
The kernel driver API manual
Release 4.13.0-rc4+

The kernel development community

Sep 05, 2017

CONTENTS

1 Driver Basics 3
1.1 Driver Entry and Exit points . 3
1.2 Driver device table . 3
1.3 Atomic and pointer manipulation . 6
1.4 Delaying, scheduling, and timer routines . 8
1.5 Wait queues and Wake events . 21
1.6 High-resolution timers . 28
1.7 Workqueues and Kevents . 33
1.8 Internal Functions . 40
1.9 Kernel objects manipulation . 50
1.10 Kernel utility functions . 53
1.11 Device Resource Management . 66

2 Device drivers infrastructure 73
2.1 The Basic Device Driver-Model Structures . 73
2.2 Device Drivers Base . 81
2.3 Device Drivers DMA Management . 105
2.4 Device drivers PnP support . 108
2.5 Userspace IO devices . 109

3 Device Power Management 113
3.1 Device Power Management Basics . 113
3.2 Suspend/Hibernation Notifiers . 122
3.3 Device Power Management Data Types . 123

4 Bus-Independent Device Accesses 127
4.1 Introduction . 127
4.2 Memory Mapped IO . 127
4.3 Port Space Accesses . 129
4.4 Public Functions Provided . 129

5 Buffer Sharing and Synchronization 133
5.1 Shared DMA Buffers . 133
5.2 Reservation Objects . 144
5.3 DMA Fences . 148

6 Device links 159
6.1 Usage . 159
6.2 Limitations . 160
6.3 Examples . 160
6.4 Alternatives . 161
6.5 Implementation . 161
6.6 State machine . 161
6.7 API . 162

i

7 Message-based devices 165
7.1 Fusion message devices . 165

8 Sound Devices 175

9 Frame Buffer Library 211
9.1 Frame Buffer Memory . 211
9.2 Frame Buffer Colormap . 212
9.3 Frame Buffer Video Mode Database . 213
9.4 Frame Buffer Macintosh Video Mode Database . 215
9.5 Frame Buffer Fonts . 216

10Voltage and current regulator API 217
10.1 Introduction . 217
10.2 Consumer driver interface . 217
10.3 Regulator driver interface . 218
10.4 Machine interface . 218
10.5 API reference . 219

11Industrial I/O 239
11.1 Introduction . 239
11.2 Core elements . 239
11.3 Buffers . 253
11.4 Triggers . 256
11.5 Triggered Buffers . 261

12Input Subsystem 263
12.1 Input core . 263
12.2 Multitouch Library . 274
12.3 Polled input devices . 277
12.4 Matrix keyboards/keypads . 279
12.5 Sparse keymap support . 280

13Linux USB API 283
13.1 The Linux-USB Host Side API . 283
13.2 USB Gadget API for Linux . 344
13.3 USB Anchors . 369
13.4 USB bulk streams . 370
13.5 USB core callbacks . 371
13.6 USB DMA . 373
13.7 USB Request Block (URB) . 375
13.8 Power Management for USB . 379
13.9 USB hotplugging . 388
13.10USB device persistence during system suspend . 390
13.11USB Error codes . 392
13.12Writing USB Device Drivers . 395
13.13Synopsys DesignWare Core SuperSpeed USB 3.0 Controller . 399
13.14Writing a MUSB Glue Layer . 424
13.15USB Type-C connector class . 434
13.16USB3 debug port . 439

14PCI Support Library 443

15PCI Hotplug Support Library 473

16Serial Peripheral Interface (SPI) 475

17I2C and SMBus Subsystem 497

ii

18High Speed Synchronous Serial Interface (HSI) 511
18.1 Introduction . 511
18.2 HSI Subsystem in Linux . 511
18.3 hsi-char Device . 512
18.4 The kernel HSI API . 512

19Error Detection And Correction (EDAC) Devices 521
19.1 Main Concepts used at the EDAC subsystem . 521
19.2 Memory Controllers . 522
19.3 PCI Controllers . 529
19.4 EDAC Blocks . 531

20SCSI Interfaces Guide 533
20.1 Introduction . 533
20.2 SCSI upper layer . 533
20.3 SCSI mid layer . 534
20.4 SCSI lower layer . 570

21libATA Developer’s Guide 571
21.1 Introduction . 571
21.2 libata Driver API . 571
21.3 Error handling . 575
21.4 libata Library . 578
21.5 libata Core Internals . 593
21.6 libata SCSI translation/emulation . 618
21.7 ATA errors and exceptions . 633
21.8 ata_piix Internals . 638
21.9 sata_sil Internals . 640
21.10Thanks . 640

22MTD NAND Driver Programming Interface 641
22.1 Introduction . 641
22.2 Known Bugs And Assumptions . 641
22.3 Documentation hints . 641
22.4 Basic board driver . 642
22.5 Advanced board driver functions . 645
22.6 Filesystem support . 653
22.7 Tools . 653
22.8 Constants . 653
22.9 Structures . 655
22.10Public Functions Provided . 665
22.11Internal Functions Provided . 670
22.12Credits . 688

23Parallel Port Devices 691

2416x50 UART Driver 699

25Pulse-Width Modulation (PWM) 705

26W1: Dallas’ 1-wire bus 715
26.1 W1 API internal to the kernel . 715

27RapidIO Subsystem Guide 727
27.1 Introduction . 727
27.2 Known Bugs and Limitations . 727
27.3 RapidIO driver interface . 727
27.4 Internals . 742
27.5 Credits . 759

iii

28Writing s390 channel device drivers 761
28.1 Introduction . 761
28.2 The ccw bus . 761
28.3 The ccwgroup bus . 777
28.4 Generic interfaces . 780

29VME Device Drivers 783
29.1 Driver registration . 783
29.2 Resource management . 783
29.3 Master windows . 784
29.4 Slave windows . 784
29.5 DMA channels . 785
29.6 Interrupts . 786
29.7 Location monitors . 786
29.8 Slot Detection . 787
29.9 Bus Detection . 787
29.10VME API . 787

30Linux 802.11 Driver Developer’s Guide 799
30.1 Introduction . 799
30.2 cfg80211 subsystem . 799
30.3 mac80211 subsystem (basics) . 854
30.4 mac80211 subsystem (advanced) . 883

31The Userspace I/O HOWTO 909
31.1 About this document . 909
31.2 About UIO . 910
31.3 Writing your own kernel module . 911
31.4 Writing a driver in userspace . 914
31.5 Generic PCI UIO driver . 915
31.6 Generic Hyper-V UIO driver . 917
31.7 Further information . 918

32Linux Firmware API 919
32.1 Introduction . 919
32.2 Firmware API core features . 919
32.3 request_firmware API . 924
32.4 Other Firmware Interfaces . 928

33PINCTRL (PIN CONTROL) subsystem 931
33.1 Top-level interface . 931
33.2 Pin groups . 932
33.3 Pin configuration . 934
33.4 Interaction with the GPIO subsystem . 935
33.5 PINMUX interfaces . 937
33.6 What is pinmuxing? . 937
33.7 Pinmux conventions . 938
33.8 Pinmux drivers . 939
33.9 Pin control interaction with the GPIO subsystem . 942
33.10GPIO mode pitfalls . 942
33.11Board/machine configuration . 945
33.12Complex mappings . 946
33.13Pin control requests from drivers . 948
33.14Drivers needing both pin control and GPIOs . 950
33.15System pin control hogging . 950
33.16Runtime pinmuxing . 951

34Miscellaneous Devices 953

iv

Index 955

v

vi

The kernel driver API manual, Release 4.13.0-rc4+

The kernel offers a wide variety of interfaces to support the development of device drivers. This document
is an only somewhat organized collection of some of those interfaces — it will hopefully get better over
time! The available subsections can be seen below.
Table of contents

CONTENTS 1

The kernel driver API manual, Release 4.13.0-rc4+

2 CONTENTS

CHAPTER

ONE

DRIVER BASICS

1.1 Driver Entry and Exit points

module_init(x)
driver initialization entry point

Parameters
x function to be run at kernel boot time or module insertion
Description
module_init() will either be called during do_initcalls() (if builtin) or at module insertion time (if a
module). There can only be one per module.
module_exit(x)

driver exit entry point
Parameters
x function to be run when driver is removed
Description
module_exit() will wrap the driver clean-up code with cleanup_module() when used with rmmod when
the driver is a module. If the driver is statically compiled into the kernel, module_exit() has no effect.
There can only be one per module.

1.2 Driver device table

struct usb_device_id
identifies USB devices for probing and hotplugging

Definition

struct usb_device_id {
__u16 match_flags;
__u16 idVendor;
__u16 idProduct;
__u16 bcdDevice_lo;
__u16 bcdDevice_hi;
__u8 bDeviceClass;
__u8 bDeviceSubClass;
__u8 bDeviceProtocol;
__u8 bInterfaceClass;
__u8 bInterfaceSubClass;
__u8 bInterfaceProtocol;
__u8 bInterfaceNumber;
kernel_ulong_t driver_info;

};

3

The kernel driver API manual, Release 4.13.0-rc4+

Members
match_flags Bit mask controlling which of the other fields are used to match against new devices. Any

field except for driver_info may be used, although some only make sense in conjunction with other
fields. This is usually set by a USB_DEVICE_*() macro, which sets all other fields in this structure
except for driver_info.

idVendor USB vendor ID for a device; numbers are assigned by the USB forum to its members.
idProduct Vendor-assigned product ID.
bcdDevice_lo Low end of range of vendor-assigned product version numbers. This is also used to identify

individual product versions, for a range consisting of a single device.
bcdDevice_hi High end of version number range. The range of product versions is inclusive.
bDeviceClass Class of device; numbers are assigned by the USB forum. Products may choose to im-

plement classes, or be vendor-specific. Device classes specify behavior of all the interfaces on a
device.

bDeviceSubClass Subclass of device; associated with bDeviceClass.
bDeviceProtocol Protocol of device; associated with bDeviceClass.
bInterfaceClass Class of interface; numbers are assigned by the USB forum. Products may choose to

implement classes, or be vendor-specific. Interface classes specify behavior only of a given interface;
other interfaces may support other classes.

bInterfaceSubClass Subclass of interface; associated with bInterfaceClass.
bInterfaceProtocol Protocol of interface; associated with bInterfaceClass.
bInterfaceNumber Number of interface; composite devices may use fixed interface numbers to differen-

tiate between vendor-specific interfaces.
driver_info Holds information used by the driver. Usually it holds a pointer to a descriptor understood

by the driver, or perhaps device flags.
Description
In most cases, drivers will create a table of device IDs by using USB_DEVICE(), or similar macros designed
for that purpose. They will then export it to userspace using MODULE_DEVICE_TABLE(), and provide it to
the USB core through their usb_driver structure.
See the usb_match_id() function for information about how matches are performed. Briefly, you will
normally use one of several macros to help construct these entries. Each entry you provide will either
identify one or more specific products, or will identify a class of products which have agreed to behave the
same. You should put the more specific matches towards the beginning of your table, so that driver_info
can record quirks of specific products.
struct mdio_device_id

identifies PHY devices on an MDIO/MII bus
Definition

struct mdio_device_id {
__u32 phy_id;
__u32 phy_id_mask;

};

Members
phy_id The result of (mdio_read(MII_PHYSID1) << 16 | mdio_read(PHYSID2)) & phy_id_mask for this

PHY type
phy_id_mask Defines the significant bits of phy_id. A value of 0 is used to terminate an array of struct

mdio_device_id.

4 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

struct amba_id
identifies a device on an AMBA bus

Definition

struct amba_id {
unsigned int id;
unsigned int mask;
void * data;

};

Members
id The significant bits if the hardware device ID
mask Bitmask specifying which bits of the id field are significant when matching. A driver binds to a device

when ((hardware device ID) & mask) == id.
data Private data used by the driver.
struct mips_cdmm_device_id

identifies devices in MIPS CDMM bus
Definition

struct mips_cdmm_device_id {
__u8 type;

};

Members
type Device type identifier.
struct mei_cl_device_id

MEI client device identifier
Definition

struct mei_cl_device_id {
char name;
uuid_le uuid;
__u8 version;
kernel_ulong_t driver_info;

};

Members
name helper name
uuid client uuid
version client protocol version
driver_info information used by the driver.
Description
identifies mei client device by uuid and name
struct rio_device_id

RIO device identifier
Definition

struct rio_device_id {
__u16 did;
__u16 vid;
__u16 asm_did;

1.2. Driver device table 5

The kernel driver API manual, Release 4.13.0-rc4+

__u16 asm_vid;
};

Members
did RapidIO device ID
vid RapidIO vendor ID
asm_did RapidIO assembly device ID
asm_vid RapidIO assembly vendor ID
Description
Identifies a RapidIO device based on both the device/vendor IDs and the assembly device/vendor IDs.
struct fsl_mc_device_id

MC object device identifier
Definition

struct fsl_mc_device_id {
__u16 vendor;
const char obj_type;

};

Members
vendor vendor ID
obj_type MC object type
Description
Type of entries in the “device Id” table for MC object devices supported by a MC object device driver. The
last entry of the table has vendor set to 0x0

1.3 Atomic and pointer manipulation

int atomic_read(const atomic_t * v)
read atomic variable

Parameters
const atomic_t * v pointer of type atomic_t
Description
Atomically reads the value of v.
void atomic_set(atomic_t * v, int i)

set atomic variable
Parameters
atomic_t * v pointer of type atomic_t
int i required value
Description
Atomically sets the value of v to i.
void atomic_add(int i, atomic_t * v)

add integer to atomic variable
Parameters

6 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

int i integer value to add
atomic_t * v pointer of type atomic_t
Description
Atomically adds i to v.
void atomic_sub(int i, atomic_t * v)

subtract integer from atomic variable
Parameters
int i integer value to subtract
atomic_t * v pointer of type atomic_t
Description
Atomically subtracts i from v.
bool atomic_sub_and_test(int i, atomic_t * v)

subtract value from variable and test result
Parameters
int i integer value to subtract
atomic_t * v pointer of type atomic_t
Description
Atomically subtracts i from v and returns true if the result is zero, or false for all other cases.
void atomic_inc(atomic_t * v)

increment atomic variable
Parameters
atomic_t * v pointer of type atomic_t
Description
Atomically increments v by 1.
void atomic_dec(atomic_t * v)

decrement atomic variable
Parameters
atomic_t * v pointer of type atomic_t
Description
Atomically decrements v by 1.
bool atomic_dec_and_test(atomic_t * v)

decrement and test
Parameters
atomic_t * v pointer of type atomic_t
Description
Atomically decrements v by 1 and returns true if the result is 0, or false for all other cases.
bool atomic_inc_and_test(atomic_t * v)

increment and test
Parameters
atomic_t * v pointer of type atomic_t

1.3. Atomic and pointer manipulation 7

The kernel driver API manual, Release 4.13.0-rc4+

Description
Atomically increments v by 1 and returns true if the result is zero, or false for all other cases.
bool atomic_add_negative(int i, atomic_t * v)

add and test if negative
Parameters
int i integer value to add
atomic_t * v pointer of type atomic_t
Description
Atomically adds i to v and returns true if the result is negative, or false when result is greater than or
equal to zero.
int atomic_add_return(int i, atomic_t * v)

add integer and return
Parameters
int i integer value to add
atomic_t * v pointer of type atomic_t
Description
Atomically adds i to v and returns i + v
int atomic_sub_return(int i, atomic_t * v)

subtract integer and return
Parameters
int i integer value to subtract
atomic_t * v pointer of type atomic_t
Description
Atomically subtracts i from v and returns v - i
int __atomic_add_unless(atomic_t * v, int a, int u)

add unless the number is already a given value
Parameters
atomic_t * v pointer of type atomic_t
int a the amount to add to v...
int u ...unless v is equal to u.
Description
Atomically adds a to v, so long as v was not already u. Returns the old value of v.

1.4 Delaying, scheduling, and timer routines

struct prev_cputime
snapshot of system and user cputime

Definition

struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
u64 utime;
u64 stime;

8 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

raw_spinlock_t lock;
#endif
};

Members
utime time spent in user mode
stime time spent in system mode
lock protects the above two fields
Description
Stores previous user/system time values such that we can guarantee monotonicity.
struct task_cputime

collected CPU time counts
Definition

struct task_cputime {
u64 utime;
u64 stime;
unsigned long long sum_exec_runtime;

};

Members
utime time spent in user mode, in nanoseconds
stime time spent in kernel mode, in nanoseconds
sum_exec_runtime total time spent on the CPU, in nanoseconds
Description
This structure groups together three kinds of CPU time that are tracked for threads and thread groups.
Most things considering CPU time want to group these counts together and treat all three of them in
parallel.
int pid_alive(const struct task_struct * p)

check that a task structure is not stale
Parameters
const struct task_struct * p Task structure to be checked.
Description
Test if a process is not yet dead (at most zombie state) If pid_alive fails, then pointers within the task
structure can be stale and must not be dereferenced.
Return
1 if the process is alive. 0 otherwise.
int is_global_init(struct task_struct * tsk)

check if a task structure is init. Since init is free to have sub-threads we need to check tgid.
Parameters
struct task_struct * tsk Task structure to be checked.
Description
Check if a task structure is the first user space task the kernel created.
Return
1 if the task structure is init. 0 otherwise.

1.4. Delaying, scheduling, and timer routines 9

The kernel driver API manual, Release 4.13.0-rc4+

int task_nice(const struct task_struct * p)
return the nice value of a given task.

Parameters
const struct task_struct * p the task in question.
Return
The nice value [-20 ... 0 ... 19].
bool is_idle_task(const struct task_struct * p)

is the specified task an idle task?
Parameters
const struct task_struct * p the task in question.
Return
1 if p is an idle task. 0 otherwise.
int wake_up_process(struct task_struct * p)

Wake up a specific process
Parameters
struct task_struct * p The process to be woken up.
Description
Attempt to wake up the nominated process and move it to the set of runnable processes.
Return
1 if the process was woken up, 0 if it was already running.
It may be assumed that this function implies a write memory barrier before changing the task state if and
only if any tasks are woken up.
void preempt_notifier_register(struct preempt_notifier * notifier)

tell me when current is being preempted & rescheduled
Parameters
struct preempt_notifier * notifier notifier struct to register
void preempt_notifier_unregister(struct preempt_notifier * notifier)

no longer interested in preemption notifications
Parameters
struct preempt_notifier * notifier notifier struct to unregister
Description
This is not safe to call from within a preemption notifier.
__visible void __sched notrace preempt_schedule_notrace(void)

preempt_schedule called by tracing
Parameters
void no arguments
Description
The tracing infrastructure uses preempt_enable_notrace to prevent recursion and tracing preempt en-
abling caused by the tracing infrastructure itself. But as tracing can happen in areas coming from
userspace or just about to enter userspace, a preempt enable can occur before user_exit() is called.
This will cause the scheduler to be called when the system is still in usermode.
To prevent this, the preempt_enable_notrace will use this function instead of preempt_schedule() to exit
user context if needed before calling the scheduler.

10 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

int sched_setscheduler(struct task_struct * p, int policy, const struct sched_param * param)
change the scheduling policy and/or RT priority of a thread.

Parameters
struct task_struct * p the task in question.
int policy new policy.
const struct sched_param * param structure containing the new RT priority.
Return
0 on success. An error code otherwise.
NOTE that the task may be already dead.
int sched_setscheduler_nocheck(struct task_struct * p, int policy, const struct sched_param

* param)
change the scheduling policy and/or RT priority of a thread from kernelspace.

Parameters
struct task_struct * p the task in question.
int policy new policy.
const struct sched_param * param structure containing the new RT priority.
Description
Just like sched_setscheduler, only don’t bother checking if the current context has permission. For exam-
ple, this is needed in stop_machine(): we create temporary high priority worker threads, but our caller
might not have that capability.
Return
0 on success. An error code otherwise.
void __sched yield(void)

yield the current processor to other threads.
Parameters
void no arguments
Description
Do not ever use this function, there’s a 99% chance you’re doing it wrong.
The scheduler is at all times free to pick the calling task as the most eligible task to run, if removing the
yield() call from your code breaks it, its already broken.
Typical broken usage is:
while (!event) yield();
where one assumes that yield() will let ‘the other’ process run that will make event true. If the current
task is a SCHED_FIFO task that will never happen. Never use yield() as a progress guarantee!!
If you want to use yield() to wait for something, use wait_event(). If you want to use yield() to be
‘nice’ for others, use cond_resched(). If you still want to use yield(), do not!
int __sched yield_to(struct task_struct * p, bool preempt)

yield the current processor to another thread in your thread group, or accelerate that thread toward
the processor it’s on.

Parameters
struct task_struct * p target task
bool preempt whether task preemption is allowed or not

1.4. Delaying, scheduling, and timer routines 11

The kernel driver API manual, Release 4.13.0-rc4+

Description
It’s the caller’s job to ensure that the target task struct can’t go away on us before we can do any checks.
Return

true (>0) if we indeed boosted the target task. false (0) if we failed to boost the target. -ESRCH
if there’s no task to yield to.

int cpupri_find(struct cpupri * cp, struct task_struct * p, struct cpumask * lowest_mask)
find the best (lowest-pri) CPU in the system

Parameters
struct cpupri * cp The cpupri context
struct task_struct * p The task
struct cpumask * lowest_mask A mask to fill in with selected CPUs (or NULL)
Note
This function returns the recommended CPUs as calculated during the current invocation. By the time the
call returns, the CPUs may have in fact changed priorities any number of times. While not ideal, it is not
an issue of correctness since the normal rebalancer logic will correct any discrepancies created by racing
against the uncertainty of the current priority configuration.
Return
(int)bool - CPUs were found
void cpupri_set(struct cpupri * cp, int cpu, int newpri)

update the cpu priority setting
Parameters
struct cpupri * cp The cpupri context
int cpu The target cpu
int newpri The priority (INVALID-RT99) to assign to this CPU
Note
Assumes cpu_rq(cpu)->lock is locked
Return
(void)
int cpupri_init(struct cpupri * cp)

initialize the cpupri structure
Parameters
struct cpupri * cp The cpupri context
Return
-ENOMEM on memory allocation failure.
void cpupri_cleanup(struct cpupri * cp)

clean up the cpupri structure
Parameters
struct cpupri * cp The cpupri context
void update_tg_load_avg(struct cfs_rq * cfs_rq, int force)

update the tg’s load avg
Parameters
struct cfs_rq * cfs_rq the cfs_rq whose avg changed

12 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

int force update regardless of how small the difference
Description
This function ‘ensures’: tg->load_avg := Sum tg->cfs_rq[]->avg.load. However, because tg->load_avg is
a global value there are performance considerations.
In order to avoid having to look at the other cfs_rq’s, we use a differential update where we store the last
value we propagated. This in turn allows skipping updates if the differential is ‘small’.
Updating tg’s load_avg is necessary before update_cfs_share().
int update_cfs_rq_load_avg(u64 now, struct cfs_rq * cfs_rq, bool update_freq)

update the cfs_rq’s load/util averages
Parameters
u64 now current time, as per cfs_rq_clock_task()
struct cfs_rq * cfs_rq cfs_rq to update
bool update_freq should we call cfs_rq_util_change() or will the call do so
Description
The cfs_rq avg is the direct sum of all its entities (blocked and runnable) avg. The immediate corollary is
that all (fair) tasks must be attached, see post_init_entity_util_avg().
cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
Returns true if the load decayed or we removed load.
Since both these conditions indicate a changed cfs_rq->avg.load we should call update_tg_load_avg()
when this function returns true.
void attach_entity_load_avg(struct cfs_rq * cfs_rq, struct sched_entity * se)

attach this entity to its cfs_rq load avg
Parameters
struct cfs_rq * cfs_rq cfs_rq to attach to
struct sched_entity * se sched_entity to attach
Description
Must call update_cfs_rq_load_avg() before this, since we rely on cfs_rq->avg.last_update_time being
current.
void detach_entity_load_avg(struct cfs_rq * cfs_rq, struct sched_entity * se)

detach this entity from its cfs_rq load avg
Parameters
struct cfs_rq * cfs_rq cfs_rq to detach from
struct sched_entity * se sched_entity to detach
Description
Must call update_cfs_rq_load_avg() before this, since we rely on cfs_rq->avg.last_update_time being
current.
void cpu_load_update(struct rq * this_rq, unsigned long this_load, unsigned long pending_updates)

update the rq->cpu_load[] statistics
Parameters
struct rq * this_rq The rq to update statistics for
unsigned long this_load The current load
unsigned long pending_updates The number of missed updates

1.4. Delaying, scheduling, and timer routines 13

The kernel driver API manual, Release 4.13.0-rc4+

Description
Update rq->cpu_load[] statistics. This function is usually called every scheduler tick (TICK_NSEC).
This function computes a decaying average:

load[i]’ = (1 - 1/2^i) * load[i] + (1/2^i) * load
Because of NOHZ it might not get called on every tick which gives need for the pending_updates argu-
ment.

load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 = A * load[i]_n-1 + B ; A := (1 -
1/2^i), B := (1/2^i) * load = A * (A * load[i]_n-2 + B) + B = A * (A * (A * load[i]_n-3 + B) +
B) + B = A^3 * load[i]_n-3 + (A^2 + A + 1) * B = A^n * load[i]_0 + (A^(n-1) + A^(n-2) +
... + 1) * B = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B = (1 - 1/2^i)^n * (load[i]_0 - load)
+ load

In the above we’ve assumed load_n := load, which is true for NOHZ_FULL as any change in load would
have resulted in the tick being turned back on.
For regular NOHZ, this reduces to:

load[i]_n = (1 - 1/2^i)^n * load[i]_0
see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra term.
int get_sd_load_idx(struct sched_domain * sd, enum cpu_idle_type idle)

Obtain the load index for a given sched domain.
Parameters
struct sched_domain * sd The sched_domain whose load_idx is to be obtained.
enum cpu_idle_type idle The idle status of the CPU for whose sd load_idx is obtained.
Return
The load index.
void update_sg_lb_stats(struct lb_env * env, struct sched_group * group, int load_idx,

int local_group, struct sg_lb_stats * sgs, bool * overload)
Update sched_group’s statistics for load balancing.

Parameters
struct lb_env * env The load balancing environment.
struct sched_group * group sched_group whose statistics are to be updated.
int load_idx Load index of sched_domain of this_cpu for load calc.
int local_group Does group contain this_cpu.
struct sg_lb_stats * sgs variable to hold the statistics for this group.
bool * overload Indicate more than one runnable task for any CPU.
bool update_sd_pick_busiest(struct lb_env * env, struct sd_lb_stats * sds, struct sched_group * sg,

struct sg_lb_stats * sgs)
return 1 on busiest group

Parameters
struct lb_env * env The load balancing environment.
struct sd_lb_stats * sds sched_domain statistics
struct sched_group * sg sched_group candidate to be checked for being the busiest
struct sg_lb_stats * sgs sched_group statistics

14 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Description
Determine if sg is a busier group than the previously selected busiest group.
Return
true if sg is a busier group than the previously selected busiest group. false otherwise.
void update_sd_lb_stats(struct lb_env * env, struct sd_lb_stats * sds)

Update sched_domain’s statistics for load balancing.
Parameters
struct lb_env * env The load balancing environment.
struct sd_lb_stats * sds variable to hold the statistics for this sched_domain.
int check_asym_packing(struct lb_env * env, struct sd_lb_stats * sds)

Check to see if the group is packed into the sched domain.
Parameters
struct lb_env * env The load balancing environment.
struct sd_lb_stats * sds Statistics of the sched_domain which is to be packed
Description
This is primarily intended to used at the sibling level. Some cores like POWER7 prefer to use lower num-
bered SMT threads. In the case of POWER7, it can move to lower SMT modes only when higher threads
are idle. When in lower SMT modes, the threads will perform better since they share less core resources.
Hence when we have idle threads, we want them to be the higher ones.
This packing function is run on idle threads. It checks to see if the busiest CPU in this domain (core in the
P7 case) has a higher CPU number than the packing function is being run on. Here we are assuming lower
CPU number will be equivalent to lower a SMT thread number.
Return
1 when packing is required and a task should be moved to this CPU. The amount of the imbalance is
returned in *imbalance.
void fix_small_imbalance(struct lb_env * env, struct sd_lb_stats * sds)

Calculate the minor imbalance that exists amongst the groups of a sched_domain, during load bal-
ancing.

Parameters
struct lb_env * env The load balancing environment.
struct sd_lb_stats * sds Statistics of the sched_domain whose imbalance is to be calculated.
void calculate_imbalance(struct lb_env * env, struct sd_lb_stats * sds)

Calculate the amount of imbalance present within the groups of a given sched_domain during load
balance.

Parameters
struct lb_env * env load balance environment
struct sd_lb_stats * sds statistics of the sched_domain whose imbalance is to be calculated.
struct sched_group * find_busiest_group(struct lb_env * env)

Returns the busiest group within the sched_domain if there is an imbalance.
Parameters
struct lb_env * env The load balancing environment.
Description
Also calculates the amount of weighted load which should be moved to restore balance.

1.4. Delaying, scheduling, and timer routines 15

The kernel driver API manual, Release 4.13.0-rc4+

Return
• The busiest group if imbalance exists.

DECLARE_COMPLETION(work)
declare and initialize a completion structure

Parameters
work identifier for the completion structure
Description
This macro declares and initializes a completion structure. Generally used for static declarations. You
should use the _ONSTACK variant for automatic variables.
DECLARE_COMPLETION_ONSTACK(work)

declare and initialize a completion structure
Parameters
work identifier for the completion structure
Description
This macro declares and initializes a completion structure on the kernel stack.
void init_completion(struct completion * x)

Initialize a dynamically allocated completion
Parameters
struct completion * x pointer to completion structure that is to be initialized
Description
This inline function will initialize a dynamically created completion structure.
void reinit_completion(struct completion * x)

reinitialize a completion structure
Parameters
struct completion * x pointer to completion structure that is to be reinitialized
Description
This inline function should be used to reinitialize a completion structure so it can be reused. This is
especially important after complete_all() is used.
unsigned long __round_jiffies(unsigned long j, int cpu)

function to round jiffies to a full second
Parameters
unsigned long j the time in (absolute) jiffies that should be rounded
int cpu the processor number on which the timeout will happen
Description
__round_jiffies() rounds an absolute time in the future (in jiffies) up or down to (approximately) full
seconds. This is useful for timers for which the exact time they fire does not matter too much, as long as
they fire approximately every X seconds.
By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various
times spread out. The goal of this is to have the CPU wake up less, which saves power.
The exact rounding is skewed for each processor to avoid all processors firing at the exact same time,
which could lead to lock contention or spurious cache line bouncing.
The return value is the rounded version of the j parameter.

16 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

unsigned long __round_jiffies_relative(unsigned long j, int cpu)
function to round jiffies to a full second

Parameters
unsigned long j the time in (relative) jiffies that should be rounded
int cpu the processor number on which the timeout will happen
Description
__round_jiffies_relative() rounds a time delta in the future (in jiffies) up or down to (approximately)
full seconds. This is useful for timers for which the exact time they fire does not matter too much, as long
as they fire approximately every X seconds.
By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various
times spread out. The goal of this is to have the CPU wake up less, which saves power.
The exact rounding is skewed for each processor to avoid all processors firing at the exact same time,
which could lead to lock contention or spurious cache line bouncing.
The return value is the rounded version of the j parameter.
unsigned long round_jiffies(unsigned long j)

function to round jiffies to a full second
Parameters
unsigned long j the time in (absolute) jiffies that should be rounded
Description
round_jiffies() rounds an absolute time in the future (in jiffies) up or down to (approximately) full
seconds. This is useful for timers for which the exact time they fire does not matter too much, as long as
they fire approximately every X seconds.
By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various
times spread out. The goal of this is to have the CPU wake up less, which saves power.
The return value is the rounded version of the j parameter.
unsigned long round_jiffies_relative(unsigned long j)

function to round jiffies to a full second
Parameters
unsigned long j the time in (relative) jiffies that should be rounded
Description
round_jiffies_relative() rounds a time delta in the future (in jiffies) up or down to (approximately)
full seconds. This is useful for timers for which the exact time they fire does not matter too much, as long
as they fire approximately every X seconds.
By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various
times spread out. The goal of this is to have the CPU wake up less, which saves power.
The return value is the rounded version of the j parameter.
unsigned long __round_jiffies_up(unsigned long j, int cpu)

function to round jiffies up to a full second
Parameters
unsigned long j the time in (absolute) jiffies that should be rounded
int cpu the processor number on which the timeout will happen
Description
This is the same as __round_jiffies() except that it will never round down. This is useful for timeouts
for which the exact time of firing does not matter too much, as long as they don’t fire too early.

1.4. Delaying, scheduling, and timer routines 17

The kernel driver API manual, Release 4.13.0-rc4+

unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
function to round jiffies up to a full second

Parameters
unsigned long j the time in (relative) jiffies that should be rounded
int cpu the processor number on which the timeout will happen
Description
This is the same as __round_jiffies_relative() except that it will never round down. This is useful for
timeouts for which the exact time of firing does not matter too much, as long as they don’t fire too early.
unsigned long round_jiffies_up(unsigned long j)

function to round jiffies up to a full second
Parameters
unsigned long j the time in (absolute) jiffies that should be rounded
Description
This is the same as round_jiffies() except that it will never round down. This is useful for timeouts for
which the exact time of firing does not matter too much, as long as they don’t fire too early.
unsigned long round_jiffies_up_relative(unsigned long j)

function to round jiffies up to a full second
Parameters
unsigned long j the time in (relative) jiffies that should be rounded
Description
This is the same as round_jiffies_relative() except that it will never round down. This is useful for
timeouts for which the exact time of firing does not matter too much, as long as they don’t fire too early.
void init_timer_key(struct timer_list * timer, unsigned int flags, const char * name, struct

lock_class_key * key)
initialize a timer

Parameters
struct timer_list * timer the timer to be initialized
unsigned int flags timer flags
const char * name name of the timer
struct lock_class_key * key lockdep class key of the fake lock used for tracking timer sync lock de-

pendencies
Description
init_timer_key() must be done to a timer prior calling any of the other timer functions.
int mod_timer_pending(struct timer_list * timer, unsigned long expires)

modify a pending timer’s timeout
Parameters
struct timer_list * timer the pending timer to be modified
unsigned long expires new timeout in jiffies
Description
mod_timer_pending() is the same for pending timers as mod_timer(), but will not re-activate and modify
already deleted timers.
It is useful for unserialized use of timers.

18 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

int mod_timer(struct timer_list * timer, unsigned long expires)
modify a timer’s timeout

Parameters
struct timer_list * timer the timer to be modified
unsigned long expires new timeout in jiffies
Description
mod_timer() is a more efficient way to update the expire field of an active timer (if the timer is inactive
it will be activated)
mod_timer(timer, expires) is equivalent to:

del_timer(timer); timer->expires = expires; add_timer(timer);
Note that if there are multiple unserialized concurrent users of the same timer, then mod_timer() is the
only safe way to modify the timeout, since add_timer() cannot modify an already running timer.
The function returns whether it has modified a pending timer or not. (ie. mod_timer() of an inactive timer
returns 0, mod_timer() of an active timer returns 1.)
void add_timer(struct timer_list * timer)

start a timer
Parameters
struct timer_list * timer the timer to be added
Description
The kernel will do a ->function(->data) callback from the timer interrupt at the ->expires point in the
future. The current time is ‘jiffies’.
The timer’s ->expires, ->function (and if the handler uses it, ->data) fields must be set prior calling this
function.
Timers with an ->expires field in the past will be executed in the next timer tick.
void add_timer_on(struct timer_list * timer, int cpu)

start a timer on a particular CPU
Parameters
struct timer_list * timer the timer to be added
int cpu the CPU to start it on
Description
This is not very scalable on SMP. Double adds are not possible.
int del_timer(struct timer_list * timer)

deactivate a timer.
Parameters
struct timer_list * timer the timer to be deactivated
Description
del_timer() deactivates a timer - this works on both active and inactive timers.
The function returns whether it has deactivated a pending timer or not. (ie. del_timer() of an inactive
timer returns 0, del_timer() of an active timer returns 1.)
int try_to_del_timer_sync(struct timer_list * timer)

Try to deactivate a timer
Parameters
struct timer_list * timer timer to delete

1.4. Delaying, scheduling, and timer routines 19

The kernel driver API manual, Release 4.13.0-rc4+

Description
This function tries to deactivate a timer. Upon successful (ret >= 0) exit the timer is not queued and the
handler is not running on any CPU.
int del_timer_sync(struct timer_list * timer)

deactivate a timer and wait for the handler to finish.
Parameters
struct timer_list * timer the timer to be deactivated
Description
This function only differs from del_timer() on SMP: besides deactivating the timer it also makes sure the
handler has finished executing on other CPUs.
Synchronization rules: Callers must prevent restarting of the timer, otherwise this function is meaningless.
It must not be called from interrupt contexts unless the timer is an irqsafe one. The caller must not
hold locks which would prevent completion of the timer’s handler. The timer’s handler must not call
add_timer_on(). Upon exit the timer is not queued and the handler is not running on any CPU.
Note
For !irqsafe timers, you must not hold locks that are held in

interrupt context while calling this function. Even if the lock has nothing to do with the timer
in question. Here’s why:

CPU0 CPU1 —- —-
<SOFTIRQ> call_timer_fn();
base->running_timer = mytimer;

spin_lock_irq(somelock);
<IRQ> spin_lock(somelock);

del_timer_sync(mytimer); while (base->running_timer == mytimer);
Now del_timer_sync() will never return and never release somelock. The interrupt on the other CPU is
waiting to grab somelock but it has interrupted the softirq that CPU0 is waiting to finish.
The function returns whether it has deactivated a pending timer or not.
signed long __sched schedule_timeout(signed long timeout)

sleep until timeout
Parameters
signed long timeout timeout value in jiffies
Description
Make the current task sleep until timeout jiffies have elapsed. The routine will return immediately unless
the current task state has been set (see set_current_state()).
You can set the task state as follows -
TASK_UNINTERRUPTIBLE - at least timeout jiffies are guaranteed to pass before the routine returns unless
the current task is explicitly woken up, (e.g. by wake_up_process())”.
TASK_INTERRUPTIBLE - the routinemay return early if a signal is delivered to the current task or the current
task is explicitly woken up.
The current task state is guaranteed to be TASK_RUNNING when this routine returns.
Specifying a timeout value of MAX_SCHEDULE_TIMEOUT will schedule the CPU away without a bound on
the timeout. In this case the return value will be MAX_SCHEDULE_TIMEOUT.
Returns 0 when the timer has expired otherwise the remaining time in jiffies will be returned. In all cases
the return value is guaranteed to be non-negative.

20 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

void msleep(unsigned int msecs)
sleep safely even with waitqueue interruptions

Parameters
unsigned int msecs Time in milliseconds to sleep for
unsigned long msleep_interruptible(unsigned int msecs)

sleep waiting for signals
Parameters
unsigned int msecs Time in milliseconds to sleep for
void __sched usleep_range(unsigned long min, unsigned long max)

Sleep for an approximate time
Parameters
unsigned long min Minimum time in usecs to sleep
unsigned long max Maximum time in usecs to sleep
Description
In non-atomic context where the exact wakeup time is flexible, use usleep_range() instead of udelay().
The sleep improves responsiveness by avoiding the CPU-hogging busy-wait of udelay(), and the range
reduces power usage by allowing hrtimers to take advantage of an already- scheduled interrupt instead
of scheduling a new one just for this sleep.

1.5 Wait queues and Wake events

int waitqueue_active(struct wait_queue_head * wq_head)
•locklessly test for waiters on the queue

Parameters
struct wait_queue_head * wq_head the waitqueue to test for waiters
Description
returns true if the wait list is not empty
NOTE
this function is lockless and requires care, incorrect usage _will_ lead to sporadic and non-obvious failure.
Use either while holding wait_queue_head::lock or when used for wakeups with an extra smp_mb() like:

CPU0 - waker CPU1 - waiter
for (;;) {

cond = true; prepare_to_wait(wq_head, wait, state); smp_mb(); // smp_mb() from
set_current_state() if (waitqueue_active(wq_head)) if (cond)

wake_up(wq_head); break;
schedule();

} finish_wait(wq_head, wait);
Because without the explicit smp_mb() it’s possible for the waitqueue_active() load to get hoisted over
the cond store such that we’ll observe an empty wait list while the waiter might not observe cond.
Also note that this ‘optimization’ trades a spin_lock() for an smp_mb(), which (when the lock is uncon-
tended) are of roughly equal cost.

1.5. Wait queues and Wake events 21

The kernel driver API manual, Release 4.13.0-rc4+

bool wq_has_sleeper(struct wait_queue_head * wq_head)
check if there are any waiting processes

Parameters
struct wait_queue_head * wq_head wait queue head
Description
Returns true if wq_head has waiting processes
Please refer to the comment for waitqueue_active.
wait_event(wq_head, condition)

sleep until a condition gets true
Parameters
wq_head the waitqueue to wait on
condition a C expression for the event to wait for
Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condi-
tion is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.

wait_event_freezable(wq_head, condition)
sleep (or freeze) until a condition gets true

Parameters
wq_head the waitqueue to wait on
condition a C expression for the event to wait for
Description
The process is put to sleep (TASK_INTERRUPTIBLE – so as not to contribute to system load) until the
condition evaluates to true. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.

wait_event_timeout(wq_head, condition, timeout)
sleep until a condition gets true or a timeout elapses

Parameters
wq_head the waitqueue to wait on
condition a C expression for the event to wait for
timeout timeout, in jiffies
Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condi-
tion is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
Return
0 if the condition evaluated to false after the timeout elapsed, 1 if the condition evaluated to true
after the timeout elapsed, or the remaining jiffies (at least 1) if the condition evaluated to true before
the timeout elapsed.
wait_event_cmd(wq_head, condition, cmd1, cmd2)

sleep until a condition gets true

22 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
wq_head the waitqueue to wait on
condition a C expression for the event to wait for
cmd1 the command will be executed before sleep
cmd2 the command will be executed after sleep
Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condi-
tion is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.

wait_event_interruptible(wq_head, condition)
sleep until a condition gets true

Parameters
wq_head the waitqueue to wait on
condition a C expression for the event to wait for
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to
true.
wait_event_interruptible_timeout(wq_head, condition, timeout)

sleep until a condition gets true or a timeout elapses
Parameters
wq_head the waitqueue to wait on
condition a C expression for the event to wait for
timeout timeout, in jiffies
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
Return
0 if the condition evaluated to false after the timeout elapsed, 1 if the condition evaluated to true
after the timeout elapsed, the remaining jiffies (at least 1) if the condition evaluated to true before the
timeout elapsed, or -ERESTARTSYS if it was interrupted by a signal.
wait_event_hrtimeout(wq_head, condition, timeout)

sleep until a condition gets true or a timeout elapses
Parameters
wq_head the waitqueue to wait on
condition a C expression for the event to wait for
timeout timeout, as a ktime_t

1.5. Wait queues and Wake events 23

The kernel driver API manual, Release 4.13.0-rc4+

Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
The function returns 0 if condition became true, or -ETIME if the timeout elapsed.
wait_event_interruptible_hrtimeout(wq, condition, timeout)

sleep until a condition gets true or a timeout elapses
Parameters
wq the waitqueue to wait on
condition a C expression for the event to wait for
timeout timeout, as a ktime_t
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
The function returns 0 if condition became true, -ERESTARTSYS if it was interrupted by a signal, or -ETIME
if the timeout elapsed.
wait_event_interruptible_locked(wq, condition)

sleep until a condition gets true
Parameters
wq the waitqueue to wait on
condition a C expression for the event to wait for
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq is woken up.
It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition testing
is done while lock is held and when this macro exits the lock is held.
The lock is locked/unlocked using spin_lock()/spin_unlock() functions which must match the way they
are locked/unlocked outside of this macro.
wake_up_locked() has to be called after changing any variable that could change the result of the wait
condition.
The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to
true.
wait_event_interruptible_locked_irq(wq, condition)

sleep until a condition gets true
Parameters
wq the waitqueue to wait on
condition a C expression for the event to wait for
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq is woken up.
It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition testing
is done while lock is held and when this macro exits the lock is held.

24 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq() functions which must match the
way they are locked/unlocked outside of this macro.
wake_up_locked() has to be called after changing any variable that could change the result of the wait
condition.
The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to
true.
wait_event_interruptible_exclusive_locked(wq, condition)

sleep exclusively until a condition gets true
Parameters
wq the waitqueue to wait on
condition a C expression for the event to wait for
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq is woken up.
It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition testing
is done while lock is held and when this macro exits the lock is held.
The lock is locked/unlocked using spin_lock()/spin_unlock() functions which must match the way they
are locked/unlocked outside of this macro.
The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus when other process waits
process on the list if this process is awaken further processes are not considered.
wake_up_locked() has to be called after changing any variable that could change the result of the wait
condition.
The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to
true.
wait_event_interruptible_exclusive_locked_irq(wq, condition)

sleep until a condition gets true
Parameters
wq the waitqueue to wait on
condition a C expression for the event to wait for
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq is woken up.
It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition testing
is done while lock is held and when this macro exits the lock is held.
The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq() functions which must match the
way they are locked/unlocked outside of this macro.
The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus when other process waits
process on the list if this process is awaken further processes are not considered.
wake_up_locked() has to be called after changing any variable that could change the result of the wait
condition.
The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to
true.
wait_event_killable(wq_head, condition)

sleep until a condition gets true
Parameters

1.5. Wait queues and Wake events 25

The kernel driver API manual, Release 4.13.0-rc4+

wq_head the waitqueue to wait on
condition a C expression for the event to wait for
Description
The process is put to sleep (TASK_KILLABLE) until the condition evaluates to true or a signal is received.
The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to
true.
wait_event_lock_irq_cmd(wq_head, condition, lock, cmd)

sleep until a condition gets true. The condition is checked under the lock. This is expected to be
called with the lock taken.

Parameters
wq_head the waitqueue to wait on
condition a C expression for the event to wait for
lock a locked spinlock_t, which will be released before cmd and schedule() and reacquired afterwards.
cmd a command which is invoked outside the critical section before sleep
Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condi-
tion is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
This is supposed to be called while holding the lock. The lock is dropped before invoking the cmd and
going to sleep and is reacquired afterwards.
wait_event_lock_irq(wq_head, condition, lock)

sleep until a condition gets true. The condition is checked under the lock. This is expected to be
called with the lock taken.

Parameters
wq_head the waitqueue to wait on
condition a C expression for the event to wait for
lock a locked spinlock_t, which will be released before schedule() and reacquired afterwards.
Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condi-
tion is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is
reacquired afterwards.
wait_event_interruptible_lock_irq_cmd(wq_head, condition, lock, cmd)

sleep until a condition gets true. The condition is checked under the lock. This is expected to be
called with the lock taken.

Parameters
wq_head the waitqueue to wait on
condition a C expression for the event to wait for
lock a locked spinlock_t, which will be released before cmd and schedule() and reacquired afterwards.
cmd a command which is invoked outside the critical section before sleep

26 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
This is supposed to be called while holding the lock. The lock is dropped before invoking the cmd and
going to sleep and is reacquired afterwards.
The macro will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to true.

wait_event_interruptible_lock_irq(wq_head, condition, lock)
sleep until a condition gets true. The condition is checked under the lock. This is expected to be
called with the lock taken.

Parameters
wq_head the waitqueue to wait on
condition a C expression for the event to wait for
lock a locked spinlock_t, which will be released before schedule() and reacquired afterwards.
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or signal is re-
ceived. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is
reacquired afterwards.
The macro will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to true.

wait_event_interruptible_lock_irq_timeout(wq_head, condition, lock, timeout)
sleep until a condition gets true or a timeout elapses. The condition is checked under the lock. This
is expected to be called with the lock taken.

Parameters
wq_head the waitqueue to wait on
condition a C expression for the event to wait for
lock a locked spinlock_t, which will be released before schedule() and reacquired afterwards.
timeout timeout, in jiffies
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or signal is re-
ceived. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is
reacquired afterwards.
The function returns 0 if the timeout elapsed, -ERESTARTSYS if it was interrupted by a signal, and the
remaining jiffies otherwise if the condition evaluated to true before the timeout elapsed.
void __wake_up(struct wait_queue_head * wq_head, unsigned int mode, int nr_exclusive, void

* key)
wake up threads blocked on a waitqueue.

Parameters
struct wait_queue_head * wq_head the waitqueue

1.5. Wait queues and Wake events 27

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int mode which threads
int nr_exclusive how many wake-one or wake-many threads to wake up
void * key is directly passed to the wakeup function
Description
It may be assumed that this function implies a write memory barrier before changing the task state if and
only if any tasks are woken up.
void __wake_up_sync_key(struct wait_queue_head * wq_head, unsigned int mode, int nr_exclusive,

void * key)
wake up threads blocked on a waitqueue.

Parameters
struct wait_queue_head * wq_head the waitqueue
unsigned int mode which threads
int nr_exclusive how many wake-one or wake-many threads to wake up
void * key opaque value to be passed to wakeup targets
Description
The sync wakeup differs that the waker knows that it will schedule away soon, so while the target thread
will be woken up, it will not be migrated to another CPU - ie. the two threads are ‘synchronized’ with each
other. This can prevent needless bouncing between CPUs.
On UP it can prevent extra preemption.
It may be assumed that this function implies a write memory barrier before changing the task state if and
only if any tasks are woken up.
void finish_wait(struct wait_queue_head * wq_head, struct wait_queue_entry * wq_entry)

clean up after waiting in a queue
Parameters
struct wait_queue_head * wq_head waitqueue waited on
struct wait_queue_entry * wq_entry wait descriptor
Description
Sets current thread back to running state and removes the wait descriptor from the given waitqueue if
still queued.

1.6 High-resolution timers

ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
Set a ktime_t variable from a seconds/nanoseconds value

Parameters
const s64 secs seconds to set
const unsigned long nsecs nanoseconds to set
Return
The ktime_t representation of the value.
int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)

Compares two ktime_t variables for less, greater or equal
Parameters

28 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

const ktime_t cmp1 comparable1
const ktime_t cmp2 comparable2
Return
... cmp1 < cmp2: return <0 cmp1 == cmp2: return 0 cmp1 > cmp2: return >0
bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)

Compare if a ktime_t value is bigger than another one.
Parameters
const ktime_t cmp1 comparable1
const ktime_t cmp2 comparable2
Return
true if cmp1 happened after cmp2.
bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)

Compare if a ktime_t value is smaller than another one.
Parameters
const ktime_t cmp1 comparable1
const ktime_t cmp2 comparable2
Return
true if cmp1 happened before cmp2.
bool ktime_to_timespec_cond(const ktime_t kt, struct timespec * ts)

convert a ktime_t variable to timespec format only if the variable contains data
Parameters
const ktime_t kt the ktime_t variable to convert
struct timespec * ts the timespec variable to store the result in
Return
true if there was a successful conversion, false if kt was 0.
bool ktime_to_timespec64_cond(const ktime_t kt, struct timespec64 * ts)

convert a ktime_t variable to timespec64 format only if the variable contains data
Parameters
const ktime_t kt the ktime_t variable to convert
struct timespec64 * ts the timespec variable to store the result in
Return
true if there was a successful conversion, false if kt was 0.
struct hrtimer

the basic hrtimer structure
Definition

struct hrtimer {
struct timerqueue_node node;
ktime_t _softexpires;
enum hrtimer_restart (* function) (struct hrtimer *);
struct hrtimer_clock_base * base;
u8 state;
u8 is_rel;

};

1.6. High-resolution timers 29

The kernel driver API manual, Release 4.13.0-rc4+

Members
node timerqueue node, which also manages node.expires, the absolute expiry time in the hrtimers inter-

nal representation. The time is related to the clock on which the timer is based. Is setup by adding
slack to the _softexpires value. For non range timers identical to _softexpires.

_softexpires the absolute earliest expiry time of the hrtimer. The time which was given as expiry time
when the timer was armed.

function timer expiry callback function
base pointer to the timer base (per cpu and per clock)
state state information (See bit values above)
is_rel Set if the timer was armed relative
Description
The hrtimer structure must be initialized by hrtimer_init()
struct hrtimer_sleeper

simple sleeper structure
Definition

struct hrtimer_sleeper {
struct hrtimer timer;
struct task_struct * task;

};

Members
timer embedded timer structure
task task to wake up
Description
task is set to NULL, when the timer expires.
struct hrtimer_clock_base

the timer base for a specific clock
Definition

struct hrtimer_clock_base {
struct hrtimer_cpu_base * cpu_base;
int index;
clockid_t clockid;
struct timerqueue_head active;
ktime_t (* get_time) (void);
ktime_t offset;

};

Members
cpu_base per cpu clock base
index clock type index for per_cpu support when moving a timer to a base on another cpu.
clockid clock id for per_cpu support
active red black tree root node for the active timers
get_time function to retrieve the current time of the clock
offset offset of this clock to the monotonic base
void hrtimer_start(struct hrtimer * timer, ktime_t tim, const enum hrtimer_mode mode)

(re)start an hrtimer on the current CPU

30 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct hrtimer * timer the timer to be added
ktime_t tim expiry time
const enum hrtimer_mode mode expiry mode: absolute (HRTIMER_MODE_ABS) or relative

(HRTIMER_MODE_REL)
u64 hrtimer_forward_now(struct hrtimer * timer, ktime_t interval)

forward the timer expiry so it expires after now
Parameters
struct hrtimer * timer hrtimer to forward
ktime_t interval the interval to forward
Description
Forward the timer expiry so it will expire after the current time of the hrtimer clock base. Returns the
number of overruns.
Can be safely called from the callback function of timer. If called from other contexts timermust neither
be enqueued nor running the callback and the caller needs to take care of serialization.
Note
This only updates the timer expiry value and does not requeue the timer.
u64 hrtimer_forward(struct hrtimer * timer, ktime_t now, ktime_t interval)

forward the timer expiry
Parameters
struct hrtimer * timer hrtimer to forward
ktime_t now forward past this time
ktime_t interval the interval to forward
Description
Forward the timer expiry so it will expire in the future. Returns the number of overruns.
Can be safely called from the callback function of timer. If called from other contexts timermust neither
be enqueued nor running the callback and the caller needs to take care of serialization.
Note
This only updates the timer expiry value and does not requeue the timer.
void hrtimer_start_range_ns(struct hrtimer * timer, ktime_t tim, u64 delta_ns, const enum

hrtimer_mode mode)
(re)start an hrtimer on the current CPU

Parameters
struct hrtimer * timer the timer to be added
ktime_t tim expiry time
u64 delta_ns “slack” range for the timer
const enum hrtimer_mode mode expiry mode: absolute (HRTIMER_MODE_ABS) or relative

(HRTIMER_MODE_REL)
int hrtimer_try_to_cancel(struct hrtimer * timer)

try to deactivate a timer
Parameters
struct hrtimer * timer hrtimer to stop

1.6. High-resolution timers 31

The kernel driver API manual, Release 4.13.0-rc4+

Return
0 when the timer was not active 1 when the timer was active

-1 when the timer is currently executing the callback function and cannot be stopped
int hrtimer_cancel(struct hrtimer * timer)

cancel a timer and wait for the handler to finish.
Parameters
struct hrtimer * timer the timer to be cancelled
Return

0 when the timer was not active 1 when the timer was active
ktime_t __hrtimer_get_remaining(const struct hrtimer * timer, bool adjust)

get remaining time for the timer
Parameters
const struct hrtimer * timer the timer to read
bool adjust adjust relative timers when CONFIG_TIME_LOW_RES=y
void hrtimer_init(struct hrtimer * timer, clockid_t clock_id, enum hrtimer_mode mode)

initialize a timer to the given clock
Parameters
struct hrtimer * timer the timer to be initialized
clockid_t clock_id the clock to be used
enum hrtimer_mode mode timer mode abs/rel
int __sched schedule_hrtimeout_range(ktime_t * expires, u64 delta, const enum

hrtimer_mode mode)
sleep until timeout

Parameters
ktime_t * expires timeout value (ktime_t)
u64 delta slack in expires timeout (ktime_t)
const enum hrtimer_mode mode timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
Description
Make the current task sleep until the given expiry time has elapsed. The routine will return immediately
unless the current task state has been set (see set_current_state()).
The delta argument gives the kernel the freedom to schedule the actual wakeup to a time that is both
power and performance friendly. The kernel give the normal best effort behavior for “expires**+**delta”,
but may decide to fire the timer earlier, but no earlier than expires.
You can set the task state as follows -
TASK_UNINTERRUPTIBLE - at least timeout time is guaranteed to pass before the routine returns unless
the current task is explicitly woken up, (e.g. by wake_up_process()).
TASK_INTERRUPTIBLE - the routinemay return early if a signal is delivered to the current task or the current
task is explicitly woken up.
The current task state is guaranteed to be TASK_RUNNING when this routine returns.
Returns 0 when the timer has expired. If the task was woken before the timer expired by a signal (only
possible in state TASK_INTERRUPTIBLE) or by an explicit wakeup, it returns -EINTR.
int __sched schedule_hrtimeout(ktime_t * expires, const enum hrtimer_mode mode)

sleep until timeout

32 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
ktime_t * expires timeout value (ktime_t)
const enum hrtimer_mode mode timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
Description
Make the current task sleep until the given expiry time has elapsed. The routine will return immediately
unless the current task state has been set (see set_current_state()).
You can set the task state as follows -
TASK_UNINTERRUPTIBLE - at least timeout time is guaranteed to pass before the routine returns unless
the current task is explicitly woken up, (e.g. by wake_up_process()).
TASK_INTERRUPTIBLE - the routinemay return early if a signal is delivered to the current task or the current
task is explicitly woken up.
The current task state is guaranteed to be TASK_RUNNING when this routine returns.
Returns 0 when the timer has expired. If the task was woken before the timer expired by a signal (only
possible in state TASK_INTERRUPTIBLE) or by an explicit wakeup, it returns -EINTR.

1.7 Workqueues and Kevents

struct workqueue_attrs
A struct for workqueue attributes.

Definition

struct workqueue_attrs {
int nice;
cpumask_var_t cpumask;
bool no_numa;

};

Members
nice nice level
cpumask allowed CPUs
no_numa disable NUMA affinity

Unlike other fields, no_numa isn’t a property of a worker_pool. It only modifies how ap-
ply_workqueue_attrs() select pools and thus doesn’t participate in pool hash calculations or equal-
ity comparisons.

Description
This can be used to change attributes of an unbound workqueue.
work_pending(work)

Find out whether a work item is currently pending
Parameters
work The work item in question
delayed_work_pending(w)

Find out whether a delayable work item is currently pending
Parameters
w The work item in question

1.7. Workqueues and Kevents 33

The kernel driver API manual, Release 4.13.0-rc4+

alloc_workqueue(fmt, flags, max_active, args...)
allocate a workqueue

Parameters
fmt printf format for the name of the workqueue
flags WQ_* flags
max_active max in-flight work items, 0 for default
args... args for fmt
Description
Allocate a workqueue with the specified parameters. For detailed information on WQ_* flags, please refer
to Documentation/core-api/workqueue.rst.
The __lock_name macro dance is to guarantee that single lock_class_key doesn’t end up with different
namesm, which isn’t allowed by lockdep.
Return
Pointer to the allocated workqueue on success, NULL on failure.
alloc_ordered_workqueue(fmt, flags, args...)

allocate an ordered workqueue
Parameters
fmt printf format for the name of the workqueue
flags WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
args... args for fmt
Description
Allocate an ordered workqueue. An ordered workqueue executes at most one work item at any given time
in the queued order. They are implemented as unbound workqueues with max_active of one.
Return
Pointer to the allocated workqueue on success, NULL on failure.
bool queue_work(struct workqueue_struct * wq, struct work_struct * work)

queue work on a workqueue
Parameters
struct workqueue_struct * wq workqueue to use
struct work_struct * work work to queue
Description
Returns false if work was already on a queue, true otherwise.
We queue the work to the CPU on which it was submitted, but if the CPU dies it can be processed by
another CPU.
bool queue_delayed_work(struct workqueue_struct * wq, struct delayed_work * dwork, unsigned

long delay)
queue work on a workqueue after delay

Parameters
struct workqueue_struct * wq workqueue to use
struct delayed_work * dwork delayable work to queue
unsigned long delay number of jiffies to wait before queueing

34 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Description
Equivalent to queue_delayed_work_on() but tries to use the local CPU.
bool mod_delayed_work(struct workqueue_struct * wq, struct delayed_work * dwork, unsigned

long delay)
modify delay of or queue a delayed work

Parameters
struct workqueue_struct * wq workqueue to use
struct delayed_work * dwork work to queue
unsigned long delay number of jiffies to wait before queueing
Description
mod_delayed_work_on() on local CPU.
bool schedule_work_on(int cpu, struct work_struct * work)

put work task on a specific cpu
Parameters
int cpu cpu to put the work task on
struct work_struct * work job to be done
Description
This puts a job on a specific cpu
bool schedule_work(struct work_struct * work)

put work task in global workqueue
Parameters
struct work_struct * work job to be done
Description
Returns false if work was already on the kernel-global workqueue and true otherwise.
This puts a job in the kernel-global workqueue if it was not already queued and leaves it in the same
position on the kernel-global workqueue otherwise.
void flush_scheduled_work(void)

ensure that any scheduled work has run to completion.
Parameters
void no arguments
Description
Forces execution of the kernel-global workqueue and blocks until its completion.
Think twice before calling this function! It’s very easy to get into trouble if you don’t take great care.
Either of the following situations will lead to deadlock:

One of the work items currently on the workqueue needs to acquire a lock held by your code or
its caller.
Your code is running in the context of a work routine.

They will be detected by lockdep when they occur, but the first might not occur very often. It depends on
what work items are on the workqueue and what locks they need, which you have no control over.
In most situations flushing the entire workqueue is overkill; you merely need to know that a particular
work item isn’t queued and isn’t running. In such cases you should use cancel_delayed_work_sync()
or cancel_work_sync() instead.

1.7. Workqueues and Kevents 35

The kernel driver API manual, Release 4.13.0-rc4+

bool schedule_delayed_work_on(int cpu, struct delayed_work * dwork, unsigned long delay)
queue work in global workqueue on CPU after delay

Parameters
int cpu cpu to use
struct delayed_work * dwork job to be done
unsigned long delay number of jiffies to wait
Description
After waiting for a given time this puts a job in the kernel-global workqueue on the specified CPU.
bool schedule_delayed_work(struct delayed_work * dwork, unsigned long delay)

put work task in global workqueue after delay
Parameters
struct delayed_work * dwork job to be done
unsigned long delay number of jiffies to wait or 0 for immediate execution
Description
After waiting for a given time this puts a job in the kernel-global workqueue.
bool queue_work_on(int cpu, struct workqueue_struct * wq, struct work_struct * work)

queue work on specific cpu
Parameters
int cpu CPU number to execute work on
struct workqueue_struct * wq workqueue to use
struct work_struct * work work to queue
Description
We queue the work to a specific CPU, the caller must ensure it can’t go away.
Return
false if work was already on a queue, true otherwise.
bool queue_delayed_work_on(int cpu, struct workqueue_struct * wq, struct delayed_work * dwork,

unsigned long delay)
queue work on specific CPU after delay

Parameters
int cpu CPU number to execute work on
struct workqueue_struct * wq workqueue to use
struct delayed_work * dwork work to queue
unsigned long delay number of jiffies to wait before queueing
Return
false if work was already on a queue, true otherwise. If delay is zero and dwork is idle, it will be
scheduled for immediate execution.
bool mod_delayed_work_on(int cpu, struct workqueue_struct * wq, struct delayed_work * dwork, un-

signed long delay)
modify delay of or queue a delayed work on specific CPU

Parameters
int cpu CPU number to execute work on
struct workqueue_struct * wq workqueue to use

36 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

struct delayed_work * dwork work to queue
unsigned long delay number of jiffies to wait before queueing
Description
If dwork is idle, equivalent to queue_delayed_work_on(); otherwise, modify dwork‘s timer so that it
expires after delay. If delay is zero, work is guaranteed to be scheduled immediately regardless of its
current state.
Return
false if dwork was idle and queued, true if dwork was pending and its timer was modified.
This function is safe to call from any context including IRQ handler. See try_to_grab_pending() for
details.
void flush_workqueue(struct workqueue_struct * wq)

ensure that any scheduled work has run to completion.
Parameters
struct workqueue_struct * wq workqueue to flush
Description
This function sleeps until all work items which were queued on entry have finished execution, but it is not
livelocked by new incoming ones.
void drain_workqueue(struct workqueue_struct * wq)

drain a workqueue
Parameters
struct workqueue_struct * wq workqueue to drain
Description
Wait until the workqueue becomes empty. While draining is in progress, only chain queueing is allowed.
IOW, only currently pending or running work items on wq can queue further work items on it. wq is
flushed repeatedly until it becomes empty. The number of flushing is determined by the depth of chaining
and should be relatively short. Whine if it takes too long.
bool flush_work(struct work_struct * work)

wait for a work to finish executing the last queueing instance
Parameters
struct work_struct * work the work to flush
Description
Wait untilwork has finished execution. work is guaranteed to be idle on return if it hasn’t been requeued
since flush started.
Return
true if flush_work() waited for the work to finish execution, false if it was already idle.
bool cancel_work_sync(struct work_struct * work)

cancel a work and wait for it to finish
Parameters
struct work_struct * work the work to cancel
Description
Cancelwork and wait for its execution to finish. This function can be used even if the work re-queues itself
or migrates to another workqueue. On return from this function, work is guaranteed to be not pending
or executing on any CPU.

1.7. Workqueues and Kevents 37

The kernel driver API manual, Release 4.13.0-rc4+

cancel_work_sync(delayed_work->work) must not be used for delayed_work’s. Use can-
cel_delayed_work_sync() instead.
The caller must ensure that the workqueue on which work was last queued can’t be destroyed before
this function returns.
Return
true if work was pending, false otherwise.
bool flush_delayed_work(struct delayed_work * dwork)

wait for a dwork to finish executing the last queueing
Parameters
struct delayed_work * dwork the delayed work to flush
Description
Delayed timer is cancelled and the pending work is queued for immediate execution. Like flush_work(),
this function only considers the last queueing instance of dwork.
Return
true if flush_work() waited for the work to finish execution, false if it was already idle.
bool cancel_delayed_work(struct delayed_work * dwork)

cancel a delayed work
Parameters
struct delayed_work * dwork delayed_work to cancel
Description
Kill off a pending delayed_work.
Return
true if dwork was pending and canceled; false if it wasn’t pending.
Note
The work callback function may still be running on return, unless it returns true and the work doesn’t
re-arm itself. Explicitly flush or use cancel_delayed_work_sync() to wait on it.
This function is safe to call from any context including IRQ handler.
bool cancel_delayed_work_sync(struct delayed_work * dwork)

cancel a delayed work and wait for it to finish
Parameters
struct delayed_work * dwork the delayed work cancel
Description
This is cancel_work_sync() for delayed works.
Return
true if dwork was pending, false otherwise.
int execute_in_process_context(work_func_t fn, struct execute_work * ew)

reliably execute the routine with user context
Parameters
work_func_t fn the function to execute
struct execute_work * ew guaranteed storage for the execute work structure (must be available when

the work executes)

38 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Description
Executes the function immediately if process context is available, otherwise schedules the function for
delayed execution.
Return
0 - function was executed 1 - function was scheduled for execution
void destroy_workqueue(struct workqueue_struct * wq)

safely terminate a workqueue
Parameters
struct workqueue_struct * wq target workqueue
Description
Safely destroy a workqueue. All work currently pending will be done first.
void workqueue_set_max_active(struct workqueue_struct * wq, int max_active)

adjust max_active of a workqueue
Parameters
struct workqueue_struct * wq target workqueue
int max_active new max_active value.
Description
Set max_active of wq to max_active.
Context
Don’t call from IRQ context.
bool workqueue_congested(int cpu, struct workqueue_struct * wq)

test whether a workqueue is congested
Parameters
int cpu CPU in question
struct workqueue_struct * wq target workqueue
Description
Test whether wq‘s cpu workqueue for cpu is congested. There is no synchronization around this function
and the test result is unreliable and only useful as advisory hints or for debugging.
If cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. Note that both per-cpu and un-
bound workqueues may be associated with multiple pool_workqueues which have separate congested
states. A workqueue being congested on one CPU doesn’t mean the workqueue is also contested on
other CPUs / NUMA nodes.
Return
true if congested, false otherwise.
unsigned int work_busy(struct work_struct * work)

test whether a work is currently pending or running
Parameters
struct work_struct * work the work to be tested
Description
Test whether work is currently pending or running. There is no synchronization around this function and
the test result is unreliable and only useful as advisory hints or for debugging.
Return

1.7. Workqueues and Kevents 39

The kernel driver API manual, Release 4.13.0-rc4+

OR’d bitmask of WORK_BUSY_* bits.
long work_on_cpu(int cpu, long (*fn) (void *, void * arg)

run a function in thread context on a particular cpu
Parameters
int cpu the cpu to run on
long (*)(void *) fn the function to run
void * arg the function arg
Description
It is up to the caller to ensure that the cpu doesn’t go offline. The caller must not hold any locks which
would prevent fn from completing.
Return
The value fn returns.
long work_on_cpu_safe(int cpu, long (*fn) (void *, void * arg)

run a function in thread context on a particular cpu
Parameters
int cpu the cpu to run on
long (*)(void *) fn the function to run
void * arg the function argument
Description
Disables CPU hotplug and calls work_on_cpu(). The caller must not hold any locks which would prevent
fn from completing.
Return
The value fn returns.

1.8 Internal Functions

int wait_task_stopped(struct wait_opts * wo, int ptrace, struct task_struct * p)
Wait for TASK_STOPPED or TASK_TRACED

Parameters
struct wait_opts * wo wait options
int ptrace is the wait for ptrace
struct task_struct * p task to wait for
Description
Handle sys_wait4() work for p in state TASK_STOPPED or TASK_TRACED.
Context
read_lock(tasklist_lock), which is released if return value is non-zero. Also, grabs and releases p-
>sighand->siglock.
Return
0 if wait condition didn’t exist and search for other wait conditions should continue. Non-zero return,
-errno on failure and p‘s pid on success, implies that tasklist_lock is released and wait condition search
should terminate.

40 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

bool task_set_jobctl_pending(struct task_struct * task, unsigned long mask)
set jobctl pending bits

Parameters
struct task_struct * task target task
unsigned long mask pending bits to set
Description
Clear mask from task->jobctl. mask must be subset of JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME
| JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING. If stop signo is being set, the existing signo is cleared. If
task is already being killed or exiting, this function becomes noop.
Context
Must be called with task->sighand->siglock held.
Return
true if mask is set, false if made noop because task was dying.
void task_clear_jobctl_trapping(struct task_struct * task)

clear jobctl trapping bit
Parameters
struct task_struct * task target task
Description
If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. Clear it and wake up the ptracer.
Note that we don’t need any further locking. task->siglock guarantees that task->parent points to the
ptracer.
Context
Must be called with task->sighand->siglock held.
void task_clear_jobctl_pending(struct task_struct * task, unsigned long mask)

clear jobctl pending bits
Parameters
struct task_struct * task target task
unsigned long mask pending bits to clear
Description
Clearmask from task->jobctl. maskmust be subset of JOBCTL_PENDING_MASK. If JOBCTL_STOP_PENDING
is being cleared, other STOP bits are cleared together.
If clearing of mask leaves no stop or trap pending, this function calls task_clear_jobctl_trapping().
Context
Must be called with task->sighand->siglock held.
bool task_participate_group_stop(struct task_struct * task)

participate in a group stop
Parameters
struct task_struct * task task participating in a group stop
Description
task has JOBCTL_STOP_PENDING set and is participating in a group stop. Group stop states are cleared
and the group stop count is consumed if JOBCTL_STOP_CONSUME was set. If the consumption completes
the group stop, the appropriate ‘‘SIGNAL_‘‘* flags are set.
Context

1.8. Internal Functions 41

The kernel driver API manual, Release 4.13.0-rc4+

Must be called with task->sighand->siglock held.
Return
true if group stop completion should be notified to the parent, false otherwise.
void ptrace_trap_notify(struct task_struct * t)

schedule trap to notify ptracer
Parameters
struct task_struct * t tracee wanting to notify tracer
Description
This function schedules sticky ptrace trap which is cleared on the next TRAP_STOP to notify ptracer of an
event. t must have been seized by ptracer.
If t is running, STOP trap will be taken. If trapped for STOP and ptracer is listening for events, tracee is
woken up so that it can re-trap for the new event. If trapped otherwise, STOP trap will be eventually taken
without returning to userland after the existing traps are finished by PTRACE_CONT.
Context
Must be called with task->sighand->siglock held.
void do_notify_parent_cldstop(struct task_struct * tsk, bool for_ptracer, int why)

notify parent of stopped/continued state change
Parameters
struct task_struct * tsk task reporting the state change
bool for_ptracer the notification is for ptracer
int why CLD_{CONTINUED|STOPPED|TRAPPED} to report
Description
Notify tsk‘s parent that the stopped/continued state has changed. If for_ptracer is false, tsk‘s group
leader notifies to its real parent. If true, tsk reports to tsk->parent which should be the ptracer.
Context
Must be called with tasklist_lock at least read locked.
bool do_signal_stop(int signr)

handle group stop for SIGSTOP and other stop signals
Parameters
int signr signr causing group stop if initiating
Description
If JOBCTL_STOP_PENDING is not set yet, initiate group stop with signr and participate in it. If already set,
participate in the existing group stop. If participated in a group stop (and thus slept), true is returned
with siglock released.
If ptraced, this function doesn’t handle stop itself. Instead, JOBCTL_TRAP_STOP is scheduled and false
is returned with siglock untouched. The caller must ensure that INTERRUPT trap handling takes places
afterwards.
Context
Must be called with current->sighand->siglock held, which is released on true return.
Return
false if group stop is already cancelled or ptrace trap is scheduled. true if participated in group stop.
void do_jobctl_trap(void)

take care of ptrace jobctl traps

42 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
void no arguments
Description
When PT_SEIZED, it’s used for both group stop and explicit SEIZE/INTERRUPT traps. Both generate
PTRACE_EVENT_STOP trap with accompanying siginfo. If stopped, lower eight bits of exit_code contain
the stop signal; otherwise, SIGTRAP.
When !PT_SEIZED, it’s used only for group stop trap with stop signal number as exit_code and no siginfo.
Context
Must be called with current->sighand->siglock held, which may be released and re-acquired before re-
turning with intervening sleep.
void signal_delivered(struct ksignal * ksig, int stepping)
Parameters
struct ksignal * ksig kernel signal struct
int stepping nonzero if debugger single-step or block-step in use
Description
This function should be called when a signal has successfully been delivered. It updates the blocked signals
accordingly (ksig->ka.sa.sa_mask is always blocked, and the signal itself is blocked unless SA_NODEFER
is set in ksig->ka.sa.sa_flags. Tracing is notified.
long sys_restart_syscall(void)

restart a system call
Parameters
void no arguments
void set_current_blocked(sigset_t * newset)

change current->blocked mask
Parameters
sigset_t * newset new mask
Description
It is wrong to change ->blocked directly, this helper should be used to ensure the process can’t miss a
shared signal we are going to block.
long sys_rt_sigprocmask(int how, sigset_t __user * nset, sigset_t __user * oset, size_t sigsetsize)

change the list of currently blocked signals
Parameters
int how whether to add, remove, or set signals
sigset_t __user * nset stores pending signals
sigset_t __user * oset previous value of signal mask if non-null
size_t sigsetsize size of sigset_t type
long sys_rt_sigpending(sigset_t __user * uset, size_t sigsetsize)

examine a pending signal that has been raised while blocked
Parameters
sigset_t __user * uset stores pending signals
size_t sigsetsize size of sigset_t type or larger
int do_sigtimedwait(const sigset_t * which, siginfo_t * info, const struct timespec * ts)

wait for queued signals specified in which

1.8. Internal Functions 43

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
const sigset_t * which queued signals to wait for
siginfo_t * info if non-null, the signal’s siginfo is returned here
const struct timespec * ts upper bound on process time suspension
long sys_rt_sigtimedwait(const sigset_t __user * uthese, siginfo_t __user * uinfo, const struct time-

spec __user * uts, size_t sigsetsize)
synchronously wait for queued signals specified in uthese

Parameters
const sigset_t __user * uthese queued signals to wait for
siginfo_t __user * uinfo if non-null, the signal’s siginfo is returned here
const struct timespec __user * uts upper bound on process time suspension
size_t sigsetsize size of sigset_t type
long sys_kill(pid_t pid, int sig)

send a signal to a process
Parameters
pid_t pid the PID of the process
int sig signal to be sent
long sys_tgkill(pid_t tgid, pid_t pid, int sig)

send signal to one specific thread
Parameters
pid_t tgid the thread group ID of the thread
pid_t pid the PID of the thread
int sig signal to be sent
Description

This syscall also checks the tgid and returns -ESRCH even if the PID exists but it’s not belonging
to the target process anymore. This method solves the problem of threads exiting and PIDs
getting reused.

long sys_tkill(pid_t pid, int sig)
send signal to one specific task

Parameters
pid_t pid the PID of the task
int sig signal to be sent
Description

Send a signal to only one task, even if it’s a CLONE_THREAD task.
long sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user * uinfo)

send signal information to a signal
Parameters
pid_t pid the PID of the thread
int sig signal to be sent
siginfo_t __user * uinfo signal info to be sent
long sys_sigpending(old_sigset_t __user * set)

examine pending signals

44 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
old_sigset_t __user * set where mask of pending signal is returned
long sys_sigprocmask(int how, old_sigset_t __user * nset, old_sigset_t __user * oset)

examine and change blocked signals
Parameters
int how whether to add, remove, or set signals
old_sigset_t __user * nset signals to add or remove (if non-null)
old_sigset_t __user * oset previous value of signal mask if non-null
Description
Some platforms have their own version with special arguments; others support only sys_rt_sigprocmask.
long sys_rt_sigaction(int sig, const struct sigaction __user * act, struct sigaction __user * oact,

size_t sigsetsize)
alter an action taken by a process

Parameters
int sig signal to be sent
const struct sigaction __user * act new sigaction
struct sigaction __user * oact used to save the previous sigaction
size_t sigsetsize size of sigset_t type
long sys_rt_sigsuspend(sigset_t __user * unewset, size_t sigsetsize)

replace the signal mask for a value with the unewset value until a signal is received
Parameters
sigset_t __user * unewset new signal mask value
size_t sigsetsize size of sigset_t type
kthread_create(threadfn, data, namefmt, arg...)

create a kthread on the current node
Parameters
threadfn the function to run in the thread
data data pointer for threadfn()
namefmt printf-style format string for the thread name
arg... arguments for namefmt.
Description
This macro will create a kthread on the current node, leaving it in the stopped state. This is just a helper
for kthread_create_on_node(); see the documentation there for more details.
kthread_run(threadfn, data, namefmt, ...)

create and wake a thread.
Parameters
threadfn the function to run until signal_pending(current).
data data ptr for threadfn.
namefmt printf-style name for the thread.
... variable arguments

1.8. Internal Functions 45

The kernel driver API manual, Release 4.13.0-rc4+

Description
Convenient wrapper for kthread_create() followed by wake_up_process(). Returns the kthread or
ERR_PTR(-ENOMEM).
bool kthread_should_stop(void)

should this kthread return now?
Parameters
void no arguments
Description
When someone calls kthread_stop() on your kthread, it will be woken and this will return true. You
should then return, and your return value will be passed through to kthread_stop().
bool kthread_should_park(void)

should this kthread park now?
Parameters
void no arguments
Description
When someone calls kthread_park() on your kthread, it will be woken and this will return true. You
should then do the necessary cleanup and call kthread_parkme()
Similar to kthread_should_stop(), but this keeps the thread alive and in a park position.
kthread_unpark() “restarts” the thread and calls the thread function again.
bool kthread_freezable_should_stop(bool * was_frozen)

should this freezable kthread return now?
Parameters
bool * was_frozen optional out parameter, indicates whether current was frozen
Description
kthread_should_stop() for freezable kthreads, which will enter refrigerator if necessary. This function
is safe from kthread_stop() / freezer deadlock and freezable kthreads should use this function instead
of calling try_to_freeze() directly.
struct task_struct * kthread_create_on_node(int (*threadfn) (void *data, void * data, int node,

const char namefmt, ...)
create a kthread.

Parameters
int (*)(void *data) threadfn the function to run until signal_pending(current).
void * data data ptr for threadfn.
int node task and thread structures for the thread are allocated on this node
const char namefmt printf-style name for the thread.
... variable arguments
Description
This helper function creates and names a kernel thread. The thread will be stopped: use
wake_up_process() to start it. See also kthread_run(). The new thread has SCHED_NORMAL policy
and is affine to all CPUs.
If thread is going to be bound on a particular cpu, give its node in node, to get NUMA affinity for kthread
stack, or else give NUMA_NO_NODE. When woken, the thread will run threadfn() with data as its ar-
gument. threadfn() can either call do_exit() directly if it is a standalone thread for which no one will
call kthread_stop(), or return when ‘kthread_should_stop()‘ is true (which means kthread_stop()

46 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

has been called). The return value should be zero or a negative error number; it will be passed to
kthread_stop().
Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
void kthread_bind(struct task_struct * p, unsigned int cpu)

bind a just-created kthread to a cpu.
Parameters
struct task_struct * p thread created by kthread_create().
unsigned int cpu cpu (might not be online, must be possible) for k to run on.
Description
This function is equivalent to set_cpus_allowed(), except that cpu doesn’t need to be online, and the
thread must be stopped (i.e., just returned from kthread_create()).
void kthread_unpark(struct task_struct * k)

unpark a thread created by kthread_create().
Parameters
struct task_struct * k thread created by kthread_create().
Description
Sets kthread_should_park() for k to return false, wakes it, and waits for it to return. If the thread is
marked percpu then its bound to the cpu again.
int kthread_park(struct task_struct * k)

park a thread created by kthread_create().
Parameters
struct task_struct * k thread created by kthread_create().
Description
Sets kthread_should_park() for k to return true, wakes it, and waits for it to return. This can also be
called after kthread_create() instead of calling wake_up_process(): the thread will park without calling
threadfn().
Returns 0 if the thread is parked, -ENOSYS if the thread exited. If called by the kthread itself just the park
bit is set.
int kthread_stop(struct task_struct * k)

stop a thread created by kthread_create().
Parameters
struct task_struct * k thread created by kthread_create().
Description
Sets kthread_should_stop() for k to return true, wakes it, and waits for it to exit. This can also be
called after kthread_create() instead of calling wake_up_process(): the thread will exit without calling
threadfn().
If threadfn() may call do_exit() itself, the caller must ensure task_struct can’t go away.
Returns the result of threadfn(), or -EINTR if wake_up_process() was never called.
int kthread_worker_fn(void * worker_ptr)

kthread function to process kthread_worker
Parameters
void * worker_ptr pointer to initialized kthread_worker

1.8. Internal Functions 47

The kernel driver API manual, Release 4.13.0-rc4+

Description
This function implements the main cycle of kthread worker. It processes work_list until it is stopped with
kthread_stop(). It sleeps when the queue is empty.
The works are not allowed to keep any locks, disable preemption or interrupts when they finish. There is
defined a safe point for freezing when one work finishes and before a new one is started.
Also the works must not be handled by more than one worker at the same time, see also
kthread_queue_work().
struct kthread_worker * kthread_create_worker(unsigned int flags, const char namefmt, ...)

create a kthread worker
Parameters
unsigned int flags flags modifying the default behavior of the worker
const char namefmt printf-style name for the kthread worker (task).
... variable arguments
Description
Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) when the needed structures
could not get allocated, and ERR_PTR(-EINTR) when the worker was SIGKILLed.
struct kthread_worker * kthread_create_worker_on_cpu(int cpu, unsigned int flags, const

char namefmt, ...)
create a kthread worker and bind it it to a given CPU and the associated NUMA node.

Parameters
int cpu CPU number
unsigned int flags flags modifying the default behavior of the worker
const char namefmt printf-style name for the kthread worker (task).
... variable arguments
Description
Use a valid CPU number if you want to bind the kthread worker to the given CPU and the associated NUMA
node.
A good practice is to add the cpu number also into the worker name. For example, use
kthread_create_worker_on_cpu(cpu, “helper/d”, cpu).
Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) when the needed structures
could not get allocated, and ERR_PTR(-EINTR) when the worker was SIGKILLed.
bool kthread_queue_work(struct kthread_worker * worker, struct kthread_work * work)

queue a kthread_work
Parameters
struct kthread_worker * worker target kthread_worker
struct kthread_work * work kthread_work to queue
Description
Queue work to work processor task for async execution. task must have been created with
kthread_worker_create(). Returns true if work was successfully queued, false if it was already pend-
ing.
Reinitialize the work if it needs to be used by another worker. For example, when the worker was stopped
and started again.
void kthread_delayed_work_timer_fn(unsigned long __data)

callback that queues the associated kthread delayed work when the timer expires.

48 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
unsigned long __data pointer to the data associated with the timer
Description
The format of the function is defined by struct timer_list. It should have been called from irqsafe timer
with irq already off.
bool kthread_queue_delayed_work(struct kthread_worker * worker, struct kthread_delayed_work

* dwork, unsigned long delay)
queue the associated kthread work after a delay.

Parameters
struct kthread_worker * worker target kthread_worker
struct kthread_delayed_work * dwork kthread_delayed_work to queue
unsigned long delay number of jiffies to wait before queuing
Description
If the work has not been pending it starts a timer that will queue the work after the given delay. If delay
is zero, it queues the work immediately.
Return
false if the work has already been pending. It means that either the timer was running or the work was
queued. It returns true otherwise.
void kthread_flush_work(struct kthread_work * work)

flush a kthread_work
Parameters
struct kthread_work * work work to flush
Description
If work is queued or executing, wait for it to finish execution.
bool kthread_mod_delayed_work(struct kthread_worker * worker, struct kthread_delayed_work

* dwork, unsigned long delay)
modify delay of or queue a kthread delayed work

Parameters
struct kthread_worker * worker kthread worker to use
struct kthread_delayed_work * dwork kthread delayed work to queue
unsigned long delay number of jiffies to wait before queuing
Description
If dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, modify dwork‘s timer so
that it expires after delay. If delay is zero, work is guaranteed to be queued immediately.
Return
true if dwork was pending and its timer was modified, false otherwise.
A special case is when the work is being canceled in parallel. It might be caused either by the real
kthread_cancel_delayed_work_sync() or yet another kthread_mod_delayed_work() call. We let the
other command win and return false here. The caller is supposed to synchronize these operations a
reasonable way.
This function is safe to call from any context including IRQ handler. See __kthread_cancel_work() and
kthread_delayed_work_timer_fn() for details.
bool kthread_cancel_work_sync(struct kthread_work * work)

cancel a kthread work and wait for it to finish

1.8. Internal Functions 49

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct kthread_work * work the kthread work to cancel
Description
Cancel work and wait for its execution to finish. This function can be used even if the work re-queues
itself. On return from this function, work is guaranteed to be not pending or executing on any CPU.
kthread_cancel_work_sync(delayed_work->work) must not be used for delayed_work’s. Use
kthread_cancel_delayed_work_sync() instead.
The caller must ensure that the worker on which work was last queued can’t be destroyed before this
function returns.
Return
true if work was pending, false otherwise.
bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work * dwork)

cancel a kthread delayed work and wait for it to finish.
Parameters
struct kthread_delayed_work * dwork the kthread delayed work to cancel
Description
This is kthread_cancel_work_sync() for delayed works.
Return
true if dwork was pending, false otherwise.
void kthread_flush_worker(struct kthread_worker * worker)

flush all current works on a kthread_worker
Parameters
struct kthread_worker * worker worker to flush
Description
Wait until all currently executing or pending works on worker are finished.
void kthread_destroy_worker(struct kthread_worker * worker)

destroy a kthread worker
Parameters
struct kthread_worker * worker worker to be destroyed
Description
Flush and destroy worker. The simple flush is enough because the kthread worker API is used only in
trivial scenarios. There are no multi-step state machines needed.

1.9 Kernel objects manipulation

char * kobject_get_path(struct kobject * kobj, gfp_t gfp_mask)
generate and return the path associated with a given kobj and kset pair.

Parameters
struct kobject * kobj kobject in question, with which to build the path
gfp_t gfp_mask the allocation type used to allocate the path
Description
The result must be freed by the caller with kfree().

50 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

int kobject_set_name(struct kobject * kobj, const char * fmt, ...)
Set the name of a kobject

Parameters
struct kobject * kobj struct kobject to set the name of
const char * fmt format string used to build the name
... variable arguments
Description
This sets the name of the kobject. If you have already added the kobject to the system, you must call
kobject_rename() in order to change the name of the kobject.
void kobject_init(struct kobject * kobj, struct kobj_type * ktype)

initialize a kobject structure
Parameters
struct kobject * kobj pointer to the kobject to initialize
struct kobj_type * ktype pointer to the ktype for this kobject.
Description
This function will properly initialize a kobject such that it can then be passed to the kobject_add() call.
After this function is called, the kobject MUST be cleaned up by a call to kobject_put(), not by a call to
kfree directly to ensure that all of the memory is cleaned up properly.
int kobject_add(struct kobject * kobj, struct kobject * parent, const char * fmt, ...)

the main kobject add function
Parameters
struct kobject * kobj the kobject to add
struct kobject * parent pointer to the parent of the kobject.
const char * fmt format to name the kobject with.
... variable arguments
Description
The kobject name is set and added to the kobject hierarchy in this function.
If parent is set, then the parent of the kobj will be set to it. If parent is NULL, then the parent of the
kobj will be set to the kobject associated with the kset assigned to this kobject. If no kset is assigned to
the kobject, then the kobject will be located in the root of the sysfs tree.
If this function returns an error, kobject_put()must be called to properly clean up thememory associated
with the object. Under no instance should the kobject that is passed to this function be directly freed with
a call to kfree(), that can leak memory.
Note, no “add” uevent will be created with this call, the caller should set up all of the necessary sysfs files
for the object and then call kobject_uevent() with the UEVENT_ADD parameter to ensure that userspace
is properly notified of this kobject’s creation.
int kobject_init_and_add(struct kobject * kobj, struct kobj_type * ktype, struct kobject * parent,

const char * fmt, ...)
initialize a kobject structure and add it to the kobject hierarchy

Parameters
struct kobject * kobj pointer to the kobject to initialize
struct kobj_type * ktype pointer to the ktype for this kobject.
struct kobject * parent pointer to the parent of this kobject.

1.9. Kernel objects manipulation 51

The kernel driver API manual, Release 4.13.0-rc4+

const char * fmt the name of the kobject.
... variable arguments
Description
This function combines the call to kobject_init() and kobject_add(). The same type of error handling
after a call to kobject_add() and kobject lifetime rules are the same here.
int kobject_rename(struct kobject * kobj, const char * new_name)

change the name of an object
Parameters
struct kobject * kobj object in question.
const char * new_name object’s new name
Description
It is the responsibility of the caller to provide mutual exclusion between two different calls of kob-
ject_rename on the same kobject and to ensure that new_name is valid and won’t conflict with other
kobjects.
int kobject_move(struct kobject * kobj, struct kobject * new_parent)

move object to another parent
Parameters
struct kobject * kobj object in question.
struct kobject * new_parent object’s new parent (can be NULL)
void kobject_del(struct kobject * kobj)

unlink kobject from hierarchy.
Parameters
struct kobject * kobj object.
struct kobject * kobject_get(struct kobject * kobj)

increment refcount for object.
Parameters
struct kobject * kobj object.
void kobject_put(struct kobject * kobj)

decrement refcount for object.
Parameters
struct kobject * kobj object.
Description
Decrement the refcount, and if 0, call kobject_cleanup().
struct kobject * kobject_create_and_add(const char * name, struct kobject * parent)

create a struct kobject dynamically and register it with sysfs
Parameters
const char * name the name for the kobject
struct kobject * parent the parent kobject of this kobject, if any.
Description
This function creates a kobject structure dynamically and registers it with sysfs. When you are finished
with this structure, call kobject_put() and the structure will be dynamically freed when it is no longer
being used.
If the kobject was not able to be created, NULL will be returned.

52 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

int kset_register(struct kset * k)
initialize and add a kset.

Parameters
struct kset * k kset.
void kset_unregister(struct kset * k)

remove a kset.
Parameters
struct kset * k kset.
struct kobject * kset_find_obj(struct kset * kset, const char * name)

search for object in kset.
Parameters
struct kset * kset kset we’re looking in.
const char * name object’s name.
Description
Lock kset via kset->subsys, and iterate over kset->list, looking for a matching kobject. If matching object
is found take a reference and return the object.
struct kset * kset_create_and_add(const char * name, const struct kset_uevent_ops * uevent_ops,

struct kobject * parent_kobj)
create a struct kset dynamically and add it to sysfs

Parameters
const char * name the name for the kset
const struct kset_uevent_ops * uevent_ops a struct kset_uevent_ops for the kset
struct kobject * parent_kobj the parent kobject of this kset, if any.
Description
This function creates a kset structure dynamically and registers it with sysfs. When you are finished with
this structure, call kset_unregister() and the structure will be dynamically freed when it is no longer
being used.
If the kset was not able to be created, NULL will be returned.

1.10 Kernel utility functions

upper_32_bits(n)
return bits 32-63 of a number

Parameters
n the number we’re accessing
Description
A basic shift-right of a 64- or 32-bit quantity. Use this to suppress the “right shift count >= width of type”
warning when that quantity is 32-bits.
lower_32_bits(n)

return bits 0-31 of a number
Parameters
n the number we’re accessing

1.10. Kernel utility functions 53

The kernel driver API manual, Release 4.13.0-rc4+

might_sleep()
annotation for functions that can sleep

Parameters
Description
this macro will print a stack trace if it is executed in an atomic context (spinlock, irq-handler, ...).
This is a useful debugging help to be able to catch problems early and not be bitten later when the calling
function happens to sleep when it is not supposed to.
abs(x)

return absolute value of an argument
Parameters
x the value. If it is unsigned type, it is converted to signed type first. char is treated as if it was signed

(regardless of whether it really is) but the macro’s return type is preserved as char.
Return
an absolute value of x.
u32 reciprocal_scale(u32 val, u32 ep_ro)

“scale” a value into range [0, ep_ro)
Parameters
u32 val value
u32 ep_ro right open interval endpoint
Description
Perform a “reciprocal multiplication” in order to “scale” a value into range [0, ep_ro), where the upper
interval endpoint is right-open. This is useful, e.g. for accessing a index of an array containing ep_ro
elements, for example. Think of it as sort of modulus, only that the result isn’t that of modulo. ;) Note
that if initial input is a small value, then result will return 0.
Return
a result based on val in interval [0, ep_ro).
int kstrtoul(const char * s, unsigned int base, unsigned long * res)

convert a string to an unsigned long
Parameters
const char * s The start of the string. The string must be null-terminated, and may also include a single

newline before its terminating null. The first character may also be a plus sign, but not a minus sign.
unsigned int base The number base to use. The maximum supported base is 16. If base is given as 0,

then the base of the string is automatically detected with the conventional semantics - If it begins
with 0x the number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0,
it will be parsed as an octal number. Otherwise it will be parsed as a decimal.

unsigned long * res Where to write the result of the conversion on success.
Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for the
obsolete simple_strtoull. Return code must be checked.
int kstrtol(const char * s, unsigned int base, long * res)

convert a string to a long
Parameters
const char * s The start of the string. The string must be null-terminated, and may also include a single

newline before its terminating null. The first character may also be a plus sign or a minus sign.

54 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int base The number base to use. The maximum supported base is 16. If base is given as 0,
then the base of the string is automatically detected with the conventional semantics - If it begins
with 0x the number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0,
it will be parsed as an octal number. Otherwise it will be parsed as a decimal.

long * res Where to write the result of the conversion on success.
Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for the
obsolete simple_strtoull. Return code must be checked.
trace_printk(fmt, ...)

printf formatting in the ftrace buffer
Parameters
fmt the printf format for printing
... variable arguments
Note
__trace_printk is an internal function for trace_printk and the ip is passed in via the trace_printk

macro.
This function allows a kernel developer to debug fast path sections that printk is not appropriate for.
By scattering in various printk like tracing in the code, a developer can quickly see where problems are
occurring.
This is intended as a debugging tool for the developer only. Please refrain from leaving trace_printks
scattered around in your code. (Extra memory is used for special buffers that are allocated when
trace_printk() is used)
A little optization trick is done here. If there’s only one argument, there’s no need to scan the string for
printf formats. The trace_puts() will suffice. But how can we take advantage of using trace_puts()
when trace_printk() has only one argument? By stringifying the args and checking the size we can tell
whether or not there are args. __stringify((__VA_ARGS__)) will turn into “()0” with a size of 3 when there
are no args, anything else will be bigger. All we need to do is define a string to this, and then take its size
and compare to 3. If it’s bigger, use do_trace_printk() otherwise, optimize it to trace_puts(). Then
just let gcc optimize the rest.
trace_puts(str)

write a string into the ftrace buffer
Parameters
str the string to record
Note
__trace_bputs is an internal function for trace_puts and the ip is passed in via the trace_puts

macro.
This is similar to trace_printk() but is made for those really fast paths that a developer wants the least
amount of “Heisenbug” affects, where the processing of the print format is still too much.
This function allows a kernel developer to debug fast path sections that printk is not appropriate for.
By scattering in various printk like tracing in the code, a developer can quickly see where problems are
occurring.
This is intended as a debugging tool for the developer only. Please refrain from leaving trace_puts
scattered around in your code. (Extra memory is used for special buffers that are allocated when
trace_puts() is used)
Return
0 if nothing was written, positive # if string was. (1 when __trace_bputs is used, strlen(str) when

__trace_puts is used)

1.10. Kernel utility functions 55

The kernel driver API manual, Release 4.13.0-rc4+

min_not_zero(x, y)
return the minimum that is _not_ zero, unless both are zero

Parameters
x value1
y value2
clamp(val, lo, hi)

return a value clamped to a given range with strict typechecking
Parameters
val current value
lo lowest allowable value
hi highest allowable value
Description
This macro does strict typechecking of lo/hi to make sure they are of the same type as val. See the
unnecessary pointer comparisons.
clamp_t(type, val, lo, hi)

return a value clamped to a given range using a given type
Parameters
type the type of variable to use
val current value
lo minimum allowable value
hi maximum allowable value
Description
This macro does no typechecking and uses temporary variables of type ‘type’ to make all the comparisons.

clamp_val(val, lo, hi)
return a value clamped to a given range using val’s type

Parameters
val current value
lo minimum allowable value
hi maximum allowable value
Description
This macro does no typechecking and uses temporary variables of whatever type the input argument ‘val’
is. This is useful when val is an unsigned type and min and max are literals that will otherwise be assigned
a signed integer type.
container_of(ptr, type, member)

cast a member of a structure out to the containing structure
Parameters
ptr the pointer to the member.
type the type of the container struct this is embedded in.
member the name of the member within the struct.
__visible int printk(const char * fmt, ...)

print a kernel message

56 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
const char * fmt format string
... variable arguments
Description
This is printk(). It can be called from any context. We want it to work.
We try to grab the console_lock. If we succeed, it’s easy - we log the output and call the console drivers.
If we fail to get the semaphore, we place the output into the log buffer and return. The current holder of
the console_sem will notice the new output in console_unlock(); and will send it to the consoles before
releasing the lock.
One effect of this deferred printing is that code which calls printk() and then changes console_loglevel
may break. This is because console_loglevel is inspected when the actual printing occurs.
See also: printf(3)
See the vsnprintf() documentation for format string extensions over C99.
void console_lock(void)

lock the console system for exclusive use.
Parameters
void no arguments
Description
Acquires a lock which guarantees that the caller has exclusive access to the console system and the
console_drivers list.
Can sleep, returns nothing.
int console_trylock(void)

try to lock the console system for exclusive use.
Parameters
void no arguments
Description
Try to acquire a lock which guarantees that the caller has exclusive access to the console system and the
console_drivers list.
returns 1 on success, and 0 on failure to acquire the lock.
void console_unlock(void)

unlock the console system
Parameters
void no arguments
Description
Releases the console_lock which the caller holds on the console system and the console driver list.
While the console_lock was held, console output may have been buffered by printk(). If this is the case,
console_unlock(); emits the output prior to releasing the lock.
If there is output waiting, we wake /dev/kmsg and syslog() users.
console_unlock(); may be called from any context.
void __sched console_conditional_schedule(void)

yield the CPU if required
Parameters
void no arguments

1.10. Kernel utility functions 57

The kernel driver API manual, Release 4.13.0-rc4+

Description
If the console code is currently allowed to sleep, and if this CPU should yield the CPU to another task, do
so here.
Must be called within console_lock();.
bool printk_timed_ratelimit(unsigned long * caller_jiffies, unsigned int interval_msecs)

caller-controlled printk ratelimiting
Parameters
unsigned long * caller_jiffies pointer to caller’s state
unsigned int interval_msecs minimum interval between prints
Description
printk_timed_ratelimit() returns true if more than interval_msecs milliseconds have elapsed since
the last time printk_timed_ratelimit() returned true.
int kmsg_dump_register(struct kmsg_dumper * dumper)

register a kernel log dumper.
Parameters
struct kmsg_dumper * dumper pointer to the kmsg_dumper structure
Description
Adds a kernel log dumper to the system. The dump callback in the structure will be called when the kernel
oopses or panics and must be set. Returns zero on success and -EINVAL or -EBUSY otherwise.
int kmsg_dump_unregister(struct kmsg_dumper * dumper)

unregister a kmsg dumper.
Parameters
struct kmsg_dumper * dumper pointer to the kmsg_dumper structure
Description
Removes a dump device from the system. Returns zero on success and -EINVAL otherwise.
bool kmsg_dump_get_line(struct kmsg_dumper * dumper, bool syslog, char * line, size_t size, size_t

* len)
retrieve one kmsg log line

Parameters
struct kmsg_dumper * dumper registered kmsg dumper
bool syslog include the “<4>” prefixes
char * line buffer to copy the line to
size_t size maximum size of the buffer
size_t * len length of line placed into buffer
Description
Start at the beginning of the kmsg buffer, with the oldest kmsg record, and copy one record into the
provided buffer.
Consecutive calls will return the next available record moving towards the end of the buffer with the
youngest messages.
A return value of FALSE indicates that there are no more records to read.
bool kmsg_dump_get_buffer(struct kmsg_dumper * dumper, bool syslog, char * buf, size_t size,

size_t * len)
copy kmsg log lines

58 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct kmsg_dumper * dumper registered kmsg dumper
bool syslog include the “<4>” prefixes
char * buf buffer to copy the line to
size_t size maximum size of the buffer
size_t * len length of line placed into buffer
Description
Start at the end of the kmsg buffer and fill the provided buffer with as many of the the youngest kmsg
records that fit into it. If the buffer is large enough, all available kmsg records will be copied with a single
call.
Consecutive calls will fill the buffer with the next block of available older records, not including the earlier
retrieved ones.
A return value of FALSE indicates that there are no more records to read.
void kmsg_dump_rewind(struct kmsg_dumper * dumper)

reset the interator
Parameters
struct kmsg_dumper * dumper registered kmsg dumper
Description
Reset the dumper’s iterator so that kmsg_dump_get_line() and kmsg_dump_get_buffer() can be called
again and used multiple times within the same dumper.:c:func:dump() callback.
void panic(const char * fmt, ...)

halt the system
Parameters
const char * fmt The text string to print
... variable arguments
Description

Display a message, then perform cleanups.
This function never returns.

void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
Parameters
unsigned flag one of the TAINT_* constants.
enum lockdep_ok lockdep_ok whether lock debugging is still OK.
Description
If something bad has gone wrong, you’ll want lockdebug_ok = false, but for some notewortht-but-not-
corrupting cases, it can be set to true.
void rcu_idle_enter(void)

inform RCU that current CPU is entering idle
Parameters
void no arguments
Description

1.10. Kernel utility functions 59

The kernel driver API manual, Release 4.13.0-rc4+

Enter idle mode, in other words, -leave- the mode in which RCU read-side critical sections can oc-
cur. (Though RCU read-side critical sections can occur in irq handlers in idle, a possibility handled by
irq_enter() and irq_exit().)
We crowbar the ->dynticks_nesting field to zero to allow for the possibility of usermode upcalls having
messed up our count of interrupt nesting level during the prior busy period.
void rcu_idle_exit(void)

inform RCU that current CPU is leaving idle
Parameters
void no arguments
Description
Exit idle mode, in other words, -enter- the mode in which RCU read-side critical sections can occur.
We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to allow for the possibility of usermode
upcalls messing up our count of interrupt nesting level during the busy period that is just now starting.
bool notrace rcu_is_watching(void)

see if RCU thinks that the current CPU is idle
Parameters
void no arguments
Description
Return true if RCU is watching the running CPU, which means that this CPU can safely enter RCU read-side
critical sections. In other words, if the current CPU is in its idle loop and is neither in an interrupt or NMI
handler, return true.
void call_rcu_sched(struct rcu_head * head, rcu_callback_t func)

Queue an RCU for invocation after sched grace period.
Parameters
struct rcu_head * head structure to be used for queueing the RCU updates.
rcu_callback_t func actual callback function to be invoked after the grace period
Description
The callback function will be invoked some time after a full grace period elapses, in other words after
all currently executing RCU read-side critical sections have completed. call_rcu_sched() assumes that
the read-side critical sections end on enabling of preemption or on voluntary preemption. RCU read-side
critical sections are delimited by :

• rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
• anything that disables preemption.

These may be nested.
See the description of call_rcu() for more detailed information on memory ordering guarantees.
void call_rcu_bh(struct rcu_head * head, rcu_callback_t func)

Queue an RCU for invocation after a quicker grace period.
Parameters
struct rcu_head * head structure to be used for queueing the RCU updates.
rcu_callback_t func actual callback function to be invoked after the grace period
Description
The callback function will be invoked some time after a full grace period elapses, in other words after
all currently executing RCU read-side critical sections have completed. call_rcu_bh() assumes that
the read-side critical sections end on completion of a softirq handler. This means that read-side critical

60 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

sections in process context must not be interrupted by softirqs. This interface is to be used when most of
the read-side critical sections are in softirq context. RCU read-side critical sections are delimited by :

• rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
OR - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. These may be
nested.

See the description of call_rcu() for more detailed information on memory ordering guarantees.
void synchronize_sched(void)

wait until an rcu-sched grace period has elapsed.
Parameters
void no arguments
Description
Control will return to the caller some time after a full rcu-sched grace period has elapsed, in other
words after all currently executing rcu-sched read-side critical sections have completed. These read-
side critical sections are delimited by rcu_read_lock_sched() and rcu_read_unlock_sched(), and may
be nested. Note that preempt_disable(), local_irq_disable(), and so on may be used in place of
rcu_read_lock_sched().
This means that all preempt_disable code sequences, including NMI and non-threaded hardware-interrupt
handlers, in progress on entry will have completed before this primitive returns. However, this does not
guarantee that softirq handlers will have completed, since in some kernels, these handlers can run in
process context, and can block.
Note that this guarantee implies further memory-ordering guarantees. On systems with more than one
CPU, when synchronize_sched() returns, each CPU is guaranteed to have executed a full memory bar-
rier since the end of its last RCU-sched read-side critical section whose beginning preceded the call to
synchronize_sched(). In addition, each CPU having an RCU read-side critical section that extends be-
yond the return from synchronize_sched() is guaranteed to have executed a full memory barrier after
the beginning of synchronize_sched() and before the beginning of that RCU read-side critical section.
Note that these guarantees include CPUs that are offline, idle, or executing in user mode, as well as CPUs
that are executing in the kernel.
Furthermore, if CPU A invoked synchronize_sched(), which returned to its caller on CPU B, then both
CPU A and CPU B are guaranteed to have executed a full memory barrier during the execution of syn-
chronize_sched() – even if CPU A and CPU B are the same CPU (but again only if the system has more
than one CPU).
void synchronize_rcu_bh(void)

wait until an rcu_bh grace period has elapsed.
Parameters
void no arguments
Description
Control will return to the caller some time after a full rcu_bh grace period has elapsed, in other words after
all currently executing rcu_bh read-side critical sections have completed. RCU read-side critical sections
are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), and may be nested.
See the description of synchronize_sched() for more detailed information on memory ordering guaran-
tees.
unsigned long get_state_synchronize_rcu(void)

Snapshot current RCU state
Parameters
void no arguments

1.10. Kernel utility functions 61

The kernel driver API manual, Release 4.13.0-rc4+

Description
Returns a cookie that is used by a later call to cond_synchronize_rcu() to determine whether or not a
full grace period has elapsed in the meantime.
void cond_synchronize_rcu(unsigned long oldstate)

Conditionally wait for an RCU grace period
Parameters
unsigned long oldstate return value from earlier call to get_state_synchronize_rcu()
Description
If a full RCU grace period has elapsed since the earlier call to get_state_synchronize_rcu(), just return.
Otherwise, invoke synchronize_rcu() to wait for a full grace period.
Yes, this function does not take counter wrap into account. But counter wrap is harmless. If the counter
wraps, we have waited for more than 2 billion grace periods (and way more on a 64-bit system!), so
waiting for one additional grace period should be just fine.
unsigned long get_state_synchronize_sched(void)

Snapshot current RCU-sched state
Parameters
void no arguments
Description
Returns a cookie that is used by a later call to cond_synchronize_sched() to determine whether or not
a full grace period has elapsed in the meantime.
void cond_synchronize_sched(unsigned long oldstate)

Conditionally wait for an RCU-sched grace period
Parameters
unsigned long oldstate return value from earlier call to get_state_synchronize_sched()
Description
If a full RCU-sched grace period has elapsed since the earlier call to get_state_synchronize_sched(),
just return. Otherwise, invoke synchronize_sched() to wait for a full grace period.
Yes, this function does not take counter wrap into account. But counter wrap is harmless. If the counter
wraps, we have waited for more than 2 billion grace periods (and way more on a 64-bit system!), so
waiting for one additional grace period should be just fine.
void rcu_barrier_bh(void)

Wait until all in-flight call_rcu_bh() callbacks complete.
Parameters
void no arguments
void rcu_barrier_sched(void)

Wait for in-flight call_rcu_sched() callbacks.
Parameters
void no arguments
void call_rcu(struct rcu_head * head, rcu_callback_t func)

Queue an RCU callback for invocation after a grace period.
Parameters
struct rcu_head * head structure to be used for queueing the RCU updates.
rcu_callback_t func actual callback function to be invoked after the grace period

62 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Description
The callback function will be invoked some time after a full grace period elapses, in other words after
all pre-existing RCU read-side critical sections have completed. However, the callback function might
well execute concurrently with RCU read-side critical sections that started after call_rcu() was invoked.
RCU read-side critical sections are delimited by rcu_read_lock() and rcu_read_unlock(), and may be
nested.
Note that all CPUs must agree that the grace period extended beyond all pre-existing RCU read-side
critical section. On systems with more than one CPU, this means that when “func()” is invoked, each
CPU is guaranteed to have executed a full memory barrier since the end of its last RCU read-side critical
section whose beginning preceded the call to call_rcu(). It also means that each CPU executing an
RCU read-side critical section that continues beyond the start of “func()” must have executed a memory
barrier after the call_rcu() but before the beginning of that RCU read-side critical section. Note that
these guarantees include CPUs that are offline, idle, or executing in user mode, as well as CPUs that are
executing in the kernel.
Furthermore, if CPU A invoked call_rcu() and CPU B invoked the resulting RCU callback function
“func()”, then both CPU A and CPU B are guaranteed to execute a full memory barrier during the time
interval between the call to call_rcu() and the invocation of “func()” – even if CPU A and CPU B are
the same CPU (but again only if the system has more than one CPU).
void synchronize_rcu(void)

wait until a grace period has elapsed.
Parameters
void no arguments
Description
Control will return to the caller some time after a full grace period has elapsed, in other words after all
currently executing RCU read-side critical sections have completed. Note, however, that upon return
from synchronize_rcu(), the caller might well be executing concurrently with new RCU read-side critical
sections that began while synchronize_rcu() was waiting. RCU read-side critical sections are delimited
by rcu_read_lock() and rcu_read_unlock(), and may be nested.
See the description of synchronize_sched() for more detailed information on memory-ordering guaran-
tees. However, please note that -only- the memory-ordering guarantees apply. For example, synchro-
nize_rcu() is -not- guaranteed to wait on things like code protected by preempt_disable(), instead,
synchronize_rcu() is -only- guaranteed to wait on RCU read-side critical sections, that is, sections of
code protected by rcu_read_lock().
void rcu_barrier(void)

Wait until all in-flight call_rcu() callbacks complete.
Parameters
void no arguments
Description
Note that this primitive does not necessarily wait for an RCU grace period to complete. For example, if
there are no RCU callbacks queued anywhere in the system, then rcu_barrier() is within its rights to
return immediately, without waiting for anything, much less an RCU grace period.
int rcu_read_lock_sched_held(void)

might we be in RCU-sched read-side critical section?
Parameters
void no arguments
Description
If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU-sched read-side critical section.
In absence of CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side critical section
unless it can prove otherwise. Note that disabling of preemption (including disabling irqs) counts as an

1.10. Kernel utility functions 63

The kernel driver API manual, Release 4.13.0-rc4+

RCU-sched read-side critical section. This is useful for debug checks in functions that required that they
be called within an RCU-sched read-side critical section.
Check debug_lockdep_rcu_enabled() to prevent false positives during boot and while lockdep is dis-
abled.
Note that if the CPU is in the idle loop from an RCU point of view (ie: that we are in the section between
rcu_idle_enter() and rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU did
an rcu_read_lock(). The reason for this is that RCU ignores CPUs that are in such a section, considering
these as in extended quiescent state, so such a CPU is effectively never in an RCU read-side critical section
regardless of what RCU primitives it invokes. This state of affairs is required — we need to keep an RCU-
free window in idle where the CPU may possibly enter into low power mode. This way we can notice an
extended quiescent state to other CPUs that started a grace period. Otherwise we would delay any grace
period as long as we run in the idle task.
Similarly, we avoid claiming an SRCU read lock held if the current CPU is offline.
void rcu_expedite_gp(void)

Expedite future RCU grace periods
Parameters
void no arguments
Description
After a call to this function, future calls to synchronize_rcu() and friends act as the corresponding syn-
chronize_rcu_expedited() function had instead been called.
void rcu_unexpedite_gp(void)

Cancel prior rcu_expedite_gp() invocation
Parameters
void no arguments
Description
Undo a prior call to rcu_expedite_gp(). If all prior calls to rcu_expedite_gp() are undone by a sub-
sequent call to rcu_unexpedite_gp(), and if the rcu_expedited sysfs/boot parameter is not set, then all
subsequent calls to synchronize_rcu() and friends will return to their normal non-expedited behavior.
int rcu_read_lock_held(void)

might we be in RCU read-side critical section?
Parameters
void no arguments
Description
If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU read-side critical section. In
absence of CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU read-side critical section unless
it can prove otherwise. This is useful for debug checks in functions that require that they be called within
an RCU read-side critical section.
Checks debug_lockdep_rcu_enabled() to prevent false positives during boot and while lockdep is dis-
abled.
Note that rcu_read_lock() and the matching rcu_read_unlock() must occur in the same context, for
example, it is illegal to invoke rcu_read_unlock() in process context if the matching rcu_read_lock()
was invoked from within an irq handler.
Note that rcu_read_lock() is disallowed if the CPU is either idle or offline from an RCU perspective, so
check for those as well.
int rcu_read_lock_bh_held(void)

might we be in RCU-bh read-side critical section?
Parameters

64 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

void no arguments
Description
Check for bottom half being disabled, which covers both the CONFIG_PROVE_RCU and not cases. Note
that if someone uses rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) will show
the situation. This is useful for debug checks in functions that require that they be called within an RCU
read-side critical section.
Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
Note that rcu_read_lock() is disallowed if the CPU is either idle or offline from an RCU perspective, so
check for those as well.
void wakeme_after_rcu(struct rcu_head * head)

Callback function to awaken a task after grace period
Parameters
struct rcu_head * head Pointer to rcu_head member within rcu_synchronize structure
Description
Awaken the corresponding task now that a grace period has elapsed.
void init_rcu_head_on_stack(struct rcu_head * head)

initialize on-stack rcu_head for debugobjects
Parameters
struct rcu_head * head pointer to rcu_head structure to be initialized
Description
This function informs debugobjects of a new rcu_head structure that has been allocated as an auto variable
on the stack. This function is not required for rcu_head structures that are statically defined or that are
dynamically allocated on the heap. This function has no effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD
kernel builds.
void destroy_rcu_head_on_stack(struct rcu_head * head)

destroy on-stack rcu_head for debugobjects
Parameters
struct rcu_head * head pointer to rcu_head structure to be initialized
Description
This function informs debugobjects that an on-stack rcu_head structure is about to go out of scope. As
with init_rcu_head_on_stack(), this function is not required for rcu_head structures that are statically
defined or that are dynamically allocated on the heap. Also as with init_rcu_head_on_stack(), this
function has no effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
void call_rcu_tasks(struct rcu_head * rhp, rcu_callback_t func)

Queue an RCU for invocation task-based grace period
Parameters
struct rcu_head * rhp structure to be used for queueing the RCU updates.
rcu_callback_t func actual callback function to be invoked after the grace period
Description
The callback function will be invoked some time after a full grace period elapses, in other words after all
currently executing RCU read-side critical sections have completed. call_rcu_tasks() assumes that the
read-side critical sections end at a voluntary context switch (not a preemption!), entry into idle, or transi-
tion to usermode execution. As such, there are no read-side primitives analogous to rcu_read_lock() and
rcu_read_unlock() because this primitive is intended to determine that all tasks have passed through a
safe state, not so much for data-strcuture synchronization.

1.10. Kernel utility functions 65

The kernel driver API manual, Release 4.13.0-rc4+

See the description of call_rcu() for more detailed information on memory ordering guarantees.
void synchronize_rcu_tasks(void)

wait until an rcu-tasks grace period has elapsed.
Parameters
void no arguments
Description
Control will return to the caller some time after a full rcu-tasks grace period has elapsed, in other words
after all currently executing rcu-tasks read-side critical sections have elapsed. These read-side critical
sections are delimited by calls to schedule(), cond_resched_rcu_qs(), idle execution, userspace exe-
cution, calls to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
This is a very specialized primitive, intended only for a few uses in tracing and other situations requiring
manipulation of function preambles and profiling hooks. The synchronize_rcu_tasks() function is not
(yet) intended for heavy use from multiple CPUs.
Note that this guarantee implies further memory-ordering guarantees. On systems with more than one
CPU, when synchronize_rcu_tasks() returns, each CPU is guaranteed to have executed a full memory
barrier since the end of its last RCU-tasks read-side critical section whose beginning preceded the call
to synchronize_rcu_tasks(). In addition, each CPU having an RCU-tasks read-side critical section that
extends beyond the return from synchronize_rcu_tasks() is guaranteed to have executed a full memory
barrier after the beginning of synchronize_rcu_tasks() and before the beginning of that RCU-tasks read-
side critical section. Note that these guarantees include CPUs that are offline, idle, or executing in user
mode, as well as CPUs that are executing in the kernel.
Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned to its caller on CPU B, then
both CPU A and CPU B are guaranteed to have executed a full memory barrier during the execution of
synchronize_rcu_tasks() – even if CPU A and CPU B are the same CPU (but again only if the system
has more than one CPU).
void rcu_barrier_tasks(void)

Wait for in-flight call_rcu_tasks() callbacks.
Parameters
void no arguments
Description
Although the current implementation is guaranteed to wait, it is not obligated to, for example, if there are
no pending callbacks.

1.11 Device Resource Management

void * devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid)
Allocate device resource data

Parameters
dr_release_t release Release function devres will be associated with
size_t size Allocation size
gfp_t gfp Allocation flags
int nid NUMA node
Description
Allocate devres of size bytes. The allocated area is zeroed, then associated with release. The returned
pointer can be passed to other devres_*() functions.
Return

66 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Pointer to allocated devres on success, NULL on failure.
void devres_for_each_res(struct device * dev, dr_release_t release, dr_match_t match, void

* match_data, void (*fn) (struct device *, void *, void *, void * data)
Resource iterator

Parameters
struct device * dev Device to iterate resource from
dr_release_t release Look for resources associated with this release function
dr_match_t match Match function (optional)
void * match_data Data for the match function
void (*)(struct device *,void *,void *) fn Function to be called for each matched resource.
void * data Data for fn, the 3rd parameter of fn
Description
Call fn for each devres of dev which is associated with release and for which match returns 1.
Return

void
void devres_free(void * res)

Free device resource data
Parameters
void * res Pointer to devres data to free
Description
Free devres created with devres_alloc().
void devres_add(struct device * dev, void * res)

Register device resource
Parameters
struct device * dev Device to add resource to
void * res Resource to register
Description
Register devres res to dev. res should have been allocated using devres_alloc(). On driver detach,
the associated release function will be invoked and devres will be freed automatically.
void * devres_find(struct device * dev, dr_release_t release, dr_match_t match, void

* match_data)
Find device resource

Parameters
struct device * dev Device to lookup resource from
dr_release_t release Look for resources associated with this release function
dr_match_t match Match function (optional)
void * match_data Data for the match function
Description
Find the latest devres of dev which is associated with release and for which match returns 1. If match
is NULL, it’s considered to match all.
Return
Pointer to found devres, NULL if not found.

