

World

Fig. 5.2: DOT’s hello world example

Embed render markups (or languages) like Graphviz’s DOT is provided by the kernel-render directives.:

11

http://graphviz.org/pdf/dotguide.pdf
http://www.graphviz.org/content/dot-language


Linux Kernel Documentation Guide, Release 4.13.0-rc4+

.. kernel-render:: DOT
:alt: foobar digraph
:caption: Embedded **DOT** (Graphviz) code

digraph foo {
"bar" -> "baz";
}

How this will be rendered depends on the installed tools. If Graphviz is installed, you will see an vector
image. If not the raw markup is inserted as literal-block ( Embedded DOT (Graphviz) code ).

bar

baz

Fig. 5.3: Embedded DOT (Graphviz) code

The render directive has all the options known from the figure directive, plus option caption. If caption
has a value, a figure node is inserted. If not, a image node is inserted. A caption is also needed, if you
want to refer it ( Embedded SVG markup ).
Embedded SVG:

.. kernel-render:: SVG
:caption: Embedded **SVG** markup
:alt: so-nw-arrow

<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" version="1.1" ...>

...
</svg>

Fig. 5.4: Embedded SVG markup

12 Chapter 5. Figures & Images



CHAPTER

SIX

INCLUDING KERNEL-DOC COMMENTS

The Linux kernel source files may contain structured documentation comments, or kernel-doc comments
to describe the functions and types and design of the code. The documentation comments may be in-
cluded to any of the reStructuredText documents using a dedicated kernel-doc Sphinx directive extension.
The kernel-doc directive is of the format:

.. kernel-doc:: source
:option:

The source is the path to a source file, relative to the kernel source tree. The following directive options
are supported:
export: [source-pattern ...] Include documentation for all functions in source that have been exported

using EXPORT_SYMBOL or EXPORT_SYMBOL_GPL either in source or in any of the files specified by source-
pattern.
The source-pattern is useful when the kernel-doc comments have been placed in header files, while
EXPORT_SYMBOL and EXPORT_SYMBOL_GPL are next to the function definitions.
Examples:

.. kernel-doc:: lib/bitmap.c
:export:

.. kernel-doc:: include/net/mac80211.h
:export: net/mac80211/*.c

internal: [source-pattern ...] Include documentation for all functions and types in source that have
not been exported using EXPORT_SYMBOL or EXPORT_SYMBOL_GPL either in source or in any of the
files specified by source-pattern.
Example:

.. kernel-doc:: drivers/gpu/drm/i915/intel_audio.c
:internal:

doc: title Include documentation for the DOC: paragraph identified by title in source. Spaces are al-
lowed in title; do not quote the title. The title is only used as an identifier for the paragraph, and
is not included in the output. Please make sure to have an appropriate heading in the enclosing
reStructuredText document.
Example:

.. kernel-doc:: drivers/gpu/drm/i915/intel_audio.c
:doc: High Definition Audio over HDMI and Display Port

functions: function [...] Include documentation for each function in source.
Example:

13



Linux Kernel Documentation Guide, Release 4.13.0-rc4+

.. kernel-doc:: lib/bitmap.c
:functions: bitmap_parselist bitmap_parselist_user

Without options, the kernel-doc directive includes all documentation comments from the source file.
The kernel-doc extension is included in the kernel source tree, at Documentation/sphinx/kernel-doc.py.
Internally, it uses the scripts/kernel-doc script to extract the documentation comments from the
source.

14 Chapter 6. Including kernel-doc comments



CHAPTER

SEVEN

WRITING KERNEL-DOC COMMENTS

In order to provide embedded, “C” friendly, easy to maintain, but consistent and extractable overview,
function and type documentation, the Linux kernel has adopted a consistent style for documentation
comments. The format for this documentation is called the kernel-doc format, described below. This
style embeds the documentation within the source files, using a few simple conventions for adding docu-
mentation paragraphs and documenting functions and their parameters, structures and unions and their
members, enumerations, and typedefs.

Note:

The kernel-doc format is deceptively similar to gtk-doc or Doxygen, yet distinctively different, for
historical reasons. The kernel source contains tens of thousands of kernel-doc comments. Please stick
to the style described here.