1.11. Device Resource Management 67

The kernel driver API manual, Release 4.13.0-rc4+

void * devres_get(struct device * dev, void * new_res, dr_match_t match, void * match_data)
Find devres, if non-existent, add one atomically

Parameters
struct device * dev Device to lookup or add devres for
void * new_res Pointer to new initialized devres to add if not found
dr_match_t match Match function (optional)
void * match_data Data for the match function
Description
Find the latest devres of devwhich has the same release function as new_res and for whichmatch return
1. If found, new_res is freed; otherwise, new_res is added atomically.
Return
Pointer to found or added devres.
void * devres_remove(struct device * dev, dr_release_t release, dr_match_t match, void

* match_data)
Find a device resource and remove it

Parameters
struct device * dev Device to find resource from
dr_release_t release Look for resources associated with this release function
dr_match_t match Match function (optional)
void * match_data Data for the match function
Description
Find the latest devres of dev associated with release and for which match returns 1. If match is NULL,
it’s considered to match all. If found, the resource is removed atomically and returned.
Return
Pointer to removed devres on success, NULL if not found.
int devres_destroy(struct device * dev, dr_release_t release, dr_match_t match, void

* match_data)
Find a device resource and destroy it

Parameters
struct device * dev Device to find resource from
dr_release_t release Look for resources associated with this release function
dr_match_t match Match function (optional)
void * match_data Data for the match function
Description
Find the latest devres of dev associated with release and for which match returns 1. If match is NULL,
it’s considered to match all. If found, the resource is removed atomically and freed.
Note that the release function for the resource will not be called, only the devres-allocated data will be
freed. The caller becomes responsible for freeing any other data.
Return
0 if devres is found and freed, -ENOENT if not found.
int devres_release(struct device * dev, dr_release_t release, dr_match_t match, void

* match_data)
Find a device resource and destroy it, calling release

68 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct device * dev Device to find resource from
dr_release_t release Look for resources associated with this release function
dr_match_t match Match function (optional)
void * match_data Data for the match function
Description
Find the latest devres of dev associated with release and for which match returns 1. If match is NULL,
it’s considered to match all. If found, the resource is removed atomically, the release function called and
the resource freed.
Return
0 if devres is found and freed, -ENOENT if not found.
void * devres_open_group(struct device * dev, void * id, gfp_t gfp)

Open a new devres group
Parameters
struct device * dev Device to open devres group for
void * id Separator ID
gfp_t gfp Allocation flags
Description
Open a new devres group for dev with id. For id, using a pointer to an object which won’t be used for
another group is recommended. If id is NULL, address-wise unique ID is created.
Return
ID of the new group, NULL on failure.
void devres_close_group(struct device * dev, void * id)

Close a devres group
Parameters
struct device * dev Device to close devres group for
void * id ID of target group, can be NULL
Description
Close the group identified by id. If id is NULL, the latest open group is selected.
void devres_remove_group(struct device * dev, void * id)

Remove a devres group
Parameters
struct device * dev Device to remove group for
void * id ID of target group, can be NULL
Description
Remove the group identified by id. If id is NULL, the latest open group is selected. Note that removing a
group doesn’t affect any other resources.
int devres_release_group(struct device * dev, void * id)

Release resources in a devres group
Parameters
struct device * dev Device to release group for
void * id ID of target group, can be NULL

1.11. Device Resource Management 69

The kernel driver API manual, Release 4.13.0-rc4+

Description
Release all resources in the group identified by id. If id is NULL, the latest open group is selected. The
selected group and groups properly nested inside the selected group are removed.
Return
The number of released non-group resources.
int devm_add_action(struct device * dev, void (*action) (void *, void * data)

add a custom action to list of managed resources
Parameters
struct device * dev Device that owns the action
void (*)(void *) action Function that should be called
void * data Pointer to data passed to action implementation
Description
This adds a custom action to the list of managed resources so that it gets executed as part of standard
resource unwinding.
void devm_remove_action(struct device * dev, void (*action) (void *, void * data)

removes previously added custom action
Parameters
struct device * dev Device that owns the action
void (*)(void *) action Function implementing the action
void * data Pointer to data passed to action implementation
Description
Removes instance of action previously added by devm_add_action(). Both action and data should match
one of the existing entries.
void * devm_kmalloc(struct device * dev, size_t size, gfp_t gfp)

Resource-managed kmalloc
Parameters
struct device * dev Device to allocate memory for
size_t size Allocation size
gfp_t gfp Allocation gfp flags
Description
Managed kmalloc. Memory allocated with this function is automatically freed on driver detach. Like all
other devres resources, guaranteed alignment is unsigned long long.
Return
Pointer to allocated memory on success, NULL on failure.
char * devm_kstrdup(struct device * dev, const char * s, gfp_t gfp)

Allocate resource managed space and copy an existing string into that.
Parameters
struct device * dev Device to allocate memory for
const char * s the string to duplicate
gfp_t gfp the GFP mask used in the devm_kmalloc() call when allocating memory
Return
Pointer to allocated string on success, NULL on failure.

70 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

char * devm_kvasprintf(struct device * dev, gfp_t gfp, const char * fmt, va_list ap)
Allocate resource managed space and format a string into that.

Parameters
struct device * dev Device to allocate memory for
gfp_t gfp the GFP mask used in the devm_kmalloc() call when allocating memory
const char * fmt The printf()-style format string
va_list ap Arguments for the format string
Return
Pointer to allocated string on success, NULL on failure.
char * devm_kasprintf(struct device * dev, gfp_t gfp, const char * fmt, ...)

Allocate resource managed space and format a string into that.
Parameters
struct device * dev Device to allocate memory for
gfp_t gfp the GFP mask used in the devm_kmalloc() call when allocating memory
const char * fmt The printf()-style format string
... Arguments for the format string
Return
Pointer to allocated string on success, NULL on failure.
void devm_kfree(struct device * dev, void * p)

Resource-managed kfree
Parameters
struct device * dev Device this memory belongs to
void * p Memory to free
Description
Free memory allocated with devm_kmalloc().
void * devm_kmemdup(struct device * dev, const void * src, size_t len, gfp_t gfp)

Resource-managed kmemdup
Parameters
struct device * dev Device this memory belongs to
const void * src Memory region to duplicate
size_t len Memory region length
gfp_t gfp GFP mask to use
Description
Duplicate region of a memory using resource managed kmalloc
unsigned long devm_get_free_pages(struct device * dev, gfp_t gfp_mask, unsigned int order)

Resource-managed __get_free_pages
Parameters
struct device * dev Device to allocate memory for
gfp_t gfp_mask Allocation gfp flags
unsigned int order Allocation size is (1 << order) pages

1.11. Device Resource Management 71

The kernel driver API manual, Release 4.13.0-rc4+

Description
Managed get_free_pages. Memory allocated with this function is automatically freed on driver detach.
Return
Address of allocated memory on success, 0 on failure.
void devm_free_pages(struct device * dev, unsigned long addr)

Resource-managed free_pages
Parameters
struct device * dev Device this memory belongs to
unsigned long addr Memory to free
Description
Free memory allocated with devm_get_free_pages(). Unlike free_pages, there is no need to supply the
order.
void __percpu * __devm_alloc_percpu(struct device * dev, size_t size, size_t align)

Resource-managed alloc_percpu
Parameters
struct device * dev Device to allocate per-cpu memory for
size_t size Size of per-cpu memory to allocate
size_t align Alignment of per-cpu memory to allocate
Description
Managed alloc_percpu. Per-cpu memory allocated with this function is automatically freed on driver de-
tach.
Return
Pointer to allocated memory on success, NULL on failure.
void devm_free_percpu(struct device * dev, void __percpu * pdata)

Resource-managed free_percpu
Parameters
struct device * dev Device this memory belongs to
void __percpu * pdata Per-cpu memory to free
Description
Free memory allocated with devm_alloc_percpu().

72 Chapter 1. Driver Basics

CHAPTER

TWO

DEVICE DRIVERS INFRASTRUCTURE

2.1 The Basic Device Driver-Model Structures

struct bus_type
The bus type of the device

Definition

struct bus_type {
const char * name;
const char * dev_name;
struct device * dev_root;
const struct attribute_group ** bus_groups;
const struct attribute_group ** dev_groups;
const struct attribute_group ** drv_groups;
int (* match) (struct device *dev, struct device_driver *drv);
int (* uevent) (struct device *dev, struct kobj_uevent_env *env);
int (* probe) (struct device *dev);
int (* remove) (struct device *dev);
void (* shutdown) (struct device *dev);
int (* online) (struct device *dev);
int (* offline) (struct device *dev);
int (* suspend) (struct device *dev, pm_message_t state);
int (* resume) (struct device *dev);
int (* num_vf) (struct device *dev);
const struct dev_pm_ops * pm;
const struct iommu_ops * iommu_ops;
struct subsys_private * p;
struct lock_class_key lock_key;

};

Members
name The name of the bus.
dev_name Used for subsystems to enumerate devices like (“foo‘‘u‘‘”, dev->id).
dev_root Default device to use as the parent.
bus_groups Default attributes of the bus.
dev_groups Default attributes of the devices on the bus.
drv_groups Default attributes of the device drivers on the bus.
match Called, perhaps multiple times, whenever a new device or driver is added for this bus. It should

return a positive value if the given device can be handled by the given driver and zero otherwise. It
may also return error code if determining that the driver supports the device is not possible. In case
of -EPROBE_DEFER it will queue the device for deferred probing.

uevent Called when a device is added, removed, or a few other things that generate uevents to add the
environment variables.

73

The kernel driver API manual, Release 4.13.0-rc4+

probe Called when a new device or driver add to this bus, and callback the specific driver’s probe to initial
the matched device.

remove Called when a device removed from this bus.
shutdown Called at shut-down time to quiesce the device.
online Called to put the device back online (after offlining it).
offline Called to put the device offline for hot-removal. May fail.
suspend Called when a device on this bus wants to go to sleep mode.
resume Called to bring a device on this bus out of sleep mode.
num_vf Called to find out how many virtual functions a device on this bus supports.
pm Power management operations of this bus, callback the specific device driver’s pm-ops.
iommu_ops IOMMU specific operations for this bus, used to attach IOMMU driver implementations to a bus

and allow the driver to do bus-specific setup
p The private data of the driver core, only the driver core can touch this.
lock_key Lock class key for use by the lock validator
Description
A bus is a channel between the processor and one or more devices. For the purposes of the device model,
all devices are connected via a bus, even if it is an internal, virtual, “platform” bus. Buses can plug into
each other. A USB controller is usually a PCI device, for example. The device model represents the actual
connections between buses and the devices they control. A bus is represented by the bus_type structure.
It contains the name, the default attributes, the bus’ methods, PM operations, and the driver core’s private
data.
enum probe_type

device driver probe type to try Device drivers may opt in for special handling of their respective probe
routines. This tells the core what to expect and prefer.

Constants
PROBE_DEFAULT_STRATEGY Used by drivers that work equally well whether probed synchronously or asyn-

chronously.
PROBE_PREFER_ASYNCHRONOUS Drivers for “slow” devices which probing order is not essential for booting

the system may opt into executing their probes asynchronously.
PROBE_FORCE_SYNCHRONOUS Use this to annotate drivers that need their probe routines to run syn-

chronously with driver and device registration (with the exception of -EPROBE_DEFER handling -
re-probing always ends up being done asynchronously).

Description
Note that the end goal is to switch the kernel to use asynchronous probing by default, so annotating drivers
with PROBE_PREFER_ASYNCHRONOUS is a temporary measure that allows us to speed up boot process while
we are validating the rest of the drivers.
struct device_driver

The basic device driver structure
Definition

struct device_driver {
const char * name;
struct bus_type * bus;
struct module * owner;
const char * mod_name;
bool suppress_bind_attrs;
enum probe_type probe_type;
const struct of_device_id * of_match_table;

74 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

const struct acpi_device_id * acpi_match_table;
int (* probe) (struct device *dev);
int (* remove) (struct device *dev);
void (* shutdown) (struct device *dev);
int (* suspend) (struct device *dev, pm_message_t state);
int (* resume) (struct device *dev);
const struct attribute_group ** groups;
const struct dev_pm_ops * pm;
struct driver_private * p;

};

Members
name Name of the device driver.
bus The bus which the device of this driver belongs to.
owner The module owner.
mod_name Used for built-in modules.
suppress_bind_attrs Disables bind/unbind via sysfs.
probe_type Type of the probe (synchronous or asynchronous) to use.
of_match_table The open firmware table.
acpi_match_table The ACPI match table.
probe Called to query the existence of a specific device, whether this driver can work with it, and bind

the driver to a specific device.
remove Called when the device is removed from the system to unbind a device from this driver.
shutdown Called at shut-down time to quiesce the device.
suspend Called to put the device to sleep mode. Usually to a low power state.
resume Called to bring a device from sleep mode.
groups Default attributes that get created by the driver core automatically.
pm Power management operations of the device which matched this driver.
p Driver core’s private data, no one other than the driver core can touch this.
Description
The device driver-model tracks all of the drivers known to the system. The main reason for this tracking
is to enable the driver core to match up drivers with new devices. Once drivers are known objects within
the system, however, a number of other things become possible. Device drivers can export information
and configuration variables that are independent of any specific device.
struct subsys_interface

interfaces to device functions
Definition

struct subsys_interface {
const char * name;
struct bus_type * subsys;
struct list_head node;
int (* add_dev) (struct device *dev, struct subsys_interface *sif);
void (* remove_dev) (struct device *dev, struct subsys_interface *sif);

};

Members
name name of the device function

2.1. The Basic Device Driver-Model Structures 75

The kernel driver API manual, Release 4.13.0-rc4+

subsys subsytem of the devices to attach to
node the list of functions registered at the subsystem
add_dev device hookup to device function handler
remove_dev device hookup to device function handler
Description
Simple interfaces attached to a subsystem. Multiple interfaces can attach to a subsystem and its devices.
Unlike drivers, they do not exclusively claim or control devices. Interfaces usually represent a specific
functionality of a subsystem/class of devices.
struct class

device classes
Definition

struct class {
const char * name;
struct module * owner;
const struct attribute_group ** class_groups;
const struct attribute_group ** dev_groups;
struct kobject * dev_kobj;
int (* dev_uevent) (struct device *dev, struct kobj_uevent_env *env);
char *(* devnode) (struct device *dev, umode_t *mode);
void (* class_release) (struct class *class);
void (* dev_release) (struct device *dev);
int (* suspend) (struct device *dev, pm_message_t state);
int (* resume) (struct device *dev);
int (* shutdown) (struct device *dev);
const struct kobj_ns_type_operations * ns_type;
const void *(* namespace) (struct device *dev);
const struct dev_pm_ops * pm;
struct subsys_private * p;

};

Members
name Name of the class.
owner The module owner.
class_groups Default attributes of this class.
dev_groups Default attributes of the devices that belong to the class.
dev_kobj The kobject that represents this class and links it into the hierarchy.
dev_uevent Called when a device is added, removed from this class, or a few other things that generate

uevents to add the environment variables.
devnode Callback to provide the devtmpfs.
class_release Called to release this class.
dev_release Called to release the device.
suspend Used to put the device to sleep mode, usually to a low power state.
resume Used to bring the device from the sleep mode.
shutdown Called at shut-down time to quiesce the device.
ns_type Callbacks so sysfs can detemine namespaces.
namespace Namespace of the device belongs to this class.
pm The default device power management operations of this class.

76 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

p The private data of the driver core, no one other than the driver core can touch this.
Description
A class is a higher-level view of a device that abstracts out low-level implementation details. Drivers may
see a SCSI disk or an ATA disk, but, at the class level, they are all simply disks. Classes allow user space
to work with devices based on what they do, rather than how they are connected or how they work.
devm_alloc_percpu(dev, type)

Resource-managed alloc_percpu
Parameters
dev Device to allocate per-cpu memory for
type Type to allocate per-cpu memory for
Description
Managed alloc_percpu. Per-cpu memory allocated with this function is automatically freed on driver de-
tach.
Return
Pointer to allocated memory on success, NULL on failure.
enum device_link_state

Device link states.
Constants
DL_STATE_NONE The presence of the drivers is not being tracked.
DL_STATE_DORMANT None of the supplier/consumer drivers is present.
DL_STATE_AVAILABLE The supplier driver is present, but the consumer is not.
DL_STATE_CONSUMER_PROBE The consumer is probing (supplier driver present).
DL_STATE_ACTIVE Both the supplier and consumer drivers are present.
DL_STATE_SUPPLIER_UNBIND The supplier driver is unbinding.
struct device_link

Device link representation.
Definition

struct device_link {
struct device * supplier;
struct list_head s_node;
struct device * consumer;
struct list_head c_node;
enum device_link_state status;
u32 flags;
bool rpm_active;

#ifdef CONFIG_SRCU
struct rcu_head rcu_head;

#endif
};

Members
supplier The device on the supplier end of the link.
s_node Hook to the supplier device’s list of links to consumers.
consumer The device on the consumer end of the link.
c_node Hook to the consumer device’s list of links to suppliers.
status The state of the link (with respect to the presence of drivers).

2.1. The Basic Device Driver-Model Structures 77

The kernel driver API manual, Release 4.13.0-rc4+

flags Link flags.
rpm_active Whether or not the consumer device is runtime-PM-active.
rcu_head An RCU head to use for deferred execution of SRCU callbacks.
enum dl_dev_state

Device driver presence tracking information.
Constants
DL_DEV_NO_DRIVER There is no driver attached to the device.
DL_DEV_PROBING A driver is probing.
DL_DEV_DRIVER_BOUND The driver has been bound to the device.
DL_DEV_UNBINDING The driver is unbinding from the device.
struct dev_links_info

Device data related to device links.
Definition

struct dev_links_info {
struct list_head suppliers;
struct list_head consumers;
enum dl_dev_state status;

};

Members
suppliers List of links to supplier devices.
consumers List of links to consumer devices.
status Driver status information.
struct device

The basic device structure
Definition

struct device {
struct device * parent;
struct device_private * p;
struct kobject kobj;
const char * init_name;
const struct device_type * type;
struct mutex mutex;
struct bus_type * bus;
struct device_driver * driver;
void * platform_data;
void * driver_data;
struct dev_links_info links;
struct dev_pm_info power;
struct dev_pm_domain * pm_domain;

#ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
struct irq_domain * msi_domain;

#endif
#ifdef CONFIG_PINCTRL
struct dev_pin_info * pins;

#endif
#ifdef CONFIG_GENERIC_MSI_IRQ
struct list_head msi_list;

#endif
#ifdef CONFIG_NUMA
int numa_node;

78 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

#endif
u64 * dma_mask;
u64 coherent_dma_mask;
unsigned long dma_pfn_offset;
struct device_dma_parameters * dma_parms;
struct list_head dma_pools;
struct dma_coherent_mem * dma_mem;

#ifdef CONFIG_DMA_CMA
struct cma * cma_area;

#endif
struct dev_archdata archdata;
struct device_node * of_node;
struct fwnode_handle * fwnode;
dev_t devt;
u32 id;
spinlock_t devres_lock;
struct list_head devres_head;
struct klist_node knode_class;
struct class * class;
const struct attribute_group ** groups;
void (* release) (struct device *dev);
struct iommu_group * iommu_group;
struct iommu_fwspec * iommu_fwspec;
bool offline_disabled:1;
bool offline:1;
bool of_node_reused:1;

};

Members
parent The device’s “parent” device, the device to which it is attached. In most cases, a parent device

is some sort of bus or host controller. If parent is NULL, the device, is a top-level device, which is not
usually what you want.

p Holds the private data of the driver core portions of the device. See the comment of the struct de-
vice_private for detail.

kobj A top-level, abstract class from which other classes are derived.
init_name Initial name of the device.
type The type of device. This identifies the device type and carries type-specific information.
mutex Mutex to synchronize calls to its driver.
bus Type of bus device is on.
driver Which driver has allocated this
platform_data Platform data specific to the device.
driver_data Private pointer for driver specific info.
links Links to suppliers and consumers of this device.
power For device power management. See Documentation/power/admin-guide/devices.rst for details.
pm_domain Provide callbacks that are executed during system suspend, hibernation, system resume and

during runtime PM transitions along with subsystem-level and driver-level callbacks.
msi_domain The generic MSI domain this device is using.
pins For device pin management. See Documentation/pinctrl.txt for details.
msi_list Hosts MSI descriptors
numa_node NUMA node this device is close to.
dma_mask Dma mask (if dma’ble device).

2.1. The Basic Device Driver-Model Structures 79

The kernel driver API manual, Release 4.13.0-rc4+

coherent_dma_mask Like dma_mask, but for alloc_coherent mapping as not all hardware supports 64-bit
addresses for consistent allocations such descriptors.

dma_pfn_offset offset of DMA memory range relatively of RAM
dma_parms A low level driver may set these to teach IOMMU code about segment limitations.
dma_pools Dma pools (if dma’ble device).
dma_mem Internal for coherent mem override.
cma_area Contiguous memory area for dma allocations
archdata For arch-specific additions.
of_node Associated device tree node.
fwnode Associated device node supplied by platform firmware.
devt For creating the sysfs “dev”.
id device instance
devres_lock Spinlock to protect the resource of the device.
devres_head The resources list of the device.
knode_class The node used to add the device to the class list.
class The class of the device.
groups Optional attribute groups.
release Callback to free the device after all references have gone away. This should be set by the allo-

cator of the device (i.e. the bus driver that discovered the device).
iommu_group IOMMU group the device belongs to.
iommu_fwspec IOMMU-specific properties supplied by firmware.
offline_disabled If set, the device is permanently online.
offline Set after successful invocation of bus type’s .:c:func:offline().
of_node_reused Set if the device-tree node is shared with an ancestor device.
Example
For devices on custom boards, as typical of embedded and SOC based hardware, Linux often uses

platform_data to point to board-specific structures describing devices and how they are wired. That
can include what ports are available, chip variants, which GPIO pins act in what additional roles, and
so on. This shrinks the “Board Support Packages” (BSPs) and minimizes board-specific #ifdefs in
drivers.

Description
At the lowest level, every device in a Linux system is represented by an instance of struct device. The
device structure contains the information that the device model core needs to model the system. Most
subsystems, however, track additional information about the devices they host. As a result, it is rare for
devices to be represented by bare device structures; instead, that structure, like kobject structures, is
usually embedded within a higher-level representation of the device.
module_driver(__driver, __register, __unregister, ...)

Helper macro for drivers that don’t do anything special in module init/exit. This eliminates a lot of
boilerplate. Each module may only use this macro once, and calling it replaces module_init() and
module_exit().

Parameters
__driver driver name
__register register function for this driver type

80 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

__unregister unregister function for this driver type
... Additional arguments to be passed to __register and __unregister.
Description
Use this macro to construct bus specific macros for registering drivers, and do not use it on its own.
builtin_driver(__driver, __register, ...)

Helper macro for drivers that don’t do anything special in init and have no exit. This eliminates some
boilerplate. Each driver may only use this macro once, and calling it replaces device_initcall (or in
some cases, the legacy __initcall). This is meant to be a direct parallel of module_driver() above
but without the __exit stuff that is not used for builtin cases.

Parameters
__driver driver name
__register register function for this driver type
... Additional arguments to be passed to __register
Description
Use this macro to construct bus specific macros for registering drivers, and do not use it on its own.

2.2 Device Drivers Base

void driver_init(void)
initialize driver model.

Parameters
void no arguments
Description
Call the driver model init functions to initialize their subsystems. Called early from init/main.c.
int driver_for_each_device(struct device_driver * drv, struct device * start, void * data, int (*fn)

(struct device *, void *)
Iterator for devices bound to a driver.

Parameters
struct device_driver * drv Driver we’re iterating.
struct device * start Device to begin with
void * data Data to pass to the callback.
int (*)(struct device *,void *) fn Function to call for each device.
Description
Iterate over the drv‘s list of devices calling fn for each one.
struct device * driver_find_device(struct device_driver * drv, struct device * start, void * data, int

(*match) (struct device *dev, void *data)
device iterator for locating a particular device.

Parameters
struct device_driver * drv The device’s driver
struct device * start Device to begin with
void * data Data to pass to match function
int (*)(struct device *dev,void *data) match Callback function to check device

2.2. Device Drivers Base 81

The kernel driver API manual, Release 4.13.0-rc4+

Description
This is similar to the driver_for_each_device() function above, but it returns a reference to a device
that is ‘found’ for later use, as determined by the match callback.
The callback should return 0 if the device doesn’t match and non-zero if it does. If the callback returns
non-zero, this function will return to the caller and not iterate over any more devices.
int driver_create_file(struct device_driver * drv, const struct driver_attribute * attr)

create sysfs file for driver.
Parameters
struct device_driver * drv driver.
const struct driver_attribute * attr driver attribute descriptor.
void driver_remove_file(struct device_driver * drv, const struct driver_attribute * attr)

remove sysfs file for driver.
Parameters
struct device_driver * drv driver.
const struct driver_attribute * attr driver attribute descriptor.
int driver_register(struct device_driver * drv)

register driver with bus
Parameters
struct device_driver * drv driver to register
Description
We pass off most of the work to the bus_add_driver() call, since most of the things we have to do deal
with the bus structures.
void driver_unregister(struct device_driver * drv)

remove driver from system.
Parameters
struct device_driver * drv driver.
Description
Again, we pass off most of the work to the bus-level call.
struct device_driver * driver_find(const char * name, struct bus_type * bus)

locate driver on a bus by its name.
Parameters
const char * name name of the driver.
struct bus_type * bus bus to scan for the driver.
Description
Call kset_find_obj() to iterate over list of drivers on a bus to find driver by name. Return driver if found.
This routine provides no locking to prevent the driver it returns from being unregistered or unloaded while
the caller is using it. The caller is responsible for preventing this.
struct device_link * device_link_add(struct device * consumer, struct device * supplier, u32 flags)

Create a link between two devices.
Parameters
struct device * consumer Consumer end of the link.
struct device * supplier Supplier end of the link.

82 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

u32 flags Link flags.
Description
The caller is responsible for the proper synchronization of the link creation with runtime PM. First, setting
the DL_FLAG_PM_RUNTIME flag will cause the runtime PM framework to take the link into account. Sec-
ond, if the DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will be forced into the
active metastate and reference-counted upon the creation of the link. If DL_FLAG_PM_RUNTIME is not set,
DL_FLAG_RPM_ACTIVE will be ignored.
If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically when the consumer device
driver unbinds from it. The combination of both DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is
invalid and will cause NULL to be returned.
A side effect of the link creation is re-ordering of dpm_list and the devices_kset list bymoving the consumer
device and all devices depending on it to the ends of these lists (that does not happen to devices that
have not been registered when this function is called).
The supplier device is required to be registered when this function is called and NULL will be returned if
that is not the case. The consumer device need not be registered, however.
void device_link_del(struct device_link * link)

Delete a link between two devices.
Parameters
struct device_link * link Device link to delete.
Description
The caller must ensure proper synchronization of this function with runtime PM.
const char * dev_driver_string(const struct device * dev)

Return a device’s driver name, if at all possible
Parameters
const struct device * dev struct device to get the name of
Description
Will return the device’s driver’s name if it is bound to a device. If the device is not bound to a driver, it
will return the name of the bus it is attached to. If it is not attached to a bus either, an empty string will
be returned.
int device_create_file(struct device * dev, const struct device_attribute * attr)

create sysfs attribute file for device.
Parameters
struct device * dev device.
const struct device_attribute * attr device attribute descriptor.
void device_remove_file(struct device * dev, const struct device_attribute * attr)

remove sysfs attribute file.
Parameters
struct device * dev device.
const struct device_attribute * attr device attribute descriptor.
bool device_remove_file_self(struct device * dev, const struct device_attribute * attr)

remove sysfs attribute file from its own method.
Parameters
struct device * dev device.
const struct device_attribute * attr device attribute descriptor.

2.2. Device Drivers Base 83

The kernel driver API manual, Release 4.13.0-rc4+

Description
See kernfs_remove_self() for details.
int device_create_bin_file(struct device * dev, const struct bin_attribute * attr)

create sysfs binary attribute file for device.
Parameters
struct device * dev device.
const struct bin_attribute * attr device binary attribute descriptor.
void device_remove_bin_file(struct device * dev, const struct bin_attribute * attr)

remove sysfs binary attribute file
Parameters
struct device * dev device.
const struct bin_attribute * attr device binary attribute descriptor.
void device_initialize(struct device * dev)

init device structure.
Parameters
struct device * dev device.
Description
This prepares the device for use by other layers by initializing its fields. It is the first half of de-
vice_register(), if called by that function, though it can also be called separately, so one may use
dev‘s fields. In particular, get_device()/put_device() may be used for reference counting of dev after
calling this function.
All fields in dev must be initialized by the caller to 0, except for those explicitly set to some other value.
The simplest approach is to use kzalloc() to allocate the structure containing dev.
NOTE
Use put_device() to give up your reference instead of freeing dev directly once you have called this
function.
int dev_set_name(struct device * dev, const char * fmt, ...)

set a device name
Parameters
struct device * dev device
const char * fmt format string for the device’s name
... variable arguments
int device_add(struct device * dev)

add device to device hierarchy.
Parameters
struct device * dev device.
Description
This is part 2 of device_register(), though may be called separately _iff_ device_initialize() has
been called separately.
This adds dev to the kobject hierarchy via kobject_add(), adds it to the global and sibling lists for the
device, then adds it to the other relevant subsystems of the driver model.
Do not call this routine or device_register()more than once for any device structure. The driver model
core is not designed to work with devices that get unregistered and then spring back to life. (Among

84 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

other things, it’s very hard to guarantee that all references to the previous incarnation of dev have been
dropped.) Allocate and register a fresh new struct device instead.
NOTE
Never directly free dev after calling this function, even if it returned an error! Always use put_device()
to give up your reference instead.
int device_register(struct device * dev)

register a device with the system.
Parameters
struct device * dev pointer to the device structure
Description
This happens in two clean steps - initialize the device and add it to the system. The two steps can be called
separately, but this is the easiest and most common. I.e. you should only call the two helpers separately
if have a clearly defined need to use and refcount the device before it is added to the hierarchy.
For more information, see the kerneldoc for device_initialize() and device_add().
NOTE
Never directly free dev after calling this function, even if it returned an error! Always use put_device()
to give up the reference initialized in this function instead.
struct device * get_device(struct device * dev)

increment reference count for device.
Parameters
struct device * dev device.
Description
This simply forwards the call to kobject_get(), though we do take care to provide for the case that we
get a NULL pointer passed in.
void put_device(struct device * dev)

decrement reference count.
Parameters
struct device * dev device in question.
void device_del(struct device * dev)

delete device from system.
Parameters
struct device * dev device.
Description
This is the first part of the device unregistration sequence. This removes the device from the lists we con-
trol from here, has it removed from the other driver model subsystems it was added to in device_add(),
and removes it from the kobject hierarchy.
NOTE
this should be called manually _iff_ device_add() was also called manually.
void device_unregister(struct device * dev)

unregister device from system.
Parameters
struct device * dev device going away.

2.2. Device Drivers Base 85

The kernel driver API manual, Release 4.13.0-rc4+

Description
We do this in two parts, like we do device_register(). First, we remove it from all the subsystems with
device_del(), then we decrement the reference count via put_device(). If that is the final reference
count, the device will be cleaned up via device_release() above. Otherwise, the structure will stick
around until the final reference to the device is dropped.
int device_for_each_child(struct device * parent, void * data, int (*fn) (struct device *dev,

void *data)
device child iterator.

Parameters
struct device * parent parent struct device.
void * data data for the callback.
int (*)(struct device *dev,void *data) fn function to be called for each device.
Description
Iterate over parent‘s child devices, and call fn for each, passing it data.
We check the return of fn each time. If it returns anything other than 0, we break out and return that
value.
int device_for_each_child_reverse(struct device * parent, void * data, int (*fn) (struct de-

vice *dev, void *data)
device child iterator in reversed order.

Parameters
struct device * parent parent struct device.
void * data data for the callback.
int (*)(struct device *dev,void *data) fn function to be called for each device.
Description
Iterate over parent‘s child devices, and call fn for each, passing it data.
We check the return of fn each time. If it returns anything other than 0, we break out and return that
value.
struct device * device_find_child(struct device * parent, void * data, int (*match) (struct de-

vice *dev, void *data)
device iterator for locating a particular device.

Parameters
struct device * parent parent struct device
void * data Data to pass to match function
int (*)(struct device *dev,void *data) match Callback function to check device
Description
This is similar to the device_for_each_child() function above, but it returns a reference to a device that
is ‘found’ for later use, as determined by the match callback.
The callback should return 0 if the device doesn’t match and non-zero if it does. If the callback returns
non-zero and a reference to the current device can be obtained, this function will return to the caller and
not iterate over any more devices.
NOTE
you will need to drop the reference with put_device() after use.
struct device * __root_device_register(const char * name, struct module * owner)

allocate and register a root device

86 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
const char * name root device name
struct module * owner owner module of the root device, usually THIS_MODULE
Description
This function allocates a root device and registers it using device_register(). In order to free the re-
turned device, use root_device_unregister().
Root devices are dummy devices which allow other devices to be grouped under /sys/devices. Use this
function to allocate a root device and then use it as the parent of any device which should appear under
/sys/devices/{name}
The /sys/devices/{name} directory will also contain a ‘module’ symlink which points to the owner direc-
tory in sysfs.
Returns struct device pointer on success, or ERR_PTR() on error.
Note
You probably want to use root_device_register().
void root_device_unregister(struct device * dev)

unregister and free a root device
Parameters
struct device * dev device going away
Description
This function unregisters and cleans up a device that was created by root_device_register().
struct device * device_create_vargs(struct class * class, struct device * parent, dev_t devt, void

* drvdata, const char * fmt, va_list args)
creates a device and registers it with sysfs

Parameters
struct class * class pointer to the struct class that this device should be registered to
struct device * parent pointer to the parent struct device of this new device, if any
dev_t devt the dev_t for the char device to be added
void * drvdata the data to be added to the device for callbacks
const char * fmt string for the device’s name
va_list args va_list for the device’s name
Description
This function can be used by char device classes. A struct device will be created in sysfs, registered to
the specified class.
A “dev” file will be created, showing the dev_t for the device, if the dev_t is not 0,0. If a pointer to a
parent struct device is passed in, the newly created struct device will be a child of that device in sysfs.
The pointer to the struct device will be returned from the call. Any further sysfs files that might be required
can be created using this pointer.
Returns struct device pointer on success, or ERR_PTR() on error.
Note
the struct class passed to this function must have previously been created with a call to class_create().

struct device * device_create(struct class * class, struct device * parent, dev_t devt, void * drv-
data, const char * fmt, ...)

creates a device and registers it with sysfs

2.2. Device Drivers Base 87

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct class * class pointer to the struct class that this device should be registered to
struct device * parent pointer to the parent struct device of this new device, if any
dev_t devt the dev_t for the char device to be added
void * drvdata the data to be added to the device for callbacks
const char * fmt string for the device’s name
... variable arguments
Description
This function can be used by char device classes. A struct device will be created in sysfs, registered to
the specified class.
A “dev” file will be created, showing the dev_t for the device, if the dev_t is not 0,0. If a pointer to a
parent struct device is passed in, the newly created struct device will be a child of that device in sysfs.
The pointer to the struct device will be returned from the call. Any further sysfs files that might be required
can be created using this pointer.
Returns struct device pointer on success, or ERR_PTR() on error.
Note
the struct class passed to this function must have previously been created with a call to class_create().

struct device * device_create_with_groups(struct class * class, struct device * parent, dev_t devt,
void * drvdata, const struct attribute_group ** groups,
const char * fmt, ...)

creates a device and registers it with sysfs
Parameters
struct class * class pointer to the struct class that this device should be registered to
struct device * parent pointer to the parent struct device of this new device, if any
dev_t devt the dev_t for the char device to be added
void * drvdata the data to be added to the device for callbacks
const struct attribute_group ** groups NULL-terminated list of attribute groups to be created
const char * fmt string for the device’s name
... variable arguments
Description
This function can be used by char device classes. A struct device will be created in sysfs, registered to the
specified class. Additional attributes specified in the groups parameter will also be created automatically.
A “dev” file will be created, showing the dev_t for the device, if the dev_t is not 0,0. If a pointer to a
parent struct device is passed in, the newly created struct device will be a child of that device in sysfs.
The pointer to the struct device will be returned from the call. Any further sysfs files that might be required
can be created using this pointer.
Returns struct device pointer on success, or ERR_PTR() on error.
Note
the struct class passed to this function must have previously been created with a call to class_create().

void device_destroy(struct class * class, dev_t devt)
removes a device that was created with device_create()

Parameters

88 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct class * class pointer to the struct class that this device was registered with
dev_t devt the dev_t of the device that was previously registered
Description
This call unregisters and cleans up a device that was created with a call to device_create().
int device_rename(struct device * dev, const char * new_name)

renames a device
Parameters
struct device * dev the pointer to the struct device to be renamed
const char * new_name the new name of the device
Description
It is the responsibility of the caller to provide mutual exclusion between two different calls of de-
vice_rename on the same device to ensure that new_name is valid and won’t conflict with other devices.
Note
Don’t call this function. Currently, the networking layer calls this function, but that will change. The
following text from Kay Sievers offers some insight:
Renaming devices is racy at many levels, symlinks and other stuff are not replaced atomically, and you
get a “move” uevent, but it’s not easy to connect the event to the old and new device. Device nodes are
not renamed at all, there isn’t even support for that in the kernel now.
In the meantime, during renaming, your target name might be taken by another driver, creating conflicts.
Or the old name is taken directly after you renamed it – then you get events for the same DEVPATH,
before you even see the “move” event. It’s just a mess, and nothing new should ever rely on kernel
device renaming. Besides that, it’s not even implemented now for other things than (driver-core wise
very simple) network devices.
We are currently about to change network renaming in udev to completely disallow renaming of devices
in the same namespace as the kernel uses, because we can’t solve the problems properly, that arise with
swapping names of multiple interfaces without races. Means, renaming of eth[0-9]* will only be allowed
to some other name than eth[0-9]*, for the aforementioned reasons.
Make up a “real” name in the driver before you register anything, or add some other attributes for
userspace to find the device, or use udev to add symlinks – but never rename kernel devices later, it’s a
complete mess. We don’t even want to get into that and try to implement the missing pieces in the core.
We really have other pieces to fix in the driver core mess. :)
int device_move(struct device * dev, struct device * new_parent, enum dpm_order dpm_order)

moves a device to a new parent
Parameters
struct device * dev the pointer to the struct device to be moved
struct device * new_parent the new parent of the device (can by NULL)
enum dpm_order dpm_order how to reorder the dpm_list
void set_primary_fwnode(struct device * dev, struct fwnode_handle * fwnode)

Change the primary firmware node of a given device.
Parameters
struct device * dev Device to handle.
struct fwnode_handle * fwnode New primary firmware node of the device.
Description
Set the device’s firmware node pointer to fwnode, but if a secondary firmware node of the device is
present, preserve it.

2.2. Device Drivers Base 89

The kernel driver API manual, Release 4.13.0-rc4+

void device_set_of_node_from_dev(struct device * dev, const struct device * dev2)
reuse device-tree node of another device

Parameters
struct device * dev device whose device-tree node is being set
const struct device * dev2 device whose device-tree node is being reused
Description
Takes another reference to the new device-tree node after first dropping any reference held to the old
node.
void register_syscore_ops(struct syscore_ops * ops)

Register a set of system core operations.
Parameters
struct syscore_ops * ops System core operations to register.
void unregister_syscore_ops(struct syscore_ops * ops)

Unregister a set of system core operations.
Parameters
struct syscore_ops * ops System core operations to unregister.
int syscore_suspend(void)

Execute all the registered system core suspend callbacks.
Parameters
void no arguments
Description
This function is executed with one CPU on-line and disabled interrupts.
void syscore_resume(void)

Execute all the registered system core resume callbacks.
Parameters
void no arguments
Description
This function is executed with one CPU on-line and disabled interrupts.
struct class * __class_create(struct module * owner, const char * name, struct lock_class_key

* key)
create a struct class structure

Parameters
struct module * owner pointer to the module that is to “own” this struct class
const char * name pointer to a string for the name of this class.
struct lock_class_key * key the lock_class_key for this class; used by mutex lock debugging
Description
This is used to create a struct class pointer that can then be used in calls to device_create().
Returns struct class pointer on success, or ERR_PTR() on error.
Note, the pointer created here is to be destroyed when finished by making a call to class_destroy().
void class_destroy(struct class * cls)

destroys a struct class structure
Parameters

90 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct class * cls pointer to the struct class that is to be destroyed
Description
Note, the pointer to be destroyed must have been created with a call to class_create().
void class_dev_iter_init(struct class_dev_iter * iter, struct class * class, struct device * start,

const struct device_type * type)
initialize class device iterator

Parameters
struct class_dev_iter * iter class iterator to initialize
struct class * class the class we wanna iterate over
struct device * start the device to start iterating from, if any
const struct device_type * type device_type of the devices to iterate over, NULL for all
Description
Initialize class iterator iter such that it iterates over devices of class. If start is set, the list iteration will
start there, otherwise if it is NULL, the iteration starts at the beginning of the list.
struct device * class_dev_iter_next(struct class_dev_iter * iter)

iterate to the next device
Parameters
struct class_dev_iter * iter class iterator to proceed
Description
Proceed iter to the next device and return it. Returns NULL if iteration is complete.
The returned device is referenced and won’t be released till iterator is proceed to the next device or exited.
The caller is free to do whatever it wants to do with the device including calling back into class code.
void class_dev_iter_exit(struct class_dev_iter * iter)

finish iteration
Parameters
struct class_dev_iter * iter class iterator to finish
Description
Finish an iteration. Always call this function after iteration is complete whether the iteration ran till the
end or not.
int class_for_each_device(struct class * class, struct device * start, void * data, int (*fn) (struct

device *, void *)
device iterator

Parameters
struct class * class the class we’re iterating
struct device * start the device to start with in the list, if any.
void * data data for the callback
int (*)(struct device *,void *) fn function to be called for each device
Description
Iterate over class‘s list of devices, and call fn for each, passing it data. If start is set, the list iteration
will start there, otherwise if it is NULL, the iteration starts at the beginning of the list.
We check the return of fn each time. If it returns anything other than 0, we break out and return that
value.
fn is allowed to do anything including calling back into class code. There’s no locking restriction.

2.2. Device Drivers Base 91

The kernel driver API manual, Release 4.13.0-rc4+

struct device * class_find_device(struct class * class, struct device * start, const void * data, int
(*match) (struct device *, const void *)

device iterator for locating a particular device
Parameters
struct class * class the class we’re iterating
struct device * start Device to begin with
const void * data data for the match function
int (*)(struct device *,const void *) match function to check device
Description
This is similar to the class_for_each_dev() function above, but it returns a reference to a device that is
‘found’ for later use, as determined by the match callback.
The callback should return 0 if the device doesn’t match and non-zero if it does. If the callback returns
non-zero, this function will return to the caller and not iterate over any more devices.
Note, you will need to drop the reference with put_device() after use.
match is allowed to do anything including calling back into class code. There’s no locking restriction.
struct class_compat * class_compat_register(const char * name)

register a compatibility class
Parameters
const char * name the name of the class
Description
Compatibility class are meant as a temporary user-space compatibility workaround when converting a
family of class devices to a bus devices.
void class_compat_unregister(struct class_compat * cls)

unregister a compatibility class
Parameters
struct class_compat * cls the class to unregister
int class_compat_create_link(struct class_compat * cls, struct device * dev, struct device * de-

vice_link)
create a compatibility class device link to a bus device

Parameters
struct class_compat * cls the compatibility class
struct device * dev the target bus device
struct device * device_link an optional device to which a “device” link should be created
void class_compat_remove_link(struct class_compat * cls, struct device * dev, struct device * de-

vice_link)
remove a compatibility class device link to a bus device

Parameters
struct class_compat * cls the compatibility class
struct device * dev the target bus device
struct device * device_link an optional device to which a “device” link was previously created
void unregister_node(struct node * node)

unregister a node device
Parameters

92 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct node * node node going away
Description
Unregisters a node device node. All the devices on the node must be unregistered before calling this
function.
int request_firmware(const struct firmware ** firmware_p, const char * name, struct device * de-

vice)
send firmware request and wait for it

Parameters
const struct firmware ** firmware_p pointer to firmware image
const char * name name of firmware file
struct device * device device for which firmware is being loaded
Description

firmware_p will be used to return a firmware image by the name of name for device device.
Should be called from user context where sleeping is allowed.
name will be used as $FIRMWARE in the uevent environment and should be distinctive enough
not to be confused with any other firmware image for this or any other device.

Caller must hold the reference count of device.
The function can be called safely inside device’s suspend and resume callback.

int request_firmware_direct(const struct firmware ** firmware_p, const char * name, struct de-
vice * device)

load firmware directly without usermode helper
Parameters
const struct firmware ** firmware_p pointer to firmware image
const char * name name of firmware file
struct device * device device for which firmware is being loaded
Description
This function works pretty much like request_firmware(), but this doesn’t fall back to usermode helper
even if the firmware couldn’t be loaded directly from fs. Hence it’s useful for loading optional firmwares,
which aren’t always present, without extra long timeouts of udev.
int request_firmware_into_buf(const struct firmware ** firmware_p, const char * name, struct de-

vice * device, void * buf, size_t size)
load firmware into a previously allocated buffer

Parameters
const struct firmware ** firmware_p pointer to firmware image
const char * name name of firmware file
struct device * device device for which firmware is being loaded and DMA region allocated
void * buf address of buffer to load firmware into
size_t size size of buffer
Description
This function works pretty much like request_firmware(), but it doesn’t allocate a buffer to hold the
firmware data. Instead, the firmware is loaded directly into the buffer pointed to by buf and the
firmware_p data member is pointed at buf.
This function doesn’t cache firmware either.

2.2. Device Drivers Base 93

The kernel driver API manual, Release 4.13.0-rc4+

void release_firmware(const struct firmware * fw)
release the resource associated with a firmware image

Parameters
const struct firmware * fw firmware resource to release
int request_firmware_nowait(struct module * module, bool uevent, const char * name, struct de-

vice * device, gfp_t gfp, void * context, void (*cont) (const struct
firmware *fw, void *context)

asynchronous version of request_firmware
Parameters
struct module * module module requesting the firmware
bool uevent sends uevent to copy the firmware image if this flag is non-zero else the firmware copy

must be done manually.
const char * name name of firmware file
struct device * device device for which firmware is being loaded
gfp_t gfp allocation flags
void * context will be passed over to cont, and fw may be NULL if firmware request fails.
void (*)(const struct firmware *fw,void *context) cont function will be called asynchronously

when the firmware request is over.
Description

Caller must hold the reference count of device.
Asynchronous variant of request_firmware() for user contexts:

• sleep for as small periods as possible since it may increase kernel boot time of built-
in device drivers requesting firmware in their ->:c:func:probe() methods, if gfp is
GFP_KERNEL.

• can’t sleep at all if gfp is GFP_ATOMIC.
int transport_class_register(struct transport_class * tclass)

register an initial transport class
Parameters
struct transport_class * tclass a pointer to the transport class structure to be initialised
Description
The transport class contains an embedded class which is used to identify it. The caller should initialise
this structure with zeros and then generic class must have been initialised with the actual transport class
unique name. There’s a macro DECLARE_TRANSPORT_CLASS() to do this (declared classes still must be
registered).
Returns 0 on success or error on failure.
void transport_class_unregister(struct transport_class * tclass)

unregister a previously registered class
Parameters
struct transport_class * tclass The transport class to unregister
Description
Must be called prior to deallocating the memory for the transport class.
int anon_transport_class_register(struct anon_transport_class * atc)

register an anonymous class
Parameters

94 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct anon_transport_class * atc The anon transport class to register
Description
The anonymous transport class contains both a transport class and a container. The idea of an anony-
mous class is that it never actually has any device attributes associated with it (and thus saves on
container storage). So it can only be used for triggering events. Use prezero and then use DE-
CLARE_ANON_TRANSPORT_CLASS() to initialise the anon transport class storage.
void anon_transport_class_unregister(struct anon_transport_class * atc)

unregister an anon class
Parameters
struct anon_transport_class * atc Pointer to the anon transport class to unregister
Description
Must be called prior to deallocating the memory for the anon transport class.
void transport_setup_device(struct device * dev)

declare a new dev for transport class association but don’t make it visible yet.
Parameters
struct device * dev the generic device representing the entity being added
Description
Usually, dev represents some component in the HBA system (either the HBA itself or a device remote
across the HBA bus). This routine is simply a trigger point to see if any set of transport classes wishes
to associate with the added device. This allocates storage for the class device and initialises it, but does
not yet add it to the system or add attributes to it (you do this with transport_add_device). If you have no
need for a separate setup and add operations, use transport_register_device (see transport_class.h).
void transport_add_device(struct device * dev)

declare a new dev for transport class association
Parameters
struct device * dev the generic device representing the entity being added
Description
Usually, dev represents some component in the HBA system (either the HBA itself or a device remote
across the HBA bus). This routine is simply a trigger point used to add the device to the system and
register attributes for it.
void transport_configure_device(struct device * dev)

configure an already set up device
Parameters
struct device * dev generic device representing device to be configured
Description
The idea of configure is simply to provide a point within the setup process to allow the transport class to
extract information from a device after it has been setup. This is used in SCSI because we have to have a
setup device to begin using the HBA, but after we send the initial inquiry, we use configure to extract the
device parameters. The device need not have been added to be configured.
void transport_remove_device(struct device * dev)

remove the visibility of a device
Parameters
struct device * dev generic device to remove

2.2. Device Drivers Base 95

The kernel driver API manual, Release 4.13.0-rc4+

Description
This call removes the visibility of the device (to the user from sysfs), but does not destroy it. To eliminate
a device entirely you must also call transport_destroy_device. If you don’t need to do remove and destroy
as separate operations, use transport_unregister_device() (see transport_class.h) which will perform
both calls for you.
void transport_destroy_device(struct device * dev)

destroy a removed device
Parameters
struct device * dev device to eliminate from the transport class.
Description
This call triggers the elimination of storage associated with the transport classdev. Note: all it really does
is relinquish a reference to the classdev. The memory will not be freed until the last reference goes to
zero. Note also that the classdev retains a reference count on dev, so dev too will remain for as long as
the transport class device remains around.
int device_bind_driver(struct device * dev)

bind a driver to one device.
Parameters
struct device * dev device.
Description
Allow manual attachment of a driver to a device. Caller must have already set dev->driver.
Note that this does not modify the bus reference count nor take the bus’s rwsem. Please verify those are
accounted for before calling this. (It is ok to call with no other effort from a driver’s probe() method.)
This function must be called with the device lock held.
void wait_for_device_probe(void)
Parameters
void no arguments
Description
Wait for device probing to be completed.
int device_attach(struct device * dev)

try to attach device to a driver.
Parameters
struct device * dev device.
Description
Walk the list of drivers that the bus has and call driver_probe_device() for each pair. If a compatible
pair is found, break out and return.
Returns 1 if the device was bound to a driver; 0 if no matching driver was found; -ENODEV if the device is
not registered.
When called for a USB interface, dev->parent lock must be held.
int driver_attach(struct device_driver * drv)

try to bind driver to devices.
Parameters
struct device_driver * drv driver.

96 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

Description
Walk the list of devices that the bus has on it and try to match the driver with each one. If
driver_probe_device() returns 0 and the dev->driver is set, we’ve found a compatible pair.
void device_release_driver(struct device * dev)

manually detach device from driver.
Parameters
struct device * dev device.
Description
Manually detach device from driver. When called for a USB interface, dev->parent lock must be held.
If this function is to be called with dev->parent lock held, ensure that the device’s consumers are unbound
in advance or that their locks can be acquired under the dev->parent lock.
struct platform_device * platform_device_register_resndata(struct device * parent, const char

* name, int id, const struct re-
source * res, unsigned int num,
const void * data, size_t size)

add a platform-level device with resources and platform-specific data
Parameters
struct device * parent parent device for the device we’re adding
const char * name base name of the device we’re adding
int id instance id
const struct resource * res set of resources that needs to be allocated for the device
unsigned int num number of resources
const void * data platform specific data for this platform device
size_t size size of platform specific data
Description
Returns struct platform_device pointer on success, or ERR_PTR() on error.
struct platform_device * platform_device_register_simple(const char * name, int id, const

struct resource * res, unsigned
int num)

add a platform-level device and its resources
Parameters
const char * name base name of the device we’re adding
int id instance id
const struct resource * res set of resources that needs to be allocated for the device
unsigned int num number of resources
Description
This function creates a simple platform device that requires minimal resource and memory management.
Canned release function freeing memory allocated for the device allows drivers using such devices to be
unloaded without waiting for the last reference to the device to be dropped.
This interface is primarily intended for use with legacy drivers which probe hardware directly. Because
such drivers create sysfs device nodes themselves, rather than letting system infrastructure handle such
device enumeration tasks, they don’t fully conform to the Linux driver model. In particular, when such
drivers are built as modules, they can’t be “hotplugged”.
Returns struct platform_device pointer on success, or ERR_PTR() on error.

2.2. Device Drivers Base 97

The kernel driver API manual, Release 4.13.0-rc4+

struct platform_device * platform_device_register_data(struct device * parent, const char
* name, int id, const void * data,
size_t size)

add a platform-level device with platform-specific data
Parameters
struct device * parent parent device for the device we’re adding
const char * name base name of the device we’re adding
int id instance id
const void * data platform specific data for this platform device
size_t size size of platform specific data
Description
This function creates a simple platform device that requires minimal resource and memory management.
Canned release function freeing memory allocated for the device allows drivers using such devices to be
unloaded without waiting for the last reference to the device to be dropped.
Returns struct platform_device pointer on success, or ERR_PTR() on error.
struct resource * platform_get_resource(struct platform_device * dev, unsigned int type, un-

signed int num)
get a resource for a device

Parameters
struct platform_device * dev platform device
unsigned int type resource type
unsigned int num resource index
int platform_get_irq(struct platform_device * dev, unsigned int num)

get an IRQ for a device
Parameters
struct platform_device * dev platform device
unsigned int num IRQ number index
int platform_irq_count(struct platform_device * dev)

Count the number of IRQs a platform device uses
Parameters
struct platform_device * dev platform device
Return
Number of IRQs a platform device uses or EPROBE_DEFER
struct resource * platform_get_resource_byname(struct platform_device * dev, unsigned int type,

const char * name)
get a resource for a device by name

Parameters
struct platform_device * dev platform device
unsigned int type resource type
const char * name resource name
int platform_get_irq_byname(struct platform_device * dev, const char * name)

get an IRQ for a device by name
Parameters

98 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct platform_device * dev platform device
const char * name IRQ name
int platform_add_devices(struct platform_device ** devs, int num)

add a numbers of platform devices
Parameters
struct platform_device ** devs array of platform devices to add
int num number of platform devices in array
void platform_device_put(struct platform_device * pdev)

destroy a platform device
Parameters
struct platform_device * pdev platform device to free
Description
Free all memory associated with a platform device. This function must _only_ be externally called in error
cases. All other usage is a bug.
struct platform_device * platform_device_alloc(const char * name, int id)

create a platform device
Parameters
const char * name base name of the device we’re adding
int id instance id
Description
Create a platform device object which can have other objects attached to it, and which will have attached
objects freed when it is released.
int platform_device_add_resources(struct platform_device * pdev, const struct resource * res, un-

signed int num)
add resources to a platform device

Parameters
struct platform_device * pdev platform device allocated by platform_device_alloc to add resources

to
const struct resource * res set of resources that needs to be allocated for the device
unsigned int num number of resources
Description
Add a copy of the resources to the platform device. The memory associated with the resources will be
freed when the platform device is released.
int platform_device_add_data(struct platform_device * pdev, const void * data, size_t size)

add platform-specific data to a platform device
Parameters
struct platform_device * pdev platform device allocated by platform_device_alloc to add resources

to
const void * data platform specific data for this platform device
size_t size size of platform specific data
Description
Add a copy of platform specific data to the platform device’s platform_data pointer. The memory associ-
ated with the platform data will be freed when the platform device is released.

2.2. Device Drivers Base 99

The kernel driver API manual, Release 4.13.0-rc4+

int platform_device_add_properties(struct platform_device * pdev, const struct property_entry
* properties)

add built-in properties to a platform device
Parameters
struct platform_device * pdev platform device to add properties to
const struct property_entry * properties null terminated array of properties to add
Description
The function will take deep copy of properties and attach the copy to the platform device. The memory
associated with properties will be freed when the platform device is released.
int platform_device_add(struct platform_device * pdev)

add a platform device to device hierarchy
Parameters
struct platform_device * pdev platform device we’re adding
Description
This is part 2 of platform_device_register(), though may be called separately _iff_ pdev was allocated
by platform_device_alloc().
void platform_device_del(struct platform_device * pdev)

remove a platform-level device
Parameters
struct platform_device * pdev platform device we’re removing
Description
Note that this function will also release all memory- and port-based resources owned by the device (dev-
>resource). This function must _only_ be externally called in error cases. All other usage is a bug.
int platform_device_register(struct platform_device * pdev)

add a platform-level device
Parameters
struct platform_device * pdev platform device we’re adding
void platform_device_unregister(struct platform_device * pdev)

unregister a platform-level device
Parameters
struct platform_device * pdev platform device we’re unregistering
Description
Unregistration is done in 2 steps. First we release all resources and remove it from the subsystem, then
we drop reference count by calling platform_device_put().
struct platform_device * platform_device_register_full(const struct platform_device_info

* pdevinfo)
add a platform-level device with resources and platform-specific data

Parameters
const struct platform_device_info * pdevinfo data used to create device
Description
Returns struct platform_device pointer on success, or ERR_PTR() on error.
int __platform_driver_register(struct platform_driver * drv, struct module * owner)

register a driver for platform-level devices

100 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct platform_driver * drv platform driver structure
struct module * owner owning module/driver
void platform_driver_unregister(struct platform_driver * drv)

unregister a driver for platform-level devices
Parameters
struct platform_driver * drv platform driver structure
int __platform_driver_probe(struct platform_driver * drv, int (*probe) (struct platform_device *,

struct module * module)
register driver for non-hotpluggable device

Parameters
struct platform_driver * drv platform driver structure
int (*)(struct platform_device *) probe the driver probe routine, probably from an __init section
struct module * module module which will be the owner of the driver
Description
Use this instead of platform_driver_register() when you know the device is not hotpluggable and has
already been registered, and you want to remove its run-once probe() infrastructure from memory after
the driver has bound to the device.
One typical use for this would be with drivers for controllers integrated into system-on-chip processors,
where the controller devices have been configured as part of board setup.
Note that this is incompatible with deferred probing.
Returns zero if the driver registered and bound to a device, else returns a negative error code and with
the driver not registered.
struct platform_device * __platform_create_bundle(struct platform_driver * driver, int (*probe)

(struct platform_device *, struct resource
* res, unsigned int n_res, const void * data,
size_t size, struct module * module)

register driver and create corresponding device
Parameters
struct platform_driver * driver platform driver structure
int (*)(struct platform_device *) probe the driver probe routine, probably from an __init section
struct resource * res set of resources that needs to be allocated for the device
unsigned int n_res number of resources
const void * data platform specific data for this platform device
size_t size size of platform specific data
struct module * module module which will be the owner of the driver
Description
Use this in legacy-style modules that probe hardware directly and register a single platform device and
corresponding platform driver.
Returns struct platform_device pointer on success, or ERR_PTR() on error.
int __platform_register_drivers(struct platform_driver *const * drivers, unsigned int count,

struct module * owner)
register an array of platform drivers

Parameters

2.2. Device Drivers Base 101

The kernel driver API manual, Release 4.13.0-rc4+

struct platform_driver *const * drivers an array of drivers to register
unsigned int count the number of drivers to register
struct module * owner module owning the drivers
Description
Registers platform drivers specified by an array. On failure to register a driver, all previously registered
drivers will be unregistered. Callers of this API should use platform_unregister_drivers() to unregister
drivers in the reverse order.
Return
0 on success or a negative error code on failure.
void platform_unregister_drivers(struct platform_driver *const * drivers, unsigned int count)

unregister an array of platform drivers
Parameters
struct platform_driver *const * drivers an array of drivers to unregister
unsigned int count the number of drivers to unregister
Description
Unegisters platform drivers specified by an array. This is typically used to complement an earlier call
to platform_register_drivers(). Drivers are unregistered in the reverse order in which they were
registered.
int bus_for_each_dev(struct bus_type * bus, struct device * start, void * data, int (*fn) (struct de-

vice *, void *)
device iterator.

Parameters
struct bus_type * bus bus type.
struct device * start device to start iterating from.
void * data data for the callback.
int (*)(struct device *,void *) fn function to be called for each device.
Description
Iterate over bus‘s list of devices, and call fn for each, passing it data. If start is not NULL, we use that
device to begin iterating from.
We check the return of fn each time. If it returns anything other than 0, we break out and return that
value.
NOTE
The device that returns a non-zero value is not retained in any way, nor is its refcount incremented. If
the caller needs to retain this data, it should do so, and increment the reference count in the supplied
callback.
struct device * bus_find_device(struct bus_type * bus, struct device * start, void * data, int

(*match) (struct device *dev, void *data)
device iterator for locating a particular device.

Parameters
struct bus_type * bus bus type
struct device * start Device to begin with
void * data Data to pass to match function
int (*)(struct device *dev,void *data) match Callback function to check device

102 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

Description
This is similar to the bus_for_each_dev() function above, but it returns a reference to a device that is
‘found’ for later use, as determined by the match callback.
The callback should return 0 if the device doesn’t match and non-zero if it does. If the callback returns
non-zero, this function will return to the caller and not iterate over any more devices.
struct device * bus_find_device_by_name(struct bus_type * bus, struct device * start, const char

* name)
device iterator for locating a particular device of a specific name

Parameters
struct bus_type * bus bus type
struct device * start Device to begin with
const char * name name of the device to match
Description
This is similar to the bus_find_device() function above, but it handles searching by a name automati-
cally, no need to write another strcmp matching function.
struct device * subsys_find_device_by_id(struct bus_type * subsys, unsigned int id, struct device

* hint)
find a device with a specific enumeration number

Parameters
struct bus_type * subsys subsystem
unsigned int id index ‘id’ in struct device
struct device * hint device to check first
Description
Check the hint’s next object and if it is a match return it directly, otherwise, fall back to a full list search.
Either way a reference for the returned object is taken.
int bus_for_each_drv(struct bus_type * bus, struct device_driver * start, void * data, int (*fn) (struct

device_driver *, void *)
driver iterator

Parameters
struct bus_type * bus bus we’re dealing with.
struct device_driver * start driver to start iterating on.
void * data data to pass to the callback.
int (*)(struct device_driver *,void *) fn function to call for each driver.
Description
This is nearly identical to the device iterator above. We iterate over each driver that belongs to bus, and
call fn for each. If fn returns anything but 0, we break out and return it. If start is not NULL, we use it as
the head of the list.
NOTE
we don’t return the driver that returns a non-zero value, nor do we leave the reference count incremented
for that driver. If the caller needs to know that info, it must set it in the callback. It must also be sure to
increment the refcount so it doesn’t disappear before returning to the caller.
int bus_rescan_devices(struct bus_type * bus)

rescan devices on the bus for possible drivers
Parameters

2.2. Device Drivers Base 103

The kernel driver API manual, Release 4.13.0-rc4+

struct bus_type * bus the bus to scan.
Description
This function will look for devices on the bus with no driver attached and rescan it against existing drivers
to see if it matches any by calling device_attach() for the unbound devices.
int device_reprobe(struct device * dev)

remove driver for a device and probe for a new driver
Parameters
struct device * dev the device to reprobe
Description
This function detaches the attached driver (if any) for the given device and restarts the driver probing
process. It is intended to use if probing criteria changed during a devices lifetime and driver attachment
should change accordingly.
int bus_register(struct bus_type * bus)

register a driver-core subsystem
Parameters
struct bus_type * bus bus to register
Description
Once we have that, we register the bus with the kobject infrastructure, then register the children subsys-
tems it has: the devices and drivers that belong to the subsystem.
void bus_unregister(struct bus_type * bus)

remove a bus from the system
Parameters
struct bus_type * bus bus.
Description
Unregister the child subsystems and the bus itself. Finally, we call bus_put() to release the refcount
void subsys_dev_iter_init(struct subsys_dev_iter * iter, struct bus_type * subsys, struct device

* start, const struct device_type * type)
initialize subsys device iterator

Parameters
struct subsys_dev_iter * iter subsys iterator to initialize
struct bus_type * subsys the subsys we wanna iterate over
struct device * start the device to start iterating from, if any
const struct device_type * type device_type of the devices to iterate over, NULL for all
Description
Initialize subsys iterator iter such that it iterates over devices of subsys. If start is set, the list iteration
will start there, otherwise if it is NULL, the iteration starts at the beginning of the list.
struct device * subsys_dev_iter_next(struct subsys_dev_iter * iter)

iterate to the next device
Parameters
struct subsys_dev_iter * iter subsys iterator to proceed
Description
Proceed iter to the next device and return it. Returns NULL if iteration is complete.

104 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

The returned device is referenced and won’t be released till iterator is proceed to the next device or exited.
The caller is free to do whatever it wants to do with the device including calling back into subsys code.
void subsys_dev_iter_exit(struct subsys_dev_iter * iter)

finish iteration
Parameters
struct subsys_dev_iter * iter subsys iterator to finish
Description
Finish an iteration. Always call this function after iteration is complete whether the iteration ran till the
end or not.
int subsys_system_register(struct bus_type * subsys, const struct attribute_group ** groups)

register a subsystem at /sys/devices/system/
Parameters
struct bus_type * subsys system subsystem
const struct attribute_group ** groups default attributes for the root device
Description
All ‘system’ subsystems have a /sys/devices/system/<name> root device with the name of the subsystem.
The root device can carry subsystem- wide attributes. All registered devices are below this single root
device and are named after the subsystem with a simple enumeration number appended. The registered
devices are not explicitly named; only ‘id’ in the device needs to be set.
Do not use this interface for anything new, it exists for compatibility with bad ideas only. New subsystems
should use plain subsystems; and add the subsystem-wide attributes should be added to the subsystem
directory itself and not some create fake root-device placed in /sys/devices/system/<name>.
int subsys_virtual_register(struct bus_type * subsys, const struct attribute_group ** groups)

register a subsystem at /sys/devices/virtual/
Parameters
struct bus_type * subsys virtual subsystem
const struct attribute_group ** groups default attributes for the root device
Description
All ‘virtual’ subsystems have a /sys/devices/system/<name> root device with the name of the subystem.
The root device can carry subsystem-wide attributes. All registered devices are below this single root
device. There’s no restriction on device naming. This is for kernel software constructs which need sysfs
interface.

2.3 Device Drivers DMA Management

int dma_alloc_from_dev_coherent(struct device * dev, ssize_t size, dma_addr_t * dma_handle,
void ** ret)

allocate memory from device coherent pool
Parameters
struct device * dev device from which we allocate memory
ssize_t size size of requested memory area
dma_addr_t * dma_handle This will be filled with the correct dma handle
void ** ret This pointer will be filled with the virtual address to allocated area.

2.3. Device Drivers DMA Management 105

The kernel driver API manual, Release 4.13.0-rc4+

Description
This function should be only called from per-arch dma_alloc_coherent() to support allocation from per-
device coherent memory pools.
Returns 0 if dma_alloc_coherent should continue with allocating from generic memory areas, or !0 if
dma_alloc_coherent should return ret.
int dma_release_from_dev_coherent(struct device * dev, int order, void * vaddr)

free memory to device coherent memory pool
Parameters
struct device * dev device from which the memory was allocated
int order the order of pages allocated
void * vaddr virtual address of allocated pages
Description
This checks whether the memory was allocated from the per-device coherent memory pool and if so,
releases that memory.
Returns 1 if we correctly released the memory, or 0 if the caller should proceed with releasing memory
from generic pools.
int dma_mmap_from_dev_coherent(struct device * dev, struct vm_area_struct * vma, void * vaddr,

size_t size, int * ret)
mmap memory from the device coherent pool

Parameters
struct device * dev device from which the memory was allocated
struct vm_area_struct * vma vm_area for the userspace memory
void * vaddr cpu address returned by dma_alloc_from_dev_coherent
size_t size size of the memory buffer allocated
int * ret result from remap_pfn_range()

Description
This checks whether the memory was allocated from the per-device coherent memory pool and if so, maps
that memory to the provided vma.
Returns 1 if we correctly mapped the memory, or 0 if the caller should proceed with mapping memory
from generic pools.
void * dmam_alloc_coherent(struct device * dev, size_t size, dma_addr_t * dma_handle, gfp_t gfp)

Managed dma_alloc_coherent()
Parameters
struct device * dev Device to allocate coherent memory for
size_t size Size of allocation
dma_addr_t * dma_handle Out argument for allocated DMA handle
gfp_t gfp Allocation flags
Description
Managed dma_alloc_coherent(). Memory allocated using this function will be automatically released on
driver detach.
Return
Pointer to allocated memory on success, NULL on failure.

106 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

void dmam_free_coherent(struct device * dev, size_t size, void * vaddr, dma_addr_t dma_handle)
Managed dma_free_coherent()

Parameters
struct device * dev Device to free coherent memory for
size_t size Size of allocation
void * vaddr Virtual address of the memory to free
dma_addr_t dma_handle DMA handle of the memory to free
Description
Managed dma_free_coherent().
void * dmam_alloc_attrs(struct device * dev, size_t size, dma_addr_t * dma_handle, gfp_t gfp, un-

signed long attrs)
Managed dma_alloc_attrs()

Parameters
struct device * dev Device to allocate non_coherent memory for
size_t size Size of allocation
dma_addr_t * dma_handle Out argument for allocated DMA handle
gfp_t gfp Allocation flags
unsigned long attrs Flags in the DMA_ATTR_* namespace.
Description
Managed dma_alloc_attrs(). Memory allocated using this function will be automatically released on
driver detach.
Return
Pointer to allocated memory on success, NULL on failure.
int dmam_declare_coherent_memory(struct device * dev, phys_addr_t phys_addr,

dma_addr_t device_addr, size_t size, int flags)
Managed dma_declare_coherent_memory()

Parameters
struct device * dev Device to declare coherent memory for
phys_addr_t phys_addr Physical address of coherent memory to be declared
dma_addr_t device_addr Device address of coherent memory to be declared
size_t size Size of coherent memory to be declared
int flags Flags
Description
Managed dma_declare_coherent_memory().
Return
0 on success, -errno on failure.
void dmam_release_declared_memory(struct device * dev)

Managed dma_release_declared_memory().
Parameters
struct device * dev Device to release declared coherent memory for

2.3. Device Drivers DMA Management 107

The kernel driver API manual, Release 4.13.0-rc4+

Description
Managed dmam_release_declared_memory().

2.4 Device drivers PnP support

int pnp_register_protocol(struct pnp_protocol * protocol)
adds a pnp protocol to the pnp layer

Parameters
struct pnp_protocol * protocol pointer to the corresponding pnp_protocol structure
Description

Ex protocols: ISAPNP, PNPBIOS, etc
void pnp_unregister_protocol(struct pnp_protocol * protocol)

removes a pnp protocol from the pnp layer
Parameters
struct pnp_protocol * protocol pointer to the corresponding pnp_protocol structure
struct pnp_dev * pnp_request_card_device(struct pnp_card_link * clink, const char * id, struct

pnp_dev * from)
Searches for a PnP device under the specified card

Parameters
struct pnp_card_link * clink pointer to the card link, cannot be NULL
const char * id pointer to a PnP ID structure that explains the rules for finding the device
struct pnp_dev * from Starting place to search from. If NULL it will start from the beginning.
void pnp_release_card_device(struct pnp_dev * dev)

call this when the driver no longer needs the device
Parameters
struct pnp_dev * dev pointer to the PnP device structure
int pnp_register_card_driver(struct pnp_card_driver * drv)

registers a PnP card driver with the PnP Layer
Parameters
struct pnp_card_driver * drv pointer to the driver to register
void pnp_unregister_card_driver(struct pnp_card_driver * drv)

unregisters a PnP card driver from the PnP Layer
Parameters
struct pnp_card_driver * drv pointer to the driver to unregister
struct pnp_id * pnp_add_id(struct pnp_dev * dev, const char * id)

adds an EISA id to the specified device
Parameters
struct pnp_dev * dev pointer to the desired device
const char * id pointer to an EISA id string
int pnp_start_dev(struct pnp_dev * dev)

low-level start of the PnP device
Parameters

108 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct pnp_dev * dev pointer to the desired device
Description
assumes that resources have already been allocated
int pnp_stop_dev(struct pnp_dev * dev)

low-level disable of the PnP device
Parameters
struct pnp_dev * dev pointer to the desired device
Description
does not free resources
int pnp_activate_dev(struct pnp_dev * dev)

activates a PnP device for use
Parameters
struct pnp_dev * dev pointer to the desired device
Description
does not validate or set resources so be careful.
int pnp_disable_dev(struct pnp_dev * dev)

disables device
Parameters
struct pnp_dev * dev pointer to the desired device
Description
inform the correct pnp protocol so that resources can be used by other devices
int pnp_is_active(struct pnp_dev * dev)

Determines if a device is active based on its current resources
Parameters
struct pnp_dev * dev pointer to the desired PnP device

2.5 Userspace IO devices

void uio_event_notify(struct uio_info * info)
trigger an interrupt event

Parameters
struct uio_info * info UIO device capabilities
int __uio_register_device(struct module * owner, struct device * parent, struct uio_info * info)

register a new userspace IO device
Parameters
struct module * owner module that creates the new device
struct device * parent parent device
struct uio_info * info UIO device capabilities
Description
returns zero on success or a negative error code.

2.5. Userspace IO devices 109

The kernel driver API manual, Release 4.13.0-rc4+

void uio_unregister_device(struct uio_info * info)
unregister a industrial IO device

Parameters
struct uio_info * info UIO device capabilities
struct uio_mem

description of a UIO memory region
Definition

struct uio_mem {
const char * name;
phys_addr_t addr;
unsigned long offs;
resource_size_t size;
int memtype;
void __iomem * internal_addr;
struct uio_map * map;

};

Members
name name of the memory region for identification
addr address of the device’s memory rounded to page size (phys_addr is used since addr can be logical,

virtual, or physical & phys_addr_t should always be large enough to handle any of the address types)
offs offset of device memory within the page
size size of IO (multiple of page size)
memtype type of memory addr points to
internal_addr ioremap-ped version of addr, for driver internal use
map for use by the UIO core only.
struct uio_port

description of a UIO port region
Definition

struct uio_port {
const char * name;
unsigned long start;
unsigned long size;
int porttype;
struct uio_portio * portio;

};

Members
name name of the port region for identification
start start of port region
size size of port region
porttype type of port (see UIO_PORT_* below)
portio for use by the UIO core only.
struct uio_info

UIO device capabilities
Definition

110 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct uio_info {
struct uio_device * uio_dev;
const char * name;
const char * version;
struct uio_mem mem;
struct uio_port port;
long irq;
unsigned long irq_flags;
void * priv;
irqreturn_t (* handler) (int irq, struct uio_info *dev_info);
int (* mmap) (struct uio_info *info, struct vm_area_struct *vma);
int (* open) (struct uio_info *info, struct inode *inode);
int (* release) (struct uio_info *info, struct inode *inode);
int (* irqcontrol) (struct uio_info *info, s32 irq_on);

};

Members
uio_dev the UIO device this info belongs to
name device name
version device driver version
mem list of mappable memory regions, size==0 for end of list
port list of port regions, size==0 for end of list
irq interrupt number or UIO_IRQ_CUSTOM
irq_flags flags for request_irq()
priv optional private data
handler the device’s irq handler
mmap mmap operation for this uio device
open open operation for this uio device
release release operation for this uio device
irqcontrol disable/enable irqs when 0/1 is written to /dev/uioX

2.5. Userspace IO devices 111

The kernel driver API manual, Release 4.13.0-rc4+

112 Chapter 2. Device drivers infrastructure

CHAPTER

THREE

DEVICE POWER MANAGEMENT

3.1 Device Power Management Basics

Copyright (c) 2010-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
Copyright (c) 2010 Alan Stern <stern@rowland.harvard.edu>
Copyright (c) 2016 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

Most of the code in Linux is device drivers, so most of the Linux power management (PM) code is also
driver-specific. Most drivers will do very little; others, especially for platforms with small batteries (like
cell phones), will do a lot.
This writeup gives an overview of how drivers interact with system-wide power management goals, em-
phasizing the models and interfaces that are shared by everything that hooks up to the driver model core.
Read it as background for the domain-specific work you’d do with any specific driver.

3.1.1 Two Models for Device Power Management

Drivers will use one or both of these models to put devices into low-power states:
System Sleep model:

Drivers can enter low-power states as part of entering system-wide low-power states
like “suspend” (also known as “suspend-to-RAM”), or (mostly for systems with disks)
“hibernation” (also known as “suspend-to-disk”).
This is something that device, bus, and class drivers collaborate on by implementing
various role-specific suspend and resume methods to cleanly power down hardware
and software subsystems, then reactivate them without loss of data.
Some drivers can manage hardware wakeup events, which make the system leave
the low-power state. This feature may be enabled or disabled using the relevant
/sys/devices/.../power/wakeup file (for Ethernet drivers the ioctl interface used by
ethtool may also be used for this purpose); enabling it may cost some power usage,
but let the whole system enter low-power states more often.

Runtime Power Management model:
Devices may also be put into low-power states while the system is running, indepen-
dently of other power management activity in principle. However, devices are not gen-
erally independent of each other (for example, a parent device cannot be suspended
unless all of its child devices have been suspended). Moreover, depending on the bus
type the device is on, it may be necessary to carry out some bus-specific operations on
the device for this purpose. Devices put into low power states at run time may require
special handling during system-wide power transitions (suspend or hibernation).
For these reasons not only the device driver itself, but also the appropriate subsystem
(bus type, device type or device class) driver and the PM core are involved in runtime
power management. As in the system sleep power management case, they need to

113

The kernel driver API manual, Release 4.13.0-rc4+

collaborate by implementing various role-specific suspend and resume methods, so
that the hardware is cleanly powered down and reactivated without data or service
loss.

There’s not a lot to be said about those low-power states except that they are very system-specific, and
often device-specific. Also, that if enough devices have been put into low-power states (at runtime), the
effect may be very similar to entering some system-wide low-power state (system sleep) ... and that
synergies exist, so that several drivers using runtime PM might put the system into a state where even
deeper power saving options are available.
Most suspended devices will have quiesced all I/O: no more DMA or IRQs (except for wakeup events), no
more data read or written, and requests from upstream drivers are no longer accepted. A given bus or
platform may have different requirements though.
Examples of hardware wakeup events include an alarm from a real time clock, network wake-on-LAN
packets, keyboard or mouse activity, and media insertion or removal (for PCMCIA, MMC/SD, USB, and so
on).

3.1.2 Interfaces for Entering System Sleep States

There are programming interfaces provided for subsystems (bus type, device type, device class) and
device drivers to allow them to participate in the power management of devices they are concerned with.
These interfaces cover both system sleep and runtime power management.

Device Power Management Operations

Device power management operations, at the subsystem level as well as at the device driver level,
are implemented by defining and populating objects of type struct dev_pm_ops defined in in-
clude/linux/pm.h. The roles of the methods included in it will be explained in what follows. For now, it
should be sufficient to remember that the last three methods are specific to runtime power management
while the remaining ones are used during system-wide power transitions.
There also is a deprecated “old” or “legacy” interface for power management operations available at least
for some subsystems. This approach does not use struct dev_pm_ops objects and it is suitable only for
implementing system sleep power management methods in a limited way. Therefore it is not described
in this document, so please refer directly to the source code for more information about it.

Subsystem-Level Methods

The core methods to suspend and resume devices reside in struct dev_pm_ops pointed to by the ops
member of struct dev_pm_domain, or by the pmmember of struct bus_type, struct device_type and
struct class. They are mostly of interest to the people writing infrastructure for platforms and buses,
like PCI or USB, or device type and device class drivers. They also are relevant to the writers of device
drivers whose subsystems (PM domains, device types, device classes and bus types) don’t provide all
power management methods.
Bus drivers implement these methods as appropriate for the hardware and the drivers using it; PCI works
differently from USB, and so on. Not many people write subsystem-level drivers; most driver code is a
“device driver” that builds on top of bus-specific framework code.
For more information on these driver calls, see the description later; they are called in phases for every
device, respecting the parent-child sequencing in the driver model tree.

/sys/devices/.../power/wakeup files

All device objects in the driver model contain fields that control the handling of system wakeup events
(hardware signals that can force the system out of a sleep state). These fields are initialized by bus or

114 Chapter 3. Device Power Management

The kernel driver API manual, Release 4.13.0-rc4+

device driver code using device_set_wakeup_capable() and device_set_wakeup_enable(), defined in
include/linux/pm_wakeup.h.
The power.can_wakeup flag just records whether the device (and its driver) can physically support wakeup
events. The device_set_wakeup_capable() routine affects this flag. The power.wakeup field is a pointer
to an object of type struct wakeup_source used for controlling whether or not the device should use
its system wakeup mechanism and for notifying the PM core of system wakeup events signaled by the
device. This object is only present for wakeup-capable devices (i.e. devices whose can_wakeup flags are
set) and is created (or removed) by device_set_wakeup_capable().
Whether or not a device is capable of issuing wakeup events is a hardware matter, and the kernel is
responsible for keeping track of it. By contrast, whether or not a wakeup-capable device should issue
wakeup events is a policy decision, and it is managed by user space through a sysfs attribute: the
power/wakeup file. User space can write the “enabled” or “disabled” strings to it to indicate whether
or not, respectively, the device is supposed to signal system wakeup. This file is only present if the
power.wakeup object exists for the given device and is created (or removed) along with that object, by
device_set_wakeup_capable(). Reads from the file will return the corresponding string.
The initial value in the power/wakeup file is “disabled” for the majority of devices; the major exceptions
are power buttons, keyboards, and Ethernet adapters whose WoL (wake-on-LAN) feature has been set up
with ethtool. It should also default to “enabled” for devices that don’t generate wakeup requests on their
own but merely forward wakeup requests from one bus to another (like PCI Express ports).
The device_may_wakeup() routine returns true only if the power.wakeup object exists and the corre-
sponding power/wakeup file contains the “enabled” string. This information is used by subsystems, like
the PCI bus type code, to see whether or not to enable the devices’ wakeup mechanisms. If device wakeup
mechanisms are enabled or disabled directly by drivers, they also should use device_may_wakeup() to
decide what to do during a system sleep transition. Device drivers, however, are not expected to call
device_set_wakeup_enable() directly in any case.
It ought to be noted that system wakeup is conceptually different from “remote wakeup” used by runtime
power management, although it may be supported by the same physical mechanism. Remote wakeup is a
feature allowing devices in low-power states to trigger specific interrupts to signal conditions in which they
should be put into the full-power state. Those interrupts may or may not be used to signal system wakeup
events, depending on the hardware design. On some systems it is impossible to trigger them from system
sleep states. In any case, remote wakeup should always be enabled for runtime power management for
all devices and drivers that support it.

/sys/devices/.../power/control files

Each device in the driver model has a flag to control whether it is subject to runtime power man-
agement. This flag, runtime_auto, is initialized by the bus type (or generally subsystem) code using
pm_runtime_allow() or pm_runtime_forbid(); the default is to allow runtime power management.
The setting can be adjusted by user space by writing either “on” or “auto” to the device’s power/control
sysfs file. Writing “auto” calls pm_runtime_allow(), setting the flag and allowing the device to be runtime
power-managed by its driver. Writing “on” calls pm_runtime_forbid(), clearing the flag, returning the
device to full power if it was in a low-power state, and preventing the device from being runtime power-
managed. User space can check the current value of the runtime_auto flag by reading that file.
The device’s runtime_auto flag has no effect on the handling of system-wide power transitions. In par-
ticular, the device can (and in the majority of cases should and will) be put into a low-power state during
a system-wide transition to a sleep state even though its runtime_auto flag is clear.
For more information about the runtime power management framework, refer to Documenta-
tion/power/runtime_pm.txt.

3.1.3 Calling Drivers to Enter and Leave System Sleep States

When the system goes into a sleep state, each device’s driver is asked to suspend the device by putting it
into a state compatible with the target system state. That’s usually some version of “off”, but the details

3.1. Device Power Management Basics 115

The kernel driver API manual, Release 4.13.0-rc4+

are system-specific. Also, wakeup-enabled devices will usually stay partly functional in order to wake the
system.
When the system leaves that low-power state, the device’s driver is asked to resume it by returning it to
full power. The suspend and resume operations always go together, and both are multi-phase operations.
For simple drivers, suspend might quiesce the device using class code and then turn its hardware as
“off” as possible during suspend_noirq. The matching resume calls would then completely reinitialize the
hardware before reactivating its class I/O queues.
More power-aware drivers might prepare the devices for triggering system wakeup events.

Call Sequence Guarantees

To ensure that bridges and similar links needing to talk to a device are available when the device is
suspended or resumed, the device hierarchy is walked in a bottom-up order to suspend devices. A top-
down order is used to resume those devices.
The ordering of the device hierarchy is defined by the order in which devices get registered: a child can
never be registered, probed or resumed before its parent; and can’t be removed or suspended after that
parent.
The policy is that the device hierarchy should match hardware bus topology. [Or at least the control bus,
for devices which use multiple busses.] In particular, this means that a device registration may fail if the
parent of the device is suspending (i.e. has been chosen by the PM core as the next device to suspend)
or has already suspended, as well as after all of the other devices have been suspended. Device drivers
must be prepared to cope with such situations.

System Power Management Phases

Suspending or resuming the system is done in several phases. Different phases are used for suspend-to-
idle, shallow (standby), and deep (“suspend-to-RAM”) sleep states and the hibernation state (“suspend-
to-disk”). Each phase involves executing callbacks for every device before the next phase begins. Not all
buses or classes support all these callbacks and not all drivers use all the callbacks. The various phases
always run after tasks have been frozen and before they are unfrozen. Furthermore, the *_noirq phases
run at a time when IRQ handlers have been disabled (except for those marked with the IRQF_NO_SUSPEND
flag).
All phases use PM domain, bus, type, class or driver callbacks (that is, methods defined in dev-
>pm_domain->ops, dev->bus->pm, dev->type->pm, dev->class->pm or dev->driver->pm). These call-
backs are regarded by the PM core as mutually exclusive. Moreover, PM domain callbacks always take
precedence over all of the other callbacks and, for example, type callbacks take precedence over bus,
class and driver callbacks. To be precise, the following rules are used to determine which callback to
execute in the given phase:
1. If dev->pm_domain is present, the PM core will choose the callback provided by dev->pm_domain-

>ops for execution.
2. Otherwise, if both dev->type and dev->type->pm are present, the callback provided by dev->type-

>pm will be chosen for execution.
3. Otherwise, if both dev->class and dev->class->pm are present, the callback provided by dev-

>class->pm will be chosen for execution.
4. Otherwise, if both dev->bus and dev->bus->pm are present, the callback provided by dev->bus->pm
will be chosen for execution.

This allows PM domains and device types to override callbacks provided by bus types or device classes if
necessary.
The PM domain, type, class and bus callbacks may in turn invoke device- or driver-specific methods stored
in dev->driver->pm, but they don’t have to do that.

116 Chapter 3. Device Power Management

The kernel driver API manual, Release 4.13.0-rc4+

If the subsystem callback chosen for execution is not present, the PM core will execute the corresponding
method from the dev->driver->pm set instead if there is one.

Entering System Suspend

When the system goes into the freeze, standby or memory sleep state, the phases are: prepare, suspend,
suspend_late, suspend_noirq.
1. The prepare phase is meant to prevent races by preventing new devices from being registered; the
PM core would never know that all the children of a device had been suspended if new children could
be registered at will. [By contrast, from the PM core’s perspective, devices may be unregistered at
any time.] Unlike the other suspend-related phases, during the prepare phase the device hierarchy
is traversed top-down.
After the ->prepare callback method returns, no new children may be registered below the device.
The method may also prepare the device or driver in some way for the upcoming system power
transition, but it should not put the device into a low-power state.
For devices supporting runtime power management, the return value of the prepare callback can be
used to indicate to the PM core that it may safely leave the device in runtime suspend (if runtime-
suspended already), provided that all of the device’s descendants are also left in runtime suspend.
Namely, if the prepare callback returns a positive number and that happens for all of the descendants
of the device too, and all of them (including the device itself) are runtime-suspended, the PM core
will skip the suspend, suspend_late and suspend_noirq phases as well as all of the corresponding
phases of the subsequent device resume for all of these devices. In that case, the ->complete
callback will be invoked directly after the ->prepare callback and is entirely responsible for putting
the device into a consistent state as appropriate.
Note that this direct-complete procedure applies even if the device is disabled for runtime PM; only
the runtime-PM status matters. It follows that if a device has system-sleep callbacks but does not
support runtime PM, then its prepare callback must never return a positive value. This is because all
such devices are initially set to runtime-suspended with runtime PM disabled.

2. The ->suspend methods should quiesce the device to stop it from performing I/O. They also may
save the device registers and put it into the appropriate low-power state, depending on the bus type
the device is on, and they may enable wakeup events.

3. For a number of devices it is convenient to split suspend into the “quiesce device” and “save device
state” phases, in which cases suspend_late is meant to do the latter. It is always executed after
runtime power management has been disabled for the device in question.

4. The suspend_noirq phase occurs after IRQ handlers have been disabled, which means that
the driver’s interrupt handler will not be called while the callback method is running. The -
>suspend_noirq methods should save the values of the device’s registers that weren’t saved previ-
ously and finally put the device into the appropriate low-power state.
The majority of subsystems and device drivers need not implement this callback. However, bus
types allowing devices to share interrupt vectors, like PCI, generally need it; otherwise a driver might
encounter an error during the suspend phase by fielding a shared interrupt generated by some other
device after its own device had been set to low power.

At the end of these phases, drivers should have stopped all I/O transactions (DMA, IRQs), saved enough
state that they can re-initialize or restore previous state (as needed by the hardware), and placed the
device into a low-power state. On many platforms they will gate off one or more clock sources; sometimes
they will also switch off power supplies or reduce voltages. [Drivers supporting runtime PM may already
have performed some or all of these steps.]
If device_may_wakeup(dev)() returns true, the device should be prepared for generating hardware
wakeup signals to trigger a system wakeup event when the system is in the sleep state. For example,
enable_irq_wake() might identify GPIO signals hooked up to a switch or other external hardware, and
pci_enable_wake() does something similar for the PCI PME signal.

3.1. Device Power Management Basics 117

The kernel driver API manual, Release 4.13.0-rc4+

If any of these callbacks returns an error, the system won’t enter the desired low-power state. Instead,
the PM core will unwind its actions by resuming all the devices that were suspended.

Leaving System Suspend

When resuming from freeze, standby or memory sleep, the phases are: resume_noirq, resume_early,
resume, complete.
1. The ->resume_noirq callback methods should perform any actions needed before the driver’s inter-
rupt handlers are invoked. This generally means undoing the actions of the suspend_noirq phase. If
the bus type permits devices to share interrupt vectors, like PCI, the method should bring the device
and its driver into a state in which the driver can recognize if the device is the source of incoming
interrupts, if any, and handle them correctly.
For example, the PCI bus type’s ->pm.resume_noirq() puts the device into the full-power state (D0
in the PCI terminology) and restores the standard configuration registers of the device. Then it calls
the device driver’s ->pm.resume_noirq() method to perform device-specific actions.

2. The ->resume_earlymethods should prepare devices for the execution of the resumemethods. This
generally involves undoing the actions of the preceding suspend_late phase.

3. The ->resume methods should bring the device back to its operating state, so that it can perform
normal I/O. This generally involves undoing the actions of the suspend phase.

4. The complete phase should undo the actions of the prepare phase. For this reason, unlike the other
resume-related phases, during the complete phase the device hierarchy is traversed bottom-up.
Note, however, that new children may be registered below the device as soon as the ->resume
callbacks occur; it’s not necessary to wait until the complete phase with that.
Moreover, if the preceding ->prepare callback returned a positive number, the device may have
been left in runtime suspend throughout the whole system suspend and resume (the suspend, sus-
pend_late, suspend_noirq phases of system suspend and the resume_noirq, resume_early, re-
sume phases of system resume may have been skipped for it). In that case, the ->complete callback
is entirely responsible for putting the device into a consistent state after system suspend if necessary.
[For example, it may need to queue up a runtime resume request for the device for this purpose.] To
check if that is the case, the ->complete callback can consult the device’s power.direct_complete
flag. Namely, if that flag is set when the ->complete callback is being run, it has been called di-
rectly after the preceding ->prepare and special actions may be required to make the device work
correctly afterward.

At the end of these phases, drivers should be as functional as they were before suspending: I/O can be
performed using DMA and IRQs, and the relevant clocks are gated on.
However, the details here may again be platform-specific. For example, some systems support multiple
“run” states, and themode in effect at the end of resumemight not be the one which preceded suspension.
That means availability of certain clocks or power supplies changed, which could easily affect how a driver
works.
Drivers need to be able to handle hardware which has been reset since all of the suspend methods were
called, for example by complete reinitialization. This may be the hardest part, and the one most protected
by NDA’d documents and chip errata. It’s simplest if the hardware state hasn’t changed since the suspend
was carried out, but that can only be guaranteed if the target system sleep entered was suspend-to-idle.
For the other system sleep states that may not be the case (and usually isn’t for ACPI-defined system
sleep states, like S3).
Drivers must also be prepared to notice that the device has been removed while the system was powered
down, whenever that’s physically possible. PCMCIA, MMC, USB, Firewire, SCSI, and even IDE are common
examples of busses where common Linux platforms will see such removal. Details of how drivers will
notice and handle such removals are currently bus-specific, and often involve a separate thread.
These callbacks may return an error value, but the PM core will ignore such errors since there’s nothing it
can do about them other than printing them in the system log.

118 Chapter 3. Device Power Management

The kernel driver API manual, Release 4.13.0-rc4+

Entering Hibernation

Hibernating the system is more complicated than putting it into sleep states, because it involves creating
and saving a system image. Therefore there are more phases for hibernation, with a different set of
callbacks. These phases always run after tasks have been frozen and enough memory has been freed.
The general procedure for hibernation is to quiesce all devices (“freeze”), create an image of the system
memory while everything is stable, reactivate all devices (“thaw”), write the image to permanent stor-
age, and finally shut down the system (“power off”). The phases used to accomplish this are: prepare,
freeze, freeze_late, freeze_noirq, thaw_noirq, thaw_early, thaw, complete, prepare, poweroff,
poweroff_late, poweroff_noirq.
1. The prepare phase is discussed in the “Entering System Suspend” section above.
2. The ->freeze methods should quiesce the device so that it doesn’t generate IRQs or DMA, and they
may need to save the values of device registers. However the device does not have to be put in a
low-power state, and to save time it’s best not to do so. Also, the device should not be prepared to
generate wakeup events.

3. The freeze_late phase is analogous to the suspend_late phase described earlier, except that the
device should not be put into a low-power state and should not be allowed to generate wakeup
events.

4. The freeze_noirq phase is analogous to the suspend_noirq phase discussed earlier, except again
that the device should not be put into a low-power state and should not be allowed to generate
wakeup events.

At this point the system image is created. All devices should be inactive and the contents of memory
should remain undisturbed while this happens, so that the image forms an atomic snapshot of the system
state.
5. The thaw_noirq phase is analogous to the resume_noirq phase discussed earlier. The main differ-
ence is that its methods can assume the device is in the same state as at the end of the freeze_noirq
phase.

6. The thaw_early phase is analogous to the resume_early phase described above. Its methods should
undo the actions of the preceding freeze_late, if necessary.

7. The thaw phase is analogous to the resume phase discussed earlier. Its methods should bring the
device back to an operating state, so that it can be used for saving the image if necessary.

8. The complete phase is discussed in the “Leaving System Suspend” section above.
At this point the system image is saved, and the devices then need to be prepared for the upcoming
system shutdown. This is much like suspending them before putting the system into the suspend-to-idle,
shallow or deep sleep state, and the phases are similar.
9. The prepare phase is discussed above.
10. The poweroff phase is analogous to the suspend phase.
11. The poweroff_late phase is analogous to the suspend_late phase.
12. The poweroff_noirq phase is analogous to the suspend_noirq phase.
The ->poweroff, ->poweroff_late and ->poweroff_noirq callbacks should do essentially the same
things as the ->suspend, ->suspend_late and ->suspend_noirq callbacks, respectively. The only no-
table difference is that they need not store the device register values, because the registers should already
have been stored during the freeze, freeze_late or freeze_noirq phases.

Leaving Hibernation

Resuming from hibernation is, again, more complicated than resuming from a sleep state in which the
contents of main memory are preserved, because it requires a system image to be loaded into memory

3.1. Device Power Management Basics 119

The kernel driver API manual, Release 4.13.0-rc4+

and the pre-hibernation memory contents to be restored before control can be passed back to the image
kernel.
Although in principle the image might be loaded into memory and the pre-hibernation memory contents
restored by the boot loader, in practice this can’t be done because boot loaders aren’t smart enough and
there is no established protocol for passing the necessary information. So instead, the boot loader loads a
fresh instance of the kernel, called “the restore kernel”, into memory and passes control to it in the usual
way. Then the restore kernel reads the system image, restores the pre-hibernation memory contents, and
passes control to the image kernel. Thus two different kernel instances are involved in resuming from
hibernation. In fact, the restore kernel may be completely different from the image kernel: a different
configuration and even a different version. This has important consequences for device drivers and their
subsystems.
To be able to load the system image into memory, the restore kernel needs to include at least a subset of
device drivers allowing it to access the storage medium containing the image, although it doesn’t need
to include all of the drivers present in the image kernel. After the image has been loaded, the devices
managed by the boot kernel need to be prepared for passing control back to the image kernel. This is
very similar to the initial steps involved in creating a system image, and it is accomplished in the same
way, using prepare, freeze, and freeze_noirq phases. However, the devices affected by these phases
are only those having drivers in the restore kernel; other devices will still be in whatever state the boot
loader left them.
Should the restoration of the pre-hibernationmemory contents fail, the restore kernel would go through the
“thawing” procedure described above, using the thaw_noirq, thaw_early, thaw, and complete phases,
and then continue running normally. This happens only rarely. Most often the pre-hibernation mem-
ory contents are restored successfully and control is passed to the image kernel, which then becomes
responsible for bringing the system back to the working state.
To achieve this, the image kernel must restore the devices’ pre-hibernation functionality. The operation
is much like waking up from a sleep state (with the memory contents preserved), although it involves
different phases: restore_noirq, restore_early, restore, complete.
1. The restore_noirq phase is analogous to the resume_noirq phase.
2. The restore_early phase is analogous to the resume_early phase.
3. The restore phase is analogous to the resume phase.
4. The complete phase is discussed above.

The main difference from resume[_early|_noirq] is that restore[_early|_noirq] must assume the
device has been accessed and reconfigured by the boot loader or the restore kernel. Consequently, the
state of the device may be different from the state remembered from the freeze, freeze_late and
freeze_noirq phases. The device may even need to be reset and completely re-initialized. In many
cases this difference doesn’t matter, so the ->resume[_early|_noirq] and ->restore[_early|_norq]
method pointers can be set to the same routines. Nevertheless, different callback pointers are used in
case there is a situation where it actually does matter.

3.1.4 Power Management Notifiers

There are some operations that cannot be carried out by the power management callbacks discussed
above, because the callbacks occur too late or too early. To handle these cases, subsystems and device
drivers may register power management notifiers that are called before tasks are frozen and after they
have been thawed. Generally speaking, the PM notifiers are suitable for performing actions that either
require user space to be available, or at least won’t interfere with user space.
For details refer to Suspend/Hibernation Notifiers .

120 Chapter 3. Device Power Management

The kernel driver API manual, Release 4.13.0-rc4+

3.1.5 Device Low-Power (suspend) States

Device low-power states aren’t standard. One device might only handle “on” and “off”, while another
might support a dozen different versions of “on” (how many engines are active?), plus a state that gets
back to “on” faster than from a full “off”.
Some buses define rules about what different suspend states mean. PCI gives one example: after the
suspend sequence completes, a non-legacy PCI device may not perform DMA or issue IRQs, and any
wakeup events it issues would be issued through the PME# bus signal. Plus, there are several PCI-standard
device states, some of which are optional.
In contrast, integrated system-on-chip processors often use IRQs as the wakeup event sources (so drivers
would call enable_irq_wake()) andmight be able to treat DMA completion as a wakeup event (sometimes
DMA can stay active too, it’d only be the CPU and some peripherals that sleep).
Some details here may be platform-specific. Systems may have devices that can be fully active in certain
sleep states, such as an LCD display that’s refreshed using DMA while most of the system is sleeping
lightly ... and its frame buffer might even be updated by a DSP or other non-Linux CPU while the Linux
control processor stays idle.
Moreover, the specific actions taken may depend on the target system state. One target system state
might allow a given device to be very operational; another might require a hard shut down with re-
initialization on resume. And two different target systems might use the same device in different ways;
the aforementioned LCD might be active in one product’s “standby”, but a different product using the
same SOC might work differently.

3.1.6 Device Power Management Domains

Sometimes devices share reference clocks or other power resources. In those cases it generally is not
possible to put devices into low-power states individually. Instead, a set of devices sharing a power
resource can be put into a low-power state together at the same time by turning off the shared power
resource. Of course, they also need to be put into the full-power state together, by turning the shared
power resource on. A set of devices with this property is often referred to as a power domain. A power
domain may also be nested inside another power domain. The nested domain is referred to as the sub-
domain of the parent domain.
Support for power domains is provided through the pm_domain field of struct device. This field is a
pointer to an object of type struct dev_pm_domain, defined in include/linux/pm.h`, providing a set
of power management callbacks analogous to the subsystem-level and device driver callbacks that are
executed for the given device during all power transitions, instead of the respective subsystem-level call-
backs. Specifically, if a device’s pm_domain pointer is not NULL, the ->suspend() callback from the object
pointed to by it will be executed instead of its subsystem’s (e.g. bus type’s) ->suspend() callback and
analogously for all of the remaining callbacks. In other words, power management domain callbacks, if de-
fined for the given device, always take precedence over the callbacks provided by the device’s subsystem
(e.g. bus type).
The support for device power management domains is only relevant to platforms needing to use the same
device driver power management callbacks in many different power domain configurations and wanting
to avoid incorporating the support for power domains into subsystem-level callbacks, for example by
modifying the platform bus type. Other platforms need not implement it or take it into account in any
way.
Devices may be defined as IRQ-safe which indicates to the PM core that their runtime PM callbacks may
be invoked with disabled interrupts (see Documentation/power/runtime_pm.txt for more information).
If an IRQ-safe device belongs to a PM domain, the runtime PM of the domain will be disallowed, unless the
domain itself is defined as IRQ-safe. However, it makes sense to define a PM domain as IRQ-safe only if
all the devices in it are IRQ-safe. Moreover, if an IRQ-safe domain has a parent domain, the runtime PM
of the parent is only allowed if the parent itself is IRQ-safe too with the additional restriction that all child
domains of an IRQ-safe parent must also be IRQ-safe.

3.1. Device Power Management Basics 121

The kernel driver API manual, Release 4.13.0-rc4+

3.1.7 Runtime Power Management

Many devices are able to dynamically power down while the system is still running. This feature is useful
for devices that are not being used, and can offer significant power savings on a running system. These
devices often support a range of runtime power states, which might use names such as “off”, “sleep”,
“idle”, “active”, and so on. Those states will in some cases (like PCI) be partially constrained by the bus
the device uses, and will usually include hardware states that are also used in system sleep states.
A system-wide power transition can be started while some devices are in low power states due to runtime
power management. The system sleep PM callbacks should recognize such situations and react to them
appropriately, but the necessary actions are subsystem-specific.
In some cases the decision may be made at the subsystem level while in other cases the device driver
may be left to decide. In some cases it may be desirable to leave a suspended device in that state during
a system-wide power transition, but in other cases the device must be put back into the full-power state
temporarily, for example so that its system wakeup capability can be disabled. This all depends on the
hardware and the design of the subsystem and device driver in question.
During system-wide resume from a sleep state it’s easiest to put devices into the full-power state, as ex-
plained in Documentation/power/runtime_pm.txt. Refer to that document for more information regard-
ing this particular issue as well as for information on the device runtime power management framework
in general.

3.2 Suspend/Hibernation Notifiers

Copyright (c) 2016 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

There are some operations that subsystems or drivers may want to carry out before hibernation/suspend
or after restore/resume, but they require the system to be fully functional, so the drivers’ and subsystems’
->suspend() and ->resume() or even ->prepare() and ->complete() callbacks are not suitable for this
purpose.
For example, device drivers may want to upload firmware to their devices after resume/restore, but they
cannot do it by calling request_firmware() from their ->resume() or ->complete() callback routines
(user land processes are frozen at these points). The solution may be to load the firmware into memory
before processes are frozen and upload it from there in the ->resume() routine. A suspend/hibernation
notifier may be used for that.
Subsystems or drivers having such needs can register suspend notifiers that will be called upon the fol-
lowing events by the PM core:
PM_HIBERNATION_PREPARE The system is going to hibernate, tasks will be frozen immediately. This is

different from PM_SUSPEND_PREPARE below, because in this case additional work is done between the
notifiers and the invocation of PM callbacks for the “freeze” transition.

PM_POST_HIBERNATION The system memory state has been restored from a hibernation image or an error
occurred during hibernation. Device restore callbacks have been executed and tasks have been
thawed.

PM_RESTORE_PREPARE The system is going to restore a hibernation image. If all goes well, the restored
image kernel will issue a PM_POST_HIBERNATION notification.

PM_POST_RESTORE An error occurred during restore from hibernation. Device restore callbacks have been
executed and tasks have been thawed.

PM_SUSPEND_PREPARE The system is preparing for suspend.
PM_POST_SUSPEND The system has just resumed or an error occurred during suspend. Device resume

callbacks have been executed and tasks have been thawed.

122 Chapter 3. Device Power Management

The kernel driver API manual, Release 4.13.0-rc4+

It is generally assumed that whatever the notifiers do for PM_HIBERNATION_PREPARE, should be undone for
PM_POST_HIBERNATION. Analogously, operations carried out for PM_SUSPEND_PREPARE should be reversed
for PM_POST_SUSPEND.
Moreover, if one of the notifiers fails for the PM_HIBERNATION_PREPARE or PM_SUSPEND_PREPARE event,
the notifiers that have already succeeded for that event will be called for PM_POST_HIBERNATION or
PM_POST_SUSPEND, respectively.
The hibernation and suspend notifiers are called with pm_mutex held. They are defined in the usual way,
but their last argument is meaningless (it is always NULL).
To register and/or unregister a suspend notifier use register_pm_notifier() and unregis-
ter_pm_notifier(), respectively (both defined in include/linux/suspend.h). If you don’t need to un-
register the notifier, you can also use the pm_notifier() macro defined in include/linux/suspend.h.

3.3 Device Power Management Data Types

struct dev_pm_ops
device PM callbacks.

Definition

struct dev_pm_ops {
int (* prepare) (struct device *dev);
void (* complete) (struct device *dev);
int (* suspend) (struct device *dev);
int (* resume) (struct device *dev);
int (* freeze) (struct device *dev);
int (* thaw) (struct device *dev);
int (* poweroff) (struct device *dev);
int (* restore) (struct device *dev);
int (* suspend_late) (struct device *dev);
int (* resume_early) (struct device *dev);
int (* freeze_late) (struct device *dev);
int (* thaw_early) (struct device *dev);
int (* poweroff_late) (struct device *dev);
int (* restore_early) (struct device *dev);
int (* suspend_noirq) (struct device *dev);
int (* resume_noirq) (struct device *dev);
int (* freeze_noirq) (struct device *dev);
int (* thaw_noirq) (struct device *dev);
int (* poweroff_noirq) (struct device *dev);
int (* restore_noirq) (struct device *dev);
int (* runtime_suspend) (struct device *dev);
int (* runtime_resume) (struct device *dev);
int (* runtime_idle) (struct device *dev);

};

Members
prepare The principal role of this callback is to prevent new children of the device from being registered af-

ter it has returned (the driver’s subsystem and generally the rest of the kernel is supposed to prevent
new calls to the probe method from being made too once prepare() has succeeded). If prepare()
detects a situation it cannot handle (e.g. registration of a child already in progress), it may return
-EAGAIN, so that the PM core can execute it once again (e.g. after a new child has been registered)
to recover from the race condition. This method is executed for all kinds of suspend transitions and
is followed by one of the suspend callbacks: suspend(), freeze(), or poweroff(). If the transition is
a suspend to memory or standby (that is, not related to hibernation), the return value of prepare()
may be used to indicate to the PM core to leave the device in runtime suspend if applicable. Namely,
if prepare() returns a positive number, the PM core will understand that as a declaration that the
device appears to be runtime-suspended and it may be left in that state during the entire transition

3.3. Device Power Management Data Types 123

The kernel driver API manual, Release 4.13.0-rc4+

and during the subsequent resume if all of its descendants are left in runtime suspend too. If that
happens, complete() will be executed directly after prepare() and it must ensure the proper func-
tioning of the device after the system resume. The PM core executes subsystem-level prepare() for
all devices before starting to invoke suspend callbacks for any of them, so generally devices may
be assumed to be functional or to respond to runtime resume requests while prepare() is being
executed. However, device drivers may NOT assume anything about the availability of user space
at that time and it is NOT valid to request firmware from within prepare() (it’s too late to do that).
It also is NOT valid to allocate substantial amounts of memory from prepare() in the GFP_KERNEL
mode. [To work around these limitations, drivers may register suspend and hibernation notifiers to
be executed before the freezing of tasks.]

complete Undo the changes made by prepare(). This method is executed for all kinds of resume transi-
tions, following one of the resume callbacks: resume(), thaw(), restore(). Also called if the state
transition fails before the driver’s suspend callback: suspend(), freeze() or poweroff(), can be
executed (e.g. if the suspend callback fails for one of the other devices that the PM core has unsuc-
cessfully attempted to suspend earlier). The PM core executes subsystem-level complete() after it
has executed the appropriate resume callbacks for all devices. If the corresponding prepare() at
the beginning of the suspend transition returned a positive number and the device was left in run-
time suspend (without executing any suspend and resume callbacks for it), complete() will be the
only callback executed for the device during resume. In that case, complete() must be prepared to
do whatever is necessary to ensure the proper functioning of the device after the system resume.
To this end, complete() can check the power.direct_complete flag of the device to learn whether
(unset) or not (set) the previous suspend and resume callbacks have been executed for it.

suspend Executed before putting the system into a sleep state in which the contents of main memory are
preserved. The exact action to perform depends on the device’s subsystem (PM domain, device type,
class or bus type), but generally the device must be quiescent after subsystem-level suspend() has
returned, so that it doesn’t do any I/O or DMA. Subsystem-level suspend() is executed for all devices
after invoking subsystem-level prepare() for all of them.

resume Executed after waking the system up from a sleep state in which the contents of main memory
were preserved. The exact action to perform depends on the device’s subsystem, but generally the
driver is expected to start working again, responding to hardware events and software requests (the
device itself may be left in a low-power state, waiting for a runtime resume to occur). The state of the
device at the time its driver’s resume() callback is run depends on the platform and subsystem the
device belongs to. On most platforms, there are no restrictions on availability of resources like clocks
during resume(). Subsystem-level resume() is executed for all devices after invoking subsystem-
level resume_noirq() for all of them.

freeze Hibernation-specific, executed before creating a hibernation image. Analogous to suspend(),
but it should not enable the device to signal wakeup events or change its power state. The majority
of subsystems (with the notable exception of the PCI bus type) expect the driver-level freeze() to
save the device settings in memory to be used by restore() during the subsequent resume from
hibernation. Subsystem-level freeze() is executed for all devices after invoking subsystem-level
prepare() for all of them.

thaw Hibernation-specific, executed after creating a hibernation image OR if the creation of an image
has failed. Also executed after a failing attempt to restore the contents of main memory from such
an image. Undo the changes made by the preceding freeze(), so the device can be operated in
the same way as immediately before the call to freeze(). Subsystem-level thaw() is executed for
all devices after invoking subsystem-level thaw_noirq() for all of them. It also may be executed
directly after freeze() in case of a transition error.

poweroff Hibernation-specific, executed after saving a hibernation image. Analogous to suspend(), but
it need not save the device’s settings in memory. Subsystem-level poweroff() is executed for all
devices after invoking subsystem-level prepare() for all of them.

restore Hibernation-specific, executed after restoring the contents of main memory from a hibernation
image, analogous to resume().

suspend_late Continue operations started by suspend(). For a number of devices suspend_late()may
point to the same callback routine as the runtime suspend callback.

124 Chapter 3. Device Power Management

The kernel driver API manual, Release 4.13.0-rc4+

resume_early Prepare to execute resume(). For a number of devices resume_early()may point to the
same callback routine as the runtime resume callback.

freeze_late Continue operations started by freeze(). Analogous to suspend_late(), but it should not
enable the device to signal wakeup events or change its power state.

thaw_early Prepare to execute thaw(). Undo the changes made by the preceding freeze_late().
poweroff_late Continue operations started by poweroff(). Analogous to suspend_late(), but it need

not save the device’s settings in memory.
restore_early Prepare to execute restore(), analogous to resume_early().
suspend_noirq Complete the actions started by suspend(). Carry out any additional operations required

for suspending the device that might be racing with its driver’s interrupt handler, which is guaran-
teed not to run while suspend_noirq() is being executed. It generally is expected that the device
will be in a low-power state (appropriate for the target system sleep state) after subsystem-level
suspend_noirq() has returned successfully. If the device can generate system wakeup signals and
is enabled to wake up the system, it should be configured to do so at that time. However, depend-
ing on the platform and device’s subsystem, suspend() or suspend_late() may be allowed to put
the device into the low-power state and configure it to generate wakeup signals, in which case it
generally is not necessary to define suspend_noirq().

resume_noirq Prepare for the execution of resume() by carrying out any operations required for resum-
ing the device that might be racing with its driver’s interrupt handler, which is guaranteed not to run
while resume_noirq() is being executed.

freeze_noirq Complete the actions started by freeze(). Carry out any additional operations required
for freezing the device that might be racing with its driver’s interrupt handler, which is guaranteed
not to run while freeze_noirq() is being executed. The power state of the device should not be
changed by either freeze(), or freeze_late(), or freeze_noirq() and it should not be configured to
signal system wakeup by any of these callbacks.

thaw_noirq Prepare for the execution of thaw() by carrying out any operations required for thawing the
device that might be racing with its driver’s interrupt handler, which is guaranteed not to run while
thaw_noirq() is being executed.

poweroff_noirq Complete the actions started by poweroff(). Analogous to suspend_noirq(), but it
need not save the device’s settings in memory.

restore_noirq Prepare for the execution of restore() by carrying out any operations required for thawing
the device that might be racing with its driver’s interrupt handler, which is guaranteed not to run
while restore_noirq() is being executed. Analogous to resume_noirq().

runtime_suspend Prepare the device for a condition in which it won’t be able to communicate with the
CPU(s) and RAM due to power management. This need not mean that the device should be put into
a low-power state. For example, if the device is behind a link which is about to be turned off, the
device may remain at full power. If the device does go to low power and is capable of generating
runtime wakeup events, remote wakeup (i.e., a hardware mechanism allowing the device to request
a change of its power state via an interrupt) should be enabled for it.

runtime_resume Put the device into the fully active state in response to a wakeup event generated by
hardware or at the request of software. If necessary, put the device into the full-power state and
restore its registers, so that it is fully operational.

runtime_idle Device appears to be inactive and it might be put into a low-power state if all of the nec-
essary conditions are satisfied. Check these conditions, and return 0 if it’s appropriate to let the PM
core queue a suspend request for the device.

Description
Several device power state transitions are externally visible, affecting the state of pending I/O queues and
(for drivers that touch hardware) interrupts, wakeups, DMA, and other hardware state. There may also
be internal transitions to various low-power modes which are transparent to the rest of the driver stack
(such as a driver that’s ON gating off clocks which are not in active use).

3.3. Device Power Management Data Types 125

The kernel driver API manual, Release 4.13.0-rc4+

The externally visible transitions are handled with the help of callbacks included in this structure in such
a way that, typically, two levels of callbacks are involved. First, the PM core executes callbacks provided
by PM domains, device types, classes and bus types. They are the subsystem-level callbacks expected
to execute callbacks provided by device drivers, although they may choose not to do that. If the driver
callbacks are executed, they have to collaborate with the subsystem-level callbacks to achieve the goals
appropriate for the given system transition, given transition phase and the subsystem the device belongs
to.
All of the above callbacks, except for complete(), return error codes. However, the error codes returned
by resume(), thaw(), restore(), resume_noirq(), thaw_noirq(), and restore_noirq(), do not cause
the PM core to abort the resume transition during which they are returned. The error codes returned in
those cases are only printed to the system logs for debugging purposes. Still, it is recommended that
drivers only return error codes from their resume methods in case of an unrecoverable failure (i.e. when
the device being handled refuses to resume and becomes unusable) to allow the PM core to be modified
in the future, so that it can avoid attempting to handle devices that failed to resume and their children.
It is allowed to unregister devices while the above callbacks are being executed. However, a callback
routine MUST NOT try to unregister the device it was called for, although it may unregister children of that
device (for example, if it detects that a child was unplugged while the system was asleep).
There also are callbacks related to runtime powermanagement of devices. Again, as a rule these callbacks
are executed by the PM core for subsystems (PM domains, device types, classes and bus types) and the
subsystem-level callbacks are expected to invoke the driver callbacks. Moreover, the exact actions to
be performed by a device driver’s callbacks generally depend on the platform and subsystem the device
belongs to.
Refer to Documentation/power/runtime_pm.txt for more information about the role of the run-
time_suspend(), runtime_resume() and runtime_idle() callbacks in device runtime power manage-
ment.
struct dev_pm_domain

power management domain representation.
Definition

struct dev_pm_domain {
struct dev_pm_ops ops;
void (* detach) (struct device *dev, bool power_off);
int (* activate) (struct device *dev);
void (* sync) (struct device *dev);
void (* dismiss) (struct device *dev);

};

Members
ops Power management operations associated with this domain.
detach Called when removing a device from the domain.
activate Called before executing probe routines for bus types and drivers.
sync Called after successful driver probe.
dismiss Called after unsuccessful driver probe and after driver removal.
Description
Power domains provide callbacks that are executed during system suspend, hibernation, system resume
and during runtime PM transitions instead of subsystem-level and driver-level callbacks.

126 Chapter 3. Device Power Management

CHAPTER

FOUR

BUS-INDEPENDENT DEVICE ACCESSES

Author Matthew Wilcox
Author Alan Cox

4.1 Introduction

Linux provides an API which abstracts performing IO across all busses and devices, allowing device drivers
to be written independently of bus type.

4.2 Memory Mapped IO

4.2.1 Getting Access to the Device

The most widely supported form of IO is memory mapped IO. That is, a part of the CPU’s address space is
interpreted not as accesses to memory, but as accesses to a device. Some architectures define devices
to be at a fixed address, but most have some method of discovering devices. The PCI bus walk is a good
example of such a scheme. This document does not cover how to receive such an address, but assumes
you are starting with one. Physical addresses are of type unsigned long.
This address should not be used directly. Instead, to get an address suitable for passing to the accessor
functions described below, you should call ioremap(). An address suitable for accessing the device will
be returned to you.
After you’ve finished using the device (say, in your module’s exit routine), call iounmap() in order to
return the address space to the kernel. Most architectures allocate new address space each time you call
ioremap(), and they can run out unless you call iounmap().

4.2.2 Accessing the device

The part of the interface most used by drivers is reading and writing memory-mapped registers on the
device. Linux provides interfaces to read and write 8-bit, 16-bit, 32-bit and 64-bit quantities. Due to a
historical accident, these are named byte, word, long and quad accesses. Both read and write accesses
are supported; there is no prefetch support at this time.
The functions are named readb(), readw(), readl(), readq(), readb_relaxed(), readw_relaxed(),
readl_relaxed(), readq_relaxed(), writeb(), writew(), writel() and writeq().
Some devices (such as framebuffers) would like to use larger transfers than 8 bytes at a time. For these
devices, the memcpy_toio(), memcpy_fromio() and memset_io() functions are provided. Do not use
memset or memcpy on IO addresses; they are not guaranteed to copy data in order.
The read and write functions are defined to be ordered. That is the compiler is not permitted to reorder
the I/O sequence. When the ordering can be compiler optimised, you can use __readb() and friends to
indicate the relaxed ordering. Use this with care.

127

The kernel driver API manual, Release 4.13.0-rc4+

While the basic functions are defined to be synchronous with respect to each other and ordered with
respect to each other the busses the devices sit on may themselves have asynchronicity. In particular
many authors are burned by the fact that PCI bus writes are posted asynchronously. A driver author must
issue a read from the same device to ensure that writes have occurred in the specific cases the author
cares. This kind of property cannot be hidden from driver writers in the API. In some cases, the read used
to flush the device may be expected to fail (if the card is resetting, for example). In that case, the read
should be done from config space, which is guaranteed to soft-fail if the card doesn’t respond.
The following is an example of flushing a write to a device when the driver would like to ensure the write’s
effects are visible prior to continuing execution:

static inline void
qla1280_disable_intrs(struct scsi_qla_host *ha)
{

struct device_reg *reg;

reg = ha->iobase;
/* disable risc and host interrupts */
WRT_REG_WORD(®->ictrl, 0);
/*
* The following read will ensure that the above write
* has been received by the device before we return from this
* function.
*/
RD_REG_WORD(®->ictrl);
ha->flags.ints_enabled = 0;

}

In addition to write posting, on some large multiprocessing systems (e.g. SGI Challenge, Origin and Altix
machines) posted writes won’t be strongly ordered coming from different CPUs. Thus it’s important to
properly protect parts of your driver that do memory-mapped writes with locks and use the mmiowb() to
make sure they arrive in the order intended. Issuing a regular readX() will also ensure write ordering,
but should only be used when the driver has to be sure that the write has actually arrived at the device
(not that it’s simply ordered with respect to other writes), since a full readX() is a relatively expensive
operation.
Generally, one should use mmiowb() prior to releasing a spinlock that protects regions using writeb()
or similar functions that aren’t surrounded by readb() calls, which will ensure ordering and flushing. The
following pseudocode illustrates what might occur if write ordering isn’t guaranteed via mmiowb() or one
of the readX() functions:

CPU A: spin_lock_irqsave(&dev_lock, flags)
CPU A: ...
CPU A: writel(newval, ring_ptr);
CPU A: spin_unlock_irqrestore(&dev_lock, flags)

...
CPU B: spin_lock_irqsave(&dev_lock, flags)
CPU B: writel(newval2, ring_ptr);
CPU B: ...
CPU B: spin_unlock_irqrestore(&dev_lock, flags)

In the case above, newval2 could be written to ring_ptr before newval. Fixing it is easy though:

CPU A: spin_lock_irqsave(&dev_lock, flags)
CPU A: ...
CPU A: writel(newval, ring_ptr);
CPU A: mmiowb(); /* ensure no other writes beat us to the device */
CPU A: spin_unlock_irqrestore(&dev_lock, flags)

...
CPU B: spin_lock_irqsave(&dev_lock, flags)
CPU B: writel(newval2, ring_ptr);
CPU B: ...

128 Chapter 4. Bus-Independent Device Accesses

The kernel driver API manual, Release 4.13.0-rc4+

CPU B: mmiowb();
CPU B: spin_unlock_irqrestore(&dev_lock, flags)

See tg3.c for a real world example of how to use mmiowb()
PCI ordering rules also guarantee that PIO read responses arrive after any outstanding DMA writes from
that bus, since for some devices the result of a readb() call may signal to the driver that a DMA transaction
is complete. In many cases, however, the driver may want to indicate that the next readb() call has no
relation to any previous DMA writes performed by the device. The driver can use readb_relaxed() for these
cases, although only some platforms will honor the relaxed semantics. Using the relaxed read functions
will provide significant performance benefits on platforms that support it. The qla2xxx driver provides
examples of how to use readX_relaxed(). In many cases, a majority of the driver’s readX() calls can safely
be converted to readX_relaxed() calls, since only a few will indicate or depend on DMA completion.

4.3 Port Space Accesses

4.3.1 Port Space Explained

Another form of IO commonly supported is Port Space. This is a range of addresses separate to the normal
memory address space. Access to these addresses is generally not as fast as accesses to the memory
mapped addresses, and it also has a potentially smaller address space.
Unlike memory mapped IO, no preparation is required to access port space.

4.3.2 Accessing Port Space

Accesses to this space are provided through a set of functions which allow 8-bit, 16-bit and 32-bit accesses;
also known as byte, word and long. These functions are inb(), inw(), inl(), outb(), outw() and outl().
Some variants are provided for these functions. Some devices require that accesses to their ports are
slowed down. This functionality is provided by appending a _p to the end of the function. There are also
equivalents to memcpy. The ins() and outs() functions copy bytes, words or longs to the given port.

4.4 Public Functions Provided

phys_addr_t virt_to_phys(volatile void * address)
map virtual addresses to physical

Parameters
volatile void * address address to remap
Description

The returned physical address is the physical (CPU) mapping for the memory address given. It
is only valid to use this function on addresses directly mapped or allocated via kmalloc.
This function does not give bus mappings for DMA transfers. In almost all conceivable cases a
device driver should not be using this function

void * phys_to_virt(phys_addr_t address)
map physical address to virtual

Parameters
phys_addr_t address address to remap
Description

4.3. Port Space Accesses 129

The kernel driver API manual, Release 4.13.0-rc4+

The returned virtual address is a current CPU mapping for the memory address given. It is only
valid to use this function on addresses that have a kernel mapping
This function does not handle bus mappings for DMA transfers. In almost all conceivable cases
a device driver should not be using this function

void __iomem * ioremap(resource_size_t offset, unsigned long size)
map bus memory into CPU space

Parameters
resource_size_t offset bus address of the memory
unsigned long size size of the resource to map
Description
ioremap performs a platform specific sequence of operations to make bus memory CPU accessible via the
readb/readw/readl/writeb/ writew/writel functions and the other mmio helpers. The returned address is
not guaranteed to be usable directly as a virtual address.
If the area you are trying to map is a PCI BAR you should have a look at pci_iomap().
void memset_io(volatile void __iomem * addr, unsigned char val, size_t count)
Parameters
volatile void __iomem * addr The beginning of the I/O-memory range to set
unsigned char val The value to set the memory to
size_t count The number of bytes to set
Description
Set a range of I/O memory to a given value.
void memcpy_fromio(void * dst, const volatile void __iomem * src, size_t count)
Parameters
void * dst The (RAM) destination for the copy
const volatile void __iomem * src The (I/O memory) source for the data
size_t count The number of bytes to copy
Description
Copy a block of data from I/O memory.
void memcpy_toio(volatile void __iomem * dst, const void * src, size_t count)
Parameters
volatile void __iomem * dst The (I/O memory) destination for the copy
const void * src The (RAM) source for the data
size_t count The number of bytes to copy
Description
Copy a block of data to I/O memory.
void __iomem * pci_iomap_range(struct pci_dev * dev, int bar, unsigned long offset, unsigned

long maxlen)
create a virtual mapping cookie for a PCI BAR

Parameters
struct pci_dev * dev PCI device that owns the BAR
int bar BAR number

130 Chapter 4. Bus-Independent Device Accesses

The kernel driver API manual, Release 4.13.0-rc4+

unsigned long offset map memory at the given offset in BAR
unsigned long maxlen max length of the memory to map
Description
Using this function you will get a __iomem address to your device BAR. You can access it using ioread*()
and iowrite*(). These functions hide the details if this is a MMIO or PIO address space and will just do what
you expect from them in the correct way.
maxlen specifies the maximum length to map. If you want to get access to the complete BAR from offset
to the end, pass 0 here.
void __iomem * pci_iomap_wc_range(struct pci_dev * dev, int bar, unsigned long offset, unsigned

long maxlen)
create a virtual WC mapping cookie for a PCI BAR

Parameters
struct pci_dev * dev PCI device that owns the BAR
int bar BAR number
unsigned long offset map memory at the given offset in BAR
unsigned long maxlen max length of the memory to map
Description
Using this function you will get a __iomem address to your device BAR. You can access it using ioread*()
and iowrite*(). These functions hide the details if this is a MMIO or PIO address space and will just do what
you expect from them in the correct way. When possible write combining is used.
maxlen specifies the maximum length to map. If you want to get access to the complete BAR from offset
to the end, pass 0 here.
void __iomem * pci_iomap(struct pci_dev * dev, int bar, unsigned long maxlen)

create a virtual mapping cookie for a PCI BAR
Parameters
struct pci_dev * dev PCI device that owns the BAR
int bar BAR number
unsigned long maxlen length of the memory to map
Description
Using this function you will get a __iomem address to your device BAR. You can access it using ioread*()
and iowrite*(). These functions hide the details if this is a MMIO or PIO address space and will just do what
you expect from them in the correct way.
maxlen specifies the maximum length to map. If you want to get access to the complete BAR without
checking for its length first, pass 0 here.
void __iomem * pci_iomap_wc(struct pci_dev * dev, int bar, unsigned long maxlen)

create a virtual WC mapping cookie for a PCI BAR
Parameters
struct pci_dev * dev PCI device that owns the BAR
int bar BAR number
unsigned long maxlen length of the memory to map
Description
Using this function you will get a __iomem address to your device BAR. You can access it using ioread*()
and iowrite*(). These functions hide the details if this is a MMIO or PIO address space and will just do what
you expect from them in the correct way. When possible write combining is used.

4.4. Public Functions Provided 131

The kernel driver API manual, Release 4.13.0-rc4+

maxlen specifies the maximum length to map. If you want to get access to the complete BAR without
checking for its length first, pass 0 here.

132 Chapter 4. Bus-Independent Device Accesses

CHAPTER

FIVE

BUFFER SHARING AND SYNCHRONIZATION

The dma-buf subsystem provides the framework for sharing buffers for hardware (DMA) access across
multiple device drivers and subsystems, and for synchronizing asynchronous hardware access.
This is used, for example, by drm “prime” multi-GPU support, but is of course not limited to GPU use cases.
The three main components of this are: (1) dma-buf, representing a sg_table and exposed to userspace
as a file descriptor to allow passing between devices, (2) fence, which provides a mechanism to signal
when one device as finished access, and (3) reservation, which manages the shared or exclusive fence(s)
associated with the buffer.

5.1 Shared DMA Buffers

This document serves as a guide to device-driver writers on what is the dma-buf buffer sharing API, how
to use it for exporting and using shared buffers.
Any device driver which wishes to be a part of DMA buffer sharing, can do so as either the ‘exporter’ of
buffers, or the ‘user’ or ‘importer’ of buffers.
Say a driver A wants to use buffers created by driver B, then we call B as the exporter, and A as buffer-
user/importer.
The exporter
• implements and manages operations in struct dma_buf_ops for the buffer,
• allows other users to share the buffer by using dma_buf sharing APIs,
• manages the details of buffer allocation, wrapped int a struct dma_buf,
• decides about the actual backing storage where this allocation happens,
• and takes care of any migration of scatterlist - for all (shared) users of this buffer.

The buffer-user
• is one of (many) sharing users of the buffer.
• doesn’t need to worry about how the buffer is allocated, or where.
• and needs a mechanism to get access to the scatterlist that makes up this buffer in memory, mapped
into its own address space, so it can access the same area of memory. This interface is provided by
struct dma_buf_attachment.

Any exporters or users of the dma-buf buffer sharing framework must have a ‘select
DMA_SHARED_BUFFER’ in their respective Kconfigs.

5.1.1 Userspace Interface Notes

Mostly a DMA buffer file descriptor is simply an opaque object for userspace, and hence the generic
interface exposed is very minimal. There’s a few things to consider though:

133

The kernel driver API manual, Release 4.13.0-rc4+

• Since kernel 3.12 the dma-buf FD supports the llseek system call, but only with offset=0 and
whence=SEEK_END|SEEK_SET. SEEK_SET is supported to allow the usual size discover pattern size
= SEEK_END(0); SEEK_SET(0). Every other llseek operation will report -EINVAL.
If llseek on dma-buf FDs isn’t support the kernel will report -ESPIPE for all cases. Userspace can use
this to detect support for discovering the dma-buf size using llseek.

• In order to avoid fd leaks on exec, the FD_CLOEXEC flag must be set on the file descriptor. This is not
just a resource leak, but a potential security hole. It could give the newly exec’d application access
to buffers, via the leaked fd, to which it should otherwise not be permitted access.
The problem with doing this via a separate fcntl() call, versus doing it atomically when the fd is
created, is that this is inherently racy in a multi-threaded app[3]. The issue is made worse when it
is library code opening/creating the file descriptor, as the application may not even be aware of the
fd’s.
To avoid this problem, userspace must have a way to request O_CLOEXEC flag be set when the dma-
buf fd is created. So any API provided by the exporting driver to create a dmabuf fd must provide a
way to let userspace control setting of O_CLOEXEC flag passed in to dma_buf_fd().

• Memory mapping the contents of the DMA buffer is also supported. See the discussion below on CPU
Access to DMA Buffer Objects for the full details.

• The DMA buffer FD is also pollable, see Fence Poll Support below for details.

5.1.2 Basic Operation and Device DMA Access

For device DMA access to a shared DMA buffer the usual sequence of operations is fairly simple:
1. The exporter defines his exporter instance using DEFINE_DMA_BUF_EXPORT_INFO() and calls

dma_buf_export() to wrap a private buffer object into a dma_buf. It then exports that dma_buf
to userspace as a file descriptor by calling dma_buf_fd().

2. Userspace passes this file-descriptors to all drivers it wants this buffer to share with: First the
filedescriptor is converted to a dma_buf using dma_buf_get(). The the buffer is attached to the
device using dma_buf_attach().
Up to this stage the exporter is still free to migrate or reallocate the backing storage.

3. Once the buffer is attached to all devices userspace can inniate DMA access to the shared buffer. In
the kernel this is done by calling dma_buf_map_attachment() and dma_buf_unmap_attachment().

4. Once a driver is done with a shared buffer it needs to call dma_buf_detach() (after cleaning up any
mappings) and then release the reference acquired with dma_buf_get by calling dma_buf_put().

For the detailed semantics exporters are expected to implement see dma_buf_ops.

5.1.3 CPU Access to DMA Buffer Objects

There are mutliple reasons for supporting CPU access to a dma buffer object:
• Fallback operations in the kernel, for example when a device is connected over USB and the kernel
needs to shuffle the data around first before sending it away. Cache coherency is handled by braket-
ing any transactions with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
access.
To support dma_buf objects residing in highmem cpu access is page-based using an api similar to
kmap. Accessing a dma_buf is done in aligned chunks of PAGE_SIZE size. Before accessing a chunk
it needs to be mapped, which returns a pointer in kernel virtual address space. Afterwards the chunk
needs to be unmapped again. There is no limit on how often a given chunk can be mapped and
unmapped, i.e. the importer does not need to call begin_cpu_access again before mapping the
same chunk again.

134 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Interfaces:: void *dma_buf_kmap(struct dma_buf *, unsigned long); void dma_buf_kunmap(struct
dma_buf *, unsigned long, void *);

There are also atomic variants of these interfaces. Like for kmap they facilitate non-blocking fast-
paths. Neither the importer nor the exporter (in the callback) is allowed to block when using these.
Interfaces:: void *dma_buf_kmap_atomic(struct dma_buf *, unsigned long); void

dma_buf_kunmap_atomic(struct dma_buf *, unsigned long, void *);
For importers all the restrictions of using kmap apply, like the limited supply of kmap_atomic slots.
Hence an importer shall only hold onto at max 2 atomic dma_buf kmaps at the same time (in any
given process context).
dma_buf kmap calls outside of the range specified in begin_cpu_access are undefined. If the range
is not PAGE_SIZE aligned, kmap needs to succeed on the partial chunks at the beginning and end
but may return stale or bogus data outside of the range (in these partial chunks).
Note that these calls need to always succeed. The exporter needs to complete any preparations that
might fail in begin_cpu_access.
For some cases the overhead of kmap can be too high, a vmap interface is introduced. This interface
should be used very carefully, as vmalloc space is a limited resources on many architectures.
Interfaces:: void *dma_buf_vmap(struct dma_buf *dmabuf) void dma_buf_vunmap(struct dma_buf

*dmabuf, void *vaddr)
The vmap call can fail if there is no vmap support in the exporter, or if it runs out of vmalloc space.
Fallback to kmap should be implemented. Note that the dma-buf layer keeps a reference count for
all vmap access and calls down into the exporter’s vmap function only when no vmapping exists,
and only unmaps it once. Protection against concurrent vmap/vunmap calls is provided by taking
the dma_buf->lock mutex.

• For full compatibility on the importer side with existing userspace interfaces, which might already
support mmap’ing buffers. This is needed in many processing pipelines (e.g. feeding a software
rendered image into a hardware pipeline, thumbnail creation, snapshots, ...). Also, Android’s ION
framework already supported this and for DMA buffer file descriptors to replace ION buffers mmap
support was needed.
There is no special interfaces, userspace simply calls mmap on the dma-buf fd. But like for CPU access
there’s a need to braket the actual access, which is handled by the ioctl (DMA_BUF_IOCTL_SYNC).
Note that DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must be restarted.
Some systems might need some sort of cache coherency management e.g. when CPU and GPU
domains are being accessed through dma-buf at the same time. To circumvent this problem there
are begin/end coherency markers, that forward directly to existing dma-buf device drivers vfunc
hooks. Userspace can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
sequence would be used like following:

– mmap dma-buf fd
– for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write to mmap area
3. SYNC_END ioctl. This can be repeated as often as you want (with the new data being
consumed by say the GPU or the scanout device)

– munmap once you don’t need the buffer any more
For correctness and optimal performance, it is always required to use SYNC_START and
SYNC_END before and after, respectively, when accessing the mapped address. Userspace
cannot rely on coherent access, even when there are systems where it just works without
calling these ioctls.

• And as a CPU fallback in userspace processing pipelines.
Similar to themotivation for kernel cpu access it is again important that the userspace code of a given
importing subsystem can use the same interfaces with a imported dma-buf buffer object as with a
native buffer object. This is especially important for drm where the userspace part of contemporary

5.1. Shared DMA Buffers 135

The kernel driver API manual, Release 4.13.0-rc4+

OpenGL, X, and other drivers is huge, and reworking them to use a different way to mmap a buffer
rather invasive.
The assumption in the current dma-buf interfaces is that redirecting the initial mmap is all that’s
needed. A survey of some of the existing subsystems shows that no driver seems to do any ne-
farious thing like syncing up with outstanding asynchronous processing on the device or allocating
special resources at fault time. So hopefully this is good enough, since adding interfaces to intercept
pagefaults and allow pte shootdowns would increase the complexity quite a bit.
Interface::

int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *, unsigned long);
If the importing subsystem simply provides a special-purpose mmap call to set up a mapping in
userspace, calling do_mmap with dma_buf->file will equally achieve that for a dma-buf object.

5.1.4 Fence Poll Support

To support cross-device and cross-driver synchronization of buffer access implicit fences (represented
internally in the kernel with struct fence) can be attached to a dma_buf. The glue for that and a few
related things are provided in the reservation_object structure.
Userspace can query the state of these implicitly tracked fences using poll() and related system calls:
• Checking for POLLIN, i.e. read access, can be use to query the state of the most recent write or
exclusive fence.

• Checking for POLLOUT, i.e. write access, can be used to query the state of all attached fences, shared
and exclusive ones.

Note that this only signals the completion of the respective fences, i.e. the DMA transfers are complete.
Cache flushing and any other necessary preparations before CPU access can begin still need to happen.

5.1.5 Kernel Functions and Structures Reference

struct dma_buf * dma_buf_export(const struct dma_buf_export_info * exp_info)
Creates a new dma_buf, and associates an anon file with this buffer, so it can be exported. Also
connect the allocator specific data and ops to the buffer. Additionally, provide a name string for
exporter; useful in debugging.

Parameters
const struct dma_buf_export_info * exp_info [in] holds all the export related information provided

by the exporter. see struct dma_buf_export_info for further details.
Description
Returns, on success, a newly created dma_buf object, which wraps the supplied private data and opera-
tions for dma_buf_ops. On either missing ops, or error in allocating struct dma_buf, will return negative
error.
For most cases the easiest way to create exp_info is through the DEFINE_DMA_BUF_EXPORT_INFOmacro.
int dma_buf_fd(struct dma_buf * dmabuf, int flags)

returns a file descriptor for the given dma_buf
Parameters
struct dma_buf * dmabuf [in] pointer to dma_buf for which fd is required.
int flags [in] flags to give to fd
Description
On success, returns an associated ‘fd’. Else, returns error.

136 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

struct dma_buf * dma_buf_get(int fd)
returns the dma_buf structure related to an fd

Parameters
int fd [in] fd associated with the dma_buf to be returned
Description
On success, returns the dma_buf structure associated with an fd; uses file’s refcounting done by fget to
increase refcount. returns ERR_PTR otherwise.
void dma_buf_put(struct dma_buf * dmabuf)

decreases refcount of the buffer
Parameters
struct dma_buf * dmabuf [in] buffer to reduce refcount of
Description
Uses file’s refcounting done implicitly by fput().
If, as a result of this call, the refcount becomes 0, the ‘release’ file operation related to this fd is called. It
calls dma_buf_ops.release vfunc in turn, and frees the memory allocated for dmabuf when exported.
struct dma_buf_attachment * dma_buf_attach(struct dma_buf * dmabuf, struct device * dev)

Add the device to dma_buf’s attachments list; optionally, calls attach() of dma_buf_ops to allow
device-specific attach functionality

Parameters
struct dma_buf * dmabuf [in] buffer to attach device to.
struct device * dev [in] device to be attached.
Description
Returns struct dma_buf_attachment pointer for this attachment. Attachments must be cleaned up by
calling dma_buf_detach().
Return
A pointer to newly created dma_buf_attachment on success, or a negative error code wrapped into a
pointer on failure.
Note that this can fail if the backing storage of dmabuf is in a place not accessible to dev, and cannot
be moved to a more suitable place. This is indicated with the error code -EBUSY.
void dma_buf_detach(struct dma_buf * dmabuf, struct dma_buf_attachment * attach)

Remove the given attachment from dmabuf’s attachments list; optionally calls detach() of
dma_buf_ops for device-specific detach

Parameters
struct dma_buf * dmabuf [in] buffer to detach from.
struct dma_buf_attachment * attach [in] attachment to be detached; is free’d after this call.
Description
Clean up a device attachment obtained by calling dma_buf_attach().
struct sg_table * dma_buf_map_attachment(struct dma_buf_attachment * attach, enum

dma_data_direction direction)
Returns the scatterlist table of the attachment; mapped into _device_ address space. Is a wrapper
for map_dma_buf() of the dma_buf_ops.

Parameters
struct dma_buf_attachment * attach [in] attachment whose scatterlist is to be returned
enum dma_data_direction direction [in] direction of DMA transfer

5.1. Shared DMA Buffers 137

The kernel driver API manual, Release 4.13.0-rc4+

Description
Returns sg_table containing the scatterlist to be returned; returns ERR_PTR on error. May return -EINTR if
it is interrupted by a signal.
A mapping must be unmapped again using dma_buf_map_attachment(). Note that the underlying back-
ing storage is pinned for as long as a mapping exists, therefore users/importers should not hold onto a
mapping for undue amounts of time.
void dma_buf_unmap_attachment(struct dma_buf_attachment * attach, struct sg_table * sg_table,

enum dma_data_direction direction)
unmaps and decreases usecount of the buffer;might deallocate the scatterlist associated. Is a wrap-
per for unmap_dma_buf() of dma_buf_ops.

Parameters
struct dma_buf_attachment * attach [in] attachment to unmap buffer from
struct sg_table * sg_table [in] scatterlist info of the buffer to unmap
enum dma_data_direction direction [in] direction of DMA transfer
Description
This unmaps a DMA mapping for attached obtained by dma_buf_map_attachment().
int dma_buf_begin_cpu_access(struct dma_buf * dmabuf, enum dma_data_direction direction)

Must be called before accessing a dma_buf from the cpu in the kernel context. Calls begin_cpu_access
to allow exporter-specific preparations. Coherency is only guaranteed in the specified range for the
specified access direction.

Parameters
struct dma_buf * dmabuf [in] buffer to prepare cpu access for.
enum dma_data_direction direction [in] length of range for cpu access.
Description
After the cpu access is complete the caller should call dma_buf_end_cpu_access(). Only when cpu access
is braketed by both calls is it guaranteed to be coherent with other DMA access.
Can return negative error values, returns 0 on success.
int dma_buf_end_cpu_access(struct dma_buf * dmabuf, enum dma_data_direction direction)

Must be called after accessing a dma_buf from the cpu in the kernel context. Calls end_cpu_access to
allow exporter-specific actions. Coherency is only guaranteed in the specified range for the specified
access direction.

Parameters
struct dma_buf * dmabuf [in] buffer to complete cpu access for.
enum dma_data_direction direction [in] length of range for cpu access.
Description
This terminates CPU access started with dma_buf_begin_cpu_access().
Can return negative error values, returns 0 on success.
void * dma_buf_kmap_atomic(struct dma_buf * dmabuf, unsigned long page_num)

Map a page of the buffer object into kernel address space. The same restrictions as for kmap_atomic
and friends apply.

Parameters
struct dma_buf * dmabuf [in] buffer to map page from.
unsigned long page_num [in] page in PAGE_SIZE units to map.

138 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Description
This call must always succeed, any necessary preparations that might fail need to be done in be-
gin_cpu_access.
void dma_buf_kunmap_atomic(struct dma_buf * dmabuf, unsigned long page_num, void * vaddr)

Unmap a page obtained by dma_buf_kmap_atomic.
Parameters
struct dma_buf * dmabuf [in] buffer to unmap page from.
unsigned long page_num [in] page in PAGE_SIZE units to unmap.
void * vaddr [in] kernel space pointer obtained from dma_buf_kmap_atomic.
Description
This call must always succeed.
void * dma_buf_kmap(struct dma_buf * dmabuf, unsigned long page_num)

Map a page of the buffer object into kernel address space. The same restrictions as for kmap and
friends apply.

Parameters
struct dma_buf * dmabuf [in] buffer to map page from.
unsigned long page_num [in] page in PAGE_SIZE units to map.
Description
This call must always succeed, any necessary preparations that might fail need to be done in be-
gin_cpu_access.
void dma_buf_kunmap(struct dma_buf * dmabuf, unsigned long page_num, void * vaddr)

Unmap a page obtained by dma_buf_kmap.
Parameters
struct dma_buf * dmabuf [in] buffer to unmap page from.
unsigned long page_num [in] page in PAGE_SIZE units to unmap.
void * vaddr [in] kernel space pointer obtained from dma_buf_kmap.
Description
This call must always succeed.
int dma_buf_mmap(struct dma_buf * dmabuf, struct vm_area_struct * vma, unsigned long pgoff)

Setup up a userspace mmap with the given vma
Parameters
struct dma_buf * dmabuf [in] buffer that should back the vma
struct vm_area_struct * vma [in] vma for the mmap
unsigned long pgoff [in] offset in pages where this mmap should start within the dma-buf buffer.
Description
This function adjusts the passed in vma so that it points at the file of the dma_buf operation. It also adjusts
the starting pgoff and does bounds checking on the size of the vma. Then it calls the exporters mmap
function to set up the mapping.
Can return negative error values, returns 0 on success.
void * dma_buf_vmap(struct dma_buf * dmabuf)

Create virtual mapping for the buffer object into kernel address space. Same restrictions as for vmap
and friends apply.

Parameters

5.1. Shared DMA Buffers 139

The kernel driver API manual, Release 4.13.0-rc4+

struct dma_buf * dmabuf [in] buffer to vmap
Description
This call may fail due to lack of virtual mapping address space. These calls are optional in drivers. The
intended use for them is for mapping objects linear in kernel space for high use objects. Please attempt
to use kmap/kunmap before thinking about these interfaces.
Returns NULL on error.
void dma_buf_vunmap(struct dma_buf * dmabuf, void * vaddr)

Unmap a vmap obtained by dma_buf_vmap.
Parameters
struct dma_buf * dmabuf [in] buffer to vunmap
void * vaddr [in] vmap to vunmap
struct dma_buf_ops

operations possible on struct dma_buf
Definition

struct dma_buf_ops {
int (* attach) (struct dma_buf *, struct device *, struct dma_buf_attachment *);
void (* detach) (struct dma_buf *, struct dma_buf_attachment *);
struct sg_table * (* map_dma_buf) (struct dma_buf_attachment *, enum dma_data_direction);
void (* unmap_dma_buf) (struct dma_buf_attachment *,struct sg_table *, enum dma_data_

↪→direction);
void (* release) (struct dma_buf *);
int (* begin_cpu_access) (struct dma_buf *, enum dma_data_direction);
int (* end_cpu_access) (struct dma_buf *, enum dma_data_direction);
void *(* map_atomic) (struct dma_buf *, unsigned long);
void (* unmap_atomic) (struct dma_buf *, unsigned long, void *);
void *(* map) (struct dma_buf *, unsigned long);
void (* unmap) (struct dma_buf *, unsigned long, void *);
int (* mmap) (struct dma_buf *, struct vm_area_struct *vma);
void *(* vmap) (struct dma_buf *);
void (* vunmap) (struct dma_buf *, void *vaddr);

};

Members
attach This is called from dma_buf_attach() to make sure that a given device can access the provided

dma_buf. Exporters which support buffer objects in special locations like VRAM or device-specific
carveout areas should check whether the buffer could be move to system memory (or directly ac-
cessed by the provided device), and otherwise need to fail the attach operation.
The exporter should also in general check whether the current allocation fullfills the DMA constraints
of the new device. If this is not the case, and the allocation cannot be moved, it should also fail the
attach operation.
Any exporter-private housekeeping data can be stored in the dma_buf_attachment.priv pointer.
This callback is optional.
Returns:
0 on success, negative error code on failure. It might return -EBUSY to signal that backing storage is
already allocated and incompatible with the requirements of requesting device.

detach This is called by dma_buf_detach() to release a dma_buf_attachment. Provided so that exporters
can clean up any housekeeping for an dma_buf_attachment.
This callback is optional.

140 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

map_dma_buf This is called by dma_buf_map_attachment() and is used to map a shared dma_buf into
device address space, and it is mandatory. It can only be called if attach has been called successfully.
This essentially pins the DMA buffer into place, and it cannot be moved any more
This call may sleep, e.g. when the backing storage first needs to be allocated, or moved to a location
suitable for all currently attached devices.
Note that any specific buffer attributes required for this function should get added to de-
vice_dma_parameters accessible via device.dma_params from the dma_buf_attachment. The at-
tach callback should also check these constraints.
If this is being called for the first time, the exporter can now choose to scan through the list of attach-
ments for this buffer, collate the requirements of the attached devices, and choose an appropriate
backing storage for the buffer.
Based on enum dma_data_direction, it might be possible to have multiple users accessing at the
same time (for reading, maybe), or any other kind of sharing that the exporter might wish to make
available to buffer-users.
Returns:
A sg_table scatter list of or the backing storage of the DMA buffer, already mapped into the device
address space of the device attached with the provided dma_buf_attachment.
On failure, returns a negative error value wrapped into a pointer. May also return -EINTR when a
signal was received while being blocked.

unmap_dma_buf This is called by dma_buf_unmap_attachment() and should unmap and release the
sg_table allocated inmap_dma_buf, and it is mandatory. It should also unpin the backing storage
if this is the last mapping of the DMA buffer, it the exporter supports backing storage migration.

release Called after the last dma_buf_put to release the dma_buf, and mandatory.
begin_cpu_access This is called from dma_buf_begin_cpu_access() and allows the exporter to ensure

that the memory is actually available for cpu access - the exporter might need to allocate or swap-
in and pin the backing storage. The exporter also needs to ensure that cpu access is coherent for
the access direction. The direction can be used by the exporter to optimize the cache flushing, i.e.
access with a different direction (read instead of write) might return stale or even bogus data (e.g.
when the exporter needs to copy the data to temporary storage).
This callback is optional.
FIXME: This is both called through the DMA_BUF_IOCTL_SYNC command from userspace (where stor-
age shouldn’t be pinned to avoid handing de-factor mlock rights to userspace) and for the kernel-
internal users of the various kmap interfaces, where the backing storagemust be pinned to guarantee
that the atomic kmap calls can succeed. Since there’s no in-kernel users of the kmap interfaces yet
this isn’t a real problem.
Returns:
0 on success or a negative error code on failure. This can for example fail when the backing storage
can’t be allocated. Can also return -ERESTARTSYS or -EINTR when the call has been interrupted and
needs to be restarted.

end_cpu_access This is called from dma_buf_end_cpu_access()when the importer is done accessing the
CPU. The exporter can use this to flush caches and unpin any resources pinned in begin_cpu_access.
The result of any dma_buf kmap calls after end_cpu_access is undefined.
This callback is optional.
Returns:
0 on success or a negative error code on failure. Can return -ERESTARTSYS or -EINTR when the call
has been interrupted and needs to be restarted.

map_atomic maps a page from the buffer into kernel address space, users may not block until the subse-
quent unmap call. This callback must not sleep.

5.1. Shared DMA Buffers 141

The kernel driver API manual, Release 4.13.0-rc4+

unmap_atomic [optional] unmaps a atomically mapped page from the buffer. This Callback must not
sleep.

map maps a page from the buffer into kernel address space.
unmap [optional] unmaps a page from the buffer.
mmap This callback is used by the dma_buf_mmap() function

Note that the mapping needs to be incoherent, userspace is expected to braket CPU access using
the DMA_BUF_IOCTL_SYNC interface.
Because dma-buf buffers have invariant size over their lifetime, the dma-buf core checks whether
a vma is too large and rejects such mappings. The exporter hence does not need to duplicate this
check. Drivers do not need to check this themselves.
If an exporter needs to manually flush caches and hence needs to fake coherency for mmap support,
it needs to be able to zap all the ptes pointing at the backing storage. Now linux mm needs a struct
address_space associated with the struct file stored in vma->vm_file to do that with the function
unmap_mapping_range. But the dma_buf framework only backs every dma_buf fd with the anon_file
struct file, i.e. all dma_bufs share the same file.
Hence exporters need to setup their own file (and address_space) association by setting vma-
>vm_file and adjusting vma->vm_pgoff in the dma_buf mmap callback. In the specific case of a
gem driver the exporter could use the shmem file already provided by gem (and set vm_pgoff =
0). Exporters can then zap ptes by unmapping the corresponding range of the struct address_space
associated with their own file.
This callback is optional.
Returns:
0 on success or a negative error code on failure.

vmap [optional] creates a virtual mapping for the buffer into kernel address space. Same restrictions as
for vmap and friends apply.

vunmap [optional] unmaps a vmap from the buffer
struct dma_buf

shared buffer object
Definition

struct dma_buf {
size_t size;
struct file * file;
struct list_head attachments;
const struct dma_buf_ops * ops;
struct mutex lock;
unsigned vmapping_counter;
void * vmap_ptr;
const char * exp_name;
struct module * owner;
struct list_head list_node;
void * priv;
struct reservation_object * resv;
wait_queue_head_t poll;
struct dma_buf_poll_cb_t cb_excl;
struct dma_buf_poll_cb_t cb_shared;

};

Members
size size of the buffer
file file pointer used for sharing buffers across, and for refcounting.

142 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

attachments list of dma_buf_attachment that denotes all devices attached.
ops dma_buf_ops associated with this buffer object.
lock used internally to serialize list manipulation, attach/detach and vmap/unmap
vmapping_counter used internally to refcnt the vmaps
vmap_ptr the current vmap ptr if vmapping_counter > 0
exp_name name of the exporter; useful for debugging.
owner pointer to exporter module; used for refcounting when exporter is a kernel module.
list_node node for dma_buf accounting and debugging.
priv exporter specific private data for this buffer object.
resv reservation object linked to this dma-buf
poll for userspace poll support
cb_excl for userspace poll support
cb_shared for userspace poll support
Description
This represents a shared buffer, created by calling dma_buf_export(). The userspace representation is
a normal file descriptor, which can be created by calling dma_buf_fd().
Shared dma buffers are reference counted using dma_buf_put() and get_dma_buf().
Device DMA access is handled by the separate struct dma_buf_attachment.
struct dma_buf_attachment

holds device-buffer attachment data
Definition

struct dma_buf_attachment {
struct dma_buf * dmabuf;
struct device * dev;
struct list_head node;
void * priv;

};

Members
dmabuf buffer for this attachment.
dev device attached to the buffer.
node list of dma_buf_attachment.
priv exporter specific attachment data.
Description
This structure holds the attachment information between the dma_buf buffer and its user device(s). The
list contains one attachment struct per device attached to the buffer.
An attachment is created by calling dma_buf_attach(), and released again by calling dma_buf_detach().
The DMA mapping itself needed to initiate a transfer is created by dma_buf_map_attachment() and freed
again by calling dma_buf_unmap_attachment().
struct dma_buf_export_info

holds information needed to export a dma_buf
Definition

5.1. Shared DMA Buffers 143

The kernel driver API manual, Release 4.13.0-rc4+

struct dma_buf_export_info {
const char * exp_name;
struct module * owner;
const struct dma_buf_ops * ops;
size_t size;
int flags;
struct reservation_object * resv;
void * priv;

};

Members
exp_name name of the exporter - useful for debugging.
owner pointer to exporter module - used for refcounting kernel module
ops Attach allocator-defined dma buf ops to the new buffer
size Size of the buffer
flags mode flags for the file
resv reservation-object, NULL to allocate default one
priv Attach private data of allocator to this buffer
Description
This structure holds the information required to export the buffer. Used with dma_buf_export() only.
DEFINE_DMA_BUF_EXPORT_INFO(name)

helper macro for exporters
Parameters
name export-info name
Description
DEFINE_DMA_BUF_EXPORT_INFO macro defines the struct dma_buf_export_info, zeroes it out and pre-
populates exp_name in it.
void get_dma_buf(struct dma_buf * dmabuf)

convenience wrapper for get_file.
Parameters
struct dma_buf * dmabuf [in] pointer to dma_buf
Description
Increments the reference count on the dma-buf, needed in case of drivers that either need to create
additional references to the dmabuf on the kernel side. For example, an exporter that needs to keep a
dmabuf ptr so that subsequent exports don’t create a new dmabuf.

5.2 Reservation Objects

The reservation object provides a mechanism to manage shared and exclusive fences associated with
a buffer. A reservation object can have attached one exclusive fence (normally associated with write
operations) or N shared fences (read operations). The RCU mechanism is used to protect read access to
fences from locked write-side updates.
int reservation_object_reserve_shared(struct reservation_object * obj)

Reserve space to add a shared fence to a reservation_object.
Parameters
struct reservation_object * obj reservation object

144 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Description
Should be called before reservation_object_add_shared_fence(). Must be called with obj->lock held.
RETURNS Zero for success, or -errno
void reservation_object_add_shared_fence(struct reservation_object * obj, struct dma_fence

* fence)
Add a fence to a shared slot

Parameters
struct reservation_object * obj the reservation object
struct dma_fence * fence the shared fence to add
Description
Add a fence to a shared slot, obj->lock must be held, and reservation_object_reserve_shared() has
been called.
void reservation_object_add_excl_fence(struct reservation_object * obj, struct dma_fence

* fence)
Add an exclusive fence.

Parameters
struct reservation_object * obj the reservation object
struct dma_fence * fence the shared fence to add
Description
Add a fence to the exclusive slot. The obj->lock must be held.
int reservation_object_get_fences_rcu(struct reservation_object * obj, struct dma_fence

** pfence_excl, unsigned * pshared_count, struct
dma_fence *** pshared)

Get an object’s shared and exclusive fences without update side lock held
Parameters
struct reservation_object * obj the reservation object
struct dma_fence ** pfence_excl the returned exclusive fence (or NULL)
unsigned * pshared_count the number of shared fences returned
struct dma_fence *** pshared the array of shared fence ptrs returned (array is krealloc’d to the re-

quired size, and must be freed by caller)
Description
RETURNS Zero or -errno
long reservation_object_wait_timeout_rcu(struct reservation_object * obj, bool wait_all,

bool intr, unsigned long timeout)
Wait on reservation’s objects shared and/or exclusive fences.

Parameters
struct reservation_object * obj the reservation object
bool wait_all if true, wait on all fences, else wait on just exclusive fence
bool intr if true, do interruptible wait
unsigned long timeout timeout value in jiffies or zero to return immediately
Description
RETURNS Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or greater than zer on success.

5.2. Reservation Objects 145

The kernel driver API manual, Release 4.13.0-rc4+

bool reservation_object_test_signaled_rcu(struct reservation_object * obj, bool test_all)
Test if a reservation object’s fences have been signaled.

Parameters
struct reservation_object * obj the reservation object
bool test_all if true, test all fences, otherwise only test the exclusive fence
Description
RETURNS true if all fences signaled, else false
struct reservation_object_list

a list of shared fences
Definition

struct reservation_object_list {
struct rcu_head rcu;
u32 shared_count;
u32 shared_max;
struct dma_fence __rcu * shared;

};

Members
rcu for internal use
shared_count table of shared fences
shared_max for growing shared fence table
shared shared fence table
struct reservation_object

a reservation object manages fences for a buffer
Definition

struct reservation_object {
struct ww_mutex lock;
seqcount_t seq;
struct dma_fence __rcu * fence_excl;
struct reservation_object_list __rcu * fence;
struct reservation_object_list * staged;

};

Members
lock update side lock
seq sequence count for managing RCU read-side synchronization
fence_excl the exclusive fence, if there is one currently
fence list of current shared fences
staged staged copy of shared fences for RCU updates
void reservation_object_init(struct reservation_object * obj)

initialize a reservation object
Parameters
struct reservation_object * obj the reservation object
void reservation_object_fini(struct reservation_object * obj)

destroys a reservation object
Parameters

146 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

struct reservation_object * obj the reservation object
struct reservation_object_list * reservation_object_get_list(struct reservation_object * obj)

get the reservation object’s shared fence list, with update-side lock held
Parameters
struct reservation_object * obj the reservation object
Description
Returns the shared fence list. Does NOT take references to the fence. The obj->lock must be held.
int reservation_object_lock(struct reservation_object * obj, struct ww_acquire_ctx * ctx)

lock the reservation object
Parameters
struct reservation_object * obj the reservation object
struct ww_acquire_ctx * ctx the locking context
Description
Locks the reservation object for exclusive access and modification. Note, that the lock is only against
other writers, readers will run concurrently with a writer under RCU. The seqlock is used to notify readers
if they overlap with a writer.
As the reservation object may be locked by multiple parties in an undefined order, a #ww_acquire_ctx is
passed to unwind if a cycle is detected. See ww_mutex_lock() and ww_acquire_init(). A reservation
object may be locked by itself by passing NULL as ctx.
bool reservation_object_trylock(struct reservation_object * obj)

trylock the reservation object
Parameters
struct reservation_object * obj the reservation object
Description
Tries to lock the reservation object for exclusive access andmodification. Note, that the lock is only against
other writers, readers will run concurrently with a writer under RCU. The seqlock is used to notify readers
if they overlap with a writer.
Also note that since no context is provided, no deadlock protection is possible.
Returns true if the lock was acquired, false otherwise.
void reservation_object_unlock(struct reservation_object * obj)

unlock the reservation object
Parameters
struct reservation_object * obj the reservation object
Description
Unlocks the reservation object following exclusive access.
struct dma_fence * reservation_object_get_excl(struct reservation_object * obj)

get the reservation object’s exclusive fence, with update-side lock held
Parameters
struct reservation_object * obj the reservation object
Description
Returns the exclusive fence (if any). Does NOT take a reference. The obj->lock must be held.
RETURNS The exclusive fence or NULL

5.2. Reservation Objects 147

The kernel driver API manual, Release 4.13.0-rc4+

struct dma_fence * reservation_object_get_excl_rcu(struct reservation_object * obj)
get the reservation object’s exclusive fence, without lock held.

Parameters
struct reservation_object * obj the reservation object
Description
If there is an exclusive fence, this atomically increments it’s reference count and returns it.
RETURNS The exclusive fence or NULL if none

5.3 DMA Fences

u64 dma_fence_context_alloc(unsigned num)
allocate an array of fence contexts

Parameters
unsigned num [in] amount of contexts to allocate
Description
This function will return the first index of the number of fences allocated. The fence context is used for
setting fence->context to a unique number.
int dma_fence_signal_locked(struct dma_fence * fence)

signal completion of a fence
Parameters
struct dma_fence * fence the fence to signal
Description
Signal completion for software callbacks on a fence, this will unblock dma_fence_wait() calls and run all
the callbacks added with dma_fence_add_callback(). Can be called multiple times, but since a fence
can only go from unsignaled to signaled state, it will only be effective the first time.
Unlike dma_fence_signal, this function must be called with fence->lock held.
int dma_fence_signal(struct dma_fence * fence)

signal completion of a fence
Parameters
struct dma_fence * fence the fence to signal
Description
Signal completion for software callbacks on a fence, this will unblock dma_fence_wait() calls and run all
the callbacks added with dma_fence_add_callback(). Can be called multiple times, but since a fence
can only go from unsignaled to signaled state, it will only be effective the first time.
signed long dma_fence_wait_timeout(struct dma_fence * fence, bool intr, signed long timeout)

sleep until the fence gets signaled or until timeout elapses
Parameters
struct dma_fence * fence [in] the fence to wait on
bool intr [in] if true, do an interruptible wait
signed long timeout [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
Description
Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the remaining timeout in jiffies on success.
Other error values may be returned on custom implementations.

148 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Performs a synchronous wait on this fence. It is assumed the caller directly or indirectly (buf-mgr between
reservation and committing) holds a reference to the fence, otherwise the fence might be freed before
return, resulting in undefined behavior.
void dma_fence_enable_sw_signaling(struct dma_fence * fence)

enable signaling on fence
Parameters
struct dma_fence * fence [in] the fence to enable
Description
this will request for sw signaling to be enabled, to make the fence complete as soon as possible
int dma_fence_add_callback(struct dma_fence * fence, struct dma_fence_cb * cb,

dma_fence_func_t func)
add a callback to be called when the fence is signaled

Parameters
struct dma_fence * fence [in] the fence to wait on
struct dma_fence_cb * cb [in] the callback to register
dma_fence_func_t func [in] the function to call
Description
cb will be initialized by dma_fence_add_callback, no initialization by the caller is required. Any number of
callbacks can be registered to a fence, but a callback can only be registered to one fence at a time.
Note that the callback can be called from an atomic context. If fence is already signaled, this function will
return -ENOENT (and not call the callback)
Add a software callback to the fence. Same restrictions apply to refcount as it does to dma_fence_wait,
however the caller doesn’t need to keep a refcount to fence afterwards: when software access is enabled,
the creator of the fence is required to keep the fence alive until after it signals with dma_fence_signal.
The callback itself can be called from irq context.
Returns 0 in case of success, -ENOENT if the fence is already signaled and -EINVAL in case of error.
int dma_fence_get_status(struct dma_fence * fence)

returns the status upon completion
Parameters
struct dma_fence * fence [in] the dma_fence to query
Description
This wraps dma_fence_get_status_locked() to return the error status condition on a signaled fence.
See dma_fence_get_status_locked() for more details.
Returns 0 if the fence has not yet been signaled, 1 if the fence has been signaled without an error condition,
or a negative error code if the fence has been completed in err.
bool dma_fence_remove_callback(struct dma_fence * fence, struct dma_fence_cb * cb)

remove a callback from the signaling list
Parameters
struct dma_fence * fence [in] the fence to wait on
struct dma_fence_cb * cb [in] the callback to remove
Description
Remove a previously queued callback from the fence. This function returns true if the callback is success-
fully removed, or false if the fence has already been signaled.

5.3. DMA Fences 149

The kernel driver API manual, Release 4.13.0-rc4+

WARNING: Cancelling a callback should only be done if you really know what you’re doing, since deadlocks
and race conditions could occur all too easily. For this reason, it should only ever be done on hardware
lockup recovery, with a reference held to the fence.
signed long dma_fence_default_wait(struct dma_fence * fence, bool intr, signed long timeout)

default sleep until the fence gets signaled or until timeout elapses
Parameters
struct dma_fence * fence [in] the fence to wait on
bool intr [in] if true, do an interruptible wait
signed long timeout [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
Description
Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the remaining timeout in jiffies on success.
If timeout is zero the value one is returned if the fence is already signaled for consistency with other
functions taking a jiffies timeout.
signed long dma_fence_wait_any_timeout(struct dma_fence ** fences, uint32_t count, bool intr,

signed long timeout, uint32_t * idx)
sleep until any fence gets signaled or until timeout elapses

Parameters
struct dma_fence ** fences [in] array of fences to wait on
uint32_t count [in] number of fences to wait on
bool intr [in] if true, do an interruptible wait
signed long timeout [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
uint32_t * idx [out] the first signaled fence index, meaningful only on positive return
Description
Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if interrupted, 0 if the wait timed
out, or the remaining timeout in jiffies on success.
Synchronous waits for the first fence in the array to be signaled. The caller needs to hold a reference to
all fences in the array, otherwise a fence might be freed before return, resulting in undefined behavior.
void dma_fence_init(struct dma_fence * fence, const struct dma_fence_ops * ops, spinlock_t * lock,

u64 context, unsigned seqno)
Initialize a custom fence.

Parameters
struct dma_fence * fence [in] the fence to initialize
const struct dma_fence_ops * ops [in] the dma_fence_ops for operations on this fence
spinlock_t * lock [in] the irqsafe spinlock to use for locking this fence
u64 context [in] the execution context this fence is run on
unsigned seqno [in] a linear increasing sequence number for this context
Description
Initializes an allocated fence, the caller doesn’t have to keep its refcount after committing with this fence,
but it will need to hold a refcount again if dma_fence_ops.enable_signaling gets called. This can be used
for other implementing other types of fence.
context and seqno are used for easy comparison between fences, allowing to check which fence is later
by simply using dma_fence_later.
struct dma_fence

software synchronization primitive

150 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Definition

struct dma_fence {
struct kref refcount;
const struct dma_fence_ops * ops;
struct rcu_head rcu;
struct list_head cb_list;
spinlock_t * lock;
u64 context;
unsigned seqno;
unsigned long flags;
ktime_t timestamp;
int error;

};

Members
refcount refcount for this fence
ops dma_fence_ops associated with this fence
rcu used for releasing fence with kfree_rcu
cb_list list of all callbacks to call
lock spin_lock_irqsave used for locking
context execution context this fence belongs to, returned by dma_fence_context_alloc()
seqno the sequence number of this fence inside the execution context, can be compared to decide which

fence would be signaled later.
flags A mask of DMA_FENCE_FLAG_* defined below
timestamp Timestamp when the fence was signaled.
error Optional, only valid if < 0, must be set before calling dma_fence_signal, indicates that the fence

has completed with an error.
Description
the flags member must be manipulated and read using the appropriate atomic ops (bit_*), so taking the
spinlock will not be needed most of the time.
DMA_FENCE_FLAG_SIGNALED_BIT - fence is already signaled DMA_FENCE_FLAG_TIMESTAMP_BIT - times-
tamp recorded for fence signaling DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT - enable_signaling might have
been called DMA_FENCE_FLAG_USER_BITS - start of the unused bits, can be used by the implementer of
the fence for its own purposes. Can be used in different ways by different fence implementers, so do not
rely on this.
Since atomic bitops are used, this is not guaranteed to be the case. Particularly, if the bit was
set, but dma_fence_signal was called right before this bit was set, it would have been able to
set the DMA_FENCE_FLAG_SIGNALED_BIT, before enable_signaling was called. Adding a check for
DMA_FENCE_FLAG_SIGNALED_BIT after setting DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT closes this race,
and makes sure that after dma_fence_signal was called, any enable_signaling call will have either been
completed, or never called at all.
struct dma_fence_cb

callback for dma_fence_add_callback
Definition

struct dma_fence_cb {
struct list_head node;
dma_fence_func_t func;

};

Members

5.3. DMA Fences 151

The kernel driver API manual, Release 4.13.0-rc4+

node used by dma_fence_add_callback to append this struct to fence::cb_list
func dma_fence_func_t to call
Description
This struct will be initialized by dma_fence_add_callback, additional data can be passed along by embed-
ding dma_fence_cb in another struct.
struct dma_fence_ops

operations implemented for fence
Definition

struct dma_fence_ops {
const char * (* get_driver_name) (struct dma_fence *fence);
const char * (* get_timeline_name) (struct dma_fence *fence);
bool (* enable_signaling) (struct dma_fence *fence);
bool (* signaled) (struct dma_fence *fence);
signed long (* wait) (struct dma_fence *fence, bool intr, signed long timeout);
void (* release) (struct dma_fence *fence);
int (* fill_driver_data) (struct dma_fence *fence, void *data, int size);
void (* fence_value_str) (struct dma_fence *fence, char *str, int size);
void (* timeline_value_str) (struct dma_fence *fence, char *str, int size);

};

Members
get_driver_name returns the driver name.
get_timeline_name return the name of the context this fence belongs to.
enable_signaling enable software signaling of fence.
signaled [optional] peek whether the fence is signaled, can be null.
wait custom wait implementation, or dma_fence_default_wait.
release [optional] called on destruction of fence, can be null
fill_driver_data [optional] callback to fill in free-form debug info Returns amount of bytes filled, or

-errno.
fence_value_str [optional] fills in the value of the fence as a string
timeline_value_str [optional] fills in the current value of the timeline as a string
Description
Notes on enable_signaling: For fence implementations that have the capability for hw->hw signaling,
they can implement this op to enable the necessary irqs, or insert commands into cmdstream, etc. This
is called in the first wait() or add_callback() path to let the fence implementation know that there is
another driver waiting on the signal (ie. hw->sw case).
This function can be called called from atomic context, but not from irq context, so normal spinlocks can
be used.
A return value of false indicates the fence already passed, or some failure occurred that made it impossible
to enable signaling. True indicates successful enabling.
fence->error may be set in enable_signaling, but only when false is returned.
Calling dma_fence_signal before enable_signaling is called allows for a tiny race window in which en-
able_signaling is called during, before, or after dma_fence_signal. To fight this, it is recommended that
before enable_signaling returns true an extra reference is taken on the fence, to be released when the
fence is signaled. This will mean dma_fence_signal will still be called twice, but the second time will be a
noop since it was already signaled.
Notes on signaled: May set fence->error if returning true.

152 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Notes on wait: Must not be NULL, set to dma_fence_default_wait for default implementation. the
dma_fence_default_wait implementation should work for any fence, as long as enable_signaling works
correctly.
Must return -ERESTARTSYS if the wait is intr = true and the wait was interrupted, and remaining jiffies if
fence has signaled, or 0 if wait timed out. Can also return other error values on custom implementations,
which should be treated as if the fence is signaled. For example a hardware lockup could be reported like
that.
Notes on release: Can be NULL, this function allows additional commands to run on destruction of the
fence. Can be called from irq context. If pointer is set to NULL, kfree will get called instead.
void dma_fence_put(struct dma_fence * fence)

decreases refcount of the fence
Parameters
struct dma_fence * fence [in] fence to reduce refcount of
struct dma_fence * dma_fence_get(struct dma_fence * fence)

increases refcount of the fence
Parameters
struct dma_fence * fence [in] fence to increase refcount of
Description
Returns the same fence, with refcount increased by 1.
struct dma_fence * dma_fence_get_rcu(struct dma_fence * fence)

get a fence from a reservation_object_list with rcu read lock
Parameters
struct dma_fence * fence [in] fence to increase refcount of
Description
Function returns NULL if no refcount could be obtained, or the fence.
struct dma_fence * dma_fence_get_rcu_safe(struct dma_fence *__rcu * fencep)

acquire a reference to an RCU tracked fence
Parameters
struct dma_fence *__rcu * fencep [in] pointer to fence to increase refcount of
Description
Function returns NULL if no refcount could be obtained, or the fence. This function handles ac-
quiring a reference to a fence that may be reallocated within the RCU grace period (such as with
SLAB_TYPESAFE_BY_RCU), so long as the caller is using RCU on the pointer to the fence.
An alternative mechanism is to employ a seqlock to protect a bunch of fences, such as used by struct
reservation_object. When using a seqlock, the seqlock must be taken before and checked after a reference
to the fence is acquired (as shown here).
The caller is required to hold the RCU read lock.
bool dma_fence_is_signaled_locked(struct dma_fence * fence)

Return an indication if the fence is signaled yet.
Parameters
struct dma_fence * fence [in] the fence to check
Description
Returns true if the fence was already signaled, false if not. Since this function doesn’t enable
signaling, it is not guaranteed to ever return true if dma_fence_add_callback, dma_fence_wait or
dma_fence_enable_sw_signaling haven’t been called before.

5.3. DMA Fences 153

The kernel driver API manual, Release 4.13.0-rc4+

This function requires fence->lock to be held.
bool dma_fence_is_signaled(struct dma_fence * fence)

Return an indication if the fence is signaled yet.
Parameters
struct dma_fence * fence [in] the fence to check
Description
Returns true if the fence was already signaled, false if not. Since this function doesn’t enable
signaling, it is not guaranteed to ever return true if dma_fence_add_callback, dma_fence_wait or
dma_fence_enable_sw_signaling haven’t been called before.
It’s recommended for seqno fences to call dma_fence_signal when the operation is complete, it makes it
possible to prevent issues from wraparound between time of issue and time of use by checking the return
value of this function before calling hardware-specific wait instructions.
bool dma_fence_is_later(struct dma_fence * f1, struct dma_fence * f2)

return if f1 is chronologically later than f2
Parameters
struct dma_fence * f1 [in] the first fence from the same context
struct dma_fence * f2 [in] the second fence from the same context
Description
Returns true if f1 is chronologically later than f2. Both fences must be from the same context, since a
seqno is not re-used across contexts.
struct dma_fence * dma_fence_later(struct dma_fence * f1, struct dma_fence * f2)

return the chronologically later fence
Parameters
struct dma_fence * f1 [in] the first fence from the same context
struct dma_fence * f2 [in] the second fence from the same context
Description
Returns NULL if both fences are signaled, otherwise the fence that would be signaled last. Both fences
must be from the same context, since a seqno is not re-used across contexts.
int dma_fence_get_status_locked(struct dma_fence * fence)

returns the status upon completion
Parameters
struct dma_fence * fence [in] the dma_fence to query
Description
Drivers can supply an optional error status condition before they signal the fence (to indicate whether
the fence was completed due to an error rather than success). The value of the status condition is only
valid if the fence has been signaled, dma_fence_get_status_locked() first checks the signal state before
reporting the error status.
Returns 0 if the fence has not yet been signaled, 1 if the fence has been signaled without an error condition,
or a negative error code if the fence has been completed in err.
void dma_fence_set_error(struct dma_fence * fence, int error)

flag an error condition on the fence
Parameters
struct dma_fence * fence [in] the dma_fence
int error [in] the error to store

154 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Description
Drivers can supply an optional error status condition before they signal the fence, to indicate that the
fence was completed due to an error rather than success. This must be set before signaling (so that the
value is visible before any waiters on the signal callback are woken). This helper exists to help catching
erroneous setting of #dma_fence.error.
signed long dma_fence_wait(struct dma_fence * fence, bool intr)

sleep until the fence gets signaled
Parameters
struct dma_fence * fence [in] the fence to wait on
bool intr [in] if true, do an interruptible wait
Description
This function will return -ERESTARTSYS if interrupted by a signal, or 0 if the fence was signaled. Other
error values may be returned on custom implementations.
Performs a synchronous wait on this fence. It is assumed the caller directly or indirectly holds a reference
to the fence, otherwise the fence might be freed before return, resulting in undefined behavior.

5.3.1 Seqno Hardware Fences

struct seqno_fence * to_seqno_fence(struct dma_fence * fence)
cast a fence to a seqno_fence

Parameters
struct dma_fence * fence fence to cast to a seqno_fence
Description
Returns NULL if the fence is not a seqno_fence, or the seqno_fence otherwise.
void seqno_fence_init(struct seqno_fence * fence, spinlock_t * lock, struct dma_buf * sync_buf,

uint32_t context, uint32_t seqno_ofs, uint32_t seqno, enum se-
qno_fence_condition cond, const struct dma_fence_ops * ops)

initialize a seqno fence
Parameters
struct seqno_fence * fence seqno_fence to initialize
spinlock_t * lock pointer to spinlock to use for fence
struct dma_buf * sync_buf buffer containing the memory location to signal on
uint32_t context the execution context this fence is a part of
uint32_t seqno_ofs the offset within sync_buf
uint32_t seqno the sequence # to signal on
enum seqno_fence_condition cond fence wait condition
const struct dma_fence_ops * ops the fence_ops for operations on this seqno fence
Description
This function initializes a struct seqno_fence with passed parameters, and takes a reference on sync_buf
which is released on fence destruction.
A seqno_fence is a dma_fence which can complete in software when enable_signaling is called, but it also
completes when (s32)((sync_buf)[seqno_ofs] - seqno) >= 0 is true
The seqno_fence will take a refcount on the sync_buf until it’s destroyed, but actual lifetime of sync_buf
may be longer if one of the callers take a reference to it.

5.3. DMA Fences 155

The kernel driver API manual, Release 4.13.0-rc4+

Certain hardware have instructions to insert this type of wait condition in the command stream, so no
intervention from software would be needed. This type of fence can be destroyed before completed,
however a reference on the sync_buf dma-buf can be taken. It is encouraged to re-use the same dma-buf
for sync_buf, since mapping or unmapping the sync_buf to the device’s vm can be expensive.
It is recommended for creators of seqno_fence to call dma_fence_signal() before destruction. This
will prevent possible issues from wraparound at time of issue vs time of check, since users can check
dma_fence_is_signaled() before submitting instructions for the hardware to wait on the fence. How-
ever, when ops.enable_signaling is not called, it doesn’t have to be done as soon as possible, just before
there’s any real danger of seqno wraparound.

5.3.2 DMA Fence Array

struct dma_fence_array * dma_fence_array_create(int num_fences, struct dma_fence
** fences, u64 context, unsigned seqno,
bool signal_on_any)

Create a custom fence array
Parameters
int num_fences [in] number of fences to add in the array
struct dma_fence ** fences [in] array containing the fences
u64 context [in] fence context to use
unsigned seqno [in] sequence number to use
bool signal_on_any [in] signal on any fence in the array
Description
Allocate a dma_fence_array object and initialize the base fence with dma_fence_init(). In case of error
it returns NULL.
The caller should allocate the fences array with num_fences size and fill it with the fences it wants to add
to the object. Ownership of this array is taken and dma_fence_put() is used on each fence on release.
If signal_on_any is true the fence array signals if any fence in the array signals, otherwise it signals when
all fences in the array signal.
bool dma_fence_match_context(struct dma_fence * fence, u64 context)

Check if all fences are from the given context
Parameters
struct dma_fence * fence [in] fence or fence array
u64 context [in] fence context to check all fences against
Description
Checks the provided fence or, for a fence array, all fences in the array against the given context. Returns
false if any fence is from a different context.
struct dma_fence_array_cb

callback helper for fence array
Definition

struct dma_fence_array_cb {
struct dma_fence_cb cb;
struct dma_fence_array * array;

};

Members
cb fence callback structure for signaling

156 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

array reference to the parent fence array object
struct dma_fence_array

fence to represent an array of fences
Definition

struct dma_fence_array {
struct dma_fence base;
spinlock_t lock;
unsigned num_fences;
atomic_t num_pending;
struct dma_fence ** fences;

};

Members
base fence base class
lock spinlock for fence handling
num_fences number of fences in the array
num_pending fences in the array still pending
fences array of the fences
bool dma_fence_is_array(struct dma_fence * fence)

check if a fence is from the array subsclass
Parameters
struct dma_fence * fence fence to test
Description
Return true if it is a dma_fence_array and false otherwise.
struct dma_fence_array * to_dma_fence_array(struct dma_fence * fence)

cast a fence to a dma_fence_array
Parameters
struct dma_fence * fence fence to cast to a dma_fence_array
Description
Returns NULL if the fence is not a dma_fence_array, or the dma_fence_array otherwise.

5.3.3 DMA Fence uABI/Sync File

struct sync_file * sync_file_create(struct dma_fence * fence)
creates a sync file

Parameters
struct dma_fence * fence fence to add to the sync_fence
Description
Creates a sync_file containg fence. This function acquires and additional reference of fence for the newly-
created sync_file, if it succeeds. The sync_file can be released with fput(sync_file->file). Returns the
sync_file or NULL in case of error.
struct dma_fence * sync_file_get_fence(int fd)

get the fence related to the sync_file fd
Parameters
int fd sync_file fd to get the fence from

5.3. DMA Fences 157

The kernel driver API manual, Release 4.13.0-rc4+

Description
Ensures fd references a valid sync_file and returns a fence that represents all fence in the sync_file. On
error NULL is returned.
struct sync_file

sync file to export to the userspace
Definition

struct sync_file {
struct file * file;
char user_name;

#ifdef CONFIG_DEBUG_FS
struct list_head sync_file_list;

#endif
wait_queue_head_t wq;
struct dma_fence * fence;
struct dma_fence_cb cb;

};

Members
file file representing this fence
user_name Name of the sync file provided by userspace, for merged fences. Otherwise generated through

driver callbacks (in which case the entire array is 0).
sync_file_list membership in global file list
wq wait queue for fence signaling
fence fence with the fences in the sync_file
cb fence callback information

158 Chapter 5. Buffer Sharing and Synchronization

CHAPTER

SIX

DEVICE LINKS

By default, the driver core only enforces dependencies between devices that are borne out of a par-
ent/child relationship within the device hierarchy: When suspending, resuming or shutting down the sys-
tem, devices are ordered based on this relationship, i.e. children are always suspended before their
parent, and the parent is always resumed before its children.
Sometimes there is a need to represent device dependencies beyond the mere parent/child relationship,
e.g. between siblings, and have the driver core automatically take care of them.
Secondly, the driver core by default does not enforce any driver presence dependencies, i.e. that one
device must be bound to a driver before another one can probe or function correctly.
Often these two dependency types come together, so a device depends on another one both with regards
to driver presence and with regards to suspend/resume and shutdown ordering.
Device links allow representation of such dependencies in the driver core.
In its standard form, a device link combines both dependency types: It guarantees correct suspend/resume
and shutdown ordering between a “supplier” device and its “consumer” devices, and it guarantees driver
presence on the supplier. The consumer devices are not probed before the supplier is bound to a driver,
and they’re unbound before the supplier is unbound.
When driver presence on the supplier is irrelevant and only correct suspend/resume and shutdown order-
ing is needed, the device link may simply be set up with the DL_FLAG_STATELESS flag. In other words,
enforcing driver presence on the supplier is optional.
Another optional feature is runtime PM integration: By setting the DL_FLAG_PM_RUNTIME flag on addition
of the device link, the PM core is instructed to runtime resume the supplier and keep it active whenever
and for as long as the consumer is runtime resumed.

6.1 Usage

The earliest point in time when device links can be added is after device_add() has been called for the
supplier and device_initialize() has been called for the consumer.
It is legal to add them later, but care must be taken that the system remains in a consistent state: E.g.
a device link cannot be added in the midst of a suspend/resume transition, so either commencement of
such a transition needs to be prevented with lock_system_sleep(), or the device link needs to be added
from a function which is guaranteed not to run in parallel to a suspend/resume transition, such as from a
device ->probe callback or a boot-time PCI quirk.
Another example for an inconsistent state would be a device link that represents a driver presence de-
pendency, yet is added from the consumer’s ->probe callback while the supplier hasn’t probed yet: Had
the driver core known about the device link earlier, it wouldn’t have probed the consumer in the first
place. The onus is thus on the consumer to check presence of the supplier after adding the link, and defer
probing on non-presence.
If a device link is added in the ->probe callback of the supplier or consumer driver, it is typically deleted
in its ->remove callback for symmetry. That way, if the driver is compiled as a module, the device link

159

The kernel driver API manual, Release 4.13.0-rc4+

is added on module load and orderly deleted on unload. The same restrictions that apply to device link
addition (e.g. exclusion of a parallel suspend/resume transition) apply equally to deletion.
Several flags may be specified on device link addition, two of which have already been mentioned above:
DL_FLAG_STATELESS to express that no driver presence dependency is needed (but only correct sus-
pend/resume and shutdown ordering) and DL_FLAG_PM_RUNTIME to express that runtime PM integration
is desired.
Two other flags are specifically targeted at use cases where the device link is added from the consumer’s
->probe callback: DL_FLAG_RPM_ACTIVE can be specified to runtime resume the supplier upon addition
of the device link. DL_FLAG_AUTOREMOVE causes the device link to be automatically purged when the
consumer fails to probe or later unbinds. This obviates the need to explicitly delete the link in the -
>remove callback or in the error path of the ->probe callback.

6.2 Limitations

Driver authors should be aware that a driver presence dependency (i.e. when DL_FLAG_STATELESS is
not specified on link addition) may cause probing of the consumer to be deferred indefinitely. This can
become a problem if the consumer is required to probe before a certain initcall level is reached. Worse, if
the supplier driver is blacklisted or missing, the consumer will never be probed.
Sometimes drivers depend on optional resources. They are able to operate in a degraded mode (reduced
feature set or performance) when those resources are not present. An example is an SPI controller that can
use a DMA engine or work in PIO mode. The controller can determine presence of the optional resources
at probe time but on non-presence there is no way to know whether they will become available in the
near future (due to a supplier driver probing) or never. Consequently it cannot be determined whether to
defer probing or not. It would be possible to notify drivers when optional resources become available after
probing, but it would come at a high cost for drivers as switching between modes of operation at runtime
based on the availability of such resources would be much more complex than a mechanism based on
probe deferral. In any case optional resources are beyond the scope of device links.

6.3 Examples

• An MMU device exists alongside a busmaster device, both are in the same power domain. The MMU
implements DMA address translation for the busmaster device and shall be runtime resumed and
kept active whenever and as long as the busmaster device is active. The busmaster device’s driver
shall not bind before the MMU is bound. To achieve this, a device link with runtime PM integration is
added from the busmaster device (consumer) to the MMU device (supplier). The effect with regards
to runtime PM is the same as if the MMU was the parent of the master device.
The fact that both devices share the same power domain would normally suggest usage of a struct
dev_pm_domain or struct generic_pm_domain, however these are not independent devices that
happen to share a power switch, but rather the MMU device serves the busmaster device and is
useless without it. A device link creates a synthetic hierarchical relationship between the devices
and is thus more apt.

• A Thunderbolt host controller comprises a number of PCIe hotplug ports and an NHI device to manage
the PCIe switch. On resume from system sleep, the NHI device needs to re-establish PCI tunnels to
attached devices before the hotplug ports can resume. If the hotplug ports were children of the NHI,
this resume order would automatically be enforced by the PM core, but unfortunately they’re aunts.
The solution is to add device links from the hotplug ports (consumers) to the NHI device (supplier).
A driver presence dependency is not necessary for this use case.

• Discrete GPUs in hybrid graphics laptops often feature an HDA controller for HDMI/DP audio. In the
device hierarchy the HDA controller is a sibling of the VGA device, yet both share the same power
domain and the HDA controller is only ever needed when an HDMI/DP display is attached to the
VGA device. A device link from the HDA controller (consumer) to the VGA device (supplier) aptly
represents this relationship.

160 Chapter 6. Device links

The kernel driver API manual, Release 4.13.0-rc4+

• ACPI allows definition of a device start order by way of _DEP objects. A classical example is when ACPI
power management methods on one device are implemented in terms of I2C accesses and require
a specific I2C controller to be present and functional for the power management of the device in
question to work.

• In some SoCs a functional dependency exists from display, video codec and video processing IP cores
on transparent memory access IP cores that handle burst access and compression/decompression.

6.4 Alternatives

• A struct dev_pm_domain can be used to override the bus, class or device type callbacks. It is
intended for devices sharing a single on/off switch, however it does not guarantee a specific sus-
pend/resume ordering, this needs to be implemented separately. It also does not by itself track the
runtime PM status of the involved devices and turn off the power switch only when all of them are
runtime suspended. Furthermore it cannot be used to enforce a specific shutdown ordering or a
driver presence dependency.

• A struct generic_pm_domain is a lot more heavyweight than a device link and does not allow for
shutdown ordering or driver presence dependencies. It also cannot be used on ACPI systems.

6.5 Implementation

The device hierarchy, which – as the name implies – is a tree, becomes a directed acyclic graph once
device links are added.
Ordering of these devices during suspend/resume is determined by the dpm_list. During shutdown it is de-
termined by the devices_kset. With no device links present, the two lists are a flattened, one-dimensional
representations of the device tree such that a device is placed behind all its ancestors. That is achieved
by traversing the ACPI namespace or OpenFirmware device tree top-down and appending devices to the
lists as they are discovered.
Once device links are added, the lists need to satisfy the additional constraint that a device is placed
behind all its suppliers, recursively. To ensure this, upon addition of the device link the consumer and the
entire sub-graph below it (all children and consumers of the consumer) are moved to the end of the list.
(Call to device_reorder_to_tail() from device_link_add().)
To prevent introduction of dependency loops into the graph, it is verified upon device link addition that
the supplier is not dependent on the consumer or any children or consumers of the consumer. (Call to
device_is_dependent() from device_link_add().) If that constraint is violated, device_link_add()
will return NULL and a WARNING will be logged.
Notably this also prevents the addition of a device link from a parent device to a child. However the
converse is allowed, i.e. a device link from a child to a parent. Since the driver core already guarantees
correct suspend/resume and shutdown ordering between parent and child, such a device link only makes
sense if a driver presence dependency is needed on top of that. In this case driver authors should weigh
carefully if a device link is at all the right tool for the purpose. A more suitable approach might be to
simply use deferred probing or add a device flag causing the parent driver to be probed before the child
one.

6.6 State machine

enum device_link_state
Device link states.

Constants
DL_STATE_NONE The presence of the drivers is not being tracked.

6.4. Alternatives 161

The kernel driver API manual, Release 4.13.0-rc4+

DL_STATE_DORMANT None of the supplier/consumer drivers is present.
DL_STATE_AVAILABLE The supplier driver is present, but the consumer is not.
DL_STATE_CONSUMER_PROBE The consumer is probing (supplier driver present).
DL_STATE_ACTIVE Both the supplier and consumer drivers are present.
DL_STATE_SUPPLIER_UNBIND The supplier driver is unbinding.

.=============================.
| |
v |

DORMANT <=> AVAILABLE <=> CONSUMER_PROBE => ACTIVE
^ |
| |
'============ SUPPLIER_UNBIND <============'

• The initial state of a device link is automatically determined by device_link_add() based on the
driver presence on the supplier and consumer. If the link is created before any devices are probed,
it is set to DL_STATE_DORMANT.

• When a supplier device is bound to a driver, links to its consumers progress to DL_STATE_AVAILABLE.
(Call to device_links_driver_bound() from driver_bound().)

• Before a consumer device is probed, presence of supplier drivers is verified by checking that
links to suppliers are in DL_STATE_AVAILABLE state. The state of the links is updated to
DL_STATE_CONSUMER_PROBE. (Call to device_links_check_suppliers() from really_probe().)
This prevents the supplier from unbinding. (Call to wait_for_device_probe() from de-
vice_links_unbind_consumers().)

• If the probe fails, links to suppliers revert back to DL_STATE_AVAILABLE. (Call to de-
vice_links_no_driver() from really_probe().)

• If the probe succeeds, links to suppliers progress to DL_STATE_ACTIVE. (Call to de-
vice_links_driver_bound() from driver_bound().)

• When the consumer’s driver is later on removed, links to suppliers revert
back to DL_STATE_AVAILABLE. (Call to __device_links_no_driver() from de-
vice_links_driver_cleanup(), which in turn is called from __device_release_driver().)

• Before a supplier’s driver is removed, links to consumers that are not bound to a driver are updated
to DL_STATE_SUPPLIER_UNBIND. (Call to device_links_busy() from __device_release_driver().)
This prevents the consumers from binding. (Call to device_links_check_suppliers() from re-
ally_probe().) Consumers that are bound are freed from their driver; consumers that are
probing are waited for until they are done. (Call to device_links_unbind_consumers() from
__device_release_driver().) Once all links to consumers are in DL_STATE_SUPPLIER_UNBIND
state, the supplier driver is released and the links revert to DL_STATE_DORMANT. (Call to de-
vice_links_driver_cleanup() from __device_release_driver().)

6.7 API

struct device_link * device_link_add(struct device * consumer, struct device * supplier, u32 flags)
Create a link between two devices.

Parameters
struct device * consumer Consumer end of the link.
struct device * supplier Supplier end of the link.
u32 flags Link flags.

162 Chapter 6. Device links

The kernel driver API manual, Release 4.13.0-rc4+

Description
The caller is responsible for the proper synchronization of the link creation with runtime PM. First, setting
the DL_FLAG_PM_RUNTIME flag will cause the runtime PM framework to take the link into account. Sec-
ond, if the DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will be forced into the
active metastate and reference-counted upon the creation of the link. If DL_FLAG_PM_RUNTIME is not set,
DL_FLAG_RPM_ACTIVE will be ignored.
If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically when the consumer device
driver unbinds from it. The combination of both DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is
invalid and will cause NULL to be returned.
A side effect of the link creation is re-ordering of dpm_list and the devices_kset list bymoving the consumer
device and all devices depending on it to the ends of these lists (that does not happen to devices that
have not been registered when this function is called).
The supplier device is required to be registered when this function is called and NULL will be returned if
that is not the case. The consumer device need not be registered, however.
void device_link_del(struct device_link * link)

Delete a link between two devices.
Parameters
struct device_link * link Device link to delete.
Description
The caller must ensure proper synchronization of this function with runtime PM.

6.7. API 163

The kernel driver API manual, Release 4.13.0-rc4+

164 Chapter 6. Device links

CHAPTER

SEVEN

MESSAGE-BASED DEVICES

7.1 Fusion message devices

u8 mpt_register(MPT_CALLBACK cbfunc, MPT_DRIVER_CLASS dclass, char * func_name)
Register protocol-specific main callback handler.

Parameters
MPT_CALLBACK cbfunc callback function pointer
MPT_DRIVER_CLASS dclass Protocol driver’s class (MPT_DRIVER_CLASS enum value)
char * func_name call function’s name
Description

This routine is called by a protocol-specific driver (SCSI host, LAN, SCSI target) to register its
reply callback routine. Each protocol-specific driver must do this before it will be able to use
any IOC resources, such as obtaining request frames.

NOTES
The SCSI protocol driver currently calls this routine thrice in order to register separate callbacks;

one for “normal” SCSI IO; one for MptScsiTaskMgmt requests; one for Scan/DV requests.
Returns u8 valued “handle” in the range (and S.O.D. order) {N,...,7,6,5,...,1} if successful. A return
value of MPT_MAX_PROTOCOL_DRIVERS (including zero!) should be considered an error by the caller.

void mpt_deregister(u8 cb_idx)
Deregister a protocol drivers resources.

Parameters
u8 cb_idx previously registered callback handle
Description

Each protocol-specific driver should call this routine when its module is unloaded.
int mpt_event_register(u8 cb_idx, MPT_EVHANDLER ev_cbfunc)

Register protocol-specific event callback handler.
Parameters
u8 cb_idx previously registered (via mpt_register) callback handle
MPT_EVHANDLER ev_cbfunc callback function
Description

This routine can be called by one or more protocol-specific drivers if/when they choose to be
notified of MPT events.
Returns 0 for success.

165

The kernel driver API manual, Release 4.13.0-rc4+

void mpt_event_deregister(u8 cb_idx)
Deregister protocol-specific event callback handler

Parameters
u8 cb_idx previously registered callback handle
Description

Each protocol-specific driver should call this routine when it does not (or can no longer) handle
events, or when its module is unloaded.

int mpt_reset_register(u8 cb_idx, MPT_RESETHANDLER reset_func)
Register protocol-specific IOC reset handler.

Parameters
u8 cb_idx previously registered (via mpt_register) callback handle
MPT_RESETHANDLER reset_func reset function
Description

This routine can be called by one or more protocol-specific drivers if/when they choose to be
notified of IOC resets.
Returns 0 for success.

void mpt_reset_deregister(u8 cb_idx)
Deregister protocol-specific IOC reset handler.

Parameters
u8 cb_idx previously registered callback handle
Description

Each protocol-specific driver should call this routine when it does not (or can no longer) handle
IOC reset handling, or when its module is unloaded.

int mpt_device_driver_register(struct mpt_pci_driver * dd_cbfunc, u8 cb_idx)
Register device driver hooks

Parameters
struct mpt_pci_driver * dd_cbfunc driver callbacks struct
u8 cb_idx MPT protocol driver index
void mpt_device_driver_deregister(u8 cb_idx)

DeRegister device driver hooks
Parameters
u8 cb_idx MPT protocol driver index
MPT_FRAME_HDR* mpt_get_msg_frame(u8 cb_idx, MPT_ADAPTER * ioc)

Obtain an MPT request frame from the pool
Parameters
u8 cb_idx Handle of registered MPT protocol driver
MPT_ADAPTER * ioc Pointer to MPT adapter structure
Description

Obtain an MPT request frame from the pool (of 1024) that are allocated per MPT adapter.
Returns pointer to a MPT request frame or NULL if none are available or IOC is not active.

void mpt_put_msg_frame(u8 cb_idx, MPT_ADAPTER * ioc, MPT_FRAME_HDR * mf)
Send a protocol-specific MPT request frame to an IOC

166 Chapter 7. Message-based devices

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
u8 cb_idx Handle of registered MPT protocol driver
MPT_ADAPTER * ioc Pointer to MPT adapter structure
MPT_FRAME_HDR * mf Pointer to MPT request frame
Description

This routine posts an MPT request frame to the request post FIFO of a specific MPT adapter.
void mpt_put_msg_frame_hi_pri(u8 cb_idx, MPT_ADAPTER * ioc, MPT_FRAME_HDR * mf)

Send a hi-pri protocol-specific MPT request frame
Parameters
u8 cb_idx Handle of registered MPT protocol driver
MPT_ADAPTER * ioc Pointer to MPT adapter structure
MPT_FRAME_HDR * mf Pointer to MPT request frame
Description

Send a protocol-specific MPT request frame to an IOC using hi-priority request queue.
This routine posts an MPT request frame to the request post FIFO of a specific MPT adapter.

void mpt_free_msg_frame(MPT_ADAPTER * ioc, MPT_FRAME_HDR * mf)
Place MPT request frame back on FreeQ.

Parameters
MPT_ADAPTER * ioc Pointer to MPT adapter structure
MPT_FRAME_HDR * mf Pointer to MPT request frame
Description

This routine places a MPT request frame back on the MPT adapter’s FreeQ.
int mpt_send_handshake_request(u8 cb_idx, MPT_ADAPTER * ioc, int reqBytes, u32 * req,

int sleepFlag)
Send MPT request via doorbell handshake method.

Parameters
u8 cb_idx Handle of registered MPT protocol driver
MPT_ADAPTER * ioc Pointer to MPT adapter structure
int reqBytes Size of the request in bytes
u32 * req Pointer to MPT request frame
int sleepFlag Use schedule if CAN_SLEEP else use udelay.
Description

This routine is used exclusively to send MptScsiTaskMgmt requests since they are required to
be sent via doorbell handshake.

NOTE
It is the callers responsibility to byte-swap fields in the request which are greater than 1 byte in

size.
Returns 0 for success, non-zero for failure.

int mpt_verify_adapter(int iocid, MPT_ADAPTER ** iocpp)
Given IOC identifier, set pointer to its adapter structure.

Parameters

7.1. Fusion message devices 167

The kernel driver API manual, Release 4.13.0-rc4+

int iocid IOC unique identifier (integer)
MPT_ADAPTER ** iocpp Pointer to pointer to IOC adapter
Description

Given a unique IOC identifier, set pointer to the associated MPT adapter structure.
Returns iocid and sets iocpp if iocid is found. Returns -1 if iocid is not found.

int mpt_attach(struct pci_dev * pdev, const struct pci_device_id * id)
Install a PCI intelligent MPT adapter.

Parameters
struct pci_dev * pdev Pointer to pci_dev structure
const struct pci_device_id * id PCI device ID information
Description

This routine performs all the steps necessary to bring the IOC of a MPT adapter to a OPERATIONAL
state. This includes registeringmemory regions, registering the interrupt, and allocating request
and reply memory pools.
This routine also pre-fetches the LAN MAC address of a Fibre Channel MPT adapter.
Returns 0 for success, non-zero for failure.
TODO: Add support for polled controllers

void mpt_detach(struct pci_dev * pdev)
Remove a PCI intelligent MPT adapter.

Parameters
struct pci_dev * pdev Pointer to pci_dev structure
int mpt_suspend(struct pci_dev * pdev, pm_message_t state)

Fusion MPT base driver suspend routine.
Parameters
struct pci_dev * pdev Pointer to pci_dev structure
pm_message_t state new state to enter
int mpt_resume(struct pci_dev * pdev)

Fusion MPT base driver resume routine.
Parameters
struct pci_dev * pdev Pointer to pci_dev structure
u32 mpt_GetIocState(MPT_ADAPTER * ioc, int cooked)

Get the current state of a MPT adapter.
Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
int cooked Request raw or cooked IOC state
Description

Returns all IOC Doorbell register bits if cooked==0, else just the Doorbell bits in
MPI_IOC_STATE_MASK.

int mpt_alloc_fw_memory(MPT_ADAPTER * ioc, int size)
allocate firmware memory

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

168 Chapter 7. Message-based devices

The kernel driver API manual, Release 4.13.0-rc4+

int size total FW bytes
Description

If memory has already been allocated, the same (cached) value is returned.
Return 0 if successful, or non-zero for failure

void mpt_free_fw_memory(MPT_ADAPTER * ioc)
free firmware memory

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
Description

If alt_img is NULL, delete from ioc structure. Else, delete a secondary image in same format.
int mptbase_sas_persist_operation(MPT_ADAPTER * ioc, u8 persist_opcode)

Perform operation on SAS Persistent Table
Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
u8 persist_opcode see below
Description

MPI_SAS_OP_CLEAR_NOT_PRESENT - Free all persist TargetID mappings for devices
not currently present.

MPI_SAS_OP_CLEAR_ALL_PERSISTENT - Clear al persist TargetID mappings
NOTE
Don’t use not this function during interrupt time.

Returns 0 for success, non-zero error
int mpt_raid_phys_disk_pg0(MPT_ADAPTER * ioc, u8 phys_disk_num, RaidPhysDiskPage0_t

* phys_disk)
returns phys disk page zero

Parameters
MPT_ADAPTER * ioc Pointer to a Adapter Structure
u8 phys_disk_num io unit unique phys disk num generated by the ioc
RaidPhysDiskPage0_t * phys_disk requested payload data returned
Return

0 on success -EFAULT if read of config page header fails or data pointer not NULL -ENOMEM if
pci_alloc failed

int mpt_raid_phys_disk_get_num_paths(MPT_ADAPTER * ioc, u8 phys_disk_num)
returns number paths associated to this phys_num

Parameters
MPT_ADAPTER * ioc Pointer to a Adapter Structure
u8 phys_disk_num io unit unique phys disk num generated by the ioc
Return

returns number paths
int mpt_raid_phys_disk_pg1(MPT_ADAPTER * ioc, u8 phys_disk_num, RaidPhysDiskPage1_t

* phys_disk)
returns phys disk page 1

7.1. Fusion message devices 169

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
MPT_ADAPTER * ioc Pointer to a Adapter Structure
u8 phys_disk_num io unit unique phys disk num generated by the ioc
RaidPhysDiskPage1_t * phys_disk requested payload data returned
Return

0 on success -EFAULT if read of config page header fails or data pointer not NULL -ENOMEM if
pci_alloc failed

int mpt_findImVolumes(MPT_ADAPTER * ioc)
Identify IDs of hidden disks and RAID Volumes

Parameters
MPT_ADAPTER * ioc Pointer to a Adapter Strucutre
Return

0 on success -EFAULT if read of config page header fails or data pointer not NULL -ENOMEM if
pci_alloc failed

int mpt_config(MPT_ADAPTER * ioc, CONFIGPARMS * pCfg)
Generic function to issue config message

Parameters
MPT_ADAPTER * ioc Pointer to an adapter structure
CONFIGPARMS * pCfg Pointer to a configuration structure. Struct contains action, page address, direction,

physical address and pointer to a configuration page header Page header is updated.
Description

Returns 0 for success -EPERM if not allowed due to ISR context -EAGAIN if no msg frames cur-
rently available -EFAULT for non-successful reply or no reply (timeout)

void mpt_print_ioc_summary(MPT_ADAPTER * ioc, char * buffer, int * size, int len, int showlan)
Write ASCII summary of IOC to a buffer.

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
char * buffer Pointer to buffer where IOC summary info should be written
int * size Pointer to number of bytes we wrote (set by this routine)
int len Offset at which to start writing in buffer
int showlan Display LAN stuff?
Description

This routine writes (english readable) ASCII text, which represents a summary of IOC information,
to a buffer.

int mpt_set_taskmgmt_in_progress_flag(MPT_ADAPTER * ioc)
set flags associated with task management

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
Description

Returns 0 for SUCCESS or -1 if FAILED.
If -1 is return, then it was not possible to set the flags

170 Chapter 7. Message-based devices

The kernel driver API manual, Release 4.13.0-rc4+

void mpt_clear_taskmgmt_in_progress_flag(MPT_ADAPTER * ioc)
clear flags associated with task management

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
void mpt_halt_firmware(MPT_ADAPTER * ioc)

Halts the firmware if it is operational and panic the kernel
Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
int mpt_Soft_Hard_ResetHandler(MPT_ADAPTER * ioc, int sleepFlag)

Try less expensive reset
Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
int sleepFlag Indicates if sleep or schedule must be called.
Description

Returns 0 for SUCCESS or -1 if FAILED. Try for softreset first, only if it fails go for expensive
HardReset.

int mpt_HardResetHandler(MPT_ADAPTER * ioc, int sleepFlag)
Generic reset handler

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
int sleepFlag Indicates if sleep or schedule must be called.
Description

Issues SCSI Task Management call based on input arg values. If TaskMgmt fails, returns associ-
ated SCSI request.
Remark: _HardResetHandler can be invoked from an interrupt thread (timer) or a non-interrupt
thread. In the former, must not call schedule().

Note
A return of -1 is a FATAL error case, as it means a FW reload/initialization failed.

Returns 0 for SUCCESS or -1 if FAILED.
const char * mptscsih_info(struct Scsi_Host * SChost)

Return information about MPT adapter
Parameters
struct Scsi_Host * SChost Pointer to Scsi_Host structure
Description

(linux scsi_host_template.info routine)
Returns pointer to buffer where information was written.

int mptscsih_qcmd(struct scsi_cmnd * SCpnt)
Primary Fusion MPT SCSI initiator IO start routine.

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure
Description

7.1. Fusion message devices 171

The kernel driver API manual, Release 4.13.0-rc4+

(linux scsi_host_template.queuecommand routine) This is the primary SCSI IO start routine. Cre-
ate a MPI SCSIIORequest from a linux scsi_cmnd request and send it to the IOC.
Returns 0. (rtn value discarded by linux scsi mid-layer)

int mptscsih_IssueTaskMgmt(MPT_SCSI_HOST * hd, u8 type, u8 channel, u8 id, u64 lun,
int ctx2abort, ulong timeout)

Generic send Task Management function.
Parameters
MPT_SCSI_HOST * hd Pointer to MPT_SCSI_HOST structure
u8 type Task Management type
u8 channel channel number for task management
u8 id Logical Target ID for reset (if appropriate)
u64 lun Logical Unit for reset (if appropriate)
int ctx2abort Context for the task to be aborted (if appropriate)
ulong timeout timeout for task management control
Description

Remark: _HardResetHandler can be invoked from an interrupt thread (timer) or a non-interrupt
thread. In the former, must not call schedule().
Not all fields are meaningfull for all task types.
Returns 0 for SUCCESS, or FAILED.

int mptscsih_abort(struct scsi_cmnd * SCpnt)
Abort linux scsi_cmnd routine, new_eh variant

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure, IO to be aborted
Description

(linux scsi_host_template.eh_abort_handler routine)
Returns SUCCESS or FAILED.

int mptscsih_dev_reset(struct scsi_cmnd * SCpnt)
Perform a SCSI TARGET_RESET! new_eh variant

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure, IO which reset is due to
Description

(linux scsi_host_template.eh_dev_reset_handler routine)
Returns SUCCESS or FAILED.

int mptscsih_bus_reset(struct scsi_cmnd * SCpnt)
Perform a SCSI BUS_RESET! new_eh variant

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure, IO which reset is due to
Description

(linux scsi_host_template.eh_bus_reset_handler routine)
Returns SUCCESS or FAILED.

int mptscsih_host_reset(struct scsi_cmnd * SCpnt)
Perform a SCSI host adapter RESET (new_eh variant)

172 Chapter 7. Message-based devices

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure, IO which reset is due to
Description

(linux scsi_host_template.eh_host_reset_handler routine)
Returns SUCCESS or FAILED.

int mptscsih_taskmgmt_complete(MPT_ADAPTER * ioc, MPT_FRAME_HDR * mf, MPT_FRAME_HDR
* mr)

Registered with Fusion MPT base driver
Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
MPT_FRAME_HDR * mf Pointer to SCSI task mgmt request frame
MPT_FRAME_HDR * mr Pointer to SCSI task mgmt reply frame
Description

This routine is called from mptbase.c::mpt_interrupt() at the completion of any SCSI task
management request. This routine is registered with the MPT (base) driver at driver load/init
time via the mpt_register() API call.
Returns 1 indicating alloc’d request frame ptr should be freed.

struct scsi_cmnd * mptscsih_get_scsi_lookup(MPT_ADAPTER * ioc, int i)
retrieves scmd entry

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
int i index into the array
Description
Returns the scsi_cmd pointer

7.1. Fusion message devices 173

The kernel driver API manual, Release 4.13.0-rc4+

174 Chapter 7. Message-based devices

CHAPTER

EIGHT

SOUND DEVICES

snd_printk(fmt, ...)
printk wrapper

Parameters
fmt format string
... variable arguments
Description
Works like printk() but prints the file and the line of the caller when configured with CON-
FIG_SND_VERBOSE_PRINTK.
snd_printd(fmt, ...)

debug printk
Parameters
fmt format string
... variable arguments
Description
Works like snd_printk() for debugging purposes. Ignored when CONFIG_SND_DEBUG is not set.
snd_BUG()

give a BUG warning message and stack trace
Parameters
Description
Calls WARN() if CONFIG_SND_DEBUG is set. Ignored when CONFIG_SND_DEBUG is not set.
snd_printd_ratelimit()

Parameters
snd_BUG_ON(cond)

debugging check macro
Parameters
cond condition to evaluate
Description
Has the same behavior as WARN_ON when CONFIG_SND_DEBUG is set, otherwise just evaluates the con-
ditional and returns the value.
snd_printdd(format, ...)

debug printk
Parameters
format format string

175

The kernel driver API manual, Release 4.13.0-rc4+

... variable arguments
Description
Works like snd_printk() for debugging purposes. Ignored when CONFIG_SND_DEBUG_VERBOSE is not
set.
int register_sound_special_device(const struct file_operations * fops, int unit, struct device

* dev)
register a special sound node

Parameters
const struct file_operations * fops File operations for the driver
int unit Unit number to allocate
struct device * dev device pointer
Description

Allocate a special sound device by minor number from the sound subsystem.
Return
The allocated number is returned on success. On failure, a negative error code is returned.
int register_sound_mixer(const struct file_operations * fops, int dev)

register a mixer device
Parameters
const struct file_operations * fops File operations for the driver
int dev Unit number to allocate
Description

Allocate a mixer device. Unit is the number of the mixer requested. Pass -1 to request the next
free mixer unit.

Return
On success, the allocated number is returned. On failure, a negative error code is returned.
int register_sound_midi(const struct file_operations * fops, int dev)

register a midi device
Parameters
const struct file_operations * fops File operations for the driver
int dev Unit number to allocate
Description

Allocate a midi device. Unit is the number of the midi device requested. Pass -1 to request the
next free midi unit.

Return
On success, the allocated number is returned. On failure, a negative error code is returned.
int register_sound_dsp(const struct file_operations * fops, int dev)

register a DSP device
Parameters
const struct file_operations * fops File operations for the driver
int dev Unit number to allocate
Description

176 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Allocate a DSP device. Unit is the number of the DSP requested. Pass -1 to request the next
free DSP unit.
This function allocates both the audio and dsp device entries together and will always allocate
them as a matching pair - eg dsp3/audio3

Return
On success, the allocated number is returned. On failure, a negative error code is returned.
void unregister_sound_special(int unit)

unregister a special sound device
Parameters
int unit unit number to allocate
Description

Release a sound device that was allocated with register_sound_special(). The unit passed
is the return value from the register function.

void unregister_sound_mixer(int unit)
unregister a mixer

Parameters
int unit unit number to allocate
Description

Release a sound device that was allocated with register_sound_mixer(). The unit passed is
the return value from the register function.

void unregister_sound_midi(int unit)
unregister a midi device

Parameters
int unit unit number to allocate
Description

Release a sound device that was allocated with register_sound_midi(). The unit passed is
the return value from the register function.

void unregister_sound_dsp(int unit)
unregister a DSP device

Parameters
int unit unit number to allocate
Description

Release a sound device that was allocated with register_sound_dsp(). The unit passed is the
return value from the register function.
Both of the allocated units are released together automatically.

int snd_pcm_stream_linked(struct snd_pcm_substream * substream)
Check whether the substream is linked with others

Parameters
struct snd_pcm_substream * substream substream to check
Description
Returns true if the given substream is being linked with others.
snd_pcm_stream_lock_irqsave(substream, flags)

Lock the PCM stream

177

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
substream PCM substream
flags irq flags
Description
This locks the PCM stream like snd_pcm_stream_lock() but with the local IRQ (only when nonatomic is
false). In nonatomic case, this is identical as snd_pcm_stream_lock().
snd_pcm_group_for_each_entry(s, substream)

iterate over the linked substreams
Parameters
s the iterator
substream the substream
Description
Iterate over the all linked substreams to the given substream. When substream isn’t linked with any
others, this gives returns substream itself once.
int snd_pcm_running(struct snd_pcm_substream * substream)

Check whether the substream is in a running state
Parameters
struct snd_pcm_substream * substream substream to check
Description
Returns true if the given substream is in the state RUNNING, or in the state DRAINING for playback.
ssize_t bytes_to_samples(struct snd_pcm_runtime * runtime, ssize_t size)

Unit conversion of the size from bytes to samples
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
ssize_t size size in bytes
snd_pcm_sframes_t bytes_to_frames(struct snd_pcm_runtime * runtime, ssize_t size)

Unit conversion of the size from bytes to frames
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
ssize_t size size in bytes
ssize_t samples_to_bytes(struct snd_pcm_runtime * runtime, ssize_t size)

Unit conversion of the size from samples to bytes
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
ssize_t size size in samples
ssize_t frames_to_bytes(struct snd_pcm_runtime * runtime, snd_pcm_sframes_t size)

Unit conversion of the size from frames to bytes
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
snd_pcm_sframes_t size size in frames
int frame_aligned(struct snd_pcm_runtime * runtime, ssize_t bytes)

Check whether the byte size is aligned to frames

178 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
ssize_t bytes size in bytes
size_t snd_pcm_lib_buffer_bytes(struct snd_pcm_substream * substream)

Get the buffer size of the current PCM in bytes
Parameters
struct snd_pcm_substream * substream PCM substream
size_t snd_pcm_lib_period_bytes(struct snd_pcm_substream * substream)

Get the period size of the current PCM in bytes
Parameters
struct snd_pcm_substream * substream PCM substream
snd_pcm_uframes_t snd_pcm_playback_avail(struct snd_pcm_runtime * runtime)

Get the available (writable) space for playback
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
Description
Result is between 0 ... (boundary - 1)
snd_pcm_uframes_t snd_pcm_capture_avail(struct snd_pcm_runtime * runtime)

Get the available (readable) space for capture
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
Description
Result is between 0 ... (boundary - 1)
snd_pcm_sframes_t snd_pcm_playback_hw_avail(struct snd_pcm_runtime * runtime)

Get the queued space for playback
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
snd_pcm_sframes_t snd_pcm_capture_hw_avail(struct snd_pcm_runtime * runtime)

Get the free space for capture
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
int snd_pcm_playback_ready(struct snd_pcm_substream * substream)

check whether the playback buffer is available
Parameters
struct snd_pcm_substream * substream the pcm substream instance
Description
Checks whether enough free space is available on the playback buffer.
Return
Non-zero if available, or zero if not.
int snd_pcm_capture_ready(struct snd_pcm_substream * substream)

check whether the capture buffer is available
Parameters

179

The kernel driver API manual, Release 4.13.0-rc4+

struct snd_pcm_substream * substream the pcm substream instance
Description
Checks whether enough capture data is available on the capture buffer.
Return
Non-zero if available, or zero if not.
int snd_pcm_playback_data(struct snd_pcm_substream * substream)

check whether any data exists on the playback buffer
Parameters
struct snd_pcm_substream * substream the pcm substream instance
Description
Checks whether any data exists on the playback buffer.
Return
Non-zero if any data exists, or zero if not. If stop_threshold is bigger or equal to boundary, then this
function returns always non-zero.
int snd_pcm_playback_empty(struct snd_pcm_substream * substream)

check whether the playback buffer is empty
Parameters
struct snd_pcm_substream * substream the pcm substream instance
Description
Checks whether the playback buffer is empty.
Return
Non-zero if empty, or zero if not.
int snd_pcm_capture_empty(struct snd_pcm_substream * substream)

check whether the capture buffer is empty
Parameters
struct snd_pcm_substream * substream the pcm substream instance
Description
Checks whether the capture buffer is empty.
Return
Non-zero if empty, or zero if not.
void snd_pcm_trigger_done(struct snd_pcm_substream * substream, struct snd_pcm_substream

* master)
Mark the master substream

Parameters
struct snd_pcm_substream * substream the pcm substream instance
struct snd_pcm_substream * master the linked master substream
Description
When multiple substreams of the same card are linked and the hardware supports the single-shot opera-
tion, the driver calls this in the loop in snd_pcm_group_for_each_entry() for marking the substream as
“done”. Then most of trigger operations are performed only to the given master substream.
The trigger_master mark is cleared at timestamp updates at the end of trigger operations.

180 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int params_channels(const struct snd_pcm_hw_params * p)
Get the number of channels from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params
unsigned int params_rate(const struct snd_pcm_hw_params * p)

Get the sample rate from the hw params
Parameters
const struct snd_pcm_hw_params * p hw params
unsigned int params_period_size(const struct snd_pcm_hw_params * p)

Get the period size (in frames) from the hw params
Parameters
const struct snd_pcm_hw_params * p hw params
unsigned int params_periods(const struct snd_pcm_hw_params * p)

Get the number of periods from the hw params
Parameters
const struct snd_pcm_hw_params * p hw params
unsigned int params_buffer_size(const struct snd_pcm_hw_params * p)

Get the buffer size (in frames) from the hw params
Parameters
const struct snd_pcm_hw_params * p hw params
unsigned int params_buffer_bytes(const struct snd_pcm_hw_params * p)

Get the buffer size (in bytes) from the hw params
Parameters
const struct snd_pcm_hw_params * p hw params
int snd_pcm_hw_constraint_single(struct snd_pcm_runtime * runtime, snd_pcm_hw_param_t var,

unsigned int val)
Constrain parameter to a single value

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
snd_pcm_hw_param_t var The hw_params variable to constrain
unsigned int val The value to constrain to
Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.
int snd_pcm_format_cpu_endian(snd_pcm_format_t format)

Check the PCM format is CPU-endian
Parameters
snd_pcm_format_t format the format to check
Return
1 if the given PCM format is CPU-endian, 0 if opposite, or a negative error code if endian not specified.
void snd_pcm_set_runtime_buffer(struct snd_pcm_substream * substream, struct

snd_dma_buffer * bufp)
Set the PCM runtime buffer

Parameters

181

The kernel driver API manual, Release 4.13.0-rc4+

struct snd_pcm_substream * substream PCM substream to set
struct snd_dma_buffer * bufp the buffer information, NULL to clear
Description
Copy the buffer information to runtime->dma_buffer when bufp is non-NULL. Otherwise it clears the
current buffer information.
void snd_pcm_gettime(struct snd_pcm_runtime * runtime, struct timespec * tv)

Fill the timespec depending on the timestamp mode
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
struct timespec * tv timespec to fill
int snd_pcm_lib_alloc_vmalloc_buffer(struct snd_pcm_substream * substream, size_t size)

allocate virtual DMA buffer
Parameters
struct snd_pcm_substream * substream the substream to allocate the buffer to
size_t size the requested buffer size, in bytes
Description
Allocates the PCM substream buffer using vmalloc(), i.e., the memory is contiguous in kernel virtual
space, but not in physical memory. Use this if the buffer is accessed by kernel code but not by device
DMA.
Return
1 if the buffer was changed, 0 if not changed, or a negative error code.
int snd_pcm_lib_alloc_vmalloc_32_buffer(struct snd_pcm_substream * substream, size_t size)

allocate 32-bit-addressable buffer
Parameters
struct snd_pcm_substream * substream the substream to allocate the buffer to
size_t size the requested buffer size, in bytes
Description
This function works like snd_pcm_lib_alloc_vmalloc_buffer(), but uses vmalloc_32(), i.e., the pages
are allocated from 32-bit-addressable memory.
Return
1 if the buffer was changed, 0 if not changed, or a negative error code.
dma_addr_t snd_pcm_sgbuf_get_addr(struct snd_pcm_substream * substream, unsigned int ofs)

Get the DMA address at the corresponding offset
Parameters
struct snd_pcm_substream * substream PCM substream
unsigned int ofs byte offset
void * snd_pcm_sgbuf_get_ptr(struct snd_pcm_substream * substream, unsigned int ofs)

Get the virtual address at the corresponding offset
Parameters
struct snd_pcm_substream * substream PCM substream
unsigned int ofs byte offset

182 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int snd_pcm_sgbuf_get_chunk_size(struct snd_pcm_substream * substream, unsigned
int ofs, unsigned int size)

Compute the max size that fits within the contig. page from the given size
Parameters
struct snd_pcm_substream * substream PCM substream
unsigned int ofs byte offset
unsigned int size byte size to examine
void snd_pcm_mmap_data_open(struct vm_area_struct * area)

increase the mmap counter
Parameters
struct vm_area_struct * area VMA
Description
PCM mmap callback should handle this counter properly
void snd_pcm_mmap_data_close(struct vm_area_struct * area)

decrease the mmap counter
Parameters
struct vm_area_struct * area VMA
Description
PCM mmap callback should handle this counter properly
void snd_pcm_limit_isa_dma_size(int dma, size_t * max)

Get the max size fitting with ISA DMA transfer
Parameters
int dma DMA number
size_t * max pointer to store the max size
const char * snd_pcm_stream_str(struct snd_pcm_substream * substream)

Get a string naming the direction of a stream
Parameters
struct snd_pcm_substream * substream the pcm substream instance
Return
A string naming the direction of the stream.
struct snd_pcm_substream * snd_pcm_chmap_substream(struct snd_pcm_chmap * info, unsigned

int idx)
get the PCM substream assigned to the given chmap info

Parameters
struct snd_pcm_chmap * info chmap information
unsigned int idx the substream number index
u64 pcm_format_to_bits(snd_pcm_format_t pcm_format)

Strong-typed conversion of pcm_format to bitwise
Parameters
snd_pcm_format_t pcm_format PCM format
const char * snd_pcm_format_name(snd_pcm_format_t format)

Return a name string for the given PCM format

183

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
snd_pcm_format_t format PCM format
int snd_pcm_new_stream(struct snd_pcm * pcm, int stream, int substream_count)

create a new PCM stream
Parameters
struct snd_pcm * pcm the pcm instance
int stream the stream direction, SNDRV_PCM_STREAM_XXX
int substream_count the number of substreams
Description
Creates a new stream for the pcm. The corresponding stream on the pcm must have been empty before
calling this, i.e. zero must be given to the argument of snd_pcm_new().
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_new(struct snd_card * card, const char * id, int device, int playback_count,

int capture_count, struct snd_pcm ** rpcm)
create a new PCM instance

Parameters
struct snd_card * card the card instance
const char * id the id string
int device the device index (zero based)
int playback_count the number of substreams for playback
int capture_count the number of substreams for capture
struct snd_pcm ** rpcm the pointer to store the new pcm instance
Description
Creates a new PCM instance.
The pcm operators have to be set afterwards to the new instance via snd_pcm_set_ops().
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_new_internal(struct snd_card * card, const char * id, int device, int playback_count,

int capture_count, struct snd_pcm ** rpcm)
create a new internal PCM instance

Parameters
struct snd_card * card the card instance
const char * id the id string
int device the device index (zero based - shared with normal PCMs)
int playback_count the number of substreams for playback
int capture_count the number of substreams for capture
struct snd_pcm ** rpcm the pointer to store the new pcm instance
Description
Creates a new internal PCM instance with no userspace device or procfs entries. This is used by ASoC
Back End PCMs in order to create a PCM that will only be used internally by kernel drivers. i.e. it cannot

184 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

be opened by userspace. It provides existing ASoC components drivers with a substream and access to
any private data.
The pcm operators have to be set afterwards to the new instance via snd_pcm_set_ops().
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_notify(struct snd_pcm_notify * notify, int nfree)

Add/remove the notify list
Parameters
struct snd_pcm_notify * notify PCM notify list
int nfree 0 = register, 1 = unregister
Description
This adds the given notifier to the global list so that the callback is called for each registered PCM devices.
This exists only for PCM OSS emulation, so far.
int snd_device_new(struct snd_card * card, enum snd_device_type type, void * device_data, struct

snd_device_ops * ops)
create an ALSA device component

Parameters
struct snd_card * card the card instance
enum snd_device_type type the device type, SNDRV_DEV_XXX
void * device_data the data pointer of this device
struct snd_device_ops * ops the operator table
Description
Creates a new device component for the given data pointer. The device will be assigned to the card and
managed together by the card.
The data pointer plays a role as the identifier, too, so the pointer address must be unique and unchanged.
Return
Zero if successful, or a negative error code on failure.
void snd_device_disconnect(struct snd_card * card, void * device_data)

disconnect the device
Parameters
struct snd_card * card the card instance
void * device_data the data pointer to disconnect
Description
Turns the device into the disconnection state, invoking dev_disconnect callback, if the device was already
registered.
Usually called from snd_card_disconnect().
Return
Zero if successful, or a negative error code on failure or if the device not found.
void snd_device_free(struct snd_card * card, void * device_data)

release the device from the card
Parameters
struct snd_card * card the card instance

185

The kernel driver API manual, Release 4.13.0-rc4+

void * device_data the data pointer to release
Description
Removes the device from the list on the card and invokes the callbacks, dev_disconnect and dev_free,
corresponding to the state. Then release the device.
int snd_device_register(struct snd_card * card, void * device_data)

register the device
Parameters
struct snd_card * card the card instance
void * device_data the data pointer to register
Description
Registers the device which was already created via snd_device_new(). Usually this is called from
snd_card_register(), but it can be called later if any new devices are created after invocation of
snd_card_register().
Return
Zero if successful, or a negative error code on failure or if the device not found.
int snd_info_get_line(struct snd_info_buffer * buffer, char * line, int len)

read one line from the procfs buffer
Parameters
struct snd_info_buffer * buffer the procfs buffer
char * line the buffer to store
int len the max. buffer size
Description
Reads one line from the buffer and stores the string.
Return
Zero if successful, or 1 if error or EOF.
const char * snd_info_get_str(char * dest, const char * src, int len)

parse a string token
Parameters
char * dest the buffer to store the string token
const char * src the original string
int len the max. length of token - 1
Description
Parses the original string and copy a token to the given string buffer.
Return
The updated pointer of the original string so that it can be used for the next call.
struct snd_info_entry * snd_info_create_module_entry(struct module * module, const char

* name, struct snd_info_entry * parent)
create an info entry for the given module

Parameters
struct module * module the module pointer
const char * name the file name
struct snd_info_entry * parent the parent directory

186 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description
Creates a new info entry and assigns it to the given module.
Return
The pointer of the new instance, or NULL on failure.
struct snd_info_entry * snd_info_create_card_entry(struct snd_card * card, const char * name,

struct snd_info_entry * parent)
create an info entry for the given card

Parameters
struct snd_card * card the card instance
const char * name the file name
struct snd_info_entry * parent the parent directory
Description
Creates a new info entry and assigns it to the given card.
Return
The pointer of the new instance, or NULL on failure.
void snd_info_free_entry(struct snd_info_entry * entry)

release the info entry
Parameters
struct snd_info_entry * entry the info entry
Description
Releases the info entry.
int snd_info_register(struct snd_info_entry * entry)

register the info entry
Parameters
struct snd_info_entry * entry the info entry
Description
Registers the proc info entry.
Return
Zero if successful, or a negative error code on failure.
int snd_rawmidi_receive(struct snd_rawmidi_substream * substream, const unsigned char

* buffer, int count)
receive the input data from the device

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream
const unsigned char * buffer the buffer pointer
int count the data size to read
Description
Reads the data from the internal buffer.
Return
The size of read data, or a negative error code on failure.

187

The kernel driver API manual, Release 4.13.0-rc4+

int snd_rawmidi_transmit_empty(struct snd_rawmidi_substream * substream)
check whether the output buffer is empty

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream
Return
1 if the internal output buffer is empty, 0 if not.
int __snd_rawmidi_transmit_peek(struct snd_rawmidi_substream * substream, unsigned char

* buffer, int count)
copy data from the internal buffer

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream
unsigned char * buffer the buffer pointer
int count data size to transfer
Description
This is a variant of snd_rawmidi_transmit_peek() without spinlock.
int snd_rawmidi_transmit_peek(struct snd_rawmidi_substream * substream, unsigned char

* buffer, int count)
copy data from the internal buffer

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream
unsigned char * buffer the buffer pointer
int count data size to transfer
Description
Copies data from the internal output buffer to the given buffer.
Call this in the interrupt handler when the midi output is ready, and call snd_rawmidi_transmit_ack()
after the transmission is finished.
Return
The size of copied data, or a negative error code on failure.
int __snd_rawmidi_transmit_ack(struct snd_rawmidi_substream * substream, int count)

acknowledge the transmission
Parameters
struct snd_rawmidi_substream * substream the rawmidi substream
int count the transferred count
Description
This is a variant of __snd_rawmidi_transmit_ack() without spinlock.
int snd_rawmidi_transmit_ack(struct snd_rawmidi_substream * substream, int count)

acknowledge the transmission
Parameters
struct snd_rawmidi_substream * substream the rawmidi substream
int count the transferred count

188 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description
Advances the hardware pointer for the internal output buffer with the given size and updates the condition.
Call after the transmission is finished.
Return
The advanced size if successful, or a negative error code on failure.
int snd_rawmidi_transmit(struct snd_rawmidi_substream * substream, unsigned char * buffer,

int count)
copy from the buffer to the device

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream
unsigned char * buffer the buffer pointer
int count the data size to transfer
Description
Copies data from the buffer to the device and advances the pointer.
Return
The copied size if successful, or a negative error code on failure.
int snd_rawmidi_new(struct snd_card * card, char * id, int device, int output_count, int input_count,

struct snd_rawmidi ** rrawmidi)
create a rawmidi instance

Parameters
struct snd_card * card the card instance
char * id the id string
int device the device index
int output_count the number of output streams
int input_count the number of input streams
struct snd_rawmidi ** rrawmidi the pointer to store the new rawmidi instance
Description
Creates a new rawmidi instance. Use snd_rawmidi_set_ops() to set the operators to the new instance.
Return
Zero if successful, or a negative error code on failure.
void snd_rawmidi_set_ops(struct snd_rawmidi * rmidi, int stream, const struct snd_rawmidi_ops

* ops)
set the rawmidi operators

Parameters
struct snd_rawmidi * rmidi the rawmidi instance
int stream the stream direction, SNDRV_RAWMIDI_STREAM_XXX
const struct snd_rawmidi_ops * ops the operator table
Description
Sets the rawmidi operators for the given stream direction.
void snd_request_card(int card)

try to load the card module
Parameters

189

The kernel driver API manual, Release 4.13.0-rc4+

int card the card number
Description
Tries to load the module “snd-card-X” for the given card number via request_module. Returns immediately
if already loaded.
void * snd_lookup_minor_data(unsigned int minor, int type)

get user data of a registered device
Parameters
unsigned int minor the minor number
int type device type (SNDRV_DEVICE_TYPE_XXX)
Description
Checks that a minor device with the specified type is registered, and returns its user data pointer.
This function increments the reference counter of the card instance if an associated instance with the
given minor number and type is found. The caller must call snd_card_unref() appropriately later.
Return
The user data pointer if the specified device is found. NULL otherwise.
int snd_register_device(int type, struct snd_card * card, int dev, const struct file_operations

* f_ops, void * private_data, struct device * device)
Register the ALSA device file for the card

Parameters
int type the device type, SNDRV_DEVICE_TYPE_XXX
struct snd_card * card the card instance
int dev the device index
const struct file_operations * f_ops the file operations
void * private_data user pointer for f_ops->:c:func:open()
struct device * device the device to register
Description
Registers an ALSA device file for the given card. The operators have to be set in reg parameter.
Return
Zero if successful, or a negative error code on failure.
int snd_unregister_device(struct device * dev)

unregister the device on the given card
Parameters
struct device * dev the device instance
Description
Unregisters the device file already registered via snd_register_device().
Return
Zero if successful, or a negative error code on failure.
int copy_to_user_fromio(void __user * dst, const volatile void __iomem * src, size_t count)

copy data from mmio-space to user-space
Parameters
void __user * dst the destination pointer on user-space

190 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

const volatile void __iomem * src the source pointer on mmio
size_t count the data size to copy in bytes
Description
Copies the data from mmio-space to user-space.
Return
Zero if successful, or non-zero on failure.
int copy_from_user_toio(volatile void __iomem * dst, const void __user * src, size_t count)

copy data from user-space to mmio-space
Parameters
volatile void __iomem * dst the destination pointer on mmio-space
const void __user * src the source pointer on user-space
size_t count the data size to copy in bytes
Description
Copies the data from user-space to mmio-space.
Return
Zero if successful, or non-zero on failure.
int snd_pcm_lib_preallocate_free_for_all(struct snd_pcm * pcm)

release all pre-allocated buffers on the pcm
Parameters
struct snd_pcm * pcm the pcm instance
Description
Releases all the pre-allocated buffers on the given pcm.
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_lib_preallocate_pages(struct snd_pcm_substream * substream, int type, struct de-

vice * data, size_t size, size_t max)
pre-allocation for the given DMA type

Parameters
struct snd_pcm_substream * substream the pcm substream instance
int type DMA type (SNDRV_DMA_TYPE_*)
struct device * data DMA type dependent data
size_t size the requested pre-allocation size in bytes
size_t max the max. allowed pre-allocation size
Description
Do pre-allocation for the given DMA buffer type.
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_lib_preallocate_pages_for_all(struct snd_pcm * pcm, int type, void * data,

size_t size, size_t max)
pre-allocation for continuous memory type (all substreams)

Parameters

191

The kernel driver API manual, Release 4.13.0-rc4+

struct snd_pcm * pcm the pcm instance
int type DMA type (SNDRV_DMA_TYPE_*)
void * data DMA type dependent data
size_t size the requested pre-allocation size in bytes
size_t max the max. allowed pre-allocation size
Description
Do pre-allocation to all substreams of the given pcm for the specified DMA type.
Return
Zero if successful, or a negative error code on failure.
struct page * snd_pcm_sgbuf_ops_page(struct snd_pcm_substream * substream, unsigned

long offset)
get the page struct at the given offset

Parameters
struct snd_pcm_substream * substream the pcm substream instance
unsigned long offset the buffer offset
Description
Used as the page callback of PCM ops.
Return
The page struct at the given buffer offset. NULL on failure.
int snd_pcm_lib_malloc_pages(struct snd_pcm_substream * substream, size_t size)

allocate the DMA buffer
Parameters
struct snd_pcm_substream * substream the substream to allocate the DMA buffer to
size_t size the requested buffer size in bytes
Description
Allocates the DMA buffer on the BUS type given earlier to snd_pcm_lib_preallocate_xxx_pages().
Return
1 if the buffer is changed, 0 if not changed, or a negative code on failure.
int snd_pcm_lib_free_pages(struct snd_pcm_substream * substream)

release the allocated DMA buffer.
Parameters
struct snd_pcm_substream * substream the substream to release the DMA buffer
Description
Releases the DMA buffer allocated via snd_pcm_lib_malloc_pages().
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_lib_free_vmalloc_buffer(struct snd_pcm_substream * substream)

free vmalloc buffer
Parameters
struct snd_pcm_substream * substream the substream with a buffer allocated by

snd_pcm_lib_alloc_vmalloc_buffer()

192 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Return
Zero if successful, or a negative error code on failure.
struct page * snd_pcm_lib_get_vmalloc_page(struct snd_pcm_substream * substream, unsigned

long offset)
map vmalloc buffer offset to page struct

Parameters
struct snd_pcm_substream * substream the substream with a buffer allocated by

snd_pcm_lib_alloc_vmalloc_buffer()

unsigned long offset offset in the buffer
Description
This function is to be used as the page callback in the PCM ops.
Return
The page struct, or NULL on failure.
void snd_device_initialize(struct device * dev, struct snd_card * card)

Initialize struct device for sound devices
Parameters
struct device * dev device to initialize
struct snd_card * card card to assign, optional
int snd_card_new(struct device * parent, int idx, const char * xid, struct module * module,

int extra_size, struct snd_card ** card_ret)
create and initialize a soundcard structure

Parameters
struct device * parent the parent device object
int idx card index (address) [0 ... (SNDRV_CARDS-1)]
const char * xid card identification (ASCII string)
struct module * module top level module for locking
int extra_size allocate this extra size after the main soundcard structure
struct snd_card ** card_ret the pointer to store the created card instance
Description

Creates and initializes a soundcard structure.
The function allocates snd_card instance via kzalloc with the given space for the driver to use
freely. The allocated struct is stored in the given card_ret pointer.

Return
Zero if successful or a negative error code.
int snd_card_disconnect(struct snd_card * card)

disconnect all APIs from the file-operations (user space)
Parameters
struct snd_card * card soundcard structure
Description

Disconnects all APIs from the file-operations (user space).

193

The kernel driver API manual, Release 4.13.0-rc4+

Return
Zero, otherwise a negative error code.
Note
The current implementation replaces all active file->f_op with special dummy file operations

(they do nothing except release).
int snd_card_free_when_closed(struct snd_card * card)

Disconnect the card, free it later eventually
Parameters
struct snd_card * card soundcard structure
Description
Unlike snd_card_free(), this function doesn’t try to release the card resource immediately, but tries to
disconnect at first. When the card is still in use, the function returns before freeing the resources. The
card resources will be freed when the refcount gets to zero.
int snd_card_free(struct snd_card * card)

frees given soundcard structure
Parameters
struct snd_card * card soundcard structure
Description
This function releases the soundcard structure and the all assigned devices automatically. That is, you
don’t have to release the devices by yourself.
This function waits until the all resources are properly released.
Return
Zero. Frees all associated devices and frees the control interface associated to given soundcard.
void snd_card_set_id(struct snd_card * card, const char * nid)

set card identification name
Parameters
struct snd_card * card soundcard structure
const char * nid new identification string
Description

This function sets the card identification and checks for name collisions.
int snd_card_add_dev_attr(struct snd_card * card, const struct attribute_group * group)

Append a new sysfs attribute group to card
Parameters
struct snd_card * card card instance
const struct attribute_group * group attribute group to append
int snd_card_register(struct snd_card * card)

register the soundcard
Parameters
struct snd_card * card soundcard structure
Description

This function registers all the devices assigned to the soundcard. Until calling this, the ALSA
control interface is blocked from the external accesses. Thus, you should call this function at
the end of the initialization of the card.

194 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Return
Zero otherwise a negative error code if the registration failed.
int snd_component_add(struct snd_card * card, const char * component)

add a component string
Parameters
struct snd_card * card soundcard structure
const char * component the component id string
Description

This function adds the component id string to the supported list. The component can be referred
from the alsa-lib.

Return
Zero otherwise a negative error code.
int snd_card_file_add(struct snd_card * card, struct file * file)

add the file to the file list of the card
Parameters
struct snd_card * card soundcard structure
struct file * file file pointer
Description

This function adds the file to the file linked-list of the card. This linked-list is used to keep tracking
the connection state, and to avoid the release of busy resources by hotplug.

Return
zero or a negative error code.
int snd_card_file_remove(struct snd_card * card, struct file * file)

remove the file from the file list
Parameters
struct snd_card * card soundcard structure
struct file * file file pointer
Description

This function removes the file formerly added to the card via snd_card_file_add() function. If
all files are removed and snd_card_free_when_closed() was called beforehand, it processes
the pending release of resources.

Return
Zero or a negative error code.
int snd_power_wait(struct snd_card * card, unsigned int power_state)

wait until the power-state is changed.
Parameters
struct snd_card * card soundcard structure
unsigned int power_state expected power state
Description

Waits until the power-state is changed.