The scripts/kernel-doc script is used by the Sphinx kernel-doc extension in the documentation build
to extract this embedded documentation into the various HTML, PDF, and other format documents.
In order to provide good documentation of kernel functions and data structures, please use the following
conventions to format your kernel-doc comments in the Linux kernel source.

7.1 How to format kernel-doc comments

The opening comment mark /** is reserved for kernel-doc comments. Only comments so marked will
be considered by the kernel-doc tool. Use it only for comment blocks that contain kernel-doc formatted
comments. The usual */ should be used as the closing comment marker. The lines in between should be
prefixed by  *  (space star space).
The function and type kernel-doc comments should be placed just before the function or type being de-
scribed. The overview kernel-doc comments may be freely placed at the top indentation level.
Example kernel-doc function comment:

/**
* foobar() - Brief description of foobar.
* @arg: Description of argument of foobar.
*
* Longer description of foobar.
*
* Return: Description of return value of foobar.
*/
int foobar(int arg)

The format is similar for documentation for structures, enums, paragraphs, etc. See the sections below
for details.

15



Linux Kernel Documentation Guide, Release 4.13.0-rc4+

The kernel-doc structure is extracted from the comments, and proper Sphinx C Domain function and type
descriptions with anchors are generated for them. The descriptions are filtered for special kernel-doc
highlights and cross-references. See below for details.

7.2 Highlights and cross-references

The following special patterns are recognized in the kernel-doc comment descriptive text and converted
to proper reStructuredText markup and Sphinx C Domain references.

Attention:

The below are only recognized within kernel-doc comments, not within normal reStructuredText
documents.

funcname() Function reference.
@parameter Name of a function parameter. (No cross-referencing, just formatting.)
%CONST Name of a constant. (No cross-referencing, just formatting.)
``literal`` A literal block that should be handled as-is. The output will use a monospaced font.

Useful if you need to use special characters that would otherwise have some meaning either by
kernel-doc script of by reStructuredText.
This is particularly useful if you need to use things like %ph inside a function description.

$ENVVAR Name of an environment variable. (No cross-referencing, just formatting.)
&struct name Structure reference.
&enum name Enum reference.
&typedef name Typedef reference.
&struct_name->member or &struct_name.member Structure or union member reference. The cross-

reference will be to the struct or union definition, not the member directly.
&name A generic type reference. Prefer using the full reference described above instead. This is mostly

for legacy comments.

7.2.1 Cross-referencing from reStructuredText

To cross-reference the functions and types defined in the kernel-doc comments from reStructuredText
documents, please use the Sphinx C Domain references. For example:

See function :c:func:`foo` and struct/union/enum/typedef :c:type:`bar`.

While the type reference works with just the type name, without the struct/union/enum/typedef part in
front, you may want to use:

See :c:type:`struct foo <foo>`.
See :c:type:`union bar <bar>`.
See :c:type:`enum baz <baz>`.
See :c:type:`typedef meh <meh>`.

This will produce prettier links, and is in line with how kernel-doc does the cross-references.
For further details, please refer to the Sphinx C Domain documentation.

16 Chapter 7. Writing kernel-doc comments

http://www.sphinx-doc.org/en/stable/domains.html
http://www.sphinx-doc.org/en/stable/domains.html
http://www.sphinx-doc.org/en/stable/domains.html
http://www.sphinx-doc.org/en/stable/domains.html


Linux Kernel Documentation Guide, Release 4.13.0-rc4+

7.3 Function documentation

The general format of a function and function-like macro kernel-doc comment is:

/**
* function_name() - Brief description of function.
* @arg1: Describe the first argument.
* @arg2: Describe the second argument.
* One can provide multiple line descriptions
* for arguments.
*
* A longer description, with more discussion of the function function_name()
* that might be useful to those using or modifying it. Begins with an
* empty comment line, and may include additional embedded empty
* comment lines.
*
* The longer description may have multiple paragraphs.
*
* Return: Describe the return value of foobar.
*
* The return value description can also have multiple paragraphs, and should
* be placed at the end of the comment block.
*/

The brief description following the function name may span multiple lines, and ends with an @argument:
description, a blank comment line, or the end of the comment block.
The kernel-doc function comments describe each parameter to the function, in order, with the @argu-
ment: descriptions. The @argument: descriptions must begin on the very next line following the opening
brief function description line, with no intervening blank comment lines. The @argument: descriptions
may span multiple lines. The continuation lines may contain indentation. If a function parameter is ...
(varargs), it should be listed in kernel-doc notation as: @...:.
The return value, if any, should be described in a dedicated section at the end of the comment starting
with “Return:”.