195

The kernel driver API manual, Release 4.13.0-rc4+

Return
Zero if successful, or a negative error code.
Note
the power lock must be active before call.
void snd_dma_program(unsigned long dma, unsigned long addr, unsigned int size, unsigned

short mode)
program an ISA DMA transfer

Parameters
unsigned long dma the dma number
unsigned long addr the physical address of the buffer
unsigned int size the DMA transfer size
unsigned short mode the DMA transfer mode, DMA_MODE_XXX
Description
Programs an ISA DMA transfer for the given buffer.
void snd_dma_disable(unsigned long dma)

stop the ISA DMA transfer
Parameters
unsigned long dma the dma number
Description
Stops the ISA DMA transfer.
unsigned int snd_dma_pointer(unsigned long dma, unsigned int size)

return the current pointer to DMA transfer buffer in bytes
Parameters
unsigned long dma the dma number
unsigned int size the dma transfer size
Return
The current pointer in DMA transfer buffer in bytes.
void snd_ctl_notify(struct snd_card * card, unsigned int mask, struct snd_ctl_elem_id * id)

Send notification to user-space for a control change
Parameters
struct snd_card * card the card to send notification
unsigned int mask the event mask, SNDRV_CTL_EVENT_*
struct snd_ctl_elem_id * id the ctl element id to send notification
Description
This function adds an event record with the given id and mask, appends to the list and wakes up the
user-space for notification. This can be called in the atomic context.
struct snd_kcontrol * snd_ctl_new1(const struct snd_kcontrol_new * ncontrol, void * private_data)

create a control instance from the template
Parameters
const struct snd_kcontrol_new * ncontrol the initialization record
void * private_data the private data to set

196 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description
Allocates a new struct snd_kcontrol instance and initialize from the given template. When the access field
of ncontrol is 0, it’s assumed as READWRITE access. When the count field is 0, it’s assumes as one.
Return
The pointer of the newly generated instance, or NULL on failure.
void snd_ctl_free_one(struct snd_kcontrol * kcontrol)

release the control instance
Parameters
struct snd_kcontrol * kcontrol the control instance
Description
Releases the control instance created via snd_ctl_new() or snd_ctl_new1(). Don’t call this after the
control was added to the card.
int snd_ctl_add(struct snd_card * card, struct snd_kcontrol * kcontrol)

add the control instance to the card
Parameters
struct snd_card * card the card instance
struct snd_kcontrol * kcontrol the control instance to add
Description
Adds the control instance created via snd_ctl_new() or snd_ctl_new1() to the given card. Assigns also
an unique numid used for fast search.
It frees automatically the control which cannot be added.
Return
Zero if successful, or a negative error code on failure.
int snd_ctl_replace(struct snd_card * card, struct snd_kcontrol * kcontrol, bool add_on_replace)

replace the control instance of the card
Parameters
struct snd_card * card the card instance
struct snd_kcontrol * kcontrol the control instance to replace
bool add_on_replace add the control if not already added
Description
Replaces the given control. If the given control does not exist and the add_on_replace flag is set, the
control is added. If the control exists, it is destroyed first.
It frees automatically the control which cannot be added or replaced.
Return
Zero if successful, or a negative error code on failure.
int snd_ctl_remove(struct snd_card * card, struct snd_kcontrol * kcontrol)

remove the control from the card and release it
Parameters
struct snd_card * card the card instance
struct snd_kcontrol * kcontrol the control instance to remove

197

The kernel driver API manual, Release 4.13.0-rc4+

Description
Removes the control from the card and then releases the instance. You don’t need to call
snd_ctl_free_one(). You must be in the write lock - down_write(card->controls_rwsem).
Return
0 if successful, or a negative error code on failure.
int snd_ctl_remove_id(struct snd_card * card, struct snd_ctl_elem_id * id)

remove the control of the given id and release it
Parameters
struct snd_card * card the card instance
struct snd_ctl_elem_id * id the control id to remove
Description
Finds the control instance with the given id, removes it from the card list and releases it.
Return
0 if successful, or a negative error code on failure.
int snd_ctl_activate_id(struct snd_card * card, struct snd_ctl_elem_id * id, int active)

activate/inactivate the control of the given id
Parameters
struct snd_card * card the card instance
struct snd_ctl_elem_id * id the control id to activate/inactivate
int active non-zero to activate
Description
Finds the control instance with the given id, and activate or inactivate the control together with notification,
if changed. The given ID data is filled with full information.
Return
0 if unchanged, 1 if changed, or a negative error code on failure.
int snd_ctl_rename_id(struct snd_card * card, struct snd_ctl_elem_id * src_id, struct

snd_ctl_elem_id * dst_id)
replace the id of a control on the card

Parameters
struct snd_card * card the card instance
struct snd_ctl_elem_id * src_id the old id
struct snd_ctl_elem_id * dst_id the new id
Description
Finds the control with the old id from the card, and replaces the id with the new one.
Return
Zero if successful, or a negative error code on failure.
struct snd_kcontrol * snd_ctl_find_numid(struct snd_card * card, unsigned int numid)

find the control instance with the given number-id
Parameters
struct snd_card * card the card instance
unsigned int numid the number-id to search

198 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description
Finds the control instance with the given number-id from the card.
The caller must down card->controls_rwsem before calling this function (if the race condition can happen).
Return
The pointer of the instance if found, or NULL if not.
struct snd_kcontrol * snd_ctl_find_id(struct snd_card * card, struct snd_ctl_elem_id * id)

find the control instance with the given id
Parameters
struct snd_card * card the card instance
struct snd_ctl_elem_id * id the id to search
Description
Finds the control instance with the given id from the card.
The caller must down card->controls_rwsem before calling this function (if the race condition can happen).
Return
The pointer of the instance if found, or NULL if not.
int snd_ctl_register_ioctl(snd_kctl_ioctl_func_t fcn)

register the device-specific control-ioctls
Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function
Description
called from each device manager like pcm.c, hwdep.c, etc.
int snd_ctl_register_ioctl_compat(snd_kctl_ioctl_func_t fcn)

register the device-specific 32bit compat control-ioctls
Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function
int snd_ctl_unregister_ioctl(snd_kctl_ioctl_func_t fcn)

de-register the device-specific control-ioctls
Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function to unregister
int snd_ctl_unregister_ioctl_compat(snd_kctl_ioctl_func_t fcn)

de-register the device-specific compat 32bit control-ioctls
Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function to unregister
int snd_ctl_boolean_mono_info(struct snd_kcontrol * kcontrol, struct snd_ctl_elem_info * uinfo)

Helper function for a standard boolean info callback with a mono channel
Parameters
struct snd_kcontrol * kcontrol the kcontrol instance
struct snd_ctl_elem_info * uinfo info to store
Description
This is a function that can be used as info callback for a standard boolean control with a single mono
channel.

199

The kernel driver API manual, Release 4.13.0-rc4+

int snd_ctl_boolean_stereo_info(struct snd_kcontrol * kcontrol, struct snd_ctl_elem_info * uinfo)
Helper function for a standard boolean info callback with stereo two channels

Parameters
struct snd_kcontrol * kcontrol the kcontrol instance
struct snd_ctl_elem_info * uinfo info to store
Description
This is a function that can be used as info callback for a standard boolean control with stereo two channels.

int snd_ctl_enum_info(struct snd_ctl_elem_info * info, unsigned int channels, unsigned int items,
const char *const names)

fills the info structure for an enumerated control
Parameters
struct snd_ctl_elem_info * info the structure to be filled
unsigned int channels the number of the control’s channels; often one
unsigned int items the number of control values; also the size of names
const char *const names an array containing the names of all control values
Description
Sets all required fields in info to their appropriate values. If the control’s accessibility is not the default
(readable and writable), the caller has to fill info->access.
Return
Zero.
void snd_pcm_set_ops(struct snd_pcm * pcm, int direction, const struct snd_pcm_ops * ops)

set the PCM operators
Parameters
struct snd_pcm * pcm the pcm instance
int direction stream direction, SNDRV_PCM_STREAM_XXX
const struct snd_pcm_ops * ops the operator table
Description
Sets the given PCM operators to the pcm instance.
void snd_pcm_set_sync(struct snd_pcm_substream * substream)

set the PCM sync id
Parameters
struct snd_pcm_substream * substream the pcm substream
Description
Sets the PCM sync identifier for the card.
int snd_interval_refine(struct snd_interval * i, const struct snd_interval * v)

refine the interval value of configurator
Parameters
struct snd_interval * i the interval value to refine
const struct snd_interval * v the interval value to refer to

200 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description
Refines the interval value with the reference value. The interval is changed to the range satisfying both
intervals. The interval status (min, max, integer, etc.) are evaluated.
Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.
int snd_interval_ratnum(struct snd_interval * i, unsigned int rats_count, const struct snd_ratnum

* rats, unsigned int * nump, unsigned int * denp)
refine the interval value

Parameters
struct snd_interval * i interval to refine
unsigned int rats_count number of ratnum_t
const struct snd_ratnum * rats ratnum_t array
unsigned int * nump pointer to store the resultant numerator
unsigned int * denp pointer to store the resultant denominator
Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.
int snd_interval_list(struct snd_interval * i, unsigned int count, const unsigned int * list, unsigned

int mask)
refine the interval value from the list

Parameters
struct snd_interval * i the interval value to refine
unsigned int count the number of elements in the list
const unsigned int * list the value list
unsigned int mask the bit-mask to evaluate
Description
Refines the interval value from the list. When mask is non-zero, only the elements corresponding to bit 1
are evaluated.
Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.
int snd_interval_ranges(struct snd_interval * i, unsigned int count, const struct snd_interval

* ranges, unsigned int mask)
refine the interval value from the list of ranges

Parameters
struct snd_interval * i the interval value to refine
unsigned int count the number of elements in the list of ranges
const struct snd_interval * ranges the ranges list
unsigned int mask the bit-mask to evaluate
Description
Refines the interval value from the list of ranges. Whenmask is non-zero, only the elements corresponding
to bit 1 are evaluated.
Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

201

The kernel driver API manual, Release 4.13.0-rc4+

int snd_pcm_hw_rule_add(struct snd_pcm_runtime * runtime, unsigned int cond, int var,
snd_pcm_hw_rule_func_t func, void * private, int dep, ...)

add the hw-constraint rule
Parameters
struct snd_pcm_runtime * runtime the pcm runtime instance
unsigned int cond condition bits
int var the variable to evaluate
snd_pcm_hw_rule_func_t func the evaluation function
void * private the private data pointer passed to function
int dep the dependent variables
... variable arguments
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime * runtime, snd_pcm_hw_param_t var,

u_int64_t mask)
apply the given bitmap mask constraint

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
snd_pcm_hw_param_t var hw_params variable to apply the mask
u_int64_t mask the 64bit bitmap mask
Description
Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime * runtime,

snd_pcm_hw_param_t var)
apply an integer constraint to an interval

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
snd_pcm_hw_param_t var hw_params variable to apply the integer constraint
Description
Apply the constraint of integer to an interval parameter.
Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.
int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime * runtime, snd_pcm_hw_param_t var,

unsigned int min, unsigned int max)
apply a min/max range constraint to an interval

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
snd_pcm_hw_param_t var hw_params variable to apply the range
unsigned int min the minimal value
unsigned int max the maximal value

202 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description
Apply the min/max range constraint to an interval parameter.
Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.
int snd_pcm_hw_constraint_list(struct snd_pcm_runtime * runtime, unsigned

int cond, snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_list * l)

apply a list of constraints to a parameter
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
unsigned int cond condition bits
snd_pcm_hw_param_t var hw_params variable to apply the list constraint
const struct snd_pcm_hw_constraint_list * l list
Description
Apply the list of constraints to an interval parameter.
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime * runtime, unsigned

int cond, snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_ranges * r)

apply list of range constraints to a parameter
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
unsigned int cond condition bits
snd_pcm_hw_param_t var hw_params variable to apply the list of range constraints
const struct snd_pcm_hw_constraint_ranges * r ranges
Description
Apply the list of range constraints to an interval parameter.
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime * runtime, unsigned

int cond, snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_ratnums * r)

apply ratnums constraint to a parameter
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
unsigned int cond condition bits
snd_pcm_hw_param_t var hw_params variable to apply the ratnums constraint
const struct snd_pcm_hw_constraint_ratnums * r struct snd_ratnums constriants
Return
Zero if successful, or a negative error code on failure.

203

The kernel driver API manual, Release 4.13.0-rc4+

int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime * runtime, unsigned
int cond, snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_ratdens * r)

apply ratdens constraint to a parameter
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
unsigned int cond condition bits
snd_pcm_hw_param_t var hw_params variable to apply the ratdens constraint
const struct snd_pcm_hw_constraint_ratdens * r struct snd_ratdens constriants
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime * runtime, unsigned int cond, un-

signed int width, unsigned int msbits)
add a hw constraint msbits rule

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
unsigned int cond condition bits
unsigned int width sample bits width
unsigned int msbits msbits width
Description
This constraint will set the number of most significant bits (msbits) if a sample format with the specified
width has been select. If width is set to 0 the msbits will be set for any sample format with a width larger
than the specified msbits.
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_hw_constraint_step(struct snd_pcm_runtime * runtime, unsigned int cond,

snd_pcm_hw_param_t var, unsigned long step)
add a hw constraint step rule

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
unsigned int cond condition bits
snd_pcm_hw_param_t var hw_params variable to apply the step constraint
unsigned long step step size
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime * runtime, unsigned int cond,

snd_pcm_hw_param_t var)
add a hw constraint power-of-2 rule

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
unsigned int cond condition bits
snd_pcm_hw_param_t var hw_params variable to apply the power-of-2 constraint

204 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Return
Zero if successful, or a negative error code on failure.
int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime * runtime, unsigned int base_rate)

add a rule to allow disabling hw resampling
Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
unsigned int base_rate the rate at which the hardware does not resample
Return
Zero if successful, or a negative error code on failure.
int snd_pcm_hw_param_value(const struct snd_pcm_hw_params * params,

snd_pcm_hw_param_t var, int * dir)
return params field var value

Parameters
const struct snd_pcm_hw_params * params the hw_params instance
snd_pcm_hw_param_t var parameter to retrieve
int * dir pointer to the direction (-1,0,1) or NULL
Return
The value for field var if it’s fixed in configuration space defined by params. -EINVAL otherwise.
int snd_pcm_hw_param_first(struct snd_pcm_substream * pcm, struct snd_pcm_hw_params

* params, snd_pcm_hw_param_t var, int * dir)
refine config space and return minimum value

Parameters
struct snd_pcm_substream * pcm PCM instance
struct snd_pcm_hw_params * params the hw_params instance
snd_pcm_hw_param_t var parameter to retrieve
int * dir pointer to the direction (-1,0,1) or NULL
Description
Inside configuration space defined by params remove from var all values > minimum. Reduce configu-
ration space accordingly.
Return
The minimum, or a negative error code on failure.
int snd_pcm_hw_param_last(struct snd_pcm_substream * pcm, struct snd_pcm_hw_params

* params, snd_pcm_hw_param_t var, int * dir)
refine config space and return maximum value

Parameters
struct snd_pcm_substream * pcm PCM instance
struct snd_pcm_hw_params * params the hw_params instance
snd_pcm_hw_param_t var parameter to retrieve
int * dir pointer to the direction (-1,0,1) or NULL
Description
Inside configuration space defined by params remove from var all values < maximum. Reduce configu-
ration space accordingly.

205

The kernel driver API manual, Release 4.13.0-rc4+

Return
The maximum, or a negative error code on failure.
int snd_pcm_lib_ioctl(struct snd_pcm_substream * substream, unsigned int cmd, void * arg)

a generic PCM ioctl callback
Parameters
struct snd_pcm_substream * substream the pcm substream instance
unsigned int cmd ioctl command
void * arg ioctl argument
Description
Processes the generic ioctl commands for PCM. Can be passed as the ioctl callback for PCM ops.
Return
Zero if successful, or a negative error code on failure.
void snd_pcm_period_elapsed(struct snd_pcm_substream * substream)

update the pcm status for the next period
Parameters
struct snd_pcm_substream * substream the pcm substream instance
Description
This function is called from the interrupt handler when the PCM has processed the period size. It will
update the current pointer, wake up sleepers, etc.
Even if more than one periods have elapsed since the last call, you have to call this only once.
int snd_pcm_add_chmap_ctls(struct snd_pcm * pcm, int stream, const struct snd_pcm_chmap_elem

* chmap, int max_channels, unsigned long private_value, struct
snd_pcm_chmap ** info_ret)

create channel-mapping control elements
Parameters
struct snd_pcm * pcm the assigned PCM instance
int stream stream direction
const struct snd_pcm_chmap_elem * chmap channel map elements (for query)
int max_channels the max number of channels for the stream
unsigned long private_value the value passed to each kcontrol’s private_value field
struct snd_pcm_chmap ** info_ret store struct snd_pcm_chmap instance if non-NULL
Description
Create channel-mapping control elements assigned to the given PCM stream(s).
Return
Zero if successful, or a negative error value.
int snd_hwdep_new(struct snd_card * card, char * id, int device, struct snd_hwdep ** rhwdep)

create a new hwdep instance
Parameters
struct snd_card * card the card instance
char * id the id string
int device the device index (zero-based)

206 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

struct snd_hwdep ** rhwdep the pointer to store the new hwdep instance
Description
Creates a new hwdep instance with the given index on the card. The callbacks (hwdep->ops) must be set
on the returned instance after this call manually by the caller.
Return
Zero if successful, or a negative error code on failure.
void snd_pcm_stream_lock(struct snd_pcm_substream * substream)

Lock the PCM stream
Parameters
struct snd_pcm_substream * substream PCM substream
Description
This locks the PCM stream’s spinlock or mutex depending on the nonatomic flag of the given substream.
This also takes the global link rw lock (or rw sem), too, for avoiding the race with linked streams.
void snd_pcm_stream_unlock(struct snd_pcm_substream * substream)

Unlock the PCM stream
Parameters
struct snd_pcm_substream * substream PCM substream
Description
This unlocks the PCM stream that has been locked via snd_pcm_stream_lock().
void snd_pcm_stream_lock_irq(struct snd_pcm_substream * substream)

Lock the PCM stream
Parameters
struct snd_pcm_substream * substream PCM substream
Description
This locks the PCM stream like snd_pcm_stream_lock() and disables the local IRQ (only when nonatomic
is false). In nonatomic case, this is identical as snd_pcm_stream_lock().
void snd_pcm_stream_unlock_irq(struct snd_pcm_substream * substream)

Unlock the PCM stream
Parameters
struct snd_pcm_substream * substream PCM substream
Description
This is a counter-part of snd_pcm_stream_lock_irq().
void snd_pcm_stream_unlock_irqrestore(struct snd_pcm_substream * substream, unsigned

long flags)
Unlock the PCM stream

Parameters
struct snd_pcm_substream * substream PCM substream
unsigned long flags irq flags
Description
This is a counter-part of snd_pcm_stream_lock_irqsave().
int snd_pcm_stop(struct snd_pcm_substream * substream, snd_pcm_state_t state)

try to stop all running streams in the substream group

207

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct snd_pcm_substream * substream the PCM substream instance
snd_pcm_state_t state PCM state after stopping the stream
Description
The state of each stream is then changed to the given state unconditionally.
Return
Zero if successful, or a negative error code.
int snd_pcm_stop_xrun(struct snd_pcm_substream * substream)

stop the running streams as XRUN
Parameters
struct snd_pcm_substream * substream the PCM substream instance
Description
This stops the given running substream (and all linked substreams) as XRUN. Unlike snd_pcm_stop(), this
function takes the substream lock by itself.
Return
Zero if successful, or a negative error code.
int snd_pcm_suspend(struct snd_pcm_substream * substream)

trigger SUSPEND to all linked streams
Parameters
struct snd_pcm_substream * substream the PCM substream
Description
After this call, all streams are changed to SUSPENDED state.
Return
Zero if successful (or substream is NULL), or a negative error code.
int snd_pcm_suspend_all(struct snd_pcm * pcm)

trigger SUSPEND to all substreams in the given pcm
Parameters
struct snd_pcm * pcm the PCM instance
Description
After this call, all streams are changed to SUSPENDED state.
Return
Zero if successful (or pcm is NULL), or a negative error code.
int snd_pcm_kernel_ioctl(struct snd_pcm_substream * substream, unsigned int cmd, void * arg)

Execute PCM ioctl in the kernel-space
Parameters
struct snd_pcm_substream * substream PCM substream
unsigned int cmd IOCTL cmd
void * arg IOCTL argument
Description
The function is provided primarily for OSS layer and USB gadget drivers, and it allows only the limited set
of ioctls (hw_params, sw_params, prepare, start, drain, drop, forward).

208 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

int snd_pcm_lib_default_mmap(struct snd_pcm_substream * substream, struct vm_area_struct
* area)

Default PCM data mmap function
Parameters
struct snd_pcm_substream * substream PCM substream
struct vm_area_struct * area VMA
Description
This is the default mmap handler for PCM data. When mmap pcm_ops is NULL, this function is invoked
implicitly.
int snd_pcm_lib_mmap_iomem(struct snd_pcm_substream * substream, struct vm_area_struct

* area)
Default PCM data mmap function for I/O mem

Parameters
struct snd_pcm_substream * substream PCM substream
struct vm_area_struct * area VMA
Description
When your hardware uses the iomapped pages as the hardware buffer and wants to mmap it, pass this
function as mmap pcm_ops. Note that this is supposed to work only on limited architectures.
void * snd_malloc_pages(size_t size, gfp_t gfp_flags)

allocate pages with the given size
Parameters
size_t size the size to allocate in bytes
gfp_t gfp_flags the allocation conditions, GFP_XXX
Description
Allocates the physically contiguous pages with the given size.
Return
The pointer of the buffer, or NULL if no enough memory.
void snd_free_pages(void * ptr, size_t size)

release the pages
Parameters
void * ptr the buffer pointer to release
size_t size the allocated buffer size
Description
Releases the buffer allocated via snd_malloc_pages().
int snd_dma_alloc_pages(int type, struct device * device, size_t size, struct snd_dma_buffer

* dmab)
allocate the buffer area according to the given type

Parameters
int type the DMA buffer type
struct device * device the device pointer
size_t size the buffer size to allocate
struct snd_dma_buffer * dmab buffer allocation record to store the allocated data

209

The kernel driver API manual, Release 4.13.0-rc4+

Description
Calls the memory-allocator function for the corresponding buffer type.
Return
Zero if the buffer with the given size is allocated successfully, otherwise a negative value on error.
int snd_dma_alloc_pages_fallback(int type, struct device * device, size_t size, struct

snd_dma_buffer * dmab)
allocate the buffer area according to the given type with fallback

Parameters
int type the DMA buffer type
struct device * device the device pointer
size_t size the buffer size to allocate
struct snd_dma_buffer * dmab buffer allocation record to store the allocated data
Description
Calls the memory-allocator function for the corresponding buffer type. When no space is left, this function
reduces the size and tries to allocate again. The size actually allocated is stored in res_size argument.
Return
Zero if the buffer with the given size is allocated successfully, otherwise a negative value on error.
void snd_dma_free_pages(struct snd_dma_buffer * dmab)

release the allocated buffer
Parameters
struct snd_dma_buffer * dmab the buffer allocation record to release
Description
Releases the allocated buffer via snd_dma_alloc_pages().

210 Chapter 8. Sound Devices

CHAPTER

NINE

FRAME BUFFER LIBRARY

The frame buffer drivers depend heavily on four data structures. These structures are declared in in-
clude/linux/fb.h. They are fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs. The last three
can be made available to and from userland.
fb_info defines the current state of a particular video card. Inside fb_info, there exists a fb_ops structure
which is a collection of needed functions to make fbdev and fbcon work. fb_info is only visible to the
kernel.
fb_var_screeninfo is used to describe the features of a video card that are user defined. With
fb_var_screeninfo, things such as depth and the resolution may be defined.
The next structure is fb_fix_screeninfo. This defines the properties of a card that are created when a mode
is set and can’t be changed otherwise. A good example of this is the start of the frame buffer memory.
This “locks” the address of the frame buffer memory, so that it cannot be changed or moved.
The last structure is fb_monospecs. In the old API, there was little importance for fb_monospecs. This
allowed for forbidden things such as setting a mode of 800x600 on a fix frequency monitor. With the new
API, fb_monospecs prevents such things, and if used correctly, can prevent a monitor from being cooked.
fb_monospecs will not be useful until kernels 2.5.x.

9.1 Frame Buffer Memory

int register_framebuffer(struct fb_info * fb_info)
registers a frame buffer device

Parameters
struct fb_info * fb_info frame buffer info structure
Description

Registers a frame buffer device fb_info.
Returns negative errno on error, or zero for success.

int unregister_framebuffer(struct fb_info * fb_info)
releases a frame buffer device

Parameters
struct fb_info * fb_info frame buffer info structure
Description

Unregisters a frame buffer device fb_info.
Returns negative errno on error, or zero for success.

This function will also notify the framebuffer console to release the driver.

211

The kernel driver API manual, Release 4.13.0-rc4+

This is meant to be called within a driver’s module_exit() function. If this is called outside
module_exit(), ensure that the driver implements fb_open() and fb_release() to check that
no processes are using the device.

void fb_set_suspend(struct fb_info * info, int state)
low level driver signals suspend

Parameters
struct fb_info * info framebuffer affected
int state 0 = resuming, !=0 = suspending
Description

This is meant to be used by low level drivers to signal suspend/resume to the core & clients. It
must be called with the console semaphore held

9.2 Frame Buffer Colormap

void fb_dealloc_cmap(struct fb_cmap * cmap)
deallocate a colormap

Parameters
struct fb_cmap * cmap frame buffer colormap structure
Description

Deallocates a colormap that was previously allocated with fb_alloc_cmap().
int fb_copy_cmap(const struct fb_cmap * from, struct fb_cmap * to)

copy a colormap
Parameters
const struct fb_cmap * from frame buffer colormap structure
struct fb_cmap * to frame buffer colormap structure
Description

Copy contents of colormap from from to to.
int fb_set_cmap(struct fb_cmap * cmap, struct fb_info * info)

set the colormap
Parameters
struct fb_cmap * cmap frame buffer colormap structure
struct fb_info * info frame buffer info structure
Description

Sets the colormap cmap for a screen of device info.
Returns negative errno on error, or zero on success.

const struct fb_cmap * fb_default_cmap(int len)
get default colormap

Parameters
int len size of palette for a depth
Description

212 Chapter 9. Frame Buffer Library

The kernel driver API manual, Release 4.13.0-rc4+

Gets the default colormap for a specific screen depth. len is the size of the palette for a particular
screen depth.
Returns pointer to a frame buffer colormap structure.

void fb_invert_cmaps(void)
invert all defaults colormaps

Parameters
void no arguments
Description

Invert all default colormaps.

9.3 Frame Buffer Video Mode Database

int fb_try_mode(struct fb_var_screeninfo * var, struct fb_info * info, const struct fb_videomode
* mode, unsigned int bpp)

test a video mode
Parameters
struct fb_var_screeninfo * var frame buffer user defined part of display
struct fb_info * info frame buffer info structure
const struct fb_videomode * mode frame buffer video mode structure
unsigned int bpp color depth in bits per pixel
Description

Tries a video mode to test it’s validity for device info.
Returns 1 on success.

void fb_delete_videomode(const struct fb_videomode * mode, struct list_head * head)
removed videomode entry from modelist

Parameters
const struct fb_videomode * mode videomode to remove
struct list_head * head struct list_head of modelist
NOTES
Will remove all matching mode entries
int fb_find_mode(struct fb_var_screeninfo * var, struct fb_info * info, const char * mode_option,

const struct fb_videomode * db, unsigned int dbsize, const struct fb_videomode
* default_mode, unsigned int default_bpp)

finds a valid video mode
Parameters
struct fb_var_screeninfo * var frame buffer user defined part of display
struct fb_info * info frame buffer info structure
const char * mode_option string video mode to find
const struct fb_videomode * db video mode database
unsigned int dbsize size of db
const struct fb_videomode * default_mode default video mode to fall back to
unsigned int default_bpp default color depth in bits per pixel

9.3. Frame Buffer Video Mode Database 213

The kernel driver API manual, Release 4.13.0-rc4+

Description
Finds a suitable video mode, starting with the specified mode inmode_option with fallback to
default_mode. If default_mode fails, all modes in the video mode database will be tried.
Valid mode specifiers for mode_option:
<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m] or <name>[-<bpp>][@<refresh>]
with <xres>, <yres>, <bpp> and <refresh> decimal numbers and <name> a string.

If ‘M’ is present after yres (and before refresh/bpp if present), the function will compute
the timings using VESA(tm) Coordinated Video Timings (CVT). If ‘R’ is present after ‘M’,
will compute with reduced blanking (for flatpanels). If ‘i’ is present, compute interlaced
mode. If ‘m’ is present, add margins equal to 1.8% of xres rounded down to 8 pixels,
and 1.8% of yres. The char ‘i’ and ‘m’ must be after ‘M’ and ‘R’. Example:
1024x768MR-8**60m** - Reduced blank with margins at 60Hz.

NOTE
The passed struct var is _not_ cleared! This allows you to supply values for e.g. the grayscale and

accel_flags fields.
Returns zero for failure, 1 if using specified mode_option, 2 if using specified mode_option with
an ignored refresh rate, 3 if default mode is used, 4 if fall back to any valid mode.

void fb_var_to_videomode(struct fb_videomode * mode, const struct fb_var_screeninfo * var)
convert fb_var_screeninfo to fb_videomode

Parameters
struct fb_videomode * mode pointer to struct fb_videomode
const struct fb_var_screeninfo * var pointer to struct fb_var_screeninfo
void fb_videomode_to_var(struct fb_var_screeninfo * var, const struct fb_videomode * mode)

convert fb_videomode to fb_var_screeninfo
Parameters
struct fb_var_screeninfo * var pointer to struct fb_var_screeninfo
const struct fb_videomode * mode pointer to struct fb_videomode
int fb_mode_is_equal(const struct fb_videomode * mode1, const struct fb_videomode * mode2)

compare 2 videomodes
Parameters
const struct fb_videomode * mode1 first videomode
const struct fb_videomode * mode2 second videomode
Return
1 if equal, 0 if not
const struct fb_videomode * fb_find_best_mode(const struct fb_var_screeninfo * var, struct

list_head * head)
find best matching videomode

Parameters
const struct fb_var_screeninfo * var pointer to struct fb_var_screeninfo
struct list_head * head pointer to struct list_head of modelist
Return
struct fb_videomode, NULL if none found
IMPORTANT: This function assumes that all modelist entries in info->modelist are valid.

214 Chapter 9. Frame Buffer Library

The kernel driver API manual, Release 4.13.0-rc4+

NOTES
Finds best matching videomode which has an equal or greater dimension than var->xres and var->yres.
If more than 1 videomode is found, will return the videomode with the highest refresh rate
const struct fb_videomode * fb_find_nearest_mode(const struct fb_videomode * mode, struct

list_head * head)
find closest videomode

Parameters
const struct fb_videomode * mode pointer to struct fb_videomode
struct list_head * head pointer to modelist
Description
Finds best matching videomode, smaller or greater in dimension. If more than 1 videomode is found, will
return the videomode with the closest refresh rate.
const struct fb_videomode * fb_match_mode(const struct fb_var_screeninfo * var, struct list_head

* head)
find a videomode which exactly matches the timings in var

Parameters
const struct fb_var_screeninfo * var pointer to struct fb_var_screeninfo
struct list_head * head pointer to struct list_head of modelist
Return
struct fb_videomode, NULL if none found
int fb_add_videomode(const struct fb_videomode * mode, struct list_head * head)

adds videomode entry to modelist
Parameters
const struct fb_videomode * mode videomode to add
struct list_head * head struct list_head of modelist
NOTES
Will only add unmatched mode entries
void fb_destroy_modelist(struct list_head * head)

destroy modelist
Parameters
struct list_head * head struct list_head of modelist
void fb_videomode_to_modelist(const struct fb_videomode * modedb, int num, struct list_head

* head)
convert mode array to mode list

Parameters
const struct fb_videomode * modedb array of struct fb_videomode
int num number of entries in array
struct list_head * head struct list_head of modelist

9.4 Frame Buffer Macintosh Video Mode Database

int mac_vmode_to_var(int vmode, int cmode, struct fb_var_screeninfo * var)
converts vmode/cmode pair to var structure

9.4. Frame Buffer Macintosh Video Mode Database 215

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
int vmode MacOS video mode
int cmode MacOS color mode
struct fb_var_screeninfo * var frame buffer video mode structure
Description

Converts a MacOS vmode/cmode pair to a frame buffer video mode structure.
Returns negative errno on error, or zero for success.

int mac_map_monitor_sense(int sense)
Convert monitor sense to vmode

Parameters
int sense Macintosh monitor sense number
Description

Converts a Macintosh monitor sense number to a MacOS vmode number.
Returns MacOS vmode video mode number.

int mac_find_mode(struct fb_var_screeninfo * var, struct fb_info * info, const char * mode_option,
unsigned int default_bpp)

find a video mode
Parameters
struct fb_var_screeninfo * var frame buffer user defined part of display
struct fb_info * info frame buffer info structure
const char * mode_option video mode name (see mac_modedb[])
unsigned int default_bpp default color depth in bits per pixel
Description

Finds a suitable video mode. Tries to set mode specified by mode_option. If the name of the
wanted mode begins with ‘mac’, the Mac video mode database will be used, otherwise it will
fall back to the standard video mode database.

Note
Function marked as __init and can only be used during system boot.

Returns error code from fb_find_mode (see fb_find_mode function).

9.5 Frame Buffer Fonts

Refer to the file lib/fonts/fonts.c for more information.

216 Chapter 9. Frame Buffer Library

CHAPTER

TEN

VOLTAGE AND CURRENT REGULATOR API

Author Liam Girdwood
Author Mark Brown

10.1 Introduction

This framework is designed to provide a standard kernel interface to control voltage and current regulators.
The intention is to allow systems to dynamically control regulator power output in order to save power
and prolong battery life. This applies to both voltage regulators (where voltage output is controllable) and
current sinks (where current limit is controllable).
Note that additional (and currently more complete) documentation is available in the Linux kernel source
under Documentation/power/regulator.

10.1.1 Glossary

The regulator API uses a number of terms which may not be familiar:
Regulator

Electronic device that supplies power to other devices. Most regulators can enable and disable
their output and some can also control their output voltage or current.

Consumer
Electronic device which consumes power provided by a regulator. These may either be static,
requiring only a fixed supply, or dynamic, requiring active management of the regulator at
runtime.

Power Domain
The electronic circuit supplied by a given regulator, including the regulator and all consumer
devices. The configuration of the regulator is shared between all the components in the circuit.

Power Management Integrated Circuit (PMIC)
An IC which contains numerous regulators and often also other subsystems. In an embedded
system the primary PMIC is often equivalent to a combination of the PSU and southbridge in a
desktop system.

10.2 Consumer driver interface

This offers a similar API to the kernel clock framework. Consumer drivers use get and put operations to
acquire and release regulators. Functions are provided to enable and disable the regulator and to get and
set the runtime parameters of the regulator.

217

The kernel driver API manual, Release 4.13.0-rc4+

When requesting regulators consumers use symbolic names for their supplies, such as “Vcc”, which are
mapped into actual regulator devices by the machine interface.
A stub version of this API is provided when the regulator framework is not in use in order to minimise the
need to use ifdefs.

10.2.1 Enabling and disabling

The regulator API provides reference counted enabling and disabling of regulators. Consumer devices use
the regulator_enable() and regulator_disable() functions to enable and disable regulators. Calls to
the two functions must be balanced.
Note that since multiple consumers may be using a regulator and machine constraints may not allow the
regulator to be disabled there is no guarantee that calling regulator_disable() will actually cause the
supply provided by the regulator to be disabled. Consumer drivers should assume that the regulator may
be enabled at all times.

10.2.2 Configuration

Some consumer devices may need to be able to dynamically configure their supplies. For example, MMC
drivers may need to select the correct operating voltage for their cards. This may be done while the
regulator is enabled or disabled.
The regulator_set_voltage() and regulator_set_current_limit() functions provide the primary in-
terface for this. Both take ranges of voltages and currents, supporting drivers that do not require a specific
value (eg, CPU frequency scaling normally permits the CPU to use a wider range of supply voltages at lower
frequencies but does not require that the supply voltage be lowered). Where an exact value is required
both minimum and maximum values should be identical.

10.2.3 Callbacks

Callbacks may also be registered for events such as regulation failures.

10.3 Regulator driver interface

Drivers for regulator chips register the regulators with the regulator core, providing operations structures
to the core. A notifier interface allows error conditions to be reported to the core.
Registration should be triggered by explicit setup done by the platform, supplying a struct regula-
tor_init_data for the regulator containing constraint and supply information.

10.4 Machine interface

This interface provides a way to define how regulators are connected to consumers on a given system
and what the valid operating parameters are for the system.

10.4.1 Supplies

Regulator supplies are specified using struct regulator_consumer_supply. This is done at driver regis-
tration time as part of the machine constraints.

218 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

10.4.2 Constraints

As well as defining the connections themachine interface also provides constraints defining the operations
that clients are allowed to perform and the parameters that may be set. This is required since generally
regulator devices will offer more flexibility than it is safe to use on a given system, for example supporting
higher supply voltages than the consumers are rated for.
This is done at driver registration time‘ by providing a struct regulation_constraints.
The constraints may also specify an initial configuration for the regulator in the constraints, which is
particularly useful for use with static consumers.

10.5 API reference

Due to limitations of the kernel documentation framework and the existing layout of the source code the
entire regulator API is documented here.
struct pre_voltage_change_data

Data sent with PRE_VOLTAGE_CHANGE event
Definition

struct pre_voltage_change_data {
unsigned long old_uV;
unsigned long min_uV;
unsigned long max_uV;

};

Members
old_uV Current voltage before change.
min_uV Min voltage we’ll change to.
max_uV Max voltage we’ll change to.
struct regulator_bulk_data

Data used for bulk regulator operations.
Definition

struct regulator_bulk_data {
const char * supply;
struct regulator * consumer;

};

Members
supply The name of the supply. Initialised by the user before using the bulk regulator APIs.
consumer The regulator consumer for the supply. This will be managed by the bulk API.
Description
The regulator APIs provide a series of regulator_bulk_() API calls as a convenience to consumers which
require multiple supplies. This structure is used to manage data for these calls.
struct regulator_state

regulator state during low power system states
Definition

struct regulator_state {
int uV;
unsigned int mode;

10.5. API reference 219

The kernel driver API manual, Release 4.13.0-rc4+

int enabled;
int disabled;

};

Members
uV Operating voltage during suspend.
mode Operating mode during suspend.
enabled Enabled during suspend.
disabled Disabled during suspend.
Description
This describes a regulators state during a system wide low power state. One of enabled or disabled must
be set for the configuration to be applied.
struct regulation_constraints

regulator operating constraints.
Definition

struct regulation_constraints {
const char * name;
int min_uV;
int max_uV;
int uV_offset;
int min_uA;
int max_uA;
int ilim_uA;
int system_load;
unsigned int valid_modes_mask;
unsigned int valid_ops_mask;
int input_uV;
struct regulator_state state_disk;
struct regulator_state state_mem;
struct regulator_state state_standby;
suspend_state_t initial_state;
unsigned int initial_mode;
unsigned int ramp_delay;
unsigned int settling_time;
unsigned int settling_time_up;
unsigned int settling_time_down;
unsigned int enable_time;
unsigned int active_discharge;
unsigned always_on:1;
unsigned boot_on:1;
unsigned apply_uV:1;
unsigned ramp_disable:1;
unsigned soft_start:1;
unsigned pull_down:1;
unsigned over_current_protection:1;

};

Members
name Descriptive name for the constraints, used for display purposes.
min_uV Smallest voltage consumers may set.
max_uV Largest voltage consumers may set.
uV_offset Offset applied to voltages from consumer to compensate for voltage drops.
min_uA Smallest current consumers may set.

220 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

max_uA Largest current consumers may set.
ilim_uA Maximum input current.
system_load Load that isn’t captured by any consumer requests.
valid_modes_mask Mask of modes which may be configured by consumers.
valid_ops_mask Operations which may be performed by consumers.
input_uV Input voltage for regulator when supplied by another regulator.
state_disk State for regulator when system is suspended in disk mode.
state_mem State for regulator when system is suspended in mem mode.
state_standby State for regulator when system is suspended in standby mode.
initial_state Suspend state to set by default.
initial_mode Mode to set at startup.
ramp_delay Time to settle down after voltage change (unit: uV/us)
settling_time Time to settle down after voltage change when voltage change is non-linear (unit: mi-

croseconds).
settling_time_up Time to settle down after voltage increase when voltage change is non-linear (unit:

microseconds).
settling_time_down Time to settle down after voltage decrease when voltage change is non-linear (unit:

microseconds).
enable_time Turn-on time of the rails (unit: microseconds)
active_discharge Enable/disable active discharge. The enum regulator_active_discharge values are

used for initialisation.
always_on Set if the regulator should never be disabled.
boot_on Set if the regulator is enabled when the system is initially started. If the regulator is not enabled

by the hardware or bootloader then it will be enabled when the constraints are applied.
apply_uV Apply the voltage constraint when initialising.
ramp_disable Disable ramp delay when initialising or when setting voltage.
soft_start Enable soft start so that voltage ramps slowly.
pull_down Enable pull down when regulator is disabled.
over_current_protection Auto disable on over current event.
Description
This struct describes regulator and board/machine specific constraints.
struct regulator_consumer_supply

supply -> device mapping
Definition

struct regulator_consumer_supply {
const char * dev_name;
const char * supply;

};

Members
dev_name Result of dev_name() for the consumer.
supply Name for the supply.

10.5. API reference 221

The kernel driver API manual, Release 4.13.0-rc4+

Description
This maps a supply name to a device. Use of dev_name allows support for buses which make struct device
available late such as I2C.
struct regulator_init_data

regulator platform initialisation data.
Definition

struct regulator_init_data {
const char * supply_regulator;
struct regulation_constraints constraints;
int num_consumer_supplies;
struct regulator_consumer_supply * consumer_supplies;
int (* regulator_init) (void *driver_data);
void * driver_data;

};

Members
supply_regulator Parent regulator. Specified using the regulator name as it appears in the name field

in sysfs, which can be explicitly set using the constraints field ‘name’.
constraints Constraints. These must be specified for the regulator to be usable.
num_consumer_supplies Number of consumer device supplies.
consumer_supplies Consumer device supply configuration.
regulator_init Callback invoked when the regulator has been registered.
driver_data Data passed to regulator_init.
Description
Initialisation constraints, our supply and consumers supplies.
struct regulator_linear_range

specify linear voltage ranges
Definition

struct regulator_linear_range {
unsigned int min_uV;
unsigned int min_sel;
unsigned int max_sel;
unsigned int uV_step;

};

Members
min_uV Lowest voltage in range
min_sel Lowest selector for range
max_sel Highest selector for range
uV_step Step size
Description
Specify a range of voltages for regulator_map_linar_range() and regulator_list_linear_range().
struct regulator_ops

regulator operations.
Definition

222 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

struct regulator_ops {
int (* list_voltage) (struct regulator_dev *, unsigned selector);
int (* set_voltage) (struct regulator_dev *, int min_uV, int max_uV, unsigned *selector);
int (* map_voltage) (struct regulator_dev *, int min_uV, int max_uV);
int (* set_voltage_sel) (struct regulator_dev *, unsigned selector);
int (* get_voltage) (struct regulator_dev *);
int (* get_voltage_sel) (struct regulator_dev *);
int (* set_current_limit) (struct regulator_dev *, int min_uA, int max_uA);
int (* get_current_limit) (struct regulator_dev *);
int (* set_input_current_limit) (struct regulator_dev *, int lim_uA);
int (* set_over_current_protection) (struct regulator_dev *);
int (* set_active_discharge) (struct regulator_dev *, bool enable);
int (* enable) (struct regulator_dev *);
int (* disable) (struct regulator_dev *);
int (* is_enabled) (struct regulator_dev *);
int (* set_mode) (struct regulator_dev *, unsigned int mode);
unsigned int (* get_mode) (struct regulator_dev *);
int (* get_error_flags) (struct regulator_dev *, unsigned int *flags);
int (* enable_time) (struct regulator_dev *);
int (* set_ramp_delay) (struct regulator_dev *, int ramp_delay);
int (* set_voltage_time) (struct regulator_dev *, int old_uV, int new_uV);
int (* set_voltage_time_sel) (struct regulator_dev *,unsigned int old_selector, unsigned int␣

↪→new_selector);
int (* set_soft_start) (struct regulator_dev *);
int (* get_status) (struct regulator_dev *);
unsigned int (* get_optimum_mode) (struct regulator_dev *, int input_uV, int output_uV, int␣

↪→load_uA);
int (* set_load) (struct regulator_dev *, int load_uA);
int (* set_bypass) (struct regulator_dev *dev, bool enable);
int (* get_bypass) (struct regulator_dev *dev, bool *enable);
int (* set_suspend_voltage) (struct regulator_dev *, int uV);
int (* set_suspend_enable) (struct regulator_dev *);
int (* set_suspend_disable) (struct regulator_dev *);
int (* set_suspend_mode) (struct regulator_dev *, unsigned int mode);
int (* set_pull_down) (struct regulator_dev *);

};

Members
list_voltage Return one of the supported voltages, in microvolts; zero if the selector indicates a volt-

age that is unusable on this system; or negative errno. Selectors range from zero to one less than
regulator_desc.n_voltages. Voltages may be reported in any order.

set_voltage Set the voltage for the regulator within the range specified. The driver should select the
voltage closest to min_uV.

map_voltage Convert a voltage into a selector
set_voltage_sel Set the voltage for the regulator using the specified selector.
get_voltage Return the currently configured voltage for the regulator.
get_voltage_sel Return the currently configured voltage selector for the regulator.
set_current_limit Configure a limit for a current-limited regulator. The driver should select the current

closest to max_uA.
get_current_limit Get the configured limit for a current-limited regulator.
set_input_current_limit Configure an input limit.
set_over_current_protection Support capability of automatically shutting down when detecting an

over current event.
set_active_discharge Set active discharge enable/disable of regulators.

10.5. API reference 223

The kernel driver API manual, Release 4.13.0-rc4+

enable Configure the regulator as enabled.
disable Configure the regulator as disabled.
is_enabled Return 1 if the regulator is enabled, 0 if not. May also return negative errno.
set_mode Set the configured operating mode for the regulator.
get_mode Get the configured operating mode for the regulator.
get_error_flags Get the current error(s) for the regulator.
enable_time Time taken for the regulator voltage output voltage to stabilise after being enabled, in

microseconds.
set_ramp_delay Set the ramp delay for the regulator. The driver should select ramp delay equal to or

less than(closest) ramp_delay.
set_voltage_time Time taken for the regulator voltage output voltage to stabilise after being set to a

new value, in microseconds. The function receives the from and to voltage as input, it should return
the worst case.

set_voltage_time_sel Time taken for the regulator voltage output voltage to stabilise after being set
to a new value, in microseconds. The function receives the from and to voltage selector as input, it
should return the worst case.

set_soft_start Enable soft start for the regulator.
get_status Return actual (not as-configured) status of regulator, as a REGULATOR_STATUS value (or

negative errno)
get_optimum_mode Get the most efficient operating mode for the regulator when running with the spec-

ified parameters.
set_load Set the load for the regulator.
set_bypass Set the regulator in bypass mode.
get_bypass Get the regulator bypass mode state.
set_suspend_voltage Set the voltage for the regulator when the system is suspended.
set_suspend_enable Mark the regulator as enabled when the system is suspended.
set_suspend_disable Mark the regulator as disabled when the system is suspended.
set_suspend_mode Set the operating mode for the regulator when the system is suspended.
set_pull_down Configure the regulator to pull down when the regulator is disabled.
Description
This struct describes regulator operations which can be implemented by regulator chip drivers.
struct regulator_desc

Static regulator descriptor
Definition

struct regulator_desc {
const char * name;
const char * supply_name;
const char * of_match;
const char * regulators_node;
int (* of_parse_cb) (struct device_node *,const struct regulator_desc *, struct regulator_

↪→config *);
int id;
unsigned int continuous_voltage_range:1;
unsigned n_voltages;
const struct regulator_ops * ops;
int irq;

224 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

enum regulator_type type;
struct module * owner;
unsigned int min_uV;
unsigned int uV_step;
unsigned int linear_min_sel;
int fixed_uV;
unsigned int ramp_delay;
int min_dropout_uV;
const struct regulator_linear_range * linear_ranges;
int n_linear_ranges;
const unsigned int * volt_table;
unsigned int vsel_reg;
unsigned int vsel_mask;
unsigned int csel_reg;
unsigned int csel_mask;
unsigned int apply_reg;
unsigned int apply_bit;
unsigned int enable_reg;
unsigned int enable_mask;
unsigned int enable_val;
unsigned int disable_val;
bool enable_is_inverted;
unsigned int bypass_reg;
unsigned int bypass_mask;
unsigned int bypass_val_on;
unsigned int bypass_val_off;
unsigned int active_discharge_on;
unsigned int active_discharge_off;
unsigned int active_discharge_mask;
unsigned int active_discharge_reg;
unsigned int soft_start_reg;
unsigned int soft_start_mask;
unsigned int soft_start_val_on;
unsigned int pull_down_reg;
unsigned int pull_down_mask;
unsigned int pull_down_val_on;
unsigned int enable_time;
unsigned int off_on_delay;
unsigned int (* of_map_mode) (unsigned int mode);

};

Members
name Identifying name for the regulator.
supply_name Identifying the regulator supply
of_match Name used to identify regulator in DT.
regulators_node Name of node containing regulator definitions in DT.
of_parse_cb Optional callback called only if of_match is present. Will be called for each regulator parsed

from DT, during init_data parsing. The regulator_config passed as argument to the callback will be
a copy of config passed to regulator_register, valid only for this particular call. Callback may freely
change the config but it cannot store it for later usage. Callback should return 0 on success or
negative ERRNO indicating failure.

id Numerical identifier for the regulator.
continuous_voltage_range Indicates if the regulator can set any voltage within constrains range.
n_voltages Number of selectors available for ops.:c:func:list_voltage().
ops Regulator operations table.
irq Interrupt number for the regulator.

10.5. API reference 225

The kernel driver API manual, Release 4.13.0-rc4+

type Indicates if the regulator is a voltage or current regulator.
owner Module providing the regulator, used for refcounting.
min_uV Voltage given by the lowest selector (if linear mapping)
uV_step Voltage increase with each selector (if linear mapping)
linear_min_sel Minimal selector for starting linear mapping
fixed_uV Fixed voltage of rails.
ramp_delay Time to settle down after voltage change (unit: uV/us)
min_dropout_uV The minimum dropout voltage this regulator can handle
linear_ranges A constant table of possible voltage ranges.
n_linear_ranges Number of entries in the linear_ranges table.
volt_table Voltage mapping table (if table based mapping)
vsel_reg Register for selector when using regulator_regmap_X_voltage_
vsel_mask Mask for register bitfield used for selector
csel_reg Register for TPS65218 LS3 current regulator
csel_mask Mask for TPS65218 LS3 current regulator
apply_reg Register for initiate voltage change on the output when using regula-

tor_set_voltage_sel_regmap
apply_bit Register bitfield used for initiate voltage change on the output when using regula-

tor_set_voltage_sel_regmap
enable_reg Register for control when using regmap enable/disable ops
enable_mask Mask for control when using regmap enable/disable ops
enable_val Enabling value for control when using regmap enable/disable ops
disable_val Disabling value for control when using regmap enable/disable ops
enable_is_inverted A flag to indicate set enable_mask bits to disable when using regula-

tor_enable_regmap and friends APIs.
bypass_reg Register for control when using regmap set_bypass
bypass_mask Mask for control when using regmap set_bypass
bypass_val_on Enabling value for control when using regmap set_bypass
bypass_val_off Disabling value for control when using regmap set_bypass
active_discharge_on Disabling value for control when using regmap set_active_discharge
active_discharge_off Enabling value for control when using regmap set_active_discharge
active_discharge_mask Mask for control when using regmap set_active_discharge
active_discharge_reg Register for control when using regmap set_active_discharge
soft_start_reg Register for control when using regmap set_soft_start
soft_start_mask Mask for control when using regmap set_soft_start
soft_start_val_on Enabling value for control when using regmap set_soft_start
pull_down_reg Register for control when using regmap set_pull_down
pull_down_mask Mask for control when using regmap set_pull_down
pull_down_val_on Enabling value for control when using regmap set_pull_down
enable_time Time taken for initial enable of regulator (in uS).

226 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

off_on_delay guard time (in uS), before re-enabling a regulator
of_map_mode Maps a hardware mode defined in a DeviceTree to a standard mode
Description
Each regulator registered with the core is described with a structure of this type and a struct regula-
tor_config. This structure contains the non-varying parts of the regulator description.
struct regulator_config

Dynamic regulator descriptor
Definition

struct regulator_config {
struct device * dev;
const struct regulator_init_data * init_data;
void * driver_data;
struct device_node * of_node;
struct regmap * regmap;
bool ena_gpio_initialized;
int ena_gpio;
unsigned int ena_gpio_invert:1;
unsigned int ena_gpio_flags;

};

Members
dev struct device for the regulator
init_data platform provided init data, passed through by driver
driver_data private regulator data
of_node OpenFirmware node to parse for device tree bindings (may be NULL).
regmap regmap to use for core regmap helpers if dev_get_regmap() is insufficient.
ena_gpio_initialized GPIO controlling regulator enable was properly initialized, meaning that >= 0 is

a valid gpio identifier and < 0 is a non existent gpio.
ena_gpio GPIO controlling regulator enable.
ena_gpio_invert Sense for GPIO enable control.
ena_gpio_flags Flags to use when calling gpio_request_one()
Description
Each regulator registered with the core is described with a structure of this type and a struct regula-
tor_desc. This structure contains the runtime variable parts of the regulator description.
struct regulator * regulator_get(struct device * dev, const char * id)

lookup and obtain a reference to a regulator.
Parameters
struct device * dev device for regulator “consumer”
const char * id Supply name or regulator ID.
Description
Returns a struct regulator corresponding to the regulator producer, or IS_ERR() condition containing
errno.
Use of supply names configured via regulator_set_device_supply() is strongly encouraged. It is rec-
ommended that the supply name used should match the name used for the supply and/or the relevant
device pins in the datasheet.

10.5. API reference 227

The kernel driver API manual, Release 4.13.0-rc4+

struct regulator * regulator_get_exclusive(struct device * dev, const char * id)
obtain exclusive access to a regulator.

Parameters
struct device * dev device for regulator “consumer”
const char * id Supply name or regulator ID.
Description
Returns a struct regulator corresponding to the regulator producer, or IS_ERR() condition containing
errno. Other consumers will be unable to obtain this regulator while this reference is held and the use
count for the regulator will be initialised to reflect the current state of the regulator.
This is intended for use by consumers which cannot tolerate shared use of the regulator such as those
which need to force the regulator off for correct operation of the hardware they are controlling.
Use of supply names configured via regulator_set_device_supply() is strongly encouraged. It is rec-
ommended that the supply name used should match the name used for the supply and/or the relevant
device pins in the datasheet.
struct regulator * regulator_get_optional(struct device * dev, const char * id)

obtain optional access to a regulator.
Parameters
struct device * dev device for regulator “consumer”
const char * id Supply name or regulator ID.
Description
Returns a struct regulator corresponding to the regulator producer, or IS_ERR() condition containing
errno.
This is intended for use by consumers for devices which can have some supplies unconnected in normal
use, such as some MMC devices. It can allow the regulator core to provide stub supplies for other supplies
requested using normal regulator_get() calls without disrupting the operation of drivers that can handle
absent supplies.
Use of supply names configured via regulator_set_device_supply() is strongly encouraged. It is rec-
ommended that the supply name used should match the name used for the supply and/or the relevant
device pins in the datasheet.
void regulator_put(struct regulator * regulator)

“free” the regulator source
Parameters
struct regulator * regulator regulator source
Note
drivers must ensure that all regulator_enable calls made on this regulator source are balanced by regula-
tor_disable calls prior to calling this function.
int regulator_register_supply_alias(struct device * dev, const char * id, struct device

* alias_dev, const char * alias_id)
Provide device alias for supply lookup

Parameters
struct device * dev device that will be given as the regulator “consumer”
const char * id Supply name or regulator ID
struct device * alias_dev device that should be used to lookup the supply
const char * alias_id Supply name or regulator ID that should be used to lookup the supply

228 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

Description
All lookups for id on dev will instead be conducted for alias_id on alias_dev.
void regulator_unregister_supply_alias(struct device * dev, const char * id)

Remove device alias
Parameters
struct device * dev device that will be given as the regulator “consumer”
const char * id Supply name or regulator ID
Description
Remove a lookup alias if one exists for id on dev.
int regulator_bulk_register_supply_alias(struct device * dev, const char *const * id, struct

device * alias_dev, const char *const * alias_id,
int num_id)

register multiple aliases
Parameters
struct device * dev device that will be given as the regulator “consumer”
const char *const * id List of supply names or regulator IDs
struct device * alias_dev device that should be used to lookup the supply
const char *const * alias_id List of supply names or regulator IDs that should be used to lookup the

supply
int num_id Number of aliases to register
Description
return 0 on success, an errno on failure.
This helper function allows drivers to register several supply aliases in one operation. If any of the aliases
cannot be registered any aliases that were registered will be removed before returning to the caller.
void regulator_bulk_unregister_supply_alias(struct device * dev, const char *const * id,

int num_id)
unregister multiple aliases

Parameters
struct device * dev device that will be given as the regulator “consumer”
const char *const * id List of supply names or regulator IDs
int num_id Number of aliases to unregister
Description
This helper function allows drivers to unregister several supply aliases in one operation.
int regulator_enable(struct regulator * regulator)

enable regulator output
Parameters
struct regulator * regulator regulator source
Description
Request that the regulator be enabled with the regulator output at the predefined voltage or current value.
Calls to regulator_enable() must be balanced with calls to regulator_disable().
NOTE
the output value can be set by other drivers, boot loader or may be hardwired in the regulator.

10.5. API reference 229

The kernel driver API manual, Release 4.13.0-rc4+

int regulator_disable(struct regulator * regulator)
disable regulator output

Parameters
struct regulator * regulator regulator source
Description
Disable the regulator output voltage or current. Calls to regulator_enable()must be balanced with calls
to regulator_disable().
NOTE
this will only disable the regulator output if no other consumer devices have it enabled, the regulator
device supports disabling and machine constraints permit this operation.
int regulator_force_disable(struct regulator * regulator)

force disable regulator output
Parameters
struct regulator * regulator regulator source
Description
Forcibly disable the regulator output voltage or current.
NOTE
this will disable the regulator output even if other consumer devices have it enabled. This should be used
for situations when device damage will likely occur if the regulator is not disabled (e.g. over temp).
int regulator_disable_deferred(struct regulator * regulator, int ms)

disable regulator output with delay
Parameters
struct regulator * regulator regulator source
int ms miliseconds until the regulator is disabled
Description
Execute regulator_disable() on the regulator after a delay. This is intended for use with devices that
require some time to quiesce.
NOTE
this will only disable the regulator output if no other consumer devices have it enabled, the regulator
device supports disabling and machine constraints permit this operation.
int regulator_is_enabled(struct regulator * regulator)

is the regulator output enabled
Parameters
struct regulator * regulator regulator source
Description
Returns positive if the regulator driver backing the source/client has requested that the device be enabled,
zero if it hasn’t, else a negative errno code.
Note that the device backing this regulator handle can have multiple users, so it might be enabled even
if regulator_enable() was never called for this particular source.
int regulator_count_voltages(struct regulator * regulator)

count regulator_list_voltage() selectors
Parameters
struct regulator * regulator regulator source

230 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

Description
Returns number of selectors, or negative errno. Selectors are numbered starting at zero, and typically
correspond to bitfields in hardware registers.
int regulator_list_voltage(struct regulator * regulator, unsigned selector)

enumerate supported voltages
Parameters
struct regulator * regulator regulator source
unsigned selector identify voltage to list
Context
can sleep
Description
Returns a voltage that can be passed to regulator_set_voltage(), zero if this selector code can’t be used
on this system, or a negative errno.
int regulator_get_hardware_vsel_register(struct regulator * regulator, unsigned * vsel_reg, un-

signed * vsel_mask)
get the HW voltage selector register

Parameters
struct regulator * regulator regulator source
unsigned * vsel_reg voltage selector register, output parameter
unsigned * vsel_mask mask for voltage selector bitfield, output parameter
Description
Returns the hardware register offset and bitmask used for setting the regulator voltage. This might be
useful when configuring voltage-scaling hardware or firmware that can make I2C requests behind the
kernel’s back, for example.
On success, the output parameters vsel_reg and vsel_mask are filled in and 0 is returned, otherwise a
negative errno is returned.
int regulator_list_hardware_vsel(struct regulator * regulator, unsigned selector)

get the HW-specific register value for a selector
Parameters
struct regulator * regulator regulator source
unsigned selector identify voltage to list
Description
Converts the selector to a hardware-specific voltage selector that can be directly written to the
regulator registers. The address of the voltage register can be determined by calling regula-
tor_get_hardware_vsel_register.
On error a negative errno is returned.
unsigned int regulator_get_linear_step(struct regulator * regulator)

return the voltage step size between VSEL values
Parameters
struct regulator * regulator regulator source
Description
Returns the voltage step size between VSEL values for linear regulators, or return 0 if the regulator isn’t
a linear regulator.

10.5. API reference 231

The kernel driver API manual, Release 4.13.0-rc4+

int regulator_is_supported_voltage(struct regulator * regulator, int min_uV, int max_uV)
check if a voltage range can be supported

Parameters
struct regulator * regulator Regulator to check.
int min_uV Minimum required voltage in uV.
int max_uV Maximum required voltage in uV.
Description
Returns a boolean or a negative error code.
int regulator_set_voltage(struct regulator * regulator, int min_uV, int max_uV)

set regulator output voltage
Parameters
struct regulator * regulator regulator source
int min_uV Minimum required voltage in uV
int max_uV Maximum acceptable voltage in uV
Description
Sets a voltage regulator to the desired output voltage. This can be set during any regulator state. IOW,
regulator can be disabled or enabled.
If the regulator is enabled then the voltage will change to the new value immediately otherwise if the
regulator is disabled the regulator will output at the new voltage when enabled.
NOTE
If the regulator is shared between several devices then the lowest request voltage that meets the system
constraints will be used. Regulator system constraints must be set for this regulator before calling this
function otherwise this call will fail.
int regulator_set_voltage_time(struct regulator * regulator, int old_uV, int new_uV)

get raise/fall time
Parameters
struct regulator * regulator regulator source
int old_uV starting voltage in microvolts
int new_uV target voltage in microvolts
Description
Provided with the starting and ending voltage, this function attempts to calculate the time in microseconds
required to rise or fall to this new voltage.
int regulator_set_voltage_time_sel(struct regulator_dev * rdev, unsigned int old_selector, un-

signed int new_selector)
get raise/fall time

Parameters
struct regulator_dev * rdev regulator source device
unsigned int old_selector selector for starting voltage
unsigned int new_selector selector for target voltage
Description
Provided with the starting and target voltage selectors, this function returns time in microseconds required
to rise or fall to this new voltage

232 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

Drivers providing ramp_delay in regulation_constraints can use this as their set_voltage_time_sel()
operation.
int regulator_sync_voltage(struct regulator * regulator)

re-apply last regulator output voltage
Parameters
struct regulator * regulator regulator source
Description
Re-apply the last configured voltage. This is intended to be used where some external control source the
consumer is cooperating with has caused the configured voltage to change.
int regulator_get_voltage(struct regulator * regulator)

get regulator output voltage
Parameters
struct regulator * regulator regulator source
Description
This returns the current regulator voltage in uV.
NOTE
If the regulator is disabled it will return the voltage value. This function should not be used to determine
regulator state.
int regulator_set_current_limit(struct regulator * regulator, int min_uA, int max_uA)

set regulator output current limit
Parameters
struct regulator * regulator regulator source
int min_uA Minimum supported current in uA
int max_uA Maximum supported current in uA
Description
Sets current sink to the desired output current. This can be set during any regulator state. IOW, regulator
can be disabled or enabled.
If the regulator is enabled then the current will change to the new value immediately otherwise if the
regulator is disabled the regulator will output at the new current when enabled.
NOTE
Regulator system constraints must be set for this regulator before calling this function otherwise this call
will fail.
int regulator_get_current_limit(struct regulator * regulator)

get regulator output current
Parameters
struct regulator * regulator regulator source
Description
This returns the current supplied by the specified current sink in uA.
NOTE
If the regulator is disabled it will return the current value. This function should not be used to determine
regulator state.
int regulator_set_mode(struct regulator * regulator, unsigned int mode)

set regulator operating mode

10.5. API reference 233

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct regulator * regulator regulator source
unsigned int mode operating mode - one of the REGULATOR_MODE constants
Description
Set regulator operating mode to increase regulator efficiency or improve regulation performance.
NOTE
Regulator system constraints must be set for this regulator before calling this function otherwise this call
will fail.
unsigned int regulator_get_mode(struct regulator * regulator)

get regulator operating mode
Parameters
struct regulator * regulator regulator source
Description
Get the current regulator operating mode.
int regulator_get_error_flags(struct regulator * regulator, unsigned int * flags)

get regulator error information
Parameters
struct regulator * regulator regulator source
unsigned int * flags pointer to store error flags
Description
Get the current regulator error information.
int regulator_set_load(struct regulator * regulator, int uA_load)

set regulator load
Parameters
struct regulator * regulator regulator source
int uA_load load current
Description
Notifies the regulator core of a new device load. This is then used by DRMS (if enabled by constraints) to
set the most efficient regulator operating mode for the new regulator loading.
Consumer devices notify their supply regulator of the maximum power they will require (can be taken
from device datasheet in the power consumption tables) when they change operational status and hence
power state. Examples of operational state changes that can affect power consumption are :-

o Device is opened / closed. o Device I/O is about to begin or has just finished. o Device is idling
in between work.

This information is also exported via sysfs to userspace.
DRMS will sum the total requested load on the regulator and change to the most efficient operating mode
if platform constraints allow.
On error a negative errno is returned.
int regulator_allow_bypass(struct regulator * regulator, bool enable)

allow the regulator to go into bypass mode
Parameters
struct regulator * regulator Regulator to configure

234 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

bool enable enable or disable bypass mode
Description
Allow the regulator to go into bypass mode if all other consumers for the regulator also enable bypass
mode and the machine constraints allow this. Bypass mode means that the regulator is simply passing
the input directly to the output with no regulation.
int regulator_register_notifier(struct regulator * regulator, struct notifier_block * nb)

register regulator event notifier
Parameters
struct regulator * regulator regulator source
struct notifier_block * nb notifier block
Description
Register notifier block to receive regulator events.
int regulator_unregister_notifier(struct regulator * regulator, struct notifier_block * nb)

unregister regulator event notifier
Parameters
struct regulator * regulator regulator source
struct notifier_block * nb notifier block
Description
Unregister regulator event notifier block.
int regulator_bulk_get(struct device * dev, int num_consumers, struct regulator_bulk_data * con-

sumers)
get multiple regulator consumers

Parameters
struct device * dev Device to supply
int num_consumers Number of consumers to register
struct regulator_bulk_data * consumers Configuration of consumers; clients are stored here.
Description
return 0 on success, an errno on failure.
This helper function allows drivers to get several regulator consumers in one operation. If any of the
regulators cannot be acquired then any regulators that were allocated will be freed before returning to
the caller.
int regulator_bulk_enable(int num_consumers, struct regulator_bulk_data * consumers)

enable multiple regulator consumers
Parameters
int num_consumers Number of consumers
struct regulator_bulk_data * consumers Consumer data; clients are stored here. return 0 on suc-

cess, an errno on failure
Description
This convenience API allows consumers to enable multiple regulator clients in a single API call. If any
consumers cannot be enabled then any others that were enabled will be disabled again prior to return.
int regulator_bulk_disable(int num_consumers, struct regulator_bulk_data * consumers)

disable multiple regulator consumers
Parameters

10.5. API reference 235

The kernel driver API manual, Release 4.13.0-rc4+

int num_consumers Number of consumers
struct regulator_bulk_data * consumers Consumer data; clients are stored here. return 0 on suc-

cess, an errno on failure
Description
This convenience API allows consumers to disable multiple regulator clients in a single API call. If any
consumers cannot be disabled then any others that were disabled will be enabled again prior to return.
int regulator_bulk_force_disable(int num_consumers, struct regulator_bulk_data * consumers)

force disable multiple regulator consumers
Parameters
int num_consumers Number of consumers
struct regulator_bulk_data * consumers Consumer data; clients are stored here. return 0 on suc-

cess, an errno on failure
Description
This convenience API allows consumers to forcibly disable multiple regulator clients in a single API call.
NOTE
This should be used for situations when device damage will likely occur if the regulators are not disabled
(e.g. over temp). Although regulator_force_disable function call for some consumers can return error
numbers, the function is called for all consumers.
void regulator_bulk_free(int num_consumers, struct regulator_bulk_data * consumers)

free multiple regulator consumers
Parameters
int num_consumers Number of consumers
struct regulator_bulk_data * consumers Consumer data; clients are stored here.
Description
This convenience API allows consumers to free multiple regulator clients in a single API call.
int regulator_notifier_call_chain(struct regulator_dev * rdev, unsigned long event, void

* data)
call regulator event notifier

Parameters
struct regulator_dev * rdev regulator source
unsigned long event notifier block
void * data callback-specific data.
Description
Called by regulator drivers to notify clients a regulator event has occurred. We also notify regulator clients
downstream. Note lock must be held by caller.
int regulator_mode_to_status(unsigned int mode)

convert a regulator mode into a status
Parameters
unsigned int mode Mode to convert
Description
Convert a regulator mode into a status.

236 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

struct regulator_dev * regulator_register(const struct regulator_desc * regulator_desc, const
struct regulator_config * cfg)

register regulator
Parameters
const struct regulator_desc * regulator_desc regulator to register
const struct regulator_config * cfg runtime configuration for regulator
Description
Called by regulator drivers to register a regulator. Returns a valid pointer to struct regulator_dev on
success or an ERR_PTR() on error.
void regulator_unregister(struct regulator_dev * rdev)

unregister regulator
Parameters
struct regulator_dev * rdev regulator to unregister
Description
Called by regulator drivers to unregister a regulator.
int regulator_suspend_prepare(suspend_state_t state)

prepare regulators for system wide suspend
Parameters
suspend_state_t state system suspend state
Description
Configure each regulator with it’s suspend operating parameters for state. This will usually be called by
machine suspend code prior to supending.
int regulator_suspend_finish(void)

resume regulators from system wide suspend
Parameters
void no arguments
Description
Turn on regulators that might be turned off by regulator_suspend_prepare and that should be turned on
according to the regulators properties.
void regulator_has_full_constraints(void)

the system has fully specified constraints
Parameters
void no arguments
Description
Calling this function will cause the regulator API to disable all regulators which have a zero use count and
don’t have an always_on constraint in a late_initcall.
The intention is that this will become the default behaviour in a future kernel release so users are encour-
aged to use this facility now.
void * rdev_get_drvdata(struct regulator_dev * rdev)

get rdev regulator driver data
Parameters
struct regulator_dev * rdev regulator

10.5. API reference 237

The kernel driver API manual, Release 4.13.0-rc4+

Description
Get rdev regulator driver private data. This call can be used in the regulator driver context.
void * regulator_get_drvdata(struct regulator * regulator)

get regulator driver data
Parameters
struct regulator * regulator regulator
Description
Get regulator driver private data. This call can be used in the consumer driver context when non API
regulator specific functions need to be called.
void regulator_set_drvdata(struct regulator * regulator, void * data)

set regulator driver data
Parameters
struct regulator * regulator regulator
void * data data
int rdev_get_id(struct regulator_dev * rdev)

get regulator ID
Parameters
struct regulator_dev * rdev regulator

238 Chapter 10. Voltage and current regulator API

CHAPTER

ELEVEN

INDUSTRIAL I/O

Copyright © 2015 Intel Corporation
Contents:

11.1 Introduction

The main purpose of the Industrial I/O subsystem (IIO) is to provide support for devices that in some sense
perform either analog-to-digital conversion (ADC) or digital-to-analog conversion (DAC) or both. The aim
is to fill the gap between the somewhat similar hwmon and input subsystems. Hwmon is directed at low
sample rate sensors used to monitor and control the system itself, like fan speed control or temperature
measurement. Input is, as its name suggests, focused on human interaction input devices (keyboard,
mouse, touchscreen). In some cases there is considerable overlap between these and IIO.
Devices that fall into this category include:
• analog to digital converters (ADCs)
• accelerometers
• capacitance to digital converters (CDCs)
• digital to analog converters (DACs)
• gyroscopes
• inertial measurement units (IMUs)
• color and light sensors
• magnetometers
• pressure sensors
• proximity sensors
• temperature sensors

Usually these sensors are connected via SPI or I2C . A common use case of the sensors devices is to
have combined functionality (e.g. light plus proximity sensor).

11.2 Core elements

The Industrial I/O core offers a unified framework for writing drivers for many different types of embedded
sensors. a standard interface to user space applications manipulating sensors. The implementation can
be found under drivers/iio/industrialio-*

239

The kernel driver API manual, Release 4.13.0-rc4+

11.2.1 Industrial I/O Devices

• struct iio_dev - industrial I/O device
• iio_device_alloc() - alocate an iio_dev from a driver
• iio_device_free() - free an iio_dev from a driver
• iio_device_register() - register a device with the IIO subsystem
• iio_device_unregister() - unregister a device from the IIO subsystem

An IIO device usually corresponds to a single hardware sensor and it provides all the information needed
by a driver handling a device. Let’s first have a look at the functionality embedded in an IIO device then
we will show how a device driver makes use of an IIO device.
There are two ways for a user space application to interact with an IIO driver.
1. /sys/bus/iio/iio:deviceX/, this represents a hardware sensor and groups together the data chan-
nels of the same chip.

2. /dev/iio:deviceX, character device node interface used for buffered data transfer and for events
information retrieval.

A typical IIO driver will register itself as an I2C or SPI driver and will create two routines, probe and
remove.
At probe:
1. Call iio_device_alloc(), which allocates memory for an IIO device.
2. Initialize IIO device fields with driver specific information (e.g. device name, device channels).
3. Call iio_device_register(), this registers the device with the IIO core. After this call the device is
ready to accept requests from user space applications.

At remove, we free the resources allocated in probe in reverse order:
1. iio_device_unregister(), unregister the device from the IIO core.
2. iio_device_free(), free the memory allocated for the IIO device.

IIO device sysfs interface

Attributes are sysfs files used to expose chip info and also allowing applications to set various configuration
parameters. For device with index X, attributes can be found under /sys/bus/iio/iio:deviceX/ directory.
Common attributes are:
• name, description of the physical chip.
• dev, shows the major:minor pair associated with /dev/iio:deviceX node.
• sampling_frequency_available, available discrete set of sampling frequency values for device.
• Available standard attributes for IIO devices are described in the Documenta-
tion/ABI/testing/sysfs-bus-iio file in the Linux kernel sources.

IIO device channels

struct iio_chan_spec - specification of a single channel
An IIO device channel is a representation of a data channel. An IIO device can have one or multiple
channels. For example:
• a thermometer sensor has one channel representing the temperature measurement.
• a light sensor with two channels indicating the measurements in the visible and infrared spectrum.
• an accelerometer can have up to 3 channels representing acceleration on X, Y and Z axes.

240 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

An IIO channel is described by the struct iio_chan_spec. A thermometer driver for the temperature
sensor in the example above would have to describe its channel as follows:

static const struct iio_chan_spec temp_channel[] = {
{

.type = IIO_TEMP,

.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
},

};

Channel sysfs attributes exposed to userspace are specified in the form of bitmasks. Depending on their
shared info, attributes can be set in one of the following masks:
• info_mask_separate, attributes will be specific to this channel
• info_mask_shared_by_type, attributes are shared by all channels of the same type
• info_mask_shared_by_dir, attributes are shared by all channels of the same direction
• info_mask_shared_by_all, attributes are shared by all channels

When there are multiple data channels per channel type we have two ways to distinguish between them:
• set .modified field of iio_chan_spec to 1. Modifiers are specified using .channel2 field of the same
iio_chan_spec structure and are used to indicate a physically unique characteristic of the channel
such as its direction or spectral response. For example, a light sensor can have two channels, one
for infrared light and one for both infrared and visible light.

• set .indexed field of iio_chan_spec to 1. In this case the channel is simply another instance with
an index specified by the .channel field.

Here is how we can make use of the channel’s modifiers:

static const struct iio_chan_spec light_channels[] = {
{

.type = IIO_INTENSITY,

.modified = 1,

.channel2 = IIO_MOD_LIGHT_IR,

.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

.info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
{

.type = IIO_INTENSITY,

.modified = 1,

.channel2 = IIO_MOD_LIGHT_BOTH,

.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

.info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
{

.type = IIO_LIGHT,

.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),

.info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},

}

This channel’s definition will generate two separate sysfs files for raw data retrieval:
• /sys/bus/iio/iio:deviceX/in_intensity_ir_raw

• /sys/bus/iio/iio:deviceX/in_intensity_both_raw

one file for processed data:
• /sys/bus/iio/iio:deviceX/in_illuminance_input

and one shared sysfs file for sampling frequency:
• /sys/bus/iio/iio:deviceX/sampling_frequency.

11.2. Core elements 241

The kernel driver API manual, Release 4.13.0-rc4+

Here is how we can make use of the channel’s indexing:

static const struct iio_chan_spec light_channels[] = {
{

.type = IIO_VOLTAGE,

.indexed = 1,

.channel = 0,

.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
},
{

.type = IIO_VOLTAGE,

.indexed = 1,

.channel = 1,

.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
},

}

This will generate two separate attributes files for raw data retrieval:
• /sys/bus/iio/devices/iio:deviceX/in_voltage0_raw, representing voltage measurement for
channel 0.

• /sys/bus/iio/devices/iio:deviceX/in_voltage1_raw, representing voltage measurement for
channel 1.

More details

struct iio_chan_spec_ext_info
Extended channel info attribute

Definition

struct iio_chan_spec_ext_info {
const char * name;
enum iio_shared_by shared;
ssize_t (* read) (struct iio_dev *, uintptr_t private, struct iio_chan_spec const *, char␣

↪→*buf);
ssize_t (* write) (struct iio_dev *, uintptr_t private,struct iio_chan_spec const *, const␣

↪→char *buf, size_t len);
uintptr_t private;

};

Members
name Info attribute name
shared Whether this attribute is shared between all channels.
read Read callback for this info attribute, may be NULL.
write Write callback for this info attribute, may be NULL.
private Data private to the driver.
struct iio_enum

Enum channel info attribute
Definition

struct iio_enum {
const char *const * items;
unsigned int num_items;
int (* set) (struct iio_dev *, const struct iio_chan_spec *, unsigned int);
int (* get) (struct iio_dev *, const struct iio_chan_spec *);

};

242 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

Members
items An array of strings.
num_items Length of the item array.
set Set callback function, may be NULL.
get Get callback function, may be NULL.
Description
The iio_enum struct can be used to implement enum style channel attributes. Enum style attributes are
those which have a set of strings which map to unsigned integer values. The IIO enum helper code takes
care of mapping between value and string as well as generating a “_available” file which contains a list
of all available items. The set callback will be called when the attribute is updated. The last parameter
is the index to the newly activated item. The get callback will be used to query the currently active item
and is supposed to return the index for it.
IIO_ENUM(_name, _shared, _e)

Initialize enum extended channel attribute
Parameters
_name Attribute name
_shared Whether the attribute is shared between all channels
_e Pointer to an iio_enum struct
Description
This should usually be used together with IIO_ENUM_AVAILABLE()
IIO_ENUM_AVAILABLE(_name, _e)

Initialize enum available extended channel attribute
Parameters
_name Attribute name (“_available” will be appended to the name)
_e Pointer to an iio_enum struct
Description
Creates a read only attribute which lists all the available enum items in a space separated list. This should
usually be used together with IIO_ENUM()
struct iio_mount_matrix

iio mounting matrix
Definition

struct iio_mount_matrix {
const char * rotation;

};

Members
rotation 3 dimensional space rotation matrix defining sensor alignment with main hardware
IIO_MOUNT_MATRIX(_shared, _get)

Initialize mount matrix extended channel attribute
Parameters
_shared Whether the attribute is shared between all channels
_get Pointer to an iio_get_mount_matrix_t accessor
struct iio_event_spec

specification for a channel event

11.2. Core elements 243

The kernel driver API manual, Release 4.13.0-rc4+

Definition

struct iio_event_spec {
enum iio_event_type type;
enum iio_event_direction dir;
unsigned long mask_separate;
unsigned long mask_shared_by_type;
unsigned long mask_shared_by_dir;
unsigned long mask_shared_by_all;

};

Members
type Type of the event
dir Direction of the event
mask_separate Bit mask of enum iio_event_info values. Attributes set in this mask will be registered per

channel.
mask_shared_by_type Bit mask of enum iio_event_info values. Attributes set in this mask will be shared

by channel type.
mask_shared_by_dir Bit mask of enum iio_event_info values. Attributes set in this mask will be shared

by channel type and direction.
mask_shared_by_all Bit mask of enum iio_event_info values. Attributes set in this mask will be shared

by all channels.
struct iio_chan_spec

specification of a single channel
Definition

struct iio_chan_spec {
enum iio_chan_type type;
int channel;
int channel2;
unsigned long address;
int scan_index;
struct scan_type;
long info_mask_separate;
long info_mask_separate_available;
long info_mask_shared_by_type;
long info_mask_shared_by_type_available;
long info_mask_shared_by_dir;
long info_mask_shared_by_dir_available;
long info_mask_shared_by_all;
long info_mask_shared_by_all_available;
const struct iio_event_spec * event_spec;
unsigned int num_event_specs;
const struct iio_chan_spec_ext_info * ext_info;
const char * extend_name;
const char * datasheet_name;
unsigned modified:1;
unsigned indexed:1;
unsigned output:1;
unsigned differential:1;

};

Members
type What type of measurement is the channel making.
channel What number do we wish to assign the channel.

244 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

channel2 If there is a second number for a differential channel then this is it. If modified is set then the
value here specifies the modifier.

address Driver specific identifier.
scan_index Monotonic index to give ordering in scans when read from a buffer.
scan_type sign: ‘s’ or ‘u’ to specify signed or unsigned realbits: Number of valid bits of data storagebits:

Realbits + padding shift: Shift right by this before masking out
realbits.

repeat: Number of times real/storage bits repeats. When the repeat element is more than 1,
then the type element in sysfs will show a repeat value. Otherwise, the number of repetitions is
omitted.

endianness: little or big endian
info_mask_separate What information is to be exported that is specific to this channel.
info_mask_separate_available What availability information is to be exported that is specific to this

channel.
info_mask_shared_by_type What information is to be exported that is shared by all channels of the same

type.
info_mask_shared_by_type_available What availability information is to be exported that is shared by

all channels of the same type.
info_mask_shared_by_dir What information is to be exported that is shared by all channels of the same

direction.
info_mask_shared_by_dir_available What availability information is to be exported that is shared by

all channels of the same direction.
info_mask_shared_by_all What information is to be exported that is shared by all channels.
info_mask_shared_by_all_available What availability information is to be exported that is shared by

all channels.
event_spec Array of events which should be registered for this channel.
num_event_specs Size of the event_spec array.
ext_info Array of extended info attributes for this channel. The array is NULL terminated, the last ele-

ment should have its name field set to NULL.
extend_name Allows labeling of channel attributes with an informative name. Note this has no effect

codes etc, unlike modifiers.
datasheet_name A name used in in-kernel mapping of channels. It should correspond to the first name

that the channel is referred to by in the datasheet (e.g. IND), or the nearest possible compound name
(e.g. IND-INC).

modified Does a modifier apply to this channel. What these are depends on the channel type. Modifier
is set in channel2. Examples are IIO_MOD_X for axial sensors about the ‘x’ axis.

indexed Specify the channel has a numerical index. If not, the channel index number will be suppressed
for sysfs attributes but not for event codes.

output Channel is output.
differential Channel is differential.
bool iio_channel_has_info(const struct iio_chan_spec * chan, enum iio_chan_info_enum type)

Checks whether a channel supports a info attribute
Parameters
const struct iio_chan_spec * chan The channel to be queried
enum iio_chan_info_enum type Type of the info attribute to be checked

11.2. Core elements 245

The kernel driver API manual, Release 4.13.0-rc4+

Description
Returns true if the channels supports reporting values for the given info attribute type, false otherwise.
bool iio_channel_has_available(const struct iio_chan_spec * chan, enum

iio_chan_info_enum type)
Checks if a channel has an available attribute

Parameters
const struct iio_chan_spec * chan The channel to be queried
enum iio_chan_info_enum type Type of the available attribute to be checked
Description
Returns true if the channel supports reporting available values for the given attribute type, false otherwise.

struct iio_info
constant information about device

Definition

struct iio_info {
struct module * driver_module;
const struct attribute_group * event_attrs;
const struct attribute_group * attrs;
int (* read_raw) (struct iio_dev *indio_dev,struct iio_chan_spec const *chan,int *val,int␣

↪→*val2, long mask);
int (* read_raw_multi) (struct iio_dev *indio_dev,struct iio_chan_spec const *chan,int max_

↪→len,int *vals,int *val_len, long mask);
int (* read_avail) (struct iio_dev *indio_dev,struct iio_chan_spec const *chan,const int␣

↪→**vals,int *type,int *length, long mask);
int (* write_raw) (struct iio_dev *indio_dev,struct iio_chan_spec const *chan,int val,int␣

↪→val2, long mask);
int (* write_raw_get_fmt) (struct iio_dev *indio_dev,struct iio_chan_spec const *chan, long␣

↪→mask);
int (* read_event_config) (struct iio_dev *indio_dev,const struct iio_chan_spec *chan,enum␣

↪→iio_event_type type, enum iio_event_direction dir);
int (* write_event_config) (struct iio_dev *indio_dev,const struct iio_chan_spec *chan,enum␣

↪→iio_event_type type,enum iio_event_direction dir, int state);
int (* read_event_value) (struct iio_dev *indio_dev,const struct iio_chan_spec *chan,enum iio_

↪→event_type type,enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2);
int (* write_event_value) (struct iio_dev *indio_dev,const struct iio_chan_spec *chan,enum␣

↪→iio_event_type type,enum iio_event_direction dir, enum iio_event_info info, int val, int␣
↪→val2);
int (* validate_trigger) (struct iio_dev *indio_dev, struct iio_trigger *trig);
int (* update_scan_mode) (struct iio_dev *indio_dev, const unsigned long *scan_mask);
int (* debugfs_reg_access) (struct iio_dev *indio_dev,unsigned reg, unsigned writeval,␣

↪→unsigned *readval);
int (* of_xlate) (struct iio_dev *indio_dev, const struct of_phandle_args *iiospec);
int (* hwfifo_set_watermark) (struct iio_dev *indio_dev, unsigned val);
int (* hwfifo_flush_to_buffer) (struct iio_dev *indio_dev, unsigned count);

};

Members
driver_module module structure used to ensure correct ownership of chrdevs etc
event_attrs event control attributes
attrs general purpose device attributes
read_raw function to request a value from the device. mask specifies which value. Note 0 means a

reading of the channel in question. Return value will specify the type of value returned by the device.
val and val2 will contain the elements making up the returned value.

246 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

read_raw_multi function to return values from the device. mask specifies which value. Note 0 means a
reading of the channel in question. Return value will specify the type of value returned by the device.
vals pointer contain the elementsmaking up the returned value. max_len specifiesmaximumnumber
of elements vals pointer can contain. val_len is used to return length of valid elements in vals.

read_avail function to return the available values from the device. mask specifies which value. Note 0
means the available values for the channel in question. Return value specifies if a IIO_AVAIL_LIST or
a IIO_AVAIL_RANGE is returned in vals. The type of the vals are returned in type and the number of
vals is returned in length. For ranges, there are always three vals returned; min, step and max. For
lists, all possible values are enumerated.

write_raw function to write a value to the device. Parameters are the same as for read_raw.
write_raw_get_fmt callback function to query the expected format/precision. If not set by the driver,

write_raw returns IIO_VAL_INT_PLUS_MICRO.
read_event_config find out if the event is enabled.
write_event_config set if the event is enabled.
read_event_value read a configuration value associated with the event.
write_event_value write a configuration value for the event.
validate_trigger function to validate the trigger when the current trigger gets changed.
update_scan_mode function to configure device and scan buffer when channels have changed
debugfs_reg_access function to read or write register value of device
of_xlate function pointer to obtain channel specifier index. When #iio-cells is greater than ‘0’, the driver

could provide a custom of_xlate function that reads the args and returns the appropriate index in
registered IIO channels array.

hwfifo_set_watermark function pointer to set the current hardware fifo watermark level; see hwfifo_*
entries in Documentation/ABI/testing/sysfs-bus-iio for details on how the hardware fifo operates

hwfifo_flush_to_buffer function pointer to flush the samples stored in the hardware fifo to the device
buffer. The driver should not flush more than count samples. The function must return the number
of samples flushed, 0 if no samples were flushed or a negative integer if no samples were flushed
and there was an error.

struct iio_buffer_setup_ops
buffer setup related callbacks

Definition

struct iio_buffer_setup_ops {
int (* preenable) (struct iio_dev *);
int (* postenable) (struct iio_dev *);
int (* predisable) (struct iio_dev *);
int (* postdisable) (struct iio_dev *);
bool (* validate_scan_mask) (struct iio_dev *indio_dev, const unsigned long *scan_mask);

};

Members
preenable [DRIVER] function to run prior to marking buffer enabled
postenable [DRIVER] function to run after marking buffer enabled
predisable [DRIVER] function to run prior to marking buffer disabled
postdisable [DRIVER] function to run after marking buffer disabled
validate_scan_mask [DRIVER] function callback to check whether a given scan mask is valid for the

device.

11.2. Core elements 247

The kernel driver API manual, Release 4.13.0-rc4+

struct iio_dev
industrial I/O device

Definition

struct iio_dev {
int id;
int modes;
int currentmode;
struct device dev;
struct iio_event_interface * event_interface;
struct iio_buffer * buffer;
struct list_head buffer_list;
int scan_bytes;
struct mutex mlock;
const unsigned long * available_scan_masks;
unsigned masklength;
const unsigned long * active_scan_mask;
bool scan_timestamp;
unsigned scan_index_timestamp;
struct iio_trigger * trig;
struct iio_poll_func * pollfunc;
struct iio_poll_func * pollfunc_event;
struct iio_chan_spec const * channels;
int num_channels;
struct list_head channel_attr_list;
struct attribute_group chan_attr_group;
const char * name;
const struct iio_info * info;
clockid_t clock_id;
struct mutex info_exist_lock;
const struct iio_buffer_setup_ops * setup_ops;
struct cdev chrdev;

#define IIO_MAX_GROUPS 6
const struct attribute_group * groups;
int groupcounter;
unsigned long flags;

#if defined(CONFIG_DEBUG_FS
struct dentry * debugfs_dentry;
unsigned cached_reg_addr;

#endif
};

Members
id [INTERN] used to identify device internally
modes [DRIVER] operating modes supported by device
currentmode [DRIVER] current operating mode
dev [DRIVER] device structure, should be assigned a parent and owner
event_interface [INTERN] event chrdevs associated with interrupt lines
buffer [DRIVER] any buffer present
buffer_list [INTERN] list of all buffers currently attached
scan_bytes [INTERN] num bytes captured to be fed to buffer demux
mlock [DRIVER] lock used to prevent simultaneous device state changes
available_scan_masks [DRIVER] optional array of allowed bitmasks
masklength [INTERN] the length of the mask established from channels
active_scan_mask [INTERN] union of all scan masks requested by buffers

248 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

scan_timestamp [INTERN] set if any buffers have requested timestamp
scan_index_timestamp [INTERN] cache of the index to the timestamp
trig [INTERN] current device trigger (buffer modes) trig_readonly [INTERN] mark the current trigger

immutable
pollfunc [DRIVER] function run on trigger being received
pollfunc_event [DRIVER] function run on events trigger being received
channels [DRIVER] channel specification structure table
num_channels [DRIVER] number of channels specified in channels.
channel_attr_list [INTERN] keep track of automatically created channel attributes
chan_attr_group [INTERN] group for all attrs in base directory
name [DRIVER] name of the device.
info [DRIVER] callbacks and constant info from driver
clock_id [INTERN] timestamping clock posix identifier
info_exist_lock [INTERN] lock to prevent use during removal
setup_ops [DRIVER] callbacks to call before and after buffer enable/disable
chrdev [INTERN] associated character device
groups [INTERN] attribute groups
groupcounter [INTERN] index of next attribute group
flags [INTERN] file ops related flags including busy flag.
debugfs_dentry [INTERN] device specific debugfs dentry.
cached_reg_addr [INTERN] cached register address for debugfs reads.
void iio_device_put(struct iio_dev * indio_dev)

reference counted deallocation of struct device
Parameters
struct iio_dev * indio_dev IIO device structure containing the device
clockid_t iio_device_get_clock(const struct iio_dev * indio_dev)

Retrieve current timestamping clock for the device
Parameters
const struct iio_dev * indio_dev IIO device structure containing the device
struct iio_dev * dev_to_iio_dev(struct device * dev)

Get IIO device struct from a device struct
Parameters
struct device * dev The device embedded in the IIO device
Note
The device must be a IIO device, otherwise the result is undefined.
struct iio_dev * iio_device_get(struct iio_dev * indio_dev)

increment reference count for the device
Parameters
struct iio_dev * indio_dev IIO device structure
Return
The passed IIO device

11.2. Core elements 249

The kernel driver API manual, Release 4.13.0-rc4+

void iio_device_set_drvdata(struct iio_dev * indio_dev, void * data)
Set device driver data

Parameters
struct iio_dev * indio_dev IIO device structure
void * data Driver specific data
Description
Allows to attach an arbitrary pointer to an IIO device, which can later be retrieved by
iio_device_get_drvdata().
void * iio_device_get_drvdata(struct iio_dev * indio_dev)

Get device driver data
Parameters
struct iio_dev * indio_dev IIO device structure
Description
Returns the data previously set with iio_device_set_drvdata()
bool iio_buffer_enabled(struct iio_dev * indio_dev)

helper function to test if the buffer is enabled
Parameters
struct iio_dev * indio_dev IIO device structure for device
struct dentry * iio_get_debugfs_dentry(struct iio_dev * indio_dev)

helper function to get the debugfs_dentry
Parameters
struct iio_dev * indio_dev IIO device structure for device
IIO_DEGREE_TO_RAD(deg)

Convert degree to rad
Parameters
deg A value in degree
Description
Returns the given value converted from degree to rad
IIO_RAD_TO_DEGREE(rad)

Convert rad to degree
Parameters
rad A value in rad
Description
Returns the given value converted from rad to degree
IIO_G_TO_M_S_2(g)

Convert g to meter / second**2
Parameters
g A value in g
Description
Returns the given value converted from g to meter / second**2
IIO_M_S_2_TO_G(ms2)

Convert meter / second**2 to g

250 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
ms2 A value in meter / second**2
Description
Returns the given value converted from meter / second**2 to g
s64 iio_get_time_ns(const struct iio_dev * indio_dev)

utility function to get a time stamp for events etc
Parameters
const struct iio_dev * indio_dev device
unsigned int iio_get_time_res(const struct iio_dev * indio_dev)

utility function to get time stamp clock resolution in nano seconds.
Parameters
const struct iio_dev * indio_dev device
int of_iio_read_mount_matrix(const struct device * dev, const char * propname, struct

iio_mount_matrix * matrix)
retrieve iio device mounting matrix from device-tree “mount-matrix” property

Parameters
const struct device * dev device the mounting matrix property is assigned to
const char * propname device specific mounting matrix property name
struct iio_mount_matrix * matrix where to store retrieved matrix
Description
If device is assigned no mounting matrix property, a default 3x3 identity matrix will be filled in.
Return
0 if success, or a negative error code on failure.
ssize_t iio_format_value(char * buf, unsigned int type, int size, int * vals)

Formats a IIO value into its string representation
Parameters
char * buf The buffer to which the formatted value gets written which is assumed to be big enough (i.e.

PAGE_SIZE).
unsigned int type One of the IIO_VAL_... constants. This decides how the val and val2 parameters are

formatted.
int size Number of IIO value entries contained in vals
int * vals Pointer to the values, exact meaning depends on the type parameter.
Return
0 by default, a negative number on failure or the total number of characters written for a type that

belongs to the IIO_VAL_... constant.
int iio_str_to_fixpoint(const char * str, int fract_mult, int * integer, int * fract)

Parse a fixed-point number from a string
Parameters
const char * str The string to parse
int fract_mult Multiplier for the first decimal place, should be a power of 10
int * integer The integer part of the number
int * fract The fractional part of the number

11.2. Core elements 251

The kernel driver API manual, Release 4.13.0-rc4+

Description
Returns 0 on success, or a negative error code if the string could not be parsed.
struct iio_dev * iio_device_alloc(int sizeof_priv)

allocate an iio_dev from a driver
Parameters
int sizeof_priv Space to allocate for private structure.
void iio_device_free(struct iio_dev * dev)

free an iio_dev from a driver
Parameters
struct iio_dev * dev the iio_dev associated with the device
struct iio_dev * devm_iio_device_alloc(struct device * dev, int sizeof_priv)

Resource-managed iio_device_alloc()
Parameters
struct device * dev Device to allocate iio_dev for
int sizeof_priv Space to allocate for private structure.
Description
Managed iio_device_alloc. iio_dev allocated with this function is automatically freed on driver detach.
If an iio_dev allocated with this function needs to be freed separately, devm_iio_device_free()must be
used.
Return
Pointer to allocated iio_dev on success, NULL on failure.
void devm_iio_device_free(struct device * dev, struct iio_dev * iio_dev)

Resource-managed iio_device_free()
Parameters
struct device * dev Device this iio_dev belongs to
struct iio_dev * iio_dev the iio_dev associated with the device
Description
Free iio_dev allocated with devm_iio_device_alloc().
int iio_device_register(struct iio_dev * indio_dev)

register a device with the IIO subsystem
Parameters
struct iio_dev * indio_dev Device structure filled by the device driver
void iio_device_unregister(struct iio_dev * indio_dev)

unregister a device from the IIO subsystem
Parameters
struct iio_dev * indio_dev Device structure representing the device.
int devm_iio_device_register(struct device * dev, struct iio_dev * indio_dev)

Resource-managed iio_device_register()
Parameters
struct device * dev Device to allocate iio_dev for
struct iio_dev * indio_dev Device structure filled by the device driver

252 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

Description
Managed iio_device_register. The IIO device registered with this function is automatically unregistered
on driver detach. This function calls iio_device_register() internally. Refer to that function for more
information.
If an iio_dev registered with this function needs to be unregistered separately,
devm_iio_device_unregister() must be used.
Return
0 on success, negative error number on failure.
void devm_iio_device_unregister(struct device * dev, struct iio_dev * indio_dev)

Resource-managed iio_device_unregister()
Parameters
struct device * dev Device this iio_dev belongs to
struct iio_dev * indio_dev the iio_dev associated with the device
Description
Unregister iio_dev registered with devm_iio_device_register().
int iio_device_claim_direct_mode(struct iio_dev * indio_dev)

Keep device in direct mode
Parameters
struct iio_dev * indio_dev the iio_dev associated with the device
Description
If the device is in direct mode it is guaranteed to stay that way until iio_device_release_direct_mode()
is called.
Use with iio_device_release_direct_mode()
Return
0 on success, -EBUSY on failure
void iio_device_release_direct_mode(struct iio_dev * indio_dev)

releases claim on direct mode
Parameters
struct iio_dev * indio_dev the iio_dev associated with the device
Description
Release the claim. Device is no longer guaranteed to stay in direct mode.
Use with iio_device_claim_direct_mode()

11.3 Buffers

• struct iio_buffer — general buffer structure
• iio_validate_scan_mask_onehot() — Validates that exactly one channel is selected
• iio_buffer_get() — Grab a reference to the buffer
• iio_buffer_put() — Release the reference to the buffer

The Industrial I/O core offers a way for continuous data capture based on a trigger source. Multiple data
channels can be read at once from /dev/iio:deviceX character device node, thus reducing the CPU load.

11.3. Buffers 253

The kernel driver API manual, Release 4.13.0-rc4+

11.3.1 IIO buffer sysfs interface

An IIO buffer has an associated attributes directory under /sys/bus/iio/iio:deviceX/buffer/*. Here
are some of the existing attributes:
• length, the total number of data samples (capacity) that can be stored by the buffer.
• enable, activate buffer capture.

11.3.2 IIO buffer setup

The meta information associated with a channel reading placed in a buffer is called a scan ele-
ment . The important bits configuring scan elements are exposed to userspace applications via the
/sys/bus/iio/iio:deviceX/scan_elements/* directory. This file contains attributes of the following
form:
• enable, used for enabling a channel. If and only if its attribute is non zero, then a triggered capture
will contain data samples for this channel.

• type, description of the scan element data storage within the buffer and hence the form in which it
is read from user space. Format is [be|le]:[s|u]bits/storagebitsXrepeat[>>shift] . * be or le, specifies
big or little endian. * s or u, specifies if signed (2’s complement) or unsigned. * bits, is the number
of valid data bits. * storagebits, is the number of bits (after padding) that it occupies in the buffer.
* shift, if specified, is the shift that needs to be applied prior to masking out unused bits. * repeat,
specifies the number of bits/storagebits repetitions. When the repeat element is 0 or 1, then the
repeat value is omitted.

For example, a driver for a 3-axis accelerometer with 12 bit resolution where data is stored in two 8-bits
registers as follows:

7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
|D3 |D2 |D1 |D0 | X | X | X | X | (LOW byte, address 0x06)
+---+---+---+---+---+---+---+---+

7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
|D11|D10|D9 |D8 |D7 |D6 |D5 |D4 | (HIGH byte, address 0x07)
+---+---+---+---+---+---+---+---+

will have the following scan element type for each axis:

$ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_accel_y_type
le:s12/16>>4

A user space application will interpret data samples read from the buffer as two byte little endian signed
data, that needs a 4 bits right shift before masking out the 12 valid bits of data.
For implementing buffer support a driver should initialize the following fields in iio_chan_spec definition:

struct iio_chan_spec {
/* other members */

int scan_index
struct {

char sign;
u8 realbits;
u8 storagebits;
u8 shift;
u8 repeat;
enum iio_endian endianness;
} scan_type;

};

254 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

The driver implementing the accelerometer described above will have the following channel definition:

struct struct iio_chan_spec accel_channels[] = {
{

.type = IIO_ACCEL,

.modified = 1,

.channel2 = IIO_MOD_X,
/* other stuff here */
.scan_index = 0,
.scan_type = {

.sign = 's',

.realbits = 12,

.storagebits = 16,

.shift = 4,

.endianness = IIO_LE,
},

}
/* similar for Y (with channel2 = IIO_MOD_Y, scan_index = 1)
* and Z (with channel2 = IIO_MOD_Z, scan_index = 2) axis
*/

}

Here scan_index defines the order in which the enabled channels are placed inside the buffer. Channels
with a lower scan_index will be placed before channels with a higher index. Each channel needs to have
a unique scan_index.
Setting scan_index to -1 can be used to indicate that the specific channel does not support buffered
capture. In this case no entries will be created for the channel in the scan_elements directory.

11.3.3 More details

int iio_push_to_buffers_with_timestamp(struct iio_dev * indio_dev, void * data,
int64_t timestamp)

push data and timestamp to buffers
Parameters
struct iio_dev * indio_dev iio_dev structure for device.
void * data sample data
int64_t timestamp timestamp for the sample data
Description
Pushes data to the IIO device’s buffers. If timestamps are enabled for the device the function will store the
supplied timestamp as the last element in the sample data buffer before pushing it to the device buffers.
The sample data buffer needs to be large enough to hold the additional timestamp (usually the buffer
should be indio->scan_bytes bytes large).
Returns 0 on success, a negative error code otherwise.
void iio_buffer_set_attrs(struct iio_buffer * buffer, const struct attribute ** attrs)

Set buffer specific attributes
Parameters
struct iio_buffer * buffer The buffer for which we are setting attributes
const struct attribute ** attrs Pointer to a null terminated list of pointers to attributes
bool iio_validate_scan_mask_onehot(struct iio_dev * indio_dev, const unsigned long * mask)

Validates that exactly one channel is selected
Parameters

11.3. Buffers 255

The kernel driver API manual, Release 4.13.0-rc4+

struct iio_dev * indio_dev the iio device
const unsigned long * mask scan mask to be checked
Description
Return true if exactly one bit is set in the scan mask, false otherwise. It can be used for devices where
only one channel can be active for sampling at a time.
int iio_push_to_buffers(struct iio_dev * indio_dev, const void * data)

push to a registered buffer.
Parameters
struct iio_dev * indio_dev iio_dev structure for device.
const void * data Full scan.
struct iio_buffer * iio_buffer_get(struct iio_buffer * buffer)

Grab a reference to the buffer
Parameters
struct iio_buffer * buffer The buffer to grab a reference for, may be NULL
Description
Returns the pointer to the buffer that was passed into the function.
void iio_buffer_put(struct iio_buffer * buffer)

Release the reference to the buffer
Parameters
struct iio_buffer * buffer The buffer to release the reference for, may be NULL
void iio_device_attach_buffer(struct iio_dev * indio_dev, struct iio_buffer * buffer)

Attach a buffer to a IIO device
Parameters
struct iio_dev * indio_dev The device the buffer should be attached to
struct iio_buffer * buffer The buffer to attach to the device
Description
This function attaches a buffer to a IIO device. The buffer stays attached to the device until the device is
freed. The function should only be called at most once per device.

11.4 Triggers

• struct iio_trigger — industrial I/O trigger device
• devm_iio_trigger_alloc() — Resource-managed iio_trigger_alloc
• devm_iio_trigger_free() — Resource-managed iio_trigger_free
• devm_iio_trigger_register() — Resource-managed iio_trigger_register
• devm_iio_trigger_unregister() — Resource-managed iio_trigger_unregister
• iio_trigger_validate_own_device()—Check if a trigger and IIO device belong to the same device

In many situations it is useful for a driver to be able to capture data based on some external event (trigger)
as opposed to periodically polling for data. An IIO trigger can be provided by a device driver that also has
an IIO device based on hardware generated events (e.g. data ready or threshold exceeded) or provided
by a separate driver from an independent interrupt source (e.g. GPIO line connected to some external
system, timer interrupt or user space writing a specific file in sysfs). A trigger may initiate data capture
for a number of sensors and also it may be completely unrelated to the sensor itself.

256 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

11.4.1 IIO trigger sysfs interface

There are two locations in sysfs related to triggers:
• /sys/bus/iio/devices/triggerY/*, this file is created once an IIO trigger is registered with the IIO
core and corresponds to trigger with index Y. Because triggers can be very different depending on
type there are few standard attributes that we can describe here:
– name, trigger name that can be later used for association with a device.
– sampling_frequency, some timer based triggers use this attribute to specify the frequency for
trigger calls.

• /sys/bus/iio/devices/iio:deviceX/trigger/*, this directory is created once the device supports
a triggered buffer. We can associate a trigger with our device by writing the trigger’s name in the
current_trigger file.

11.4.2 IIO trigger setup

Let’s see a simple example of how to setup a trigger to be used by a driver:

struct iio_trigger_ops trigger_ops = {
.set_trigger_state = sample_trigger_state,
.validate_device = sample_validate_device,

}

struct iio_trigger *trig;

/* first, allocate memory for our trigger */
trig = iio_trigger_alloc(dev, "trig-%s-%d", name, idx);

/* setup trigger operations field */
trig->ops = &trigger_ops;

/* now register the trigger with the IIO core */
iio_trigger_register(trig);

11.4.3 IIO trigger ops

• struct iio_trigger_ops — operations structure for an iio_trigger.
Notice that a trigger has a set of operations attached:
• set_trigger_state, switch the trigger on/off on demand.
• validate_device, function to validate the device when the current trigger gets changed.

11.4.4 More details

struct iio_trigger_ops
operations structure for an iio_trigger.

Definition

struct iio_trigger_ops {
struct module * owner;
int (* set_trigger_state) (struct iio_trigger *trig, bool state);
int (* try_reenable) (struct iio_trigger *trig);
int (* validate_device) (struct iio_trigger *trig, struct iio_dev *indio_dev);

};

11.4. Triggers 257

The kernel driver API manual, Release 4.13.0-rc4+

Members
owner used to monitor usage count of the trigger.
set_trigger_state switch on/off the trigger on demand
try_reenable function to reenable the trigger when the use count is zero (may be NULL)
validate_device function to validate the device when the current trigger gets changed.
Description
This is typically static const within a driver and shared by instances of a given device.
struct iio_trigger

industrial I/O trigger device
Definition

struct iio_trigger {
const struct iio_trigger_ops * ops;
int id;
const char * name;
struct device dev;
struct list_head list;
struct list_head alloc_list;
atomic_t use_count;
struct irq_chip subirq_chip;
int subirq_base;
struct iio_subirq subirqs;
unsigned long pool;
struct mutex pool_lock;
bool attached_own_device;

};

Members
ops [DRIVER] operations structure
id [INTERN] unique id number
name [DRIVER] unique name
dev [DRIVER] associated device (if relevant)
list [INTERN] used in maintenance of global trigger list
alloc_list [DRIVER] used for driver specific trigger list
use_count use count for the trigger
subirq_chip [INTERN] associate ‘virtual’ irq chip.
subirq_base [INTERN] base number for irqs provided by trigger.
subirqs [INTERN] information about the ‘child’ irqs.
pool [INTERN] bitmap of irqs currently in use.
pool_lock [INTERN] protection of the irq pool.
attached_own_device [INTERN] if we are using our own device as trigger, i.e. if we registered a poll

function to the same device as the one providing the trigger.
void iio_trigger_set_drvdata(struct iio_trigger * trig, void * data)

Set trigger driver data
Parameters
struct iio_trigger * trig IIO trigger structure
void * data Driver specific data

258 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

Description
Allows to attach an arbitrary pointer to an IIO trigger, which can later be retrieved by
iio_trigger_get_drvdata().
void * iio_trigger_get_drvdata(struct iio_trigger * trig)

Get trigger driver data
Parameters
struct iio_trigger * trig IIO trigger structure
Description
Returns the data previously set with iio_trigger_set_drvdata()
int iio_trigger_register(struct iio_trigger * trig_info)

register a trigger with the IIO core
Parameters
struct iio_trigger * trig_info trigger to be registered
void iio_trigger_unregister(struct iio_trigger * trig_info)

unregister a trigger from the core
Parameters
struct iio_trigger * trig_info trigger to be unregistered
int iio_trigger_set_immutable(struct iio_dev * indio_dev, struct iio_trigger * trig)

set an immutable trigger on destination
Parameters
struct iio_dev * indio_dev undescribed

struct iio_trigger * trig undescribed

Description
indio_dev - IIO device structure containing the device trig - trigger to assign to device
void iio_trigger_poll(struct iio_trigger * trig)

called on a trigger occurring
Parameters
struct iio_trigger * trig trigger which occurred
Description
Typically called in relevant hardware interrupt handler.
bool iio_trigger_using_own(struct iio_dev * indio_dev)

tells us if we use our own HW trigger ourselves
Parameters
struct iio_dev * indio_dev device to check
struct iio_trigger * devm_iio_trigger_alloc(struct device * dev, const char * fmt, ...)

Resource-managed iio_trigger_alloc()
Parameters
struct device * dev Device to allocate iio_trigger for
const char * fmt trigger name format. If it includes format specifiers, the additional arguments follow-

ing format are formatted and inserted in the resulting string replacing their respective specifiers.
... variable arguments

11.4. Triggers 259

The kernel driver API manual, Release 4.13.0-rc4+

Description
Managed iio_trigger_alloc. iio_trigger allocated with this function is automatically freed on driver detach.
If an iio_trigger allocated with this function needs to be freed separately, devm_iio_trigger_free()must
be used.
Return
Pointer to allocated iio_trigger on success, NULL on failure.
void devm_iio_trigger_free(struct device * dev, struct iio_trigger * iio_trig)

Resource-managed iio_trigger_free()
Parameters
struct device * dev Device this iio_dev belongs to
struct iio_trigger * iio_trig the iio_trigger associated with the device
Description
Free iio_trigger allocated with devm_iio_trigger_alloc().
int devm_iio_trigger_register(struct device * dev, struct iio_trigger * trig_info)

Resource-managed iio_trigger_register()
Parameters
struct device * dev device this trigger was allocated for
struct iio_trigger * trig_info trigger to register
Description
Managed iio_trigger_register(). The IIO trigger registered with this function is automatically unreg-
istered on driver detach. This function calls iio_trigger_register() internally. Refer to that function
for more information.
If an iio_trigger registered with this function needs to be unregistered separately,
devm_iio_trigger_unregister() must be used.
Return
0 on success, negative error number on failure.
void devm_iio_trigger_unregister(struct device * dev, struct iio_trigger * trig_info)

Resource-managed iio_trigger_unregister()
Parameters
struct device * dev device this iio_trigger belongs to
struct iio_trigger * trig_info the trigger associated with the device
Description
Unregister trigger registered with devm_iio_trigger_register().
int iio_trigger_validate_own_device(struct iio_trigger * trig, struct iio_dev * indio_dev)

Check if a trigger and IIO device belong to the same device
Parameters
struct iio_trigger * trig The IIO trigger to check
struct iio_dev * indio_dev the IIO device to check
Description
This function can be used as the validate_device callback for triggers that can only be attached to their
own device.
Return

260 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

0 if both the trigger and the IIO device belong to the same device, -EINVAL otherwise.

11.5 Triggered Buffers

Now that we know what buffers and triggers are let’s see how they work together.

11.5.1 IIO triggered buffer setup

• iio_triggered_buffer_setup() — Setup triggered buffer and pollfunc
• iio_triggered_buffer_cleanup()—Free resources allocated by iio_triggered_buffer_setup()
• struct iio_buffer_setup_ops — buffer setup related callbacks

A typical triggered buffer setup looks like this:

const struct iio_buffer_setup_ops sensor_buffer_setup_ops = {
.preenable = sensor_buffer_preenable,
.postenable = sensor_buffer_postenable,
.postdisable = sensor_buffer_postdisable,
.predisable = sensor_buffer_predisable,

};

irqreturn_t sensor_iio_pollfunc(int irq, void *p)
{

pf->timestamp = iio_get_time_ns((struct indio_dev *)p);
return IRQ_WAKE_THREAD;

}

irqreturn_t sensor_trigger_handler(int irq, void *p)
{

u16 buf[8];
int i = 0;

/* read data for each active channel */
for_each_set_bit(bit, active_scan_mask, masklength)

buf[i++] = sensor_get_data(bit)

iio_push_to_buffers_with_timestamp(indio_dev, buf, timestamp);

iio_trigger_notify_done(trigger);
return IRQ_HANDLED;

}

/* setup triggered buffer, usually in probe function */
iio_triggered_buffer_setup(indio_dev, sensor_iio_polfunc,

sensor_trigger_handler,
sensor_buffer_setup_ops);

The important things to notice here are:
• iio_buffer_setup_ops, the buffer setup functions to be called at predefined points in the buffer
configuration sequence (e.g. before enable, after disable). If not specified, the IIO core uses the
default iio_triggered_buffer_setup_ops.

• sensor_iio_pollfunc, the function that will be used as top half of poll function. It should do
as little processing as possible, because it runs in interrupt context. The most common opera-
tion is recording of the current timestamp and for this reason one can use the IIO core defined
iio_pollfunc_store_time() function.

11.5. Triggered Buffers 261

The kernel driver API manual, Release 4.13.0-rc4+

• sensor_trigger_handler, the function that will be used as bottom half of the poll function. This runs
in the context of a kernel thread and all the processing takes place here. It usually reads data from
the device and stores it in the internal buffer together with the timestamp recorded in the top half.