7.4 Structure, union, and enumeration documentation

The general format of a struct, union, and enum kernel-doc comment is:

/**
* struct struct_name - Brief description.
* @member_name: Description of member member_name.
*
* Description of the structure.
*/

Below, “struct” is used to mean structs, unions and enums, and “member” is used to mean struct and
union members as well as enumerations in an enum.
The brief description following the structure name may span multiple lines, and ends with a @member:
description, a blank comment line, or the end of the comment block.
The kernel-doc data structure comments describe each member of the structure, in order, with the @mem-
ber: descriptions. The @member: descriptions must begin on the very next line following the opening
brief function description line, with no intervening blank comment lines. The @member: descriptions may
span multiple lines. The continuation lines may contain indentation.

7.3. Function documentation 17



Linux Kernel Documentation Guide, Release 4.13.0-rc4+

7.4.1 In-line member documentation comments

The structure members may also be documented in-line within the definition. There are two styles, single-
line comments where both the opening /** and closing */ are on the same line, and multi-line comments
where they are each on a line of their own, like all other kernel-doc comments:

/**
* struct foo - Brief description.
* @foo: The Foo member.
*/
struct foo {

int foo;
/**
* @bar: The Bar member.
*/
int bar;
/**
* @baz: The Baz member.
*
* Here, the member description may contain several paragraphs.
*/
int baz;
/** @foobar: Single line description. */
int foobar;

}

7.4.2 Private members

Inside a struct description, you can use the “private:” and “public:” comment tags. Structure fields that
are inside a “private:” area are not listed in the generated output documentation. The “private:” and
“public:” tags must begin immediately following a /* comment marker. They may optionally include
comments between the : and the ending */ marker.
Example:

/**
* struct my_struct - short description
* @a: first member
* @b: second member
*
* Longer description
*/
struct my_struct {

int a;
int b;

/* private: internal use only */
int c;

};

7.5 Typedef documentation

The general format of a typedef kernel-doc comment is:

/**
* typedef type_name - Brief description.
*
* Description of the type.
*/

18 Chapter 7. Writing kernel-doc comments



Linux Kernel Documentation Guide, Release 4.13.0-rc4+

7.6 Overview documentation comments

To facilitate having source code and comments close together, you can include kernel-doc documentation
blocks that are free-form comments instead of being kernel-doc for functions, structures, unions, enums,
or typedefs. This could be used for something like a theory of operation for a driver or library code, for
example.
This is done by using a DOC: section keyword with a section title.
The general format of an overview or high-level documentation comment is:

/**
* DOC: Theory of Operation
*
* The whizbang foobar is a dilly of a gizmo. It can do whatever you
* want it to do, at any time. It reads your mind. Here's how it works.
*
* foo bar splat
*
* The only drawback to this gizmo is that is can sometimes damage
* hardware, software, or its subject(s).
*/

The title following DOC: acts as a heading within the source file, but also as an identifier for extracting the
documentation comment. Thus, the title must be unique within the file.

7.7 Recommendations

We definitely need kernel-doc formatted documentation for functions that are exported to loadable mod-
ules using EXPORT_SYMBOL or EXPORT_SYMBOL_GPL.
We also look to provide kernel-doc formatted documentation for functions externally visible to other kernel
files (not marked “static”).
We also recommend providing kernel-doc formatted documentation for private (file “static”) routines, for
consistency of kernel source code layout. But this is lower priority and at the discretion of the MAINTAINER
of that kernel source file.
Data structures visible in kernel include files should also be documented using kernel-doc formatted com-
ments.