11.5.2 More details

int iio_triggered_buffer_setup(struct iio_dev * indio_dev, irqreturn_t (*h) (int irq,
void *p, irqreturn_t (*thread) (int irq, void *p, const struct
iio_buffer_setup_ops * setup_ops)

Setup triggered buffer and pollfunc
Parameters
struct iio_dev * indio_dev IIO device structure
irqreturn_t (*)(int irq,void *p) h Function which will be used as pollfunc top half
irqreturn_t (*)(int irq,void *p) thread Function which will be used as pollfunc bottom half
const struct iio_buffer_setup_ops * setup_ops Buffer setup functions to use for this device. If

NULL the default setup functions for triggered buffers will be used.
Description
This function combines some common tasks which will normally be performed when setting up a triggered
buffer. It will allocate the buffer and the pollfunc.
Before calling this function the indio_dev structure should already be completely initialized, but not yet
registered. In practice thismeans that this function should be called right before iio_device_register().
To free the resources allocated by this function call iio_triggered_buffer_cleanup().
void iio_triggered_buffer_cleanup(struct iio_dev * indio_dev)

Free resources allocated by iio_triggered_buffer_setup()
Parameters
struct iio_dev * indio_dev IIO device structure

262 Chapter 11. Industrial I/O

CHAPTER

TWELVE

INPUT SUBSYSTEM

12.1 Input core

struct input_value
input value representation

Definition

struct input_value {
__u16 type;
__u16 code;
__s32 value;

};

Members
type type of value (EV_KEY, EV_ABS, etc)
code the value code
value the value
struct input_dev

represents an input device
Definition

struct input_dev {
const char * name;
const char * phys;
const char * uniq;
struct input_id id;
unsigned long propbit;
unsigned long evbit;
unsigned long keybit;
unsigned long relbit;
unsigned long absbit;
unsigned long mscbit;
unsigned long ledbit;
unsigned long sndbit;
unsigned long ffbit;
unsigned long swbit;
unsigned int hint_events_per_packet;
unsigned int keycodemax;
unsigned int keycodesize;
void * keycode;
int (* setkeycode) (struct input_dev *dev,const struct input_keymap_entry *ke, unsigned int␣

↪→*old_keycode);
int (* getkeycode) (struct input_dev *dev, struct input_keymap_entry *ke);
struct ff_device * ff;
unsigned int repeat_key;

263

The kernel driver API manual, Release 4.13.0-rc4+

struct timer_list timer;
int rep;
struct input_mt * mt;
struct input_absinfo * absinfo;
unsigned long key;
unsigned long led;
unsigned long snd;
unsigned long sw;
int (* open) (struct input_dev *dev);
void (* close) (struct input_dev *dev);
int (* flush) (struct input_dev *dev, struct file *file);
int (* event) (struct input_dev *dev, unsigned int type, unsigned int code, int value);
struct input_handle __rcu * grab;
spinlock_t event_lock;
struct mutex mutex;
unsigned int users;
bool going_away;
struct device dev;
struct list_head h_list;
struct list_head node;
unsigned int num_vals;
unsigned int max_vals;
struct input_value * vals;
bool devres_managed;

};

Members
name name of the device
phys physical path to the device in the system hierarchy
uniq unique identification code for the device (if device has it)
id id of the device (struct input_id)
propbit bitmap of device properties and quirks
evbit bitmap of types of events supported by the device (EV_KEY, EV_REL, etc.)
keybit bitmap of keys/buttons this device has
relbit bitmap of relative axes for the device
absbit bitmap of absolute axes for the device
mscbit bitmap of miscellaneous events supported by the device
ledbit bitmap of leds present on the device
sndbit bitmap of sound effects supported by the device
ffbit bitmap of force feedback effects supported by the device
swbit bitmap of switches present on the device
hint_events_per_packet average number of events generated by the device in a packet (between

EV_SYN/SYN_REPORT events). Used by event handlers to estimate size of the buffer needed to hold
events.

keycodemax size of keycode table
keycodesize size of elements in keycode table
keycode map of scancodes to keycodes for this device
setkeycode optional method to alter current keymap, used to implement sparse keymaps. If not supplied

default mechanism will be used. The method is being called while holding event_lock and thus must
not sleep

264 Chapter 12. Input Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

getkeycode optional legacy method to retrieve current keymap.
ff force feedback structure associated with the device if device supports force feedback effects
repeat_key stores key code of the last key pressed; used to implement software autorepeat
timer timer for software autorepeat
rep current values for autorepeat parameters (delay, rate)
mt pointer to multitouch state
absinfo array of struct input_absinfo elements holding information about absolute axes (current

value, min, max, flat, fuzz, resolution)
key reflects current state of device’s keys/buttons
led reflects current state of device’s LEDs
snd reflects current state of sound effects
sw reflects current state of device’s switches
open this method is called when the very first user calls input_open_device(). The driver must prepare

the device to start generating events (start polling thread, request an IRQ, submit URB, etc.)
close this method is called when the very last user calls input_close_device().
flush purges the device. Most commonly used to get rid of force feedback effects loaded into the device

when disconnecting from it
event event handler for events sent _to_ the device, like EV_LED or EV_SND. The device is expected to

carry out the requested action (turn on a LED, play sound, etc.) The call is protected by event_lock
and must not sleep

grab input handle that currently has the device grabbed (via EVIOCGRAB ioctl). When a handle grabs a
device it becomes sole recipient for all input events coming from the device

event_lock this spinlock is taken when input core receives and processes a new event for the device (in
input_event()). Code that accesses and/or modifies parameters of a device (such as keymap or
absmin, absmax, absfuzz, etc.) after device has been registered with input core must take this lock.

mutex serializes calls to open(), close() and flush() methods
users stores number of users (input handlers) that opened this device. It is used by in-

put_open_device() and input_close_device() to make sure that dev->:c:func:open() is only
called when the first user opens device and dev->:c:func:close() is called when the very last user
closes the device

going_away marks devices that are in a middle of unregistering and causes input_open_device*() fail with
-ENODEV.

dev driver model’s view of this device
h_list list of input handles associated with the device. When accessing the list dev->mutex must be

held
node used to place the device onto input_dev_list
num_vals number of values queued in the current frame
max_vals maximum number of values queued in a frame
vals array of values queued in the current frame
devres_managed indicates that devices is managed with devres framework and needs not be explicitly

unregistered or freed.
struct input_handler

implements one of interfaces for input devices
Definition

12.1. Input core 265

The kernel driver API manual, Release 4.13.0-rc4+

struct input_handler {
void * private;
void (* event) (struct input_handle *handle, unsigned int type, unsigned int code, int value);
void (* events) (struct input_handle *handle, const struct input_value *vals, unsigned int␣

↪→count);
bool (* filter) (struct input_handle *handle, unsigned int type, unsigned int code, int␣

↪→value);
bool (* match) (struct input_handler *handler, struct input_dev *dev);
int (* connect) (struct input_handler *handler, struct input_dev *dev, const struct input_

↪→device_id *id);
void (* disconnect) (struct input_handle *handle);
void (* start) (struct input_handle *handle);
bool legacy_minors;
int minor;
const char * name;
const struct input_device_id * id_table;
struct list_head h_list;
struct list_head node;

};

Members
private driver-specific data
event event handler. This method is being called by input core with interrupts disabled and dev-

>event_lock spinlock held and so it may not sleep
events event sequence handler. This method is being called by input core with interrupts disabled and

dev->event_lock spinlock held and so it may not sleep
filter similar to event; separates normal event handlers from “filters”.
match called after comparing device’s id with handler’s id_table to perform fine-grained matching be-

tween device and handler
connect called when attaching a handler to an input device
disconnect disconnects a handler from input device
start starts handler for given handle. This function is called by input core right after connect() method

and also when a process that “grabbed” a device releases it
legacy_minors set to true by drivers using legacy minor ranges
minor beginning of range of 32 legacy minors for devices this driver can provide
name name of the handler, to be shown in /proc/bus/input/handlers
id_table pointer to a table of input_device_ids this driver can handle
h_list list of input handles associated with the handler
node for placing the driver onto input_handler_list
Description
Input handlers attach to input devices and create input handles. There are likely several handlers attached
to any given input device at the same time. All of them will get their copy of input event generated by
the device.
The very same structure is used to implement input filters. Input core allows filters to run first and will not
pass event to regular handlers if any of the filters indicate that the event should be filtered (by returning
true from their filter() method).
Note that input core serializes calls to connect() and disconnect() methods.
struct input_handle

links input device with an input handler

266 Chapter 12. Input Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

Definition

struct input_handle {
void * private;
int open;
const char * name;
struct input_dev * dev;
struct input_handler * handler;
struct list_head d_node;
struct list_head h_node;

};

Members
private handler-specific data
open counter showing whether the handle is ‘open’, i.e. should deliver events from its device
name name given to the handle by handler that created it
dev input device the handle is attached to
handler handler that works with the device through this handle
d_node used to put the handle on device’s list of attached handles
h_node used to put the handle on handler’s list of handles from which it gets events
void input_set_events_per_packet(struct input_dev * dev, int n_events)

tell handlers about the driver event rate
Parameters
struct input_dev * dev the input device used by the driver
int n_events the average number of events between calls to input_sync()
Description
If the event rate sent from a device is unusually large, use this function to set the expected event rate.
This will allow handlers to set up an appropriate buffer size for the event stream, in order to minimize
information loss.
struct ff_device

force-feedback part of an input device
Definition

struct ff_device {
int (* upload) (struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old);
int (* erase) (struct input_dev *dev, int effect_id);
int (* playback) (struct input_dev *dev, int effect_id, int value);
void (* set_gain) (struct input_dev *dev, u16 gain);
void (* set_autocenter) (struct input_dev *dev, u16 magnitude);
void (* destroy) (struct ff_device *);
void * private;
unsigned long ffbit;
struct mutex mutex;
int max_effects;
struct ff_effect * effects;
struct file * effect_owners;

};

Members
upload Called to upload an new effect into device
erase Called to erase an effect from device

12.1. Input core 267

The kernel driver API manual, Release 4.13.0-rc4+

playback Called to request device to start playing specified effect
set_gain Called to set specified gain
set_autocenter Called to auto-center device
destroy called by input core when parent input device is being destroyed
private driver-specific data, will be freed automatically
ffbit bitmap of force feedback capabilities truly supported by device (not emulated like ones in

input_dev->ffbit)
mutex mutex for serializing access to the device
max_effects maximum number of effects supported by device
effects pointer to an array of effects currently loaded into device
effect_owners array of effect owners; when file handle owning an effect gets closed the effect is auto-

matically erased
Description
Every force-feedback device must implement upload() and playback() methods; erase() is op-
tional. set_gain() and set_autocenter() need only be implemented if driver sets up FF_GAIN and
FF_AUTOCENTER bits.
Note that playback(), set_gain() and set_autocenter() are called with dev->event_lock spinlock held
and interrupts off and thus may not sleep.
void input_event(struct input_dev * dev, unsigned int type, unsigned int code, int value)

report new input event
Parameters
struct input_dev * dev device that generated the event
unsigned int type type of the event
unsigned int code event code
int value value of the event
Description
This function should be used by drivers implementing various input devices to report input events. See
also input_inject_event().
NOTE
input_event() may be safely used right after input device was allocated with in-
put_allocate_device(), even before it is registered with input_register_device(), but the event
will not reach any of the input handlers. Such early invocation of input_event() may be used to ‘seed’
initial state of a switch or initial position of absolute axis, etc.
void input_inject_event(struct input_handle * handle, unsigned int type, unsigned int code,

int value)
send input event from input handler

Parameters
struct input_handle * handle input handle to send event through
unsigned int type type of the event
unsigned int code event code
int value value of the event

268 Chapter 12. Input Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

Description
Similar to input_event() but will ignore event if device is “grabbed” and handle injecting event is not
the one that owns the device.
void input_alloc_absinfo(struct input_dev * dev)

allocates array of input_absinfo structs
Parameters
struct input_dev * dev the input device emitting absolute events
Description
If the absinfo struct the caller asked for is already allocated, this functions will not do anything.
int input_grab_device(struct input_handle * handle)

grabs device for exclusive use
Parameters
struct input_handle * handle input handle that wants to own the device
Description
When a device is grabbed by an input handle all events generated by the device are delivered only to this
handle. Also events injected by other input handles are ignored while device is grabbed.
void input_release_device(struct input_handle * handle)

release previously grabbed device
Parameters
struct input_handle * handle input handle that owns the device
Description
Releases previously grabbed device so that other input handles can start receiving input events. Upon
release all handlers attached to the device have their start() method called so they have a change to
synchronize device state with the rest of the system.
int input_open_device(struct input_handle * handle)

open input device
Parameters
struct input_handle * handle handle through which device is being accessed
Description
This function should be called by input handlers when they want to start receive events from given input
device.
void input_close_device(struct input_handle * handle)

close input device
Parameters
struct input_handle * handle handle through which device is being accessed
Description
This function should be called by input handlers when they want to stop receive events from given input
device.
int input_scancode_to_scalar(const struct input_keymap_entry * ke, unsigned int * scancode)

converts scancode in struct input_keymap_entry

Parameters
const struct input_keymap_entry * ke keymap entry containing scancode to be converted.
unsigned int * scancode pointer to the location where converted scancode should be stored.

12.1. Input core 269

The kernel driver API manual, Release 4.13.0-rc4+

Description
This function is used to convert scancode stored in struct keymap_entry into scalar form understood by
legacy keymap handling methods. These methods expect scancodes to be represented as ‘unsigned int’.

int input_get_keycode(struct input_dev * dev, struct input_keymap_entry * ke)
retrieve keycode currently mapped to a given scancode

Parameters
struct input_dev * dev input device which keymap is being queried
struct input_keymap_entry * ke keymap entry
Description
This function should be called by anyone interested in retrieving current keymap. Presently evdev handlers
use it.
int input_set_keycode(struct input_dev * dev, const struct input_keymap_entry * ke)

attribute a keycode to a given scancode
Parameters
struct input_dev * dev input device which keymap is being updated
const struct input_keymap_entry * ke new keymap entry
Description
This function should be called by anyone needing to update current keymap. Presently keyboard and
evdev handlers use it.
void input_reset_device(struct input_dev * dev)

reset/restore the state of input device
Parameters
struct input_dev * dev input device whose state needs to be reset
Description
This function tries to reset the state of an opened input device and bring internal state and state if the
hardware in sync with each other. We mark all keys as released, restore LED state, repeat rate, etc.
struct input_dev * input_allocate_device(void)

allocate memory for new input device
Parameters
void no arguments
Description
Returns prepared struct input_dev or NULL.
NOTE
Use input_free_device() to free devices that have not been registered; input_unregister_device()
should be used for already registered devices.
struct input_dev * devm_input_allocate_device(struct device * dev)

allocate managed input device
Parameters
struct device * dev device owning the input device being created
Description
Returns prepared struct input_dev or NULL.

270 Chapter 12. Input Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

Managed input devices do not need to be explicitly unregistered or freed as it will be done automatically
when owner device unbinds from its driver (or binding fails). Once managed input device is allocated,
it is ready to be set up and registered in the same fashion as regular input device. There are no special
devm_input_device_[un]:c:func:register() variants, regular ones work with both managed and unmanaged
devices, should you need them. In most cases however, managed input device need not be explicitly
unregistered or freed.
NOTE
the owner device is set up as parent of input device and users should not override it.
void input_free_device(struct input_dev * dev)

free memory occupied by input_dev structure
Parameters
struct input_dev * dev input device to free
Description
This function should only be used if input_register_device() was not called yet or if it failed. Once
device was registered use input_unregister_device() and memory will be freed once last reference to
the device is dropped.
Device should be allocated by input_allocate_device().
NOTE
If there are references to the input device then memory will not be freed until last reference is dropped.
void input_set_capability(struct input_dev * dev, unsigned int type, unsigned int code)

mark device as capable of a certain event
Parameters
struct input_dev * dev device that is capable of emitting or accepting event
unsigned int type type of the event (EV_KEY, EV_REL, etc...)
unsigned int code event code
Description
In addition to setting up corresponding bit in appropriate capability bitmap the function also adjusts dev-
>evbit.
void input_enable_softrepeat(struct input_dev * dev, int delay, int period)

enable software autorepeat
Parameters
struct input_dev * dev input device
int delay repeat delay
int period repeat period
Description
Enable software autorepeat on the input device.
int input_register_device(struct input_dev * dev)

register device with input core
Parameters
struct input_dev * dev device to be registered
Description
This function registers device with input core. The device must be allocated with in-
put_allocate_device() and all it’s capabilities set up before registering. If function fails the device

12.1. Input core 271

The kernel driver API manual, Release 4.13.0-rc4+

must be freed with input_free_device(). Once device has been successfully registered it can be unreg-
istered with input_unregister_device(); input_free_device() should not be called in this case.
Note that this function is also used to register managed input devices (ones allocated with
devm_input_allocate_device()). Such managed input devices need not be explicitly unregistered or
freed, their tear down is controlled by the devres infrastructure. It is also worth noting that tear down of
managed input devices is internally a 2-step process: registered managed input device is first unregis-
tered, but stays in memory and can still handle input_event() calls (although events will not be delivered
anywhere). The freeing of managed input device will happen later, when devres stack is unwound to the
point where device allocation was made.
void input_unregister_device(struct input_dev * dev)

unregister previously registered device
Parameters
struct input_dev * dev device to be unregistered
Description
This function unregisters an input device. Once device is unregistered the caller should not try to access
it as it may get freed at any moment.
int input_register_handler(struct input_handler * handler)

register a new input handler
Parameters
struct input_handler * handler handler to be registered
Description
This function registers a new input handler (interface) for input devices in the system and attaches it to
all input devices that are compatible with the handler.
void input_unregister_handler(struct input_handler * handler)

unregisters an input handler
Parameters
struct input_handler * handler handler to be unregistered
Description
This function disconnects a handler from its input devices and removes it from lists of known handlers.
int input_handler_for_each_handle(struct input_handler * handler, void * data, int (*fn) (struct

input_handle *, void *)
handle iterator

Parameters
struct input_handler * handler input handler to iterate
void * data data for the callback
int (*)(struct input_handle *,void *) fn function to be called for each handle
Description
Iterate over bus‘s list of devices, and call fn for each, passing it data and stop when fn returns a non-zero
value. The function is using RCU to traverse the list and therefore may be using in atomic contexts. The
fn callback is invoked from RCU critical section and thus must not sleep.
int input_register_handle(struct input_handle * handle)

register a new input handle
Parameters
struct input_handle * handle handle to register

272 Chapter 12. Input Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

Description
This function puts a new input handle onto device’s and handler’s lists so that events can flow through it
once it is opened using input_open_device().
This function is supposed to be called from handler’s connect() method.
void input_unregister_handle(struct input_handle * handle)

unregister an input handle
Parameters
struct input_handle * handle handle to unregister
Description
This function removes input handle from device’s and handler’s lists.
This function is supposed to be called from handler’s disconnect() method.
int input_get_new_minor(int legacy_base, unsigned int legacy_num, bool allow_dynamic)

allocates a new input minor number
Parameters
int legacy_base beginning or the legacy range to be searched
unsigned int legacy_num size of legacy range
bool allow_dynamic whether we can also take ID from the dynamic range
Description
This function allocates a new device minor for from input major namespace. Caller can request legacy
minor by specifying legacy_base and legacy_num parameters and whether ID can be allocated from
dynamic range if there are no free IDs in legacy range.
void input_free_minor(unsigned int minor)

release previously allocated minor
Parameters
unsigned int minor minor to be released
Description
This function releases previously allocated input minor so that it can be reused later.
int input_ff_upload(struct input_dev * dev, struct ff_effect * effect, struct file * file)

upload effect into force-feedback device
Parameters
struct input_dev * dev input device
struct ff_effect * effect effect to be uploaded
struct file * file owner of the effect
int input_ff_erase(struct input_dev * dev, int effect_id, struct file * file)

erase a force-feedback effect from device
Parameters
struct input_dev * dev input device to erase effect from
int effect_id id of the effect to be erased
struct file * file purported owner of the request
Description
This function erases a force-feedback effect from specified device. The effect will only be erased if it was
uploaded through the same file handle that is requesting erase.

12.1. Input core 273

The kernel driver API manual, Release 4.13.0-rc4+

int input_ff_event(struct input_dev * dev, unsigned int type, unsigned int code, int value)
generic handler for force-feedback events

Parameters
struct input_dev * dev input device to send the effect to
unsigned int type event type (anything but EV_FF is ignored)
unsigned int code event code
int value event value
int input_ff_create(struct input_dev * dev, unsigned int max_effects)

create force-feedback device
Parameters
struct input_dev * dev input device supporting force-feedback
unsigned int max_effects maximum number of effects supported by the device
Description
This function allocates all necessary memory for a force feedback portion of an input device and installs
all default handlers. dev->ffbit should be already set up before calling this function. Once ff device is
created you need to setup its upload, erase, playback and other handlers before registering input device
void input_ff_destroy(struct input_dev * dev)

frees force feedback portion of input device
Parameters
struct input_dev * dev input device supporting force feedback
Description
This function is only needed in error path as input core will automatically free force feedback structures
when device is destroyed.
int input_ff_create_memless(struct input_dev * dev, void * data, int (*play_effect) (struct in-

put_dev *, void *, struct ff_effect *)
create memoryless force-feedback device

Parameters
struct input_dev * dev input device supporting force-feedback
void * data driver-specific data to be passed into play_effect
int (*)(struct input_dev *,void *,struct ff_effect *) play_effect driver-specific method for

playing FF effect

12.2 Multitouch Library

struct input_mt_slot
represents the state of an input MT slot

Definition

struct input_mt_slot {
int abs;
unsigned int frame;
unsigned int key;

};

Members

274 Chapter 12. Input Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

abs holds current values of ABS_MT axes for this slot
frame last frame at which input_mt_report_slot_state() was called
key optional driver designation of this slot
struct input_mt

state of tracked contacts
Definition

struct input_mt {
int trkid;
int num_slots;
int slot;
unsigned int flags;
unsigned int frame;
int * red;
struct input_mt_slot slots;

};

Members
trkid stores MT tracking ID for the next contact
num_slots number of MT slots the device uses
slot MT slot currently being transmitted
flags input_mt operation flags
frame increases every time input_mt_sync_frame() is called
red reduced cost matrix for in-kernel tracking
slots array of slots holding current values of tracked contacts
struct input_mt_pos

contact position
Definition

struct input_mt_pos {
s16 x;
s16 y;

};

Members
x horizontal coordinate
y vertical coordinate
int input_mt_init_slots(struct input_dev * dev, unsigned int num_slots, unsigned int flags)

initialize MT input slots
Parameters
struct input_dev * dev input device supporting MT events and finger tracking
unsigned int num_slots number of slots used by the device
unsigned int flags mt tasks to handle in core
Description
This function allocates all necessary memory for MT slot handling in the input device, prepares the
ABS_MT_SLOT and ABS_MT_TRACKING_ID events for use and sets up appropriate buffers. Depending on
the flags set, it also performs pointer emulation and frame synchronization.
May be called repeatedly. Returns -EINVAL if attempting to reinitialize with a different number of slots.

12.2. Multitouch Library 275

The kernel driver API manual, Release 4.13.0-rc4+

void input_mt_destroy_slots(struct input_dev * dev)
frees the MT slots of the input device

Parameters
struct input_dev * dev input device with allocated MT slots
Description
This function is only needed in error path as the input core will automatically free the MT slots when the
device is destroyed.
void input_mt_report_slot_state(struct input_dev * dev, unsigned int tool_type, bool active)

report contact state
Parameters
struct input_dev * dev input device with allocated MT slots
unsigned int tool_type the tool type to use in this slot
bool active true if contact is active, false otherwise
Description
Reports a contact via ABS_MT_TRACKING_ID, and optionally ABS_MT_TOOL_TYPE. If active is true and the
slot is currently inactive, or if the tool type is changed, a new tracking id is assigned to the slot. The tool
type is only reported if the corresponding absbit field is set.
void input_mt_report_finger_count(struct input_dev * dev, int count)

report contact count
Parameters
struct input_dev * dev input device with allocated MT slots
int count the number of contacts
Description
Reports the contact count via BTN_TOOL_FINGER, BTN_TOOL_DOUBLETAP, BTN_TOOL_TRIPLETAP and
BTN_TOOL_QUADTAP.
The input core ensures only the KEY events already setup for this device will produce output.
void input_mt_report_pointer_emulation(struct input_dev * dev, bool use_count)

common pointer emulation
Parameters
struct input_dev * dev input device with allocated MT slots
bool use_count report number of active contacts as finger count
Description
Performs legacy pointer emulation via BTN_TOUCH, ABS_X, ABS_Y and ABS_PRESSURE. Touchpad finger
count is emulated if use_count is true.
The input core ensures only the KEY and ABS axes already setup for this device will produce output.
void input_mt_drop_unused(struct input_dev * dev)

Inactivate slots not seen in this frame
Parameters
struct input_dev * dev input device with allocated MT slots
Description
Lift all slots not seen since the last call to this function.
void input_mt_sync_frame(struct input_dev * dev)

synchronize mt frame

276 Chapter 12. Input Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct input_dev * dev input device with allocated MT slots
Description
Close the frame and prepare the internal state for a new one. Depending on the flags, marks unused slots
as inactive and performs pointer emulation.
int input_mt_assign_slots(struct input_dev * dev, int * slots, const struct input_mt_pos * pos,

int num_pos, int dmax)
perform a best-match assignment

Parameters
struct input_dev * dev input device with allocated MT slots
int * slots the slot assignment to be filled
const struct input_mt_pos * pos the position array to match
int num_pos number of positions
int dmax maximum ABS_MT_POSITION displacement (zero for infinite)
Description
Performs a best match against the current contacts and returns the slot assignment list. New contacts
are assigned to unused slots.
The assignments are balanced so that all coordinate displacements are below the euclidian distance dmax.
If no such assignment can be found, some contacts are assigned to unused slots.
Returns zero on success, or negative error in case of failure.
int input_mt_get_slot_by_key(struct input_dev * dev, int key)

return slot matching key
Parameters
struct input_dev * dev input device with allocated MT slots
int key the key of the sought slot
Description
Returns the slot of the given key, if it exists, otherwise set the key on the first unused slot and return.
If no available slot can be found, -1 is returned. Note that for this function to work properly, in-
put_mt_sync_frame() has to be called at each frame.

12.3 Polled input devices

struct input_polled_dev
simple polled input device

Definition

struct input_polled_dev {
void * private;
void (* open) (struct input_polled_dev *dev);
void (* close) (struct input_polled_dev *dev);
void (* poll) (struct input_polled_dev *dev);
unsigned int poll_interval;
unsigned int poll_interval_max;
unsigned int poll_interval_min;
struct input_dev * input;

};

12.3. Polled input devices 277

The kernel driver API manual, Release 4.13.0-rc4+

Members
private private driver data.
open driver-supplied method that prepares device for polling (enabled the device and maybe flushes

device state).
close driver-supplied method that is called when device is no longer being polled. Used to put device

into low power mode.
poll driver-supplied method that polls the device and posts input events (mandatory).
poll_interval specifies how often the poll() method should be called. Defaults to 500 msec unless

overridden when registering the device.
poll_interval_max specifies upper bound for the poll interval. Defaults to the initial value of

poll_interval.
poll_interval_min specifies lower bound for the poll interval. Defaults to 0.
input input device structure associated with the polled device. Must be properly initialized by the driver

(id, name, phys, bits).
Description
Polled input device provides a skeleton for supporting simple input devices that do not raise interrupts
but have to be periodically scanned or polled to detect changes in their state.
struct input_polled_dev * input_allocate_polled_device(void)

allocate memory for polled device
Parameters
void no arguments
Description
The function allocates memory for a polled device and also for an input device associated with this polled
device.
struct input_polled_dev * devm_input_allocate_polled_device(struct device * dev)

allocate managed polled device
Parameters
struct device * dev device owning the polled device being created
Description
Returns prepared struct input_polled_dev or NULL.
Managed polled input devices do not need to be explicitly unregistered or freed as it will be done automat-
ically when owner device unbinds from * its driver (or binding fails). Once such managed polled device is
allocated, it is ready to be set up and registered in the same fashion as regular polled input devices (using
input_register_polled_device() function).
If you want to manually unregister and free such managed polled devices, it can be still done by calling
input_unregister_polled_device() and input_free_polled_device(), although it is rarely needed.
NOTE
the owner device is set up as parent of input device and users should not override it.
void input_free_polled_device(struct input_polled_dev * dev)

free memory allocated for polled device
Parameters
struct input_polled_dev * dev device to free

278 Chapter 12. Input Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

Description
The function frees memory allocated for polling device and drops reference to the associated input device.

int input_register_polled_device(struct input_polled_dev * dev)
register polled device

Parameters
struct input_polled_dev * dev device to register
Description
The function registers previously initialized polled input device with input layer. The device should be
allocated with call to input_allocate_polled_device(). Callers should also set up poll() method and
set up capabilities (id, name, phys, bits) of the corresponding input_dev structure.
void input_unregister_polled_device(struct input_polled_dev * dev)

unregister polled device
Parameters
struct input_polled_dev * dev device to unregister
Description
The function unregisters previously registered polled input device from input layer. Polling is stopped and
device is ready to be freed with call to input_free_polled_device().

12.4 Matrix keyboards/keypads

struct matrix_keymap_data
keymap for matrix keyboards

Definition

struct matrix_keymap_data {
const uint32_t * keymap;
unsigned int keymap_size;

};

Members
keymap pointer to array of uint32 values encoded with KEY() macro representing keymap
keymap_size number of entries (initialized) in this keymap
Description
This structure is supposed to be used by platform code to supply keymaps to drivers that implement
matrix-like keypads/keyboards.
struct matrix_keypad_platform_data

platform-dependent keypad data
Definition

struct matrix_keypad_platform_data {
const struct matrix_keymap_data * keymap_data;
const unsigned int * row_gpios;
const unsigned int * col_gpios;
unsigned int num_row_gpios;
unsigned int num_col_gpios;
unsigned int col_scan_delay_us;
unsigned int debounce_ms;
unsigned int clustered_irq;

12.4. Matrix keyboards/keypads 279

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int clustered_irq_flags;
bool active_low;
bool wakeup;
bool no_autorepeat;
bool drive_inactive_cols;

};

Members
keymap_data pointer to matrix_keymap_data
row_gpios pointer to array of gpio numbers representing rows
col_gpios pointer to array of gpio numbers reporesenting colums
num_row_gpios actual number of row gpios used by device
num_col_gpios actual number of col gpios used by device
col_scan_delay_us delay, measured in microseconds, that is needed before we can keypad after acti-

vating column gpio
debounce_ms debounce interval in milliseconds
clustered_irq may be specified if interrupts of all row/column GPIOs are bundled to one single irq
clustered_irq_flags flags that are needed for the clustered irq
active_low gpio polarity
wakeup controls whether the device should be set up as wakeup source
no_autorepeat disable key autorepeat
drive_inactive_cols drive inactive columns during scan, rather than making them inputs.
Description
This structure represents platform-specific data that use used by matrix_keypad driver to perform proper
initialization.

12.5 Sparse keymap support

struct key_entry
keymap entry for use in sparse keymap

Definition

struct key_entry {
int type;
u32 code;
union {unnamed_union};

};

Members
type Type of the key entry (KE_KEY, KE_SW, KE_VSW, KE_END); drivers are allowed to extend the list with

their own private definitions.
code Device-specific data identifying the button/switch
{unnamed_union} anonymous
Description
This structure defines an entry in a sparse keymap used by some input devices for which traditional
table-based approach is not suitable.

280 Chapter 12. Input Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

struct key_entry * sparse_keymap_entry_from_scancode(struct input_dev * dev, unsigned
int code)

perform sparse keymap lookup
Parameters
struct input_dev * dev Input device using sparse keymap
unsigned int code Scan code
Description
This function is used to perform struct key_entry lookup in an input device using sparse keymap.
struct key_entry * sparse_keymap_entry_from_keycode(struct input_dev * dev, unsigned

int keycode)
perform sparse keymap lookup

Parameters
struct input_dev * dev Input device using sparse keymap
unsigned int keycode Key code
Description
This function is used to perform struct key_entry lookup in an input device using sparse keymap.
int sparse_keymap_setup(struct input_dev * dev, const struct key_entry * keymap, int (*setup)

(struct input_dev *, struct key_entry *)
set up sparse keymap for an input device

Parameters
struct input_dev * dev Input device
const struct key_entry * keymap Keymap in form of array of key_entry structures ending with

KE_END type entry
int (*)(struct input_dev *,struct key_entry *) setup Function that can be used to adjust

keymap entries depending on device’s needs, may be NULL
Description
The function calculates size and allocates copy of the original keymap after which sets up input device
event bits appropriately. The allocated copy of the keymap is automatically freed when it is no longer
needed.
void sparse_keymap_report_entry(struct input_dev * dev, const struct key_entry * ke, unsigned

int value, bool autorelease)
report event corresponding to given key entry

Parameters
struct input_dev * dev Input device for which event should be reported
const struct key_entry * ke key entry describing event
unsigned int value Value that should be reported (ignored by KE_SW entries)
bool autorelease Signals whether release event should be emitted for KE_KEY entries right after report-

ing press event, ignored by all other entries
Description
This function is used to report input event described by given struct key_entry.
bool sparse_keymap_report_event(struct input_dev * dev, unsigned int code, unsigned int value,

bool autorelease)
report event corresponding to given scancode

Parameters

12.5. Sparse keymap support 281

The kernel driver API manual, Release 4.13.0-rc4+

struct input_dev * dev Input device using sparse keymap
unsigned int code Scan code
unsigned int value Value that should be reported (ignored by KE_SW entries)
bool autorelease Signals whether release event should be emitted for KE_KEY entries right after report-

ing press event, ignored by all other entries
Description
This function is used to perform lookup in an input device using sparse keymap and report corresponding
event. Returns true if lookup was successful and false otherwise.

282 Chapter 12. Input Subsystem

CHAPTER

THIRTEEN

LINUX USB API

13.1 The Linux-USB Host Side API

13.1.1 Introduction to USB on Linux

A Universal Serial Bus (USB) is used to connect a host, such as a PC or workstation, to a number of
peripheral devices. USB uses a tree structure, with the host as the root (the system’s master), hubs as
interior nodes, and peripherals as leaves (and slaves). Modern PCs support several such trees of USB
devices, usually a few USB 3.0 (5 GBit/s) or USB 3.1 (10 GBit/s) and some legacy USB 2.0 (480 MBit/s)
busses just in case.
That master/slave asymmetry was designed-in for a number of reasons, one being ease of use. It is not
physically possible to mistake upstream and downstream or it does not matter with a type C plug (or
they are built into the peripheral). Also, the host software doesn’t need to deal with distributed auto-
configuration since the pre-designated master node manages all that.
Kernel developers added USB support to Linux early in the 2.2 kernel series and have been developing
it further since then. Besides support for each new generation of USB, various host controllers gained
support, new drivers for peripherals have been added and advanced features for latency measurement
and improved power management introduced.
Linux can run inside USB devices as well as on the hosts that control the devices. But USB device drivers
running inside those peripherals don’t do the same things as the ones running inside hosts, so they’ve
been given a different name: gadget drivers. This document does not cover gadget drivers.

13.1.2 USB Host-Side API Model

Host-side drivers for USB devices talk to the “usbcore” APIs. There are two. One is intended for general-
purpose drivers (exposed through driver frameworks), and the other is for drivers that are part of the core.
Such core drivers include the hub driver (which manages trees of USB devices) and several different kinds
of host controller drivers, which control individual busses.
The device model seen by USB drivers is relatively complex.
• USB supports four kinds of data transfers (control, bulk, interrupt, and isochronous). Two of them
(control and bulk) use bandwidth as it’s available, while the other two (interrupt and isochronous)
are scheduled to provide guaranteed bandwidth.

• The device description model includes one or more “configurations” per device, only one of which
is active at a time. Devices are supposed to be capable of operating at lower than their top speeds
and may provide a BOS descriptor showing the lowest speed they remain fully operational at.

• From USB 3.0 on configurations have one or more “functions”, which provide a common functionality
and are grouped together for purposes of power management.

• Configurations or functions have one or more “interfaces”, each of which may have “alternate set-
tings”. Interfaces may be standardized by USB “Class” specifications, or may be specific to a vendor
or device.

283

The kernel driver API manual, Release 4.13.0-rc4+

USB device drivers actually bind to interfaces, not devices. Think of them as “interface drivers”,
though you may not see many devices where the distinction is important. Most USB devices are
simple, with only one function, one configuration, one interface, and one alternate setting.

• Interfaces have one or more “endpoints”, each of which supports one type and direction of data trans-
fer such as “bulk out” or “interrupt in”. The entire configuration may have up to sixteen endpoints
in each direction, allocated as needed among all the interfaces.

• Data transfer on USB is packetized; each endpoint has a maximum packet size. Drivers must often be
aware of conventions such as flagging the end of bulk transfers using “short” (including zero length)
packets.

• The Linux USB API supports synchronous calls for control and bulk messages. It also supports asyn-
chronous calls for all kinds of data transfer, using request structures called “URBs” (USB Request
Blocks).

Accordingly, the USB Core API exposed to device drivers covers quite a lot of territory. You’ll probably
need to consult the USB 3.0 specification, available online from www.usb.org at no cost, as well as class
or device specifications.
The only host-side drivers that actually touch hardware (reading/writing registers, handling IRQs, and so
on) are the HCDs. In theory, all HCDs provide the same functionality through the same API. In practice,
that’s becoming more true, but there are still differences that crop up especially with fault handling on
the less common controllers. Different controllers don’t necessarily report the same aspects of failures,
and recovery from faults (including software-induced ones like unlinking an URB) isn’t yet fully consistent.
Device driver authors should make a point of doing disconnect testing (while the device is active) with
each different host controller driver, to make sure drivers don’t have bugs of their own as well as to make
sure they aren’t relying on some HCD-specific behavior.

13.1.3 USB-Standard Types

In <linux/usb/ch9.h> you will find the USB data types defined in chapter 9 of the USB specification.
These data types are used throughout USB, and in APIs including this host side API, gadget APIs, usb
character devices and debugfs interfaces.
const char * usb_speed_string(enum usb_device_speed speed)

Returns human readable-name of the speed.
Parameters
enum usb_device_speed speed The speed to return human-readable name for. If it’s not any of the

speeds defined in usb_device_speed enum, string for USB_SPEED_UNKNOWN will be returned.
enum usb_device_speed usb_get_maximum_speed(struct device * dev)

Get maximum requested speed for a given USB controller.
Parameters
struct device * dev Pointer to the given USB controller device
Description
The function gets the maximum speed string from property “maximum-speed”, and returns the corre-
sponding enum usb_device_speed.
const char * usb_state_string(enum usb_device_state state)

Returns human readable name for the state.
Parameters
enum usb_device_state state The state to return a human-readable name for. If it’s not any of the

states devices in usb_device_state_string enum, the string UNKNOWN will be returned.

284 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

13.1.4 Host-Side Data Types and Macros

The host side API exposes several layers to drivers, some of which are more necessary than others. These
support lifecycle models for host side drivers and devices, and support passing buffers through usbcore
to some HCD that performs the I/O for the device driver.
struct usb_host_endpoint

host-side endpoint descriptor and queue
Definition

struct usb_host_endpoint {
struct usb_endpoint_descriptor desc;
struct usb_ss_ep_comp_descriptor ss_ep_comp;
struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
struct list_head urb_list;
void * hcpriv;
struct ep_device * ep_dev;
unsigned char * extra;
int extralen;
int enabled;
int streams;

};

Members
desc descriptor for this endpoint, wMaxPacketSize in native byteorder
ss_ep_comp SuperSpeed companion descriptor for this endpoint
ssp_isoc_ep_comp SuperSpeedPlus isoc companion descriptor for this endpoint
urb_list urbs queued to this endpoint; maintained by usbcore
hcpriv for use by HCD; typically holds hardware dma queue head (QH) with one or more transfer descrip-

tors (TDs) per urb
ep_dev ep_device for sysfs info
extra descriptors following this endpoint in the configuration
extralen how many bytes of “extra” are valid
enabled URBs may be submitted to this endpoint
streams number of USB-3 streams allocated on the endpoint
Description
USB requests are always queued to a given endpoint, identified by a descriptor within an active interface
in a given USB configuration.
struct usb_interface

what usb device drivers talk to
Definition

struct usb_interface {
struct usb_host_interface * altsetting;
struct usb_host_interface * cur_altsetting;
unsigned num_altsetting;
struct usb_interface_assoc_descriptor * intf_assoc;
int minor;
enum usb_interface_condition condition;
unsigned sysfs_files_created:1;
unsigned ep_devs_created:1;
unsigned unregistering:1;
unsigned needs_remote_wakeup:1;

13.1. The Linux-USB Host Side API 285

The kernel driver API manual, Release 4.13.0-rc4+

unsigned needs_altsetting0:1;
unsigned needs_binding:1;
unsigned resetting_device:1;
unsigned authorized:1;
struct device dev;
struct device * usb_dev;
atomic_t pm_usage_cnt;
struct work_struct reset_ws;

};

Members
altsetting array of interface structures, one for each alternate setting that may be selected. Each one

includes a set of endpoint configurations. They will be in no particular order.
cur_altsetting the current altsetting.
num_altsetting number of altsettings defined.
intf_assoc interface association descriptor
minor the minor number assigned to this interface, if this interface is bound to a driver that uses the USB

major number. If this interface does not use the USB major, this field should be unused. The driver
should set this value in the probe() function of the driver, after it has been assigned a minor number
from the USB core by calling usb_register_dev().

condition binding state of the interface: not bound, binding (in probe()), bound to a driver, or unbinding
(in disconnect())

sysfs_files_created sysfs attributes exist
ep_devs_created endpoint child pseudo-devices exist
unregistering flag set when the interface is being unregistered
needs_remote_wakeup flag set when the driver requires remote-wakeup capability during autosuspend.
needs_altsetting0 flag set when a set-interface request for altsetting 0 has been deferred.
needs_binding flag set when the driver should be re-probed or unbound following a reset or suspend

operation it doesn’t support.
resetting_device USB core reset the device, so use alt setting 0 as current; needs bandwidth alloc after

reset.
authorized This allows to (de)authorize individual interfaces instead a whole device in contrast to the

device authorization.
dev driver model’s view of this device
usb_dev if an interface is bound to the USB major, this will point to the sysfs representation for that

device.
pm_usage_cnt PM usage counter for this interface
reset_ws Used for scheduling resets from atomic context.
Description
USB device drivers attach to interfaces on a physical device. Each interface encapsulates a single high
level function, such as feeding an audio stream to a speaker or reporting a change in a volume control.
Many USB devices only have one interface. The protocol used to talk to an interface’s endpoints can be
defined in a usb “class” specification, or by a product’s vendor. The (default) control endpoint is part of
every interface, but is never listed among the interface’s descriptors.
The driver that is bound to the interface can use standard driver model calls such as dev_get_drvdata()
on the dev member of this structure.

286 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Each interface may have alternate settings. The initial configuration of a device sets altsetting 0, but
the device driver can change that setting using usb_set_interface(). Alternate settings are often used
to control the use of periodic endpoints, such as by having different endpoints use different amounts of
reserved USB bandwidth. All standards-conformant USB devices that use isochronous endpoints will use
them in non-default settings.
The USB specification says that alternate setting numbers must run from 0 to one less than the total num-
ber of alternate settings. But some devices manage to mess this up, and the structures aren’t necessarily
stored in numerical order anyhow. Use usb_altnum_to_altsetting() to look up an alternate setting in
the altsetting array based on its number.
struct usb_interface_cache

long-term representation of a device interface
Definition

struct usb_interface_cache {
unsigned num_altsetting;
struct kref ref;
struct usb_host_interface altsetting;

};

Members
num_altsetting number of altsettings defined.
ref reference counter.
altsetting variable-length array of interface structures, one for each alternate setting that may be se-

lected. Each one includes a set of endpoint configurations. They will be in no particular order.
Description
These structures persist for the lifetime of a usb_device, unlike struct usb_interface (which persists only as
long as its configuration is installed). The altsetting arrays can be accessed through these structures at any
time, permitting comparison of configurations and providing support for the /sys/kernel/debug/usb/devices
pseudo-file.
struct usb_host_config

representation of a device’s configuration
Definition

struct usb_host_config {
struct usb_config_descriptor desc;
char * string;
struct usb_interface_assoc_descriptor * intf_assoc;
struct usb_interface * interface;
struct usb_interface_cache * intf_cache;
unsigned char * extra;
int extralen;

};

Members
desc the device’s configuration descriptor.
string pointer to the cached version of the iConfiguration string, if present for this configuration.
intf_assoc list of any interface association descriptors in this config
interface array of pointers to usb_interface structures, one for each interface in the configuration. The

number of interfaces is stored in desc.bNumInterfaces. These pointers are valid only while the the
configuration is active.

intf_cache array of pointers to usb_interface_cache structures, one for each interface in the configura-
tion. These structures exist for the entire life of the device.

13.1. The Linux-USB Host Side API 287

The kernel driver API manual, Release 4.13.0-rc4+

extra pointer to buffer containing all extra descriptors associated with this configuration (those preceding
the first interface descriptor).

extralen length of the extra descriptors buffer.
Description
USB devices may have multiple configurations, but only one can be active at any time. Each encapsulates
a different operational environment; for example, a dual-speed device would have separate configurations
for full-speed and high-speed operation. The number of configurations available is stored in the device
descriptor as bNumConfigurations.
A configuration can contain multiple interfaces. Each corresponds to a different function of the USB device,
and all are available whenever the configuration is active. The USB standard says that interfaces are
supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot of devices get this wrong. In addition,
the interface array is not guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to look up
an interface entry based on its number.
Device drivers should not attempt to activate configurations. The choice of which configuration to install is
a policy decision based on such considerations as available power, functionality provided, and the user’s
desires (expressed through userspace tools). However, drivers can call usb_reset_configuration() to
reinitialize the current configuration and all its interfaces.
struct usb_device

kernel’s representation of a USB device
Definition

struct usb_device {
int devnum;
char devpath;
u32 route;
enum usb_device_state state;
enum usb_device_speed speed;
struct usb_tt * tt;
int ttport;
unsigned int toggle;
struct usb_device * parent;
struct usb_bus * bus;
struct usb_host_endpoint ep0;
struct device dev;
struct usb_device_descriptor descriptor;
struct usb_host_bos * bos;
struct usb_host_config * config;
struct usb_host_config * actconfig;
struct usb_host_endpoint * ep_in;
struct usb_host_endpoint * ep_out;
char ** rawdescriptors;
unsigned short bus_mA;
u8 portnum;
u8 level;
unsigned can_submit:1;
unsigned persist_enabled:1;
unsigned have_langid:1;
unsigned authorized:1;
unsigned authenticated:1;
unsigned wusb:1;
unsigned lpm_capable:1;
unsigned usb2_hw_lpm_capable:1;
unsigned usb2_hw_lpm_besl_capable:1;
unsigned usb2_hw_lpm_enabled:1;
unsigned usb2_hw_lpm_allowed:1;
unsigned usb3_lpm_u1_enabled:1;
unsigned usb3_lpm_u2_enabled:1;
int string_langid;

288 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

char * product;
char * manufacturer;
char * serial;
struct list_head filelist;
int maxchild;
u32 quirks;
atomic_t urbnum;
unsigned long active_duration;

#ifdef CONFIG_PM
unsigned long connect_time;
unsigned do_remote_wakeup:1;
unsigned reset_resume:1;
unsigned port_is_suspended:1;

#endif
struct wusb_dev * wusb_dev;
int slot_id;
enum usb_device_removable removable;
struct usb2_lpm_parameters l1_params;
struct usb3_lpm_parameters u1_params;
struct usb3_lpm_parameters u2_params;
unsigned lpm_disable_count;

};

Members
devnum device number; address on a USB bus
devpath device ID string for use in messages (e.g., /port/...)
route tree topology hex string for use with xHCI
state device state: configured, not attached, etc.
speed device speed: high/full/low (or error)
tt Transaction Translator info; used with low/full speed dev, highspeed hub
ttport device port on that tt hub
toggle one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
parent our hub, unless we’re the root
bus bus we’re part of
ep0 endpoint 0 data (default control pipe)
dev generic device interface
descriptor USB device descriptor
bos USB device BOS descriptor set
config all of the device’s configs
actconfig the active configuration
ep_in array of IN endpoints
ep_out array of OUT endpoints
rawdescriptors raw descriptors for each config
bus_mA Current available from the bus
portnum parent port number (origin 1)
level number of USB hub ancestors
can_submit URBs may be submitted

13.1. The Linux-USB Host Side API 289

The kernel driver API manual, Release 4.13.0-rc4+

persist_enabled USB_PERSIST enabled for this device
have_langid whether string_langid is valid
authorized policy has said we can use it; (user space) policy determines if we authorize this device to be

used or not. By default, wired USB devices are authorized. WUSB devices are not, until we authorize
them from user space. FIXME – complete doc

authenticated Crypto authentication passed
wusb device is Wireless USB
lpm_capable device supports LPM
usb2_hw_lpm_capable device can perform USB2 hardware LPM
usb2_hw_lpm_besl_capable device can perform USB2 hardware BESL LPM
usb2_hw_lpm_enabled USB2 hardware LPM is enabled
usb2_hw_lpm_allowed Userspace allows USB 2.0 LPM to be enabled
usb3_lpm_u1_enabled USB3 hardware U1 LPM enabled
usb3_lpm_u2_enabled USB3 hardware U2 LPM enabled
string_langid language ID for strings
product iProduct string, if present (static)
manufacturer iManufacturer string, if present (static)
serial iSerialNumber string, if present (static)
filelist usbfs files that are open to this device
maxchild number of ports if hub
quirks quirks of the whole device
urbnum number of URBs submitted for the whole device
active_duration total time device is not suspended
connect_time time device was first connected
do_remote_wakeup remote wakeup should be enabled
reset_resume needs reset instead of resume
port_is_suspended the upstream port is suspended (L2 or U3)
wusb_dev if this is a Wireless USB device, link to the WUSB specific data for the device.
slot_id Slot ID assigned by xHCI
removable Device can be physically removed from this port
l1_params best effor service latency for USB2 L1 LPM state, and L1 timeout.
u1_params exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
u2_params exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
lpm_disable_count Ref count used by usb_disable_lpm() and usb_enable_lpm() to keep track of the

number of functions that require USB 3.0 Link Power Management to be disabled for this usb_device.
This count should only be manipulated by those functions, with the bandwidth_mutex is held.

Notes
Usbcore drivers should not set usbdev->state directly. Instead use usb_set_device_state().
usb_hub_for_each_child(hdev, port1, child)

iterate over all child devices on the hub
Parameters

290 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

hdev USB device belonging to the usb hub
port1 portnum associated with child device
child child device pointer
int usb_interface_claimed(struct usb_interface * iface)

returns true iff an interface is claimed
Parameters
struct usb_interface * iface the interface being checked
Return
true (nonzero) iff the interface is claimed, else false (zero).
Note
Callers must own the driver model’s usb bus readlock. So driver probe() entries don’t need extra locking,
but other call contexts may need to explicitly claim that lock.
int usb_make_path(struct usb_device * dev, char * buf, size_t size)

returns stable device path in the usb tree
Parameters
struct usb_device * dev the device whose path is being constructed
char * buf where to put the string
size_t size how big is “buf”?
Return
Length of the string (> 0) or negative if size was too small.
Note
This identifier is intended to be “stable”, reflecting physical paths in hardware such as physical bus ad-
dresses for host controllers or ports on USB hubs. That makes it stay the same until systems are physically
reconfigured, by re-cabling a tree of USB devices or by moving USB host controllers. Adding and remov-
ing devices, including virtual root hubs in host controller driver modules, does not change these path
identifiers; neither does rebooting or re-enumerating. These are more useful identifiers than changeable
(“unstable”) ones like bus numbers or device addresses.
With a partial exception for devices connected to USB 2.0 root hubs, these identifiers are also predictable.
So long as the device tree isn’t changed, plugging any USB device into a given hub port always gives it
the same path. Because of the use of “companion” controllers, devices connected to ports on USB 2.0
root hubs (EHCI host controllers) will get one path ID if they are high speed, and a different one if they are
full or low speed.
USB_DEVICE(vend, prod)

macro used to describe a specific usb device
Parameters
vend the 16 bit USB Vendor ID
prod the 16 bit USB Product ID
Description
This macro is used to create a struct usb_device_id that matches a specific device.
USB_DEVICE_VER(vend, prod, lo, hi)

describe a specific usb device with a version range
Parameters
vend the 16 bit USB Vendor ID
prod the 16 bit USB Product ID

13.1. The Linux-USB Host Side API 291

The kernel driver API manual, Release 4.13.0-rc4+

lo the bcdDevice_lo value
hi the bcdDevice_hi value
Description
This macro is used to create a struct usb_device_id that matches a specific device, with a version range.
USB_DEVICE_INTERFACE_CLASS(vend, prod, cl)

describe a usb device with a specific interface class
Parameters
vend the 16 bit USB Vendor ID
prod the 16 bit USB Product ID
cl bInterfaceClass value
Description
This macro is used to create a struct usb_device_id that matches a specific interface class of devices.
USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr)

describe a usb device with a specific interface protocol
Parameters
vend the 16 bit USB Vendor ID
prod the 16 bit USB Product ID
pr bInterfaceProtocol value
Description
This macro is used to create a struct usb_device_id that matches a specific interface protocol of devices.
USB_DEVICE_INTERFACE_NUMBER(vend, prod, num)

describe a usb device with a specific interface number
Parameters
vend the 16 bit USB Vendor ID
prod the 16 bit USB Product ID
num bInterfaceNumber value
Description
This macro is used to create a struct usb_device_id that matches a specific interface number of devices.
USB_DEVICE_INFO(cl, sc, pr)

macro used to describe a class of usb devices
Parameters
cl bDeviceClass value
sc bDeviceSubClass value
pr bDeviceProtocol value
Description
This macro is used to create a struct usb_device_id that matches a specific class of devices.
USB_INTERFACE_INFO(cl, sc, pr)

macro used to describe a class of usb interfaces
Parameters
cl bInterfaceClass value
sc bInterfaceSubClass value

292 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

pr bInterfaceProtocol value
Description
This macro is used to create a struct usb_device_id that matches a specific class of interfaces.
USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr)

describe a specific usb device with a class of usb interfaces
Parameters
vend the 16 bit USB Vendor ID
prod the 16 bit USB Product ID
cl bInterfaceClass value
sc bInterfaceSubClass value
pr bInterfaceProtocol value
Description
This macro is used to create a struct usb_device_id that matches a specific device with a specific class of
interfaces.
This is especially useful when explicitly matching devices that have vendor specific bDeviceClass values,
but standards-compliant interfaces.
USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr)

describe a specific usb vendor with a class of usb interfaces
Parameters
vend the 16 bit USB Vendor ID
cl bInterfaceClass value
sc bInterfaceSubClass value
pr bInterfaceProtocol value
Description
This macro is used to create a struct usb_device_id that matches a specific vendor with a specific class of
interfaces.
This is especially useful when explicitly matching devices that have vendor specific bDeviceClass values,
but standards-compliant interfaces.
struct usbdrv_wrap

wrapper for driver-model structure
Definition

struct usbdrv_wrap {
struct device_driver driver;
int for_devices;

};

Members
driver The driver-model core driver structure.
for_devices Non-zero for device drivers, 0 for interface drivers.
struct usb_driver

identifies USB interface driver to usbcore
Definition

13.1. The Linux-USB Host Side API 293

The kernel driver API manual, Release 4.13.0-rc4+

struct usb_driver {
const char * name;
int (* probe) (struct usb_interface *intf, const struct usb_device_id *id);
void (* disconnect) (struct usb_interface *intf);
int (* unlocked_ioctl) (struct usb_interface *intf, unsigned int code, void *buf);
int (* suspend) (struct usb_interface *intf, pm_message_t message);
int (* resume) (struct usb_interface *intf);
int (* reset_resume) (struct usb_interface *intf);
int (* pre_reset) (struct usb_interface *intf);
int (* post_reset) (struct usb_interface *intf);
const struct usb_device_id * id_table;
struct usb_dynids dynids;
struct usbdrv_wrap drvwrap;
unsigned int no_dynamic_id:1;
unsigned int supports_autosuspend:1;
unsigned int disable_hub_initiated_lpm:1;
unsigned int soft_unbind:1;

};

Members
name The driver name should be unique among USB drivers, and should normally be the same as the

module name.
probe Called to see if the driver is willing to manage a particular interface on a device. If it is, probe

returns zero and uses usb_set_intfdata() to associate driver-specific data with the interface. It
may also use usb_set_interface() to specify the appropriate altsetting. If unwilling to manage the
interface, return -ENODEV, if genuine IO errors occurred, an appropriate negative errno value.

disconnect Called when the interface is no longer accessible, usually because its device has been (or is
being) disconnected or the driver module is being unloaded.

unlocked_ioctl Used for drivers that want to talk to userspace through the “usbfs” filesystem. This lets
devices provide ways to expose information to user space regardless of where they do (or don’t)
show up otherwise in the filesystem.

suspend Called when the device is going to be suspended by the system either from system sleep or
runtime suspend context. The return value will be ignored in system sleep context, so do NOT try
to continue using the device if suspend fails in this case. Instead, let the resume or reset-resume
routine recover from the failure.

resume Called when the device is being resumed by the system.
reset_resume Called when the suspended device has been reset instead of being resumed.
pre_reset Called by usb_reset_device() when the device is about to be reset. This routine must not

return until the driver has no active URBs for the device, and no more URBs may be submitted until
the post_reset method is called.

post_reset Called by usb_reset_device() after the device has been reset
id_table USB drivers use ID table to support hotplugging. Export this with MOD-

ULE_DEVICE_TABLE(usb,...). This must be set or your driver’s probe function will never get
called.

dynids used internally to hold the list of dynamically added device ids for this driver.
drvwrap Driver-model core structure wrapper.
no_dynamic_id if set to 1, the USB core will not allow dynamic ids to be added to this driver by preventing

the sysfs file from being created.
supports_autosuspend if set to 0, the USB core will not allow autosuspend for interfaces bound to this

driver.

294 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

disable_hub_initiated_lpm if set to 1, the USB core will not allow hubs to initiate lower power link state
transitions when an idle timeout occurs. Device-initiated USB 3.0 link PM will still be allowed.

soft_unbind if set to 1, the USB core will not kill URBs and disable endpoints before calling the driver’s
disconnect method.

Description
USB interface drivers must provide a name, probe() and disconnect() methods, and an id_table. Other
driver fields are optional.
The id_table is used in hotplugging. It holds a set of descriptors, and specialized data may be associated
with each entry. That table is used by both user and kernel mode hotplugging support.
The probe() and disconnect() methods are called in a context where they can sleep, but they should
avoid abusing the privilege. Most work to connect to a device should be done when the device is opened,
and undone at the last close. The disconnect code needs to address concurrency issues with respect to
open() and close() methods, as well as forcing all pending I/O requests to complete (by unlinking them
as necessary, and blocking until the unlinks complete).
struct usb_device_driver

identifies USB device driver to usbcore
Definition

struct usb_device_driver {
const char * name;
int (* probe) (struct usb_device *udev);
void (* disconnect) (struct usb_device *udev);
int (* suspend) (struct usb_device *udev, pm_message_t message);
int (* resume) (struct usb_device *udev, pm_message_t message);
struct usbdrv_wrap drvwrap;
unsigned int supports_autosuspend:1;

};

Members
name The driver name should be unique among USB drivers, and should normally be the same as the

module name.
probe Called to see if the driver is willing to manage a particular device. If it is, probe returns zero and

uses dev_set_drvdata() to associate driver-specific data with the device. If unwilling to manage
the device, return a negative errno value.

disconnect Called when the device is no longer accessible, usually because it has been (or is being)
disconnected or the driver’s module is being unloaded.

suspend Called when the device is going to be suspended by the system.
resume Called when the device is being resumed by the system.
drvwrap Driver-model core structure wrapper.
supports_autosuspend if set to 0, the USB core will not allow autosuspend for devices bound to this

driver.
Description
USB drivers must provide all the fields listed above except drvwrap.
struct usb_class_driver

identifies a USB driver that wants to use the USB major number
Definition

struct usb_class_driver {
char * name;
char *(* devnode) (struct device *dev, umode_t *mode);

13.1. The Linux-USB Host Side API 295

The kernel driver API manual, Release 4.13.0-rc4+

const struct file_operations * fops;
int minor_base;

};

Members
name the usb class device name for this driver. Will show up in sysfs.
devnode Callback to provide a naming hint for a possible device node to create.
fops pointer to the struct file_operations of this driver.
minor_base the start of the minor range for this driver.
Description
This structure is used for the usb_register_dev() and usb_deregister_dev() functions, to consolidate
a number of the parameters used for them.
module_usb_driver(__usb_driver)

Helper macro for registering a USB driver
Parameters
__usb_driver usb_driver struct
Description
Helper macro for USB drivers which do not do anything special in module init/exit. This eliminates a lot
of boilerplate. Each module may only use this macro once, and calling it replaces module_init() and
module_exit()

struct urb
USB Request Block

Definition

struct urb {
struct list_head urb_list;
struct list_head anchor_list;
struct usb_anchor * anchor;
struct usb_device * dev;
struct usb_host_endpoint * ep;
unsigned int pipe;
unsigned int stream_id;
int status;
unsigned int transfer_flags;
void * transfer_buffer;
dma_addr_t transfer_dma;
struct scatterlist * sg;
int num_mapped_sgs;
int num_sgs;
u32 transfer_buffer_length;
u32 actual_length;
unsigned char * setup_packet;
dma_addr_t setup_dma;
int start_frame;
int number_of_packets;
int interval;
int error_count;
void * context;
usb_complete_t complete;
struct usb_iso_packet_descriptor iso_frame_desc;

};

Members

296 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

urb_list For use by current owner of the URB.
anchor_list membership in the list of an anchor
anchor to anchor URBs to a common mooring
dev Identifies the USB device to perform the request.
ep Points to the endpoint’s data structure. Will eventually replace pipe.
pipe Holds endpoint number, direction, type, and more. Create these values with the eight macros avail-

able; usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is “ctrl” (control), “bulk”, “int” (inter-
rupt), or “iso” (isochronous). For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
numbers range from zero to fifteen. Note that “in” endpoint two is a different endpoint (and pipe)
from “out” endpoint two. The current configuration controls the existence, type, and maximum
packet size of any given endpoint.

stream_id the endpoint’s stream ID for bulk streams
status This is read in non-iso completion functions to get the status of the particular request. ISO requests

only use it to tell whether the URB was unlinked; detailed status for each frame is in the fields of the
iso_frame-desc.

transfer_flags A variety of flags may be used to affect how URB submission, unlinking, or operation
are handled. Different kinds of URB can use different flags.

transfer_buffer This identifies the buffer to (or from) which the I/O request will be performed unless
URB_NO_TRANSFER_DMA_MAP is set (however, do not leave garbage in transfer_buffer even then).
This buffer must be suitable for DMA; allocate it with kmalloc() or equivalent. For transfers to “in”
endpoints, contents of this buffer will be modified. This buffer is used for the data stage of control
transfers.

transfer_dma When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, the device driver is saying
that it provided this DMA address, which the host controller driver should use in preference to the
transfer_buffer.

sg scatter gather buffer list, the buffer size of each element in the list (except the last) must be divisible
by the endpoint’s max packet size if no_sg_constraint isn’t set in ‘struct usb_bus’

num_mapped_sgs (internal) number of mapped sg entries
num_sgs number of entries in the sg list
transfer_buffer_length How big is transfer_buffer. The transfer may be broken up into chunks accord-

ing to the current maximum packet size for the endpoint, which is a function of the configuration and
is encoded in the pipe. When the length is zero, neither transfer_buffer nor transfer_dma is used.

actual_length This is read in non-iso completion functions, and it tells how many bytes (out of trans-
fer_buffer_length) were transferred. It will normally be the same as requested, unless either an error
was reported or a short read was performed. The URB_SHORT_NOT_OK transfer flag may be used to
make such short reads be reported as errors.

setup_packet Only used for control transfers, this points to eight bytes of setup data. Control transfers
always start by sending this data to the device. Then transfer_buffer is read or written, if needed.

setup_dma DMA pointer for the setup packet. The caller must not use this field; setup_packet must point
to a valid buffer.

start_frame Returns the initial frame for isochronous transfers.
number_of_packets Lists the number of ISO transfer buffers.
interval Specifies the polling interval for interrupt or isochronous transfers. The units are frames (mil-

liseconds) for full and low speed devices, and microframes (1/8 millisecond) for highspeed and Su-
perSpeed devices.

error_count Returns the number of ISO transfers that reported errors.
context For use in completion functions. This normally points to request-specific driver context.

13.1. The Linux-USB Host Side API 297

The kernel driver API manual, Release 4.13.0-rc4+

complete Completion handler. This URB is passed as the parameter to the completion function. The
completion function may then do what it likes with the URB, including resubmitting or freeing it.

iso_frame_desc Used to provide arrays of ISO transfer buffers and to collect the transfer status for each
buffer.

Description
This structure identifies USB transfer requests. URBs must be allocated by calling usb_alloc_urb() and
freed with a call to usb_free_urb(). Initialization may be done using various usb_fill_*:c:func:_urb()
functions. URBs are submitted using usb_submit_urb(), and pending requests may be canceled using
usb_unlink_urb() or usb_kill_urb().
Data Transfer Buffers:
Normally drivers provide I/O buffers allocated with kmalloc() or otherwise taken from the general page
pool. That is provided by transfer_buffer (control requests also use setup_packet), and host controller
drivers perform a dma mapping (and unmapping) for each buffer transferred. Those mapping operations
can be expensive on some platforms (perhaps using a dma bounce buffer or talking to an IOMMU), although
they’re cheap on commodity x86 and ppc hardware.
Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, which tells the host con-
troller driver that no such mapping is needed for the transfer_buffer since the device driver is DMA-
aware. For example, a device driver might allocate a DMA buffer with usb_alloc_coherent() or call
usb_buffer_map(). When this transfer flag is provided, host controller drivers will attempt to use the
dma address found in the transfer_dma field rather than determining a dma address themselves.
Note that transfer_buffer must still be set if the controller does not support DMA (as indicated by
bus.uses_dma) and when talking to root hub. If you have to trasfer between highmem zone and the
device on such controller, create a bounce buffer or bail out with an error. If transfer_buffer cannot be set
(is in highmem) and the controller is DMA capable, assign NULL to it, so that usbmon knows not to use
the value. The setup_packet must always be set, so it cannot be located in highmem.
Initialization:
All URBs submittedmust initialize the dev, pipe, transfer_flags (may be zero), and complete fields. All URBs
must also initialize transfer_buffer and transfer_buffer_length. Theymay provide the URB_SHORT_NOT_OK
transfer flag, indicating that short reads are to be treated as errors; that flag is invalid for write requests.
Bulk URBs may use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers should always
terminate with a short packet, even if it means adding an extra zero length packet.
Control URBs must provide a valid pointer in the setup_packet field. Unlike the transfer_buffer, the
setup_packet may not be mapped for DMA beforehand.
Interrupt URBs must provide an interval, saying how often (in milliseconds or, for highspeed devices,
125 microsecond units) to poll for transfers. After the URB has been submitted, the interval field reflects
how the transfer was actually scheduled. The polling interval may be more frequent than requested. For
example, some controllers have a maximum interval of 32 milliseconds, while others support intervals
of up to 1024 milliseconds. Isochronous URBs also have transfer intervals. (Note that for isochronous
endpoints, as well as high speed interrupt endpoints, the encoding of the transfer interval in the endpoint
descriptor is logarithmic. Device drivers must convert that value to linear units themselves.)
If an isochronous endpoint queue isn’t already running, the host controller will schedule a new URB to
start as soon as bandwidth utilization allows. If the queue is running then a new URB will be scheduled to
start in the first transfer slot following the end of the preceding URB, if that slot has not already expired.
If the slot has expired (which can happen when IRQ delivery is delayed for a long time), the scheduling
behavior depends on the URB_ISO_ASAP flag. If the flag is clear then the URB will be scheduled to start in
the expired slot, implying that some of its packets will not be transferred; if the flag is set then the URB
will be scheduled in the first unexpired slot, breaking the queue’s synchronization. Upon URB completion,
the start_frame field will be set to the (micro)frame number in which the transfer was scheduled. Ranges
for frame counter values are HC-specific and can go from as low as 256 to as high as 65536 frames.
Isochronous URBs have a different data transfer model, in part because the quality of service is only
“best effort”. Callers provide specially allocated URBs, with number_of_packets worth of iso_frame_desc

298 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

structures at the end. Each such packet is an individual ISO transfer. Isochronous URBs are normally
queued, submitted by drivers to arrange that transfers are at least double buffered, and then explicitly
resubmitted in completion handlers, so that data (such as audio or video) streams at as constant a rate
as the host controller scheduler can support.
Completion Callbacks:
The completion callback is made in_interrupt(), and one of the first things that a completion handler
should do is check the status field. The status field is provided for all URBs. It is used to report unlinked
URBs, and status for all non-ISO transfers. It should not be examined before the URB is returned to the
completion handler.
The context field is normally used to link URBs back to the relevant driver or request state.
When the completion callback is invoked for non-isochronous URBs, the actual_length field tells how many
bytes were transferred. This field is updated even when the URB terminated with an error or was unlinked.
ISO transfer status is reported in the status and actual_length fields of the iso_frame_desc array, and the
number of errors is reported in error_count. Completion callbacks for ISO transfers will normally (re)submit
URBs to ensure a constant transfer rate.
Note that even fields marked “public” should not be touched by the driver when the urb is owned by the
hcd, that is, since the call to usb_submit_urb() till the entry into the completion routine.
void usb_fill_control_urb(struct urb * urb, struct usb_device * dev, unsigned int pipe, un-

signed char * setup_packet, void * transfer_buffer, int buffer_length,
usb_complete_t complete_fn, void * context)

initializes a control urb
Parameters
struct urb * urb pointer to the urb to initialize.
struct usb_device * dev pointer to the struct usb_device for this urb.
unsigned int pipe the endpoint pipe
unsigned char * setup_packet pointer to the setup_packet buffer
void * transfer_buffer pointer to the transfer buffer
int buffer_length length of the transfer buffer
usb_complete_t complete_fn pointer to the usb_complete_t function
void * context what to set the urb context to.
Description
Initializes a control urb with the proper information needed to submit it to a device.
void usb_fill_bulk_urb(struct urb * urb, struct usb_device * dev, unsigned int pipe, void * trans-

fer_buffer, int buffer_length, usb_complete_t complete_fn, void * con-
text)

macro to help initialize a bulk urb
Parameters
struct urb * urb pointer to the urb to initialize.
struct usb_device * dev pointer to the struct usb_device for this urb.
unsigned int pipe the endpoint pipe
void * transfer_buffer pointer to the transfer buffer
int buffer_length length of the transfer buffer
usb_complete_t complete_fn pointer to the usb_complete_t function
void * context what to set the urb context to.

13.1. The Linux-USB Host Side API 299

The kernel driver API manual, Release 4.13.0-rc4+

Description
Initializes a bulk urb with the proper information needed to submit it to a device.
void usb_fill_int_urb(struct urb * urb, struct usb_device * dev, unsigned int pipe, void * trans-

fer_buffer, int buffer_length, usb_complete_t complete_fn, void * context,
int interval)

macro to help initialize a interrupt urb
Parameters
struct urb * urb pointer to the urb to initialize.
struct usb_device * dev pointer to the struct usb_device for this urb.
unsigned int pipe the endpoint pipe
void * transfer_buffer pointer to the transfer buffer
int buffer_length length of the transfer buffer
usb_complete_t complete_fn pointer to the usb_complete_t function
void * context what to set the urb context to.
int interval what to set the urb interval to, encoded like the endpoint descriptor’s bInterval value.
Description
Initializes a interrupt urb with the proper information needed to submit it to a device.
Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic encoding of the endpoint
interval, and express polling intervals in microframes (eight per millisecond) rather than in frames (one
per millisecond).
Wireless USB also uses the logarithmic encoding, but specifies it in units of 128us instead of 125us. For
Wireless USB devices, the interval is passed through to the host controller, rather than being translated
into microframe units.
int usb_urb_dir_in(struct urb * urb)

check if an URB describes an IN transfer
Parameters
struct urb * urb URB to be checked
Return
1 if urb describes an IN transfer (device-to-host), otherwise 0.
int usb_urb_dir_out(struct urb * urb)

check if an URB describes an OUT transfer
Parameters
struct urb * urb URB to be checked
Return
1 if urb describes an OUT transfer (host-to-device), otherwise 0.
struct usb_sg_request

support for scatter/gather I/O
Definition

struct usb_sg_request {
int status;
size_t bytes;

};

Members

300 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

status zero indicates success, else negative errno
bytes counts bytes transferred.
Description
These requests are initialized using usb_sg_init(), and then are used as request handles passed to
usb_sg_wait() or usb_sg_cancel(). Most members of the request object aren’t for driver access.
The status and bytecount values are valid only after usb_sg_wait() returns. If the status is zero, then
the bytecount matches the total from the request.
After an error completion, drivers may need to clear a halt condition on the endpoint.

13.1.5 USB Core APIs

There are two basic I/O models in the USB API. The most elemental one is asynchronous: drivers submit
requests in the form of an URB, and the URB’s completion callback handles the next step. All USB transfer
types support that model, although there are special cases for control URBs (which always have setup
and status stages, but may not have a data stage) and isochronous URBs (which allow large packets
and include per-packet fault reports). Built on top of that is synchronous API support, where a driver
calls a routine that allocates one or more URBs, submits them, and waits until they complete. There are
synchronous wrappers for single-buffer control and bulk transfers (which are awkward to use in some
driver disconnect scenarios), and for scatterlist based streaming i/o (bulk or interrupt).
USB drivers need to provide buffers that can be used for DMA, although they don’t necessarily need to
provide the DMA mapping themselves. There are APIs to use used when allocating DMA buffers, which
can prevent use of bounce buffers on some systems. In some cases, drivers may be able to rely on 64bit
DMA to eliminate another kind of bounce buffer.
void usb_init_urb(struct urb * urb)

initializes a urb so that it can be used by a USB driver
Parameters
struct urb * urb pointer to the urb to initialize
Description
Initializes a urb so that the USB subsystem can use it properly.
If a urb is created with a call to usb_alloc_urb() it is not necessary to call this function. Only use this if
you allocate the space for a struct urb on your own. If you call this function, be careful when freeing the
memory for your urb that it is no longer in use by the USB core.
Only use this function if you _really_ understand what you are doing.
struct urb * usb_alloc_urb(int iso_packets, gfp_t mem_flags)

creates a new urb for a USB driver to use
Parameters
int iso_packets number of iso packets for this urb
gfp_t mem_flags the type of memory to allocate, see kmalloc() for a list of valid options for this.
Description
Creates an urb for the USB driver to use, initializes a few internal structures, increments the usage counter,
and returns a pointer to it.
If the driver want to use this urb for interrupt, control, or bulk endpoints, pass ‘0’ as the number of iso
packets.
The driver must call usb_free_urb() when it is finished with the urb.
Return
A pointer to the new urb, or NULL if no memory is available.

13.1. The Linux-USB Host Side API 301

The kernel driver API manual, Release 4.13.0-rc4+

void usb_free_urb(struct urb * urb)
frees the memory used by a urb when all users of it are finished

Parameters
struct urb * urb pointer to the urb to free, may be NULL
Description
Must be called when a user of a urb is finished with it. When the last user of the urb calls this function,
the memory of the urb is freed.
Note
The transfer buffer associated with the urb is not freed unless the URB_FREE_BUFFER transfer flag is set.
struct urb * usb_get_urb(struct urb * urb)

increments the reference count of the urb
Parameters
struct urb * urb pointer to the urb to modify, may be NULL
Description
This must be called whenever a urb is transferred from a device driver to a host controller driver. This
allows proper reference counting to happen for urbs.
Return
A pointer to the urb with the incremented reference counter.
void usb_anchor_urb(struct urb * urb, struct usb_anchor * anchor)

anchors an URB while it is processed
Parameters
struct urb * urb pointer to the urb to anchor
struct usb_anchor * anchor pointer to the anchor
Description
This can be called to have access to URBs which are to be executed without bothering to track them
void usb_unanchor_urb(struct urb * urb)

unanchors an URB
Parameters
struct urb * urb pointer to the urb to anchor
Description
Call this to stop the system keeping track of this URB
int usb_submit_urb(struct urb * urb, gfp_t mem_flags)

issue an asynchronous transfer request for an endpoint
Parameters
struct urb * urb pointer to the urb describing the request
gfp_t mem_flags the type of memory to allocate, see kmalloc() for a list of valid options for this.
Description
This submits a transfer request, and transfers control of the URB describing that request to the USB
subsystem. Request completion will be indicated later, asynchronously, by calling the completion handler.
The three types of completion are success, error, and unlink (a software-induced fault, also called “request
cancellation”).
URBs may be submitted in interrupt context.

302 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

The caller must have correctly initialized the URB before submitting it. Functions such as
usb_fill_bulk_urb() and usb_fill_control_urb() are available to ensure that most fields are cor-
rectly initialized, for the particular kind of transfer, although they will not initialize any transfer flags.
If the submission is successful, the complete() callback from the URB will be called exactly once, when
the USB core and Host Controller Driver (HCD) are finished with the URB. When the completion function
is called, control of the URB is returned to the device driver which issued the request. The completion
handler may then immediately free or reuse that URB.
With few exceptions, USB device drivers should never access URB fields provided by usbcore or the HCD
until its complete() is called. The exceptions relate to periodic transfer scheduling. For both interrupt
and isochronous urbs, as part of successful URB submission urb->interval is modified to reflect the actual
transfer period used (normally some power of two units). And for isochronous urbs, urb->start_frame is
modified to reflect when the URB’s transfers were scheduled to start.
Not all isochronous transfer scheduling policies will work, but most host controller drivers should easily
handle ISO queues going from now until 10-200 msec into the future. Drivers should try to keep at least
one or two msec of data in the queue; many controllers require that new transfers start at least 1 msec
in the future when they are added. If the driver is unable to keep up and the queue empties out, the
behavior for new submissions is governed by the URB_ISO_ASAP flag. If the flag is set, or if the queue
is idle, then the URB is always assigned to the first available (and not yet expired) slot in the endpoint’s
schedule. If the flag is not set and the queue is active then the URB is always assigned to the next slot
in the schedule following the end of the endpoint’s previous URB, even if that slot is in the past. When
a packet is assigned in this way to a slot that has already expired, the packet is not transmitted and the
corresponding usb_iso_packet_descriptor’s status field will return -EXDEV. If this would happen to all the
packets in the URB, submission fails with a -EXDEV error code.
For control endpoints, the synchronous usb_control_msg() call is often used (in non-interrupt context) in-
stead of this call. That is often used through convenience wrappers, for the requests that are standardized
in the USB 2.0 specification. For bulk endpoints, a synchronous usb_bulk_msg() call is available.
Return
0 on successful submissions. A negative error number otherwise.
Request Queuing:
URBs may be submitted to endpoints before previous ones complete, to minimize the impact of interrupt
latencies and system overhead on data throughput. With that queuing policy, an endpoint’s queue would
never be empty. This is required for continuous isochronous data streams, and may also be required
for some kinds of interrupt transfers. Such queuing also maximizes bandwidth utilization by letting USB
controllers start work on later requests before driver software has finished the completion processing for
earlier (successful) requests.
As of Linux 2.6, all USB endpoint transfer queues support depths greater than one. This was previously
a HCD-specific behavior, except for ISO transfers. Non-isochronous endpoint queues are inactive during
cleanup after faults (transfer errors or cancellation).
Reserved Bandwidth Transfers:
Periodic transfers (interrupt or isochronous) are performed repeatedly, using the interval specified in the
urb. Submitting the first urb to the endpoint reserves the bandwidth necessary to make those transfers.
If the USB subsystem can’t allocate sufficient bandwidth to perform the periodic request, submitting such
a periodic request should fail.
For devices under xHCI, the bandwidth is reserved at configuration time, or when the alt setting is selected.
If there is not enough bus bandwidth, the configuration/alt setting request will fail. Therefore, submissions
to periodic endpoints on devices under xHCI should never fail due to bandwidth constraints.
Device drivers must explicitly request that repetition, by ensuring that some URB is always on the end-
point’s queue (except possibly for short periods during completion callbacks). When there is no longer
an urb queued, the endpoint’s bandwidth reservation is canceled. This means drivers can use their com-
pletion handlers to ensure they keep bandwidth they need, by reinitializing and resubmitting the just-
completed urb until the driver longer needs that periodic bandwidth.

13.1. The Linux-USB Host Side API 303

The kernel driver API manual, Release 4.13.0-rc4+

Memory Flags:
The general rules for how to decide which mem_flags to use are the same as for kmalloc. There are four
different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and GFP_ATOMIC.
GFP_NOFS is not ever used, as it has not been implemented yet.
GFP_ATOMIC is used when

1. you are inside a completion handler, an interrupt, bottom half, tasklet or timer, or
2. you are holding a spinlock or rwlock (does not apply to semaphores), or
3. current->state != TASK_RUNNING, this is the case only after you’ve changed it.

GFP_NOIO is used in the block io path and error handling of storage devices.
All other situations use GFP_KERNEL.
Some more specific rules for mem_flags can be inferred, such as

1. start_xmit, timeout, and receive methods of network drivers must use GFP_ATOMIC (they are
called with a spinlock held);

2. queuecommand methods of scsi drivers must use GFP_ATOMIC (also called with a spinlock held);
3. If you use a kernel thread with a network driver you must use GFP_NOIO, unless (b) or (c) apply;
4. after you have done a down() you can use GFP_KERNEL, unless (b) or (c) apply or your are in a
storage driver’s block io path;

5. USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
6. changing firmware on a running storage or net device uses GFP_NOIO, unless b) or c) apply

int usb_unlink_urb(struct urb * urb)
abort/cancel a transfer request for an endpoint

Parameters
struct urb * urb pointer to urb describing a previously submitted request, may be NULL
Description
This routine cancels an in-progress request. URBs complete only once per submission, and may be can-
celed only once per submission. Successful cancellation means termination of urb will be expedited and
the completion handler will be called with a status code indicating that the request has been canceled
(rather than any other code).
Drivers should not call this routine or related routines, such as usb_kill_urb() or
usb_unlink_anchored_urbs(), after their disconnect method has returned. The disconnect func-
tion should synchronize with a driver’s I/O routines to insure that all URB-related activity has completed
before it returns.
This request is asynchronous, however the HCDmight call the ->:c:func:complete() callback during unlink.
Therefore when drivers call usb_unlink_urb(), they must not hold any locks that may be taken by the
completion function. Success is indicated by returning -EINPROGRESS, at which time the URB will probably
not yet have been given back to the device driver. When it is eventually called, the completion function
will see urb->status == -ECONNRESET. Failure is indicated by usb_unlink_urb() returning any other
value. Unlinking will fail when urb is not currently “linked” (i.e., it was never submitted, or it was unlinked
before, or the hardware is already finished with it), even if the completion handler has not yet run.
The URB must not be deallocated while this routine is running. In particular, when a driver calls this
routine, it must insure that the completion handler cannot deallocate the URB.
Return
-EINPROGRESS on success. See description for other values on failure.
Unlinking and Endpoint Queues:

304 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

[The behaviors and guarantees described below do not apply to virtual root hubs but only to endpoint
queues for physical USB devices.]
Host Controller Drivers (HCDs) place all the URBs for a particular endpoint in a queue. Normally the
queue advances as the controller hardware processes each request. But when an URB terminates with
an error its queue generally stops (see below), at least until that URB’s completion routine returns. It is
guaranteed that a stopped queue will not restart until all its unlinked URBs have been fully retired, with
their completion routines run, even if that’s not until some time after the original completion handler
returns. The same behavior and guarantee apply when an URB terminates because it was unlinked.
Bulk and interrupt endpoint queues are guaranteed to stop whenever an URB terminates with any sort
of error, including -ECONNRESET, -ENOENT, and -EREMOTEIO. Control endpoint queues behave the same
way except that they are not guaranteed to stop for -EREMOTEIO errors. Queues for isochronous endpoints
are treated differently, because they must advance at fixed rates. Such queues do not stop when an URB
encounters an error or is unlinked. An unlinked isochronous URBmay leave a gap in the stream of packets;
it is undefined whether such gaps can be filled in.
Note that early termination of an URB because a short packet was received will generate a -EREMOTEIO
error if and only if the URB_SHORT_NOT_OK flag is set. By setting this flag, USB device drivers can build
deep queues for large or complex bulk transfers and clean them up reliably after any sort of aborted
transfer by unlinking all pending URBs at the first fault.
When a control URB terminates with an error other than -EREMOTEIO, it is quite likely that the status stage
of the transfer will not take place.
void usb_kill_urb(struct urb * urb)

cancel a transfer request and wait for it to finish
Parameters
struct urb * urb pointer to URB describing a previously submitted request, may be NULL
Description
This routine cancels an in-progress request. It is guaranteed that upon return all completion handlers will
have finished and the URB will be totally idle and available for reuse. These features make this an ideal
way to stop I/O in a disconnect() callback or close() function. If the request has not already finished
or been unlinked the completion handler will see urb->status == -ENOENT.
While the routine is running, attempts to resubmit the URB will fail with error -EPERM. Thus even if the
URB’s completion handler always tries to resubmit, it will not succeed and the URB will become idle.
The URB must not be deallocated while this routine is running. In particular, when a driver calls this
routine, it must insure that the completion handler cannot deallocate the URB.
This routine may not be used in an interrupt context (such as a bottom half or a completion handler), or
when holding a spinlock, or in other situations where the caller can’t schedule().
This routine should not be called by a driver after its disconnect method has returned.
void usb_poison_urb(struct urb * urb)

reliably kill a transfer and prevent further use of an URB
Parameters
struct urb * urb pointer to URB describing a previously submitted request, may be NULL
Description
This routine cancels an in-progress request. It is guaranteed that upon return all completion handlers will
have finished and the URB will be totally idle and cannot be reused. These features make this an ideal
way to stop I/O in a disconnect() callback. If the request has not already finished or been unlinked the
completion handler will see urb->status == -ENOENT.
After and while the routine runs, attempts to resubmit the URB will fail with error -EPERM. Thus even if
the URB’s completion handler always tries to resubmit, it will not succeed and the URB will become idle.

13.1. The Linux-USB Host Side API 305

The kernel driver API manual, Release 4.13.0-rc4+

The URB must not be deallocated while this routine is running. In particular, when a driver calls this
routine, it must insure that the completion handler cannot deallocate the URB.
This routine may not be used in an interrupt context (such as a bottom half or a completion handler), or
when holding a spinlock, or in other situations where the caller can’t schedule().
This routine should not be called by a driver after its disconnect method has returned.
void usb_block_urb(struct urb * urb)

reliably prevent further use of an URB
Parameters
struct urb * urb pointer to URB to be blocked, may be NULL
Description
After the routine has run, attempts to resubmit the URB will fail with error -EPERM. Thus even if the URB’s
completion handler always tries to resubmit, it will not succeed and the URB will become idle.
The URB must not be deallocated while this routine is running. In particular, when a driver calls this
routine, it must insure that the completion handler cannot deallocate the URB.
void usb_kill_anchored_urbs(struct usb_anchor * anchor)

cancel transfer requests en masse
Parameters
struct usb_anchor * anchor anchor the requests are bound to
Description
this allows all outstanding URBs to be killed starting from the back of the queue
This routine should not be called by a driver after its disconnect method has returned.
void usb_poison_anchored_urbs(struct usb_anchor * anchor)

cease all traffic from an anchor
Parameters
struct usb_anchor * anchor anchor the requests are bound to
Description
this allows all outstanding URBs to be poisoned starting from the back of the queue. Newly added URBs
will also be poisoned
This routine should not be called by a driver after its disconnect method has returned.
void usb_unpoison_anchored_urbs(struct usb_anchor * anchor)

let an anchor be used successfully again
Parameters
struct usb_anchor * anchor anchor the requests are bound to
Description
Reverses the effect of usb_poison_anchored_urbs the anchor can be used normally after it returns
void usb_unlink_anchored_urbs(struct usb_anchor * anchor)

asynchronously cancel transfer requests en masse
Parameters
struct usb_anchor * anchor anchor the requests are bound to
Description
this allows all outstanding URBs to be unlinked starting from the back of the queue. This function is
asynchronous. The unlinking is just triggered. It may happen after this function has returned.
This routine should not be called by a driver after its disconnect method has returned.

306 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

void usb_anchor_suspend_wakeups(struct usb_anchor * anchor)
Parameters
struct usb_anchor * anchor the anchor you want to suspend wakeups on
Description
Call this to stop the last urb being unanchored from waking up any usb_wait_anchor_empty_timeout wait-
ers. This is used in the hcd urb give- back path to delay waking up until after the completion handler has
run.
void usb_anchor_resume_wakeups(struct usb_anchor * anchor)
Parameters
struct usb_anchor * anchor the anchor you want to resume wakeups on
Description
Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and wake up any current waiters if
the anchor is empty.
int usb_wait_anchor_empty_timeout(struct usb_anchor * anchor, unsigned int timeout)

wait for an anchor to be unused
Parameters
struct usb_anchor * anchor the anchor you want to become unused
unsigned int timeout how long you are willing to wait in milliseconds
Description
Call this is you want to be sure all an anchor’s URBs have finished
Return
Non-zero if the anchor became unused. Zero on timeout.
struct urb * usb_get_from_anchor(struct usb_anchor * anchor)

get an anchor’s oldest urb
Parameters
struct usb_anchor * anchor the anchor whose urb you want
Description
This will take the oldest urb from an anchor, unanchor and return it
Return
The oldest urb from anchor, or NULL if anchor has no urbs associated with it.
void usb_scuttle_anchored_urbs(struct usb_anchor * anchor)

unanchor all an anchor’s urbs
Parameters
struct usb_anchor * anchor the anchor whose urbs you want to unanchor
Description
use this to get rid of all an anchor’s urbs
int usb_anchor_empty(struct usb_anchor * anchor)

is an anchor empty
Parameters
struct usb_anchor * anchor the anchor you want to query

13.1. The Linux-USB Host Side API 307

The kernel driver API manual, Release 4.13.0-rc4+

Return
1 if the anchor has no urbs associated with it.
int usb_control_msg(struct usb_device * dev, unsigned int pipe, __u8 request, __u8 requesttype,

__u16 value, __u16 index, void * data, __u16 size, int timeout)
Builds a control urb, sends it off and waits for completion

Parameters
struct usb_device * dev pointer to the usb device to send the message to
unsigned int pipe endpoint “pipe” to send the message to
__u8 request USB message request value
__u8 requesttype USB message request type value
__u16 value USB message value
__u16 index USB message index value
void * data pointer to the data to send
__u16 size length in bytes of the data to send
int timeout time in msecs to wait for the message to complete before timing out (if 0 the wait is forever)
Context
!in_interrupt ()
Description
This function sends a simple control message to a specified endpoint and waits for the message to com-
plete, or timeout.
Don’t use this function from within an interrupt context. If you need an asynchronous message, or need
to send a message from within interrupt context, use usb_submit_urb(). If a thread in your driver uses
this call, make sure your disconnect()method can wait for it to complete. Since you don’t have a handle
on the URB used, you can’t cancel the request.
Return
If successful, the number of bytes transferred. Otherwise, a negative error number.
int usb_interrupt_msg(struct usb_device * usb_dev, unsigned int pipe, void * data, int len, int * ac-

tual_length, int timeout)
Builds an interrupt urb, sends it off and waits for completion

Parameters
struct usb_device * usb_dev pointer to the usb device to send the message to
unsigned int pipe endpoint “pipe” to send the message to
void * data pointer to the data to send
int len length in bytes of the data to send
int * actual_length pointer to a location to put the actual length transferred in bytes
int timeout time in msecs to wait for the message to complete before timing out (if 0 the wait is forever)
Context
!in_interrupt ()
Description
This function sends a simple interrupt message to a specified endpoint and waits for the message to
complete, or timeout.

308 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Don’t use this function from within an interrupt context. If you need an asynchronous message, or need
to send a message from within interrupt context, use usb_submit_urb() If a thread in your driver uses
this call, make sure your disconnect()method can wait for it to complete. Since you don’t have a handle
on the URB used, you can’t cancel the request.
Return
If successful, 0. Otherwise a negative error number. The number of actual bytes transferred will be stored
in the actual_length parameter.
int usb_bulk_msg(struct usb_device * usb_dev, unsigned int pipe, void * data, int len, int * ac-

tual_length, int timeout)
Builds a bulk urb, sends it off and waits for completion

Parameters
struct usb_device * usb_dev pointer to the usb device to send the message to
unsigned int pipe endpoint “pipe” to send the message to
void * data pointer to the data to send
int len length in bytes of the data to send
int * actual_length pointer to a location to put the actual length transferred in bytes
int timeout time in msecs to wait for the message to complete before timing out (if 0 the wait is forever)
Context
!in_interrupt ()
Description
This function sends a simple bulk message to a specified endpoint and waits for the message to complete,
or timeout.
Don’t use this function from within an interrupt context. If you need an asynchronous message, or need
to send a message from within interrupt context, use usb_submit_urb() If a thread in your driver uses
this call, make sure your disconnect()method can wait for it to complete. Since you don’t have a handle
on the URB used, you can’t cancel the request.
Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, users are forced to abuse
this routine by using it to submit URBs for interrupt endpoints. We will take the liberty of creating an
interrupt URB (with the default interval) if the target is an interrupt endpoint.
Return
If successful, 0. Otherwise a negative error number. The number of actual bytes transferred will be stored
in the actual_length parameter.
int usb_sg_init(struct usb_sg_request * io, struct usb_device * dev, unsigned pipe, un-

signed period, struct scatterlist * sg, int nents, size_t length, gfp_t mem_flags)
initializes scatterlist-based bulk/interrupt I/O request

Parameters
struct usb_sg_request * io request block being initialized. until usb_sg_wait() returns, treat this as

a pointer to an opaque block of memory,
struct usb_device * dev the usb device that will send or receive the data
unsigned pipe endpoint “pipe” used to transfer the data
unsigned period polling rate for interrupt endpoints, in frames or (for high speed endpoints) mi-

croframes; ignored for bulk
struct scatterlist * sg scatterlist entries
int nents how many entries in the scatterlist

13.1. The Linux-USB Host Side API 309

The kernel driver API manual, Release 4.13.0-rc4+

size_t length how many bytes to send from the scatterlist, or zero to send every byte identified in the
list.

gfp_t mem_flags SLAB_* flags affecting memory allocations in this call
Description
This initializes a scatter/gather request, allocating resources such as I/O mappings and urb memory (ex-
cept maybe memory used by USB controller drivers).
The request must be issued using usb_sg_wait(), which waits for the I/O to complete (or to be canceled)
and then cleans up all resources allocated by usb_sg_init().
The request may be canceled with usb_sg_cancel(), either before or after usb_sg_wait() is called.
Return
Zero for success, else a negative errno value.
void usb_sg_wait(struct usb_sg_request * io)

synchronously execute scatter/gather request
Parameters
struct usb_sg_request * io request block handle, as initialized with usb_sg_init(). some fields be-

come accessible when this call returns.
Context
!in_interrupt ()
Description
This function blocks until the specified I/O operation completes. It leverages the grouping of the related
I/O requests to get good transfer rates, by queueing the requests. At higher speeds, such queuing can
significantly improve USB throughput.
There are three kinds of completion for this function.
1. success, where io->status is zero. The number of io->bytes transferred is as requested.
2. error, where io->status is a negative errno value. The number of io->bytes transferred before the
error is usually less than requested, and can be nonzero.

3. cancellation, a type of error with status -ECONNRESET that is initiated by usb_sg_cancel().
When this function returns, all memory allocated through usb_sg_init() or this call will have been freed.
The request block parameter may still be passed to usb_sg_cancel(), or it may be freed. It could also
be reinitialized and then reused.
Data Transfer Rates:
Bulk transfers are valid for full or high speed endpoints. The best full speed data rate is 19 packets of 64
bytes each per frame, or 1216 bytes per millisecond. The best high speed data rate is 13 packets of 512
bytes each per microframe, or 52 KBytes per millisecond.
The reason to use interrupt transfers through this API would most likely be to reserve high speed band-
width, where up to 24 KBytes per millisecond could be transferred. That capability is less useful for low or
full speed interrupt endpoints, which allow at most one packet per millisecond, of at most 8 or 64 bytes
(respectively).
It is not necessary to call this function to reserve bandwidth for devices under an xHCI host controller, as
the bandwidth is reserved when the configuration or interface alt setting is selected.
void usb_sg_cancel(struct usb_sg_request * io)

stop scatter/gather i/o issued by usb_sg_wait()
Parameters
struct usb_sg_request * io request block, initialized with usb_sg_init()

310 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Description
This stops a request after it has been started by usb_sg_wait(). It can also prevents one initialized by
usb_sg_init() from starting, so that call just frees resources allocated to the request.
int usb_get_descriptor(struct usb_device * dev, unsigned char type, unsigned char index, void

* buf, int size)
issues a generic GET_DESCRIPTOR request

Parameters
struct usb_device * dev the device whose descriptor is being retrieved
unsigned char type the descriptor type (USB_DT_*)
unsigned char index the number of the descriptor
void * buf where to put the descriptor
int size how big is “buf”?
Context
!in_interrupt ()
Description
Gets a USB descriptor. Convenience functions exist to simplify getting some types of descriptors. Use
usb_get_string() or usb_string() for USB_DT_STRING. Device (USB_DT_DEVICE) and configuration de-
scriptors (USB_DT_CONFIG) are part of the device structure. In addition to a number of USB-standard
descriptors, some devices also use class-specific or vendor-specific descriptors.
This call is synchronous, and may not be used in an interrupt context.
Return
The number of bytes received on success, or else the status code returned by the underlying
usb_control_msg() call.
int usb_string(struct usb_device * dev, int index, char * buf, size_t size)

returns UTF-8 version of a string descriptor
Parameters
struct usb_device * dev the device whose string descriptor is being retrieved
int index the number of the descriptor
char * buf where to put the string
size_t size how big is “buf”?
Context
!in_interrupt ()
Description
This converts the UTF-16LE encoded strings returned by devices, from usb_get_string_descriptor(), to
null-terminated UTF-8 encoded ones that are more usable in most kernel contexts. Note that this function
chooses strings in the first language supported by the device.
This call is synchronous, and may not be used in an interrupt context.
Return
length of the string (>= 0) or usb_control_msg status (< 0).
int usb_get_status(struct usb_device * dev, int type, int target, void * data)

issues a GET_STATUS call
Parameters
struct usb_device * dev the device whose status is being checked

13.1. The Linux-USB Host Side API 311

The kernel driver API manual, Release 4.13.0-rc4+

int type USB_RECIP_*; for device, interface, or endpoint
int target zero (for device), else interface or endpoint number
void * data pointer to two bytes of bitmap data
Context
!in_interrupt ()
Description
Returns device, interface, or endpoint status. Normally only of interest to see if the device is self powered,
or has enabled the remote wakeup facility; or whether a bulk or interrupt endpoint is halted (“stalled”).
Bits in these status bitmaps are set using the SET_FEATURE request, and cleared using the CLEAR_FEATURE
request. The usb_clear_halt() function should be used to clear halt (“stall”) status.
This call is synchronous, and may not be used in an interrupt context.
Returns 0 and the status value in *data (in host byte order) on success, or else the status code from the
underlying usb_control_msg() call.
int usb_clear_halt(struct usb_device * dev, int pipe)

tells device to clear endpoint halt/stall condition
Parameters
struct usb_device * dev device whose endpoint is halted
int pipe endpoint “pipe” being cleared
Context
!in_interrupt ()
Description
This is used to clear halt conditions for bulk and interrupt endpoints, as reported by URB completion status.
Endpoints that are halted are sometimes referred to as being “stalled”. Such endpoints are unable to
transmit or receive data until the halt status is cleared. Any URBs queued for such an endpoint should
normally be unlinked by the driver before clearing the halt condition, as described in sections 5.7.5 and
5.8.5 of the USB 2.0 spec.
Note that control and isochronous endpoints don’t halt, although control endpoints report “protocol stall”
(for unsupported requests) using the same status code used to report a true stall.
This call is synchronous, and may not be used in an interrupt context.
Return
Zero on success, or else the status code returned by the underlying usb_control_msg() call.
void usb_reset_endpoint(struct usb_device * dev, unsigned int epaddr)

Reset an endpoint’s state.
Parameters
struct usb_device * dev the device whose endpoint is to be reset
unsigned int epaddr the endpoint’s address. Endpoint number for output, endpoint number +

USB_DIR_IN for input
Description
Resets any host-side endpoint state such as the toggle bit, sequence number or current window.
int usb_set_interface(struct usb_device * dev, int interface, int alternate)

Makes a particular alternate setting be current
Parameters
struct usb_device * dev the device whose interface is being updated

312 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

int interface the interface being updated
int alternate the setting being chosen.
Context
!in_interrupt ()
Description
This is used to enable data transfers on interfaces that may not be enabled by default. Not all devices
support such configurability. Only the driver bound to an interface may change its setting.
Within any given configuration, each interfacemay have several alternative settings. These are often used
to control levels of bandwidth consumption. For example, the default setting for a high speed interrupt
endpoint may not send more than 64 bytes per microframe, while interrupt transfers of up to 3KBytes per
microframe are legal. Also, isochronous endpoints may never be part of an interface’s default setting. To
access such bandwidth, alternate interface settings must be made current.
Note that in the Linux USB subsystem, bandwidth associated with an endpoint in a given alternate setting
is not reserved until an URB is submitted that needs that bandwidth. Some other operating systems
allocate bandwidth early, when a configuration is chosen.
This call is synchronous, and may not be used in an interrupt context. Also, drivers must not change
altsettings while urbs are scheduled for endpoints in that interface; all such urbs must first be completed
(perhaps forced by unlinking).
Return
Zero on success, or else the status code returned by the underlying usb_control_msg() call.
int usb_reset_configuration(struct usb_device * dev)

lightweight device reset
Parameters
struct usb_device * dev the device whose configuration is being reset
Description
This issues a standard SET_CONFIGURATION request to the device using the current configuration. The
effect is to reset most USB-related state in the device, including interface altsettings (reset to zero),
endpoint halts (cleared), and endpoint state (only for bulk and interrupt endpoints). Other usbcore state
is unchanged, including bindings of usb device drivers to interfaces.
Because this affectsmultiple interfaces, avoid using this with composite (multi-interface) devices. Instead,
the driver for each interfacemay use usb_set_interface() on the interfaces it claims. Be careful though;
some devices don’t support the SET_INTERFACE request, and others won’t reset all the interface state
(notably endpoint state). Resetting the whole configuration would affect other drivers’ interfaces.
The caller must own the device lock.
Return
Zero on success, else a negative error code.
int usb_driver_set_configuration(struct usb_device * udev, int config)

Provide a way for drivers to change device configurations
Parameters
struct usb_device * udev the device whose configuration is being updated
int config the configuration being chosen.
Context
In process context, must be able to sleep
Description

13.1. The Linux-USB Host Side API 313

The kernel driver API manual, Release 4.13.0-rc4+

Device interface drivers are not allowed to change device configurations. This is because changing config-
urations will destroy the interface the driver is bound to and create new ones; it would be like a floppy-disk
driver telling the computer to replace the floppy-disk drive with a tape drive!
Still, in certain specialized circumstances the need may arise. This routine gets around the normal restric-
tions by using a work thread to submit the change-config request.
Return
0 if the request was successfully queued, error code otherwise. The caller has no way to know whether
the queued request will eventually succeed.
int cdc_parse_cdc_header(struct usb_cdc_parsed_header * hdr, struct usb_interface * intf, u8

* buffer, int buflen)
parse the extra headers present in CDC devices

Parameters
struct usb_cdc_parsed_header * hdr the place to put the results of the parsing
struct usb_interface * intf the interface for which parsing is requested
u8 * buffer pointer to the extra headers to be parsed
int buflen length of the extra headers
Description
This evaluates the extra headers present in CDC devices which bind the interfaces for data and control
and provide details about the capabilities of the device.
Return
number of descriptors parsed or -EINVAL if the header is contradictory beyond salvage
int usb_register_dev(struct usb_interface * intf, struct usb_class_driver * class_driver)

register a USB device, and ask for a minor number
Parameters
struct usb_interface * intf pointer to the usb_interface that is being registered
struct usb_class_driver * class_driver pointer to the usb_class_driver for this device
Description
This should be called by all USB drivers that use the USBmajor number. If CONFIG_USB_DYNAMIC_MINORS
is enabled, the minor number will be dynamically allocated out of the list of available ones. If it is not
enabled, the minor number will be based on the next available free minor, starting at the class_driver-
>minor_base.
This function also creates a usb class device in the sysfs tree.
usb_deregister_dev()must be called when the driver is done with the minor numbers given out by this
function.
Return
-EINVAL if something bad happens with trying to register a device, and 0 on success.
void usb_deregister_dev(struct usb_interface * intf, struct usb_class_driver * class_driver)

deregister a USB device’s dynamic minor.
Parameters
struct usb_interface * intf pointer to the usb_interface that is being deregistered
struct usb_class_driver * class_driver pointer to the usb_class_driver for this device
Description

314 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Used in conjunction with usb_register_dev(). This function is called when the USB driver is finished with
the minor numbers gotten from a call to usb_register_dev() (usually when the device is disconnected
from the system.)
This function also removes the usb class device from the sysfs tree.
This should be called by all drivers that use the USB major number.
int usb_driver_claim_interface(struct usb_driver * driver, struct usb_interface * iface, void

* priv)
bind a driver to an interface

Parameters
struct usb_driver * driver the driver to be bound
struct usb_interface * iface the interface to which it will be bound; must be in the usb device’s

active configuration
void * priv driver data associated with that interface
Description
This is used by usb device drivers that need to claim more than one interface on a device when probing
(audio and acm are current examples). No device driver should directly modify internal usb_interface or
usb_device structure members.
Few drivers should need to use this routine, since the most natural way to bind to an interface is to return
the private data from the driver’s probe() method.
Callers must own the device lock, so driver probe() entries don’t need extra locking, but other call con-
texts may need to explicitly claim that lock.
Return
0 on success.
void usb_driver_release_interface(struct usb_driver * driver, struct usb_interface * iface)

unbind a driver from an interface
Parameters
struct usb_driver * driver the driver to be unbound
struct usb_interface * iface the interface from which it will be unbound
Description
This can be used by drivers to release an interface without waiting for their disconnect() methods to be
called. In typical cases this also causes the driver disconnect() method to be called.
This call is synchronous, and may not be used in an interrupt context. Callers must own the device lock,
so driver disconnect() entries don’t need extra locking, but other call contexts may need to explicitly
claim that lock.
const struct usb_device_id * usb_match_id(struct usb_interface * interface, const struct

usb_device_id * id)
find first usb_device_id matching device or interface

Parameters
struct usb_interface * interface the interface of interest
const struct usb_device_id * id array of usb_device_id structures, terminated by zero entry
Description
usb_match_id searches an array of usb_device_id’s and returns the first one matching the device or inter-
face, or null. This is used when binding (or rebinding) a driver to an interface. Most USB device drivers
will use this indirectly, through the usb core, but some layered driver frameworks use it directly. These

13.1. The Linux-USB Host Side API 315

The kernel driver API manual, Release 4.13.0-rc4+

device tables are exported with MODULE_DEVICE_TABLE, through modutils, to support the driver loading
functionality of USB hotplugging.
Return
The first matching usb_device_id, or NULL.
What Matches:
The “match_flags” element in a usb_device_id controls which members are used. If the corresponding
bit is set, the value in the device_id must match its corresponding member in the device or interface
descriptor, or else the device_id does not match.
“driver_info” is normally used only by device drivers, but you can create a wildcard “matches anything”
usb_device_id as a driver’s “modules.usbmap” entry if you provide an id with only a nonzero “driver_info”
field. If you do this, the USB device driver’s probe() routine should use additional intelligence to decide
whether to bind to the specified interface.
What Makes Good usb_device_id Tables:
The match algorithm is very simple, so that intelligence in driver selection must come from smart driver
id records. Unless you have good reasons to use another selection policy, provide match elements only
in related groups, and order match specifiers from specific to general. Use the macros provided for that
purpose if you can.
The most specific match specifiers use device descriptor data. These are commonly used with product-
specific matches; the USB_DEVICEmacro lets you provide vendor and product IDs, and you can also match
against ranges of product revisions. These are widely used for devices with application or vendor specific
bDeviceClass values.
Matches based on device class/subclass/protocol specifications are slightly more general; use the
USB_DEVICE_INFO macro, or its siblings. These are used with single-function devices where bDeviceClass
doesn’t specify that each interface has its own class.
Matches based on interface class/subclass/protocol are the most general; they let drivers bind to any
interface on a multiple-function device. Use the USB_INTERFACE_INFO macro, or its siblings, to match
class-per-interface style devices (as recorded in bInterfaceClass).
Note that an entry created by USB_INTERFACE_INFO won’t match any interface if the device class is
set to Vendor-Specific. This is deliberate; according to the USB spec the meanings of the interface
class/subclass/protocol for these devices are also vendor-specific, and hence matching against a stan-
dard product class wouldn’t work anyway. If you really want to use an interface-based match for such
a device, create a match record that also specifies the vendor ID. (Unforunately there isn’t a standard
macro for creating records like this.)
Within those groups, remember that not all combinations are meaningful. For example, don’t give a
product version range without vendor and product IDs; or specify a protocol without its associated class
and subclass.
int usb_register_device_driver(struct usb_device_driver * new_udriver, struct module * owner)

register a USB device (not interface) driver
Parameters
struct usb_device_driver * new_udriver USB operations for the device driver
struct module * owner module owner of this driver.
Description
Registers a USB device driver with the USB core. The list of unattached devices will be rescannedwhenever
a new driver is added, allowing the new driver to attach to any recognized devices.
Return
A negative error code on failure and 0 on success.
void usb_deregister_device_driver(struct usb_device_driver * udriver)

unregister a USB device (not interface) driver

316 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct usb_device_driver * udriver USB operations of the device driver to unregister
Context
must be able to sleep
Description
Unlinks the specified driver from the internal USB driver list.
int usb_register_driver(struct usb_driver * new_driver, struct module * owner, const char

* mod_name)
register a USB interface driver

Parameters
struct usb_driver * new_driver USB operations for the interface driver
struct module * owner module owner of this driver.
const char * mod_name module name string
Description
Registers a USB interface driver with the USB core. The list of unattached interfaces will be rescanned
whenever a new driver is added, allowing the new driver to attach to any recognized interfaces.
Return
A negative error code on failure and 0 on success.
NOTE
if you want your driver to use the USB major number, you must call usb_register_dev() to enable that
functionality. This function no longer takes care of that.
void usb_deregister(struct usb_driver * driver)

unregister a USB interface driver
Parameters
struct usb_driver * driver USB operations of the interface driver to unregister
Context
must be able to sleep
Description
Unlinks the specified driver from the internal USB driver list.
NOTE
If you called usb_register_dev(), you still need to call usb_deregister_dev() to clean up your driver’s
allocated minor numbers, this * call will no longer do it for you.
void usb_enable_autosuspend(struct usb_device * udev)

allow a USB device to be autosuspended
Parameters
struct usb_device * udev the USB device which may be autosuspended
Description
This routine allows udev to be autosuspended. An autosuspend won’t take place until the autosus-
pend_delay has elapsed and all the other necessary conditions are satisfied.
The caller must hold udev‘s device lock.
void usb_disable_autosuspend(struct usb_device * udev)

prevent a USB device from being autosuspended

13.1. The Linux-USB Host Side API 317

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct usb_device * udev the USB device which may not be autosuspended
Description
This routine prevents udev from being autosuspended and wakes it up if it is already autosuspended.
The caller must hold udev‘s device lock.
void usb_autopm_put_interface(struct usb_interface * intf)

decrement a USB interface’s PM-usage counter
Parameters
struct usb_interface * intf the usb_interface whose counter should be decremented
Description
This routine should be called by an interface driver when it is finished using intf and wants to allow it to
autosuspend. A typical example would be a character-device driver when its device file is closed.
The routine decrements intf‘s usage counter. When the counter reaches 0, a delayed autosuspend request
for intf‘s device is attempted. The attempt may fail (see autosuspend_check()).
This routine can run only in process context.
void usb_autopm_put_interface_async(struct usb_interface * intf)

decrement a USB interface’s PM-usage counter
Parameters
struct usb_interface * intf the usb_interface whose counter should be decremented
Description
This routine does much the same thing as usb_autopm_put_interface(): It decrements intf‘s usage
counter and schedules a delayed autosuspend request if the counter is <= 0. The difference is that it
does not perform any synchronization; callers should hold a private lock and handle all synchronization
issues themselves.
Typically a driver would call this routine during an URB’s completion handler, if no more URBs were pend-
ing.
This routine can run in atomic context.
void usb_autopm_put_interface_no_suspend(struct usb_interface * intf)

decrement a USB interface’s PM-usage counter
Parameters
struct usb_interface * intf the usb_interface whose counter should be decremented
Description
This routine decrements intf‘s usage counter but does not carry out an autosuspend.
This routine can run in atomic context.
int usb_autopm_get_interface(struct usb_interface * intf)

increment a USB interface’s PM-usage counter
Parameters
struct usb_interface * intf the usb_interface whose counter should be incremented
Description
This routine should be called by an interface driver when it wants to use intf and needs to guarantee
that it is not suspended. In addition, the routine prevents intf from being autosuspended subsequently.
(Note that this will not prevent suspend events originating in the PM core.) This prevention will persist
until usb_autopm_put_interface() is called or intf is unbound. A typical example would be a character-
device driver when its device file is opened.

318 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

intf‘s usage counter is incremented to prevent subsequent autosuspends. However if the autoresume
fails then the counter is re-decremented.
This routine can run only in process context.
Return
0 on success.
int usb_autopm_get_interface_async(struct usb_interface * intf)

increment a USB interface’s PM-usage counter
Parameters
struct usb_interface * intf the usb_interface whose counter should be incremented
Description
This routine does much the same thing as usb_autopm_get_interface(): It increments intf‘s usage
counter and queues an autoresume request if the device is suspended. The differences are that it does
not perform any synchronization (callers should hold a private lock and handle all synchronization issues
themselves), and it does not autoresume the device directly (it only queues a request). After a successful
call, the device may not yet be resumed.
This routine can run in atomic context.
Return
0 on success. A negative error code otherwise.
void usb_autopm_get_interface_no_resume(struct usb_interface * intf)

increment a USB interface’s PM-usage counter
Parameters
struct usb_interface * intf the usb_interface whose counter should be incremented
Description
This routine increments intf‘s usage counter but does not carry out an autoresume.
This routine can run in atomic context.
int usb_find_common_endpoints(struct usb_host_interface * alt, struct usb_endpoint_descriptor

** bulk_in, struct usb_endpoint_descriptor ** bulk_out, struct
usb_endpoint_descriptor ** int_in, struct usb_endpoint_descriptor
** int_out)

•look up common endpoint descriptors
Parameters
struct usb_host_interface * alt alternate setting to search
struct usb_endpoint_descriptor ** bulk_in pointer to descriptor pointer, or NULL
struct usb_endpoint_descriptor ** bulk_out pointer to descriptor pointer, or NULL
struct usb_endpoint_descriptor ** int_in pointer to descriptor pointer, or NULL
struct usb_endpoint_descriptor ** int_out pointer to descriptor pointer, or NULL
Description
Search the alternate setting’s endpoint descriptors for the first bulk-in, bulk-out, interrupt-in and interrupt-
out endpoints and return them in the provided pointers (unless they are NULL).
If a requested endpoint is not found, the corresponding pointer is set to NULL.
Return
Zero if all requested descriptors were found, or -ENXIO otherwise.

13.1. The Linux-USB Host Side API 319

The kernel driver API manual, Release 4.13.0-rc4+

int usb_find_common_endpoints_reverse(struct usb_host_interface * alt, struct
usb_endpoint_descriptor ** bulk_in, struct
usb_endpoint_descriptor ** bulk_out, struct
usb_endpoint_descriptor ** int_in, struct
usb_endpoint_descriptor ** int_out)

•look up common endpoint descriptors
Parameters
struct usb_host_interface * alt alternate setting to search
struct usb_endpoint_descriptor ** bulk_in pointer to descriptor pointer, or NULL
struct usb_endpoint_descriptor ** bulk_out pointer to descriptor pointer, or NULL
struct usb_endpoint_descriptor ** int_in pointer to descriptor pointer, or NULL
struct usb_endpoint_descriptor ** int_out pointer to descriptor pointer, or NULL
Description
Search the alternate setting’s endpoint descriptors for the last bulk-in, bulk-out, interrupt-in and interrupt-
out endpoints and return them in the provided pointers (unless they are NULL).
If a requested endpoint is not found, the corresponding pointer is set to NULL.
Return
Zero if all requested descriptors were found, or -ENXIO otherwise.
struct usb_host_interface * usb_find_alt_setting(struct usb_host_config * config, unsigned

int iface_num, unsigned int alt_num)
Given a configuration, find the alternate setting for the given interface.

Parameters
struct usb_host_config * config the configuration to search (not necessarily the current config).
unsigned int iface_num interface number to search in
unsigned int alt_num alternate interface setting number to search for.
Description
Search the configuration’s interface cache for the given alt setting.
Return
The alternate setting, if found. NULL otherwise.
struct usb_interface * usb_ifnum_to_if(const struct usb_device * dev, unsigned ifnum)

get the interface object with a given interface number
Parameters
const struct usb_device * dev the device whose current configuration is considered
unsigned ifnum the desired interface
Description
This walks the device descriptor for the currently active configuration to find the interface object with the
particular interface number.
Note that configuration descriptors are not required to assign interface numbers sequentially, so that it
would be incorrect to assume that the first interface in that descriptor corresponds to interface zero. This
routine helps device drivers avoid such mistakes. However, you should make sure that you do the right
thing with any alternate settings available for this interfaces.
Don’t call this function unless you are bound to one of the interfaces on this device or you have locked
the device!

320 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Return
A pointer to the interface that has ifnum as interface number, if found. NULL otherwise.
struct usb_host_interface * usb_altnum_to_altsetting(const struct usb_interface * intf, unsigned

int altnum)
get the altsetting structure with a given alternate setting number.

Parameters
const struct usb_interface * intf the interface containing the altsetting in question
unsigned int altnum the desired alternate setting number
Description
This searches the altsetting array of the specified interface for an entry with the correct bAlternateSetting
value.
Note that altsettings need not be stored sequentially by number, so it would be incorrect to assume that
the first altsetting entry in the array corresponds to altsetting zero. This routine helps device drivers avoid
such mistakes.
Don’t call this function unless you are bound to the intf interface or you have locked the device!
Return
A pointer to the entry of the altsetting array of intf that has altnum as the alternate setting number.
NULL if not found.
struct usb_interface * usb_find_interface(struct usb_driver * drv, int minor)

find usb_interface pointer for driver and device
Parameters
struct usb_driver * drv the driver whose current configuration is considered
int minor the minor number of the desired device
Description
This walks the bus device list and returns a pointer to the interface with the matching minor and driver.
Note, this only works for devices that share the USB major number.
Return
A pointer to the interface with the matching major and minor.
int usb_for_each_dev(void * data, int (*fn) (struct usb_device *, void *)

iterate over all USB devices in the system
Parameters
void * data data pointer that will be handed to the callback function
int (*)(struct usb_device *,void *) fn callback function to be called for each USB device
Description
Iterate over all USB devices and call fn for each, passing it data. If it returns anything other than 0, we
break the iteration prematurely and return that value.
struct usb_device * usb_alloc_dev(struct usb_device * parent, struct usb_bus * bus, un-

signed port1)
usb device constructor (usbcore-internal)

Parameters
struct usb_device * parent hub to which device is connected; null to allocate a root hub
struct usb_bus * bus bus used to access the device
unsigned port1 one-based index of port; ignored for root hubs

13.1. The Linux-USB Host Side API 321

The kernel driver API manual, Release 4.13.0-rc4+

Context
!:c:func:in_interrupt()
Description
Only hub drivers (including virtual root hub drivers for host controllers) should ever call this.
This call may not be used in a non-sleeping context.
Return
On success, a pointer to the allocated usb device. NULL on failure.
struct usb_device * usb_get_dev(struct usb_device * dev)

increments the reference count of the usb device structure
Parameters
struct usb_device * dev the device being referenced
Description
Each live reference to a device should be refcounted.
Drivers for USB interfaces should normally record such references in their probe() methods, when they
bind to an interface, and release them by calling usb_put_dev(), in their disconnect() methods.
Return
A pointer to the device with the incremented reference counter.
void usb_put_dev(struct usb_device * dev)

release a use of the usb device structure
Parameters
struct usb_device * dev device that’s been disconnected
Description
Must be called when a user of a device is finished with it. When the last user of the device calls this
function, the memory of the device is freed.
struct usb_interface * usb_get_intf(struct usb_interface * intf)

increments the reference count of the usb interface structure
Parameters
struct usb_interface * intf the interface being referenced
Description
Each live reference to a interface must be refcounted.
Drivers for USB interfaces should normally record such references in their probe() methods, when they
bind to an interface, and release them by calling usb_put_intf(), in their disconnect() methods.
Return
A pointer to the interface with the incremented reference counter.
void usb_put_intf(struct usb_interface * intf)

release a use of the usb interface structure
Parameters
struct usb_interface * intf interface that’s been decremented
Description
Must be called when a user of an interface is finished with it. When the last user of the interface calls this
function, the memory of the interface is freed.

322 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

int usb_lock_device_for_reset(struct usb_device * udev, const struct usb_interface * iface)
cautiously acquire the lock for a usb device structure

Parameters
struct usb_device * udev device that’s being locked
const struct usb_interface * iface interface bound to the driver making the request (optional)
Description
Attempts to acquire the device lock, but fails if the device is NOTATTACHED or SUSPENDED, or if iface is
specified and the interface is neither BINDING nor BOUND. Rather than sleeping to wait for the lock, the
routine polls repeatedly. This is to prevent deadlock with disconnect; in some drivers (such as usb-storage)
the disconnect() or suspend() method will block waiting for a device reset to complete.
Return
A negative error code for failure, otherwise 0.
int usb_get_current_frame_number(struct usb_device * dev)

return current bus frame number
Parameters
struct usb_device * dev the device whose bus is being queried
Return
The current frame number for the USB host controller used with the given USB device. This can be used
when scheduling isochronous requests.
Note
Different kinds of host controller have different “scheduling horizons”. While one type might support
scheduling only 32 frames into the future, others could support scheduling up to 1024 frames into the
future.
void * usb_alloc_coherent(struct usb_device * dev, size_t size, gfp_t mem_flags, dma_addr_t

* dma)
allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP

Parameters
struct usb_device * dev device the buffer will be used with
size_t size requested buffer size
gfp_t mem_flags affect whether allocation may block
dma_addr_t * dma used to return DMA address of buffer
Return
Either null (indicating no buffer could be allocated), or the cpu-space pointer to a buffer that may be used
to perform DMA to the specified device. Such cpu-space buffers are returned along with the DMA address
(through the pointer provided).
Note
These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags to avoid behaviors like
using “DMA bounce buffers”, or thrashing IOMMU hardware during URB completion/resubmit. The im-
plementation varies between platforms, depending on details of how DMA will work to this device. Using
these buffers also eliminates cacheline sharing problems on architectures where CPU caches are not DMA-
coherent. On systems without bus-snooping caches, these buffers are uncached.
When the buffer is no longer used, free it with usb_free_coherent().
void usb_free_coherent(struct usb_device * dev, size_t size, void * addr, dma_addr_t dma)

free memory allocated with usb_alloc_coherent()
Parameters

13.1. The Linux-USB Host Side API 323

The kernel driver API manual, Release 4.13.0-rc4+

struct usb_device * dev device the buffer was used with
size_t size requested buffer size
void * addr CPU address of buffer
dma_addr_t dma DMA address of buffer
Description
This reclaims an I/O buffer, letting it be reused. The memory must have been allocated using
usb_alloc_coherent(), and the parameters must match those provided in that allocation request.
struct urb * usb_buffer_map(struct urb * urb)

create DMA mapping(s) for an urb
Parameters
struct urb * urb urb whose transfer_buffer/setup_packet will be mapped
Description
URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation succeeds. If the device is
connected to this system through a non-DMA controller, this operation always succeeds.
This call would normally be used for an urb which is reused, perhaps as the target of a large periodic
transfer, with usb_buffer_dmasync() calls to synchronize memory and dma state.
Reverse the effect of this call with usb_buffer_unmap().
Return
Either NULL (indicating no buffer could be mapped), or urb.
void usb_buffer_dmasync(struct urb * urb)

synchronize DMA and CPU view of buffer(s)
Parameters
struct urb * urb urb whose transfer_buffer/setup_packet will be synchronized
void usb_buffer_unmap(struct urb * urb)

free DMA mapping(s) for an urb
Parameters
struct urb * urb urb whose transfer_buffer will be unmapped
Description
Reverses the effect of usb_buffer_map().
int usb_buffer_map_sg(const struct usb_device * dev, int is_in, struct scatterlist * sg, int nents)

create scatterlist DMA mapping(s) for an endpoint
Parameters
const struct usb_device * dev device to which the scatterlist will be mapped
int is_in mapping transfer direction
struct scatterlist * sg the scatterlist to map
int nents the number of entries in the scatterlist
Return
Either < 0 (indicating no buffers could be mapped), or the number of DMA mapping array entries in the
scatterlist.
Note
The caller is responsible for placing the resulting DMA addresses from the scatterlist into URB transfer
buffer pointers, and for setting the URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.

324 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Top I/O rates come from queuing URBs, instead of waiting for each one to complete before starting the
next I/O. This is particularly easy to do with scatterlists. Just allocate and submit one URB for each DMA
mapping entry returned, stopping on the first error or when all succeed. Better yet, use the usb_sg_*()
calls, which do that (and more) for you.
This call would normally be used when translating scatterlist requests, rather than usb_buffer_map(),
since on some hardware (with IOMMUs) it may be able to coalesce mappings for improved I/O efficiency.
Reverse the effect of this call with usb_buffer_unmap_sg().
void usb_buffer_dmasync_sg(const struct usb_device * dev, int is_in, struct scatterlist * sg,

int n_hw_ents)
synchronize DMA and CPU view of scatterlist buffer(s)

Parameters
const struct usb_device * dev device to which the scatterlist will be mapped
int is_in mapping transfer direction
struct scatterlist * sg the scatterlist to synchronize
int n_hw_ents the positive return value from usb_buffer_map_sg
Description
Use this when you are re-using a scatterlist’s data buffers for another USB request.
void usb_buffer_unmap_sg(const struct usb_device * dev, int is_in, struct scatterlist * sg,

int n_hw_ents)
free DMA mapping(s) for a scatterlist

Parameters
const struct usb_device * dev device to which the scatterlist will be mapped
int is_in mapping transfer direction
struct scatterlist * sg the scatterlist to unmap
int n_hw_ents the positive return value from usb_buffer_map_sg
Description
Reverses the effect of usb_buffer_map_sg().
int usb_hub_clear_tt_buffer(struct urb * urb)

clear control/bulk TT state in high speed hub
Parameters
struct urb * urb an URB associated with the failed or incomplete split transaction
Description
High speed HCDs use this to tell the hub driver that some split control or bulk transaction failed in a way
that requires clearing internal state of a transaction translator. This is normally detected (and reported)
from interrupt context.
It may not be possible for that hub to handle additional full (or low) speed transactions until that state is
fully cleared out.
Return
0 if successful. A negative error code otherwise.
void usb_set_device_state(struct usb_device * udev, enum usb_device_state new_state)

change a device’s current state (usbcore, hcds)
Parameters
struct usb_device * udev pointer to device whose state should be changed

13.1. The Linux-USB Host Side API 325

The kernel driver API manual, Release 4.13.0-rc4+

enum usb_device_state new_state new state value to be stored
Description
udev->state is _not_ fully protected by the device lock. Although most transitions are made only while
holding the lock, the state can can change to USB_STATE_NOTATTACHED at almost any time. This is so that
devices can be marked as disconnected as soon as possible, without having to wait for any semaphores
to be released. As a result, all changes to any device’s state must be protected by the device_state_lock
spinlock.
Once a device has been added to the device tree, all changes to its state should be made using this
routine. The state should _not_ be set directly.
If udev->state is already USB_STATE_NOTATTACHED then no change is made. Otherwise udev->state is
set to new_state, and if new_state is USB_STATE_NOTATTACHED then all of udev’s descendants’ states are
also set to USB_STATE_NOTATTACHED.
void usb_root_hub_lost_power(struct usb_device * rhdev)

called by HCD if the root hub lost Vbus power
Parameters
struct usb_device * rhdev struct usb_device for the root hub
Description
The USB host controller driver calls this function when its root hub is resumed and Vbus power has been
interrupted or the controller has been reset. The routine marks rhdev as having lost power. When the
hub driver is resumed it will take notice and carry out power-session recovery for all the “USB-PERSIST”-
enabled child devices; the others will be disconnected.
int usb_reset_device(struct usb_device * udev)

warn interface drivers and perform a USB port reset
Parameters
struct usb_device * udev device to reset (not in SUSPENDED or NOTATTACHED state)
Description
Warns all drivers bound to registered interfaces (using their pre_reset method), performs the port reset,
and then lets the drivers know that the reset is over (using their post_reset method).
Return
The same as for usb_reset_and_verify_device().
Note
The caller must own the device lock. For example, it’s safe to use this from a driver probe() routine after
downloading new firmware. For calls that might not occur during probe(), drivers should lock the device
using usb_lock_device_for_reset().
If an interface is currently being probed or disconnected, we assume its driver knows how to handle resets.
For all other interfaces, if the driver doesn’t have pre_reset and post_reset methods then we attempt to
unbind it and rebind afterward.
void usb_queue_reset_device(struct usb_interface * iface)

Reset a USB device from an atomic context
Parameters
struct usb_interface * iface USB interface belonging to the device to reset
Description
This function can be used to reset a USB device from an atomic context, where usb_reset_device()
won’t work (as it blocks).