7.6. Overview documentation comments 19



Linux Kernel Documentation Guide, Release 4.13.0-rc4+

20 Chapter 7. Writing kernel-doc comments



CHAPTER

EIGHT

INCLUDING UAPI HEADER FILES

Sometimes, it is useful to include header files and C example codes in order to describe the userspace
API and to generate cross-references between the code and the documentation. Adding cross-references
for userspace API files has an additional vantage: Sphinx will generate warnings if a symbol is not found
at the documentation. That helps to keep the uAPI documentation in sync with the Kernel changes. The
parse_headers.pl provide a way to generate such cross-references. It has to be called via Makefile, while
building the documentation. Please see Documentation/media/Makefile for an example about how to
use it inside the Kernel tree.

8.1 parse_headers.pl

8.1.1 NAME

parse_headers.pl - parse a C file, in order to identify functions, structs, enums and defines and create
cross-references to a Sphinx book.

8.1.2 SYNOPSIS

parse_headers.pl [<options>] <C_FILE> <OUT_FILE> [<EXCEPTIONS_FILE>]
Where <options> can be: –debug, –help or –man.

8.1.3 OPTIONS

–debug
Put the script in verbose mode, useful for debugging.

–usage
Prints a brief help message and exits.

–help
Prints a more detailed help message and exits.

8.1.4 DESCRIPTION

Convert a C header or source file (C_FILE), into a ReStructured Text included via ..parsed-literal block with
cross-references for the documentation files that describe the API. It accepts an optional EXCEPTIONS_FILE
with describes what elements will be either ignored or be pointed to a non-default reference.
The output is written at the (OUT_FILE).
It is capable of identifying defines, functions, structs, typedefs, enums and enum symbols and create
cross-references for all of them. It is also capable of distinguish #define used for specifying a Linux ioctl.

21



Linux Kernel Documentation Guide, Release 4.13.0-rc4+

The EXCEPTIONS_FILE contain two types of statements: ignore or replace.
The syntax for the ignore tag is:
ignore type name
The ignore means that it won’t generate cross references for a name symbol of type type.
The syntax for the replace tag is:
replace type name new_value
The replace means that it will generate cross references for a name symbol of type type, but, instead
of using the default replacement rule, it will use new_value.
For both statements, type can be either one of the following:
ioctl

The ignore or replace statement will apply to ioctl definitions like:
#define VIDIOC_DBG_S_REGISTER _IOW(‘V’, 79, struct v4l2_dbg_register)

define
The ignore or replace statement will apply to any other #define found at C_FILE.

typedef
The ignore or replace statement will apply to typedef statements at C_FILE.

struct
The ignore or replace statement will apply to the name of struct statements at C_FILE.

enum
The ignore or replace statement will apply to the name of enum statements at C_FILE.

symbol
The ignore or replace statement will apply to the name of enum statements at C_FILE.
For replace statements, new_value will automatically use :c:type: references for typedef,
enum and struct types. It will use :ref: for ioctl, define and symbol types. The type of
reference can also be explicitly defined at the replace statement.

8.1.5 EXAMPLES

ignore define _VIDEODEV2_H
Ignore a #define _VIDEODEV2_H at the C_FILE.
ignore symbol PRIVATE
On a struct like:
enum foo { BAR1, BAR2, PRIVATE };
It won’t generate cross-references for PRIVATE.
replace symbol BAR1 :c:type:‘foo‘ replace symbol BAR2 :c:type:‘foo‘
On a struct like:
enum foo { BAR1, BAR2, PRIVATE };
It will make the BAR1 and BAR2 enum symbols to cross reference the foo symbol at the C domain.

22 Chapter 8. Including uAPI header files



Linux Kernel Documentation Guide, Release 4.13.0-rc4+

8.1.6 BUGS

Report bugs to Mauro Carvalho Chehab <mchehab@s-opensource.com>

8.1.7 COPYRIGHT

Copyright (c) 2016 by Mauro Carvalho Chehab <mchehab@s-opensource.com>.
License GPLv2: GNU GPL version 2 <http://gnu.org/licenses/gpl.html>.
This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent
permitted by law.

8.1. parse_headers.pl 23

mailto:mchehab@s-opensource.com
mailto:mchehab@s-opensource.com
http://gnu.org/licenses/gpl.html

	Introduction
	Sphinx Install
	Sphinx Build
	Writing Documentation
	Figures & Images
	Including kernel-doc comments
	Writing kernel-doc comments
	Including uAPI header files