326 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Doing a reset via this method is functionally equivalent to calling usb_reset_device(), except for the
fact that it is delayed to a workqueue. This means that any drivers bound to other interfaces might be
unbound, as well as users from usbfs in user space.
Corner cases:
• Scheduling two resets at the same time from two different drivers attached to two different interfaces
of the same device is possible; depending on how the driver attached to each interface handles -
>:c:func:pre_reset(), the second reset might happen or not.

• If the reset is delayed so long that the interface is unbound from its driver, the reset will be skipped.
• This function can be called during .:c:func:probe(). It can also be called during .:c:func:disconnect(),
but doing so is pointless because the reset will not occur. If you really want to reset the device during
.:c:func:disconnect(), call usb_reset_device() directly – but watch out for nested unbinding issues!

struct usb_device * usb_hub_find_child(struct usb_device * hdev, int port1)
Get the pointer of child device attached to the port which is specified by port1.

Parameters
struct usb_device * hdev USB device belonging to the usb hub
int port1 port num to indicate which port the child device is attached to.
Description
USB drivers call this function to get hub’s child device pointer.
Return
NULL if input param is invalid and child’s usb_device pointer if non-NULL.

13.1.6 Host Controller APIs

These APIs are only for use by host controller drivers, most of which implement standard register interfaces
such as XHCI, EHCI, OHCI, or UHCI. UHCI was one of the first interfaces, designed by Intel and also used by
VIA; it doesn’t do much in hardware. OHCI was designed later, to have the hardware do more work (bigger
transfers, tracking protocol state, and so on). EHCI was designed with USB 2.0; its design has features
that resemble OHCI (hardware does much more work) as well as UHCI (some parts of ISO support, TD list
processing). XHCI was designed with USB 3.0. It continues to shift support for functionality into hardware.
There are host controllers other than the “big three”, although most PCI based controllers (and a few
non-PCI based ones) use one of those interfaces. Not all host controllers use DMA; some use PIO, and
there is also a simulator and a virtual host controller to pipe USB over the network.
The same basic APIs are available to drivers for all those controllers. For historical reasons they are in
two layers: struct usb_bus is a rather thin layer that became available in the 2.2 kernels, while struct
usb_hcd is amore featureful layer that lets HCDs share common code, to shrink driver size and significantly
reduce hcd-specific behaviors.
long usb_calc_bus_time(int speed, int is_input, int isoc, int bytecount)

approximate periodic transaction time in nanoseconds
Parameters
int speed from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
int is_input true iff the transaction sends data to the host
int isoc true for isochronous transactions, false for interrupt ones
int bytecount how many bytes in the transaction.
Return
Approximate bus time in nanoseconds for a periodic transaction.
Note

13.1. The Linux-USB Host Side API 327

The kernel driver API manual, Release 4.13.0-rc4+

See USB 2.0 spec section 5.11.3; only periodic transfers need to be scheduled in software, this function
is only used for such scheduling.
int usb_hcd_link_urb_to_ep(struct usb_hcd * hcd, struct urb * urb)

add an URB to its endpoint queue
Parameters
struct usb_hcd * hcd host controller to which urb was submitted
struct urb * urb URB being submitted
Description
Host controller drivers should call this routine in their enqueue()method. The HCD’s private spinlock must
be held and interrupts must be disabled. The actions carried out here are required for URB submission,
as well as for endpoint shutdown and for usb_kill_urb.
Return
0 for no error, otherwise a negative error code (in which case the enqueue() method must fail). If no
error occurs but enqueue() fails anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
the private spinlock and returning.
int usb_hcd_check_unlink_urb(struct usb_hcd * hcd, struct urb * urb, int status)

check whether an URB may be unlinked
Parameters
struct usb_hcd * hcd host controller to which urb was submitted
struct urb * urb URB being checked for unlinkability
int status error code to store in urb if the unlink succeeds
Description
Host controller drivers should call this routine in their dequeue() method. The HCD’s private spinlock
must be held and interrupts must be disabled. The actions carried out here are required for making sure
than an unlink is valid.
Return
0 for no error, otherwise a negative error code (in which case the dequeue() method must fail). The
possible error codes are:

-EIDRM: urb was not submitted or has already completed. The completion function
may not have been called yet.

-EBUSY: urb has already been unlinked.
void usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd, struct urb * urb)

remove an URB from its endpoint queue
Parameters
struct usb_hcd * hcd host controller to which urb was submitted
struct urb * urb URB being unlinked
Description
Host controller drivers should call this routine before calling usb_hcd_giveback_urb(). The HCD’s private
spinlock must be held and interrupts must be disabled. The actions carried out here are required for URB
completion.
void usb_hcd_giveback_urb(struct usb_hcd * hcd, struct urb * urb, int status)

return URB from HCD to device driver
Parameters
struct usb_hcd * hcd host controller returning the URB

328 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

struct urb * urb urb being returned to the USB device driver.
int status completion status code for the URB.
Context
in_interrupt()

Description
This hands the URB from HCD to its USB device driver, using its completion function. The HCD has freed
all per-urb resources (and is done using urb->hcpriv). It also released all HCD locks; the device driver
won’t cause problems if it frees, modifies, or resubmits this URB.
If urb was unlinked, the value of status will be overridden by urb->unlinked. Erroneous short transfers
are detected in case the HCD hasn’t checked for them.
int usb_alloc_streams(struct usb_interface * interface, struct usb_host_endpoint ** eps, unsigned

int num_eps, unsigned int num_streams, gfp_t mem_flags)
allocate bulk endpoint stream IDs.

Parameters
struct usb_interface * interface alternate setting that includes all endpoints.
struct usb_host_endpoint ** eps array of endpoints that need streams.
unsigned int num_eps number of endpoints in the array.
unsigned int num_streams number of streams to allocate.
gfp_t mem_flags flags hcd should use to allocate memory.
Description
Sets up a group of bulk endpoints to havenum_streams stream IDs available. Driversmay queuemultiple
transfers to different stream IDs, which may complete in a different order than they were queued.
Return
On success, the number of allocated streams. On failure, a negative error code.
int usb_free_streams(struct usb_interface * interface, struct usb_host_endpoint ** eps, unsigned

int num_eps, gfp_t mem_flags)
free bulk endpoint stream IDs.

Parameters
struct usb_interface * interface alternate setting that includes all endpoints.
struct usb_host_endpoint ** eps array of endpoints to remove streams from.
unsigned int num_eps number of endpoints in the array.
gfp_t mem_flags flags hcd should use to allocate memory.
Description
Reverts a group of bulk endpoints back to not using stream IDs. Can fail if we are given bad arguments,
or HCD is broken.
Return
0 on success. On failure, a negative error code.
void usb_hcd_resume_root_hub(struct usb_hcd * hcd)

called by HCD to resume its root hub
Parameters
struct usb_hcd * hcd host controller for this root hub

13.1. The Linux-USB Host Side API 329

The kernel driver API manual, Release 4.13.0-rc4+

Description
The USB host controller calls this function when its root hub is suspended (with the remote wakeup feature
enabled) and a remote wakeup request is received. The routine submits a workqueue request to resume
the root hub (that is, manage its downstream ports again).
int usb_bus_start_enum(struct usb_bus * bus, unsigned port_num)

start immediate enumeration (for OTG)
Parameters
struct usb_bus * bus the bus (must use hcd framework)
unsigned port_num 1-based number of port; usually bus->otg_port
Context
in_interrupt()

Description
Starts enumeration, with an immediate reset followed later by hub_wq identifying and possibly configuring
the device. This is needed by OTG controller drivers, where it helpsmeet HNP protocol timing requirements
for starting a port reset.
Return
0 if successful.
irqreturn_t usb_hcd_irq(int irq, void * __hcd)

hook IRQs to HCD framework (bus glue)
Parameters
int irq the IRQ being raised
void * __hcd pointer to the HCD whose IRQ is being signaled
Description
If the controller isn’t HALTed, calls the driver’s irq handler. Checks whether the controller is now dead.
Return
IRQ_HANDLED if the IRQ was handled. IRQ_NONE otherwise.
void usb_hc_died(struct usb_hcd * hcd)

report abnormal shutdown of a host controller (bus glue)
Parameters
struct usb_hcd * hcd pointer to the HCD representing the controller
Description
This is called by bus glue to report a USB host controller that died while operations may still have been
pending. It’s called automatically by the PCI glue, so only glue for non-PCI busses should need to call it.
Only call this function with the primary HCD.
struct usb_hcd * usb_create_shared_hcd(const struct hc_driver * driver, struct device * dev, const

char * bus_name, struct usb_hcd * primary_hcd)
create and initialize an HCD structure

Parameters
const struct hc_driver * driver HC driver that will use this hcd
struct device * dev device for this HC, stored in hcd->self.controller
const char * bus_name value to store in hcd->self.bus_name
struct usb_hcd * primary_hcd a pointer to the usb_hcd structure that is sharing the PCI device. Only

allocate certain resources for the primary HCD

330 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Context
!:c:func:in_interrupt()
Description
Allocate a struct usb_hcd, with extra space at the end for the HC driver’s private data. Initialize the generic
members of the hcd structure.
Return
On success, a pointer to the created and initialized HCD structure. On failure (e.g. if memory is unavail-
able), NULL.
struct usb_hcd * usb_create_hcd(const struct hc_driver * driver, struct device * dev, const char

* bus_name)
create and initialize an HCD structure

Parameters
const struct hc_driver * driver HC driver that will use this hcd
struct device * dev device for this HC, stored in hcd->self.controller
const char * bus_name value to store in hcd->self.bus_name
Context
!:c:func:in_interrupt()
Description
Allocate a struct usb_hcd, with extra space at the end for the HC driver’s private data. Initialize the generic
members of the hcd structure.
Return
On success, a pointer to the created and initialized HCD structure. On failure (e.g. if memory is unavail-
able), NULL.
int usb_add_hcd(struct usb_hcd * hcd, unsigned int irqnum, unsigned long irqflags)

finish generic HCD structure initialization and register
Parameters
struct usb_hcd * hcd the usb_hcd structure to initialize
unsigned int irqnum Interrupt line to allocate
unsigned long irqflags Interrupt type flags
Description
Finish the remaining parts of generic HCD initialization: allocate the buffers of consistent memory, register
the bus, request the IRQ line, and call the driver’s reset() and start() routines.
void usb_remove_hcd(struct usb_hcd * hcd)

shutdown processing for generic HCDs
Parameters
struct usb_hcd * hcd the usb_hcd structure to remove
Context
!:c:func:in_interrupt()
Description
Disconnects the root hub, then reverses the effects of usb_add_hcd(), invoking the HCD’s stop()method.

int usb_hcd_pci_probe(struct pci_dev * dev, const struct pci_device_id * id)
initialize PCI-based HCDs

13.1. The Linux-USB Host Side API 331

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct pci_dev * dev USB Host Controller being probed
const struct pci_device_id * id pci hotplug id connecting controller to HCD framework
Context
!:c:func:in_interrupt()
Description
Allocates basic PCI resources for this USB host controller, and then invokes the start() method for the
HCD associated with it through the hotplug entry’s driver_data.
Store this function in the HCD’s struct pci_driver as probe().
Return
0 if successful.
void usb_hcd_pci_remove(struct pci_dev * dev)

shutdown processing for PCI-based HCDs
Parameters
struct pci_dev * dev USB Host Controller being removed
Context
!:c:func:in_interrupt()
Description
Reverses the effect of usb_hcd_pci_probe(), first invoking the HCD’s stop()method. It is always called
from a thread context, normally “rmmod”, “apmd”, or something similar.
Store this function in the HCD’s struct pci_driver as remove().
void usb_hcd_pci_shutdown(struct pci_dev * dev)

shutdown host controller
Parameters
struct pci_dev * dev USB Host Controller being shutdown
int hcd_buffer_create(struct usb_hcd * hcd)

initialize buffer pools
Parameters
struct usb_hcd * hcd the bus whose buffer pools are to be initialized
Context
!:c:func:in_interrupt()
Description
Call this as part of initializing a host controller that uses the dma memory allocators. It initializes some
pools of dma-coherent memory that will be shared by all drivers using that controller.
Call hcd_buffer_destroy() to clean up after using those pools.
Return
0 if successful. A negative errno value otherwise.
void hcd_buffer_destroy(struct usb_hcd * hcd)

deallocate buffer pools
Parameters
struct usb_hcd * hcd the bus whose buffer pools are to be destroyed

332 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Context
!:c:func:in_interrupt()
Description
This frees the buffer pools created by hcd_buffer_create().

13.1.7 The USB character device nodes

This chapter presents the Linux character device nodes. You may prefer to avoid writing new kernel code
for your USB driver. User mode device drivers are usually packaged as applications or libraries, and may
use character devices through some programming library that wraps it. Such libraries include:
• libusb for C/C++, and
• jUSB for Java.

Some old information about it can be seen at the “USB Device Filesystem” section of the USB Guide. The
latest copy of the USB Guide can be found at http://www.linux-usb.org/

Note:

• They were used to be implemented via usbfs, but this is not part of the sysfs debug interface.
• This particular documentation is incomplete, especially with respect to the asynchronous mode.
As of kernel 2.5.66 the code and this (new) documentation need to be cross-reviewed.

What files are in “devtmpfs”?

Conventionally mounted at /dev/bus/usb/, usbfs features include:
• /dev/bus/usb/BBB/DDD ... magic files exposing the each device’s configuration descriptors, and
supporting a series of ioctls for making device requests, including I/O to devices. (Purely for access
by programs.)

Each bus is given a number (BBB) based on when it was enumerated; within each bus, each device is
given a similar number (DDD). Those BBB/DDD paths are not “stable” identifiers; expect them to change
even if you always leave the devices plugged in to the same hub port. Don’t even think of saving these
in application configuration files. Stable identifiers are available, for user mode applications that want to
use them. HID and networking devices expose these stable IDs, so that for example you can be sure that
you told the right UPS to power down its second server. Pleast note that it doesn’t (yet) expose those IDs.

/dev/bus/usb/BBB/DDD

Use these files in one of these basic ways:
• They can be read, producing first the device descriptor (18 bytes) and then the descriptors for the
current configuration. See the USB 2.0 spec for details about those binary data formats. You’ll need
to convert most multibyte values from little endian format to your native host byte order, although
a few of the fields in the device descriptor (both of the BCD-encoded fields, and the vendor and
product IDs) will be byteswapped for you. Note that configuration descriptors include descriptors for
interfaces, altsettings, endpoints, and maybe additional class descriptors.

• Perform USB operations using ioctl() requests to make endpoint I/O requests (synchronously or asyn-
chronously) or manage the device. These requests need the CAP_SYS_RAWIO capability, as well as
filesystem access permissions. Only one ioctl request can be made on one of these device files at
a time. This means that if you are synchronously reading an endpoint from one thread, you won’t
be able to write to a different endpoint from another thread until the read completes. This works for
half duplex protocols, but otherwise you’d use asynchronous i/o requests.

13.1. The Linux-USB Host Side API 333

http://libusb.sourceforge.net
http://jUSB.sourceforge.net
http://www.linux-usb.org/

The kernel driver API manual, Release 4.13.0-rc4+

Each connected USB device has one file. The BBB indicates the bus number. The DDD indicates the device
address on that bus. Both of these numbers are assigned sequentially, and can be reused, so you can’t
rely on them for stable access to devices. For example, it’s relatively common for devices to re-enumerate
while they are still connected (perhaps someone jostled their power supply, hub, or USB cable), so a device
might be 002/027 when you first connect it and 002/048 sometime later.
These files can be read as binary data. The binary data consists of first the device descriptor, then the
descriptors for each configuration of the device. Multi-byte fields in the device descriptor are converted
to host endianness by the kernel. The configuration descriptors are in bus endian format! The configura-
tion descriptor are wTotalLength bytes apart. If a device returns less configuration descriptor data than
indicated by wTotalLength there will be a hole in the file for the missing bytes. This information is also
shown in text form by the /sys/kernel/debug/usb/devices file, described later.
These files may also be used to write user-level drivers for the USB devices. You would open the
/dev/bus/usb/BBB/DDD file read/write, read its descriptors to make sure it’s the device you expect, and
then bind to an interface (or perhaps several) using an ioctl call. You would issue more ioctls to the device
to communicate to it using control, bulk, or other kinds of USB transfers. The IOCTLs are listed in the
<linux/usbdevice_fs.h> file, and at this writing the source code (linux/drivers/usb/core/devio.c)
is the primary reference for how to access devices through those files.
Note that since by default these BBB/DDD files are writable only by root, only root can write such user
mode drivers. You can selectively grant read/write permissions to other users by using chmod. Also, usbfs
mount options such as devmode=0666 may be helpful.

Life Cycle of User Mode Drivers

Such a driver first needs to find a device file for a device it knows how to handle. Maybe it was told about
it because a /sbin/hotplug event handling agent chose that driver to handle the new device. Or maybe
it’s an application that scans all the /dev/bus/usb device files, and ignores most devices. In either case,
it should read() all the descriptors from the device file, and check them against what it knows how to
handle. It might just reject everything except a particular vendor and product ID, or need a more complex
policy.
Never assume there will only be one such device on the system at a time! If your code can’t handle more
than one device at a time, at least detect when there’s more than one, and have your users choose which
device to use.
Once your user mode driver knows what device to use, it interacts with it in either of two styles. The
simple style is to make only control requests; some devices don’t need more complex interactions than
those. (An example might be software using vendor-specific control requests for some initialization or
configuration tasks, with a kernel driver for the rest.)
More likely, you need a more complex style driver: one using non-control endpoints, reading or writing
data and claiming exclusive use of an interface. Bulk transfers are easiest to use, but only their sibling
interrupt transfers work with low speed devices. Both interrupt and isochronous transfers offer service
guarantees because their bandwidth is reserved. Such “periodic” transfers are awkward to use through
usbfs, unless you’re using the asynchronous calls. However, interrupt transfers can also be used in a
synchronous “one shot” style.
Your user-mode driver should never need to worry about cleaning up request state when the device is
disconnected, although it should close its open file descriptors as soon as it starts seeing the ENODEV
errors.

The ioctl() Requests

To use these ioctls, you need to include the following headers in your userspace program:

#include <linux/usb.h>
#include <linux/usbdevice_fs.h>
#include <asm/byteorder.h>

334 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

The standard USB device model requests, from “Chapter 9” of the USB 2.0 specification, are automatically
included from the <linux/usb/ch9.h> header.
Unless noted otherwise, the ioctl requests described here will update the modification time on the usbfs
file to which they are applied (unless they fail). A return of zero indicates success; otherwise, a standard
USB error code is returned (These are documented in USB Error codes).
Each of these files multiplexes access to several I/O streams, one per endpoint. Each device has one
control endpoint (endpoint zero) which supports a limited RPC style RPC access. Devices are configured
by hub_wq (in the kernel) setting a device-wide configuration that affects things like power consumption
and basic functionality. The endpoints are part of USB interfaces, which may have altsettings affecting
things like which endpoints are available. Many devices only have a single configuration and interface,
so drivers for them will ignore configurations and altsettings.

Management/Status Requests

A number of usbfs requests don’t deal very directly with device I/O. They mostly relate to device manage-
ment and status. These are all synchronous requests.
USBDEVFS_CLAIMINTERFACE This is used to force usbfs to claim a specific interface, which has not

previously been claimed by usbfs or any other kernel driver. The ioctl parameter is an integer holding
the number of the interface (bInterfaceNumber from descriptor).
Note that if your driver doesn’t claim an interface before trying to use one of its endpoints, and no
other driver has bound to it, then the interface is automatically claimed by usbfs.
This claim will be released by a RELEASEINTERFACE ioctl, or by closing the file descriptor. File modi-
fication time is not updated by this request.

USBDEVFS_CONNECTINFO Says whether the device is lowspeed. The ioctl parameter points to a struc-
ture like this:

struct usbdevfs_connectinfo {
unsigned int devnum;
unsigned char slow;

};

File modification time is not updated by this request.
You can’t tell whether a “not slow” device is connected at high speed (480 MBit/sec) or just full speed
(12 MBit/sec). You should know the devnum value already, it’s the DDD value of the device file name.

USBDEVFS_GETDRIVER Returns the name of the kernel driver bound to a given interface (a string).
Parameter is a pointer to this structure, which is modified:

struct usbdevfs_getdriver {
unsigned int interface;
char driver[USBDEVFS_MAXDRIVERNAME + 1];

};

File modification time is not updated by this request.
USBDEVFS_IOCTL Passes a request from userspace through to a kernel driver that has an ioctl entry in

the struct usb_driver it registered:

struct usbdevfs_ioctl {
int ifno;
int ioctl_code;
void *data;

};

/* user mode call looks like this.
* 'request' becomes the driver->ioctl() 'code' parameter.

13.1. The Linux-USB Host Side API 335

The kernel driver API manual, Release 4.13.0-rc4+

* the size of 'param' is encoded in 'request', and that data
* is copied to or from the driver->ioctl() 'buf' parameter.
*/
static int
usbdev_ioctl (int fd, int ifno, unsigned request, void *param)
{

struct usbdevfs_ioctl wrapper;

wrapper.ifno = ifno;
wrapper.ioctl_code = request;
wrapper.data = param;

return ioctl (fd, USBDEVFS_IOCTL, &wrapper);
}

File modification time is not updated by this request.
This request lets kernel drivers talk to user mode code through filesystem operations even when they
don’t create a character or block special device. It’s also been used to do things like ask devices what
device special file should be used. Two pre-defined ioctls are used to disconnect and reconnect kernel
drivers, so that user mode code can completely manage binding and configuration of devices.

USBDEVFS_RELEASEINTERFACE This is used to release the claim usbfs made on interface, either im-
plicitly or because of a USBDEVFS_CLAIMINTERFACE call, before the file descriptor is closed. The ioctl
parameter is an integer holding the number of the interface (bInterfaceNumber from descriptor); File
modification time is not updated by this request.

Warning:

No security check is made to ensure that the task which made the claim is the one which is
releasing it. This means that user mode driver may interfere other ones.

USBDEVFS_RESETEP Resets the data toggle value for an endpoint (bulk or interrupt) to DATA0. The
ioctl parameter is an integer endpoint number (1 to 15, as identified in the endpoint descriptor), with
USB_DIR_IN added if the device’s endpoint sends data to the host.

Warning:

Avoid using this request. It should probably be removed. Using it typically means the device
and driver will lose toggle synchronization. If you really lost synchronization, you likely need to
completely handshake with the device, using a request like CLEAR_HALT or SET_INTERFACE.

USBDEVFS_DROP_PRIVILEGES This is used to relinquish the ability to do certain operations which are
considered to be privileged on a usbfs file descriptor. This includes claiming arbitrary interfaces,
resetting a device on which there are currently claimed interfaces from other users, and issuing
USBDEVFS_IOCTL calls. The ioctl parameter is a 32 bit mask of interfaces the user is allowed to claim
on this file descriptor. You may issue this ioctl more than one time to narrow said mask.

Synchronous I/O Support

Synchronous requests involve the kernel blocking until the user mode request completes, either by fin-
ishing successfully or by reporting an error. In most cases this is the simplest way to use usbfs, although
as noted above it does prevent performing I/O to more than one endpoint at a time.
USBDEVFS_BULK Issues a bulk read or write request to the device. The ioctl parameter is a pointer to

this structure:

336 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

struct usbdevfs_bulktransfer {
unsigned int ep;
unsigned int len;
unsigned int timeout; /* in milliseconds */
void *data;

};

The ep value identifies a bulk endpoint number (1 to 15, as identified in an endpoint descriptor),
masked with USB_DIR_IN when referring to an endpoint which sends data to the host from the de-
vice. The length of the data buffer is identified by len; Recent kernels support requests up to about
128KBytes. FIXME say how read length is returned, and how short reads are handled..

USBDEVFS_CLEAR_HALT Clears endpoint halt (stall) and resets the endpoint toggle. This is only mean-
ingful for bulk or interrupt endpoints. The ioctl parameter is an integer endpoint number (1 to 15, as
identified in an endpoint descriptor), masked with USB_DIR_IN when referring to an endpoint which
sends data to the host from the device.
Use this on bulk or interrupt endpoints which have stalled, returning -EPIPE status to a data transfer
request. Do not issue the control request directly, since that could invalidate the host’s record of the
data toggle.

USBDEVFS_CONTROL Issues a control request to the device. The ioctl parameter points to a structure
like this:

struct usbdevfs_ctrltransfer {
__u8 bRequestType;
__u8 bRequest;
__u16 wValue;
__u16 wIndex;
__u16 wLength;
__u32 timeout; /* in milliseconds */
void *data;

};

The first eight bytes of this structure are the contents of the SETUP packet to be sent to the de-
vice; see the USB 2.0 specification for details. The bRequestType value is composed by combin-
ing a USB_TYPE_* value, a USB_DIR_* value, and a USB_RECIP_* value (from linux/usb.h). If
wLength is nonzero, it describes the length of the data buffer, which is either written to the device
(USB_DIR_OUT) or read from the device (USB_DIR_IN).
At this writing, you can’t transfer more than 4 KBytes of data to or from a device; usbfs has a limit,
and some host controller drivers have a limit. (That’s not usually a problem.) Also there’s no way to
say it’s not OK to get a short read back from the device.

USBDEVFS_RESET Does a USB level device reset. The ioctl parameter is ignored. After the reset, this
rebinds all device interfaces. File modification time is not updated by this request.

Warning:

Avoid using this call until some usbcore bugs get fixed, since it does not fully synchronize device,
interface, and driver (not just usbfs) state.

USBDEVFS_SETINTERFACE Sets the alternate setting for an interface. The ioctl parameter is a pointer
to a structure like this:

struct usbdevfs_setinterface {
unsigned int interface;
unsigned int altsetting;

};

File modification time is not updated by this request.

13.1. The Linux-USB Host Side API 337

The kernel driver API manual, Release 4.13.0-rc4+

Those struct members are from some interface descriptor applying to the current configuration. The
interface number is the bInterfaceNumber value, and the altsetting number is the bAlternateSetting
value. (This resets each endpoint in the interface.)

USBDEVFS_SETCONFIGURATION Issues the usb_set_configuration() call for the device. The pa-
rameter is an integer holding the number of a configuration (bConfigurationValue from descriptor).
File modification time is not updated by this request.

Warning:

Avoid using this call until some usbcore bugs get fixed, since it does not fully synchronize device,
interface, and driver (not just usbfs) state.

Asynchronous I/O Support

As mentioned above, there are situations where it may be important to initiate concurrent operations
from user mode code. This is particularly important for periodic transfers (interrupt and isochronous), but
it can be used for other kinds of USB requests too. In such cases, the asynchronous requests described
here are essential. Rather than submitting one request and having the kernel block until it completes, the
blocking is separate.
These requests are packaged into a structure that resembles the URB used by kernel device drivers. (No
POSIX Async I/O support here, sorry.) It identifies the endpoint type (USBDEVFS_URB_TYPE_*), endpoint
(number, masked with USB_DIR_IN as appropriate), buffer and length, and a user “context” value serving
to uniquely identify each request. (It’s usually a pointer to per-request data.) Flags can modify requests
(not as many as supported for kernel drivers).
Each request can specify a realtime signal number (between SIGRTMIN and SIGRTMAX, inclusive) to re-
quest a signal be sent when the request completes.
When usbfs returns these urbs, the status value is updated, and the buffer may have been modified.
Except for isochronous transfers, the actual_length is updated to say how many bytes were transferred; if
the USBDEVFS_URB_DISABLE_SPD flag is set (“short packets are not OK”), if fewer bytes were read than
were requested then you get an error report:

struct usbdevfs_iso_packet_desc {
unsigned int length;
unsigned int actual_length;
unsigned int status;

};

struct usbdevfs_urb {
unsigned char type;
unsigned char endpoint;
int status;
unsigned int flags;
void *buffer;
int buffer_length;
int actual_length;
int start_frame;
int number_of_packets;
int error_count;
unsigned int signr;
void *usercontext;
struct usbdevfs_iso_packet_desc iso_frame_desc[];

};

For these asynchronous requests, the file modification time reflects when the request was initiated. This
contrasts with their use with the synchronous requests, where it reflects when requests complete.

338 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

USBDEVFS_DISCARDURB TBS File modification time is not updated by this request.
USBDEVFS_DISCSIGNAL TBS File modification time is not updated by this request.
USBDEVFS_REAPURB TBS File modification time is not updated by this request.
USBDEVFS_REAPURBNDELAY TBS File modification time is not updated by this request.
USBDEVFS_SUBMITURB TBS

13.1.8 The USB devices

The USB devices are now exported via debugfs:
• /sys/kernel/debug/usb/devices ... a text file showing each of the USB devices on known to the
kernel, and their configuration descriptors. You can also poll() this to learn about new devices.

/sys/kernel/debug/usb/devices

This file is handy for status viewing tools in user mode, which can scan the text format and ignore most of
it. More detailed device status (including class and vendor status) is available from device-specific files.
For information about the current format of this file, see the Documentation/usb/proc_usb_info.txt file
in your Linux kernel sources.
This file, in combination with the poll() system call, can also be used to detect when devices are added or
removed:

int fd;
struct pollfd pfd;

fd = open("/sys/kernel/debug/usb/devices", O_RDONLY);
pfd = { fd, POLLIN, 0 };
for (;;) {

/* The first time through, this call will return immediately. */
poll(&pfd, 1, -1);

/* To see what's changed, compare the file's previous and current
contents or scan the filesystem. (Scanning is more precise.) */

}

Note that this behavior is intended to be used for informational and debug purposes. It would be more
appropriate to use programs such as udev or HAL to initialize a device or start a user-mode helper program,
for instance.
In this file, each device’s output has multiple lines of ASCII output.
I made it ASCII instead of binary on purpose, so that someone can obtain some useful data from it without
the use of an auxiliary program. However, with an auxiliary program, the numbers in the first 4 columns
of each T: line (topology info: Lev, Prnt, Port, Cnt) can be used to build a USB topology diagram.
Each line is tagged with a one-character ID for that line:

T = Topology (etc.)
B = Bandwidth (applies only to USB host controllers, which are
virtualized as root hubs)
D = Device descriptor info.
P = Product ID info. (from Device descriptor, but they won't fit
together on one line)
S = String descriptors.
C = Configuration descriptor info. (* = active configuration)
I = Interface descriptor info.
E = Endpoint descriptor info.

13.1. The Linux-USB Host Side API 339

The kernel driver API manual, Release 4.13.0-rc4+

/sys/kernel/debug/usb/devices output format

Legend:: d = decimal number (may have leading spaces or 0’s) x = hexadecimal number (may have
leading spaces or 0’s) s = string

Topology info

T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=dddd MxCh=dd
| | | | | | | | |__MaxChildren
| | | | | | | |__Device Speed in Mbps
| | | | | | |__DeviceNumber
| | | | | |__Count of devices at this level
| | | | |__Connector/Port on Parent for this device
| | | |__Parent DeviceNumber
| | |__Level in topology for this bus
| |__Bus number
|__Topology info tag

Speed may be:
1.5 Mbit/s for low speed USB
12 Mbit/s for full speed USB
480 Mbit/s for high speed USB (added for USB 2.0); also used for Wireless USB, which has

no fixed speed
5000 Mbit/s for SuperSpeed USB (added for USB 3.0)

For reasons lost in the mists of time, the Port number is always too low by 1. For example, a device
plugged into port 4 will show up with Port=03.

Bandwidth info

B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd
| | | |__Number of isochronous requests
| | |__Number of interrupt requests
| |__Total Bandwidth allocated to this bus
|__Bandwidth info tag

Bandwidth allocation is an approximation of how much of one frame (millisecond) is in use. It reflects only
periodic transfers, which are the only transfers that reserve bandwidth. Control and bulk transfers use all
other bandwidth, including reserved bandwidth that is not used for transfers (such as for short packets).
The percentage is how much of the “reserved” bandwidth is scheduled by those transfers. For a low or
full speed bus (loosely, “USB 1.1”), 90% of the bus bandwidth is reserved. For a high speed bus (loosely,
“USB 2.0”) 80% is reserved.

Device descriptor info & Product ID info

D: Ver=x.xx Cls=xx(s) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
P: Vendor=xxxx ProdID=xxxx Rev=xx.xx

where:

D: Ver=x.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
| | | | | | |__NumberConfigurations
| | | | | |__MaxPacketSize of Default Endpoint
| | | | |__DeviceProtocol
| | | |__DeviceSubClass

340 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

| | |__DeviceClass
| |__Device USB version
|__Device info tag #1

where:

P: Vendor=xxxx ProdID=xxxx Rev=xx.xx
| | | |__Product revision number
| | |__Product ID code
| |__Vendor ID code
|__Device info tag #2

String descriptor info

S: Manufacturer=ssss
| |__Manufacturer of this device as read from the device.
| For USB host controller drivers (virtual root hubs) this may
| be omitted, or (for newer drivers) will identify the kernel
| version and the driver which provides this hub emulation.
|__String info tag

S: Product=ssss
| |__Product description of this device as read from the device.
| For older USB host controller drivers (virtual root hubs) this
| indicates the driver; for newer ones, it's a product (and vendor)
| description that often comes from the kernel's PCI ID database.
|__String info tag

S: SerialNumber=ssss
| |__Serial Number of this device as read from the device.
| For USB host controller drivers (virtual root hubs) this is
| some unique ID, normally a bus ID (address or slot name) that
| can't be shared with any other device.
|__String info tag

Configuration descriptor info

C:* #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA
| | | | | |__MaxPower in mA
| | | | |__Attributes
| | | |__ConfiguratioNumber
| | |__NumberOfInterfaces
| |__ "*" indicates the active configuration (others are " ")
|__Config info tag

USB devices may have multiple configurations, each of which act rather differently. For example, a bus-
powered configuration might be much less capable than one that is self-powered. Only one device con-
figuration can be active at a time; most devices have only one configuration.
Each configuration consists of one or more interfaces. Each interface serves a distinct “function”, which
is typically bound to a different USB device driver. One common example is a USB speaker with an audio
interface for playback, and a HID interface for use with software volume control.

13.1. The Linux-USB Host Side API 341

The kernel driver API manual, Release 4.13.0-rc4+

Interface descriptor info (can be multiple per Config)

I:* If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss
| | | | | | | | |__Driver name
| | | | | | | | or "(none)"
| | | | | | | |__InterfaceProtocol
| | | | | | |__InterfaceSubClass
| | | | | |__InterfaceClass
| | | | |__NumberOfEndpoints
| | | |__AlternateSettingNumber
| | |__InterfaceNumber
| |__ "*" indicates the active altsetting (others are " ")
|__Interface info tag

A given interface may have one or more “alternate” settings. For example, default settings may not use
more than a small amount of periodic bandwidth. To use significant fractions of bus bandwidth, drivers
must select a non-default altsetting.
Only one setting for an interface may be active at a time, and only one driver may bind to an interface at
a time. Most devices have only one alternate setting per interface.

Endpoint descriptor info (can be multiple per Interface)

E: Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=dddss
| | | | |__Interval (max) between transfers
| | | |__EndpointMaxPacketSize
| | |__Attributes(EndpointType)
| |__EndpointAddress(I=In,O=Out)
|__Endpoint info tag

The interval is nonzero for all periodic (interrupt or isochronous) endpoints. For high speed endpoints the
transfer interval may be measured in microseconds rather than milliseconds.
For high speed periodic endpoints, the EndpointMaxPacketSize reflects the per-microframe data transfer
size. For “high bandwidth” endpoints, that can reflect two or three packets (for up to 3KBytes every 125
usec) per endpoint.
With the Linux-USB stack, periodic bandwidth reservations use the transfer intervals and sizes provided
by URBs, which can be less than those found in endpoint descriptor.

Usage examples

If a user or script is interested only in Topology info, for example, use something like grep ^T:
/sys/kernel/debug/usb/devices for only the Topology lines. A command like grep -i ^[tdp]:
/sys/kernel/debug/usb/devices can be used to list only the lines that begin with the characters in
square brackets, where the valid characters are TDPCIE. With a slightly more able script, it can display
any selected lines (for example, only T, D, and P lines) and change their output format. (The procusb Perl
script is the beginning of this idea. It will list only selected lines [selected from TBDPSCIE] or “All” lines
from /sys/kernel/debug/usb/devices.)
The Topology lines can be used to generate a graphic/pictorial of the USB devices on a system’s root hub.
(See more below on how to do this.)
The Interface lines can be used to determine what driver is being used for each device, and which altsetting
it activated.
The Configuration lines could be used to list maximum power (in milliamps) that a system’s USB devices
are using. For example, grep ^C: /sys/kernel/debug/usb/devices.

342 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Here’s an example, from a system which has a UHCI root hub, an external hub connected to the root hub,
and a mouse and a serial converter connected to the external hub.

T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
B: Alloc= 28/900 us (3%), #Int= 2, #Iso= 0
D: Ver= 1.00 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0000 ProdID=0000 Rev= 0.00
S: Product=USB UHCI Root Hub
S: SerialNumber=dce0
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms

T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4
D: Ver= 1.00 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0451 ProdID=1446 Rev= 1.00
C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 1 Ivl=255ms

T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
D: Ver= 1.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=04b4 ProdID=0001 Rev= 0.00
C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=02 Driver=mouse
E: Ad=81(I) Atr=03(Int.) MxPS= 3 Ivl= 10ms

T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
D: Ver= 1.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0565 ProdID=0001 Rev= 1.08
S: Manufacturer=Peracom Networks, Inc.
S: Product=Peracom USB to Serial Converter
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc) Sub=00 Prot=00 Driver=serial
E: Ad=81(I) Atr=02(Bulk) MxPS= 64 Ivl= 16ms
E: Ad=01(O) Atr=02(Bulk) MxPS= 16 Ivl= 16ms
E: Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl= 8ms

Selecting only the T: and I: lines from this (for example, by using procusb ti), we have

T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=02 Driver=mouse
T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc) Sub=00 Prot=00 Driver=serial

Physically this looks like (or could be converted to):

+------------------+
| PC/root_hub (12)| Dev# = 1
+------------------+ (nn) is Mbps.

Level 0 | CN.0 | CN.1 | [CN = connector/port #]
+------------------+

/
/

+-----------------------+
Level 1 | Dev#2: 4-port hub (12)|

+-----------------------+
|CN.0 |CN.1 |CN.2 |CN.3 |
+-----------------------+

\ ____________________

13.1. The Linux-USB Host Side API 343

The kernel driver API manual, Release 4.13.0-rc4+

_____ \
\ \

+--------------------+ +--------------------+
Level 2 | Dev# 3: mouse (1.5)| | Dev# 4: serial (12)|

+--------------------+ +--------------------+

Or, in a more tree-like structure (ports [Connectors] without connections could be omitted):

PC: Dev# 1, root hub, 2 ports, 12 Mbps
|_ CN.0: Dev# 2, hub, 4 ports, 12 Mbps

|_ CN.0: Dev #3, mouse, 1.5 Mbps
|_ CN.1:
|_ CN.2: Dev #4, serial, 12 Mbps
|_ CN.3:

|_ CN.1:

13.2 USB Gadget API for Linux

Author David Brownell
Date 20 August 2004

13.2.1 Introduction

This document presents a Linux-USB “Gadget” kernel mode API, for use within peripherals and other USB
devices that embed Linux. It provides an overview of the API structure, and shows how that fits into a
system development project. This is the first such API released on Linux to address a number of important
problems, including:
• Supports USB 2.0, for high speed devices which can stream data at several dozen megabytes per
second.

• Handles devices with dozens of endpoints just as well as ones with just two fixed-function ones.
Gadget drivers can be written so they’re easy to port to new hardware.

• Flexible enough to expose more complex USB device capabilities such as multiple configurations,
multiple interfaces, composite devices, and alternate interface settings.

• USB “On-The-Go” (OTG) support, in conjunction with updates to the Linux-USB host side.
• Sharing data structures and API models with the Linux-USB host side API. This helps the OTG support,
and looks forward to more-symmetric frameworks (where the same I/O model is used by both host
and device side drivers).

• Minimalist, so it’s easier to support new device controller hardware. I/O processing doesn’t imply
large demands for memory or CPU resources.

Most Linux developers will not be able to use this API, since they have USB host hardware in a PC, worksta-
tion, or server. Linux users with embedded systems are more likely to have USB peripheral hardware. To
distinguish drivers running inside such hardware from the more familiar Linux “USB device drivers”, which
are host side proxies for the real USB devices, a different term is used: the drivers inside the peripherals
are “USB gadget drivers”. In USB protocol interactions, the device driver is the master (or “client driver”)
and the gadget driver is the slave (or “function driver”).
The gadget API resembles the host side Linux-USB API in that both use queues of request objects to
package I/O buffers, and those requests may be submitted or canceled. They share common definitions
for the standard USB Chapter 9 messages, structures, and constants. Also, both APIs bind and unbind
drivers to devices. The APIs differ in detail, since the host side’s current URB framework exposes a number
of implementation details and assumptions that are inappropriate for a gadget API. While the model for
control transfers and configuration management is necessarily different (one side is a hardware-neutral

344 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

master, the other is a hardware-aware slave), the endpoint I/0 API used here should also be usable for an
overhead-reduced host side API.

13.2.2 Structure of Gadget Drivers

A system running inside a USB peripheral normally has at least three layers inside the kernel to handle
USB protocol processing, and may have additional layers in user space code. The gadget API is used by
the middle layer to interact with the lowest level (which directly handles hardware).
In Linux, from the bottom up, these layers are:
USB Controller Driver This is the lowest software level. It is the only layer that talks to hardware,

through registers, fifos, dma, irqs, and the like. The <linux/usb/gadget.h> API abstracts the pe-
ripheral controller endpoint hardware. That hardware is exposed through endpoint objects, which
accept streams of IN/OUT buffers, and through callbacks that interact with gadget drivers. Since
normal USB devices only have one upstream port, they only have one of these drivers. The con-
troller driver can support any number of different gadget drivers, but only one of them can be used
at a time.
Examples of such controller hardware include the PCI-based NetChip 2280 USB 2.0 high speed con-
troller, the SA-11x0 or PXA-25x UDC (found within many PDAs), and a variety of other products.

Gadget Driver The lower boundary of this driver implements hardware-neutral USB functions, using calls
to the controller driver. Because such hardware varies widely in capabilities and restrictions, and is
used in embedded environments where space is at a premium, the gadget driver is often configured
at compile time to work with endpoints supported by one particular controller. Gadget drivers may be
portable to several different controllers, using conditional compilation. (Recent kernels substantially
simplify the work involved in supporting new hardware, by autoconfiguring endpoints automatically
for many bulk-oriented drivers.) Gadget driver responsibilities include:
• handling setup requests (ep0 protocol responses) possibly including class-specific functionality
• returning configuration and string descriptors
• (re)setting configurations and interface altsettings, including enabling and configuring endpoints
• handling life cycle events, such asmanaging bindings to hardware, USB suspend/resume, remote
wakeup, and disconnection from the USB host.

• managing IN and OUT transfers on all currently enabled endpoints
Such drivers may be modules of proprietary code, although that approach is discouraged in the Linux
community.

Upper Level Most gadget drivers have an upper boundary that connects to some Linux driver or frame-
work in Linux. Through that boundary flows the data which the gadget driver produces and/or con-
sumes through protocol transfers over USB. Examples include:
• user mode code, using generic (gadgetfs) or application specific files in /dev
• networking subsystem (for network gadgets, like the CDC Ethernet Model gadget driver)
• data capture drivers, perhaps video4Linux or a scanner driver; or test and measurement hard-
ware.

• input subsystem (for HID gadgets)
• sound subsystem (for audio gadgets)
• file system (for PTP gadgets)
• block i/o subsystem (for usb-storage gadgets)
• ... and more

Additional Layers Other layers may exist. These could include kernel layers, such as network protocol
stacks, as well as user mode applications building on standard POSIX system call APIs such as open(),

13.2. USB Gadget API for Linux 345

The kernel driver API manual, Release 4.13.0-rc4+

close(), read() and write(). On newer systems, POSIX Async I/O calls may be an option. Such
user mode code will not necessarily be subject to the GNU General Public License (GPL).

OTG-capable systems will also need to include a standard Linux-USB host side stack, with usbcore, one
or more Host Controller Drivers (HCDs), USB Device Drivers to support the OTG “Targeted Peripheral
List”, and so forth. There will also be an OTG Controller Driver, which is visible to gadget and device
driver developers only indirectly. That helps the host and device side USB controllers implement the two
new OTG protocols (HNP and SRP). Roles switch (host to peripheral, or vice versa) using HNP during USB
suspend processing, and SRP can be viewed as a more battery-friendly kind of device wakeup protocol.
Over time, reusable utilities are evolving to help make some gadget driver tasks simpler. For example,
building configuration descriptors from vectors of descriptors for the configurations interfaces and end-
points is now automated, and many drivers now use autoconfiguration to choose hardware endpoints
and initialize their descriptors. A potential example of particular interest is code implementing standard
USB-IF protocols for HID, networking, storage, or audio classes. Some developers are interested in KDB
or KGDB hooks, to let target hardware be remotely debugged. Most such USB protocol code doesn’t need
to be hardware-specific, any more than network protocols like X11, HTTP, or NFS are. Such gadget-side
interface drivers should eventually be combined, to implement composite devices.

13.2.3 Kernel Mode Gadget API

Gadget drivers declare themselves through a struct usb_gadget_driver, which is responsible for most
parts of enumeration for a struct usb_gadget. The response to a set_configuration usually involves en-
abling one or more of the struct usb_ep objects exposed by the gadget, and submitting one or more struct
usb_request buffers to transfer data. Understand those four data types, and their operations, and you
will understand how this API works.

Note:

Other than the “Chapter 9” data types, most of the significant data types and functions are described
here.
However, some relevant information is likely omitted from what you are reading. One example of such
information is endpoint autoconfiguration. You’ll have to read the header file, and use example source
code (such as that for “Gadget Zero”), to fully understand the API.
The part of the API implementing some basic driver capabilities is specific to the version of the Linux
kernel that’s in use. The 2.6 and upper kernel versions include a driver model framework that has
no analogue on earlier kernels; so those parts of the gadget API are not fully portable. (They are
implemented on 2.4 kernels, but in a different way.) The driver model state is another part of this API
that is ignored by the kerneldoc tools.

The core API does not expose every possible hardware feature, only the most widely available ones. There
are significant hardware features, such as device-to-device DMA (without temporary storage in a memory
buffer) that would be added using hardware-specific APIs.
This API allows drivers to use conditional compilation to handle endpoint capabilities of different hardware,
but doesn’t require that. Hardware tends to have arbitrary restrictions, relating to transfer types, address-
ing, packet sizes, buffering, and availability. As a rule, such differences only matter for “endpoint zero”
logic that handles device configuration and management. The API supports limited run-time detection
of capabilities, through naming conventions for endpoints. Many drivers will be able to at least partially
autoconfigure themselves. In particular, driver init sections will often have endpoint autoconfiguration
logic that scans the hardware’s list of endpoints to find ones matching the driver requirements (relying
on those conventions), to eliminate some of the most common reasons for conditional compilation.
Like the Linux-USB host side API, this API exposes the “chunky” nature of USB messages: I/O requests are
in terms of one or more “packets”, and packet boundaries are visible to drivers. Compared to RS-232 serial
protocols, USB resembles synchronous protocols like HDLC (N bytes per frame, multipoint addressing, host
as the primary station and devices as secondary stations) more than asynchronous ones (tty style: 8 data
bits per frame, no parity, one stop bit). So for example the controller drivers won’t buffer two single byte

346 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

writes into a single two-byte USB IN packet, although gadget drivers may do so when they implement
protocols where packet boundaries (and “short packets”) are not significant.

Driver Life Cycle

Gadget drivers make endpoint I/O requests to hardware without needing to know many details of the
hardware, but driver setup/configuration code needs to handle some differences. Use the API like this:
1. Register a driver for the particular device side usb controller hardware, such as the net2280 on PCI
(USB 2.0), sa11x0 or pxa25x as found in Linux PDAs, and so on. At this point the device is logically in
the USB ch9 initial state (attached), drawing no power and not usable (since it does not yet support
enumeration). Any host should not see the device, since it’s not activated the data line pullup used
by the host to detect a device, even if VBUS power is available.

2. Register a gadget driver that implements some higher level device function. That will then bind() to
a usb_gadget, which activates the data line pullup sometime after detecting VBUS.

3. The hardware driver can now start enumerating. The steps it handles are to accept USB power and
set_address requests. Other steps are handled by the gadget driver. If the gadget driver module is
unloaded before the host starts to enumerate, steps before step 7 are skipped.

4. The gadget driver’s setup() call returns usb descriptors, based both on what the bus interface hard-
ware provides and on the functionality being implemented. That can involve alternate settings or
configurations, unless the hardware prevents such operation. For OTG devices, each configuration
descriptor includes an OTG descriptor.

5. The gadget driver handles the last step of enumeration, when the USB host issues a
set_configuration call. It enables all endpoints used in that configuration, with all interfaces in
their default settings. That involves using a list of the hardware’s endpoints, enabling each endpoint
according to its descriptor. It may also involve using usb_gadget_vbus_draw to let more power be
drawn from VBUS, as allowed by that configuration. For OTG devices, setting a configuration may
also involve reporting HNP capabilities through a user interface.

6. Do real work and perform data transfers, possibly involving changes to interface settings or switch-
ing to new configurations, until the device is disconnect()ed from the host. Queue any number of
transfer requests to each endpoint. It may be suspended and resumed several times before being
disconnected. On disconnect, the drivers go back to step 3 (above).

7. When the gadget driver module is being unloaded, the driver unbind() callback is issued. That lets
the controller driver be unloaded.

Drivers will normally be arranged so that just loading the gadget driver module (or statically linking it into
a Linux kernel) allows the peripheral device to be enumerated, but some drivers will defer enumeration
until some higher level component (like a user mode daemon) enables it. Note that at this lowest level
there are no policies about how ep0 configuration logic is implemented, except that it should obey USB
specifications. Such issues are in the domain of gadget drivers, including knowing about implementation
constraints imposed by some USB controllers or understanding that composite devices might happen to
be built by integrating reusable components.
Note that the lifecycle above can be slightly different for OTG devices. Other than providing an additional
OTG descriptor in each configuration, only the HNP-related differences are particularly visible to driver
code. They involve reporting requirements during the SET_CONFIGURATION request, and the option to
invoke HNP during some suspend callbacks. Also, SRP changes the semantics of usb_gadget_wakeup
slightly.

USB 2.0 Chapter 9 Types and Constants

Gadget drivers rely on common USB structures and constants defined in the linux/usb/ch9.h header file,
which is standard in Linux 2.6+ kernels. These are the same types and constants used by host side drivers
(and usbcore).

13.2. USB Gadget API for Linux 347

The kernel driver API manual, Release 4.13.0-rc4+

Core Objects and Methods

These are declared in <linux/usb/gadget.h>, and are used by gadget drivers to interact with USB pe-
ripheral controller drivers.
struct usb_request

describes one i/o request
Definition

struct usb_request {
void * buf;
unsigned length;
dma_addr_t dma;
struct scatterlist * sg;
unsigned num_sgs;
unsigned num_mapped_sgs;
unsigned stream_id:16;
unsigned no_interrupt:1;
unsigned zero:1;
unsigned short_not_ok:1;
void (* complete) (struct usb_ep *ep, struct usb_request *req);
void * context;
struct list_head list;
int status;
unsigned actual;

};

Members
buf Buffer used for data. Always provide this; some controllers only use PIO, or don’t use DMA for some

endpoints.
length Length of that data
dma DMA address corresponding to ‘buf’. If you don’t set this field, and the usb controller needs one, it is

responsible for mapping and unmapping the buffer.
sg a scatterlist for SG-capable controllers.
num_sgs number of SG entries
num_mapped_sgs number of SG entries mapped to DMA (internal)
stream_id The stream id, when USB3.0 bulk streams are being used
no_interrupt If true, hints that no completion irq is needed. Helpful sometimes with deep request queues

that are handled directly by DMA controllers.
zero If true, when writing data, makes the last packet be “short” by adding a zero length packet as

needed;
short_not_ok When reading data, makes short packets be treated as errors (queue stops advancing till

cleanup).
complete Function called when request completes, so this request and its buffer may be re-used. The

function will always be called with interrupts disabled, and it must not sleep. Reads terminate with
a short packet, or when the buffer fills, whichever comes first. When writes terminate, some data
bytes will usually still be in flight (often in a hardware fifo). Errors (for reads or writes) stop the queue
from advancing until the completion function returns, so that any transfers invalidated by the error
may first be dequeued.

context For use by the completion callback
list For use by the gadget driver.

348 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

status Reports completion code, zero or a negative errno. Normally, faults block the transfer queue from
advancing until the completion callback returns. Code “-ESHUTDOWN” indicates completion caused
by device disconnect, or when the driver disabled the endpoint.

actual Reports bytes transferred to/from the buffer. For reads (OUT transfers) this may be less than the
requested length. If the short_not_ok flag is set, short reads are treated as errors even when status
otherwise indicates successful completion. Note that for writes (IN transfers) some data bytes may
still reside in a device-side FIFO when the request is reported as complete.

Description
These are allocated/freed through the endpoint they’re used with. The hardware’s driver can add extra
per-request data to the memory it returns, which often avoids separate memory allocations (potential
failures), later when the request is queued.
Request flags affect request handling, such as whether a zero length packet is written (the “zero” flag),
whether a short read should be treated as an error (blocking request queue advance, the “short_not_ok”
flag), or hinting that an interrupt is not required (the “no_interrupt” flag, for use with deep request queues).
Bulk endpoints can use any size buffers, and can also be used for interrupt transfers. interrupt-only
endpoints can be much less functional.
NOTE
this is analogous to ‘struct urb’ on the host side, except that it’s thinner and promotes more pre-allocation.

struct usb_ep_caps
endpoint capabilities description

Definition

struct usb_ep_caps {
unsigned type_control:1;
unsigned type_iso:1;
unsigned type_bulk:1;
unsigned type_int:1;
unsigned dir_in:1;
unsigned dir_out:1;

};

Members
type_control Endpoint supports control type (reserved for ep0).
type_iso Endpoint supports isochronous transfers.
type_bulk Endpoint supports bulk transfers.
type_int Endpoint supports interrupt transfers.
dir_in Endpoint supports IN direction.
dir_out Endpoint supports OUT direction.
struct usb_ep

device side representation of USB endpoint
Definition

struct usb_ep {
void * driver_data;
const char * name;
const struct usb_ep_ops * ops;
struct list_head ep_list;
struct usb_ep_caps caps;
unsigned maxpacket:16;
unsigned maxpacket_limit:16;

13.2. USB Gadget API for Linux 349

The kernel driver API manual, Release 4.13.0-rc4+

unsigned max_streams:16;
unsigned mult:2;
unsigned maxburst:5;
u8 address;
const struct usb_endpoint_descriptor * desc;
const struct usb_ss_ep_comp_descriptor * comp_desc;

};

Members
driver_data for use by the gadget driver.
name identifier for the endpoint, such as “ep-a” or “ep9in-bulk”
ops Function pointers used to access hardware-specific operations.
ep_list the gadget’s ep_list holds all of its endpoints
caps The structure describing types and directions supported by endoint.
maxpacket The maximum packet size used on this endpoint. The initial value can sometimes be reduced

(hardware allowing), according to the endpoint descriptor used to configure the endpoint.
maxpacket_limit The maximum packet size value which can be handled by this endpoint. It’s set once

by UDC driver when endpoint is initialized, and should not be changed. Should not be confused with
maxpacket.

max_streams The maximum number of streams supported by this EP (0 - 16, actual number is 2^n)
mult multiplier, ‘mult’ value for SS Isoc EPs
maxburst the maximum number of bursts supported by this EP (for usb3)
address used to identify the endpoint when finding descriptor that matches connection speed
desc endpoint descriptor. This pointer is set before the endpoint is enabled and remains valid until the

endpoint is disabled.
comp_desc In case of SuperSpeed support, this is the endpoint companion descriptor that is used to

configure the endpoint
Description
the bus controller driver lists all the general purpose endpoints in gadget->ep_list. the control endpoint
(gadget->ep0) is not in that list, and is accessed only in response to a driver setup() callback.
struct usb_gadget

represents a usb slave device
Definition

struct usb_gadget {
struct work_struct work;
struct usb_udc * udc;
const struct usb_gadget_ops * ops;
struct usb_ep * ep0;
struct list_head ep_list;
enum usb_device_speed speed;
enum usb_device_speed max_speed;
enum usb_device_state state;
const char * name;
struct device dev;
unsigned out_epnum;
unsigned in_epnum;
unsigned mA;
struct usb_otg_caps * otg_caps;
unsigned sg_supported:1;
unsigned is_otg:1;

350 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

unsigned is_a_peripheral:1;
unsigned b_hnp_enable:1;
unsigned a_hnp_support:1;
unsigned a_alt_hnp_support:1;
unsigned hnp_polling_support:1;
unsigned host_request_flag:1;
unsigned quirk_ep_out_aligned_size:1;
unsigned quirk_avoids_skb_reserve:1;
unsigned is_selfpowered:1;
unsigned deactivated:1;
unsigned connected:1;
unsigned lpm_capable:1;

};

Members
work (internal use) Workqueue to be used for sysfs_notify()
udc struct usb_udc pointer for this gadget
ops Function pointers used to access hardware-specific operations.
ep0 Endpoint zero, used when reading or writing responses to driver setup() requests
ep_list List of other endpoints supported by the device.
speed Speed of current connection to USB host.
max_speed Maximal speed the UDC can handle. UDC must support this and all slower speeds.
state the state we are now (attached, suspended, configured, etc)
name Identifies the controller hardware type. Used in diagnostics and sometimes configuration.
dev Driver model state for this abstract device.
out_epnum last used out ep number
in_epnum last used in ep number
mA last set mA value
otg_caps OTG capabilities of this gadget.
sg_supported true if we can handle scatter-gather
is_otg True if the USB device port uses a Mini-AB jack, so that the gadget driver must provide a USB OTG

descriptor.
is_a_peripheral False unless is_otg, the “A” end of a USB cable is in the Mini-AB jack, and HNP has been

used to switch roles so that the “A” device currently acts as A-Peripheral, not A-Host.
b_hnp_enable OTG device feature flag, indicating that the A-Host enabled HNP support.
a_hnp_support OTG device feature flag, indicating that the A-Host supports HNP at this port.
a_alt_hnp_support OTG device feature flag, indicating that the A-Host only supports HNP on a different

root port.
hnp_polling_support OTG device feature flag, indicating if the OTG device in peripheral mode can sup-

port HNP polling.
host_request_flag OTG device feature flag, indicating if A-Peripheral or B-Peripheral wants to take host

role.
quirk_ep_out_aligned_size epout requires buffer size to be aligned to MaxPacketSize.
quirk_avoids_skb_reserve udc/platform wants to avoid skb_reserve() in u_ether.c to improve perfor-

mance.
is_selfpowered if the gadget is self-powered.

13.2. USB Gadget API for Linux 351

The kernel driver API manual, Release 4.13.0-rc4+

deactivated True if gadget is deactivated - in deactivated state it cannot be connected.
connected True if gadget is connected.
lpm_capable If the gadget max_speed is FULL or HIGH, this flag indicates that it supports LPM as per the

LPM ECN & errata.
Description
Gadgets have a mostly-portable “gadget driver” implementing device functions, handling all usb configu-
rations and interfaces. Gadget drivers talk to hardware-specific code indirectly, through ops vectors. That
insulates the gadget driver from hardware details, and packages the hardware endpoints through generic
i/o queues. The “usb_gadget” and “usb_ep” interfaces provide that insulation from the hardware.
Except for the driver data, all fields in this structure are read-only to the gadget driver. That driver data
is part of the “driver model” infrastructure in 2.6 (and later) kernels, and for earlier systems is grouped in
a similar structure that’s not known to the rest of the kernel.
Values of the three OTG device feature flags are updated before the setup() call corresponding to
USB_REQ_SET_CONFIGURATION, and before driver suspend() calls. They are valid only when is_otg, and
when the device is acting as a B-Peripheral (so is_a_peripheral is false).
size_t usb_ep_align(struct usb_ep * ep, size_t len)

returns len aligned to ep’s maxpacketsize.
Parameters
struct usb_ep * ep the endpoint whose maxpacketsize is used to align len
size_t len buffer size’s length to align to ep‘s maxpacketsize
Description
This helper is used to align buffer’s size to an ep’s maxpacketsize.
size_t usb_ep_align_maybe(struct usb_gadget * g, struct usb_ep * ep, size_t len)

returns len aligned to ep’s maxpacketsize if gadget requires quirk_ep_out_aligned_size, otherwise
returns len.

Parameters
struct usb_gadget * g controller to check for quirk
struct usb_ep * ep the endpoint whose maxpacketsize is used to align len
size_t len buffer size’s length to align to ep‘s maxpacketsize
Description
This helper is used in case it’s required for any reason to check and maybe align buffer’s size to an ep’s
maxpacketsize.
int gadget_is_altset_supported(struct usb_gadget * g)

return true iff the hardware supports altsettings
Parameters
struct usb_gadget * g controller to check for quirk
int gadget_is_stall_supported(struct usb_gadget * g)

return true iff the hardware supports stalling
Parameters
struct usb_gadget * g controller to check for quirk
int gadget_is_zlp_supported(struct usb_gadget * g)

return true iff the hardware supports zlp
Parameters
struct usb_gadget * g controller to check for quirk

352 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

int gadget_avoids_skb_reserve(struct usb_gadget * g)
return true iff the hardware would like to avoid skb_reserve to improve performance.

Parameters
struct usb_gadget * g controller to check for quirk
int gadget_is_dualspeed(struct usb_gadget * g)

return true iff the hardware handles high speed
Parameters
struct usb_gadget * g controller that might support both high and full speeds
int gadget_is_superspeed(struct usb_gadget * g)

return true if the hardware handles superspeed
Parameters
struct usb_gadget * g controller that might support superspeed
int gadget_is_superspeed_plus(struct usb_gadget * g)

return true if the hardware handles superspeed plus
Parameters
struct usb_gadget * g controller that might support superspeed plus
int gadget_is_otg(struct usb_gadget * g)

return true iff the hardware is OTG-ready
Parameters
struct usb_gadget * g controller that might have a Mini-AB connector
Description
This is a runtime test, since kernels with a USB-OTG stack sometimes run on boards which only have a
Mini-B (or Mini-A) connector.
struct usb_gadget_driver

driver for usb ‘slave’ devices
Definition

struct usb_gadget_driver {
char * function;
enum usb_device_speed max_speed;
int (* bind) (struct usb_gadget *gadget, struct usb_gadget_driver *driver);
void (* unbind) (struct usb_gadget *);
int (* setup) (struct usb_gadget *, const struct usb_ctrlrequest *);
void (* disconnect) (struct usb_gadget *);
void (* suspend) (struct usb_gadget *);
void (* resume) (struct usb_gadget *);
void (* reset) (struct usb_gadget *);
struct device_driver driver;
char * udc_name;
struct list_head pending;
unsigned match_existing_only:1;

};

Members
function String describing the gadget’s function
max_speed Highest speed the driver handles.
bind the driver’s bind callback
unbind Invoked when the driver is unbound from a gadget, usually from rmmod (after a disconnect is

reported). Called in a context that permits sleeping.

13.2. USB Gadget API for Linux 353

The kernel driver API manual, Release 4.13.0-rc4+

setup Invoked for ep0 control requests that aren’t handled by the hardware level driver. Most calls must
be handled by the gadget driver, including descriptor and configuration management. The 16 bit
members of the setup data are in USB byte order. Called in_interrupt; this may not sleep. Driver
queues a response to ep0, or returns negative to stall.

disconnect Invoked after all transfers have been stopped, when the host is disconnected. May be called
in_interrupt; this may not sleep. Some devices can’t detect disconnect, so this might not be called
except as part of controller shutdown.

suspend Invoked on USB suspend. May be called in_interrupt.
resume Invoked on USB resume. May be called in_interrupt.
reset Invoked on USB bus reset. It is mandatory for all gadget drivers and should be called in_interrupt.
driver Driver model state for this driver.
udc_name A name of UDC this driver should be bound to. If udc_name is NULL, this driver will be bound

to any available UDC.
pending UDC core private data used for deferred probe of this driver.
match_existing_only If udc is not found, return an error and don’t add this gadget driver to list of pending

driver
Description
Devices are disabled till a gadget driver successfully bind()`s,which means the driver will handle
:c:func:`setup() requests needed to enumerate (and meet “chapter 9” requirements) then do some
useful work.
If gadget->is_otg is true, the gadget driver must provide an OTG descriptor during enumeration, or else
fail the bind() call. In such cases, no USB traffic may flow until both bind() returns without having called
usb_gadget_disconnect(), and the USB host stack has initialized.
Drivers use hardware-specific knowledge to configure the usb hardware. endpoint addressing is only one
of several hardware characteristics that are in descriptors the ep0 implementation returns from setup()
calls.
Except for ep0 implementation, most driver code shouldn’t need change to run on top of different usb
controllers. It’ll use endpoints set up by that ep0 implementation.
The usb controller driver handles a few standard usb requests. Those include set_address, and feature
flags for devices, interfaces, and endpoints (the get_status, set_feature, and clear_feature requests).
Accordingly, the driver’s setup() callbackmust always implement all get_descriptor requests, returning at
least a device descriptor and a configuration descriptor. Drivers must make sure the endpoint descriptors
match any hardware constraints. Some hardware also constrains other descriptors. (The pxa250 allows
only configurations 1, 2, or 3).
The driver’s setup() callback must also implement set_configuration, and should also implement
set_interface, get_configuration, and get_interface. Setting a configuration (or interface) is where end-
points should be activated or (config 0) shut down.
(Note that only the default control endpoint is supported. Neither hosts nor devices generally support
control traffic except to ep0.)
Most devices will ignore USB suspend/resume operations, and so will not provide those callbacks. How-
ever, somemay need to changemodes when the host is not longer directing those activities. For example,
local controls (buttons, dials, etc) may need to be re-enabled since the (remote) host can’t do that any
longer; or an error state might be cleared, to make the device behave identically whether or not power is
maintained.
int usb_gadget_probe_driver(struct usb_gadget_driver * driver)

probe a gadget driver
Parameters
struct usb_gadget_driver * driver the driver being registered

354 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Context
can sleep
Description
Call this in your gadget driver’s module initialization function, to tell the underlying usb controller driver
about your driver. The bind() function will be called to bind it to a gadget before this registration call
returns. It’s expected that the bind() function will be in init sections.
int usb_gadget_unregister_driver(struct usb_gadget_driver * driver)

unregister a gadget driver
Parameters
struct usb_gadget_driver * driver the driver being unregistered
Context
can sleep
Description
Call this in your gadget driver’s module cleanup function, to tell the underlying usb controller that your
driver is going away. If the controller is connected to a USB host, it will first disconnect(). The driver
is also requested to unbind() and clean up any device state, before this procedure finally returns. It’s
expected that the unbind() functions will in in exit sections, so may not be linked in some kernels.
struct usb_string

wraps a C string and its USB id
Definition

struct usb_string {
u8 id;
const char * s;

};

Members
id the (nonzero) ID for this string
s the string, in UTF-8 encoding
Description
If you’re using usb_gadget_get_string(), use this to wrap a string together with its ID.
struct usb_gadget_strings

a set of USB strings in a given language
Definition

struct usb_gadget_strings {
u16 language;
struct usb_string * strings;

};

Members
language identifies the strings’ language (0x0409 for en-us)
strings array of strings with their ids
Description
If you’re using usb_gadget_get_string(), use this to wrap all the strings for a given language.
void usb_free_descriptors(struct usb_descriptor_header ** v)

free descriptors returned by usb_copy_descriptors()

13.2. USB Gadget API for Linux 355

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct usb_descriptor_header ** v vector of descriptors

Optional Utilities

The core API is sufficient for writing a USB Gadget Driver, but some optional utilities are provided to
simplify common tasks. These utilities include endpoint autoconfiguration.
int usb_gadget_get_string(struct usb_gadget_strings * table, int id, u8 * buf)

fill out a string descriptor
Parameters
struct usb_gadget_strings * table of c strings encoded using UTF-8
int id string id, from low byte of wValue in get string descriptor
u8 * buf at least 256 bytes, must be 16-bit aligned
Description
Finds the UTF-8 string matching the ID, and converts it into a string descriptor in utf16-le. Returns length
of descriptor (always even) or negative errno
If your driver needs stings in multiple languages, you’ll probably “switch (wIndex) { ... }” in your ep0
string descriptor logic, using this routine after choosing which set of UTF-8 strings to use. Note that US-
ASCII is a strict subset of UTF-8; any string bytes with the eighth bit set will be multibyte UTF-8 characters,
not ISO-8859/1 characters (which are also widely used in C strings).
int usb_descriptor_fillbuf(void * buf, unsigned buflen, const struct usb_descriptor_header

** src)
fill buffer with descriptors

Parameters
void * buf Buffer to be filled
unsigned buflen Size of buf
const struct usb_descriptor_header ** src Array of descriptor pointers, terminated by null pointer.
Description
Copies descriptors into the buffer, returning the length or a negative error code if they can’t all be copied.
Useful when assembling descriptors for an associated set of interfaces used as part of configuring a
composite device; or in other cases where sets of descriptors need to be marshaled.
int usb_gadget_config_buf(const struct usb_config_descriptor * config, void * buf, un-

signed length, const struct usb_descriptor_header ** desc)
builts a complete configuration descriptor

Parameters
const struct usb_config_descriptor * config Header for the descriptor, including characteristics

such as power requirements and number of interfaces.
void * buf Buffer for the resulting configuration descriptor.
unsigned length Length of buffer. If this is not big enough to hold the entire configuration descriptor,

an error code will be returned.
const struct usb_descriptor_header ** desc Null-terminated vector of pointers to the descriptors

(interface, endpoint, etc) defining all functions in this device configuration.
Description
This copies descriptors into the response buffer, building a descriptor for that configuration. It returns the
buffer length or a negative status code. The config.wTotalLength field is set to match the length of the
result, but other descriptor fields (including power usage and interface count) must be set by the caller.

356 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Gadget drivers could use this when constructing a config descriptor in response to
USB_REQ_GET_DESCRIPTOR. They will need to patch the resulting bDescriptorType value if
USB_DT_OTHER_SPEED_CONFIG is needed.
struct usb_descriptor_header ** usb_copy_descriptors(struct usb_descriptor_header ** src)

copy a vector of USB descriptors
Parameters
struct usb_descriptor_header ** src null-terminated vector to copy
Context
initialization code, which may sleep
Description
This makes a copy of a vector of USB descriptors. Its primary use is to support usb_function objects which
can have multiple copies, each needing different descriptors. Functions may have static tables of descrip-
tors, which are used as templates and customized with identifiers (for interfaces, strings, endpoints, and
more) as needed by a given function instance.

Composite Device Framework

The core API is sufficient for writing drivers for composite USB devices (with more than one function in a
given configuration), and also multi-configuration devices (also more than one function, but not neces-
sarily sharing a given configuration). There is however an optional framework which makes it easier to
reuse and combine functions.
Devices using this framework provide a struct usb_composite_driver, which in turn provides one or more
struct usb_configuration instances. Each such configuration includes at least one struct usb_function,
which packages a user visible role such as “network link” or “mass storage device”. Management functions
may also exist, such as “Device Firmware Upgrade”.
struct usb_os_desc_ext_prop

describes one “Extended Property”
Definition

struct usb_os_desc_ext_prop {
struct list_head entry;
u8 type;
int name_len;
char * name;
int data_len;
char * data;
struct config_item item;

};

Members
entry used to keep a list of extended properties
type Extended Property type
name_len Extended Property unicode name length, including terminating ‘0’
name Extended Property name
data_len Length of Extended Property blob (for unicode store double len)
data Extended Property blob
item Represents this Extended Property in configfs
struct usb_os_desc

describes OS descriptors associated with one interface

13.2. USB Gadget API for Linux 357

The kernel driver API manual, Release 4.13.0-rc4+

Definition

struct usb_os_desc {
char * ext_compat_id;
struct list_head ext_prop;
int ext_prop_len;
int ext_prop_count;
struct mutex * opts_mutex;
struct config_group group;
struct module * owner;

};

Members
ext_compat_id 16 bytes of “Compatible ID” and “Subcompatible ID”
ext_prop Extended Properties list
ext_prop_len Total length of Extended Properties blobs
ext_prop_count Number of Extended Properties
opts_mutex Optional mutex protecting config data of a usb_function_instance
group Represents OS descriptors associated with an interface in configfs
owner Module associated with this OS descriptor
struct usb_os_desc_table

describes OS descriptors associated with one interface of a usb_function
Definition

struct usb_os_desc_table {
int if_id;
struct usb_os_desc * os_desc;

};

Members
if_id Interface id
os_desc “Extended Compatibility ID” and “Extended Properties” of the interface
Description
Each interface can have at most one “Extended Compatibility ID” and a number of “Extended Properties”.

struct usb_function
describes one function of a configuration

Definition

struct usb_function {
const char * name;
struct usb_gadget_strings ** strings;
struct usb_descriptor_header ** fs_descriptors;
struct usb_descriptor_header ** hs_descriptors;
struct usb_descriptor_header ** ss_descriptors;
struct usb_descriptor_header ** ssp_descriptors;
struct usb_configuration * config;
struct usb_os_desc_table * os_desc_table;
unsigned os_desc_n;
int (* bind) (struct usb_configuration *, struct usb_function *);
void (* unbind) (struct usb_configuration *, struct usb_function *);
void (* free_func) (struct usb_function *f);
struct module * mod;

358 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

int (* set_alt) (struct usb_function *, unsigned interface, unsigned alt);
int (* get_alt) (struct usb_function *, unsigned interface);
void (* disable) (struct usb_function *);
int (* setup) (struct usb_function *, const struct usb_ctrlrequest *);
bool (* req_match) (struct usb_function *,const struct usb_ctrlrequest *, bool config0);
void (* suspend) (struct usb_function *);
void (* resume) (struct usb_function *);
int (* get_status) (struct usb_function *);
int (* func_suspend) (struct usb_function *, u8 suspend_opt);

};

Members
name For diagnostics, identifies the function.
strings tables of strings, keyed by identifiers assigned during bind() and by language IDs provided in

control requests
fs_descriptors Table of full (or low) speed descriptors, using interface and string identifiers assigned

during bind(). If this pointer is null, the function will not be available at full speed (or at low speed).
hs_descriptors Table of high speed descriptors, using interface and string identifiers assigned during

bind(). If this pointer is null, the function will not be available at high speed.
ss_descriptors Table of super speed descriptors, using interface and string identifiers assigned during

bind(). If this pointer is null after initiation, the function will not be available at super speed.
ssp_descriptors Table of super speed plus descriptors, using interface and string identifiers assigned

during bind(). If this pointer is null after initiation, the function will not be available at super speed
plus.

config assigned when usb_add_function() is called; this is the configuration with which this function is
associated.

os_desc_table Table of (interface id, os descriptors) pairs. The function can expose more than one
interface. If an interface is a member of an IAD, only the first interface of IAD has its entry in the
table.

os_desc_n Number of entries in os_desc_table
bind Before the gadget can register, all of its functions bind() to the available resources including string

and interface identifiers used in interface or class descriptors; endpoints; I/O buffers; and so on.
unbind Reverses bind; called as a side effect of unregistering the driver which added this function.
free_func free the struct usb_function.
mod (internal) points to the module that created this structure.
set_alt (REQUIRED) Reconfigures altsettings; function drivers may initialize usb_ep.driver data at this

time (when it is used). Note that setting an interface to its current altsetting resets interface state,
and that all interfaces have a disabled state.

get_alt Returns the active altsetting. If this is not provided, then only altsetting zero is supported.
disable (REQUIRED) Indicates the function should be disabled. Reasons include host resetting or recon-

figuring the gadget, and disconnection.
setup Used for interface-specific control requests.
req_match Tests if a given class request can be handled by this function.
suspend Notifies functions when the host stops sending USB traffic.
resume Notifies functions when the host restarts USB traffic.
get_status Returns function status as a reply to GetStatus() request when the recipient is Interface.
func_suspend callback to be called when SetFeature(FUNCTION_SUSPEND) is reseived

13.2. USB Gadget API for Linux 359

The kernel driver API manual, Release 4.13.0-rc4+

Description
A single USB function uses one or more interfaces, and should in most cases support operation at both
full and high speeds. Each function is associated by usb_add_function() with a one configuration; that
function causes bind() to be called so resources can be allocated as part of setting up a gadget driver.
Those resources include endpoints, which should be allocated using usb_ep_autoconfig().
To support dual speed operation, a function driver provides descriptors for both high and full speed op-
eration. Except in rare cases that don’t involve bulk endpoints, each speed needs different endpoint
descriptors.
Function drivers choose their own strategies for managing instance data. The simplest strategy just de-
clares it “static’, which means the function can only be activated once. If the function needs to be exposed
in more than one configuration at a given speed, it needs to support multiple usb_function structures (one
for each configuration).
A more complex strategy might encapsulate a usb_function structure inside a driver-specific instance
structure to allows multiple activations. An example of multiple activations might be a CDC ACM function
that supports two or more distinct instances within the same configuration, providing several independent
logical data links to a USB host.
struct usb_configuration

represents one gadget configuration
Definition

struct usb_configuration {
const char * label;
struct usb_gadget_strings ** strings;
const struct usb_descriptor_header ** descriptors;
void (* unbind) (struct usb_configuration *);
int (* setup) (struct usb_configuration *, const struct usb_ctrlrequest *);
u8 bConfigurationValue;
u8 iConfiguration;
u8 bmAttributes;
u16 MaxPower;
struct usb_composite_dev * cdev;

};

Members
label For diagnostics, describes the configuration.
strings Tables of strings, keyed by identifiers assigned during bind() and by language IDs provided in

control requests.
descriptors Table of descriptors preceding all function descriptors. Examples include OTG and vendor-

specific descriptors.
unbind Reverses bind; called as a side effect of unregistering the driver which added this configuration.
setup Used to delegate control requests that aren’t handled by standard device infrastructure or directed

at a specific interface.
bConfigurationValue Copied into configuration descriptor.
iConfiguration Copied into configuration descriptor.
bmAttributes Copied into configuration descriptor.
MaxPower Power consumtion in mA. Used to compute bMaxPower in the configuration descriptor after

considering the bus speed.
cdev assigned by usb_add_config() before calling bind(); this is the device associated with this config-

uration.
Description

360 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Configurations are building blocks for gadget drivers structured around function drivers. Simple USB
gadgets require only one function and one configuration, and handle dual-speed hardware by always
providing the same functionality. Slightly more complex gadgets may have more than one single-function
configuration at a given speed; or have configurations that only work at one speed.
Composite devices are, by definition, ones with configurations which include more than one function.
The lifecycle of a usb_configuration includes allocation, initialization of the fields described above, and
calling usb_add_config() to set up internal data and bind it to a specific device. The configuration’s
bind() method is then used to initialize all the functions and then call usb_add_function() for them.
Those functions would normally be independent of each other, but that’s not mandatory. CDC WMC
devices are an example where functions often depend on other functions, with some functions subsidiary
to others. Such interdependency may be managed in any way, so long as all of the descriptors complete
by the time the composite driver returns from its bind() routine.
struct usb_composite_driver

groups configurations into a gadget
Definition

struct usb_composite_driver {
const char * name;
const struct usb_device_descriptor * dev;
struct usb_gadget_strings ** strings;
enum usb_device_speed max_speed;
unsigned needs_serial:1;
int (* bind) (struct usb_composite_dev *cdev);
int (* unbind) (struct usb_composite_dev *);
void (* disconnect) (struct usb_composite_dev *);
void (* suspend) (struct usb_composite_dev *);
void (* resume) (struct usb_composite_dev *);
struct usb_gadget_driver gadget_driver;

};

Members
name For diagnostics, identifies the driver.
dev Template descriptor for the device, including default device identifiers.
strings tables of strings, keyed by identifiers assigned during bind and language IDs provided in

control requests. Note: The first entries are predefined. The first entry that may be used is
USB_GADGET_FIRST_AVAIL_IDX

max_speed Highest speed the driver supports.
needs_serial set to 1 if the gadget needs userspace to provide a serial number. If one is not provided,

warning will be printed.
bind (REQUIRED) Used to allocate resources that are shared across the whole device, such as string IDs,

and add its configurations using usb_add_config(). This may fail by returning a negative errno
value; it should return zero on successful initialization.

unbind Reverses bind; called as a side effect of unregistering this driver.
disconnect optional driver disconnect method
suspend Notifies when the host stops sending USB traffic, after function notifications
resume Notifies configuration when the host restarts USB traffic, before function notifications
gadget_driver Gadget driver controlling this driver
Description
Devices default to reporting self powered operation. Devices which rely on bus powered operation should
report this in their bind method.

13.2. USB Gadget API for Linux 361

The kernel driver API manual, Release 4.13.0-rc4+

Before returning from bind, various fields in the template descriptor may be overridden. These include
the idVendor/idProduct/bcdDevice values normally to bind the appropriate host side driver, and the three
strings (iManufacturer, iProduct, iSerialNumber) normally used to provide user meaningful device iden-
tifiers. (The strings will not be defined unless they are defined in dev and strings.) The correct ep0
maxpacket size is also reported, as defined by the underlying controller driver.
module_usb_composite_driver(__usb_composite_driver)

Helper macro for registering a USB gadget composite driver
Parameters
__usb_composite_driver usb_composite_driver struct
Description
Helper macro for USB gadget composite drivers which do not do anything special in module init/exit.
This eliminates a lot of boilerplate. Each module may only use this macro once, and calling it replaces
module_init() and module_exit()
struct usb_composite_dev

represents one composite usb gadget
Definition

struct usb_composite_dev {
struct usb_gadget * gadget;
struct usb_request * req;
struct usb_request * os_desc_req;
struct usb_configuration * config;
u8 qw_sign;
u8 b_vendor_code;
struct usb_configuration * os_desc_config;
unsigned int use_os_string:1;
unsigned int setup_pending:1;
unsigned int os_desc_pending:1;

};

Members
gadget read-only, abstracts the gadget’s usb peripheral controller
req used for control responses; buffer is pre-allocated
os_desc_req used for OS descriptors responses; buffer is pre-allocated
config the currently active configuration
qw_sign qwSignature part of the OS string
b_vendor_code bMS_VendorCode part of the OS string
os_desc_config the configuration to be used with OS descriptors
use_os_string false by default, interested gadgets set it
setup_pending true when setup request is queued but not completed
os_desc_pending true when os_desc request is queued but not completed
Description
One of these devices is allocated and initialized before the associated device driver’s bind() is called.
OPEN ISSUE: it appears that some WUSB devices will need to be built by combining a normal (wired)
gadget with a wireless one. This revision of the gadget framework should probably try to make sure doing
that won’t hurt too much.
One notion for how to handle Wireless USB devices involves:

362 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

1. a second gadget here, discovery mechanism TBD, but likely needing separate “register/unregister
WUSB gadget” calls;

2. updates to usb_gadget to include flags “is it wireless”, “is it wired”, plus (presumably in a wrapper
structure) bandgroup and PHY info;

3. presumably a wireless_ep wrapping a usb_ep, and reporting wireless-specific parameters like
maxburst and maxsequence;

4. configurations that are specific to wireless links;
5. function drivers that understand wireless configs and will support wireless for (additional) function
instances;

6. a function to support association setup (like CBAF), not necessarily requiring a wireless adapter;
7. composite device setup that can create one or more wireless configs, including appropriate associa-
tion setup support;

8. more, TBD.
int config_ep_by_speed(struct usb_gadget * g, struct usb_function * f, struct usb_ep * _ep)

configures the given endpoint according to gadget speed.
Parameters
struct usb_gadget * g pointer to the gadget
struct usb_function * f usb function
struct usb_ep * _ep the endpoint to configure
Return
error code, 0 on success
This function chooses the right descriptors for a given endpoint according to gadget speed and saves it in
the endpoint desc field. If the endpoint already has a descriptor assigned to it - overwrites it with currently
corresponding descriptor. The endpoint maxpacket field is updated according to the chosen descriptor.
Note
the supplied function should hold all the descriptors for supported speeds
int usb_add_function(struct usb_configuration * config, struct usb_function * function)

add a function to a configuration
Parameters
struct usb_configuration * config the configuration
struct usb_function * function the function being added
Context
single threaded during gadget setup
Description
After initialization, each configuration must have one or more functions added to it. Adding a function
involves calling its bind() method to allocate resources such as interface and string identifiers and end-
points.
This function returns the value of the function’s bind(), which is zero for success else a negative errno
value.
int usb_function_deactivate(struct usb_function * function)

prevent function and gadget enumeration
Parameters
struct usb_function * function the function that isn’t yet ready to respond

13.2. USB Gadget API for Linux 363

The kernel driver API manual, Release 4.13.0-rc4+

Description
Blocks response of the gadget driver to host enumeration by preventing the data line pullup from being
activated. This is normally called during bind() processing to change from the initial “ready to respond”
state, or when a required resource becomes available.
For example, drivers that serve as a passthrough to a userspace daemon can block enumeration unless
that daemon (such as an OBEX, MTP, or print server) is ready to handle host requests.
Not all systems support software control of their USB peripheral data pullups.
Returns zero on success, else negative errno.
int usb_function_activate(struct usb_function * function)

allow function and gadget enumeration
Parameters
struct usb_function * function function on which usb_function_activate() was called
Description
Reverses effect of usb_function_deactivate(). If no more functions are delaying their activation, the
gadget driver will respond to host enumeration procedures.
Returns zero on success, else negative errno.
int usb_interface_id(struct usb_configuration * config, struct usb_function * function)

allocate an unused interface ID
Parameters
struct usb_configuration * config configuration associated with the interface
struct usb_function * function function handling the interface
Context
single threaded during gadget setup
Description
usb_interface_id() is called from usb_function.:c:func:bind() callbacks to allocate new interface IDs.
The function driver will then store that ID in interface, association, CDC union, and other descriptors. It
will also handle any control requests targeted at that interface, particularly changing its altsetting via
set_alt(). There may also be class-specific or vendor-specific requests to handle.
All interface identifier should be allocated using this routine, to ensure that for example different func-
tions don’t wrongly assign different meanings to the same identifier. Note that since interface identifiers
are configuration-specific, functions used in more than one configuration (or more than once in a given
configuration) need multiple versions of the relevant descriptors.
Returns the interface ID which was allocated; or -ENODEV if no more interface IDs can be allocated.
int usb_add_config(struct usb_composite_dev * cdev, struct usb_configuration * config, int (*bind)

(struct usb_configuration *)
add a configuration to a device.

Parameters
struct usb_composite_dev * cdev wraps the USB gadget
struct usb_configuration * config the configuration, with bConfigurationValue assigned
int (*)(struct usb_configuration *) bind the configuration’s bind function
Context
single threaded during gadget setup
Description

364 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

One of the main tasks of a composite bind() routine is to add each of the configurations it supports, using
this routine.
This function returns the value of the configuration’s bind(), which is zero for success else a negative
errno value. Binding configurations assigns global resources including string IDs, and per-configuration
resources such as interface IDs and endpoints.
int usb_string_id(struct usb_composite_dev * cdev)

allocate an unused string ID
Parameters
struct usb_composite_dev * cdev the device whose string descriptor IDs are being allocated
Context
single threaded during gadget setup
Description
usb_string_id() is called from bind() callbacks to allocate string IDs. Drivers for functions, configura-
tions, or gadgets will then store that ID in the appropriate descriptors and string table.
All string identifier should be allocated using this, usb_string_ids_tab() orusb_string_ids_n() routine, to
ensure that for example different functions don’t wrongly assign different meanings to the same identifier.

int usb_string_ids_tab(struct usb_composite_dev * cdev, struct usb_string * str)
allocate unused string IDs in batch

Parameters
struct usb_composite_dev * cdev the device whose string descriptor IDs are being allocated
struct usb_string * str an array of usb_string objects to assign numbers to
Context
single threaded during gadget setup
Description
usb_string_ids() is called from bind() callbacks to allocate string IDs. Drivers for functions, configura-
tions, or gadgets will then copy IDs from the string table to the appropriate descriptors and string table
for other languages.
All string identifier should be allocated using this, usb_string_id() or usb_string_ids_n() routine, to
ensure that for example different functions don’t wrongly assign different meanings to the same identifier.

struct usb_string * usb_gstrings_attach(struct usb_composite_dev * cdev, struct
usb_gadget_strings ** sp, unsigned n_strings)

attach gadget strings to a cdev and assign ids
Parameters
struct usb_composite_dev * cdev the device whose string descriptor IDs are being allocated and at-

tached.
struct usb_gadget_strings ** sp an array of usb_gadget_strings to attach.
unsigned n_strings number of entries in each usb_strings array (sp[]->strings)
Description
This function will create a deep copy of usb_gadget_strings and usb_string and attach it to the cdev.
The actual string (usb_string.s) will not be copied but only a referenced will be made. The struct
usb_gadget_strings array may contain multiple languages and should be NULL terminated. The -
>language pointer of each struct usb_gadget_strings has to contain the same amount of entries. For
instance: sp[0] is en-US, sp[1] is es-ES. It is expected that the first usb_string entry of es-ES contains the
translation of the first usb_string entry of en-US. Therefore both entries become the same id assign.

13.2. USB Gadget API for Linux 365

The kernel driver API manual, Release 4.13.0-rc4+

int usb_string_ids_n(struct usb_composite_dev * c, unsigned n)
allocate unused string IDs in batch

Parameters
struct usb_composite_dev * c the device whose string descriptor IDs are being allocated
unsigned n number of string IDs to allocate
Context
single threaded during gadget setup
Description
Returns the first requested ID. This ID and next n-1 IDs are now valid IDs. At least provided that n is
non-zero because if it is, returns last requested ID which is now very useful information.
usb_string_ids_n() is called from bind() callbacks to allocate string IDs. Drivers for functions, configu-
rations, or gadgets will then store that ID in the appropriate descriptors and string table.
All string identifier should be allocated using this, usb_string_id() or usb_string_ids_n() routine, to
ensure that for example different functions don’t wrongly assign different meanings to the same identifier.

int usb_composite_probe(struct usb_composite_driver * driver)
register a composite driver

Parameters
struct usb_composite_driver * driver the driver to register
Context
single threaded during gadget setup
Description
This function is used to register drivers using the composite driver framework. The return value is zero,
or a negative errno value. Those values normally come from the driver’s bindmethod, which does all the
work of setting up the driver to match the hardware.
On successful return, the gadget is ready to respond to requests from the host, unless one of its compo-
nents invokes usb_gadget_disconnect() while it was binding. That would usually be done in order to
wait for some userspace participation.
void usb_composite_unregister(struct usb_composite_driver * driver)

unregister a composite driver
Parameters
struct usb_composite_driver * driver the driver to unregister
Description
This function is used to unregister drivers using the composite driver framework.
void usb_composite_setup_continue(struct usb_composite_dev * cdev)

Continue with the control transfer
Parameters
struct usb_composite_dev * cdev the composite device who’s control transfer was kept waiting
Description
This function must be called by the USB function driver to continue with the control transfer’s data/status
stage in case it had requested to delay the data/status stages. A USB function’s setup handler (e.g.
set_alt()) can request the composite framework to delay the setup request’s data/status stages by
returning USB_GADGET_DELAYED_STATUS.

366 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Composite Device Functions

At this writing, a few of the current gadget drivers have been converted to this framework. Near-term
plans include converting all of them, except for gadgetfs.

13.2.4 Peripheral Controller Drivers

The first hardware supporting this API was the NetChip 2280 controller, which supports USB 2.0 high speed
and is based on PCI. This is the net2280 driver module. The driver supports Linux kernel versions 2.4 and
2.6; contact NetChip Technologies for development boards and product information.
Other hardware working in the gadget framework includes: Intel’s PXA 25x and IXP42x series processors
(pxa2xx_udc), Toshiba TC86c001 “Goku-S” (goku_udc), Renesas SH7705/7727 (sh_udc), MediaQ 11xx
(mq11xx_udc), Hynix HMS30C7202 (h7202_udc), National 9303/4 (n9604_udc), Texas Instruments OMAP
(omap_udc), Sharp LH7A40x (lh7a40x_udc), and more. Most of those are full speed controllers.
At this writing, there are people at work on drivers in this framework for several other USB device con-
trollers, with plans to make many of them be widely available.
A partial USB simulator, the dummy_hcd driver, is available. It can act like a net2280, a pxa25x, or an
sa11x0 in terms of available endpoints and device speeds; and it simulates control, bulk, and to some
extent interrupt transfers. That lets you develop some parts of a gadget driver on a normal PC, without
any special hardware, and perhaps with the assistance of tools such as GDB running with User Mode Linux.
At least one person has expressed interest in adapting that approach, hooking it up to a simulator for a
microcontroller. Such simulators can help debug subsystems where the runtime hardware is unfriendly to
software development, or is not yet available.
Support for other controllers is expected to be developed and contributed over time, as this driver frame-
work evolves.

13.2.5 Gadget Drivers

In addition to Gadget Zero (used primarily for testing and development with drivers for usb controller
hardware), other gadget drivers exist.
There’s an ethernet gadget driver, which implements one of the most useful Communications Device
Class (CDC) models. One of the standards for cable modem interoperability even specifies the use of
this ethernet model as one of two mandatory options. Gadgets using this code look to a USB host as if
they’re an Ethernet adapter. It provides access to a network where the gadget’s CPU is one host, which
could easily be bridging, routing, or firewalling access to other networks. Since some hardware can’t fully
implement the CDC Ethernet requirements, this driver also implements a “good parts only” subset of CDC
Ethernet. (That subset doesn’t advertise itself as CDC Ethernet, to avoid creating problems.)
Support for Microsoft’s RNDIS protocol has been contributed by Pengutronix and Auerswald GmbH. This is
like CDC Ethernet, but it runs on more slightly USB hardware (but less than the CDC subset). However,
its main claim to fame is being able to connect directly to recent versions of Windows, using drivers that
Microsoft bundles and supports, making it much simpler to network with Windows.
There is also support for user mode gadget drivers, using gadgetfs. This provides a User Mode API that
presents each endpoint as a single file descriptor. I/O is done using normal read() and read() calls.
Familiar tools like GDB and pthreads can be used to develop and debug user mode drivers, so that once a
robust controller driver is available many applications for it won’t require new kernel mode software. Linux
2.6 Async I/O (AIO) support is available, so that user mode software can stream data with only slightly
more overhead than a kernel driver.
There’s a USB Mass Storage class driver, which provides a different solution for interoperability with sys-
tems such as MS-Windows and MacOS. That Mass Storage driver uses a file or block device as backing
store for a drive, like the loop driver. The USB host uses the BBB, CB, or CBI versions of the mass storage
class specification, using transparent SCSI commands to access the data from the backing store.

13.2. USB Gadget API for Linux 367

The kernel driver API manual, Release 4.13.0-rc4+

There’s a “serial line” driver, useful for TTY style operation over USB. The latest version of that driver
supports CDC ACM style operation, like a USB modem, and so on most hardware it can interoperate easily
with MS-Windows. One interesting use of that driver is in boot firmware (like a BIOS), which can sometimes
use that model with very small systems without real serial lines.
Support for other kinds of gadget is expected to be developed and contributed over time, as this driver
framework evolves.

13.2.6 USB On-The-GO (OTG)

USB OTG support on Linux 2.6 was initially developed by Texas Instruments for OMAP 16xx and 17xx series
processors. Other OTG systems should work in similar ways, but the hardware level details could be very
different.
Systems need specialized hardware support to implement OTG, notably including a special Mini-AB jack
and associated transceiver to support Dual-Role operation: they can act either as a host, using the stan-
dard Linux-USB host side driver stack, or as a peripheral, using this gadget framework. To do that, the
system software relies on small additions to those programming interfaces, and on a new internal com-
ponent (here called an “OTG Controller”) affecting which driver stack connects to the OTG port. In each
role, the system can re-use the existing pool of hardware-neutral drivers, layered on top of the controller
driver interfaces (usb_bus or usb_gadget). Such drivers need at most minor changes, and most of the
calls added to support OTG can also benefit non-OTG products.
• Gadget drivers test the is_otg flag, and use it to determine whether or not to include an OTG de-
scriptor in each of their configurations.

• Gadget drivers may need changes to support the two new OTG protocols, exposed in new gadget
attributes such as b_hnp_enable flag. HNP support should be reported through a user interface (two
LEDs could suffice), and is triggered in some cases when the host suspends the peripheral. SRP
support can be user-initiated just like remote wakeup, probably by pressing the same button.

• On the host side, USB device drivers need to be taught to trigger HNP at appropriate moments,
using usb_suspend_device(). That also conserves battery power, which is useful even for non-OTG
configurations.

• Also on the host side, a driver must support the OTG “Targeted Peripheral List”. That’s just a whitelist,
used to reject peripherals not supported with a given Linux OTG host. This whitelist is product-
specific; each product must modify otg_whitelist.h to match its interoperability specification.

Non-OTG Linux hosts, like PCs and workstations, normally have some solution for adding drivers, so
that peripherals that aren’t recognized can eventually be supported. That approach is unreasonable
for consumer products that may never have their firmware upgraded, and where it’s usually unre-
alistic to expect traditional PC/workstation/server kinds of support model to work. For example, it’s
often impractical to change device firmware once the product has been distributed, so driver bugs
can’t normally be fixed if they’re found after shipment.

Additional changes are needed below those hardware-neutral usb_bus and usb_gadget driver interfaces;
those aren’t discussed here in any detail. Those affect the hardware-specific code for each USB Host or
Peripheral controller, and how the HCD initializes (since OTG can be active only on a single port). They also
involve what may be called an OTG Controller Driver, managing the OTG transceiver and the OTG state
machine logic as well as much of the root hub behavior for the OTG port. The OTG controller driver needs
to activate and deactivate USB controllers depending on the relevant device role. Some related changes
were needed inside usbcore, so that it can identify OTG-capable devices and respond appropriately to
HNP or SRP protocols.

368 Chapter 13. Linux USB API

http://www.omap.com

The kernel driver API manual, Release 4.13.0-rc4+

13.3 USB Anchors

13.3.1 What is anchor?

A USB driver needs to support some callbacks requiring a driver to cease all IO to an interface. To do so, a
driver has to keep track of the URBs it has submitted to know they’ve all completed or to call usb_kill_urb
for them. The anchor is a data structure takes care of keeping track of URBs and provides methods to
deal with multiple URBs.

13.3.2 Allocation and Initialisation

There’s no API to allocate an anchor. It is simply declared as struct usb_anchor. init_usb_anchor()must
be called to initialise the data structure.

13.3.3 Deallocation

Once it has no more URBs associated with it, the anchor can be freed with normal memory management
operations.

13.3.4 Association and disassociation of URBs with anchors

An association of URBs to an anchor is made by an explicit call to usb_anchor_urb(). The association
is maintained until an URB is finished by (successful) completion. Thus disassociation is automatic. A
function is provided to forcibly finish (kill) all URBs associated with an anchor. Furthermore, disassociation
can be made with usb_unanchor_urb()

13.3.5 Operations on multitudes of URBs

usb_kill_anchored_urbs()

This function kills all URBs associated with an anchor. The URBs are called in the reverse temporal order
they were submitted. This way no data can be reordered.

usb_unlink_anchored_urbs()

This function unlinks all URBs associated with an anchor. The URBs are processed in the reverse temporal
order they were submitted. This is similar to usb_kill_anchored_urbs(), but it will not sleep. Therefore
no guarantee is made that the URBs have been unlinked when the call returns. They may be unlinked
later but will be unlinked in finite time.

usb_scuttle_anchored_urbs()

All URBs of an anchor are unanchored en masse.

usb_wait_anchor_empty_timeout()

This function waits for all URBs associated with an anchor to finish or a timeout, whichever comes first.
Its return value will tell you whether the timeout was reached.

13.3. USB Anchors 369

The kernel driver API manual, Release 4.13.0-rc4+

usb_anchor_empty()

Returns true if no URBs are associated with an anchor. Locking is the caller’s responsibility.

usb_get_from_anchor()

Returns the oldest anchored URB of an anchor. The URB is unanchored and returned with a reference. As
you may mix URBs to several destinations in one anchor you have no guarantee the chronologically first
submitted URB is returned.

13.4 USB bulk streams

13.4.1 Background

Bulk endpoint streams were added in the USB 3.0 specification. Streams allow a device driver to overload
a bulk endpoint so that multiple transfers can be queued at once.
Streams are defined in sections 4.4.6.4 and 8.12.1.4 of the Universal Serial Bus 3.0 specification at http:
//www.usb.org/developers/docs/ The USB Attached SCSI Protocol, which uses streams to queue multiple
SCSI commands, can be found on the T10 website (http://t10.org/).

13.4.2 Device-side implications

Once a buffer has been queued to a stream ring, the device is notified (through an out-of-band mechanism
on another endpoint) that data is ready for that stream ID. The device then tells the host which “stream” it
wants to start. The host can also initiate a transfer on a stream without the device asking, but the device
can refuse that transfer. Devices can switch between streams at any time.

13.4.3 Driver implications

int usb_alloc_streams(struct usb_interface *interface,
struct usb_host_endpoint **eps, unsigned int num_eps,
unsigned int num_streams, gfp_t mem_flags);

Device drivers will call this API to request that the host controller driver allocate memory so the driver
can use up to num_streams stream IDs. They must pass an array of usb_host_endpoints that need to be
setup with similar stream IDs. This is to ensure that a UASP driver will be able to use the same stream ID
for the bulk IN and OUT endpoints used in a Bi-directional command sequence.
The return value is an error condition (if one of the endpoints doesn’t support streams, or the xHCI driver
ran out of memory), or the number of streams the host controller allocated for this endpoint. The xHCI
host controller hardware declares how many stream IDs it can support, and each bulk endpoint on a
SuperSpeed device will say how many stream IDs it can handle. Therefore, drivers should be able to deal
with being allocated less stream IDs than they requested.
Do NOT call this function if you have URBs enqueued for any of the endpoints passed in as arguments.
Do not call this function to request less than two streams.
Drivers will only be allowed to call this API once for the same endpoint without calling usb_free_streams().
This is a simplification for the xHCI host controller driver, and may change in the future.

370 Chapter 13. Linux USB API

http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/
http://t10.org/

The kernel driver API manual, Release 4.13.0-rc4+

13.4.4 Picking new Stream IDs to use

Stream ID 0 is reserved, and should not be used to communicate with devices. If usb_alloc_streams()
returns with a value of N, you may use streams 1 though N. To queue an URB for a specific stream, set
the urb->stream_id value. If the endpoint does not support streams, an error will be returned.
Note that new API to choose the next stream ID will have to be added if the xHCI driver supports secondary
stream IDs.

13.4.5 Clean up

If a driver wishes to stop using streams to communicate with the device, it should call:

void usb_free_streams(struct usb_interface *interface,
struct usb_host_endpoint **eps, unsigned int num_eps,
gfp_t mem_flags);

All stream IDs will be deallocated when the driver releases the interface, to ensure that drivers that don’t
support streams will be able to use the endpoint.

13.5 USB core callbacks

13.5.1 What callbacks will usbcore do?

Usbcore will call into a driver through callbacks defined in the driver structure and through the completion
handler of URBs a driver submits. Only the former are in the scope of this document. These two kinds of
callbacks are completely independent of each other. Information on the completion callback can be found
in USB Request Block (URB) .
The callbacks defined in the driver structure are:
1. Hotplugging callbacks:
• @probe: Called to see if the driver is willing to manage a particular interface on a device.
• @disconnect: Called when the interface is no longer accessible, usually because its device has

been (or is being) disconnected or the driver module is being unloaded.
2. Odd backdoor through usbfs:
• @ioctl: Used for drivers that want to talk to userspace through the “usbfs” filesystem. This lets

devices provide ways to expose information to user space regardless of where they do (or don’t)
show up otherwise in the filesystem.

3. Power management (PM) callbacks:
• @suspend: Called when the device is going to be suspended.
• @resume: Called when the device is being resumed.
• @reset_resume: Called when the suspended device has been reset instead of being resumed.
4. Device level operations:
• @pre_reset: Called when the device is about to be reset.
• @post_reset: Called after the device has been reset

The ioctl interface (2) should be used only if you have a very good reason. Sysfs is preferred these days.
The PM callbacks are covered separately in Power Management for USB .

13.5. USB core callbacks 371

The kernel driver API manual, Release 4.13.0-rc4+

13.5.2 Calling conventions

All callbacks are mutually exclusive. There’s no need for locking against other USB callbacks. All callbacks
are called from a task context. You may sleep. However, it is important that all sleeps have a small fixed
upper limit in time. In particular you must not call out to user space and await results.

13.5.3 Hotplugging callbacks

These callbacks are intended to associate and disassociate a driver with an interface. A driver’s bond to
an interface is exclusive.

The probe() callback

int (*probe) (struct usb_interface *intf,
const struct usb_device_id *id);

Accept or decline an interface. If you accept the device return 0, otherwise -ENODEV or -ENXIO. Other error
codes should be used only if a genuine error occurred during initialisation which prevented a driver from
accepting a device that would else have been accepted. You are strongly encouraged to use usbcore’s
facility, usb_set_intfdata(), to associate a data structure with an interface, so that you know which internal
state and identity you associate with a particular interface. The device will not be suspended and you may
do IO to the interface you are called for and endpoint 0 of the device. Device initialisation that doesn’t
take too long is a good idea here.

The disconnect() callback

void (*disconnect) (struct usb_interface *intf);

This callback is a signal to break any connection with an interface. You are not allowed any IO to a
device after returning from this callback. You also may not do any other operation that may interfere
with another driver bound the interface, eg. a power management operation. If you are called due to a
physical disconnection, all your URBs will be killed by usbcore. Note that in this case disconnect will be
called some time after the physical disconnection. Thus your driver must be prepared to deal with failing
IO even prior to the callback.

13.5.4 Device level callbacks

pre_reset

int (*pre_reset)(struct usb_interface *intf);

A driver or user space is triggering a reset on the device which contains the interface passed as an
argument. Cease IO, wait for all outstanding URBs to complete, and save any device state you need to
restore. No more URBs may be submitted until the post_reset method is called.
If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if you are in atomic context.

post_reset

int (*post_reset)(struct usb_interface *intf);

The reset has completed. Restore any saved device state and begin using the device again.
If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if you are in atomic context.

372 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

13.5.5 Call sequences

No callbacks other than probe will be invoked for an interface that isn’t bound to your driver.
Probe will never be called for an interface bound to a driver. Hence following a successful probe, disconnect
will be called before there is another probe for the same interface.
Once your driver is bound to an interface, disconnect can be called at any time except in between pre_reset
and post_reset. pre_reset is always followed by post_reset, even if the reset failed or the device has been
unplugged.
suspend is always followed by one of: resume, reset_resume, or disconnect.

13.6 USB DMA

In Linux 2.5 kernels (and later), USB device drivers have additional control over how DMA may be used to
perform I/O operations. The APIs are detailed in the kernel usb programming guide (kerneldoc, from the
source code).

13.6.1 API overview

The big picture is that USB drivers can continue to ignore most DMA issues, though they still must provide
DMA-ready buffers (see Documentation/DMA-API-HOWTO.txt). That’s how they’ve worked through the
2.4 (and earlier) kernels, or they can now be DMA-aware.
DMA-aware usb drivers:
• New calls enable DMA-aware drivers, letting them allocate dma buffers and manage dma mappings
for existing dma-ready buffers (see below).

• URBs have an additional “transfer_dma” field, as well as a transfer_flags bit saying if it’s valid. (Con-
trol requests also have “setup_dma”, but drivers must not use it.)

• “usbcore” will map this DMA address, if a DMA-aware driver didn’t do it first and set
URB_NO_TRANSFER_DMA_MAP. HCDs don’t manage dma mappings for URBs.

• There’s a new “generic DMA API”, parts of which are usable by USB device drivers. Never use
dma_set_mask() on any USB interface or device; that would potentially break all devices sharing
that bus.

13.6.2 Eliminating copies

It’s good to avoid making CPUs copy data needlessly. The costs can add up, and effects like cache-trashing
can impose subtle penalties.
• If you’re doing lots of small data transfers from the same buffer all the time, that can really burn up
resources on systems which use an IOMMU to manage the DMA mappings. It can cost MUCH more
to set up and tear down the IOMMU mappings with each request than perform the I/O!
For those specific cases, USB has primitives to allocate less expensive memory. They work like
kmalloc and kfree versions that give you the right kind of addresses to store in urb->transfer_buffer
and urb->transfer_dma. You’d also set URB_NO_TRANSFER_DMA_MAP in urb->transfer_flags:

void *usb_alloc_coherent (struct usb_device *dev, size_t size,
int mem_flags, dma_addr_t *dma);

void usb_free_coherent (struct usb_device *dev, size_t size,
void *addr, dma_addr_t dma);

13.6. USB DMA 373

The kernel driver API manual, Release 4.13.0-rc4+

Most drivers should NOT be using these primitives; they don’t need to use this type of memory
(“dma-coherent”), and memory returned from kmalloc() will work just fine.
The memory buffer returned is “dma-coherent”; sometimes you might need to force a consistent
memory access ordering by using memory barriers. It’s not using a streaming DMA mapping, so it’s
good for small transfers on systems where the I/O would otherwise thrash an IOMMU mapping. (See
Documentation/DMA-API-HOWTO.txt for definitions of “coherent” and “streaming” DMA mappings.)
Asking for 1/Nth of a page (as well as asking for N pages) is reasonably space-efficient.
On most systems the memory returned will be uncached, because the semantics of dma-coherent
memory require either bypassing CPU caches or using cache hardware with bus-snooping support.
While x86 hardware has such bus-snooping, many other systems use software to flush cache lines
to prevent DMA conflicts.

• Devices on some EHCI controllers could handle DMA to/from high memory.
Unfortunately, the current Linux DMA infrastructure doesn’t have a sane way to expose these capa-
bilities ... and in any case, HIGHMEM is mostly a design wart specific to x86_32. So your best bet is
to ensure you never pass a highmem buffer into a USB driver. That’s easy; it’s the default behavior.
Just don’t override it; e.g. with NETIF_F_HIGHDMA.
This may force your callers to do some bounce buffering, copying from high memory to “normal”
DMA memory. If you can come up with a good way to fix this issue (for x86_32 machines with over
1 GByte of memory), feel free to submit patches.

13.6.3 Working with existing buffers

Existing buffers aren’t usable for DMA without first being mapped into the DMA address space of the
device. However, most buffers passed to your driver can safely be used with such DMA mapping. (See
the first section of Documentation/DMA-API-HOWTO.txt, titled “What memory is DMA-able?”)
• When you’re using scatterlists, you can map everything at once. On some systems, this kicks in an
IOMMU and turns the scatterlists into single DMA transactions:

int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
struct scatterlist *sg, int nents);

void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
struct scatterlist *sg, int n_hw_ents);

void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
struct scatterlist *sg, int n_hw_ents);

It’s probably easier to use the new usb_sg_*() calls, which do the DMA mapping and apply other
tweaks to make scatterlist i/o be fast.

• Some drivers may prefer to work with the model that they’re mapping large buffers, synchronizing
their safe re-use. (If there’s no re-use, then let usbcore do the map/unmap.) Large periodic transfers
make good examples here, since it’s cheaper to just synchronize the buffer than to unmap it each
time an urb completes and then re-map it on during resubmission.
These calls all work with initialized urbs: urb->dev, urb->pipe, urb->transfer_buffer, and urb-
>transfer_buffer_length must all be valid when these calls are used (urb->setup_packet must
be valid too if urb is a control request):

struct urb *usb_buffer_map (struct urb *urb);

void usb_buffer_dmasync (struct urb *urb);

void usb_buffer_unmap (struct urb *urb);

374 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

The calls manage urb->transfer_dma for you, and set URB_NO_TRANSFER_DMA_MAP so that usbcore
won’t map or unmap the buffer. They cannot be used for setup_packet buffers in control requests.

Note that several of those interfaces are currently commented out, since they don’t have current users.
See the source code. Other than the dmasync calls (where the underlying DMA primitives have changed),
most of them can easily be commented back in if you want to use them.

13.7 USB Request Block (URB)

Revised 2000-Dec-05
Again 2002-Jul-06
Again 2005-Sep-19
Again 2017-Mar-29

Note:

The USB subsystem now has a substantial section at The Linux-USB Host Side API section, gener-
ated from the current source code. This particular documentation file isn’t complete and may not be
updated to the last version; don’t rely on it except for a quick overview.

13.7.1 Basic concept or ‘What is an URB?’

The basic idea of the new driver is message passing, the message itself is called USB Request Block, or
URB for short.
• An URB consists of all relevant information to execute any USB transaction and deliver the data and
status back.

• Execution of an URB is inherently an asynchronous operation, i.e. the usb_submit_urb() call returns
immediately after it has successfully queued the requested action.

• Transfers for one URB can be canceled with usb_unlink_urb() at any time.
• Each URB has a completion handler, which is called after the action has been successfully completed
or canceled. The URB also contains a context-pointer for passing information to the completion
handler.

• Each endpoint for a device logically supports a queue of requests. You can fill that queue, so that the
USB hardware can still transfer data to an endpoint while your driver handles completion of another.
This maximizes use of USB bandwidth, and supports seamless streaming of data to (or from) devices
when using periodic transfer modes.

13.7.2 The URB structure

Some of the fields in struct urb are:

struct urb
{
// (IN) device and pipe specify the endpoint queue

struct usb_device *dev; // pointer to associated USB device
unsigned int pipe; // endpoint information

unsigned int transfer_flags; // URB_ISO_ASAP, URB_SHORT_NOT_OK, etc.

// (IN) all urbs need completion routines

13.7. USB Request Block (URB) 375

The kernel driver API manual, Release 4.13.0-rc4+

void *context; // context for completion routine
usb_complete_t complete; // pointer to completion routine

// (OUT) status after each completion
int status; // returned status

// (IN) buffer used for data transfers
void *transfer_buffer; // associated data buffer
u32 transfer_buffer_length; // data buffer length
int number_of_packets; // size of iso_frame_desc

// (OUT) sometimes only part of CTRL/BULK/INTR transfer_buffer is used
u32 actual_length; // actual data buffer length

// (IN) setup stage for CTRL (pass a struct usb_ctrlrequest)
unsigned char *setup_packet; // setup packet (control only)

// Only for PERIODIC transfers (ISO, INTERRUPT)
// (IN/OUT) start_frame is set unless URB_ISO_ASAP isn't set

int start_frame; // start frame
int interval; // polling interval

// ISO only: packets are only "best effort"; each can have errors
int error_count; // number of errors
struct usb_iso_packet_descriptor iso_frame_desc[0];

};

Your driver must create the “pipe” value using values from the appropriate endpoint descriptor in an
interface that it’s claimed.

13.7.3 How to get an URB?

URBs are allocated by calling usb_alloc_urb():

struct urb *usb_alloc_urb(int isoframes, int mem_flags)

Return value is a pointer to the allocated URB, 0 if allocation failed. The parameter isoframes specifies the
number of isochronous transfer frames you want to schedule. For CTRL/BULK/INT, use 0. The mem_flags
parameter holds standard memory allocation flags, letting you control (among other things) whether the
underlying code may block or not.
To free an URB, use usb_free_urb():

void usb_free_urb(struct urb *urb)

You may free an urb that you’ve submitted, but which hasn’t yet been returned to you in a completion
callback. It will automatically be deallocated when it is no longer in use.

13.7.4 What has to be filled in?

Depending on the type of transaction, there are some inline functions defined in linux/usb.h to simplify
the initialization, such as usb_fill_control_urb(), usb_fill_bulk_urb() and usb_fill_int_urb().
In general, they need the usb device pointer, the pipe (usual format from usb.h), the transfer buffer, the
desired transfer length, the completion handler, and its context. Take a look at the some existing drivers
to see how they’re used.
Flags:
• For ISO there are two startup behaviors: Specified start_frame or ASAP.
• For ASAP set URB_ISO_ASAP in transfer_flags.

376 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

If short packets should NOT be tolerated, set URB_SHORT_NOT_OK in transfer_flags.

13.7.5 How to submit an URB?

Just call usb_submit_urb():

int usb_submit_urb(struct urb *urb, int mem_flags)

The mem_flags parameter, such as GFP_ATOMIC, controls memory allocation, such as whether the lower
levels may block when memory is tight.
It immediately returns, either with status 0 (request queued) or some error code, usually caused by the
following:
• Out of memory (-ENOMEM)
• Unplugged device (-ENODEV)
• Stalled endpoint (-EPIPE)
• Too many queued ISO transfers (-EAGAIN)
• Too many requested ISO frames (-EFBIG)
• Invalid INT interval (-EINVAL)
• More than one packet for INT (-EINVAL)

After submission, urb->status is -EINPROGRESS; however, you should never look at that value except in
your completion callback.
For isochronous endpoints, your completion handlers should (re)submit URBs to the same endpoint with
the URB_ISO_ASAP flag, using multi-buffering, to get seamless ISO streaming.

13.7.6 How to cancel an already running URB?

There are two ways to cancel an URB you’ve submitted but which hasn’t been returned to your driver yet.
For an asynchronous cancel, call usb_unlink_urb():

int usb_unlink_urb(struct urb *urb)

It removes the urb from the internal list and frees all allocated HW descriptors. The status is changed to
reflect unlinking. Note that the URB will not normally have finished when usb_unlink_urb() returns; you
must still wait for the completion handler to be called.
To cancel an URB synchronously, call usb_kill_urb():

void usb_kill_urb(struct urb *urb)

It does everything usb_unlink_urb() does, and in addition it waits until after the URB has been returned
and the completion handler has finished. It also marks the URB as temporarily unusable, so that if the
completion handler or anyone else tries to resubmit it they will get a -EPERM error. Thus you can be sure
that when usb_kill_urb() returns, the URB is totally idle.
There is a lifetime issue to consider. An URB may complete at any time, and the completion handler
may free the URB. If this happens while usb_unlink_urb() or usb_kill_urb() is running, it will cause a
memory-access violation. The driver is responsible for avoiding this, which often means some sort of lock
will be needed to prevent the URB from being deallocated while it is still in use.
On the other hand, since usb_unlink_urb may end up calling the completion handler, the handler must
not take any lock that is held when usb_unlink_urb is invoked. The general solution to this problem is to
increment the URB’s reference count while holding the lock, then drop the lock and call usb_unlink_urb
or usb_kill_urb, and then decrement the URB’s reference count. You increment the reference count by
calling :c:func‘usb_get_urb‘:

13.7. USB Request Block (URB) 377

The kernel driver API manual, Release 4.13.0-rc4+

struct urb *usb_get_urb(struct urb *urb)

(ignore the return value; it is the same as the argument) and decrement the reference count by calling
usb_free_urb(). Of course, none of this is necessary if there’s no danger of the URB being freed by the
completion handler.

13.7.7 What about the completion handler?

The handler is of the following type:

typedef void (*usb_complete_t)(struct urb *)

I.e., it gets the URB that caused the completion call. In the completion handler, you should have a look at
urb->status to detect any USB errors. Since the context parameter is included in the URB, you can pass
information to the completion handler.
Note that even when an error (or unlink) is reported, data may have been transferred. That’s because USB
transfers are packetized; it might take sixteen packets to transfer your 1KByte buffer, and ten of them
might have transferred successfully before the completion was called.

Warning:

NEVER SLEEP IN A COMPLETION HANDLER.
These are often called in atomic context.

In the current kernel, completion handlers run with local interrupts disabled, but in the future this will be
changed, so don’t assume that local IRQs are always disabled inside completion handlers.

13.7.8 How to do isochronous (ISO) transfers?

Besides the fields present on a bulk transfer, for ISO, you also also have to set urb->interval to say how
often to make transfers; it’s often one per frame (which is once every microframe for highspeed devices).
The actual interval used will be a power of two that’s no bigger than what you specify. You can use the
usb_fill_int_urb() macro to fill most ISO transfer fields.
For ISO transfers you also have to fill a usb_iso_packet_descriptor structure, allocated at the end of
the URB by usb_alloc_urb(), for each packet you want to schedule.
The usb_submit_urb() call modifies urb->interval to the implemented interval value that is less than
or equal to the requested interval value. If URB_ISO_ASAP scheduling is used, urb->start_frame is also
updated.
For each entry you have to specify the data offset for this frame (base is transfer_buffer), and the length
you want to write/expect to read. After completion, actual_length contains the actual transferred length
and status contains the resulting status for the ISO transfer for this frame. It is allowed to specify a varying
length from frame to frame (e.g. for audio synchronisation/adaptive transfer rates). You can also use the
length 0 to omit one or more frames (striping).
For scheduling you can choose your own start frame or URB_ISO_ASAP. As explained earlier, if you always
keep at least one URB queued and your completion keeps (re)submitting a later URB, you’ll get smooth
ISO streaming (if usb bandwidth utilization allows).
If you specify your own start frame, make sure it’s several frames in advance of the current frame. You
might want this model if you’re synchronizing ISO data with some other event stream.

378 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

13.7.9 How to start interrupt (INT) transfers?

Interrupt transfers, like isochronous transfers, are periodic, and happen in intervals that are powers of two
(1, 2, 4 etc) units. Units are frames for full and low speed devices, and microframes for high speed ones.
You can use the usb_fill_int_urb() macro to fill INT transfer fields.
The usb_submit_urb() call modifies urb->interval to the implemented interval value that is less than
or equal to the requested interval value.
In Linux 2.6, unlike earlier versions, interrupt URBs are not automagically restarted when they complete.
They end when the completion handler is called, just like other URBs. If you want an interrupt URB to be
restarted, your completion handler must resubmit it. s

13.8 Power Management for USB

Author Alan Stern <stern@rowland.harvard.edu>
Date Last-updated: February 2014

13.8.1 What is Power Management?

Power Management (PM) is the practice of saving energy by suspending parts of a computer system when
they aren’t being used. While a component is suspended it is in a nonfunctional low-power state; it might
even be turned off completely. A suspended component can be resumed (returned to a functional full-
power state) when the kernel needs to use it. (There also are forms of PM in which components are placed
in a less functional but still usable state instead of being suspended; an example would be reducing the
CPU’s clock rate. This document will not discuss those other forms.)
When the parts being suspended include the CPU and most of the rest of the system, we speak of it as a
“system suspend”. When a particular device is turned off while the system as a whole remains running, we
call it a “dynamic suspend” (also known as a “runtime suspend” or “selective suspend”). This document
concentrates mostly on how dynamic PM is implemented in the USB subsystem, although system PM is
covered to some extent (see Documentation/power/*.txt for more information about system PM).
System PM support is present only if the kernel was built with CONFIG_SUSPEND or CONFIG_HIBERNATION
enabled. Dynamic PM support
for USB is present whenever the kernel was built with CONFIG_PM enabled.
[Historically, dynamic PM support for USB was present only if the kernel had been built with CON-
FIG_USB_SUSPEND enabled (which depended on CONFIG_PM_RUNTIME). Starting with the 3.10 kernel re-
lease, dynamic PM support for USB was present whenever the kernel was built with CONFIG_PM_RUNTIME
enabled. The CONFIG_USB_SUSPEND option had been eliminated.]

13.8.2 What is Remote Wakeup?

When a device has been suspended, it generally doesn’t resume until the computer tells it to. Likewise,
if the entire computer has been suspended, it generally doesn’t resume until the user tells it to, say by
pressing a power button or opening the cover.
However some devices have the capability of resuming by themselves, or asking the kernel to resume
them, or even telling the entire computer to resume. This capability goes by several names such as “Wake
On LAN”; we will refer to it generically as “remote wakeup”. When a device is enabled for remote wakeup
and it is suspended, it may resume itself (or send a request to be resumed) in response to some external
event. Examples include a suspended keyboard resuming when a key is pressed, or a suspended USB
hub resuming when a device is plugged in.

13.8. Power Management for USB 379

mailto:stern@rowland.harvard.edu

The kernel driver API manual, Release 4.13.0-rc4+

13.8.3 When is a USB device idle?

A device is idle whenever the kernel thinks it’s not busy doing anything important and thus is a candidate
for being suspended. The exact definition depends on the device’s driver; drivers are allowed to declare
that a device isn’t idle even when there’s no actual communication taking place. (For example, a hub isn’t
considered idle unless all the devices plugged into that hub are already suspended.) In addition, a device
isn’t considered idle so long as a program keeps its usbfs file open, whether or not any I/O is going on.
If a USB device has no driver, its usbfs file isn’t open, and it isn’t being accessed through sysfs, then it
definitely is idle.

13.8.4 Forms of dynamic PM

Dynamic suspends occur when the kernel decides to suspend an idle device. This is called autosuspend
for short. In general, a device won’t be autosuspended unless it has been idle for some minimum period
of time, the so-called idle-delay time.
Of course, nothing the kernel does on its own initiative should prevent the computer or its devices from
working properly. If a device has been autosuspended and a program tries to use it, the kernel will au-
tomatically resume the device (autoresume). For the same reason, an autosuspended device will usually
have remote wakeup enabled, if the device supports remote wakeup.
It is worth mentioning that many USB drivers don’t support autosuspend. In fact, at the time of this writing
(Linux 2.6.23) the only drivers which do support it are the hub driver, kaweth, asix, usblp, usblcd, and
usb-skeleton (which doesn’t count). If a non-supporting driver is bound to a device, the device won’t be
autosuspended. In effect, the kernel pretends the device is never idle.
We can categorize power management events in two broad classes: external and internal. External
events are those triggered by some agent outside the USB stack: system suspend/resume (triggered by
userspace), manual dynamic resume (also triggered by userspace), and remote wakeup (triggered by the
device). Internal events are those triggered within the USB stack: autosuspend and autoresume. Note
that all dynamic suspend events are internal; external agents are not allowed to issue dynamic suspends.

13.8.5 The user interface for dynamic PM

The user interface for controlling dynamic PM is located in the power/ subdirectory of each USB device’s
sysfs directory, that is, in /sys/bus/usb/devices/.../power/ where ”...” is the device’s ID. The relevant
attribute files are: wakeup, control, and autosuspend_delay_ms. (There may also be a file named level;
this file was deprecated as of the 2.6.35 kernel and replaced by the control file. In 2.6.38 the autosuspend
file will be deprecated and replaced by the autosuspend_delay_ms file. The only difference is that the
newer file expresses the delay in milliseconds whereas the older file uses seconds. Confusingly, both files
are present in 2.6.37 but only autosuspend works.)

power/wakeup

This file is empty if the device does not support remote wakeup. Otherwise the file
contains either the word enabled or the word disabled, and you can write those words
to the file. The setting determines whether or not remote wakeup will be enabled when
the device is next suspended. (If the setting is changed while the device is suspended,
the change won’t take effect until the following suspend.)

power/control

This file contains one of two words: on or auto. You can write those words to the file to
change the device’s setting.
• on means that the device should be resumed and autosuspend is not allowed. (Of
course, system suspends are still allowed.)

• auto is the normal state in which the kernel is allowed to autosuspend and autore-
sume the device.

380 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

(In kernels up to 2.6.32, you could also specify suspend, meaning that the device should
remain suspended and autoresume was not allowed. This setting is no longer sup-
ported.)

power/autosuspend_delay_ms

This file contains an integer value, which is the number of milliseconds the device
should remain idle before the kernel will autosuspend it (the idle-delay time). The
default is 2000. 0 means to autosuspend as soon as the device becomes idle, and
negative values mean never to autosuspend. You can write a number to the file to
change the autosuspend idle-delay time.

Writing -1 to power/autosuspend_delay_ms and writing on to power/control do essentially the same
thing – they both prevent the device from being autosuspended. Yes, this is a redundancy in the API.
(In 2.6.21 writing 0 to power/autosuspend would prevent the device from being autosuspended; the
behavior was changed in 2.6.22. The power/autosuspend attribute did not exist prior to 2.6.21, and
the power/level attribute did not exist prior to 2.6.22. power/control was added in 2.6.34, and
power/autosuspend_delay_ms was added in 2.6.37 but did not become functional until 2.6.38.)

13.8.6 Changing the default idle-delay time

The default autosuspend idle-delay time (in seconds) is controlled by a module parameter in usbcore. You
can specify the value when usbcore is loaded. For example, to set it to 5 seconds instead of 2 you would
do:

modprobe usbcore autosuspend=5

Equivalently, you could add to a configuration file in /etc/modprobe.d a line saying:

options usbcore autosuspend=5

Some distributions load the usbcore module very early during the boot process, by means of a program
or script running from an initramfs image. To alter the parameter value you would have to rebuild that
image.
If usbcore is compiled into the kernel rather than built as a loadable module, you can add:

usbcore.autosuspend=5

to the kernel’s boot command line.
Finally, the parameter value can be changed while the system is running. If you do:

echo 5 >/sys/module/usbcore/parameters/autosuspend

then each new USB device will have its autosuspend idle-delay initialized to 5. (The idle-delay values for
already existing devices will not be affected.)
Setting the initial default idle-delay to -1 will prevent any autosuspend of any USB device. This has the
benefit of allowing you then to enable autosuspend for selected devices.

13.8.7 Warnings

The USB specification states that all USB devices must support power management. Nevertheless, the
sad fact is that many devices do not support it very well. You can suspend them all right, but when you
try to resume them they disconnect themselves from the USB bus or they stop working entirely. This
seems to be especially prevalent among printers and scanners, but plenty of other types of device have
the same deficiency.
For this reason, by default the kernel disables autosuspend (the power/control attribute is initialized to
on) for all devices other than hubs. Hubs, at least, appear to be reasonably well-behaved in this regard.

13.8. Power Management for USB 381

The kernel driver API manual, Release 4.13.0-rc4+

(In 2.6.21 and 2.6.22 this wasn’t the case. Autosuspend was enabled by default for almost all USB devices.
A number of people experienced problems as a result.)
This means that non-hub devices won’t be autosuspended unless the user or a program explicitly enables
it. As of this writing there aren’t any widespread programs which will do this; we hope that in the near
future device managers such as HAL will take on this added responsibility. In the meantime you can
always carry out the necessary operations by hand or add them to a udev script. You can also change the
idle-delay time; 2 seconds is not the best choice for every device.
If a driver knows that its device has proper suspend/resume support, it can enable autosuspend all by
itself. For example, the video driver for a laptop’s webcam might do this (in recent kernels they do), since
these devices are rarely used and so should normally be autosuspended.
Sometimes it turns out that even when a device does work okay with autosuspend there are still problems.
For example, the usbhid driver, which manages keyboards and mice, has autosuspend support. Tests with
a number of keyboards show that typing on a suspended keyboard, while causing the keyboard to do a
remote wakeup all right, will nonetheless frequently result in lost keystrokes. Tests with mice show that
some of them will issue a remote-wakeup request in response to button presses but not to motion, and
some in response to neither.
The kernel will not prevent you from enabling autosuspend on devices that can’t handle it. It is even
possible in theory to damage a device by suspending it at the wrong time. (Highly unlikely, but possible.)
Take care.

13.8.8 The driver interface for Power Management

The requirements for a USB driver to support external power management are pretty modest; the driver
need only define:

.suspend

.resume

.reset_resume

methods in its usb_driver structure, and the reset_resume method is optional. The methods’ jobs are
quite simple:
• The suspend method is called to warn the driver that the device is going to be suspended. If the
driver returns a negative error code, the suspend will be aborted. Normally the driver will return 0,
in which case it must cancel all outstanding URBs (usb_kill_urb()) and not submit any more.

• The resume method is called to tell the driver that the device has been resumed and the driver can
return to normal operation. URBs may once more be submitted.

• The reset_resume method is called to tell the driver that the device has been resumed and it also
has been reset. The driver should redo any necessary device initialization, since the device has
probably lost most or all of its state (although the interfaces will be in the same altsettings as before
the suspend).

If the device is disconnected or powered down while it is suspended, the disconnect method will be
called instead of the resume or reset_resumemethod. This is also quite likely to happen when waking up
from hibernation, as many systems do not maintain suspend current to the USB host controllers during
hibernation. (It’s possible to work around the hibernation-forces-disconnect problem by using the USB
Persist facility.)
The reset_resume method is used by the USB Persist facility (see USB device persistence during system
suspend) and it can also be used under certain circumstances when CONFIG_USB_PERSIST is not enabled.
Currently, if a device is reset during a resume and the driver does not have a reset_resume method, the
driver won’t receive any notification about the resume. Later kernels will call the driver’s disconnect
method; 2.6.23 doesn’t do this.
USB drivers are bound to interfaces, so their suspend and resumemethods get called when the interfaces
are suspended or resumed. In principle one might want to suspend some interfaces on a device (i.e., force
the drivers for those interface to stop all activity) without suspending the other interfaces. The USB core

382 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

doesn’t allow this; all interfaces are suspended when the device itself is suspended and all interfaces are
resumed when the device is resumed. It isn’t possible to suspend or resume some but not all of a device’s
interfaces. The closest you can come is to unbind the interfaces’ drivers.

13.8.9 The driver interface for autosuspend and autoresume

To support autosuspend and autoresume, a driver should implement all three of the methods listed above.
In addition, a driver indicates that it supports autosuspend by setting the .supports_autosuspend flag
in its usb_driver structure. It is then responsible for informing the USB core whenever one of its interfaces
becomes busy or idle. The driver does so by calling these six functions:

int usb_autopm_get_interface(struct usb_interface *intf);
void usb_autopm_put_interface(struct usb_interface *intf);
int usb_autopm_get_interface_async(struct usb_interface *intf);
void usb_autopm_put_interface_async(struct usb_interface *intf);
void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);

The functions work by maintaining a usage counter in the usb_interface’s embedded device structure.
When the counter is > 0 then the interface is deemed to be busy, and the kernel will not autosuspend
the interface’s device. When the usage counter is = 0 then the interface is considered to be idle, and the
kernel may autosuspend the device.
Drivers need not be concerned about balancing changes to the usage counter; the USB core will undo any
remaining “get”s when a driver is unbound from its interface. As a corollary, drivers must not call any of
the usb_autopm_* functions after their disconnect routine has returned.
Drivers using the async routines are responsible for their own synchronization and mutual exclusion.

usb_autopm_get_interface() increments the usage counter and does an autoresume if the
device is suspended. If the autoresume fails, the counter is decremented back.
usb_autopm_put_interface() decrements the usage counter and attempts an autosuspend if
the new value is = 0.
usb_autopm_get_interface_async() and usb_autopm_put_interface_async() do almost
the same things as their non-async counterparts. The big difference is that they use a
workqueue to do the resume or suspend part of their jobs. As a result they can be called in
an atomic context, such as an URB’s completion handler, but when they return the device will
generally not yet be in the desired state.
usb_autopm_get_interface_no_resume() and usb_autopm_put_interface_no_suspend()
merely increment or decrement the usage counter; they do not attempt to carry out an au-
toresume or an autosuspend. Hence they can be called in an atomic context.

The simplest usage pattern is that a driver calls usb_autopm_get_interface() in its open routine and
usb_autopm_put_interface() in its close or release routine. But other patterns are possible.
The autosuspend attempts mentioned above will often fail for one reason or another. For example, the
power/control attribute might be set to on, or another interface in the same device might not be idle.
This is perfectly normal. If the reason for failure was that the device hasn’t been idle for long enough, a
timer is scheduled to carry out the operation automatically when the autosuspend idle-delay has expired.
Autoresume attempts also can fail, although failure would mean that the device is no longer present or
operating properly. Unlike autosuspend, there’s no idle-delay for an autoresume.

13.8.10 Other parts of the driver interface

Drivers can enable autosuspend for their devices by calling:

usb_enable_autosuspend(struct usb_device *udev);

13.8. Power Management for USB 383

The kernel driver API manual, Release 4.13.0-rc4+

in their probe() routine, if they know that the device is capable of suspending and resuming correctly.
This is exactly equivalent to writing auto to the device’s power/control attribute. Likewise, drivers can
disable autosuspend by calling:

usb_disable_autosuspend(struct usb_device *udev);

This is exactly the same as writing on to the power/control attribute.
Sometimes a driver needs to make sure that remote wakeup is enabled during autosuspend. For example,
there’s not much point autosuspending a keyboard if the user can’t cause the keyboard to do a remote
wakeup by typing on it. If the driver sets intf->needs_remote_wakeup to 1, the kernel won’t autosuspend
the device if remote wakeup isn’t available. (If the device is already autosuspended, though, setting this
flag won’t cause the kernel to autoresume it. Normally a driver would set this flag in its probe method, at
which time the device is guaranteed not to be autosuspended.)
If a driver does its I/O asynchronously in interrupt context, it should call
usb_autopm_get_interface_async() before starting output and usb_autopm_put_interface_async()
when the output queue drains. When it receives an input event, it should call:

usb_mark_last_busy(struct usb_device *udev);

in the event handler. This tells the PM core that the device was just busy and therefore the next auto-
suspend idle-delay expiration should be pushed back. Many of the usb_autopm_* routines also make this
call, so drivers need to worry only when interrupt-driven input arrives.
Asynchronous operation is always subject to races. For example, a driver may call the
usb_autopm_get_interface_async() routine at a time when the core has just finished deciding the de-
vice has been idle for long enough but not yet gotten around to calling the driver’s suspend method. The
suspend method must be responsible for synchronizing with the I/O request routine and the URB comple-
tion handler; it should cause autosuspends to fail with -EBUSY if the driver needs to use the device.
External suspend calls should never be allowed to fail in this way, only autosuspend calls. The driver can
tell them apart by applying the PMSG_IS_AUTO()macro to the message argument to the suspendmethod;
it will return True for internal PM events (autosuspend) and False for external PM events.

13.8.11 Mutual exclusion

For external events – but not necessarily for autosuspend or autoresume – the device semaphore (udev-
>dev.sem) will be held when a suspend or resume method is called. This implies that external sus-
pend/resume events are mutually exclusive with calls to probe, disconnect, pre_reset, and post_reset;
the USB core guarantees that this is true of autosuspend/autoresume events as well.
If a driver wants to block all suspend/resume calls during some critical section, the best way is to lock
the device and call usb_autopm_get_interface() (and do the reverse at the end of the critical section).
Holding the device semaphore will block all external PM calls, and the usb_autopm_get_interface() will
prevent any internal PM calls, even if it fails. (Exercise: Why?)

13.8.12 Interaction between dynamic PM and system PM

Dynamic power management and system power management can interact in a couple of ways.
Firstly, a device may already be autosuspended when a system suspend occurs. Since system suspends
are supposed to be as transparent as possible, the device should remain suspended following the system
resume. But this theory may not work out well in practice; over time the kernel’s behavior in this regard
has changed. As of 2.6.37 the policy is to resume all devices during a system resume and let them handle
their own runtime suspends afterward.
Secondly, a dynamic power-management event may occur as a system suspend is underway. The window
for this is short, since system suspends don’t take long (a few seconds usually), but it can happen. For
example, a suspended device may send a remote-wakeup signal while the system is suspending. The

384 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

remote wakeup may succeed, which would cause the system suspend to abort. If the remote wakeup
doesn’t succeed, it may still remain active and thus cause the system to resume as soon as the system
suspend is complete. Or the remote wakeup may fail and get lost. Which outcome occurs depends on
timing and on the hardware and firmware design.

13.8.13 xHCI hardware link PM

xHCI host controller provides hardware link power management to usb2.0 (xHCI 1.0 feature) and usb3.0
devices which support link PM. By enabling hardware LPM, the host can automatically put the device into
lower power state(L1 for usb2.0 devices, or U1/U2 for usb3.0 devices), which state device can enter and
resume very quickly.
The user interface for controlling hardware LPM is located in the power/ subdirectory of each USB device’s
sysfs directory, that is, in /sys/bus/usb/devices/.../power/ where ”...” is the device’s ID. The relevant
attribute files are usb2_hardware_lpm and usb3_hardware_lpm.

power/usb2_hardware_lpm

When a USB2 device which support LPM is plugged to a xHCI host root hub which
support software LPM, the host will run a software LPM test for it; if the device enters
L1 state and resume successfully and the host supports USB2 hardware LPM, this file
will show up and driver will enable hardware LPM for the device. You can write y/Y/1 or
n/N/0 to the file to enable/disable USB2 hardware LPMmanually. This is for test purpose
mainly.

power/usb3_hardware_lpm_u1 power/usb3_hardware_lpm_u2

When a USB 3.0 lpm-capable device is plugged in to a xHCI host which supports link
PM, it will check if U1 and U2 exit latencies have been set in the BOS descriptor; if the
check is passed and the host supports USB3 hardware LPM, USB3 hardware LPM will
be enabled for the device and these files will be created. The files hold a string value
(enable or disable) indicating whether or not USB3 hardware LPM U1 or U2 is enabled
for the device.

13.8.14 USB Port Power Control

In addition to suspending endpoint devices and enabling hardware controlled link power management, the
USB subsystem also has the capability to disable power to ports under some conditions. Power is controlled
through Set/ClearPortFeature(PORT_POWER) requests to a hub. In the case of a root or platform-internal
hub the host controller driver translates PORT_POWER requests into platform firmware (ACPI) method calls
to set the port power state. For more background see the Linux Plumbers Conference 2012 slides 1 and
video 2:
Upon receiving a ClearPortFeature(PORT_POWER) request a USB port is logically off, and may trigger the
actual loss of VBUS to the port 3. VBUS may be maintained in the case where a hub gangs multiple ports
into a shared power well causing power to remain until all ports in the gang are turned off. VBUS may also
be maintained by hub ports configured for a charging application. In any event a logically off port will lose
connection with its device, not respond to hotplug events, and not respond to remote wakeup events.

Warning:

turning off a port may result in the inability to hot add a device. Please see “User Interface for Port
Power Control” for details.

1 http://dl.dropbox.com/u/96820575/sarah-sharp-lpt-port-power-off2-mini.pdf
2 http://linuxplumbers.ubicast.tv/videos/usb-port-power-off-kerneluserspace-api/
3 USB 3.1 Section 10.12
wakeup note: if a device is configured to send wakeup events the port power control implementation will block poweroff attempts

on that port.

13.8. Power Management for USB 385

http://dl.dropbox.com/u/96820575/sarah-sharp-lpt-port-power-off2-mini.pdf
http://linuxplumbers.ubicast.tv/videos/usb-port-power-off-kerneluserspace-api/

The kernel driver API manual, Release 4.13.0-rc4+

As far as the effect on the device itself it is similar to what a device goes through during system suspend,
i.e. the power session is lost. Any USB device or driver that misbehaves with system suspend will be
similarly affected by a port power cycle event. For this reason the implementation shares the same
device recovery path (and honors the same quirks) as the system resume path for the hub.

13.8.15 User Interface for Port Power Control

The port power control mechanism uses the PM runtime system. Poweroff is requested by clearing the
power/pm_qos_no_power_off flag of the port device (defaults to 1). If the port is disconnected it will
immediately receive a ClearPortFeature(PORT_POWER) request. Otherwise, it will honor the pm runtime
rules and require the attached child device and all descendants to be suspended. This mechanism is
dependent on the hub advertising port power switching in its hub descriptor (wHubCharacteristics logical
power switching mode field).
Note, some interface devices/drivers do not support autosuspend. Userspace may need to unbind the
interface drivers before the usb_device will suspend. An unbound interface device is suspended by
default. When unbinding, be careful to unbind interface drivers, not the driver of the parent usb device.
Also, leave hub interface drivers bound. If the driver for the usb device (not interface) is unbound the
kernel is no longer able to resume the device. If a hub interface driver is unbound, control of its child ports
is lost and all attached child-devices will disconnect. A good rule of thumb is that if the ‘driver/module’
link for a device points to /sys/module/usbcore then unbinding it will interfere with port power control.
Example of the relevant files for port power control. Note, in this example these files are relative to a usb
hub device (prefix):

prefix=/sys/devices/pci0000:00/0000:00:14.0/usb3/3-1

attached child device +
hub port device + |

hub interface device + | |
v v v

$prefix/3-1:1.0/3-1-port1/device

$prefix/3-1:1.0/3-1-port1/power/pm_qos_no_power_off
$prefix/3-1:1.0/3-1-port1/device/power/control
$prefix/3-1:1.0/3-1-port1/device/3-1.1:<intf0>/driver/unbind
$prefix/3-1:1.0/3-1-port1/device/3-1.1:<intf1>/driver/unbind
...
$prefix/3-1:1.0/3-1-port1/device/3-1.1:<intfN>/driver/unbind

In addition to these files some ports may have a ‘peer’ link to a port on another hub. The expectation is
that all superspeed ports have a hi-speed peer:

$prefix/3-1:1.0/3-1-port1/peer -> ../../../../usb2/2-1/2-1:1.0/2-1-port1
../../../../usb2/2-1/2-1:1.0/2-1-port1/peer -> ../../../../usb3/3-1/3-1:1.0/3-1-port1

Distinct from ‘companion ports’, or ‘ehci/xhci shared switchover ports’ peer ports are simply the hi-speed
and superspeed interface pins that are combined into a single usb3 connector. Peer ports share the same
ancestor XHCI device.
While a superspeed port is powered off a device may downgrade its connection and attempt to connect
to the hi-speed pins. The implementation takes steps to prevent this:
1. Port suspend is sequenced to guarantee that hi-speed ports are powered-off before their superspeed
peer is permitted to power-off. The implication is that the setting pm_qos_no_power_off to zero on a
superspeed port may not cause the port to power-off until its highspeed peer has gone to its runtime
suspend state. Userspace must take care to order the suspensions if it wants to guarantee that a
superspeed port will power-off.

2. Port resume is sequenced to force a superspeed port to power-on prior to its highspeed peer.

386 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

3. Port resume always triggers an attached child device to resume. After a power session is lost the
device may have been removed, or need reset. Resuming the child device when the parent port
regains power resolves those states and clamps the maximum port power cycle frequency at the
rate the child device can suspend (autosuspend-delay) and resume (reset-resume latency).

Sysfs files relevant for port power control:
<hubdev-portX>/power/pm_qos_no_power_off: This writable flag controls the state of an idle

port. Once all children and descendants have suspended the port may suspend/poweroff
provided that pm_qos_no_power_off is ‘0’. If pm_qos_no_power_off is ‘1’ the port will remain
active/powered regardless of the stats of descendants. Defaults to 1.

<hubdev-portX>/power/runtime_status: This file reflects whether the port is ‘active’ (power
is on) or ‘suspended’ (logically off). There is no indication to userspace whether VBUS is
still supplied.

<hubdev-portX>/connect_type: An advisory read-only flag to userspace indicating the loca-
tion and connection type of the port. It returns one of four values ‘hotplug’, ‘hardwired’,
‘not used’, and ‘unknown’. All values, besides unknown, are set by platform firmware.
hotplug indicates an externally connectable/visible port on the platform. Typically
userspace would choose to keep such a port powered to handle new device connection
events.
hardwired refers to a port that is not visible but connectable. Examples are internal ports
for USB bluetooth that can be disconnected via an external switch or a port with a hard-
wired USB camera. It is expected to be safe to allow these ports to suspend provided
pm_qos_no_power_off is coordinated with any switch that gates connections. Userspace
must arrange for the device to be connected prior to the port powering off, or to activate
the port prior to enabling connection via a switch.
not used refers to an internal port that is expected to never have a device connected to it.
These may be empty internal ports, or ports that are not physically exposed on a platform.
Considered safe to be powered-off at all times.
unknown means platform firmware does not provide information for this port. Most com-
monly refers to external hub ports which should be considered ‘hotplug’ for policy decisions.

Note:

• since we are relying on the BIOS to get this ACPI information correct, the USB port
descriptions may be missing or wrong.

• Take care in clearing pm_qos_no_power_off. Once power is off this port will not
respond to new connect events.

Once a child device is attached additional constraints are applied before the port is allowed to
poweroff.
<child>/power/control: Must be auto, and the port will not power down until

<child>/power/runtime_status reflects the ‘suspended’ state. Default value is controlled
by child device driver.

<child>/power/persist: This defaults to 1 for most devices and indicates if kernel can persist
the device’s configuration across a power session loss (suspend / port-power event). When
this value is 0 (quirky devices), port poweroff is disabled.

<child>/driver/unbind: Wakeup capable devices will block port poweroff. At this time the
only mechanism to clear the usb-internal wakeup-capability for an interface device is to
unbind its driver.

Summary of poweroff pre-requisite settings relative to a port device:

13.8. Power Management for USB 387

The kernel driver API manual, Release 4.13.0-rc4+

echo 0 > power/pm_qos_no_power_off
echo 0 > peer/power/pm_qos_no_power_off # if it exists
echo auto > power/control # this is the default value
echo auto > <child>/power/control
echo 1 > <child>/power/persist # this is the default value

13.8.16 Suggested Userspace Port Power Policy

As noted above userspace needs to be careful and deliberate about what ports are enabled for poweroff.
The default configuration is that all ports start with power/pm_qos_no_power_off set to 1 causing ports
to always remain active.
Given confidence in the platform firmware’s description of the ports (ACPI _PLD record for a port populates
‘connect_type’) userspace can clear pm_qos_no_power_off for all ‘not used’ ports. The same can be done
for ‘hardwired’ ports provided poweroff is coordinated with any connection switch for the port.
A more aggressive userspace policy is to enable USB port power off for all ports (set <hubdev-
portX>/power/pm_qos_no_power_off to 0) when some external factor indicates the user has stopped
interacting with the system. For example, a distro may want to enable power off all USB ports when the
screen blanks, and re-power them when the screen becomes active. Smart phones and tablets may want
to power off USB ports when the user pushes the power button.

13.9 USB hotplugging

13.9.1 Linux Hotplugging

In hotpluggable busses like USB (and Cardbus PCI), end-users plug devices into the bus with power on.
In most cases, users expect the devices to become immediately usable. That means the system must do
many things, including:
• Find a driver that can handle the device. That may involve loading a kernel module; newer drivers
can use module-init-tools to publish their device (and class) support to user utilities.

• Bind a driver to that device. Bus frameworks do that using a device driver’s probe() routine.
• Tell other subsystems to configure the new device. Print queues may need to be enabled, networks
brought up, disk partitions mounted, and so on. In some cases these will be driver-specific actions.

This involves a mix of kernel mode and user mode actions. Making devices be immediately usable means
that any user mode actions can’t wait for an administrator to do them: the kernel must trigger them, either
passively (triggering some monitoring daemon to invoke a helper program) or actively (calling such a user
mode helper program directly).
Those triggered actions must support a system’s administrative policies; such programs are called “policy
agents” here. Typically they involve shell scripts that dispatch to more familiar administration tools.
Because some of those actions rely on information about drivers (metadata) that is currently available
only when the drivers are dynamically linked, you get the best hotplugging when you configure a highly
modular system.

13.9.2 Kernel Hotplug Helper (/sbin/hotplug)

There is a kernel parameter: /proc/sys/kernel/hotplug, which normally holds the pathname
/sbin/hotplug. That parameter names a program which the kernel may invoke at various times.
The /sbin/hotplug program can be invoked by any subsystem as part of its reaction to a configuration
change, from a thread in that subsystem. Only one parameter is required: the name of a subsystem

388 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

being notified of some kernel event. That name is used as the first key for further event dispatch; any
other argument and environment parameters are specified by the subsystem making that invocation.
Hotplug software and other resources is available at:

http://linux-hotplug.sourceforge.net
Mailing list information is also available at that site.

13.9.3 USB Policy Agent

The USB subsystem currently invokes /sbin/hotplug when USB devices are added or removed from sys-
tem. The invocation is done by the kernel hub workqueue [hub_wq], or else as part of root hub initialization
(done by init, modprobe, kapmd, etc). Its single command line parameter is the string “usb”, and it passes
these environment variables:
ACTION add, remove
PRODUCT USB vendor, product, and version codes (hex)
TYPE device class codes (decimal)
INTERFACE interface 0 class codes (decimal)
If “usbdevfs” is configured, DEVICE and DEVFS are also passed. DEVICE is the pathname of the device, and
is useful for devices with multiple and/or alternate interfaces that complicate driver selection. By design,
USB hotplugging is independent of usbdevfs: you can domost essential parts of USB device setup without
using that filesystem, andwithout running a usermode daemon to detect changes in system configuration.
Currently available policy agent implementations can load drivers for modules, and can invoke driver-
specific setup scripts. The newest ones leverage USB module-init-tools support. Later agents might
unload drivers.

13.9.4 USB Modutils Support

Current versions of module-init-tools will create a modules.usbmap file which contains the entries from
each driver’s MODULE_DEVICE_TABLE. Such files can be used by various user mode policy agents to make
sure all the right driver modules get loaded, either at boot time or later.
See linux/usb.h for full information about such table entries; or look at existing drivers. Each table entry
describes one or more criteria to be used when matching a driver to a device or class of devices. The
specific criteria are identified by bits set in “match_flags”, paired with field values. You can construct the
criteria directly, or with macros such as these, and use driver_info to store more information:

USB_DEVICE (vendorId, productId)
... matching devices with specified vendor and product ids

USB_DEVICE_VER (vendorId, productId, lo, hi)
... like USB_DEVICE with lo <= productversion <= hi

USB_INTERFACE_INFO (class, subclass, protocol)
... matching specified interface class info

USB_DEVICE_INFO (class, subclass, protocol)
... matching specified device class info

A short example, for a driver that supports several specific USB devices and their quirks, might have a
MODULE_DEVICE_TABLE like this:

static const struct usb_device_id mydriver_id_table[] = {
{ USB_DEVICE (0x9999, 0xaaaa), driver_info: QUIRK_X },
{ USB_DEVICE (0xbbbb, 0x8888), driver_info: QUIRK_Y|QUIRK_Z },
...
{ } /* end with an all-zeroes entry */

};
MODULE_DEVICE_TABLE(usb, mydriver_id_table);

13.9. USB hotplugging 389

http://linux-hotplug.sourceforge.net

The kernel driver API manual, Release 4.13.0-rc4+

Most USB device drivers should pass these tables to the USB subsystem as well as to the module manage-
ment subsystem. Not all, though: some driver frameworks connect using interfaces layered over USB,
and so they won’t need such a struct usb_driver.
Drivers that connect directly to the USB subsystem should be declared something like this:

static struct usb_driver mydriver = {
.name = "mydriver",
.id_table = mydriver_id_table,
.probe = my_probe,
.disconnect = my_disconnect,

/*
if using the usb chardev framework:

.minor = MY_USB_MINOR_START,

.fops = my_file_ops,
if exposing any operations through usbdevfs:

.ioctl = my_ioctl,
*/

};

When the USB subsystem knows about a driver’s device ID table, it’s used when choosing drivers
to probe(). The thread doing new device processing checks drivers’ device ID entries from the MOD-
ULE_DEVICE_TABLE against interface and device descriptors for the device. It will only call probe() if
there is a match, and the third argument to probe() will be the entry that matched.
If you don’t provide an id_table for your driver, then your driver may get probed for each new device;
the third parameter to probe() will be NULL.

13.10 USB device persistence during system suspend

Author Alan Stern <stern@rowland.harvard.edu>
Date September 2, 2006 (Updated February 25, 2008)

13.10.1 What is the problem?

According to the USB specification, when a USB bus is suspended the bus must continue to supply suspend
current (around 1-5 mA). This is so that devices can maintain their internal state and hubs can detect
connect-change events (devices being plugged in or unplugged). The technical term is “power session”.
If a USB device’s power session is interrupted then the system is required to behave as though the device
has been unplugged. It’s a conservative approach; in the absence of suspend current the computer has
no way to know what has actually happened. Perhaps the same device is still attached or perhaps it was
removed and a different device plugged into the port. The system must assume the worst.
By default, Linux behaves according to the spec. If a USB host controller loses power during a system
suspend, then when the system wakes up all the devices attached to that controller are treated as though
they had disconnected. This is always safe and it is the “officially correct” thing to do.
For many sorts of devices this behavior doesn’t matter in the least. If the kernel wants to believe that your
USB keyboard was unplugged while the system was asleep and a new keyboard was plugged in when the
system woke up, who cares? It’ll still work the same when you type on it.
Unfortunately problems _can_ arise, particularly with mass-storage devices. The effect is exactly the
same as if the device really had been unplugged while the system was suspended. If you had a mounted
filesystem on the device, you’re out of luck – everything in that filesystem is now inaccessible. This is
especially annoying if your root filesystem was located on the device, since your system will instantly
crash.

390 Chapter 13. Linux USB API

mailto:stern@rowland.harvard.edu

The kernel driver API manual, Release 4.13.0-rc4+

Loss of power isn’t the only mechanism to worry about. Anything that interrupts a power session will have
the same effect. For example, even though suspend current may have been maintained while the system
was asleep, on many systems during the initial stages of wakeup the firmware (i.e., the BIOS) resets the
motherboard’s USB host controllers. Result: all the power sessions are destroyed and again it’s as though
you had unplugged all the USB devices. Yes, it’s entirely the BIOS’s fault, but that doesn’t do _you_ any
good unless you can convince the BIOS supplier to fix the problem (lots of luck!).
On many systems the USB host controllers will get reset after a suspend-to-RAM. On almost all systems,
no suspend current is available during hibernation (also known as swsusp or suspend-to-disk). You can
check the kernel log after resuming to see if either of these has happened; look for lines saying “root hub
lost power or was reset”.
In practice, people are forced to unmount any filesystems on a USB device before suspending. If the root
filesystem is on a USB device, the system can’t be suspended at all. (All right, it _can_ be suspended –
but it will crash as soon as it wakes up, which isn’t much better.)

13.10.2 What is the solution?

The kernel includes a feature called USB-persist. It tries to work around these issues by allowing the core
USB device data structures to persist across a power-session disruption.
It works like this. If the kernel sees that a USB host controller is not in the expected state during resume
(i.e., if the controller was reset or otherwise had lost power) then it applies a persistence check to each of
the USB devices below that controller for which the “persist” attribute is set. It doesn’t try to resume the
device; that can’t work once the power session is gone. Instead it issues a USB port reset and then re-
enumerates the device. (This is exactly the same thing that happens whenever a USB device is reset.) If
the re-enumeration shows that the device now attached to that port has the same descriptors as before,
including the Vendor and Product IDs, then the kernel continues to use the same device structure. In
effect, the kernel treats the device as though it had merely been reset instead of unplugged.
The same thing happens if the host controller is in the expected state but a USB device was unplugged
and then replugged, or if a USB device fails to carry out a normal resume.
If no device is now attached to the port, or if the descriptors are different from what the kernel remembers,
then the treatment is what you would expect. The kernel destroys the old device structure and behaves
as though the old device had been unplugged and a new device plugged in.
The end result is that the USB device remains available and usable. Filesystem mounts and memory
mappings are unaffected, and the world is now a good and happy place.
Note that the “USB-persist” feature will be applied only to those devices for which it is enabled. You can
enable the feature by doing (as root):

echo 1 >/sys/bus/usb/devices/.../power/persist

where the ”...” should be filled in the with the device’s ID. Disable the feature by writing 0 instead of 1.
For hubs the feature is automatically and permanently enabled and the power/persist file doesn’t even
exist, so you only have to worry about setting it for devices where it really matters.

13.10.3 Is this the best solution?

Perhaps not. Arguably, keeping track of mounted filesystems and memory mappings across device dis-
connects should be handled by a centralized Logical Volume Manager. Such a solution would allow you to
plug in a USB flash device, create a persistent volume associated with it, unplug the flash device, plug it
back in later, and still have the same persistent volume associated with the device. As such it would be
more far-reaching than USB-persist.
On the other hand, writing a persistent volume manager would be a big job and using it would require
significant input from the user. This solution is much quicker and easier – and it exists now, a giant point
in its favor!

13.10. USB device persistence during system suspend 391

The kernel driver API manual, Release 4.13.0-rc4+

Furthermore, the USB-persist feature applies to _all_ USB devices, not just mass-storage devices. It might
turn out to be equally useful for other device types, such as network interfaces.

13.10.4 WARNING: USB-persist can be dangerous!!

When recovering an interrupted power session the kernel does its best to make sure the USB device
hasn’t been changed; that is, the same device is still plugged into the port as before. But the checks
aren’t guaranteed to be 100% accurate.
If you replace one USB device with another of the same type (same manufacturer, same IDs, and so
on) there’s an excellent chance the kernel won’t detect the change. The serial number string and other
descriptors are compared with the kernel’s stored values, but this might not help since manufacturers
frequently omit serial numbers entirely in their devices.
Furthermore it’s quite possible to leave a USB device exactly the same while changing its media. If you
replace the flash memory card in a USB card reader while the system is asleep, the kernel will have no
way to know you did it. The kernel will assume that nothing has happened and will continue to use the
partition tables, inodes, and memory mappings for the old card.
If the kernel gets fooled in this way, it’s almost certain to cause data corruption and to crash your system.
You’ll have no one to blame but yourself.
For those devices with avoid_reset_quirk attribute being set, persist maybe fail because they may morph
after reset.
YOU HAVE BEEN WARNED! USE AT YOUR OWN RISK!
That having been said, most of the time there shouldn’t be any trouble at all. The USB-persist feature can
be extremely useful. Make the most of it.

13.11 USB Error codes

Revised 2004-Oct-21
This is the documentation of (hopefully) all possible error codes (and their interpretation) that can be
returned from usbcore.
Some of them are returned by the Host Controller Drivers (HCDs), which device drivers only see through
usbcore. As a rule, all the HCDs should behave the same except for transfer speed dependent behaviors
and the way certain faults are reported.

13.11.1 Error codes returned by usb_submit_urb()

Non-USB-specific:
0 URB submission went fine
-ENOMEM no memory for allocation of internal structures
USB-specific:

392 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

-EBUSY The URB is already active.
-ENODEV specified USB-device or bus doesn’t exist
-ENOENT specified interface or endpoint does not exist or is

not enabled
-ENXIO host controller driver does not support queuing of

this type of urb. (treat as a host controller bug.)
-EINVAL 1. Invalid transfer type specified (or not sup-

ported)
2. Invalid or unsupported periodic transfer inter-
val

3. ISO: attempted to change transfer interval
4. ISO: number_of_packets is < 0
5. various other cases

-EXDEV ISO: URB_ISO_ASAP wasn’t specified and all the
frames the URB would be scheduled in have al-
ready expired.

-EFBIG Host controller driver can’t schedule that many
ISO frames.

-EPIPE The pipe type specified in the URB doesn’t match
the endpoint’s actual type.

-EMSGSIZE 1. endpoint maxpacket size is zero; it is not us-
able in the current interface altsetting.

2. ISO packet is larger than the endpoint max-
packet.

3. requested data transfer length is invalid:
negative or too large for the host controller.

-ENOSPC This request would overcommit the usb band-
width reserved for periodic transfers (interrupt,
isochronous).

-ESHUTDOWN The device or host controller has been disabled
due to some problem that could not be worked
around.

-EPERM Submission failed because urb->reject was set.
-EHOSTUNREACH URB was rejected because the device is sus-

pended.
-ENOEXEC A control URB doesn’t contain a Setup packet.

13.11.2 Error codes returned by in urb->status or in
iso_frame_desc[n].status (for ISO)

USB device drivers may only test urb status values in completion handlers. This is because otherwise
there would be a race between HCDs updating these values on one CPU, and device drivers testing them
on another CPU.
A transfer’s actual_lengthmay be positive even when an error has been reported. That’s because transfers
often involve several packets, so that one or more packets could finish before an error stops further
endpoint I/O.
For isochronous URBs, the urb status value is non-zero only if the URB is unlinked, the device is removed,
the host controller is disabled, or the total transferred length is less than the requested length and the
URB_SHORT_NOT_OK flag is set. Completion handlers for isochronous URBs should only see urb->status
set to zero, -ENOENT, -ECONNRESET, -ESHUTDOWN, or -EREMOTEIO. Individual frame descriptor status fields
may report more status codes.

13.11. USB Error codes 393

The kernel driver API manual, Release 4.13.0-rc4+

0 Transfer completed successfully
-ENOENT URB was synchronously unlinked by

usb_unlink_urb()
-EINPROGRESS URB still pending, no results yet (That is, if drivers

see this it’s a bug.)
-EPROTO 1, 2 1. bitstuff error

2. no response packet received within the pre-
scribed bus turn-around time

3. unknown USB error

-EILSEQ 1, 2 1. CRC mismatch
2. no response packet received within the pre-
scribed bus turn-around time

3. unknown USB error
Note that often the controller hardware does not
distinguish among cases a), b), and c), so a driver
cannot tell whether there was a protocol error, a
failure to respond (often caused by device discon-
nect), or some other fault.

-ETIME 2 No response packet received within the prescribed
bus turn-around time. This error may instead be
reported as -EPROTO or -EILSEQ.

-ETIMEDOUT Synchronous USBmessage functions use this code
to indicate timeout expired before the transfer
completed, and no other error was reported by HC.

-EPIPE 2 Endpoint stalled. For non-control endpoints, reset
this status with usb_clear_halt().

-ECOMM During an IN transfer, the host controller received
data from an endpoint faster than it could be writ-
ten to system memory

-ENOSR During an OUT transfer, the host controller could
not retrieve data from system memory fast
enough to keep up with the USB data rate

-EOVERFLOW 1 The amount of data returned by the endpoint was
greater than either the max packet size of the end-
point or the remaining buffer size. “Babble”.

-EREMOTEIO The data read from the endpoint did not fill the
specified buffer, and URB_SHORT_NOT_OK was set
in urb->transfer_flags.

-ENODEV Device was removed. Often preceded by a burst
of other errors, since the hub driver doesn’t detect
device removal events immediately.

-EXDEV ISO transfer only partially completed (only set in
iso_frame_desc[n].status, not urb->status)

-EINVAL ISOmadness, if this happens: Log off and go home
-ECONNRESET URB was asynchronously unlinked by

usb_unlink_urb()
-ESHUTDOWN The device or host controller has been disabled

due to some problem that could not be worked
around, such as a physical disconnect.

1 Error codes like -EPROTO, -EILSEQ and -EOVERFLOW normally indicate hardware problems such as bad devices (including
firmware) or cables.

2 This is also one of several codes that different kinds of host controller use to indicate a transfer has failed because of device
disconnect. In the interval before the hub driver starts disconnect processing, devices may receive such fault reports for every
request.

394 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

13.11.3 Error codes returned by usbcore-functions

Note:

expect also other submit and transfer status codes

usb_register():
-EINVAL error during registering new driver

usb_get_*/usb_set_*(), usb_control_msg(), usb_bulk_msg():
-ETIMEDOUT Timeout expired before the transfer completed.

13.12 Writing USB Device Drivers

Author Greg Kroah-Hartman

13.12.1 Introduction

The Linux USB subsystem has grown from supporting only two different types of devices in the 2.2.7
kernel (mice and keyboards), to over 20 different types of devices in the 2.4 kernel. Linux currently
supports almost all USB class devices (standard types of devices like keyboards, mice, modems, printers
and speakers) and an ever-growing number of vendor-specific devices (such as USB to serial converters,
digital cameras, Ethernet devices and MP3 players). For a full list of the different USB devices currently
supported, see Resources.
The remaining kinds of USB devices that do not have support on Linux are almost all vendor-specific
devices. Each vendor decides to implement a custom protocol to talk to their device, so a custom driver
usually needs to be created. Some vendors are open with their USB protocols and help with the creation
of Linux drivers, while others do not publish them, and developers are forced to reverse-engineer. See
Resources for some links to handy reverse-engineering tools.
Because each different protocol causes a new driver to be created, I have written a generic USB driver
skeleton, modelled after the pci-skeleton.c file in the kernel source tree upon which many PCI network
drivers have been based. This USB skeleton can be found at drivers/usb/usb-skeleton.c in the kernel
source tree. In this article I will walk through the basics of the skeleton driver, explaining the different
pieces and what needs to be done to customize it to your specific device.

13.12.2 Linux USB Basics

If you are going to write a Linux USB driver, please become familiar with the USB protocol specification.
It can be found, along with many other useful documents, at the USB home page (see Resources). An
excellent introduction to the Linux USB subsystem can be found at the USB Working Devices List (see
Resources). It explains how the Linux USB subsystem is structured and introduces the reader to the
concept of USB urbs (USB Request Blocks), which are essential to USB drivers.
The first thing a Linux USB driver needs to do is register itself with the Linux USB subsystem, giving it
some information about which devices the driver supports and which functions to call when a device
supported by the driver is inserted or removed from the system. All of this information is passed to the
USB subsystem in the usb_driver structure. The skeleton driver declares a usb_driver as:

static struct usb_driver skel_driver = {
.name = "skeleton",
.probe = skel_probe,
.disconnect = skel_disconnect,

13.12. Writing USB Device Drivers 395

The kernel driver API manual, Release 4.13.0-rc4+

.fops = &skel_fops,

.minor = USB_SKEL_MINOR_BASE,

.id_table = skel_table,
};

The variable name is a string that describes the driver. It is used in informational messages printed to
the system log. The probe and disconnect function pointers are called when a device that matches the
information provided in the id_table variable is either seen or removed.
The fops and minor variables are optional. Most USB drivers hook into another kernel subsystem, such
as the SCSI, network or TTY subsystem. These types of drivers register themselves with the other kernel
subsystem, and any user-space interactions are provided through that interface. But for drivers that do
not have a matching kernel subsystem, such as MP3 players or scanners, a method of interacting with
user space is needed. The USB subsystem provides a way to register a minor device number and a set of
file_operations function pointers that enable this user-space interaction. The skeleton driver needs this
kind of interface, so it provides a minor starting number and a pointer to its file_operations functions.
The USB driver is then registered with a call to usb_register(), usually in the driver’s init function, as
shown here:

static int __init usb_skel_init(void)
{

int result;

/* register this driver with the USB subsystem */
result = usb_register(&skel_driver);
if (result < 0) {

err("usb_register failed for the "__FILE__ "driver."
"Error number %d", result);

return -1;
}

return 0;
}
module_init(usb_skel_init);

When the driver is unloaded from the system, it needs to deregister itself with the USB subsystem. This
is done with the usb_deregister() function:

static void __exit usb_skel_exit(void)
{

/* deregister this driver with the USB subsystem */
usb_deregister(&skel_driver);

}
module_exit(usb_skel_exit);

To enable the linux-hotplug system to load the driver automatically when the device is plugged in, you
need to create a MODULE_DEVICE_TABLE. The following code tells the hotplug scripts that this module
supports a single device with a specific vendor and product ID:

/* table of devices that work with this driver */
static struct usb_device_id skel_table [] = {

{ USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) },
{ } /* Terminating entry */

};
MODULE_DEVICE_TABLE (usb, skel_table);

There are other macros that can be used in describing a struct usb_device_id for drivers that support a
whole class of USB drivers. See usb.h for more information on this.

396 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

13.12.3 Device operation

When a device is plugged into the USB bus that matches the device ID pattern that your driver registered
with the USB core, the probe function is called. The usb_device structure, interface number and the
interface ID are passed to the function:

static int skel_probe(struct usb_interface *interface,
const struct usb_device_id *id)

The driver now needs to verify that this device is actually one that it can accept. If so, it returns 0. If not,
or if any error occurs during initialization, an errorcode (such as -ENOMEM or -ENODEV) is returned from the
probe function.
In the skeleton driver, we determine what end points are marked as bulk-in and bulk-out. We create
buffers to hold the data that will be sent and received from the device, and a USB urb to write data to the
device is initialized.
Conversely, when the device is removed from the USB bus, the disconnect function is called with the
device pointer. The driver needs to clean any private data that has been allocated at this time and to shut
down any pending urbs that are in the USB system.
Now that the device is plugged into the system and the driver is bound to the device, any of the functions
in the file_operations structure that were passed to the USB subsystem will be called from a user
program trying to talk to the device. The first function called will be open, as the program tries to open
the device for I/O. We increment our private usage count and save a pointer to our internal structure in
the file structure. This is done so that future calls to file operations will enable the driver to determine
which device the user is addressing. All of this is done with the following code:

/* increment our usage count for the module */
++skel->open_count;

/* save our object in the file's private structure */
file->private_data = dev;

After the open function is called, the read and write functions are called to receive and send data to the
device. In the skel_write function, we receive a pointer to some data that the user wants to send to the
device and the size of the data. The function determines how much data it can send to the device based
on the size of the write urb it has created (this size depends on the size of the bulk out end point that
the device has). Then it copies the data from user space to kernel space, points the urb to the data and
submits the urb to the USB subsystem. This can be seen in the following code:

/* we can only write as much as 1 urb will hold */
bytes_written = (count > skel->bulk_out_size) ? skel->bulk_out_size : count;

/* copy the data from user space into our urb */
copy_from_user(skel->write_urb->transfer_buffer, buffer, bytes_written);

/* set up our urb */
usb_fill_bulk_urb(skel->write_urb,

skel->dev,
usb_sndbulkpipe(skel->dev, skel->bulk_out_endpointAddr),
skel->write_urb->transfer_buffer,
bytes_written,
skel_write_bulk_callback,
skel);

/* send the data out the bulk port */
result = usb_submit_urb(skel->write_urb);
if (result) {

err("Failed submitting write urb, error %d", result);
}

13.12. Writing USB Device Drivers 397

The kernel driver API manual, Release 4.13.0-rc4+

When the write urb is filled up with the proper information using the usb_fill_bulk_urb() function, we
point the urb’s completion callback to call our own skel_write_bulk_callback function. This function
is called when the urb is finished by the USB subsystem. The callback function is called in interrupt
context, so caution must be taken not to do very much processing at that time. Our implementation of
skel_write_bulk_callbackmerely reports if the urb was completed successfully or not and then returns.
The read function works a bit differently from the write function in that we do not use an urb to transfer
data from the device to the driver. Instead we call the usb_bulk_msg() function, which can be used to
send or receive data from a device without having to create urbs and handle urb completion callback
functions. We call the usb_bulk_msg() function, giving it a buffer into which to place any data received
from the device and a timeout value. If the timeout period expires without receiving any data from the
device, the function will fail and return an error message. This can be shown with the following code:

/* do an immediate bulk read to get data from the device */
retval = usb_bulk_msg (skel->dev,

usb_rcvbulkpipe (skel->dev,
skel->bulk_in_endpointAddr),
skel->bulk_in_buffer,
skel->bulk_in_size,
&count, HZ*10);

/* if the read was successful, copy the data to user space */
if (!retval) {

if (copy_to_user (buffer, skel->bulk_in_buffer, count))
retval = -EFAULT;

else
retval = count;

}

The usb_bulk_msg() function can be very useful for doing single reads or writes to a device; however, if
you need to read or write constantly to a device, it is recommended to set up your own urbs and submit
them to the USB subsystem.
When the user program releases the file handle that it has been using to talk to the device, the release
function in the driver is called. In this function we decrement our private usage count and wait for possible
pending writes:

/* decrement our usage count for the device */
--skel->open_count;

One of the more difficult problems that USB drivers must be able to handle smoothly is the fact that the
USB device may be removed from the system at any point in time, even if a program is currently talking
to it. It needs to be able to shut down any current reads and writes and notify the user-space programs
that the device is no longer there. The following code (function skel_delete) is an example of how to do
this:

static inline void skel_delete (struct usb_skel *dev)
{

kfree (dev->bulk_in_buffer);
if (dev->bulk_out_buffer != NULL)

usb_free_coherent (dev->udev, dev->bulk_out_size,
dev->bulk_out_buffer,
dev->write_urb->transfer_dma);

usb_free_urb (dev->write_urb);
kfree (dev);

}

If a program currently has an open handle to the device, we reset the flag device_present. For every
read, write, release and other functions that expect a device to be present, the driver first checks this
flag to see if the device is still present. If not, it releases that the device has disappeared, and a -ENODEV
error is returned to the user-space program. When the release function is eventually called, it determines
if there is no device and if not, it does the cleanup that the skel_disconnect function normally does if
there are no open files on the device (see Listing 5).

398 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

13.12.4 Isochronous Data

This usb-skeleton driver does not have any examples of interrupt or isochronous data being sent to or from
the device. Interrupt data is sent almost exactly as bulk data is, with a few minor exceptions. Isochronous
data works differently with continuous streams of data being sent to or from the device. The audio and
video camera drivers are very good examples of drivers that handle isochronous data and will be useful
if you also need to do this.

13.12.5 Conclusion

Writing Linux USB device drivers is not a difficult task as the usb-skeleton driver shows. This driver,
combined with the other current USB drivers, should provide enough examples to help a beginning author
create a working driver in a minimal amount of time. The linux-usb-devel mailing list archives also contain
a lot of helpful information.

13.12.6 Resources

The Linux USB Project: http://www.linux-usb.org/
Linux Hotplug Project: http://linux-hotplug.sourceforge.net/
Linux USB Working Devices List: http://www.qbik.ch/usb/devices/
linux-usb-devel Mailing List Archives: http://marc.theaimsgroup.com/?l=linux-usb-devel
Programming Guide for Linux USB Device Drivers: http://usb.cs.tum.edu/usbdoc
USB Home Page: http://www.usb.org

13.13 Synopsys DesignWare Core SuperSpeed USB 3.0 Controller

Author Felipe Balbi <felipe.balbi@linux.intel.com>
Date April 2017

13.13.1 Introduction

The Synopsys DesignWare Core SuperSpeed USB 3.0 Controller (hereinafter referred to as DWC3) is a USB
SuperSpeed compliant controller which can be configured in one of 4 ways:
1. Peripheral-only configuration
2. Host-only configuration
3. Dual-Role configuration
4. Hub configuration

Linux currently supports several versions of this controller. In all likelyhood, the version in your SoC is
already supported. At the time of this writing, known tested versions range from 2.02a to 3.10a. As a rule
of thumb, anything above 2.02a should work reliably well.
Currently, we have many known users for this driver. In alphabetical order:
1. Cavium
2. Intel Corporation
3. Qualcomm
4. Rockchip

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 399

http://www.linux-usb.org/
http://linux-hotplug.sourceforge.net/
http://www.qbik.ch/usb/devices/
http://marc.theaimsgroup.com/?l=linux-usb-devel
http://usb.cs.tum.edu/usbdoc
http://www.usb.org
mailto:felipe.balbi@linux.intel.com

The kernel driver API manual, Release 4.13.0-rc4+

5. ST
6. Samsung
7. Texas Instruments
8. Xilinx

13.13.2 Summary of Features

For details about features supported by your version of DWC3, consult your IP team and/or Synopsys
DesignWare Core SuperSpeed USB 3.0 Controller Databook. Following is a list of features supported by
the driver at the time of this writing:
1. Up to 16 bidirectional endpoints (including the control pipe - ep0)
2. Flexible endpoint configuration
3. Simultaneous IN and OUT transfer support
4. Scatter-list support

5. Up to 256 TRBs 1 per endpoint
6. Support for all transfer types (Control, Bulk, Interrupt, and Isochronous)
7. SuperSpeed Bulk Streams
8. Link Power Management
9. Trace Events for debugging

10. DebugFS 3 interface
These features have all been exercised with many of the in-tree gadget drivers. We have verified both
ConfigFS 4 and legacy gadget drivers.

13.13.3 Driver Design

The DWC3 driver sits on the drivers/usb/dwc3/ directory. All files related to this driver are in this one
directory. This makes it easy for new-comers to read the code and understand how it behaves.
Because of DWC3’s configuration flexibility, the driver is a little complex in some places but it should be
rather straightforward to understand.
The biggest part of the driver refers to the Gadget API.

13.13.4 Known Limitations

Like any other HW, DWC3 has its own set of limitations. To avoid constant questions about such problems,
we decided to document them here and have a single location to where we could point users.

OUT Transfer Size Requirements

According to Synopsys Databook, all OUT transfer TRBs 1 must have their size field set to a value which
is integer divisible by the endpoint’s wMaxPacketSize. This means that e.g. in order to receive a Mass
Storage CBW 5, req->length must either be set to a value that’s divisible by wMaxPacketSize (1024 on

1 Transfer Request Block
3 The Debug File System
4 The Config File System
5 Command Block Wrapper

400 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

SuperSpeed, 512 on HighSpeed, etc), or DWC3 driver must add a Chained TRB pointing to a throw-away
buffer for the remaining length. Without this, OUT transfers will NOT start.
Note that as of this writing, this won’t be a problem because DWC3 is fully capable of appending a chained
TRB for the remaining length and completely hide this detail from the gadget driver. It’s still worth men-
tioning because this seems to be the largest source of queries about DWC3 and non-working transfers.

TRB Ring Size Limitation

We, currently, have a hard limit of 256 TRBs 1 per endpoint, with the last TRB being a Link TRB 2 pointing
back to the first. This limit is arbitrary but it has the benefit of adding up to exactly 4096 bytes, or 1 Page.
DWC3 driver will try its best to cope with more than 255 requests and, for the most part, it should work
normally. However this is not something that has been exercised very frequently. If you experience any
problems, see section Reporting Bugs below.

13.13.5 Reporting Bugs

Whenever you encounter a problem with DWC3, first and foremost you should make sure that:
1. You’re running latest tag from Linus’ tree
2. You can reproduce the error without any out-of-tree changes to DWC3
3. You have checked that it’s not a fault on the host machine

After all these are verified, then here’s how to capture enough information so we can be of any help to
you.

Required Information

DWC3 relies exclusively on Trace Events for debugging. Everything is exposed there, with some extra bits
being exposed to DebugFS 3.
In order to capture DWC3’s Trace Events you should run the following commands before plugging the
USB cable to a host machine:

mkdir -p /d
mkdir -p /t
mount -t debugfs none /d
mount -t tracefs none /t
echo 81920 > /t/buffer_size_kb
echo 1 > /t/events/dwc3/enable

After this is done, you can connect your USB cable and reproduce the problem. As soon as the fault is
reproduced, make a copy of files trace and regdump, like so:

cp /t/trace /root/trace.txt
cat /d/*dwc3*/regdump > /root/regdump.txt

Make sure to compress trace.txt and regdump.txt in a tarball and email it to me with linux-usb in Cc.
If you want to be extra sure that I’ll help you, write your subject line in the following format:

[BUG REPORT] usb: dwc3: Bug while doing XYZ
On the email body, make sure to detail what you doing, which gadget driver you were using, how to repro-
duce the problem, what SoC you’re using, which OS (and its version) was running on the Host machine.
With all this information, we should be able to understand what’s going on and be helpful to you.

2 Transfer Request Block pointing to another Transfer Request Block.

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 401

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
mailto:felipe.balbi@linux.intel.com
mailto:linux-usb@vger.kernel.org

The kernel driver API manual, Release 4.13.0-rc4+

13.13.6 Debugging

First and foremost a disclaimer:

DISCLAIMER: The information available on DebugFS and/or TraceFS can
change at any time at any Major Linux Kernel Release. If writing
scripts, do **NOT** assume information to be available in the
current format.

With that out of the way, let’s carry on.
If you’re willing to debug your own problem, you deserve a round of applause :-)
Anyway, there isn’t much to say here other than Trace Events will be really helpful in figuring out issues
with DWC3. Also, access to Synopsys Databook will be really valuable in this case.
A USB Sniffer can be helpful at times but it’s not entirely required, there’s a lot that can be understood
without looking at the wire.
Feel free to email me and Cc linux-usb if you need any help.

DebugFS

DebugFS is very good for gathering snapshots of what’s going on with DWC3 and/or any endpoint.
On DWC3’s DebugFS directory, you will find the following files and directories:
ep[0..15]{in,out}/ link_state regdump testmode

link_state

When read, link_state will print out one of U0, U1, U2, U3, SS.Disabled, RX.Detect, SS.Inactive,
Polling, Recovery, Hot Reset, Compliance, Loopback, Reset, Resume or UNKNOWN link state.
This file can also be written to in order to force link to one of the states above.

regdump

File name is self-explanatory. When read, regdump will print out a register dump of DWC3. Note that this
file can be grepped to find the information you want.

testmode

When read, testmode will print out a name of one of the specified USB 2.0 Testmodes (test_j, test_k,
test_se0_nak, test_packet, test_force_enable) or the string no test in case no tests are currently
being executed.
In order to start any of these test modes, the same strings can be written to the file and DWC3 will enter
the requested test mode.

ep[0..15]{in,out}

For each endpoint we expose one directory following the naming convention epnumdir (ep0in, ep0out,
ep1in, ...). Inside each of these directories you will find the following files:
descriptor_fetch_queue event_queue rx_fifo_queue rx_info_queue rx_request_queue trans-
fer_type trb_ring tx_fifo_queue tx_request_queue

With access to Synopsys Databook, you can decode the information on them.

402 Chapter 13. Linux USB API

mailto:felipe.balbi@linux.intel.com
mailto:linux-usb@vger.kernel.org

The kernel driver API manual, Release 4.13.0-rc4+

transfer_type

When read, transfer_type will print out one of control, bulk, interrupt or isochronous depending on
what the endpoint descriptor says. If the endpoint hasn’t been enabled yet, it will print --.

trb_ring

When read, trb_ring will print out details about all TRBs on the ring. It will also tell you where our
enqueue and dequeue pointers are located in the ring:

buffer_addr,size,type,ioc,isp_imi,csp,chn,lst,hwo
000000002c754000,481,normal,1,0,1,0,0,0
000000002c75c000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c75c000,481,normal,1,0,1,0,0,0
000000002c784000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c784000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c784000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 403

The kernel driver API manual, Release 4.13.0-rc4+

000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c784000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c75c000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c75c000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c784000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c75c000,512,normal,1,0,1,0,0,1 D
0000000000000000,0,UNKNOWN,0,0,0,0,0,0 E
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0

404 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 405

The kernel driver API manual, Release 4.13.0-rc4+

0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0

406 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
00000000381ab000,0,link,0,0,0,0,0,1

Trace Events

DWC3 also provides several trace events which help us gathering information about the behavior of the
driver during runtime.
In order to use these events, you must enable CONFIG_FTRACE in your kernel config.
For details about how enable DWC3 events, see section Reporting Bugs.
The following subsections will give details about each Event Class and each Event defined by DWC3.

MMIO

It is sometimes useful to look at every MMIO access when looking for bugs. Because of that, DWC3 offers
two Trace Events (one for dwc3_readl() and one for dwc3_writel()). TP_printk follows:

TP_printk("addr %p value %08x", __entry->base + __entry->offset,
__entry->value)

Interrupt Events

Every IRQ event can be logged and decoded into a human readable string. Because every event will be
different, we don’t give an example other than the TP_printk format used:

TP_printk("event (%08x): %s", __entry->event,
dwc3_decode_event(__entry->event, __entry->ep0state))

Control Request

Every USB Control Request can be logged to the trace buffer. The output format is:

TP_printk("%s", dwc3_decode_ctrl(__entry->bRequestType,
__entry->bRequest, __entry->wValue,
__entry->wIndex, __entry->wLength)

)

Note that Standard Control Requests will be decoded into human-readable strings with their respective
arguments. Class and Vendor requests will be printed out a sequence of 8 bytes in hex format.

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 407

The kernel driver API manual, Release 4.13.0-rc4+

Lifetime of a struct usb_request

The entire lifetime of a struct usb_request can be tracked on the trace buffer. We have one event for
each of allocation, free, queueing, dequeueing, and giveback. Output format is:

TP_printk("%s: req %p length %u/%u %s%s%s ==> %d",
__get_str(name), __entry->req, __entry->actual, __entry->length,
__entry->zero ? "Z" : "z",
__entry->short_not_ok ? "S" : "s",
__entry->no_interrupt ? "i" : "I",
__entry->status

)

Generic Commands

We can log and decode every Generic Command with its completion code. Format is:

TP_printk("cmd '%s' [%x] param %08x --> status: %s",
dwc3_gadget_generic_cmd_string(__entry->cmd),
__entry->cmd, __entry->param,
dwc3_gadget_generic_cmd_status_string(__entry->status)

)

Endpoint Commands

Endpoints commands can also be logged together with completion code. Format is:

TP_printk("%s: cmd '%s' [%d] params %08x %08x %08x --> status: %s",
__get_str(name), dwc3_gadget_ep_cmd_string(__entry->cmd),
__entry->cmd, __entry->param0,
__entry->param1, __entry->param2,
dwc3_ep_cmd_status_string(__entry->cmd_status)

)

Lifetime of a TRB

A TRB Lifetime is simple. We are either preparing a TRB or completing it. With these two events, we can
see how a TRB changes over time. Format is:

TP_printk("%s: %d/%d trb %p buf %08x%08x size %s%d ctrl %08x (%c%c%c%c:%c%c:%s)",
__get_str(name), __entry->queued, __entry->allocated,
__entry->trb, __entry->bph, __entry->bpl,
({char *s;
int pcm = ((__entry->size >> 24) & 3) + 1;
switch (__entry->type) {
case USB_ENDPOINT_XFER_INT:
case USB_ENDPOINT_XFER_ISOC:

switch (pcm) {
case 1:

s = "1x ";
break;

case 2:
s = "2x ";
break;

case 3:
s = "3x ";
break;

408 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

}
default:

s = "";
} s; }),
DWC3_TRB_SIZE_LENGTH(__entry->size), __entry->ctrl,
__entry->ctrl & DWC3_TRB_CTRL_HWO ? 'H' : 'h',
__entry->ctrl & DWC3_TRB_CTRL_LST ? 'L' : 'l',
__entry->ctrl & DWC3_TRB_CTRL_CHN ? 'C' : 'c',
__entry->ctrl & DWC3_TRB_CTRL_CSP ? 'S' : 's',
__entry->ctrl & DWC3_TRB_CTRL_ISP_IMI ? 'S' : 's',
__entry->ctrl & DWC3_TRB_CTRL_IOC ? 'C' : 'c',

dwc3_trb_type_string(DWC3_TRBCTL_TYPE(__entry->ctrl))
)

Lifetime of an Endpoint

And endpoint’s lifetime is summarized with enable and disable operations, both of which can be traced.
Format is:

TP_printk("%s: mps %d/%d streams %d burst %d ring %d/%d flags %c:%c%c%c%c%c:%c:%c",
__get_str(name), __entry->maxpacket,
__entry->maxpacket_limit, __entry->max_streams,
__entry->maxburst, __entry->trb_enqueue,
__entry->trb_dequeue,
__entry->flags & DWC3_EP_ENABLED ? 'E' : 'e',
__entry->flags & DWC3_EP_STALL ? 'S' : 's',
__entry->flags & DWC3_EP_WEDGE ? 'W' : 'w',
__entry->flags & DWC3_EP_BUSY ? 'B' : 'b',
__entry->flags & DWC3_EP_PENDING_REQUEST ? 'P' : 'p',
__entry->flags & DWC3_EP_MISSED_ISOC ? 'M' : 'm',
__entry->flags & DWC3_EP_END_TRANSFER_PENDING ? 'E' : 'e',
__entry->direction ? '<' : '>'

)

13.13.7 Structures, Methods and Definitions

struct dwc3_event_buffer
Software event buffer representation

Definition

struct dwc3_event_buffer {
void * buf;
void * cache;
unsigned length;
unsigned int lpos;
unsigned int count;
unsigned int flags;

#define DWC3_EVENT_PENDING BIT(0
dma_addr_t dma;
struct dwc3 * dwc;

};

Members
buf _THE_ buffer
cache The buffer cache used in the threaded interrupt
length size of this buffer

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 409

The kernel driver API manual, Release 4.13.0-rc4+

lpos event offset
count cache of last read event count register
flags flags related to this event buffer
dma dma_addr_t
dwc pointer to DWC controller
struct dwc3_ep

device side endpoint representation
Definition

struct dwc3_ep {
struct usb_ep endpoint;
struct list_head pending_list;
struct list_head started_list;
wait_queue_head_t wait_end_transfer;
spinlock_t lock;
void __iomem * regs;
struct dwc3_trb * trb_pool;
dma_addr_t trb_pool_dma;
struct dwc3 * dwc;
u32 saved_state;
unsigned flags;

#define DWC3_EP_ENABLED BIT(0
#define DWC3_EP_STALL BIT(1
#define DWC3_EP_WEDGE BIT(2
#define DWC3_EP_BUSY BIT(4
#define DWC3_EP_PENDING_REQUEST BIT(5
#define DWC3_EP_MISSED_ISOC BIT(6
#define DWC3_EP_END_TRANSFER_PENDING BIT(7
#define DWC3_EP_TRANSFER_STARTED BIT(8
#define DWC3_EP0_DIR_IN BIT(31

u8 trb_enqueue;
u8 trb_dequeue;
u8 number;
u8 type;
u8 resource_index;
u32 allocated_requests;
u32 queued_requests;
u32 interval;
char name;
unsigned direction:1;
unsigned stream_capable:1;

};

Members
endpoint usb endpoint
pending_list list of pending requests for this endpoint
started_list list of started requests on this endpoint
wait_end_transfer wait_queue_head_t for waiting on End Transfer complete
lock spinlock for endpoint request queue traversal
regs pointer to first endpoint register
trb_pool array of transaction buffers
trb_pool_dma dma address of trb_pool
dwc pointer to DWC controller

410 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

saved_state ep state saved during hibernation
flags endpoint flags (wedged, stalled, ...)
trb_enqueue enqueue ‘pointer’ into TRB array
trb_dequeue dequeue ‘pointer’ into TRB array
number endpoint number (1 - 15)
type set to bmAttributes & USB_ENDPOINT_XFERTYPE_MASK
resource_index Resource transfer index
allocated_requests number of requests allocated
queued_requests number of requests queued for transfer
interval the interval on which the ISOC transfer is started
name a human readable name e.g. ep1out-bulk
direction true for TX, false for RX
stream_capable true when streams are enabled
struct dwc3_trb

transfer request block (hw format)
Definition

struct dwc3_trb {
u32 bpl;
u32 bph;
u32 size;
u32 ctrl;

};

Members
bpl DW0-3
bph DW4-7
size DW8-B
ctrl DWC-F
struct dwc3_hwparams

copy of HWPARAMS registers
Definition

struct dwc3_hwparams {
u32 hwparams0;
u32 hwparams1;
u32 hwparams2;
u32 hwparams3;
u32 hwparams4;
u32 hwparams5;
u32 hwparams6;
u32 hwparams7;
u32 hwparams8;

};

Members
hwparams0 GHWPARAMS0
hwparams1 GHWPARAMS1

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 411

The kernel driver API manual, Release 4.13.0-rc4+

hwparams2 GHWPARAMS2
hwparams3 GHWPARAMS3
hwparams4 GHWPARAMS4
hwparams5 GHWPARAMS5
hwparams6 GHWPARAMS6
hwparams7 GHWPARAMS7
hwparams8 GHWPARAMS8
struct dwc3_request

representation of a transfer request
Definition

struct dwc3_request {
struct usb_request request;
struct list_head list;
struct dwc3_ep * dep;
struct scatterlist * sg;
unsigned num_pending_sgs;
unsigned remaining;
u8 epnum;
struct dwc3_trb * trb;
dma_addr_t trb_dma;
unsigned unaligned:1;
unsigned direction:1;
unsigned mapped:1;
unsigned started:1;
unsigned zero:1;

};

Members
request struct usb_request to be transferred
list a list_head used for request queueing
dep struct dwc3_ep owning this request
sg pointer to first incomplete sg
num_pending_sgs counter to pending sgs
remaining amount of data remaining
epnum endpoint number to which this request refers
trb pointer to struct dwc3_trb
trb_dma DMA address of trb
unaligned true for OUT endpoints with length not divisible by maxp
direction IN or OUT direction flag
mapped true when request has been dma-mapped
started request is started
zero wants a ZLP
struct dwc3

representation of our controller
Definition

412 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

struct dwc3 {
struct work_struct drd_work;
struct dwc3_trb * ep0_trb;
void * bounce;
void * scratchbuf;
u8 * setup_buf;
dma_addr_t ep0_trb_addr;
dma_addr_t bounce_addr;
dma_addr_t scratch_addr;
struct dwc3_request ep0_usb_req;
struct completion ep0_in_setup;
spinlock_t lock;
struct device * dev;
struct device * sysdev;
struct platform_device * xhci;
struct resource xhci_resources;
struct dwc3_event_buffer * ev_buf;
struct dwc3_ep * eps;
struct usb_gadget gadget;
struct usb_gadget_driver * gadget_driver;
struct usb_phy * usb2_phy;
struct usb_phy * usb3_phy;
struct phy * usb2_generic_phy;
struct phy * usb3_generic_phy;
struct ulpi * ulpi;
void __iomem * regs;
size_t regs_size;
enum usb_dr_mode dr_mode;
u32 current_dr_role;
u32 desired_dr_role;
struct extcon_dev * edev;
struct notifier_block edev_nb;
enum usb_phy_interface hsphy_mode;
u32 fladj;
u32 irq_gadget;
u32 nr_scratch;
u32 u1u2;
u32 maximum_speed;
u32 revision;

#define DWC3_REVISION_173A 0x5533173a
#define DWC3_REVISION_175A 0x5533175a
#define DWC3_REVISION_180A 0x5533180a
#define DWC3_REVISION_183A 0x5533183a
#define DWC3_REVISION_185A 0x5533185a
#define DWC3_REVISION_187A 0x5533187a
#define DWC3_REVISION_188A 0x5533188a
#define DWC3_REVISION_190A 0x5533190a
#define DWC3_REVISION_194A 0x5533194a
#define DWC3_REVISION_200A 0x5533200a
#define DWC3_REVISION_202A 0x5533202a
#define DWC3_REVISION_210A 0x5533210a
#define DWC3_REVISION_220A 0x5533220a
#define DWC3_REVISION_230A 0x5533230a
#define DWC3_REVISION_240A 0x5533240a
#define DWC3_REVISION_250A 0x5533250a
#define DWC3_REVISION_260A 0x5533260a
#define DWC3_REVISION_270A 0x5533270a
#define DWC3_REVISION_280A 0x5533280a
#define DWC3_REVISION_290A 0x5533290a
#define DWC3_REVISION_300A 0x5533300a
#define DWC3_REVISION_310A 0x5533310a
#define DWC3_REVISION_IS_DWC31 0x80000000
#define DWC3_USB31_REVISION_110A (0x3131302a | DWC3_REVISION_IS_DWC31

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 413

The kernel driver API manual, Release 4.13.0-rc4+

#define DWC3_USB31_REVISION_120A (0x3132302a | DWC3_REVISION_IS_DWC31
enum dwc3_ep0_next ep0_next_event;
enum dwc3_ep0_state ep0state;
enum dwc3_link_state link_state;
u16 isoch_delay;
u16 u2sel;
u16 u2pel;
u8 u1sel;
u8 u1pel;
u8 speed;
u8 num_eps;
struct dwc3_hwparams hwparams;
struct dentry * root;
struct debugfs_regset32 * regset;
u8 test_mode;
u8 test_mode_nr;
u8 lpm_nyet_threshold;
u8 hird_threshold;
const char * hsphy_interface;
unsigned connected:1;
unsigned delayed_status:1;
unsigned ep0_bounced:1;
unsigned ep0_expect_in:1;
unsigned has_hibernation:1;
unsigned sysdev_is_parent:1;
unsigned has_lpm_erratum:1;
unsigned is_utmi_l1_suspend:1;
unsigned is_fpga:1;
unsigned pending_events:1;
unsigned pullups_connected:1;
unsigned setup_packet_pending:1;
unsigned three_stage_setup:1;
unsigned usb3_lpm_capable:1;
unsigned disable_scramble_quirk:1;
unsigned u2exit_lfps_quirk:1;
unsigned u2ss_inp3_quirk:1;
unsigned req_p1p2p3_quirk:1;
unsigned del_p1p2p3_quirk:1;
unsigned del_phy_power_chg_quirk:1;
unsigned lfps_filter_quirk:1;
unsigned rx_detect_poll_quirk:1;
unsigned dis_u3_susphy_quirk:1;
unsigned dis_u2_susphy_quirk:1;
unsigned dis_enblslpm_quirk:1;
unsigned dis_rxdet_inp3_quirk:1;
unsigned dis_u2_freeclk_exists_quirk:1;
unsigned dis_del_phy_power_chg_quirk:1;
unsigned dis_tx_ipgap_linecheck_quirk:1;
unsigned tx_de_emphasis_quirk:1;
unsigned tx_de_emphasis:2;
u16 imod_interval;

};

Members
drd_work workqueue used for role swapping
ep0_trb trb which is used for the ctrl_req
bounce address of bounce buffer
scratchbuf address of scratch buffer
setup_buf used while precessing STD USB requests

414 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

ep0_trb_addr dma address of ep0_trb
bounce_addr dma address of bounce
scratch_addr dma address of scratchbuf
ep0_usb_req dummy req used while handling STD USB requests
ep0_in_setup one control transfer is completed and enter setup phase
lock for synchronizing
dev pointer to our struct device
sysdev pointer to the DMA-capable device
xhci pointer to our xHCI child
xhci_resources struct resources for our xhci child
ev_buf struct dwc3_event_buffer pointer
eps endpoint array
gadget device side representation of the peripheral controller
gadget_driver pointer to the gadget driver
usb2_phy pointer to USB2 PHY
usb3_phy pointer to USB3 PHY
usb2_generic_phy pointer to USB2 PHY
usb3_generic_phy pointer to USB3 PHY
ulpi pointer to ulpi interface
regs base address for our registers
regs_size address space size
dr_mode requested mode of operation
current_dr_role current role of operation when in dual-role mode
desired_dr_role desired role of operation when in dual-role mode
edev extcon handle
edev_nb extcon notifier
hsphy_mode UTMI phy mode, one of following: - USBPHY_INTERFACE_MODE_UTMI - USB-

PHY_INTERFACE_MODE_UTMIW
fladj frame length adjustment
irq_gadget peripheral controller’s IRQ number
nr_scratch number of scratch buffers
u1u2 only used on revisions <1.83a for workaround
maximum_speed maximum speed requested (mainly for testing purposes)
revision revision register contents
ep0_next_event hold the next expected event
ep0state state of endpoint zero
link_state link state
isoch_delay wValue from Set Isochronous Delay request;
u2sel parameter from Set SEL request.

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 415

The kernel driver API manual, Release 4.13.0-rc4+

u2pel parameter from Set SEL request.
u1sel parameter from Set SEL request.
u1pel parameter from Set SEL request.
speed device speed (super, high, full, low)
num_eps number of endpoints
hwparams copy of hwparams registers
root debugfs root folder pointer
regset debugfs pointer to regdump file
test_mode true when we’re entering a USB test mode
test_mode_nr test feature selector
lpm_nyet_threshold LPM NYET response threshold
hird_threshold HIRD threshold
hsphy_interface “utmi” or “ulpi”
connected true when we’re connected to a host, false otherwise
delayed_status true when gadget driver asks for delayed status
ep0_bounced true when we used bounce buffer
ep0_expect_in true when we expect a DATA IN transfer
has_hibernation true when dwc3 was configured with Hibernation
sysdev_is_parent true when dwc3 device has a parent driver
has_lpm_erratum true when core was configured with LPM Erratum. Note that there’s now way for soft-

ware to detect this in runtime.
is_utmi_l1_suspend the core asserts output signal 0 - utmi_sleep_n 1 - utmi_l1_suspend_n
is_fpga true when we are using the FPGA board
pending_events true when we have pending IRQs to be handled
pullups_connected true when Run/Stop bit is set
setup_packet_pending true when there’s a Setup Packet in FIFO. Workaround
three_stage_setup set if we perform a three phase setup
usb3_lpm_capable set if hadrware supports Link Power Management
disable_scramble_quirk set if we enable the disable scramble quirk
u2exit_lfps_quirk set if we enable u2exit lfps quirk
u2ss_inp3_quirk set if we enable P3 OK for U2/SS Inactive quirk
req_p1p2p3_quirk set if we enable request p1p2p3 quirk
del_p1p2p3_quirk set if we enable delay p1p2p3 quirk
del_phy_power_chg_quirk set if we enable delay phy power change quirk
lfps_filter_quirk set if we enable LFPS filter quirk
rx_detect_poll_quirk set if we enable rx_detect to polling lfps quirk
dis_u3_susphy_quirk set if we disable usb3 suspend phy
dis_u2_susphy_quirk set if we disable usb2 suspend phy
dis_enblslpm_quirk set if we clear enblslpm in GUSB2PHYCFG, disabling the suspend signal to the PHY.

416 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

dis_rxdet_inp3_quirk set if we disable Rx.Detect in P3
dis_u2_freeclk_exists_quirk set if we clear u2_freeclk_exists in GUSB2PHYCFG, specify that USB2 PHY

doesn’t provide a free-running PHY clock.
dis_del_phy_power_chg_quirk set if we disable delay phy power change quirk.
dis_tx_ipgap_linecheck_quirk set if we disable u2mac linestate check during HS transmit.
tx_de_emphasis_quirk set if we enable Tx de-emphasis quirk
tx_de_emphasis Tx de-emphasis value 0 - -6dB de-emphasis 1 - -3.5dB de-emphasis 2 - No de-emphasis

3 - Reserved
imod_interval set the interrupt moderation interval in 250ns increments or 0 to disable.
struct dwc3_event_depevt

Device Endpoint Events
Definition

struct dwc3_event_depevt {
u32 one_bit:1;
u32 endpoint_number:5;
u32 endpoint_event:4;
u32 reserved11_10:2;
u32 status:4;

#define DEPEVT_STATUS_TRANSFER_ACTIVE BIT(3
#define DEPEVT_STATUS_BUSERR BIT(0
#define DEPEVT_STATUS_SHORT BIT(1
#define DEPEVT_STATUS_IOC BIT(2
#define DEPEVT_STATUS_LST BIT(3
#define DEPEVT_STREAMEVT_FOUND 1
#define DEPEVT_STREAMEVT_NOTFOUND 2
#define DEPEVT_STATUS_CONTROL_DATA 1
#define DEPEVT_STATUS_CONTROL_STATUS 2
#define DEPEVT_STATUS_CONTROL_PHASE(n
#define DEPEVT_TRANSFER_NO_RESOURCE 1
#define DEPEVT_TRANSFER_BUS_EXPIRY 2
u32 parameters:16;

#define DEPEVT_PARAMETER_CMD(n
};

Members
one_bit indicates this is an endpoint event (not used)
endpoint_number number of the endpoint
endpoint_event The event we have: 0x00 - Reserved 0x01 - XferComplete 0x02 - XferInProgress 0x03 -

XferNotReady 0x04 - RxTxFifoEvt (IN->Underrun, OUT->Overrun) 0x05 - Reserved 0x06 - StreamEvt
0x07 - EPCmdCmplt

reserved11_10 Reserved, don’t use.
status Indicates the status of the event. Refer to databook for more information.
parameters Parameters of the current event. Refer to databook for more information.
struct dwc3_event_devt

Device Events
Definition

struct dwc3_event_devt {
u32 one_bit:1;
u32 device_event:7;
u32 type:4;

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 417

The kernel driver API manual, Release 4.13.0-rc4+

u32 reserved15_12:4;
u32 event_info:9;
u32 reserved31_25:7;

};

Members
one_bit indicates this is a non-endpoint event (not used)
device_event indicates it’s a device event. Should read as 0x00
type indicates the type of device event. 0 - DisconnEvt 1 - USBRst 2 - ConnectDone 3 - ULStChng 4 -

WkUpEvt 5 - Reserved 6 - EOPF 7 - SOF 8 - Reserved 9 - ErrticErr 10 - CmdCmplt 11 - EvntOverflow
12 - VndrDevTstRcved

reserved15_12 Reserved, not used
event_info Information about this event
reserved31_25 Reserved, not used
struct dwc3_event_gevt

Other Core Events
Definition

struct dwc3_event_gevt {
u32 one_bit:1;
u32 device_event:7;
u32 phy_port_number:4;
u32 reserved31_12:20;

};

Members
one_bit indicates this is a non-endpoint event (not used)
device_event indicates it’s (0x03) Carkit or (0x04) I2C event.
phy_port_number self-explanatory
reserved31_12 Reserved, not used.
union dwc3_event

representation of Event Buffer contents
Definition

union dwc3_event {
u32 raw;
struct dwc3_event_type type;
struct dwc3_event_depevt depevt;
struct dwc3_event_devt devt;
struct dwc3_event_gevt gevt;

};

Members
raw raw 32-bit event
type the type of the event
depevt Device Endpoint Event
devt Device Event
gevt Global Event

418 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

struct dwc3_gadget_ep_cmd_params
representation of endpoint command parameters

Definition

struct dwc3_gadget_ep_cmd_params {
u32 param2;
u32 param1;
u32 param0;

};

Members
param2 third parameter
param1 second parameter
param0 first parameter
struct dwc3_request * next_request(struct list_head * list)

gets the next request on the given list
Parameters
struct list_head * list the request list to operate on
Description
Caller should take care of locking. This function return NULL or the first request available on list.
void dwc3_gadget_move_started_request(struct dwc3_request * req)

move req to the started_list
Parameters
struct dwc3_request * req the request to be moved
Description
Caller should take care of locking. This function will move req from its current list to the endpoint’s
started_list.
u32 dwc3_gadget_ep_get_transfer_index(struct dwc3_ep * dep)

Gets transfer index from HW
Parameters
struct dwc3_ep * dep dwc3 endpoint
Description
Caller should take care of locking. Returns the transfer resource index for a given endpoint.
int dwc3_gadget_set_test_mode(struct dwc3 * dwc, int mode)

enables usb2 test modes
Parameters
struct dwc3 * dwc pointer to our context structure
int mode the mode to set (J, K SE0 NAK, Force Enable)
Description
Caller should take care of locking. This function will return 0 on success or -EINVAL if wrong Test Selector
is passed.
int dwc3_gadget_get_link_state(struct dwc3 * dwc)

gets current state of usb link
Parameters
struct dwc3 * dwc pointer to our context structure

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 419

The kernel driver API manual, Release 4.13.0-rc4+

Description
Caller should take care of locking. This function will return the link state on success (>= 0) or -ETIMEDOUT.

int dwc3_gadget_set_link_state(struct dwc3 * dwc, enum dwc3_link_state state)
sets usb link to a particular state

Parameters
struct dwc3 * dwc pointer to our context structure
enum dwc3_link_state state the state to put link into
Description
Caller should take care of locking. This function will return 0 on success or -ETIMEDOUT.
void dwc3_ep_inc_trb(u8 * index)

increment a trb index.
Parameters
u8 * index Pointer to the TRB index to increment.
Description
The index should never point to the link TRB. After incrementing, if it is point to the link TRB, wrap around
to the beginning. The link TRB is always at the last TRB entry.
void dwc3_ep_inc_enq(struct dwc3_ep * dep)

increment endpoint’s enqueue pointer
Parameters
struct dwc3_ep * dep The endpoint whose enqueue pointer we’re incrementing
void dwc3_ep_inc_deq(struct dwc3_ep * dep)

increment endpoint’s dequeue pointer
Parameters
struct dwc3_ep * dep The endpoint whose enqueue pointer we’re incrementing
void dwc3_gadget_giveback(struct dwc3_ep * dep, struct dwc3_request * req, int status)

call struct usb_request’s ->complete callback
Parameters
struct dwc3_ep * dep The endpoint to whom the request belongs to
struct dwc3_request * req The request we’re giving back
int status completion code for the request
Description
Must be called with controller’s lock held and interrupts disabled. This function will unmap req and call
its ->:c:func:complete() callback to notify upper layers that it has completed.
int dwc3_send_gadget_generic_command(struct dwc3 * dwc, unsigned cmd, u32 param)

issue a generic command for the controller
Parameters
struct dwc3 * dwc pointer to the controller context
unsigned cmd the command to be issued
u32 param command parameter
Description
Caller should take care of locking. Issue cmd with a given param to dwc and wait for its completion.

420 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

int dwc3_send_gadget_ep_cmd(struct dwc3_ep * dep, unsigned cmd, struct
dwc3_gadget_ep_cmd_params * params)

issue an endpoint command
Parameters
struct dwc3_ep * dep the endpoint to which the command is going to be issued
unsigned cmd the command to be issued
struct dwc3_gadget_ep_cmd_params * params parameters to the command
Description
Caller should handle locking. This function will issue cmd with given params to dep and wait for its
completion.
int dwc3_gadget_start_config(struct dwc3 * dwc, struct dwc3_ep * dep)

configure ep resources
Parameters
struct dwc3 * dwc pointer to our controller context structure
struct dwc3_ep * dep endpoint that is being enabled
Description
Issue a DWC3_DEPCMD_DEPSTARTCFG command to dep. After the command’s completion, it will set Transfer
Resource for all available endpoints.
The assignment of transfer resources cannot perfectly follow the data book due to the fact that the con-
troller driver does not have all knowledge of the configuration in advance. It is given this information
piecemeal by the composite gadget framework after every SET_CONFIGURATION and SET_INTERFACE.
Trying to follow the databook programming model in this scenario can cause errors. For two reasons:
1) The databook says to do DWC3_DEPCMD_DEPSTARTCFG for every USB_REQ_SET_CONFIGURATION and
USB_REQ_SET_INTERFACE (8.1.5). This is incorrect in the scenario of multiple interfaces.
2) The databook does not mention doing more DWC3_DEPCMD_DEPXFERCFG for new endpoint on alt setting
(8.1.6).
The following simplified method is used instead:
All hardware endpoints can be assigned a transfer resource and this setting will stay persistent until either
a core reset or hibernation. So whenever we do a DWC3_DEPCMD_DEPSTARTCFG``(0) we can go ahead
and do ``DWC3_DEPCMD_DEPXFERCFG for every hardware endpoint as well. We are guaranteed that there
are as many transfer resources as endpoints.
This function is called for each endpoint when it is being enabled but is triggered only when called for
EP0-out, which always happens first, and which should only happen in one of the above conditions.
int __dwc3_gadget_ep_enable(struct dwc3_ep * dep, bool modify, bool restore)

initializes a hw endpoint
Parameters
struct dwc3_ep * dep endpoint to be initialized
bool modify if true, modify existing endpoint configuration
bool restore if true, restore endpoint configuration from scratch buffer
Description
Caller should take care of locking. Execute all necessary commands to initialize a HW endpoint so it can
be used by a gadget driver.
int __dwc3_gadget_ep_disable(struct dwc3_ep * dep)

disables a hw endpoint
Parameters

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 421

The kernel driver API manual, Release 4.13.0-rc4+

struct dwc3_ep * dep the endpoint to disable
Description
This function undoes what __dwc3_gadget_ep_enable did and also removes requests which are currently
being processed by the hardware and those which are not yet scheduled.
Caller should take care of locking.
void dwc3_prepare_one_trb(struct dwc3_ep * dep, struct dwc3_request * req, unsigned chain, un-

signed node)
setup one TRB from one request

Parameters
struct dwc3_ep * dep endpoint for which this request is prepared
struct dwc3_request * req dwc3_request pointer
unsigned chain should this TRB be chained to the next?
unsigned node only for isochronous endpoints. First TRB needs different type.
struct dwc3_trb * dwc3_ep_prev_trb(struct dwc3_ep * dep, u8 index)

returns the previous TRB in the ring
Parameters
struct dwc3_ep * dep The endpoint with the TRB ring
u8 index The index of the current TRB in the ring
Description
Returns the TRB prior to the one pointed to by the index. If the index is 0, we will wrap backwards, skip
the link TRB, and return the one just before that.
void dwc3_gadget_setup_nump(struct dwc3 * dwc)

calculate and initialize NUMP field of DWC3_DCFG
Parameters
struct dwc3 * dwc pointer to our context structure
Description
The following looks like complex but it’s actually very simple. In order to calculate the number of packets
we can burst at once on OUT transfers, we’re gonna use RxFIFO size.
To calculate RxFIFO size we need two numbers: MDWIDTH = size, in bits, of the internal memory bus
RAM2_DEPTH = depth, in MDWIDTH, of internal RAM2 (where RxFIFO sits)
Given these two numbers, the formula is simple:
RxFIFO Size = (RAM2_DEPTH * MDWIDTH / 8) - 24 - 16;
24 bytes is for 3x SETUP packets 16 bytes is a clock domain crossing tolerance
Given RxFIFO Size, NUMP = RxFIFOSize / 1024;
int dwc3_gadget_init(struct dwc3 * dwc)

initializes gadget related registers
Parameters
struct dwc3 * dwc pointer to our controller context structure
Description
Returns 0 on success otherwise negative errno.
DWC3_DEFAULT_AUTOSUSPEND_DELAY()

DesignWare USB3 DRD Controller Core file

422 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
Description
Copyright (C) 2010-2011 Texas Instruments Incorporated - http://www.ti.com
Authors: Felipe Balbi <balbi**ti**.com>, Sebastian Andrzej Siewior <bigeasy**linutronix**.de>
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License version 2 of the License as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.
int dwc3_get_dr_mode(struct dwc3 * dwc)

Validates and sets dr_mode
Parameters
struct dwc3 * dwc pointer to our context structure
int dwc3_core_soft_reset(struct dwc3 * dwc)

Issues core soft reset and PHY reset
Parameters
struct dwc3 * dwc pointer to our context structure
void dwc3_free_one_event_buffer(struct dwc3 * dwc, struct dwc3_event_buffer * evt)

Frees one event buffer
Parameters
struct dwc3 * dwc Pointer to our controller context structure
struct dwc3_event_buffer * evt Pointer to event buffer to be freed
struct dwc3_event_buffer * dwc3_alloc_one_event_buffer(struct dwc3 * dwc, unsigned length)

Allocates one event buffer structure
Parameters
struct dwc3 * dwc Pointer to our controller context structure
unsigned length size of the event buffer
Description
Returns a pointer to the allocated event buffer structure on success otherwise ERR_PTR(errno).
void dwc3_free_event_buffers(struct dwc3 * dwc)

frees all allocated event buffers
Parameters
struct dwc3 * dwc Pointer to our controller context structure
int dwc3_alloc_event_buffers(struct dwc3 * dwc, unsigned length)

Allocates num event buffers of size length
Parameters
struct dwc3 * dwc pointer to our controller context structure
unsigned length size of event buffer
Description
Returns 0 on success otherwise negative errno. In the error case, dwc may contain some buffers allocated
but not all which were requested.

13.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 423

http://www.ti.com
http://www.gnu.org/licenses/

The kernel driver API manual, Release 4.13.0-rc4+

int dwc3_event_buffers_setup(struct dwc3 * dwc)
setup our allocated event buffers

Parameters
struct dwc3 * dwc pointer to our controller context structure
Description
Returns 0 on success otherwise negative errno.
int dwc3_phy_setup(struct dwc3 * dwc)

Configure USB PHY Interface of DWC3 Core
Parameters
struct dwc3 * dwc Pointer to our controller context structure
Description
Returns 0 on success. The USB PHY interfaces are configured but not initialized. The PHY interfaces and
the PHYs get initialized together with the core in dwc3_core_init.
int dwc3_core_init(struct dwc3 * dwc)

Low-level initialization of DWC3 Core
Parameters
struct dwc3 * dwc Pointer to our controller context structure
Description
Returns 0 on success otherwise negative errno.

13.14 Writing a MUSB Glue Layer

Author Apelete Seketeli

13.14.1 Introduction

The Linux MUSB subsystem is part of the larger Linux USB subsystem. It provides support for embedded
USB Device Controllers (UDC) that do not use Universal Host Controller Interface (UHCI) or Open Host
Controller Interface (OHCI).
Instead, these embedded UDC rely on the USB On-the-Go (OTG) specification which they implement at
least partially. The silicon reference design used in most cases is the Multipoint USB Highspeed Dual-Role
Controller (MUSB HDRC) found in the Mentor Graphics Inventra™ design.
As a self-taught exercise I have written an MUSB glue layer for the Ingenic JZ4740 SoC, modelled after the
manyMUSB glue layers in the kernel source tree. This layer can be found at drivers/usb/musb/jz4740.c.
In this documentation I will walk through the basics of the jz4740.c glue layer, explaining the different
pieces and what needs to be done in order to write your own device glue layer.

13.14.2 Linux MUSB Basics

To get started on the topic, please read USB On-the-Go Basics (see Resources) which provides an intro-
duction of USB OTG operation at the hardware level. A couple of wiki pages by Texas Instruments and
Analog Devices also provide an overview of the Linux kernel MUSB configuration, albeit focused on some
specific devices provided by these companies. Finally, getting acquainted with the USB specification at
USB home page may come in handy, with practical instance provided through the Writing USB Device
Drivers documentation (again, see Resources).

424 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Linux USB stack is a layered architecture in which the MUSB controller hardware sits at the lowest. The
MUSB controller driver abstract the MUSB controller hardware to the Linux USB stack:

| | <------- drivers/usb/gadget
| Linux USB Core Stack | <------- drivers/usb/host
| | <------- drivers/usb/core

⬍

| | <------ drivers/usb/musb/musb_gadget.c
| MUSB Controller driver | <------ drivers/usb/musb/musb_host.c
| | <------ drivers/usb/musb/musb_core.c

⬍

| MUSB Platform Specific Driver |
| | <-- drivers/usb/musb/jz4740.c
aka "Glue Layer"

⬍

MUSB Controller Hardware

As outlined above, the glue layer is actually the platform specific code sitting in between the controller
driver and the controller hardware.
Just like a Linux USB driver needs to register itself with the Linux USB subsystem, the MUSB glue layer
needs first to register itself with the MUSB controller driver. This will allow the controller driver to know
about which device the glue layer supports and which functions to call when a supported device is detected
or released; remember we are talking about an embedded controller chip here, so no insertion or removal
at run-time.
All of this information is passed to theMUSB controller driver through a platform_driver structure defined
in the glue layer as:

static struct platform_driver jz4740_driver = {
.probe = jz4740_probe,
.remove = jz4740_remove,
.driver = {

.name = "musb-jz4740",
},

};

The probe and remove function pointers are called when a matching device is detected and, respectively,
released. The name string describes the device supported by this glue layer. In the current case it
matches a platform_device structure declared in arch/mips/jz4740/platform.c. Note that we are not
using device tree bindings here.
In order to register itself to the controller driver, the glue layer goes through a few steps, basically allocat-
ing the controller hardware resources and initialising a couple of circuits. To do so, it needs to keep track
of the information used throughout these steps. This is done by defining a private jz4740_glue structure:

struct jz4740_glue {
struct device *dev;
struct platform_device *musb;
struct clk *clk;

};

The dev and musb members are both device structure variables. The first one holds generic information
about the device, since it’s the basic device structure, and the latter holds informationmore closely related

13.14. Writing a MUSB Glue Layer 425

The kernel driver API manual, Release 4.13.0-rc4+

to the subsystem the device is registered to. The clk variable keeps information related to the device clock
operation.
Let’s go through the steps of the probe function that leads the glue layer to register itself to the controller
driver.

Note:

For the sake of readability each function will be split in logical parts, each part being shown as if it
was independent from the others.

static int jz4740_probe(struct platform_device *pdev)
{

struct platform_device *musb;
struct jz4740_glue *glue;
struct clk *clk;
int ret;

glue = devm_kzalloc(&pdev->dev, sizeof(*glue), GFP_KERNEL);
if (!glue)

return -ENOMEM;

musb = platform_device_alloc("musb-hdrc", PLATFORM_DEVID_AUTO);
if (!musb) {

dev_err(&pdev->dev, "failed to allocate musb device\n");
return -ENOMEM;

}

clk = devm_clk_get(&pdev->dev, "udc");
if (IS_ERR(clk)) {

dev_err(&pdev->dev, "failed to get clock\n");
ret = PTR_ERR(clk);
goto err_platform_device_put;

}

ret = clk_prepare_enable(clk);
if (ret) {

dev_err(&pdev->dev, "failed to enable clock\n");
goto err_platform_device_put;

}

musb->dev.parent = &pdev->dev;

glue->dev = &pdev->dev;
glue->musb = musb;
glue->clk = clk;

return 0;

err_platform_device_put:
platform_device_put(musb);
return ret;

}

The first few lines of the probe function allocate and assign the glue, musb and clk variables. The
GFP_KERNEL flag (line 8) allows the allocation process to sleep and wait for memory, thus being usable
in a locking situation. The PLATFORM_DEVID_AUTO flag (line 12) allows automatic allocation and manage-
ment of device IDs in order to avoid device namespace collisions with explicit IDs. With devm_clk_get()
(line 18) the glue layer allocates the clock – the devm_ prefix indicates that clk_get() is managed: it
automatically frees the allocated clock resource data when the device is released – and enable it.

426 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Then comes the registration steps:

static int jz4740_probe(struct platform_device *pdev)
{

struct musb_hdrc_platform_data *pdata = &jz4740_musb_platform_data;

pdata->platform_ops = &jz4740_musb_ops;

platform_set_drvdata(pdev, glue);

ret = platform_device_add_resources(musb, pdev->resource,
pdev->num_resources);

if (ret) {
dev_err(&pdev->dev, "failed to add resources\n");
goto err_clk_disable;

}

ret = platform_device_add_data(musb, pdata, sizeof(*pdata));
if (ret) {

dev_err(&pdev->dev, "failed to add platform_data\n");
goto err_clk_disable;

}

return 0;

err_clk_disable:
clk_disable_unprepare(clk);

err_platform_device_put:
platform_device_put(musb);
return ret;

}

The first step is to pass the device data privately held by the glue layer on to the controller driver through
platform_set_drvdata() (line 7). Next is passing on the device resources information, also privately
held at that point, through platform_device_add_resources() (line 9).
Finally comes passing on the platform specific data to the controller driver (line 16). Platform data will be
discussed in Device Platform Data , but here we are looking at the platform_ops function pointer (line 5)
in musb_hdrc_platform_data structure (line 3). This function pointer allows the MUSB controller driver
to know which function to call for device operation:

static const struct musb_platform_ops jz4740_musb_ops = {
.init = jz4740_musb_init,
.exit = jz4740_musb_exit,

};

Here we have the minimal case where only init and exit functions are called by the controller driver when
needed. Fact is the JZ4740 MUSB controller is a basic controller, lacking some features found in other
controllers, otherwise we may also have pointers to a few other functions like a power management
function or a function to switch between OTG and non-OTG modes, for instance.
At that point of the registration process, the controller driver actually calls the init function:

static int jz4740_musb_init(struct musb *musb)
{

musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2);
if (!musb->xceiv) {

pr_err("HS UDC: no transceiver configured\n");
return -ENODEV;

}

/* Silicon does not implement ConfigData register.
* Set dyn_fifo to avoid reading EP config from hardware.

13.14. Writing a MUSB Glue Layer 427

The kernel driver API manual, Release 4.13.0-rc4+

*/
musb->dyn_fifo = true;

musb->isr = jz4740_musb_interrupt;

return 0;
}

The goal of jz4740_musb_init() is to get hold of the transceiver driver data of the MUSB controller
hardware and pass it on to the MUSB controller driver, as usual. The transceiver is the circuitry inside the
controller hardware responsible for sending/receiving the USB data. Since it is an implementation of the
physical layer of the OSI model, the transceiver is also referred to as PHY.
Getting hold of the MUSB PHY driver data is done with usb_get_phy() which returns a pointer to the
structure containing the driver instance data. The next couple of instructions (line 12 and 14) are used as
a quirk and to setup IRQ handling respectively. Quirks and IRQ handling will be discussed later in Device
Quirks and Handling IRQs

static int jz4740_musb_exit(struct musb *musb)
{

usb_put_phy(musb->xceiv);

return 0;
}

Acting as the counterpart of init, the exit function releases the MUSB PHY driver when the controller
hardware itself is about to be released.
Again, note that init and exit are fairly simple in this case due to the basic set of features of the JZ4740
controller hardware. When writing an musb glue layer for a more complex controller hardware, you might
need to take care of more processing in those two functions.
Returning from the init function, the MUSB controller driver jumps back into the probe function:

static int jz4740_probe(struct platform_device *pdev)
{

ret = platform_device_add(musb);
if (ret) {

dev_err(&pdev->dev, "failed to register musb device\n");
goto err_clk_disable;

}

return 0;

err_clk_disable:
clk_disable_unprepare(clk);

err_platform_device_put:
platform_device_put(musb);
return ret;

}

This is the last part of the device registration process where the glue layer adds the controller hardware
device to Linux kernel device hierarchy: at this stage, all known information about the device is passed
on to the Linux USB core stack:

static int jz4740_remove(struct platform_device *pdev)
{

struct jz4740_glue *glue = platform_get_drvdata(pdev);

platform_device_unregister(glue->musb);
clk_disable_unprepare(glue->clk);

428 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

return 0;
}

Acting as the counterpart of probe, the remove function unregister the MUSB controller hardware (line 5)
and disable the clock (line 6), allowing it to be gated.

13.14.3 Handling IRQs

Additionally to the MUSB controller hardware basic setup and registration, the glue layer is also responsible
for handling the IRQs:

static irqreturn_t jz4740_musb_interrupt(int irq, void *__hci)
{

unsigned long flags;
irqreturn_t retval = IRQ_NONE;
struct musb *musb = __hci;

spin_lock_irqsave(&musb->lock, flags);

musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB);
musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX);
musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX);

/*
* The controller is gadget only, the state of the host mode IRQ bits is
* undefined. Mask them to make sure that the musb driver core will
* never see them set
*/

musb->int_usb &= MUSB_INTR_SUSPEND | MUSB_INTR_RESUME |
MUSB_INTR_RESET | MUSB_INTR_SOF;

if (musb->int_usb || musb->int_tx || musb->int_rx)
retval = musb_interrupt(musb);

spin_unlock_irqrestore(&musb->lock, flags);

return retval;
}

Here the glue layer mostly has to read the relevant hardware registers and pass their values on to the
controller driver which will handle the actual event that triggered the IRQ.
The interrupt handler critical section is protected by the spin_lock_irqsave() and counterpart
spin_unlock_irqrestore() functions (line 7 and 24 respectively), which prevent the interrupt handler
code to be run by two different threads at the same time.
Then the relevant interrupt registers are read (line 9 to 11):
• MUSB_INTRUSB: indicates which USB interrupts are currently active,
• MUSB_INTRTX: indicates which of the interrupts for TX endpoints are currently active,
• MUSB_INTRRX: indicates which of the interrupts for TX endpoints are currently active.

Note that musb_readb() is used to read 8-bit registers at most, while musb_readw() allows us to read at
most 16-bit registers. There are other functions that can be used depending on the size of your device
registers. See musb_io.h for more information.
Instruction on line 18 is another quirk specific to the JZ4740 USB device controller, which will be discussed
later in Device Quirks .
The glue layer still needs to register the IRQ handler though. Remember the instruction on line 14 of the
init function:

13.14. Writing a MUSB Glue Layer 429

The kernel driver API manual, Release 4.13.0-rc4+

static int jz4740_musb_init(struct musb *musb)
{

musb->isr = jz4740_musb_interrupt;

return 0;
}

This instruction sets a pointer to the glue layer IRQ handler function, in order for the controller hardware
to call the handler back when an IRQ comes from the controller hardware. The interrupt handler is now
implemented and registered.

13.14.4 Device Platform Data

In order to write an MUSB glue layer, you need to have some data describing the hardware capabilities of
your controller hardware, which is called the platform data.
Platform data is specific to your hardware, though it may cover a broad range of devices, and is generally
found somewhere in the arch/ directory, depending on your device architecture.
For instance, platform data for the JZ4740 SoC is found in arch/mips/jz4740/platform.c. In the plat-
form.c file each device of the JZ4740 SoC is described through a set of structures.
Here is the part of arch/mips/jz4740/platform.c that covers the USB Device Controller (UDC):

/* USB Device Controller */
struct platform_device jz4740_udc_xceiv_device = {

.name = "usb_phy_gen_xceiv",

.id = 0,
};

static struct resource jz4740_udc_resources[] = {
[0] = {

.start = JZ4740_UDC_BASE_ADDR,

.end = JZ4740_UDC_BASE_ADDR + 0x10000 - 1,

.flags = IORESOURCE_MEM,
},
[1] = {

.start = JZ4740_IRQ_UDC,

.end = JZ4740_IRQ_UDC,

.flags = IORESOURCE_IRQ,

.name = "mc",
},

};

struct platform_device jz4740_udc_device = {
.name = "musb-jz4740",
.id = -1,
.dev = {

.dma_mask = &jz4740_udc_device.dev.coherent_dma_mask,

.coherent_dma_mask = DMA_BIT_MASK(32),
},
.num_resources = ARRAY_SIZE(jz4740_udc_resources),
.resource = jz4740_udc_resources,

};

The jz4740_udc_xceiv_device platform device structure (line 2) describes the UDC transceiver with a
name and id number.
At the time of this writing, note that usb_phy_gen_xceiv is the specific name to be used for all transceivers
that are either built-in with reference USB IP or autonomous and doesn’t require any PHY programming.
You will need to set CONFIG_NOP_USB_XCEIV=y in the kernel configuration tomake use of the corresponding

430 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

transceiver driver. The id field could be set to -1 (equivalent to PLATFORM_DEVID_NONE), -2 (equivalent to
PLATFORM_DEVID_AUTO) or start with 0 for the first device of this kind if we want a specific id number.
The jz4740_udc_resources resource structure (line 7) defines the UDC registers base addresses.
The first array (line 9 to 11) defines the UDC registers base memory addresses: start points to the first
register memory address, end points to the last register memory address and the flags member defines
the type of resource we are dealing with. So IORESOURCE_MEM is used to define the registers memory ad-
dresses. The second array (line 14 to 17) defines the UDC IRQ registers addresses. Since there is only one
IRQ register available for the JZ4740 UDC, start and end point at the same address. The IORESOURCE_IRQ
flag tells that we are dealing with IRQ resources, and the name mc is in fact hard-coded in the MUSB core
in order for the controller driver to retrieve this IRQ resource by querying it by its name.
Finally, the jz4740_udc_device platform device structure (line 21) describes the UDC itself.
The musb-jz4740 name (line 22) defines the MUSB driver that is used for this device; remember this is
in fact the name that we used in the jz4740_driver platform driver structure in Linux MUSB Basics .
The id field (line 23) is set to -1 (equivalent to PLATFORM_DEVID_NONE) since we do not need an id for the
device: the MUSB controller driver was already set to allocate an automatic id in Linux MUSB Basics . In
the dev field we care for DMA related information here. The dma_mask field (line 25) defines the width of
the DMA mask that is going to be used, and coherent_dma_mask (line 26) has the same purpose but for
the alloc_coherent DMA mappings: in both cases we are using a 32 bits mask. Then the resource field
(line 29) is simply a pointer to the resource structure defined before, while the num_resources field (line
28) keeps track of the number of arrays defined in the resource structure (in this case there were two
resource arrays defined before).
With this quick overview of the UDC platform data at the arch/ level now done, let’s get back to the MUSB
glue layer specific platform data in drivers/usb/musb/jz4740.c:

static struct musb_hdrc_config jz4740_musb_config = {
/* Silicon does not implement USB OTG. */
.multipoint = 0,
/* Max EPs scanned, driver will decide which EP can be used. */
.num_eps = 4,
/* RAMbits needed to configure EPs from table */
.ram_bits = 9,
.fifo_cfg = jz4740_musb_fifo_cfg,
.fifo_cfg_size = ARRAY_SIZE(jz4740_musb_fifo_cfg),

};

static struct musb_hdrc_platform_data jz4740_musb_platform_data = {
.mode = MUSB_PERIPHERAL,
.config = &jz4740_musb_config,

};

First the glue layer configures some aspects of the controller driver operation related to the controller
hardware specifics. This is done through the jz4740_musb_config musb_hdrc_config structure.
Defining the OTG capability of the controller hardware, the multipoint member (line 3) is set to 0 (equiv-
alent to false) since the JZ4740 UDC is not OTG compatible. Then num_eps (line 5) defines the number
of USB endpoints of the controller hardware, including endpoint 0: here we have 3 endpoints + endpoint
0. Next is ram_bits (line 7) which is the width of the RAM address bus for the MUSB controller hardware.
This information is needed when the controller driver cannot automatically configure endpoints by reading
the relevant controller hardware registers. This issue will be discussed when we get to device quirks in
Device Quirks . Last two fields (line 8 and 9) are also about device quirks: fifo_cfg points to the USB
endpoints configuration table and fifo_cfg_size keeps track of the size of the number of entries in that
configuration table. More on that later in Device Quirks .
Then this configuration is embedded inside jz4740_musb_platform_data musb_hdrc_platform_data
structure (line 11): config is a pointer to the configuration structure itself, and mode tells the controller
driver if the controller hardware may be used as MUSB_HOST only, MUSB_PERIPHERAL only or MUSB_OTG
which is a dual mode.

13.14. Writing a MUSB Glue Layer 431

The kernel driver API manual, Release 4.13.0-rc4+

Remember that jz4740_musb_platform_data is then used to convey platform data information as we
have seen in the probe function in Linux MUSB Basics .

13.14.5 Device Quirks

Completing the platform data specific to your device, you may also need to write some code in the glue
layer to work around some device specific limitations. These quirks may be due to some hardware bugs,
or simply be the result of an incomplete implementation of the USB On-the-Go specification.
The JZ4740 UDC exhibits such quirks, some of which we will discuss here for the sake of insight even
though these might not be found in the controller hardware you are working on.
Let’s get back to the init function first:

static int jz4740_musb_init(struct musb *musb)
{

musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2);
if (!musb->xceiv) {

pr_err("HS UDC: no transceiver configured\n");
return -ENODEV;

}

/* Silicon does not implement ConfigData register.
* Set dyn_fifo to avoid reading EP config from hardware.
*/

musb->dyn_fifo = true;

musb->isr = jz4740_musb_interrupt;

return 0;
}

Instruction on line 12 helps the MUSB controller driver to work around the fact that the controller hardware
is missing registers that are used for USB endpoints configuration.
Without these registers, the controller driver is unable to read the endpoints configuration from the hard-
ware, so we use line 12 instruction to bypass reading the configuration from silicon, and rely on a hard-
coded table that describes the endpoints configuration instead:

static struct musb_fifo_cfg jz4740_musb_fifo_cfg[] = {
{ .hw_ep_num = 1, .style = FIFO_TX, .maxpacket = 512, },
{ .hw_ep_num = 1, .style = FIFO_RX, .maxpacket = 512, },
{ .hw_ep_num = 2, .style = FIFO_TX, .maxpacket = 64, },

};

Looking at the configuration table above, we see that each endpoints is described by three fields:
hw_ep_num is the endpoint number, style is its direction (either FIFO_TX for the controller driver to send
packets in the controller hardware, or FIFO_RX to receive packets from hardware), and maxpacket defines
the maximum size of each data packet that can be transmitted over that endpoint. Reading from the ta-
ble, the controller driver knows that endpoint 1 can be used to send and receive USB data packets of 512
bytes at once (this is in fact a bulk in/out endpoint), and endpoint 2 can be used to send data packets of
64 bytes at once (this is in fact an interrupt endpoint).
Note that there is no information about endpoint 0 here: that one is implemented by default in every
silicon design, with a predefined configuration according to the USB specification. For more examples of
endpoint configuration tables, see musb_core.c.
Let’s now get back to the interrupt handler function:

static irqreturn_t jz4740_musb_interrupt(int irq, void *__hci)
{

unsigned long flags;

432 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

irqreturn_t retval = IRQ_NONE;
struct musb *musb = __hci;

spin_lock_irqsave(&musb->lock, flags);

musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB);
musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX);
musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX);

/*
* The controller is gadget only, the state of the host mode IRQ bits is
* undefined. Mask them to make sure that the musb driver core will
* never see them set
*/

musb->int_usb &= MUSB_INTR_SUSPEND | MUSB_INTR_RESUME |
MUSB_INTR_RESET | MUSB_INTR_SOF;

if (musb->int_usb || musb->int_tx || musb->int_rx)
retval = musb_interrupt(musb);

spin_unlock_irqrestore(&musb->lock, flags);

return retval;
}

Instruction on line 18 above is a way for the controller driver to work around the fact that some interrupt
bits used for USB host mode operation are missing in the MUSB_INTRUSB register, thus left in an undefined
hardware state, since this MUSB controller hardware is used in peripheral mode only. As a consequence,
the glue layer masks these missing bits out to avoid parasite interrupts by doing a logical AND operation
between the value read from MUSB_INTRUSB and the bits that are actually implemented in the register.
These are only a couple of the quirks found in the JZ4740 USB device controller. Some others were directly
addressed in the MUSB core since the fixes were generic enough to provide a better handling of the issues
for others controller hardware eventually.

13.14.6 Conclusion

Writing a Linux MUSB glue layer should be a more accessible task, as this documentation tries to show
the ins and outs of this exercise.
The JZ4740 USB device controller being fairly simple, I hope its glue layer serves as a good example for
the curious mind. Used with the current MUSB glue layers, this documentation should provide enough
guidance to get started; should anything gets out of hand, the linux-usb mailing list archive is another
helpful resource to browse through.

13.14.7 Acknowledgements

Many thanks to Lars-Peter Clausen and Maarten ter Huurne for answering my questions while I was writing
the JZ4740 glue layer and for helping me out getting the code in good shape.
I would also like to thank the Qi-Hardware community at large for its cheerful guidance and support.

13.14.8 Resources

USB Home Page: http://www.usb.org
linux-usb Mailing List Archives: http://marc.info/?l=linux-usb
USB On-the-Go Basics: http://www.maximintegrated.com/app-notes/index.mvp/id/1822

13.14. Writing a MUSB Glue Layer 433

http://www.usb.org
http://marc.info/?l=linux-usb
http://www.maximintegrated.com/app-notes/index.mvp/id/1822

The kernel driver API manual, Release 4.13.0-rc4+

Writing USB Device Drivers

Texas Instruments USB Configuration Wiki Page: http://processors.wiki.ti.com/index.php/Usbgeneralpage
Analog Devices Blackfin MUSB Configuration: http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:
drivers:musb

13.15 USB Type-C connector class

13.15.1 Introduction

The typec class is meant for describing the USB Type-C ports in a system to the user space in unified
fashion. The class is designed to provide nothing else except the user space interface implementation in
hope that it can be utilized on as many platforms as possible.
The platforms are expected to register every USB Type-C port they have with the class. In a normal case the
registration will be done by a USB Type-C or PD PHY driver, but it may be a driver for firmware interface
such as UCSI, driver for USB PD controller or even driver for Thunderbolt3 controller. This document
considers the component registering the USB Type-C ports with the class as “port driver”.
On top of showing the capabilities, the class also offer user space control over the roles and alternate
modes of ports, partners and cable plugs when the port driver is capable of supporting those features.
The class provides an API for the port drivers described in this document. The attributes are described in
Documentation/ABI/testing/sysfs-class-typec.

13.15.2 User space interface

Every port will be presented as its own device under /sys/class/typec/. The first port will be named “port0”,
the second “port1” and so on.
When connected, the partner will be presented also as its own device under /sys/class/typec/. The parent
of the partner device will always be the port it is attached to. The partner attached to port “port0” will be
named “port0-partner”. Full path to the device would be /sys/class/typec/port0/port0-partner/.
The cable and the two plugs on it may also be optionally presented as their own devices under
/sys/class/typec/. The cable attached to the port “port0” port will be named port0-cable and the plug
on the SOP Prime end (see USB Power Delivery Specification ch. 2.4) will be named “port0-plug0” and on
the SOP Double Prime end “port0-plug1”. The parent of a cable will always be the port, and the parent of
the cable plugs will always be the cable.
If the port, partner or cable plug supports Alternate Modes, every supported Alternate Mode SVID will
have their own device describing them. Note that the Alternate Mode devices will not be attached to
the typec class. The parent of an alternate mode will be the device that supports it, so for example
an alternate mode of port0-partner will be presented under /sys/class/typec/port0-partner/. Every mode
that is supported will have its own group under the Alternate Mode device named “mode<index>”, for
example /sys/class/typec/port0/<alternate mode>/mode1/. The requests for entering/exiting a mode can
be done with “active” attribute file in that group.

13.15.3 Driver API

Registering the ports

The port drivers will describe every Type-C port they control with struct typec_capability data structure,
and register them with the following API:
struct typec_port * typec_register_port(struct device * parent, const struct typec_capability

* cap)
Register a USB Type-C Port

434 Chapter 13. Linux USB API

http://processors.wiki.ti.com/index.php/Usbgeneralpage
http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:drivers:musb
http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:drivers:musb

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct device * parent Parent device
const struct typec_capability * cap Description of the port
Description
Registers a device for USB Type-C Port described in cap.
Returns handle to the port on success or NULL on failure.
void typec_unregister_port(struct typec_port * port)

Unregister a USB Type-C Port
Parameters
struct typec_port * port The port to be unregistered
Description
Unregister device created with typec_register_port().
When registering the ports, the prefer_role member in struct typec_capability deserves special notice. If
the port that is being registered does not have initial role preference, which means the port does not exe-
cute Try.SNK or Try.SRC by default, the member must have value TYPEC_NO_PREFERRED_ROLE. Otherwise
if the port executes Try.SNK by default, the member must have value TYPEC_DEVICE, and with Try.SRC
the value must be TYPEC_HOST.

Registering Partners

After successful connection of a partner, the port driver needs to register the partner with the class.
Details about the partner need to be described in struct typec_partner_desc. The class copies the details
of the partner during registration. The class offers the following API for registering/unregistering partners.

struct typec_partner * typec_register_partner(struct typec_port * port, struct
typec_partner_desc * desc)

Register a USB Type-C Partner
Parameters
struct typec_port * port The USB Type-C Port the partner is connected to
struct typec_partner_desc * desc Description of the partner
Description
Registers a device for USB Type-C Partner described in desc.
Returns handle to the partner on success or NULL on failure.
void typec_unregister_partner(struct typec_partner * partner)

Unregister a USB Type-C Partner
Parameters
struct typec_partner * partner The partner to be unregistered
Description
Unregister device created with typec_register_partner().
The class will provide a handle to struct typec_partner if the registration was successful, or NULL.
If the partner is USB Power Delivery capable, and the port driver is able to show the result of Discover
Identity command, the partner descriptor structure should include handle to struct usb_pd_identity in-
stance. The class will then create a sysfs directory for the identity under the partner device. The result
of Discover Identity command can then be reported with the following API:

13.15. USB Type-C connector class 435

The kernel driver API manual, Release 4.13.0-rc4+

int typec_partner_set_identity(struct typec_partner * partner)
Report result from Discover Identity command

Parameters
struct typec_partner * partner The partner updated identity values
Description
This routine is used to report that the result of Discover Identity USB power delivery command has become
available.

Registering Cables

After successful connection of a cable that supports USB Power Delivery Structured VDM “Discover Iden-
tity”, the port driver needs to register the cable and one or two plugs, depending if there is CC Double
Prime controller present in the cable or not. So a cable capable of SOP Prime communication, but not
SOP Double Prime communication, should only have one plug registered. For more information about SOP
communication, please read chapter about it from the latest USB Power Delivery specification.
The plugs are represented as their own devices. The cable is registered first, followed by registration of
the cable plugs. The cable will be the parent device for the plugs. Details about the cable need to be
described in struct typec_cable_desc and about a plug in struct typec_plug_desc. The class copies the
details during registration. The class offers the following API for registering/unregistering cables and their
plugs:
struct typec_plug * typec_register_plug(struct typec_cable * cable, struct typec_plug_desc

* desc)
Register a USB Type-C Cable Plug

Parameters
struct typec_cable * cable USB Type-C Cable with the plug
struct typec_plug_desc * desc Description of the cable plug
Description
Registers a device for USB Type-C Cable Plug described in desc. A USB Type-C Cable Plug represents
a plug with electronics in it that can response to USB Power Delivery SOP Prime or SOP Double Prime
packages.
Returns handle to the cable plug on success or NULL on failure.
void typec_unregister_plug(struct typec_plug * plug)

Unregister a USB Type-C Cable Plug
Parameters
struct typec_plug * plug The cable plug to be unregistered
Description
Unregister device created with typec_register_plug().
struct typec_cable * typec_register_cable(struct typec_port * port, struct typec_cable_desc

* desc)
Register a USB Type-C Cable

Parameters
struct typec_port * port The USB Type-C Port the cable is connected to
struct typec_cable_desc * desc Description of the cable
Description
Registers a device for USB Type-C Cable described in desc. The cable will be parent for the optional cable
plug devises.

436 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

Returns handle to the cable on success or NULL on failure.
void typec_unregister_cable(struct typec_cable * cable)

Unregister a USB Type-C Cable
Parameters
struct typec_cable * cable The cable to be unregistered
Description
Unregister device created with typec_register_cable().
The class will provide a handle to struct typec_cable and struct typec_plug if the registration is successful,
or NULL if it isn’t.
If the cable is USB Power Delivery capable, and the port driver is able to show the result of Discover Identity
command, the cable descriptor structure should include handle to struct usb_pd_identity instance. The
class will then create a sysfs directory for the identity under the cable device. The result of Discover
Identity command can then be reported with the following API:
int typec_cable_set_identity(struct typec_cable * cable)

Report result from Discover Identity command
Parameters
struct typec_cable * cable The cable updated identity values
Description
This routine is used to report that the result of Discover Identity USB power delivery command has become
available.

Notifications

When the partner has executed a role change, or when the default roles change during connection of a
partner or cable, the port driver must use the following APIs to report it to the class:
void typec_set_data_role(struct typec_port * port, enum typec_data_role role)

Report data role change
Parameters
struct typec_port * port The USB Type-C Port where the role was changed
enum typec_data_role role The new data role
Description
This routine is used by the port drivers to report data role changes.
void typec_set_pwr_role(struct typec_port * port, enum typec_role role)

Report power role change
Parameters
struct typec_port * port The USB Type-C Port where the role was changed
enum typec_role role The new data role
Description
This routine is used by the port drivers to report power role changes.
void typec_set_vconn_role(struct typec_port * port, enum typec_role role)

Report VCONN source change
Parameters
struct typec_port * port The USB Type-C Port which VCONN role changed

13.15. USB Type-C connector class 437

The kernel driver API manual, Release 4.13.0-rc4+

enum typec_role role Source when port is sourcing VCONN, or Sink when it’s not
Description
This routine is used by the port drivers to report if the VCONN source is changes.
void typec_set_pwr_opmode(struct typec_port * port, enum typec_pwr_opmode opmode)

Report changed power operation mode
Parameters
struct typec_port * port The USB Type-C Port where the mode was changed
enum typec_pwr_opmode opmode New power operation mode
Description
This routine is used by the port drivers to report changed power operation mode in port. The modes
are USB (default), 1.5A, 3.0A as defined in USB Type-C specification, and “USB Power Delivery” when the
power levels are negotiated with methods defined in USB Power Delivery specification.

Alternate Modes

USB Type-C ports, partners and cable plugs may support Alternate Modes. Each Alternate Mode will have
identifier called SVID, which is either a Standard ID given by USB-IF or vendor ID, and each supported
SVID can have 1 - 6 modes. The class provides struct typec_mode_desc for describing individual mode of
a SVID, and struct typec_altmode_desc which is a container for all the supported modes.
Ports that support Alternate Modes need to register each SVID they support with the following API:
struct typec_altmode * typec_port_register_altmode(struct typec_port * port, const struct

typec_altmode_desc * desc)
Register USB Type-C Port Alternate Mode

Parameters
struct typec_port * port USB Type-C Port that supports the alternate mode
const struct typec_altmode_desc * desc Description of the alternate mode
Description
This routine is used to register an alternate mode that port is capable of supporting.
Returns handle to the alternate mode on success or NULL on failure.
If a partner or cable plug provides a list of SVIDs as response to USB Power Delivery Structured VDM
Discover SVIDs message, each SVID needs to be registered.
API for the partners:
struct typec_altmode * typec_partner_register_altmode(struct typec_partner * partner, const

struct typec_altmode_desc * desc)
Register USB Type-C Partner Alternate Mode

Parameters
struct typec_partner * partner USB Type-C Partner that supports the alternate mode
const struct typec_altmode_desc * desc Description of the alternate mode
Description
This routine is used to register each alternate mode individually that partner has listed in response to
Discover SVIDs command. The modes for a SVID listed in response to Discover Modes command need to
be listed in an array in desc.
Returns handle to the alternate mode on success or NULL on failure.
API for the Cable Plugs:

438 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

struct typec_altmode * typec_plug_register_altmode(struct typec_plug * plug, const struct
typec_altmode_desc * desc)

Register USB Type-C Cable Plug Alternate Mode
Parameters
struct typec_plug * plug USB Type-C Cable Plug that supports the alternate mode
const struct typec_altmode_desc * desc Description of the alternate mode
Description
This routine is used to register each alternate mode individually that plug has listed in response to Dis-
cover SVIDs command. The modes for a SVID that the plug lists in response to Discover Modes command
need to be listed in an array in desc.
Returns handle to the alternate mode on success or NULL on failure.
So ports, partners and cable plugs will register the alternate modes with their own functions, but the
registration will always return a handle to struct typec_altmode on success, or NULL. The unregistration
will happen with the same function:
void typec_unregister_altmode(struct typec_altmode * alt)

Unregister Alternate Mode
Parameters
struct typec_altmode * alt The alternate mode to be unregistered
Description
Unregister device createdwith typec_partner_register_altmode(), typec_plug_register_altmode()
or typec_port_register_altmode().
If a partner or cable plug enters or exits a mode, the port driver needs to notify the class with the following
API:
void typec_altmode_update_active(struct typec_altmode * alt, int mode, bool active)

Report Enter/Exit mode
Parameters
struct typec_altmode * alt Handle to the alternate mode
int mode Mode index
bool active True when the mode has been entered
Description
If a partner or cable plug executes Enter/Exit Mode command successfully, the drivers use this routine to
report the updated state of the mode.

13.16 USB3 debug port

Author Lu Baolu <baolu.lu@linux.intel.com>
Date March 2017

13.16.1 GENERAL

This is a HOWTO for using the USB3 debug port on x86 systems.
Before using any kernel debugging functionality based on USB3 debug port, you need to:

13.16. USB3 debug port 439

mailto:baolu.lu@linux.intel.com

The kernel driver API manual, Release 4.13.0-rc4+

1) check whether any USB3 debug port is available in
your system;

2) check which port is used for debugging purposes;
3) have a USB 3.0 super-speed A-to-A debugging cable.

13.16.2 INTRODUCTION

The xHCI debug capability (DbC) is an optional but standalone functionality provided by the xHCI host
controller. The xHCI specification describes DbC in the section 7.6.
When DbC is initialized and enabled, it will present a debug device through the debug port (normally the
first USB3 super-speed port). The debug device is fully compliant with the USB framework and provides
the equivalent of a very high performance full-duplex serial link between the debug target (the system
under debugging) and a debug host.

13.16.3 EARLY PRINTK

DbC has been designed to log early printk messages. One use for this feature is kernel debugging. For
example, when your machine crashes very early before the regular console code is initialized. Other uses
include simpler, lockless logging instead of a full- blown printk console driver and klogd.
On the debug target system, you need to customize a debugging kernel with CON-
FIG_EARLY_PRINTK_USB_XDBC enabled. And, add below kernel boot parameter:

"earlyprintk=xdbc"

If there are multiple xHCI controllers in your system, you can append a host contoller index to this kernel
parameter. This index starts from 0.
Current design doesn’t support DbC runtime suspend/resume. As the result, you’d better disable runtime
power management for USB subsystem by adding below kernel boot parameter:

"usbcore.autosuspend=-1"

Before starting the debug target, you should connect the debug port to a USB port (root port or port of
any external hub) on the debug host. The cable used to connect these two ports should be a USB 3.0
super-speed A-to-A debugging cable.
During early boot of the debug target, DbC will be detected and initialized. After initialization, the debug
host should be able to enumerate the debug device in debug target. The debug host will then bind the
debug device with the usb_debug driver module and create the /dev/ttyUSB device.
If the debug device enumeration goes smoothly, you should be able to see below kernel messages on the
debug host:

tail -f /var/log/kern.log
[1815.983374] usb 4-3: new SuperSpeed USB device number 4 using xhci_hcd
[1815.999595] usb 4-3: LPM exit latency is zeroed, disabling LPM.
[1815.999899] usb 4-3: New USB device found, idVendor=1d6b, idProduct=0004
[1815.999902] usb 4-3: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[1815.999903] usb 4-3: Product: Remote GDB
[1815.999904] usb 4-3: Manufacturer: Linux
[1815.999905] usb 4-3: SerialNumber: 0001
[1816.000240] usb_debug 4-3:1.0: xhci_dbc converter detected
[1816.000360] usb 4-3: xhci_dbc converter now attached to ttyUSB0

You can use any communication program, for example minicom, to read and view the messages. Below
simple bash scripts can help you to check the sanity of the setup.

440 Chapter 13. Linux USB API

The kernel driver API manual, Release 4.13.0-rc4+

===== start of bash scripts =============
#!/bin/bash

while true ; do
while [! -d /sys/class/tty/ttyUSB0] ; do

:
done

cat /dev/ttyUSB0
done
===== end of bash scripts ===============

13.16. USB3 debug port 441

The kernel driver API manual, Release 4.13.0-rc4+

442 Chapter 13. Linux USB API

CHAPTER

FOURTEEN

PCI SUPPORT LIBRARY

unsigned char pci_bus_max_busnr(struct pci_bus * bus)
returns maximum PCI bus number of given bus’ children

Parameters
struct pci_bus * bus pointer to PCI bus structure to search
Description
Given a PCI bus, returns the highest PCI bus number present in the set including the given PCI bus and its
list of child PCI buses.
int pci_find_capability(struct pci_dev * dev, int cap)

query for devices’ capabilities
Parameters
struct pci_dev * dev PCI device to query
int cap capability code
Description
Tell if a device supports a given PCI capability. Returns the address of the requested capability structure
within the device’s PCI configuration space or 0 in case the device does not support it. Possible values for
cap:

PCI_CAP_ID_PM Power Management PCI_CAP_ID_AGP Accelerated Graphics Port
PCI_CAP_ID_VPD Vital Product Data PCI_CAP_ID_SLOTID Slot Identification PCI_CAP_ID_MSI
Message Signalled Interrupts PCI_CAP_ID_CHSWP CompactPCI HotSwap PCI_CAP_ID_PCIX PCI-X
PCI_CAP_ID_EXP PCI Express

int pci_bus_find_capability(struct pci_bus * bus, unsigned int devfn, int cap)
query for devices’ capabilities

Parameters
struct pci_bus * bus the PCI bus to query
unsigned int devfn PCI device to query
int cap capability code
Description
Like pci_find_capability() but works for pci devices that do not have a pci_dev structure set up yet.
Returns the address of the requested capability structure within the device’s PCI configuration space or 0
in case the device does not support it.
int pci_find_next_ext_capability(struct pci_dev * dev, int start, int cap)

Find an extended capability
Parameters
struct pci_dev * dev PCI device to query

443

The kernel driver API manual, Release 4.13.0-rc4+

int start address at which to start looking (0 to start at beginning of list)
int cap capability code
Description
Returns the address of the next matching extended capability structure within the device’s PCI configu-
ration space or 0 if the device does not support it. Some capabilities can occur several times, e.g., the
vendor-specific capability, and this provides a way to find them all.
int pci_find_ext_capability(struct pci_dev * dev, int cap)

Find an extended capability
Parameters
struct pci_dev * dev PCI device to query
int cap capability code
Description
Returns the address of the requested extended capability structure within the device’s PCI configuration
space or 0 if the device does not support it. Possible values for cap:

PCI_EXT_CAP_ID_ERR Advanced Error Reporting PCI_EXT_CAP_ID_VC Virtual Channel
PCI_EXT_CAP_ID_DSN Device Serial Number PCI_EXT_CAP_ID_PWR Power Budgeting

int pci_find_next_ht_capability(struct pci_dev * dev, int pos, int ht_cap)
query a device’s Hypertransport capabilities

Parameters
struct pci_dev * dev PCI device to query
int pos Position from which to continue searching
int ht_cap Hypertransport capability code
Description
To be used in conjunction with pci_find_ht_capability() to search for all capabilities matching ht_cap.
pos should always be a value returned from pci_find_ht_capability().
NB. To be 100% safe against broken PCI devices, the caller should take steps to avoid an infinite loop.
int pci_find_ht_capability(struct pci_dev * dev, int ht_cap)

query a device’s Hypertransport capabilities
Parameters
struct pci_dev * dev PCI device to query
int ht_cap Hypertransport capability code
Description
Tell if a device supports a given Hypertransport capability. Returns an address within the device’s PCI
configuration space or 0 in case the device does not support the request capability. The address points
to the PCI capability, of type PCI_CAP_ID_HT, which has a Hypertransport capability matching ht_cap.
struct resource * pci_find_parent_resource(const struct pci_dev * dev, struct resource * res)

return resource region of parent bus of given region
Parameters
const struct pci_dev * dev PCI device structure contains resources to be searched
struct resource * res child resource record for which parent is sought
Description

For given resource region of given device, return the resource region of parent bus the given
region is contained in.

444 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

struct resource * pci_find_resource(struct pci_dev * dev, struct resource * res)
Return matching PCI device resource

Parameters
struct pci_dev * dev PCI device to query
struct resource * res Resource to look for
Description
Goes over standard PCI resources (BARs) and checks if the given resource is partially or fully contained in
any of them. In that case the matching resource is returned, NULL otherwise.
struct pci_dev * pci_find_pcie_root_port(struct pci_dev * dev)

return PCIe Root Port
Parameters
struct pci_dev * dev PCI device to query
Description
Traverse up the parent chain and return the PCIe Root Port PCI Device for a given PCI Device.
int __pci_complete_power_transition(struct pci_dev * dev, pci_power_t state)

Complete power transition of a PCI device
Parameters
struct pci_dev * dev PCI device to handle.
pci_power_t state State to put the device into.
Description
This function should not be called directly by device drivers.
int pci_set_power_state(struct pci_dev * dev, pci_power_t state)

Set the power state of a PCI device
Parameters
struct pci_dev * dev PCI device to handle.
pci_power_t state PCI power state (D0, D1, D2, D3hot) to put the device into.
Description
Transition a device to a new power state, using the platform firmware and/or the device’s PCI PM registers.
RETURN VALUE: -EINVAL if the requested state is invalid. -EIO if device does not support PCI PM or its
PM capabilities register has a wrong version, or device doesn’t support the requested state. 0 if device
already is in the requested state. 0 if device’s power state has been successfully changed.
pci_power_t pci_choose_state(struct pci_dev * dev, pm_message_t state)

Choose the power state of a PCI device
Parameters
struct pci_dev * dev PCI device to be suspended
pm_message_t state target sleep state for the whole system. This is the value that is passed to sus-

pend() function.
Description
Returns PCI power state suitable for given device and given system message.
int pci_save_state(struct pci_dev * dev)

save the PCI configuration space of a device before suspending
Parameters

445

The kernel driver API manual, Release 4.13.0-rc4+

struct pci_dev * dev

• PCI device that we’re dealing with
void pci_restore_state(struct pci_dev * dev)

Restore the saved state of a PCI device
Parameters
struct pci_dev * dev

• PCI device that we’re dealing with
struct pci_saved_state * pci_store_saved_state(struct pci_dev * dev)

Allocate and return an opaque struct containing the device saved state.
Parameters
struct pci_dev * dev PCI device that we’re dealing with
Description
Return NULL if no state or error.
int pci_load_saved_state(struct pci_dev * dev, struct pci_saved_state * state)

Reload the provided save state into struct pci_dev.
Parameters
struct pci_dev * dev PCI device that we’re dealing with
struct pci_saved_state * state Saved state returned from pci_store_saved_state()

int pci_load_and_free_saved_state(struct pci_dev * dev, struct pci_saved_state ** state)
Reload the save state pointed to by state, and free the memory allocated for it.

Parameters
struct pci_dev * dev PCI device that we’re dealing with
struct pci_saved_state ** state Pointer to saved state returned from pci_store_saved_state()

int pci_reenable_device(struct pci_dev * dev)
Resume abandoned device

Parameters
struct pci_dev * dev PCI device to be resumed
Description

Note this function is a backend of pci_default_resume and is not supposed to be called by normal
code, write proper resume handler and use it instead.

int pci_enable_device_io(struct pci_dev * dev)
Initialize a device for use with IO space

Parameters
struct pci_dev * dev PCI device to be initialized
Description

Initialize device before it’s used by a driver. Ask low-level code to enable I/O resources. Wake
up the device if it was suspended. Beware, this function can fail.

int pci_enable_device_mem(struct pci_dev * dev)
Initialize a device for use with Memory space

Parameters
struct pci_dev * dev PCI device to be initialized
Description

446 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

Initialize device before it’s used by a driver. Ask low-level code to enable Memory resources.
Wake up the device if it was suspended. Beware, this function can fail.

int pci_enable_device(struct pci_dev * dev)
Initialize device before it’s used by a driver.

Parameters
struct pci_dev * dev PCI device to be initialized
Description

Initialize device before it’s used by a driver. Ask low-level code to enable I/O and memory. Wake
up the device if it was suspended. Beware, this function can fail.
Note we don’t actually enable the device many times if we call this function repeatedly (we just
increment the count).

int pcim_enable_device(struct pci_dev * pdev)
Managed pci_enable_device()

Parameters
struct pci_dev * pdev PCI device to be initialized
Description
Managed pci_enable_device().
void pcim_pin_device(struct pci_dev * pdev)

Pin managed PCI device
Parameters
struct pci_dev * pdev PCI device to pin
Description
Pin managed PCI device pdev. Pinned device won’t be disabled on driver detach. pdev must have been
enabled with pcim_enable_device().
void pci_disable_device(struct pci_dev * dev)

Disable PCI device after use
Parameters
struct pci_dev * dev PCI device to be disabled
Description
Signal to the system that the PCI device is not in use by the system anymore. This only involves disabling
PCI bus-mastering, if active.
Note we don’t actually disable the device until all callers of pci_enable_device() have called
pci_disable_device().
int pci_set_pcie_reset_state(struct pci_dev * dev, enum pcie_reset_state state)

set reset state for device dev
Parameters
struct pci_dev * dev the PCIe device reset
enum pcie_reset_state state Reset state to enter into
Description
Sets the PCI reset state for the device.
bool pci_pme_capable(struct pci_dev * dev, pci_power_t state)

check the capability of PCI device to generate PME#
Parameters

447

The kernel driver API manual, Release 4.13.0-rc4+

struct pci_dev * dev PCI device to handle.
pci_power_t state PCI state from which device will issue PME#.
void pci_pme_active(struct pci_dev * dev, bool enable)

enable or disable PCI device’s PME# function
Parameters
struct pci_dev * dev PCI device to handle.
bool enable ‘true’ to enable PME# generation; ‘false’ to disable it.
Description
The caller must verify that the device is capable of generating PME# before calling this function with
enable equal to ‘true’.
int pci_enable_wake(struct pci_dev * dev, pci_power_t state, bool enable)

enable PCI device as wakeup event source
Parameters
struct pci_dev * dev PCI device affected
pci_power_t state PCI state from which device will issue wakeup events
bool enable True to enable event generation; false to disable
Description
This enables the device as a wakeup event source, or disables it. When such events involves platform-
specific hooks, those hooks are called automatically by this routine.
Devices with legacy power management (no standard PCI PM capabilities) always require such platform
hooks.
RETURN VALUE: 0 is returned on success -EINVAL is returned if device is not supposed to wake up the
system Error code depending on the platform is returned if both the platform and the native mechanism
fail to enable the generation of wake-up events
int pci_wake_from_d3(struct pci_dev * dev, bool enable)

enable/disable device to wake up from D3_hot or D3_cold
Parameters
struct pci_dev * dev PCI device to prepare
bool enable True to enable wake-up event generation; false to disable
Description
Many drivers want the device to wake up the system from D3_hot or D3_cold and this function allows
them to set that up cleanly - pci_enable_wake() should not be called twice in a row to enable wake-up
due to PCI PM vs ACPI ordering constraints.
This function only returns error code if the device is not capable of generating PME# from both D3_hot
and D3_cold, and the platform is unable to enable wake-up power for it.
int pci_prepare_to_sleep(struct pci_dev * dev)

prepare PCI device for system-wide transition into a sleep state
Parameters
struct pci_dev * dev Device to handle.
Description
Choose the power state appropriate for the device depending on whether it can wake up the system and/or
is power manageable by the platform (PCI_D3hot is the default) and put the device into that state.
int pci_back_from_sleep(struct pci_dev * dev)

turn PCI device on during system-wide transition into working state

448 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct pci_dev * dev Device to handle.
Description
Disable device’s system wake-up capability and put it into D0.
bool pci_dev_run_wake(struct pci_dev * dev)

Check if device can generate run-time wake-up events.
Parameters
struct pci_dev * dev Device to check.
Description
Return true if the device itself is capable of generating wake-up events (through the platform or using the
native PCIe PME) or if the device supports PME and one of its upstream bridges can generate wake-up
events.
void pci_d3cold_enable(struct pci_dev * dev)

Enable D3cold for device
Parameters
struct pci_dev * dev PCI device to handle
Description
This function can be used in drivers to enable D3cold from the device they handle. It also updates up-
stream PCI bridge PM capabilities accordingly.
void pci_d3cold_disable(struct pci_dev * dev)

Disable D3cold for device
Parameters
struct pci_dev * dev PCI device to handle
Description
This function can be used in drivers to disable D3cold from the device they handle. It also updates up-
stream PCI bridge PM capabilities accordingly.
u8 pci_common_swizzle(struct pci_dev * dev, u8 * pinp)

swizzle INTx all the way to root bridge
Parameters
struct pci_dev * dev the PCI device
u8 * pinp pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
Description
Perform INTx swizzling for a device. This traverses through all PCI-to-PCI bridges all the way up to a PCI
root bus.
void pci_release_region(struct pci_dev * pdev, int bar)

Release a PCI bar
Parameters
struct pci_dev * pdev PCI device whose resources were previously reserved by pci_request_region
int bar BAR to release
Description

Releases the PCI I/O and memory resources previously reserved by a successful call to
pci_request_region. Call this function only after all use of the PCI regions has ceased.

449

The kernel driver API manual, Release 4.13.0-rc4+

int pci_request_region(struct pci_dev * pdev, int bar, const char * res_name)
Reserve PCI I/O and memory resource

Parameters
struct pci_dev * pdev PCI device whose resources are to be reserved
int bar BAR to be reserved
const char * res_name Name to be associated with resource
Description

Mark the PCI region associated with PCI device pdev BAR bar as being reserved by owner
res_name. Do not access any address inside the PCI regions unless this call returns successfully.
Returns 0 on success, or EBUSY on error. A warning message is also printed on failure.

int pci_request_region_exclusive(struct pci_dev * pdev, int bar, const char * res_name)
Reserved PCI I/O and memory resource

Parameters
struct pci_dev * pdev PCI device whose resources are to be reserved
int bar BAR to be reserved
const char * res_name Name to be associated with resource.
Description

Mark the PCI region associated with PCI device pdev BR bar as being reserved by owner
res_name. Do not access any address inside the PCI regions unless this call returns success-
fully.
Returns 0 on success, or EBUSY on error. A warning message is also printed on failure.
The key difference that _exclusive makes it that userspace is explicitly not allowed to map the
resource via /dev/mem or sysfs.

void pci_release_selected_regions(struct pci_dev * pdev, int bars)
Release selected PCI I/O and memory resources

Parameters
struct pci_dev * pdev PCI device whose resources were previously reserved
int bars Bitmask of BARs to be released
Description
Release selected PCI I/O and memory resources previously reserved. Call this function only after all use
of the PCI regions has ceased.
int pci_request_selected_regions(struct pci_dev * pdev, int bars, const char * res_name)

Reserve selected PCI I/O and memory resources
Parameters
struct pci_dev * pdev PCI device whose resources are to be reserved
int bars Bitmask of BARs to be requested
const char * res_name Name to be associated with resource
void pci_release_regions(struct pci_dev * pdev)

Release reserved PCI I/O and memory resources
Parameters
struct pci_dev * pdev PCI device whose resources were previously reserved by pci_request_regions
Description

450 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

Releases all PCI I/O and memory resources previously reserved by a successful call to
pci_request_regions. Call this function only after all use of the PCI regions has ceased.

int pci_request_regions(struct pci_dev * pdev, const char * res_name)
Reserved PCI I/O and memory resources

Parameters
struct pci_dev * pdev PCI device whose resources are to be reserved
const char * res_name Name to be associated with resource.
Description

Mark all PCI regions associated with PCI device pdev as being reserved by owner res_name.
Do not access any address inside the PCI regions unless this call returns successfully.
Returns 0 on success, or EBUSY on error. A warning message is also printed on failure.

int pci_request_regions_exclusive(struct pci_dev * pdev, const char * res_name)
Reserved PCI I/O and memory resources

Parameters
struct pci_dev * pdev PCI device whose resources are to be reserved
const char * res_name Name to be associated with resource.
Description

Mark all PCI regions associated with PCI device pdev as being reserved by owner res_name.
Do not access any address inside the PCI regions unless this call returns successfully.
pci_request_regions_exclusive() will mark the region so that /dev/mem and the sysfs MMIO
access will not be allowed.
Returns 0 on success, or EBUSY on error. A warning message is also printed on failure.

int pci_remap_iospace(const struct resource * res, phys_addr_t phys_addr)
Remap the memory mapped I/O space

Parameters
const struct resource * res Resource describing the I/O space
phys_addr_t phys_addr physical address of range to be mapped
Description

Remap the memory mapped I/O space described by the res and the CPU physical address
phys_addr into virtual address space. Only architectures that have memory mapped IO func-
tions defined (and the PCI_IOBASE value defined) should call this function.

void pci_unmap_iospace(struct resource * res)
Unmap the memory mapped I/O space

Parameters
struct resource * res resource to be unmapped
Description

Unmap the CPU virtual address res from virtual address space. Only architectures that have
memory mapped IO functions defined (and the PCI_IOBASE value defined) should call this func-
tion.

void __iomem * devm_pci_remap_cfgspace(struct device * dev, resource_size_t offset, re-
source_size_t size)

Managed pci_remap_cfgspace()
Parameters
struct device * dev Generic device to remap IO address for

451

The kernel driver API manual, Release 4.13.0-rc4+

resource_size_t offset Resource address to map
resource_size_t size Size of map
Description
Managed pci_remap_cfgspace(). Map is automatically unmapped on driver detach.
void __iomem * devm_pci_remap_cfg_resource(struct device * dev, struct resource * res)

check, request region and ioremap cfg resource
Parameters
struct device * dev generic device to handle the resource for
struct resource * res configuration space resource to be handled
Description
Checks that a resource is a valid memory region, requests the memory region and ioremaps with
pci_remap_cfgspace() API that ensures the proper PCI configuration space memory attributes are guar-
anteed.
All operations are managed and will be undone on driver detach.
Returns a pointer to the remapped memory or an ERR_PTR() encoded error code on failure. Usage exam-
ple:

res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base =
devm_pci_remap_cfg_resource(pdev->dev, res); if (IS_ERR(base))

return PTR_ERR(base);
void pci_set_master(struct pci_dev * dev)

enables bus-mastering for device dev
Parameters
struct pci_dev * dev the PCI device to enable
Description
Enables bus-mastering on the device and calls pcibios_set_master() to do the needed arch specific
settings.
void pci_clear_master(struct pci_dev * dev)

disables bus-mastering for device dev
Parameters
struct pci_dev * dev the PCI device to disable
int pci_set_cacheline_size(struct pci_dev * dev)

ensure the CACHE_LINE_SIZE register is programmed
Parameters
struct pci_dev * dev the PCI device for which MWI is to be enabled
Description
Helper function for pci_set_mwi. Originally copied from drivers/net/acenic.c. Copyright 1998-2001 by Jes
Sorensen, <jes**trained**-monkey.org>.
Return
An appropriate -ERRNO error value on error, or zero for success.
int pci_set_mwi(struct pci_dev * dev)

enables memory-write-invalidate PCI transaction
Parameters
struct pci_dev * dev the PCI device for which MWI is enabled

452 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

Description
Enables the Memory-Write-Invalidate transaction in PCI_COMMAND.
Return
An appropriate -ERRNO error value on error, or zero for success.
int pci_try_set_mwi(struct pci_dev * dev)

enables memory-write-invalidate PCI transaction
Parameters
struct pci_dev * dev the PCI device for which MWI is enabled
Description
Enables the Memory-Write-Invalidate transaction in PCI_COMMAND. Callers are not required to check the
return value.
Return
An appropriate -ERRNO error value on error, or zero for success.
void pci_clear_mwi(struct pci_dev * dev)

disables Memory-Write-Invalidate for device dev
Parameters
struct pci_dev * dev the PCI device to disable
Description
Disables PCI Memory-Write-Invalidate transaction on the device
void pci_intx(struct pci_dev * pdev, int enable)

enables/disables PCI INTx for device dev
Parameters
struct pci_dev * pdev the PCI device to operate on
int enable boolean: whether to enable or disable PCI INTx
Description
Enables/disables PCI INTx for device dev
bool pci_check_and_mask_intx(struct pci_dev * dev)

mask INTx on pending interrupt
Parameters
struct pci_dev * dev the PCI device to operate on
Description
Check if the device dev has its INTx line asserted, mask it and return true in that case. False is returned
if no interrupt was pending.
bool pci_check_and_unmask_intx(struct pci_dev * dev)

unmask INTx if no interrupt is pending
Parameters
struct pci_dev * dev the PCI device to operate on
Description
Check if the device dev has its INTx line asserted, unmask it if not and return true. False is returned and
the mask remains active if there was still an interrupt pending.
int pci_wait_for_pending_transaction(struct pci_dev * dev)

waits for pending transaction

453

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct pci_dev * dev the PCI device to operate on
Description
Return 0 if transaction is pending 1 otherwise.
void pcie_flr(struct pci_dev * dev)

initiate a PCIe function level reset
Parameters
struct pci_dev * dev device to reset
Description
Initiate a function level reset on dev. The caller should ensure the device supports FLR before calling this
function, e.g. by using the pcie_has_flr() helper.
void pci_reset_bridge_secondary_bus(struct pci_dev * dev)

Reset the secondary bus on a PCI bridge.
Parameters
struct pci_dev * dev Bridge device
Description
Use the bridge control register to assert reset on the secondary bus. Devices on the secondary bus are
left in power-on state.
int __pci_reset_function(struct pci_dev * dev)

reset a PCI device function
Parameters
struct pci_dev * dev PCI device to reset
Description
Some devices allow an individual function to be reset without affecting other functions in the same device.
The PCI device must be responsive to PCI config space in order to use this function.
The device function is presumed to be unused when this function is called. Resetting the device will make
the contents of PCI configuration space random, so any caller of this must be prepared to reinitialise the
device including MSI, bus mastering, BARs, decoding IO and memory spaces, etc.
Returns 0 if the device function was successfully reset or negative if the device doesn’t support resetting
a single function.
int __pci_reset_function_locked(struct pci_dev * dev)

reset a PCI device function while holding the dev mutex lock.
Parameters
struct pci_dev * dev PCI device to reset
Description
Some devices allow an individual function to be reset without affecting other functions in the same device.
The PCI device must be responsive to PCI config space in order to use this function.
The device function is presumed to be unused and the caller is holding the device mutex lock when this
function is called. Resetting the device will make the contents of PCI configuration space random, so any
caller of this must be prepared to reinitialise the device including MSI, bus mastering, BARs, decoding IO
and memory spaces, etc.
Returns 0 if the device function was successfully reset or negative if the device doesn’t support resetting
a single function.

454 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

int pci_reset_function(struct pci_dev * dev)
quiesce and reset a PCI device function

Parameters
struct pci_dev * dev PCI device to reset
Description
Some devices allow an individual function to be reset without affecting other functions in the same device.
The PCI device must be responsive to PCI config space in order to use this function.
This function does not just reset the PCI portion of a device, but clears all the state associated with the
device. This function differs from __pci_reset_function in that it saves and restores device state over the
reset.
Returns 0 if the device function was successfully reset or negative if the device doesn’t support resetting
a single function.
int pci_try_reset_function(struct pci_dev * dev)

quiesce and reset a PCI device function
Parameters
struct pci_dev * dev PCI device to reset
Description
Same as above, except return -EAGAIN if unable to lock device.
int pci_probe_reset_slot(struct pci_slot * slot)

probe whether a PCI slot can be reset
Parameters
struct pci_slot * slot PCI slot to probe
Description
Return 0 if slot can be reset, negative if a slot reset is not supported.
int pci_reset_slot(struct pci_slot * slot)

reset a PCI slot
Parameters
struct pci_slot * slot PCI slot to reset
Description
A PCI bus may host multiple slots, each slot may support a reset mechanism independent of other slots.
For instance, some slots may support slot power control. In the case of a 1:1 bus to slot architecture, this
function may wrap the bus reset to avoid spurious slot related events such as hotplug. Generally a slot
reset should be attempted before a bus reset. All of the function of the slot and any subordinate buses
behind the slot are reset through this function. PCI config space of all devices in the slot and behind the
slot is saved before and restored after reset.
Return 0 on success, non-zero on error.
int pci_try_reset_slot(struct pci_slot * slot)

Try to reset a PCI slot
Parameters
struct pci_slot * slot PCI slot to reset
Description
Same as above except return -EAGAIN if the slot cannot be locked
int pci_probe_reset_bus(struct pci_bus * bus)

probe whether a PCI bus can be reset

455

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct pci_bus * bus PCI bus to probe
Description
Return 0 if bus can be reset, negative if a bus reset is not supported.
int pci_reset_bus(struct pci_bus * bus)

reset a PCI bus
Parameters
struct pci_bus * bus top level PCI bus to reset
Description
Do a bus reset on the given bus and any subordinate buses, saving and restoring state of all devices.
Return 0 on success, non-zero on error.
int pci_try_reset_bus(struct pci_bus * bus)

Try to reset a PCI bus
Parameters
struct pci_bus * bus top level PCI bus to reset
Description
Same as above except return -EAGAIN if the bus cannot be locked
int pcix_get_max_mmrbc(struct pci_dev * dev)

get PCI-X maximum designed memory read byte count
Parameters
struct pci_dev * dev PCI device to query
Description
Returns mmrbc: maximum designed memory read count in bytes or appropriate error value.
int pcix_get_mmrbc(struct pci_dev * dev)

get PCI-X maximum memory read byte count
Parameters
struct pci_dev * dev PCI device to query
Description
Returns mmrbc: maximum memory read count in bytes or appropriate error value.
int pcix_set_mmrbc(struct pci_dev * dev, int mmrbc)

set PCI-X maximum memory read byte count
Parameters
struct pci_dev * dev PCI device to query
int mmrbc maximum memory read count in bytes valid values are 512, 1024, 2048, 4096
Description
If possible sets maximum memory read byte count, some bridges have erratas that prevent this.
int pcie_get_readrq(struct pci_dev * dev)

get PCI Express read request size
Parameters
struct pci_dev * dev PCI device to query
Description

456 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

Returns maximum memory read request in bytes or appropriate error value.
int pcie_set_readrq(struct pci_dev * dev, int rq)

set PCI Express maximum memory read request
Parameters
struct pci_dev * dev PCI device to query
int rq maximum memory read count in bytes valid values are 128, 256, 512, 1024, 2048, 4096
Description
If possible sets maximum memory read request in bytes
int pcie_get_mps(struct pci_dev * dev)

get PCI Express maximum payload size
Parameters
struct pci_dev * dev PCI device to query
Description
Returns maximum payload size in bytes
int pcie_set_mps(struct pci_dev * dev, int mps)

set PCI Express maximum payload size
Parameters
struct pci_dev * dev PCI device to query
int mps maximum payload size in bytes valid values are 128, 256, 512, 1024, 2048, 4096
Description
If possible sets maximum payload size
int pcie_get_minimum_link(struct pci_dev * dev, enum pci_bus_speed * speed, enum

pcie_link_width * width)
determine minimum link settings of a PCI device

Parameters
struct pci_dev * dev PCI device to query
enum pci_bus_speed * speed storage for minimum speed
enum pcie_link_width * width storage for minimum width
Description
This function will walk up the PCI device chain and determine the minimum link width and speed of the
device.
int pci_select_bars(struct pci_dev * dev, unsigned long flags)

Make BAR mask from the type of resource
Parameters
struct pci_dev * dev the PCI device for which BAR mask is made
unsigned long flags resource type mask to be selected
Description
This helper routine makes bar mask from the type of resource.
int pci_add_dynid(struct pci_driver * drv, unsigned int vendor, unsigned int device, un-

signed int subvendor, unsigned int subdevice, unsigned int class, unsigned
int class_mask, unsigned long driver_data)

add a new PCI device ID to this driver and re-probe devices

457

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct pci_driver * drv target pci driver
unsigned int vendor PCI vendor ID
unsigned int device PCI device ID
unsigned int subvendor PCI subvendor ID
unsigned int subdevice PCI subdevice ID
unsigned int class PCI class
unsigned int class_mask PCI class mask
unsigned long driver_data private driver data
Description
Adds a new dynamic pci device ID to this driver and causes the driver to probe for all devices again. drv
must have been registered prior to calling this function.
Context
Does GFP_KERNEL allocation.
Return
0 on success, -errno on failure.
const struct pci_device_id * pci_match_id(const struct pci_device_id * ids, struct pci_dev * dev)

See if a pci device matches a given pci_id table
Parameters
const struct pci_device_id * ids array of PCI device id structures to search in
struct pci_dev * dev the PCI device structure to match against.
Description
Used by a driver to check whether a PCI device present in the system is in its list of supported devices.
Returns the matching pci_device_id structure or NULL if there is no match.
Deprecated, don’t use this as it will not catch any dynamic ids that a driver might want to check for.
int __pci_register_driver(struct pci_driver * drv, struct module * owner, const char * mod_name)

register a new pci driver
Parameters
struct pci_driver * drv the driver structure to register
struct module * owner owner module of drv
const char * mod_name module name string
Description
Adds the driver structure to the list of registered drivers. Returns a negative value on error, otherwise 0.
If no error occurred, the driver remains registered even if no device was claimed during registration.
void pci_unregister_driver(struct pci_driver * drv)

unregister a pci driver
Parameters
struct pci_driver * drv the driver structure to unregister
Description
Deletes the driver structure from the list of registered PCI drivers, gives it a chance to clean up by calling
its remove() function for each device it was responsible for, and marks those devices as driverless.

458 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

struct pci_driver * pci_dev_driver(const struct pci_dev * dev)
get the pci_driver of a device

Parameters
const struct pci_dev * dev the device to query
Description
Returns the appropriate pci_driver structure or NULL if there is no registered driver for the device.
struct pci_dev * pci_dev_get(struct pci_dev * dev)

increments the reference count of the pci device structure
Parameters
struct pci_dev * dev the device being referenced
Description
Each live reference to a device should be refcounted.
Drivers for PCI devices should normally record such references in their probe()methods, when they bind
to a device, and release them by calling pci_dev_put(), in their disconnect() methods.
A pointer to the device with the incremented reference counter is returned.
void pci_dev_put(struct pci_dev * dev)

release a use of the pci device structure
Parameters
struct pci_dev * dev device that’s been disconnected
Description
Must be called when a user of a device is finished with it. When the last user of the device calls this
function, the memory of the device is freed.
void pci_stop_and_remove_bus_device(struct pci_dev * dev)

remove a PCI device and any children
Parameters
struct pci_dev * dev the device to remove
Description
Remove a PCI device from the device lists, informing the drivers that the device has been removed. We
also remove any subordinate buses and children in a depth-first manner.
For each device we remove, delete the device structure from the device lists, remove the /proc entry, and
notify userspace (/sbin/hotplug).
struct pci_bus * pci_find_bus(int domain, int busnr)

locate PCI bus from a given domain and bus number
Parameters
int domain number of PCI domain to search
int busnr number of desired PCI bus
Description
Given a PCI bus number and domain number, the desired PCI bus is located in the global list of PCI buses.
If the bus is found, a pointer to its data structure is returned. If no bus is found, NULL is returned.
struct pci_bus * pci_find_next_bus(const struct pci_bus * from)

begin or continue searching for a PCI bus
Parameters
const struct pci_bus * from Previous PCI bus found, or NULL for new search.

459

The kernel driver API manual, Release 4.13.0-rc4+

Description
Iterates through the list of known PCI buses. A new search is initiated by passing NULL as the from
argument. Otherwise if from is not NULL, searches continue from next device on the global list.
struct pci_dev * pci_get_slot(struct pci_bus * bus, unsigned int devfn)

locate PCI device for a given PCI slot
Parameters
struct pci_bus * bus PCI bus on which desired PCI device resides
unsigned int devfn encodes number of PCI slot in which the desired PCI device resides and the logical

device number within that slot in case of multi-function devices.
Description
Given a PCI bus and slot/function number, the desired PCI device is located in the list of PCI devices. If the
device is found, its reference count is increased and this function returns a pointer to its data structure.
The caller must decrement the reference count by calling pci_dev_put(). If no device is found, NULL is
returned.
struct pci_dev * pci_get_domain_bus_and_slot(int domain, unsigned int bus, unsigned int devfn)

locate PCI device for a given PCI domain (segment), bus, and slot
Parameters
int domain PCI domain/segment on which the PCI device resides.
unsigned int bus PCI bus on which desired PCI device resides
unsigned int devfn encodes number of PCI slot in which the desired PCI device resides and the logical

device number within that slot in case of multi-function devices.
Description
Given a PCI domain, bus, and slot/function number, the desired PCI device is located in the list of PCI
devices. If the device is found, its reference count is increased and this function returns a pointer to its
data structure. The caller must decrement the reference count by calling pci_dev_put(). If no device is
found, NULL is returned.
struct pci_dev * pci_get_subsys(unsigned int vendor, unsigned int device, unsigned int ss_vendor,

unsigned int ss_device, struct pci_dev * from)
begin or continue searching for a PCI device by vendor/subvendor/device/subdevice id

Parameters
unsigned int vendor PCI vendor id to match, or PCI_ANY_ID to match all vendor ids
unsigned int device PCI device id to match, or PCI_ANY_ID to match all device ids
unsigned int ss_vendor PCI subsystem vendor id to match, or PCI_ANY_ID to match all vendor ids
unsigned int ss_device PCI subsystem device id to match, or PCI_ANY_ID to match all device ids
struct pci_dev * from Previous PCI device found in search, or NULL for new search.
Description
Iterates through the list of known PCI devices. If a PCI device is found with a matching vendor, device,
ss_vendor and ss_device, a pointer to its device structure is returned, and the reference count to the
device is incremented. Otherwise, NULL is returned. A new search is initiated by passing NULL as the
from argument. Otherwise if from is not NULL, searches continue from next device on the global list. The
reference count for from is always decremented if it is not NULL.
struct pci_dev * pci_get_device(unsigned int vendor, unsigned int device, struct pci_dev * from)

begin or continue searching for a PCI device by vendor/device id
Parameters
unsigned int vendor PCI vendor id to match, or PCI_ANY_ID to match all vendor ids

460 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int device PCI device id to match, or PCI_ANY_ID to match all device ids
struct pci_dev * from Previous PCI device found in search, or NULL for new search.
Description
Iterates through the list of known PCI devices. If a PCI device is found with a matching vendor and
device, the reference count to the device is incremented and a pointer to its device structure is returned.
Otherwise, NULL is returned. A new search is initiated by passing NULL as the from argument. Otherwise
if from is not NULL, searches continue from next device on the global list. The reference count for from
is always decremented if it is not NULL.
struct pci_dev * pci_get_class(unsigned int class, struct pci_dev * from)

begin or continue searching for a PCI device by class
Parameters
unsigned int class search for a PCI device with this class designation
struct pci_dev * from Previous PCI device found in search, or NULL for new search.
Description
Iterates through the list of known PCI devices. If a PCI device is found with a matching class, the reference
count to the device is incremented and a pointer to its device structure is returned. Otherwise, NULL is
returned. A new search is initiated by passing NULL as the from argument. Otherwise if from is not NULL,
searches continue from next device on the global list. The reference count for from is always decremented
if it is not NULL.
int pci_dev_present(const struct pci_device_id * ids)

Returns 1 if device matching the device list is present, 0 if not.
Parameters
const struct pci_device_id * ids A pointer to a null terminated list of struct pci_device_id structures

that describe the type of PCI device the caller is trying to find.
Description
Obvious fact: You do not have a reference to any device that might be found by this function, so if that
device is removed from the system right after this function is finished, the value will be stale. Use this
function to find devices that are usually built into a system, or for a general hint as to if another device
happens to be present at this specific moment in time.
void pci_msi_mask_irq(struct irq_data * data)

Generic irq chip callback to mask PCI/MSI interrupts
Parameters
struct irq_data * data pointer to irqdata associated to that interrupt
void pci_msi_unmask_irq(struct irq_data * data)

Generic irq chip callback to unmask PCI/MSI interrupts
Parameters
struct irq_data * data pointer to irqdata associated to that interrupt
int pci_msi_vec_count(struct pci_dev * dev)

Return the number of MSI vectors a device can send
Parameters
struct pci_dev * dev device to report about
Description
This function returns the number of MSI vectors a device requested via Multiple Message Capable register.
It returns a negative errno if the device is not capable sending MSI interrupts. Otherwise, the call succeeds
and returns a power of two, up to a maximum of 2^5 (32), according to the MSI specification.

461

The kernel driver API manual, Release 4.13.0-rc4+

int pci_msix_vec_count(struct pci_dev * dev)
return the number of device’s MSI-X table entries

Parameters
struct pci_dev * dev pointer to the pci_dev data structure of MSI-X device function This function re-

turns the number of device’s MSI-X table entries and therefore the number of MSI-X vectors device is
capable of sending. It returns a negative errno if the device is not capable of sending MSI-X interrupts.

int pci_msi_enabled(void)
is MSI enabled?

Parameters
void no arguments
Description
Returns true if MSI has not been disabled by the command-line option pci=nomsi.
int pci_enable_msix_range(struct pci_dev * dev, struct msix_entry * entries, int minvec,

int maxvec)
configure device’s MSI-X capability structure

Parameters
struct pci_dev * dev pointer to the pci_dev data structure of MSI-X device function
struct msix_entry * entries pointer to an array of MSI-X entries
int minvec minimum number of MSI-X irqs requested
int maxvec maximum number of MSI-X irqs requested
Description
Setup the MSI-X capability structure of device function with a maximum possible number of interrupts in
the range betweenminvec andmaxvec upon its software driver call to request for MSI-X mode enabled
on its hardware device function. It returns a negative errno if an error occurs. If it succeeds, it returns
the actual number of interrupts allocated and indicates the successful configuration of MSI-X capability
structure with new allocated MSI-X interrupts.
int pci_alloc_irq_vectors_affinity(struct pci_dev * dev, unsigned int min_vecs, unsigned

int max_vecs, unsigned int flags, const struct irq_affinity
* affd)

allocate multiple IRQs for a device
Parameters
struct pci_dev * dev PCI device to operate on
unsigned int min_vecs minimum number of vectors required (must be >= 1)
unsigned int max_vecs maximum (desired) number of vectors
unsigned int flags flags or quirks for the allocation
const struct irq_affinity * affd optional description of the affinity requirements
Description
Allocate up to max_vecs interrupt vectors for dev, using MSI-X or MSI vectors if available, and fall back
to a single legacy vector if neither is available. Return the number of vectors allocated, (which might be
smaller than max_vecs) if successful, or a negative error code on error. If less than min_vecs interrupt
vectors are available for dev the function will fail with -ENOSPC.
To get the Linux IRQ number used for a vector that can be passed to request_irq() use the
pci_irq_vector() helper.
void pci_free_irq_vectors(struct pci_dev * dev)

free previously allocated IRQs for a device

462 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct pci_dev * dev PCI device to operate on
Description
Undoes the allocations and enabling in pci_alloc_irq_vectors().
int pci_irq_vector(struct pci_dev * dev, unsigned int nr)

return Linux IRQ number of a device vector
Parameters
struct pci_dev * dev PCI device to operate on
unsigned int nr device-relative interrupt vector index (0-based).
const struct cpumask * pci_irq_get_affinity(struct pci_dev * dev, int nr)

return the affinity of a particular msi vector
Parameters
struct pci_dev * dev PCI device to operate on
int nr device-relative interrupt vector index (0-based).
int pci_irq_get_node(struct pci_dev * pdev, int vec)

return the numa node of a particular msi vector
Parameters
struct pci_dev * pdev PCI device to operate on
int vec device-relative interrupt vector index (0-based).
struct irq_domain * pci_msi_create_irq_domain(struct fwnode_handle * fwnode, struct

msi_domain_info * info, struct irq_domain * par-
ent)

Create a MSI interrupt domain
Parameters
struct fwnode_handle * fwnode Optional fwnode of the interrupt controller
struct msi_domain_info * info MSI domain info
struct irq_domain * parent Parent irq domain
Description
Updates the domain and chip ops and creates a MSI interrupt domain.
Return
A domain pointer or NULL in case of failure.
int pci_bus_alloc_resource(struct pci_bus * bus, struct resource * res, resource_size_t size,

resource_size_t align, resource_size_t min, unsigned long type_mask,
resource_size_t (*alignf) (void *, const struct resource *, re-
source_size_t, resource_size_t, void * alignf_data)

allocate a resource from a parent bus
Parameters
struct pci_bus * bus PCI bus
struct resource * res resource to allocate
resource_size_t size size of resource to allocate
resource_size_t align alignment of resource to allocate
resource_size_t min minimum /proc/iomem address to allocate

463

The kernel driver API manual, Release 4.13.0-rc4+

unsigned long type_mask IORESOURCE_* type flags
resource_size_t (*)(void *,const struct resource *,resource_size_t,resource_size_t) alignf

resource alignment function
void * alignf_data data argument for resource alignment function
Description
Given the PCI bus a device resides on, the size, minimum address, alignment and type, try to find an
acceptable resource allocation for a specific device resource.
void pci_bus_add_device(struct pci_dev * dev)

start driver for a single device
Parameters
struct pci_dev * dev device to add
Description
This adds add sysfs entries and start device drivers
void pci_bus_add_devices(const struct pci_bus * bus)

start driver for PCI devices
Parameters
const struct pci_bus * bus bus to check for new devices
Description
Start driver for PCI devices and add some sysfs entries.
struct pci_ops * pci_bus_set_ops(struct pci_bus * bus, struct pci_ops * ops)

Set raw operations of pci bus
Parameters
struct pci_bus * bus pci bus struct
struct pci_ops * ops new raw operations
Description
Return previous raw operations
ssize_t pci_read_vpd(struct pci_dev * dev, loff_t pos, size_t count, void * buf)

Read one entry from Vital Product Data
Parameters
struct pci_dev * dev pci device struct
loff_t pos offset in vpd space
size_t count number of bytes to read
void * buf pointer to where to store result
ssize_t pci_write_vpd(struct pci_dev * dev, loff_t pos, size_t count, const void * buf)

Write entry to Vital Product Data
Parameters
struct pci_dev * dev pci device struct
loff_t pos offset in vpd space
size_t count number of bytes to write
const void * buf buffer containing write data
int pci_set_vpd_size(struct pci_dev * dev, size_t len)

Set size of Vital Product Data space

464 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct pci_dev * dev pci device struct
size_t len size of vpd space
void pci_cfg_access_lock(struct pci_dev * dev)

Lock PCI config reads/writes
Parameters
struct pci_dev * dev pci device struct
Description
When access is locked, any userspace reads or writes to config space and concurrent lock requests will
sleep until access is allowed via pci_cfg_access_unlock() again.
bool pci_cfg_access_trylock(struct pci_dev * dev)

try to lock PCI config reads/writes
Parameters
struct pci_dev * dev pci device struct
Description
Same as pci_cfg_access_lock, but will return 0 if access is already locked, 1 otherwise. This function can
be used from atomic contexts.
void pci_cfg_access_unlock(struct pci_dev * dev)

Unlock PCI config reads/writes
Parameters
struct pci_dev * dev pci device struct
Description
This function allows PCI config accesses to resume.
enum pci_lost_interrupt_reason pci_lost_interrupt(struct pci_dev * pdev)

reports a lost PCI interrupt
Parameters
struct pci_dev * pdev device whose interrupt is lost
Description
The primary function of this routine is to report a lost interrupt in a standard way which users can recognise
(instead of blaming the driver).
Return
a suggestion for fixing it (although the driver is not required to act on this).
int pci_request_irq(struct pci_dev * dev, unsigned int nr, irq_handler_t handler,

irq_handler_t thread_fn, void * dev_id, const char * fmt, ...)
allocate an interrupt line for a PCI device

Parameters
struct pci_dev * dev PCI device to operate on
unsigned int nr device-relative interrupt vector index (0-based).
irq_handler_t handler Function to be called when the IRQ occurs. Primary handler for threaded inter-

rupts. If NULL and thread_fn != NULL the default primary handler is installed.
irq_handler_t thread_fn Function called from the IRQ handler thread If NULL, no IRQ thread is created
void * dev_id Cookie passed back to the handler function

465

The kernel driver API manual, Release 4.13.0-rc4+

const char * fmt Printf-like format string naming the handler
... variable arguments
Description
This call allocates interrupt resources and enables the interrupt line and IRQ handling. From the point this
call is made handler and thread_fn may be invoked. All interrupts requested using this function might
be shared.
dev_id must not be NULL and must be globally unique.
void pci_free_irq(struct pci_dev * dev, unsigned int nr, void * dev_id)

free an interrupt allocated with pci_request_irq
Parameters
struct pci_dev * dev PCI device to operate on
unsigned int nr device-relative interrupt vector index (0-based).
void * dev_id Device identity to free
Description
Remove an interrupt handler. The handler is removed and if the interrupt line is no longer in use by any
driver it is disabled. The caller must ensure the interrupt is disabled on the device before calling this
function. The function does not return until any executing interrupts for this IRQ have completed.
This function must not be called from interrupt context.
int __ht_create_irq(struct pci_dev * dev, int idx, ht_irq_update_t * update)

create an irq and attach it to a device.
Parameters
struct pci_dev * dev The hypertransport device to find the irq capability on.
int idx Which of the possible irqs to attach to.
ht_irq_update_t * update Function to be called when changing the htirq message
Description
The irq number of the new irq or a negative error value is returned.
int ht_create_irq(struct pci_dev * dev, int idx)

create an irq and attach it to a device.
Parameters
struct pci_dev * dev The hypertransport device to find the irq capability on.
int idx Which of the possible irqs to attach to.
Description
ht_create_irq needs to be called for all hypertransport devices that generate irqs.
The irq number of the new irq or a negative error value is returned.
void ht_destroy_irq(unsigned int irq)

destroy an irq created with ht_create_irq
Parameters
unsigned int irq irq to be destroyed
Description
This reverses ht_create_irq removing the specified irq from existence. The irq should be free before this
happens.

466 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

int pci_scan_slot(struct pci_bus * bus, int devfn)
scan a PCI slot on a bus for devices.

Parameters
struct pci_bus * bus PCI bus to scan
int devfn slot number to scan (must have zero function.)
Description
Scan a PCI slot on the specified PCI bus for devices, adding discovered devices to the bus->devices list.
New devices will not have is_added set.
Returns the number of new devices found.
unsigned int pci_rescan_bus(struct pci_bus * bus)

scan a PCI bus for devices.
Parameters
struct pci_bus * bus PCI bus to scan
Description
Scan a PCI bus and child buses for new devices, adds them, and enables them.
Returns the max number of subordinate bus discovered.
struct pci_slot * pci_create_slot(struct pci_bus * parent, int slot_nr, const char * name, struct hot-

plug_slot * hotplug)
create or increment refcount for physical PCI slot

Parameters
struct pci_bus * parent struct pci_bus of parent bridge
int slot_nr PCI_SLOT(pci_dev->devfn) or -1 for placeholder
const char * name user visible string presented in /sys/bus/pci/slots/<name>
struct hotplug_slot * hotplug set if caller is hotplug driver, NULL otherwise
Description
PCI slots have first class attributes such as address, speed, width, and a struct pci_slot is used to
manage them. This interface will either return a new struct pci_slot to the caller, or if the pci_slot
already exists, its refcount will be incremented.
Slots are uniquely identified by a pci_bus, slot_nr tuple.
There are known platforms with broken firmware that assign the same name to multiple slots. Workaround
these broken platforms by renaming the slots on behalf of the caller. If firmware assigns name N tomultiple
slots:
The first slot is assigned N The second slot is assigned N-1 The third slot is assigned N-2 etc.
Placeholder slots: In most cases, pci_bus, slot_nr will be sufficient to uniquely identify a slot. There
is one notable exception - pSeries (rpaphp), where the slot_nr cannot be determined until a device is
actually inserted into the slot. In this scenario, the caller may pass -1 for slot_nr.
The following semantics are imposed when the caller passes slot_nr == -1. First, we no longer check for
an existing struct pci_slot, as there may be many slots with slot_nr of -1. The other change in semantics
is user-visible, which is the ‘address’ parameter presented in sysfs will consist solely of a dddd:bb tuple,
where dddd is the PCI domain of the struct pci_bus and bb is the bus number. In other words, the devfn
of the ‘placeholder’ slot will not be displayed.
void pci_destroy_slot(struct pci_slot * slot)

decrement refcount for physical PCI slot
Parameters

467

The kernel driver API manual, Release 4.13.0-rc4+

struct pci_slot * slot struct pci_slot to decrement
Description
struct pci_slot is refcounted, so destroying them is really easy; we just call kobject_put on its kobj and
let our release methods do the rest.
void pci_hp_create_module_link(struct pci_slot * pci_slot)

create symbolic link to the hotplug driver module.
Parameters
struct pci_slot * pci_slot struct pci_slot
Description
Helper function for pci_hotplug_core.c to create symbolic link to the hotplug driver module.
void pci_hp_remove_module_link(struct pci_slot * pci_slot)

remove symbolic link to the hotplug driver module.
Parameters
struct pci_slot * pci_slot struct pci_slot
Description
Helper function for pci_hotplug_core.c to remove symbolic link to the hotplug driver module.
int pci_enable_rom(struct pci_dev * pdev)

enable ROM decoding for a PCI device
Parameters
struct pci_dev * pdev PCI device to enable
Description
Enable ROM decoding on dev. This involves simply turning on the last bit of the PCI ROM BAR. Note
that some cards may share address decoders between the ROM and other resources, so enabling it may
disable access to MMIO registers or other card memory.
void pci_disable_rom(struct pci_dev * pdev)

disable ROM decoding for a PCI device
Parameters
struct pci_dev * pdev PCI device to disable
Description
Disable ROM decoding on a PCI device by turning off the last bit in the ROM BAR.
void __iomem * pci_map_rom(struct pci_dev * pdev, size_t * size)

map a PCI ROM to kernel space
Parameters
struct pci_dev * pdev pointer to pci device struct
size_t * size pointer to receive size of pci window over ROM
Return
kernel virtual pointer to image of ROM
Map a PCI ROM into kernel space. If ROM is boot video ROM, the shadow BIOS copy will be returned instead
of the actual ROM.
void pci_unmap_rom(struct pci_dev * pdev, void __iomem * rom)

unmap the ROM from kernel space
Parameters

468 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

struct pci_dev * pdev pointer to pci device struct
void __iomem * rom virtual address of the previous mapping
Description
Remove a mapping of a previously mapped ROM
void __iomem * pci_platform_rom(struct pci_dev * pdev, size_t * size)

provides a pointer to any ROM image provided by the platform
Parameters
struct pci_dev * pdev pointer to pci device struct
size_t * size pointer to receive size of pci window over ROM
int pci_enable_sriov(struct pci_dev * dev, int nr_virtfn)

enable the SR-IOV capability
Parameters
struct pci_dev * dev the PCI device
int nr_virtfn number of virtual functions to enable
Description
Returns 0 on success, or negative on failure.
void pci_disable_sriov(struct pci_dev * dev)

disable the SR-IOV capability
Parameters
struct pci_dev * dev the PCI device
int pci_num_vf(struct pci_dev * dev)

return number of VFs associated with a PF device_release_driver
Parameters
struct pci_dev * dev the PCI device
Description
Returns number of VFs, or 0 if SR-IOV is not enabled.
int pci_vfs_assigned(struct pci_dev * dev)

returns number of VFs are assigned to a guest
Parameters
struct pci_dev * dev the PCI device
Description
Returns number of VFs belonging to this device that are assigned to a guest. If device is not a physical
function returns 0.
int pci_sriov_set_totalvfs(struct pci_dev * dev, u16 numvfs)

•reduce the TotalVFs available
Parameters
struct pci_dev * dev the PCI PF device
u16 numvfs number that should be used for TotalVFs supported
Description
Should be called from PF driver’s probe routine with device’s mutex held.

469

The kernel driver API manual, Release 4.13.0-rc4+

Returns 0 if PF is an SRIOV-capable device and value of numvfs valid. If not a PF return -ENOSYS; if numvfs
is invalid return -EINVAL; if VFs already enabled, return -EBUSY.
int pci_sriov_get_totalvfs(struct pci_dev * dev)

•get total VFs supported on this device
Parameters
struct pci_dev * dev the PCI PF device
Description
For a PCIe device with SRIOV support, return the PCIe SRIOV capability value of TotalVFs or the value of
driver_max_VFs if the driver reduced it. Otherwise 0.
ssize_t pci_read_legacy_io(struct file * filp, struct kobject * kobj, struct bin_attribute * bin_attr,

char * buf, loff_t off, size_t count)
read byte(s) from legacy I/O port space

Parameters
struct file * filp open sysfs file
struct kobject * kobj kobject corresponding to file to read from
struct bin_attribute * bin_attr struct bin_attribute for this file
char * buf buffer to store results
loff_t off offset into legacy I/O port space
size_t count number of bytes to read
Description
Reads 1, 2, or 4 bytes from legacy I/O port space using an arch specific callback routine (pci_legacy_read).

ssize_t pci_write_legacy_io(struct file * filp, struct kobject * kobj, struct bin_attribute * bin_attr,
char * buf, loff_t off, size_t count)

write byte(s) to legacy I/O port space
Parameters
struct file * filp open sysfs file
struct kobject * kobj kobject corresponding to file to read from
struct bin_attribute * bin_attr struct bin_attribute for this file
char * buf buffer containing value to be written
loff_t off offset into legacy I/O port space
size_t count number of bytes to write
Description
Writes 1, 2, or 4 bytes from legacy I/O port space using an arch specific callback routine (pci_legacy_write).

int pci_mmap_legacy_mem(struct file * filp, struct kobject * kobj, struct bin_attribute * attr, struct
vm_area_struct * vma)

map legacy PCI memory into user memory space
Parameters
struct file * filp open sysfs file
struct kobject * kobj kobject corresponding to device to be mapped
struct bin_attribute * attr struct bin_attribute for this file

470 Chapter 14. PCI Support Library

The kernel driver API manual, Release 4.13.0-rc4+

struct vm_area_struct * vma struct vm_area_struct passed to mmap
Description
Uses an arch specific callback, pci_mmap_legacy_mem_page_range, to mmap legacy memory space (first
meg of bus space) into application virtual memory space.
int pci_mmap_legacy_io(struct file * filp, struct kobject * kobj, struct bin_attribute * attr, struct

vm_area_struct * vma)
map legacy PCI IO into user memory space

Parameters
struct file * filp open sysfs file
struct kobject * kobj kobject corresponding to device to be mapped
struct bin_attribute * attr struct bin_attribute for this file
struct vm_area_struct * vma struct vm_area_struct passed to mmap
Description
Uses an arch specific callback, pci_mmap_legacy_io_page_range, to mmap legacy IO space (first meg of
bus space) into application virtual memory space. Returns -ENOSYS if the operation isn’t supported
void pci_adjust_legacy_attr(struct pci_bus * b, enum pci_mmap_state mmap_type)

adjustment of legacy file attributes
Parameters
struct pci_bus * b bus to create files under
enum pci_mmap_state mmap_type I/O port or memory
Description
Stub implementation. Can be overridden by arch if necessary.
void pci_create_legacy_files(struct pci_bus * b)

create legacy I/O port and memory files
Parameters
struct pci_bus * b bus to create files under
Description
Some platforms allow access to legacy I/O port and ISA memory space on a per-bus basis. This routine
creates the files and ties them into their associated read, write and mmap files from pci-sysfs.c
On error unwind, but don’t propagate the error to the caller as it is ok to set up the PCI bus without these
files.
int pci_mmap_resource(struct kobject * kobj, struct bin_attribute * attr, struct vm_area_struct

* vma, int write_combine)
map a PCI resource into user memory space

Parameters
struct kobject * kobj kobject for mapping
struct bin_attribute * attr struct bin_attribute for the file being mapped
struct vm_area_struct * vma struct vm_area_struct passed into the mmap
int write_combine 1 for write_combine mapping
Description
Use the regular PCI mapping routines to map a PCI resource into userspace.
void pci_remove_resource_files(struct pci_dev * pdev)

cleanup resource files

471

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct pci_dev * pdev dev to cleanup
Description
If we created resource files for pdev, remove them from sysfs and free their resources.
int pci_create_resource_files(struct pci_dev * pdev)

create resource files in sysfs for dev
Parameters
struct pci_dev * pdev dev in question
Description
Walk the resources in pdev creating files for each resource available.
ssize_t pci_write_rom(struct file * filp, struct kobject * kobj, struct bin_attribute * bin_attr, char

* buf, loff_t off, size_t count)
used to enable access to the PCI ROM display

Parameters
struct file * filp sysfs file
struct kobject * kobj kernel object handle
struct bin_attribute * bin_attr struct bin_attribute for this file
char * buf user input
loff_t off file offset
size_t count number of byte in input
Description
writing anything except 0 enables it
ssize_t pci_read_rom(struct file * filp, struct kobject * kobj, struct bin_attribute * bin_attr, char * buf,

loff_t off, size_t count)
read a PCI ROM

Parameters
struct file * filp sysfs file
struct kobject * kobj kernel object handle
struct bin_attribute * bin_attr struct bin_attribute for this file
char * buf where to put the data we read from the ROM
loff_t off file offset
size_t count number of bytes to read
Description
Put count bytes starting at off into buf from the ROM in the PCI device corresponding to kobj.
void pci_remove_sysfs_dev_files(struct pci_dev * pdev)

cleanup PCI specific sysfs files
Parameters
struct pci_dev * pdev device whose entries we should free
Description
Cleanup when pdev is removed from sysfs.

472 Chapter 14. PCI Support Library

CHAPTER

FIFTEEN

PCI HOTPLUG SUPPORT LIBRARY

int __pci_hp_register(struct hotplug_slot * slot, struct pci_bus * bus, int devnr, const char * name,
struct module * owner, const char * mod_name)

register a hotplug_slot with the PCI hotplug subsystem
Parameters
struct hotplug_slot * slot pointer to the struct hotplug_slot to register
struct pci_bus * bus bus this slot is on
int devnr device number
const char * name name registered with kobject core
struct module * owner caller module owner
const char * mod_name caller module name
Description
Registers a hotplug slot with the pci hotplug subsystem, which will allow userspace interaction to the slot.
Returns 0 if successful, anything else for an error.
int pci_hp_deregister(struct hotplug_slot * slot)

deregister a hotplug_slot with the PCI hotplug subsystem
Parameters
struct hotplug_slot * slot pointer to the struct hotplug_slot to deregister
Description
The slot must have been registered with the pci hotplug subsystem previously with a call to
pci_hp_register().
Returns 0 if successful, anything else for an error.
int pci_hp_change_slot_info(struct hotplug_slot * slot, struct hotplug_slot_info * info)

changes the slot’s information structure in the core
Parameters
struct hotplug_slot * slot pointer to the slot whose info has changed
struct hotplug_slot_info * info pointer to the info copy into the slot’s info structure
Description
slot must have been registered with the pci hotplug subsystem previously with a call to
pci_hp_register().
Returns 0 if successful, anything else for an error.

473

The kernel driver API manual, Release 4.13.0-rc4+

474 Chapter 15. PCI Hotplug Support Library

CHAPTER

SIXTEEN

SERIAL PERIPHERAL INTERFACE (SPI)

SPI is the “Serial Peripheral Interface”, widely used with embedded systems because it is a simple and
efficient interface: basically a multiplexed shift register. Its three signal wires hold a clock (SCK, often in
the range of 1-20 MHz), a “Master Out, Slave In” (MOSI) data line, and a “Master In, Slave Out” (MISO)
data line. SPI is a full duplex protocol; for each bit shifted out the MOSI line (one per clock) another is
shifted in on the MISO line. Those bits are assembled into words of various sizes on the way to and from
system memory. An additional chipselect line is usually active-low (nCS); four signals are normally used
for each peripheral, plus sometimes an interrupt.
The SPI bus facilities listed here provide a generalized interface to declare SPI busses and devices, manage
them according to the standard Linux driver model, and perform input/output operations. At this time,
only “master” side interfaces are supported, where Linux talks to SPI peripherals and does not implement
such a peripheral itself. (Interfaces to support implementing SPI slaves would necessarily look different.)
The programming interface is structured around two kinds of driver, and two kinds of device. A “Controller
Driver” abstracts the controller hardware, which may be as simple as a set of GPIO pins or as complex
as a pair of FIFOs connected to dual DMA engines on the other side of the SPI shift register (maximizing
throughput). Such drivers bridge between whatever bus they sit on (often the platform bus) and SPI,
and expose the SPI side of their device as a struct spi_master. SPI devices are children of that master,
represented as a struct spi_device andmanufactured from struct spi_board_info descriptors which
are usually provided by board-specific initialization code. A struct spi_driver is called a “Protocol
Driver”, and is bound to a spi_device using normal driver model calls.
The I/O model is a set of queued messages. Protocol drivers submit one or more struct spi_message
objects, which are processed and completed asynchronously. (There are synchronous wrappers, however.)
Messages are built from one or more struct spi_transfer objects, each of which wraps a full duplex SPI
transfer. A variety of protocol tweaking options are needed, because different chips adopt very different
policies for how they use the bits transferred with SPI.
struct spi_statistics

statistics for spi transfers
Definition

struct spi_statistics {
spinlock_t lock;
unsigned long messages;
unsigned long transfers;
unsigned long errors;
unsigned long timedout;
unsigned long spi_sync;
unsigned long spi_sync_immediate;
unsigned long spi_async;
unsigned long long bytes;
unsigned long long bytes_rx;
unsigned long long bytes_tx;

#define SPI_STATISTICS_HISTO_SIZE 17
unsigned long transfer_bytes_histo;
unsigned long transfers_split_maxsize;

};

475

The kernel driver API manual, Release 4.13.0-rc4+

Members
lock lock protecting this structure
messages number of spi-messages handled
transfers number of spi_transfers handled
errors number of errors during spi_transfer
timedout number of timeouts during spi_transfer
spi_sync number of times spi_sync is used
spi_sync_immediate number of times spi_sync is executed immediately in calling context without queu-

ing and scheduling
spi_async number of times spi_async is used
bytes number of bytes transferred to/from device
bytes_rx number of bytes received from device
bytes_tx number of bytes sent to device
transfer_bytes_histo transfer bytes histogramm
transfers_split_maxsize number of transfers that have been split because of maxsize limit
struct spi_device

Controller side proxy for an SPI slave device
Definition

struct spi_device {
struct device dev;
struct spi_controller * controller;
struct spi_controller * master;
u32 max_speed_hz;
u8 chip_select;
u8 bits_per_word;
u16 mode;

#define SPI_CPHA 0x01
#define SPI_CPOL 0x02
#define SPI_MODE_0 (0|0
#define SPI_MODE_1 (0|SPI_CPHA
#define SPI_MODE_2 (SPI_CPOL|0
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA
#define SPI_CS_HIGH 0x04
#define SPI_LSB_FIRST 0x08
#define SPI_3WIRE 0x10
#define SPI_LOOP 0x20
#define SPI_NO_CS 0x40
#define SPI_READY 0x80
#define SPI_TX_DUAL 0x100
#define SPI_TX_QUAD 0x200
#define SPI_RX_DUAL 0x400
#define SPI_RX_QUAD 0x800
int irq;
void * controller_state;
void * controller_data;
char modalias;
int cs_gpio;
struct spi_statistics statistics;

};

Members
dev Driver model representation of the device.

476 Chapter 16. Serial Peripheral Interface (SPI)

The kernel driver API manual, Release 4.13.0-rc4+

controller SPI controller used with the device.
master Copy of controller, for backwards compatibility.
max_speed_hz Maximum clock rate to be used with this chip (on this board); may be changed by the

device’s driver. The spi_transfer.speed_hz can override this for each transfer.
chip_select Chipselect, distinguishing chips handled by controller.
bits_per_word Data transfers involve one or more words; word sizes like eight or 12 bits are common. In-

memory wordsizes are powers of two bytes (e.g. 20 bit samples use 32 bits). This may be changed
by the device’s driver, or left at the default (0) indicating protocol words are eight bit bytes. The
spi_transfer.bits_per_word can override this for each transfer.

mode The spi mode defines how data is clocked out and in. This may be changed by the device’s driver.
The “active low” default for chipselect mode can be overridden (by specifying SPI_CS_HIGH) as can
the “MSB first” default for each word in a transfer (by specifying SPI_LSB_FIRST).

irq Negative, or the number passed to request_irq() to receive interrupts from this device.
controller_state Controller’s runtime state
controller_data Board-specific definitions for controller, such as FIFO initialization parameters; from

board_info.controller_data
modalias Name of the driver to use with this device, or an alias for that name. This appears in the sysfs

“modalias” attribute for driver coldplugging, and in uevents used for hotplugging
cs_gpio gpio number of the chipselect line (optional, -ENOENT when when not using a GPIO line)
statistics statistics for the spi_device
Description
A spi_device is used to interchange data between an SPI slave (usually a discrete chip) and CPU memory.
In dev, the platform_data is used to hold information about this device that’s meaningful to the device’s
protocol driver, but not to its controller. One example might be an identifier for a chip variant with slightly
different functionality; another might be information about how this particular board wires the chip’s pins.

struct spi_driver
Host side “protocol” driver

Definition

struct spi_driver {
const struct spi_device_id * id_table;
int (* probe) (struct spi_device *spi);
int (* remove) (struct spi_device *spi);
void (* shutdown) (struct spi_device *spi);
struct device_driver driver;

};

Members
id_table List of SPI devices supported by this driver
probe Binds this driver to the spi device. Drivers can verify that the device is actually present, and

may need to configure characteristics (such as bits_per_word) which weren’t needed for the initial
configuration done during system setup.

remove Unbinds this driver from the spi device
shutdown Standard shutdown callback used during system state transitions such as powerdown/halt and

kexec
driver SPI device drivers should initialize the name and owner field of this structure.

477

The kernel driver API manual, Release 4.13.0-rc4+

Description
This represents the kind of device driver that uses SPI messages to interact with the hardware at the other
end of a SPI link. It’s called a “protocol” driver because it works through messages rather than talking
directly to SPI hardware (which is what the underlying SPI controller driver does to pass those messages).
These protocols are defined in the specification for the device(s) supported by the driver.
As a rule, those device protocols represent the lowest level interface supported by a driver, and it will sup-
port upper level interfaces too. Examples of such upper levels include frameworks like MTD, networking,
MMC, RTC, filesystem character device nodes, and hardware monitoring.
void spi_unregister_driver(struct spi_driver * sdrv)

reverse effect of spi_register_driver
Parameters
struct spi_driver * sdrv the driver to unregister
Context
can sleep
module_spi_driver(__spi_driver)

Helper macro for registering a SPI driver
Parameters
__spi_driver spi_driver struct
Description
Helper macro for SPI drivers which do not do anything special in module init/exit. This eliminates a lot
of boilerplate. Each module may only use this macro once, and calling it replaces module_init() and
module_exit()

struct spi_controller
interface to SPI master or slave controller

Definition

struct spi_controller {
struct device dev;
struct list_head list;
s16 bus_num;
u16 num_chipselect;
u16 dma_alignment;
u16 mode_bits;
u32 bits_per_word_mask;

#define SPI_BPW_MASK(bits
#define SPI_BIT_MASK(bits
#define SPI_BPW_RANGE_MASK(min# max
u32 min_speed_hz;
u32 max_speed_hz;
u16 flags;

#define SPI_CONTROLLER_HALF_DUPLEX BIT(0
#define SPI_CONTROLLER_NO_RX BIT(1
#define SPI_CONTROLLER_NO_TX BIT(2
#define SPI_CONTROLLER_MUST_RX BIT(3
#define SPI_CONTROLLER_MUST_TX BIT(4
#define SPI_MASTER_GPIO_SS BIT(5

bool slave;
size_t (* max_transfer_size) (struct spi_device *spi);
size_t (* max_message_size) (struct spi_device *spi);
struct mutex io_mutex;
spinlock_t bus_lock_spinlock;
struct mutex bus_lock_mutex;
bool bus_lock_flag;

478 Chapter 16. Serial Peripheral Interface (SPI)

The kernel driver API manual, Release 4.13.0-rc4+

int (* setup) (struct spi_device *spi);
int (* transfer) (struct spi_device *spi, struct spi_message *mesg);
void (* cleanup) (struct spi_device *spi);
bool (* can_dma) (struct spi_controller *ctlr,struct spi_device *spi, struct spi_transfer␣

↪→*xfer);
bool queued;
struct kthread_worker kworker;
struct task_struct * kworker_task;
struct kthread_work pump_messages;
spinlock_t queue_lock;
struct list_head queue;
struct spi_message * cur_msg;
bool idling;
bool busy;
bool running;
bool rt;
bool auto_runtime_pm;
bool cur_msg_prepared;
bool cur_msg_mapped;
struct completion xfer_completion;
size_t max_dma_len;
int (* prepare_transfer_hardware) (struct spi_controller *ctlr);
int (* transfer_one_message) (struct spi_controller *ctlr, struct spi_message *mesg);
int (* unprepare_transfer_hardware) (struct spi_controller *ctlr);
int (* prepare_message) (struct spi_controller *ctlr, struct spi_message *message);
int (* unprepare_message) (struct spi_controller *ctlr, struct spi_message *message);
int (* slave_abort) (struct spi_controller *ctlr);
int (* spi_flash_read) (struct spi_device *spi, struct spi_flash_read_message *msg);
bool (* spi_flash_can_dma) (struct spi_device *spi, struct spi_flash_read_message *msg);
bool (* flash_read_supported) (struct spi_device *spi);
void (* set_cs) (struct spi_device *spi, bool enable);
int (* transfer_one) (struct spi_controller *ctlr, struct spi_device *spi, struct spi_

↪→transfer *transfer);
void (* handle_err) (struct spi_controller *ctlr, struct spi_message *message);
int * cs_gpios;
struct spi_statistics statistics;
struct dma_chan * dma_tx;
struct dma_chan * dma_rx;
void * dummy_rx;
void * dummy_tx;
int (* fw_translate_cs) (struct spi_controller *ctlr, unsigned cs);

};

Members
dev device interface to this driver
list link with the global spi_controller list
bus_num board-specific (and often SOC-specific) identifier for a given SPI controller.
num_chipselect chipselects are used to distinguish individual SPI slaves, and are numbered from zero

to num_chipselects. each slave has a chipselect signal, but it’s common that not every chipselect is
connected to a slave.

dma_alignment SPI controller constraint on DMA buffers alignment.
mode_bits flags understood by this controller driver
bits_per_word_mask A mask indicating which values of bits_per_word are supported by the driver. Bit

n indicates that a bits_per_word n+1 is supported. If set, the SPI core will reject any transfer with
an unsupported bits_per_word. If not set, this value is simply ignored, and it’s up to the individual
driver to perform any validation.

min_speed_hz Lowest supported transfer speed

479

The kernel driver API manual, Release 4.13.0-rc4+

max_speed_hz Highest supported transfer speed
flags other constraints relevant to this driver
slave indicates that this is an SPI slave controller
max_transfer_size function that returns the max transfer size for a spi_device; may be NULL, so the

default SIZE_MAX will be used.
max_message_size function that returns the max message size for a spi_device; may be NULL, so the

default SIZE_MAX will be used.
io_mutex mutex for physical bus access
bus_lock_spinlock spinlock for SPI bus locking
bus_lock_mutex mutex for exclusion of multiple callers
bus_lock_flag indicates that the SPI bus is locked for exclusive use
setup updates the device mode and clocking records used by a device’s SPI controller; protocol code may

call this. This must fail if an unrecognized or unsupported mode is requested. It’s always safe to call
this unless transfers are pending on the device whose settings are being modified.

transfer adds a message to the controller’s transfer queue.
cleanup frees controller-specific state
can_dma determine whether this controller supports DMA
queued whether this controller is providing an internal message queue
kworker thread struct for message pump
kworker_task pointer to task for message pump kworker thread
pump_messages work struct for scheduling work to the message pump
queue_lock spinlock to syncronise access to message queue
queue message queue
cur_msg the currently in-flight message
idling the device is entering idle state
busy message pump is busy
running message pump is running
rt whether this queue is set to run as a realtime task
auto_runtime_pm the core should ensure a runtime PM reference is held while the hardware is prepared,

using the parent device for the spidev
cur_msg_prepared spi_prepare_message was called for the currently in-flight message
cur_msg_mapped message has been mapped for DMA
xfer_completion used by core transfer_one_message()
max_dma_len Maximum length of a DMA transfer for the device.
prepare_transfer_hardware a message will soon arrive from the queue so the subsystem requests the

driver to prepare the transfer hardware by issuing this call
transfer_one_message the subsystem calls the driver to transfer a single message while queuing trans-

fers that arrive in the meantime. When the driver is finished with this message, it must call
spi_finalize_current_message() so the subsystem can issue the next message

unprepare_transfer_hardware there are currently no more messages on the queue so the subsystem
notifies the driver that it may relax the hardware by issuing this call

480 Chapter 16. Serial Peripheral Interface (SPI)

The kernel driver API manual, Release 4.13.0-rc4+

prepare_message set up the controller to transfer a single message, for example doing DMA mapping.
Called from threaded context.

unprepare_message undo any work done by prepare_message().
slave_abort abort the ongoing transfer request on an SPI slave controller
spi_flash_read to support spi-controller hardwares that provide accelerated interface to read from flash

devices.
spi_flash_can_dma analogous to can_dma() interface, but for controllers implementing spi_flash_read.
flash_read_supported spi device supports flash read
set_cs set the logic level of the chip select line. May be called from interrupt context.
transfer_one transfer a single spi_transfer. - return 0 if the transfer is finished, - return 1 if the transfer

is still in progress. When
the driver is finished with this transfer it must call spi_finalize_current_transfer() so
the subsystem can issue the next transfer. Note: transfer_one and transfer_one_message
are mutually exclusive; when both are set, the generic subsystem does not call your trans-
fer_one callback.

handle_err the subsystem calls the driver to handle an error that occurs in the generic implementation
of transfer_one_message().

cs_gpios Array of GPIOs to use as chip select lines; one per CS number. Any individual value may be
-ENOENT for CS lines that are not GPIOs (driven by the SPI controller itself).

statistics statistics for the spi_controller
dma_tx DMA transmit channel
dma_rx DMA receive channel
dummy_rx dummy receive buffer for full-duplex devices
dummy_tx dummy transmit buffer for full-duplex devices
fw_translate_cs If the boot firmware uses different numbering scheme what Linux expects, this optional

hook can be used to translate between the two.
Description
Each SPI controller can communicate with one or more spi_device children. These make a small bus,
sharing MOSI, MISO and SCK signals but not chip select signals. Each device may be configured to use a
different clock rate, since those shared signals are ignored unless the chip is selected.
The driver for an SPI controller manages access to those devices through a queue of spi_message trans-
actions, copying data between CPU memory and an SPI slave device. For each such message it queues,
it calls the message’s completion function when the transaction completes.
struct spi_res

spi resource management structure
Definition

struct spi_res {
struct list_head entry;
spi_res_release_t release;
unsigned long long data;

};

Members
entry list entry
release release code called prior to freeing this resource
data extra data allocated for the specific use-case

481

The kernel driver API manual, Release 4.13.0-rc4+

Description
this is based on ideas from devres, but focused on life-cycle management during spi_message processing

struct spi_transfer
a read/write buffer pair

Definition

struct spi_transfer {
const void * tx_buf;
void * rx_buf;
unsigned len;
dma_addr_t tx_dma;
dma_addr_t rx_dma;
struct sg_table tx_sg;
struct sg_table rx_sg;
unsigned cs_change:1;
unsigned tx_nbits:3;
unsigned rx_nbits:3;

#define SPI_NBITS_SINGLE 0x01
#define SPI_NBITS_DUAL 0x02
#define SPI_NBITS_QUAD 0x04

u8 bits_per_word;
u16 delay_usecs;
u32 speed_hz;
struct list_head transfer_list;

};

Members
tx_buf data to be written (dma-safe memory), or NULL
rx_buf data to be read (dma-safe memory), or NULL
len size of rx and tx buffers (in bytes)
tx_dma DMA address of tx_buf, if spi_message.is_dma_mapped
rx_dma DMA address of rx_buf, if spi_message.is_dma_mapped
tx_sg Scatterlist for transmit, currently not for client use
rx_sg Scatterlist for receive, currently not for client use
cs_change affects chipselect after this transfer completes
tx_nbits number of bits used for writing. If 0 the default (SPI_NBITS_SINGLE) is used.
rx_nbits number of bits used for reading. If 0 the default (SPI_NBITS_SINGLE) is used.
bits_per_word select a bits_per_word other than the device default for this transfer. If 0 the default (from

spi_device) is used.
delay_usecs microseconds to delay after this transfer before (optionally) changing the chipselect status,

then starting the next transfer or completing this spi_message.
speed_hz Select a speed other than the device default for this transfer. If 0 the default (from spi_device)

is used.
transfer_list transfers are sequenced through spi_message.transfers
Description
SPI transfers always write the same number of bytes as they read. Protocol drivers should always provide
rx_buf and/or tx_buf. In some cases, they may also want to provide DMA addresses for the data being
transferred; that may reduce overhead, when the underlying driver uses dma.

482 Chapter 16. Serial Peripheral Interface (SPI)

The kernel driver API manual, Release 4.13.0-rc4+

If the transmit buffer is null, zeroes will be shifted out while filling rx_buf. If the receive buffer is null, the
data shifted in will be discarded. Only “len” bytes shift out (or in). It’s an error to try to shift out a partial
word. (For example, by shifting out three bytes with word size of sixteen or twenty bits; the former uses
two bytes per word, the latter uses four bytes.)
In-memory data values are always in native CPU byte order, translated from the wire byte order (big-
endian except with SPI_LSB_FIRST). So for example when bits_per_word is sixteen, buffers are 2N bytes
long (len = 2N) and hold N sixteen bit words in CPU byte order.
When the word size of the SPI transfer is not a power-of-two multiple of eight bits, those in-memory words
include extra bits. In-memory words are always seen by protocol drivers as right-justified, so the undefined
(rx) or unused (tx) bits are always the most significant bits.
All SPI transfers start with the relevant chipselect active. Normally it stays selected until after the last
transfer in a message. Drivers can affect the chipselect signal using cs_change.
(i) If the transfer isn’t the last one in the message, this flag is used to make the chipselect briefly go
inactive in the middle of the message. Toggling chipselect in this way may be needed to terminate a chip
command, letting a single spi_message perform all of group of chip transactions together.
(ii) When the transfer is the last one in the message, the chip may stay selected until the next transfer. On
multi-device SPI busses with nothing blocking messages going to other devices, this is just a performance
hint; starting a message to another device deselects this one. But in other cases, this can be used to
ensure correctness. Some devices need protocol transactions to be built from a series of spi_message
submissions, where the content of one message is determined by the results of previous messages and
where the whole transaction ends when the chipselect goes intactive.
When SPI can transfer in 1x,2x or 4x. It can get this transfer information from device through
tx_nbits and rx_nbits. In Bi-direction, these two should both be set. User can set transfer mode with
SPI_NBITS_SINGLE(1x) SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
The code that submits an spi_message (and its spi_transfers) to the lower layers is responsible for man-
aging its memory. Zero-initialize every field you don’t set up explicitly, to insulate against future API
updates. After you submit a message and its transfers, ignore them until its completion callback.
struct spi_message

one multi-segment SPI transaction
Definition

struct spi_message {
struct list_head transfers;
struct spi_device * spi;
unsigned is_dma_mapped:1;
void (* complete) (void *context);
void * context;
unsigned frame_length;
unsigned actual_length;
int status;
struct list_head queue;
void * state;
struct list_head resources;

};

Members
transfers list of transfer segments in this transaction
spi SPI device to which the transaction is queued
is_dma_mapped if true, the caller provided both dma and cpu virtual addresses for each transfer buffer
complete called to report transaction completions
context the argument to complete() when it’s called
frame_length the total number of bytes in the message

483

The kernel driver API manual, Release 4.13.0-rc4+

actual_length the total number of bytes that were transferred in all successful segments
status zero for success, else negative errno
queue for use by whichever driver currently owns the message
state for use by whichever driver currently owns the message
resources for resource management when the spi message is processed
Description
A spi_message is used to execute an atomic sequence of data transfers, each represented by a struct
spi_transfer. The sequence is “atomic” in the sense that no other spi_message may use that SPI bus until
that sequence completes. On some systems, many such sequences can execute as as single programmed
DMA transfer. On all systems, these messages are queued, and might complete after transactions to other
devices. Messages sent to a given spi_device are always executed in FIFO order.
The code that submits an spi_message (and its spi_transfers) to the lower layers is responsible for man-
aging its memory. Zero-initialize every field you don’t set up explicitly, to insulate against future API
updates. After you submit a message and its transfers, ignore them until its completion callback.
void spi_message_init_with_transfers(struct spi_message * m, struct spi_transfer * xfers, un-

signed int num_xfers)
Initialize spi_message and append transfers

Parameters
struct spi_message * m spi_message to be initialized
struct spi_transfer * xfers An array of spi transfers
unsigned int num_xfers Number of items in the xfer array
Description
This function initializes the given spi_message and adds each spi_transfer in the given array to the mes-
sage.
struct spi_replaced_transfers

structure describing the spi_transfer replacements that have occurred so that they can get reverted
Definition

struct spi_replaced_transfers {
spi_replaced_release_t release;
void * extradata;
struct list_head replaced_transfers;
struct list_head * replaced_after;
size_t inserted;
struct spi_transfer inserted_transfers;

};

Members
release some extra release code to get executed prior to relasing this structure
extradata pointer to some extra data if requested or NULL
replaced_transfers transfers that have been replaced and which need to get restored
replaced_after the transfer after which the replaced_transfers are to get re-inserted
inserted number of transfers inserted
inserted_transfers array of spi_transfers of array-size inserted, that have been replacing re-

placed_transfers
note

484 Chapter 16. Serial Peripheral Interface (SPI)

The kernel driver API manual, Release 4.13.0-rc4+

that extradata will point to inserted_transfers**[**inserted] if some extra allocation is requested, so
alignment will be the same as for spi_transfers
int spi_sync_transfer(struct spi_device * spi, struct spi_transfer * xfers, unsigned int num_xfers)

synchronous SPI data transfer
Parameters
struct spi_device * spi device with which data will be exchanged
struct spi_transfer * xfers An array of spi_transfers
unsigned int num_xfers Number of items in the xfer array
Context
can sleep
Description
Does a synchronous SPI data transfer of the given spi_transfer array.
For more specific semantics see spi_sync().
Return
Return: zero on success, else a negative error code.
int spi_write(struct spi_device * spi, const void * buf, size_t len)

SPI synchronous write
Parameters
struct spi_device * spi device to which data will be written
const void * buf data buffer
size_t len data buffer size
Context
can sleep
Description
This function writes the buffer buf. Callable only from contexts that can sleep.
Return
zero on success, else a negative error code.
int spi_read(struct spi_device * spi, void * buf, size_t len)

SPI synchronous read
Parameters
struct spi_device * spi device from which data will be read
void * buf data buffer
size_t len data buffer size
Context
can sleep
Description
This function reads the buffer buf. Callable only from contexts that can sleep.
Return
zero on success, else a negative error code.
ssize_t spi_w8r8(struct spi_device * spi, u8 cmd)

SPI synchronous 8 bit write followed by 8 bit read

485

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct spi_device * spi device with which data will be exchanged
u8 cmd command to be written before data is read back
Context
can sleep
Description
Callable only from contexts that can sleep.
Return
the (unsigned) eight bit number returned by the device, or else a negative error code.
ssize_t spi_w8r16(struct spi_device * spi, u8 cmd)

SPI synchronous 8 bit write followed by 16 bit read
Parameters
struct spi_device * spi device with which data will be exchanged
u8 cmd command to be written before data is read back
Context
can sleep
Description
The number is returned in wire-order, which is at least sometimes big-endian.
Callable only from contexts that can sleep.
Return
the (unsigned) sixteen bit number returned by the device, or else a negative error code.
ssize_t spi_w8r16be(struct spi_device * spi, u8 cmd)

SPI synchronous 8 bit write followed by 16 bit big-endian read
Parameters
struct spi_device * spi device with which data will be exchanged
u8 cmd command to be written before data is read back
Context
can sleep
Description
This function is similar to spi_w8r16, with the exception that it will convert the read 16 bit data word from
big-endian to native endianness.
Callable only from contexts that can sleep.
Return
the (unsigned) sixteen bit number returned by the device in cpu endianness, or else a negative error code.

struct spi_flash_read_message
flash specific information for spi-masters that provide accelerated flash read interfaces

Definition

486 Chapter 16. Serial Peripheral Interface (SPI)

The kernel driver API manual, Release 4.13.0-rc4+

struct spi_flash_read_message {
void * buf;
loff_t from;
size_t len;
size_t retlen;
u8 read_opcode;
u8 addr_width;
u8 dummy_bytes;
u8 opcode_nbits;
u8 addr_nbits;
u8 data_nbits;
struct sg_table rx_sg;
bool cur_msg_mapped;

};

Members
buf buffer to read data
from offset within the flash from where data is to be read
len length of data to be read
retlen actual length of data read
read_opcode read_opcode to be used to communicate with flash
addr_width number of address bytes
dummy_bytes number of dummy bytes
opcode_nbits number of lines to send opcode
addr_nbits number of lines to send address
data_nbits number of lines for data
rx_sg Scatterlist for receive data read from flash
cur_msg_mapped message has been mapped for DMA
struct spi_board_info

board-specific template for a SPI device
Definition

struct spi_board_info {
char modalias;
const void * platform_data;
const struct property_entry * properties;
void * controller_data;
int irq;
u32 max_speed_hz;
u16 bus_num;
u16 chip_select;
u16 mode;

};

Members
modalias Initializes spi_device.modalias; identifies the driver.
platform_data Initializes spi_device.platform_data; the particular data stored there is driver-specific.
properties Additional device properties for the device.
controller_data Initializes spi_device.controller_data; some controllers need hints about hardware

setup, e.g. for DMA.

487

The kernel driver API manual, Release 4.13.0-rc4+

irq Initializes spi_device.irq; depends on how the board is wired.
max_speed_hz Initializes spi_device.max_speed_hz; based on limits from the chip datasheet and board-

specific signal quality issues.
bus_num Identifies which spi_controller parents the spi_device; unused by spi_new_device(), and other-

wise depends on board wiring.
chip_select Initializes spi_device.chip_select; depends on how the board is wired.
mode Initializes spi_device.mode; based on the chip datasheet, board wiring (some devices support both

3WIRE and standard modes), and possibly presence of an inverter in the chipselect path.
Description
When adding new SPI devices to the device tree, these structures serve as a partial device template. They
hold information which can’t always be determined by drivers. Information that probe() can establish
(such as the default transfer wordsize) is not included here.
These structures are used in two places. Their primary role is to be stored in tables of board-specific
device descriptors, which are declared early in board initialization and then used (much later) to populate
a controller’s device tree after the that controller’s driver initializes. A secondary (and atypical) role is as
a parameter to spi_new_device() call, which happens after those controller drivers are active in some
dynamic board configuration models.
int spi_register_board_info(struct spi_board_info const * info, unsigned n)

register SPI devices for a given board
Parameters
struct spi_board_info const * info array of chip descriptors
unsigned n how many descriptors are provided
Context
can sleep
Description
Board-specific early init code calls this (probably during arch_initcall) with segments of the SPI device
table. Any device nodes are created later, after the relevant parent SPI controller (bus_num) is defined.
We keep this table of devices forever, so that reloading a controller driver will not make Linux forget about
these hard-wired devices.
Other code can also call this, e.g. a particular add-on board might provide SPI devices through its expan-
sion connector, so code initializing that board would naturally declare its SPI devices.
The board info passed can safely be __initdata ... but be careful of any embedded pointers (platform_data,
etc), they’re copied as-is. Device properties are deep-copied though.
Return
zero on success, else a negative error code.
int __spi_register_driver(struct module * owner, struct spi_driver * sdrv)

register a SPI driver
Parameters
struct module * owner owner module of the driver to register
struct spi_driver * sdrv the driver to register
Context
can sleep
Return
zero on success, else a negative error code.

488 Chapter 16. Serial Peripheral Interface (SPI)

The kernel driver API manual, Release 4.13.0-rc4+

struct spi_device * spi_alloc_device(struct spi_controller * ctlr)
Allocate a new SPI device

Parameters
struct spi_controller * ctlr Controller to which device is connected
Context
can sleep
Description
Allows a driver to allocate and initialize a spi_device without registering it immediately. This allows a driver
to directly fill the spi_device with device parameters before calling spi_add_device() on it.
Caller is responsible to call spi_add_device() on the returned spi_device structure to add it to the SPI
controller. If the caller needs to discard the spi_device without adding it, then it should call spi_dev_put()
on it.
Return
a pointer to the new device, or NULL.
int spi_add_device(struct spi_device * spi)

Add spi_device allocated with spi_alloc_device
Parameters
struct spi_device * spi spi_device to register
Description
Companion function to spi_alloc_device. Devices allocated with spi_alloc_device can be added onto the
spi bus with this function.
Return
0 on success; negative errno on failure
struct spi_device * spi_new_device(struct spi_controller * ctlr, struct spi_board_info * chip)

instantiate one new SPI device
Parameters
struct spi_controller * ctlr Controller to which device is connected
struct spi_board_info * chip Describes the SPI device
Context
can sleep
Description
On typical mainboards, this is purely internal; and it’s not needed after board init creates the hard-wired
devices. Some development platforms may not be able to use spi_register_board_info though, and this
is exported so that for example a USB or parport based adapter driver could add devices (which it would
learn about out-of-band).
Return
the new device, or NULL.
void spi_unregister_device(struct spi_device * spi)

unregister a single SPI device
Parameters
struct spi_device * spi spi_device to unregister

489

The kernel driver API manual, Release 4.13.0-rc4+

Description
Start making the passed SPI device vanish. Normally this would be handled by
spi_unregister_controller().
void spi_finalize_current_transfer(struct spi_controller * ctlr)

report completion of a transfer
Parameters
struct spi_controller * ctlr the controller reporting completion
Description
Called by SPI drivers using the core transfer_one_message() implementation to notify it that the current
interrupt driven transfer has finished and the next one may be scheduled.
struct spi_message * spi_get_next_queued_message(struct spi_controller * ctlr)

called by driver to check for queued messages
Parameters
struct spi_controller * ctlr the controller to check for queued messages
Description
If there are more messages in the queue, the next message is returned from this call.
Return
the next message in the queue, else NULL if the queue is empty.
void spi_finalize_current_message(struct spi_controller * ctlr)

the current message is complete
Parameters
struct spi_controller * ctlr the controller to return the message to
Description
Called by the driver to notify the core that the message in the front of the queue is complete and can be
removed from the queue.
int spi_slave_abort(struct spi_device * spi)

abort the ongoing transfer request on an SPI slave controller
Parameters
struct spi_device * spi device used for the current transfer
struct spi_controller * __spi_alloc_controller(struct device * dev, unsigned int size, bool slave)

allocate an SPI master or slave controller
Parameters
struct device * dev the controller, possibly using the platform_bus
unsigned int size how much zeroed driver-private data to allocate; the pointer to this memory is in

the driver_data field of the returned device, accessible with spi_controller_get_devdata().
bool slave flag indicating whether to allocate an SPI master (false) or SPI slave (true) controller
Context
can sleep
Description
This call is used only by SPI controller drivers, which are the only ones directly touching chip registers. It’s
how they allocate an spi_controller structure, prior to calling spi_register_controller().
This must be called from context that can sleep.

490 Chapter 16. Serial Peripheral Interface (SPI)

The kernel driver API manual, Release 4.13.0-rc4+

The caller is responsible for assigning the bus number and initializing the controller’s methods before
calling spi_register_controller(); and (after errors adding the device) calling spi_controller_put()
to prevent a memory leak.
Return
the SPI controller structure on success, else NULL.
int spi_register_controller(struct spi_controller * ctlr)

register SPI master or slave controller
Parameters
struct spi_controller * ctlr initialized master, originally from spi_alloc_master() or

spi_alloc_slave()

Context
can sleep
Description
SPI controllers connect to their drivers using some non-SPI bus, such as the platform bus. The final stage
of probe() in that code includes calling spi_register_controller() to hook up to this SPI bus glue.
SPI controllers use board specific (often SOC specific) bus numbers, and board-specific addressing for SPI
devices combines those numbers with chip select numbers. Since SPI does not directly support dynamic
device identification, boards need configuration tables telling which chip is at which address.
This must be called from context that can sleep. It returns zero on success, else a negative error
code (dropping the controller’s refcount). After a successful return, the caller is responsible for calling
spi_unregister_controller().
Return
zero on success, else a negative error code.
int devm_spi_register_controller(struct device * dev, struct spi_controller * ctlr)

register managed SPI master or slave controller
Parameters
struct device * dev device managing SPI controller
struct spi_controller * ctlr initialized controller, originally from spi_alloc_master() or

spi_alloc_slave()

Context
can sleep
Description
Register a SPI device as with spi_register_controller() which will automatically be unregister
Return
zero on success, else a negative error code.
void spi_unregister_controller(struct spi_controller * ctlr)

unregister SPI master or slave controller
Parameters
struct spi_controller * ctlr the controller being unregistered
Context
can sleep
Description
This call is used only by SPI controller drivers, which are the only ones directly touching chip registers.

491

The kernel driver API manual, Release 4.13.0-rc4+

This must be called from context that can sleep.
struct spi_controller * spi_busnum_to_master(u16 bus_num)

look up master associated with bus_num
Parameters
u16 bus_num the master’s bus number
Context
can sleep
Description
This call may be used with devices that are registered after arch init time. It returns a refcounted pointer
to the relevant spi_controller (which the caller must release), or NULL if there is no such master registered.
Return
the SPI master structure on success, else NULL.
void * spi_res_alloc(struct spi_device * spi, spi_res_release_t release, size_t size, gfp_t gfp)

allocate a spi resource that is life-cycle managed during the processing of a spi_message while using
spi_transfer_one

Parameters
struct spi_device * spi the spi device for which we allocate memory
spi_res_release_t release the release code to execute for this resource
size_t size size to alloc and return
gfp_t gfp GFP allocation flags
Return
the pointer to the allocated data
This may get enhanced in the future to allocate from a memory pool of the spi_device or spi_controller
to avoid repeated allocations.
void spi_res_free(void * res)

free an spi resource
Parameters
void * res pointer to the custom data of a resource
void spi_res_add(struct spi_message * message, void * res)

add a spi_res to the spi_message
Parameters
struct spi_message * message the spi message
void * res the spi_resource
void spi_res_release(struct spi_controller * ctlr, struct spi_message * message)

release all spi resources for this message
Parameters
struct spi_controller * ctlr the spi_controller
struct spi_message * message the spi_message

492 Chapter 16. Serial Peripheral Interface (SPI)

The kernel driver API manual, Release 4.13.0-rc4+

struct spi_replaced_transfers * spi_replace_transfers(struct spi_message * msg,
struct spi_transfer * xfer_first,
size_t remove, size_t insert,
spi_replaced_release_t release,
size_t extradatasize, gfp_t gfp)

replace transfers with several transfers and register change with spi_message.resources
Parameters
struct spi_message * msg the spi_message we work upon
struct spi_transfer * xfer_first the first spi_transfer we want to replace
size_t remove number of transfers to remove
size_t insert the number of transfers we want to insert instead
spi_replaced_release_t release extra release code necessary in some circumstances
size_t extradatasize extra data to allocate (with alignment guarantees of struct spi_transfer)
gfp_t gfp gfp flags
Return
pointer to spi_replaced_transfers, PTR_ERR(...) in case of errors.
int spi_split_transfers_maxsize(struct spi_controller * ctlr, struct spi_message * msg,

size_t maxsize, gfp_t gfp)
split spi transfers into multiple transfers when an individual transfer exceeds a certain size

Parameters
struct spi_controller * ctlr the spi_controller for this transfer
struct spi_message * msg the spi_message to transform
size_t maxsize the maximum when to apply this
gfp_t gfp GFP allocation flags
Return
status of transformation
int spi_setup(struct spi_device * spi)

setup SPI mode and clock rate
Parameters
struct spi_device * spi the device whose settings are being modified
Context
can sleep, and no requests are queued to the device
Description
SPI protocol drivers may need to update the transfer mode if the device doesn’t work with its default.
They may likewise need to update clock rates or word sizes from initial values. This function changes
those settings, and must be called from a context that can sleep. Except for SPI_CS_HIGH, which takes
effect immediately, the changes take effect the next time the device is selected and data is transferred
to or from it. When this function returns, the spi device is deselected.
Note that this call will fail if the protocol driver specifies an option that the underlying controller or its driver
does not support. For example, not all hardware supports wire transfers using nine bit words, LSB-first
wire encoding, or active-high chipselects.
Return
zero on success, else a negative error code.

493

The kernel driver API manual, Release 4.13.0-rc4+

int spi_async(struct spi_device * spi, struct spi_message * message)
asynchronous SPI transfer

Parameters
struct spi_device * spi device with which data will be exchanged
struct spi_message * message describes the data transfers, including completion callback
Context
any (irqs may be blocked, etc)
Description
This call may be used in_irq and other contexts which can’t sleep, as well as from task contexts which can
sleep.
The completion callback is invoked in a context which can’t sleep. Before that invocation, the value
of message->status is undefined. When the callback is issued, message->status holds either zero (to
indicate complete success) or a negative error code. After that callback returns, the driver which issued
the transfer request may deallocate the associated memory; it’s no longer in use by any SPI core or
controller driver code.
Note that although all messages to a spi_device are handled in FIFO order, messages may go to differ-
ent devices in other orders. Some device might be higher priority, or have various “hard” access time
requirements, for example.
On detection of any fault during the transfer, processing of the entire message is aborted, and the device
is deselected. Until returning from the associated message completion callback, no other spi_message
queued to that device will be processed. (This rule applies equally to all the synchronous transfer calls,
which are wrappers around this core asynchronous primitive.)
Return
zero on success, else a negative error code.
int spi_async_locked(struct spi_device * spi, struct spi_message * message)

version of spi_async with exclusive bus usage
Parameters
struct spi_device * spi device with which data will be exchanged
struct spi_message * message describes the data transfers, including completion callback
Context
any (irqs may be blocked, etc)
Description
This call may be used in_irq and other contexts which can’t sleep, as well as from task contexts which can
sleep.
The completion callback is invoked in a context which can’t sleep. Before that invocation, the value
of message->status is undefined. When the callback is issued, message->status holds either zero (to
indicate complete success) or a negative error code. After that callback returns, the driver which issued
the transfer request may deallocate the associated memory; it’s no longer in use by any SPI core or
controller driver code.
Note that although all messages to a spi_device are handled in FIFO order, messages may go to differ-
ent devices in other orders. Some device might be higher priority, or have various “hard” access time
requirements, for example.
On detection of any fault during the transfer, processing of the entire message is aborted, and the device
is deselected. Until returning from the associated message completion callback, no other spi_message
queued to that device will be processed. (This rule applies equally to all the synchronous transfer calls,
which are wrappers around this core asynchronous primitive.)

494 Chapter 16. Serial Peripheral Interface (SPI)

The kernel driver API manual, Release 4.13.0-rc4+

Return
zero on success, else a negative error code.
int spi_sync(struct spi_device * spi, struct spi_message * message)

blocking/synchronous SPI data transfers
Parameters
struct spi_device * spi device with which data will be exchanged
struct spi_message * message describes the data transfers
Context
can sleep
Description
This call may only be used from a context that may sleep. The sleep is non-interruptible, and has no
timeout. Low-overhead controller drivers may DMA directly into and out of the message buffers.
Note that the SPI device’s chip select is active during the message, and then is normally disabled between
messages. Drivers for some frequently-used devices may want to minimize costs of selecting a chip, by
leaving it selected in anticipation that the next message will go to the same chip. (That may increase
power usage.)
Also, the caller is guaranteeing that the memory associated with the message will not be freed before this
call returns.
Return
zero on success, else a negative error code.
int spi_sync_locked(struct spi_device * spi, struct spi_message * message)

version of spi_sync with exclusive bus usage
Parameters
struct spi_device * spi device with which data will be exchanged
struct spi_message * message describes the data transfers
Context
can sleep
Description
This call may only be used from a context that may sleep. The sleep is non-interruptible, and has no
timeout. Low-overhead controller drivers may DMA directly into and out of the message buffers.
This call should be used by drivers that require exclusive access to the SPI bus. It has to be preceded by
a spi_bus_lock call. The SPI bus must be released by a spi_bus_unlock call when the exclusive access is
over.
Return
zero on success, else a negative error code.
int spi_bus_lock(struct spi_controller * ctlr)

obtain a lock for exclusive SPI bus usage
Parameters
struct spi_controller * ctlr SPI bus master that should be locked for exclusive bus access
Context
can sleep
Description

495

The kernel driver API manual, Release 4.13.0-rc4+

This call may only be used from a context that may sleep. The sleep is non-interruptible, and has no
timeout.
This call should be used by drivers that require exclusive access to the SPI bus. The SPI bus must be
released by a spi_bus_unlock call when the exclusive access is over. Data transfer must be done by
spi_sync_locked and spi_async_locked calls when the SPI bus lock is held.
Return
always zero.
int spi_bus_unlock(struct spi_controller * ctlr)

release the lock for exclusive SPI bus usage
Parameters
struct spi_controller * ctlr SPI bus master that was locked for exclusive bus access
Context
can sleep
Description
This call may only be used from a context that may sleep. The sleep is non-interruptible, and has no
timeout.
This call releases an SPI bus lock previously obtained by an spi_bus_lock call.
Return
always zero.
int spi_write_then_read(struct spi_device * spi, const void * txbuf, unsigned n_tx, void * rxbuf,

unsigned n_rx)
SPI synchronous write followed by read

Parameters
struct spi_device * spi device with which data will be exchanged
const void * txbuf data to be written (need not be dma-safe)
unsigned n_tx size of txbuf, in bytes
void * rxbuf buffer into which data will be read (need not be dma-safe)
unsigned n_rx size of rxbuf, in bytes
Context
can sleep
Description
This performs a half duplex MicroWire style transaction with the device, sending txbuf and then reading
rxbuf. The return value is zero for success, else a negative errno status code. This call may only be used
from a context that may sleep.
Parameters to this routine are always copied using a small buffer; portable code should never use this for
more than 32 bytes. Performance-sensitive or bulk transfer code should instead use spi_{async,sync}()
calls with dma-safe buffers.
Return
zero on success, else a negative error code.

496 Chapter 16. Serial Peripheral Interface (SPI)

CHAPTER

SEVENTEEN

I2C AND SMBUS SUBSYSTEM

I2C (or without fancy typography, “I2C”) is an acronym for the “Inter-IC” bus, a simple bus protocol which
is widely used where low data rate communications suffice. Since it’s also a licensed trademark, some
vendors use another name (such as “Two-Wire Interface”, TWI) for the same bus. I2C only needs two
signals (SCL for clock, SDA for data), conserving board real estate and minimizing signal quality issues.
Most I2C devices use seven bit addresses, and bus speeds of up to 400 kHz; there’s a high speed extension
(3.4 MHz) that’s not yet found wide use. I2C is a multi-master bus; open drain signaling is used to arbitrate
between masters, as well as to handshake and to synchronize clocks from slower clients.
The Linux I2C programming interfaces support the master side of bus interactions and the slave side.
The programming interface is structured around two kinds of driver, and two kinds of device. An I2C
“Adapter Driver” abstracts the controller hardware; it binds to a physical device (perhaps a PCI device
or platform_device) and exposes a struct i2c_adapter representing each I2C bus segment it manages.
On each I2C bus segment will be I2C devices represented by a struct i2c_client. Those devices will be
bound to a struct i2c_driver, which should follow the standard Linux driver model. There are functions
to perform various I2C protocol operations; at this writing all such functions are usable only from task
context.
The System Management Bus (SMBus) is a sibling protocol. Most SMBus systems are also I2C conformant.
The electrical constraints are tighter for SMBus, and it standardizes particular protocol messages and
idioms. Controllers that support I2C can also support most SMBus operations, but SMBus controllers don’t
support all the protocol options that an I2C controller will. There are functions to perform various SMBus
protocol operations, either using I2C primitives or by issuing SMBus commands to i2c_adapter devices
which don’t support those I2C operations.
struct i2c_driver

represent an I2C device driver
Definition

struct i2c_driver {
unsigned int class;
int (* attach_adapter) (struct i2c_adapter *);
int (* probe) (struct i2c_client *, const struct i2c_device_id *);
int (* remove) (struct i2c_client *);
int (* probe_new) (struct i2c_client *);
void (* shutdown) (struct i2c_client *);
void (* alert) (struct i2c_client *, enum i2c_alert_protocol protocol, unsigned int data);
int (* command) (struct i2c_client *client, unsigned int cmd, void *arg);
struct device_driver driver;
const struct i2c_device_id * id_table;
int (* detect) (struct i2c_client *, struct i2c_board_info *);
const unsigned short * address_list;
struct list_head clients;
bool disable_i2c_core_irq_mapping;

};

Members
class What kind of i2c device we instantiate (for detect)

497

The kernel driver API manual, Release 4.13.0-rc4+

attach_adapter Callback for bus addition (deprecated)
probe Callback for device binding - soon to be deprecated
remove Callback for device unbinding
probe_new New callback for device binding
shutdown Callback for device shutdown
alert Alert callback, for example for the SMBus alert protocol
command Callback for bus-wide signaling (optional)
driver Device driver model driver
id_table List of I2C devices supported by this driver
detect Callback for device detection
address_list The I2C addresses to probe (for detect)
clients List of detected clients we created (for i2c-core use only)
disable_i2c_core_irq_mapping Tell the i2c-core to not do irq-mapping
Description
The driver.owner field should be set to the module owner of this driver. The driver.name field should be
set to the name of this driver.
For automatic device detection, both detect and address_list must be defined. class should also be
set, otherwise only devices forced with module parameters will be created. The detect function must fill
at least the name field of the i2c_board_info structure it is handed upon successful detection, and possibly
also the flags field.
If detect is missing, the driver will still work fine for enumerated devices. Detected devices simply won’t
be supported. This is expected for the many I2C/SMBus devices which can’t be detected reliably, and the
ones which can always be enumerated in practice.
The i2c_client structure which is handed to the detect callback is not a real i2c_client. It is initialized just
enough so that you can call i2c_smbus_read_byte_data and friends on it. Don’t do anything else with it.
In particular, calling dev_dbg and friends on it is not allowed.
struct i2c_client

represent an I2C slave device
Definition

struct i2c_client {
unsigned short flags;
unsigned short addr;
char name;
struct i2c_adapter * adapter;
struct device dev;
int irq;
struct list_head detected;

#if IS_ENABLED(CONFIG_I2C_SLAVE
i2c_slave_cb_t slave_cb;

#endif
};

Members
flags I2C_CLIENT_TEN indicates the device uses a ten bit chip address; I2C_CLIENT_PEC indicates it uses

SMBus Packet Error Checking
addr Address used on the I2C bus connected to the parent adapter.

498 Chapter 17. I2C and SMBus Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

name Indicates the type of the device, usually a chip name that’s generic enough to hide second-sourcing
and compatible revisions.

adapter manages the bus segment hosting this I2C device
dev Driver model device node for the slave.
irq indicates the IRQ generated by this device (if any)
detected member of an i2c_driver.clients list or i2c-core’s userspace_devices list
slave_cb Callback when I2C slave mode of an adapter is used. The adapter calls it to pass on slave

events to the slave driver.
Description
An i2c_client identifies a single device (i.e. chip) connected to an i2c bus. The behaviour exposed to Linux
is defined by the driver managing the device.
struct i2c_board_info

template for device creation
Definition

struct i2c_board_info {
char type;
unsigned short flags;
unsigned short addr;
void * platform_data;
struct dev_archdata * archdata;
struct device_node * of_node;
struct fwnode_handle * fwnode;
const struct property_entry * properties;
const struct resource * resources;
unsigned int num_resources;
int irq;

};

Members
type chip type, to initialize i2c_client.name
flags to initialize i2c_client.flags
addr stored in i2c_client.addr
platform_data stored in i2c_client.dev.platform_data
archdata copied into i2c_client.dev.archdata
of_node pointer to OpenFirmware device node
fwnode device node supplied by the platform firmware
properties additional device properties for the device
resources resources associated with the device
num_resources number of resources in the resources array
irq stored in i2c_client.irq
Description
I2C doesn’t actually support hardware probing, although controllers and devices may be able to use
I2C_SMBUS_QUICK to tell whether or not there’s a device at a given address. Drivers commonly need
more information than that, such as chip type, configuration, associated IRQ, and so on.
i2c_board_info is used to build tables of information listing I2C devices that are present. This in-
formation is used to grow the driver model tree. For mainboards this is done statically using

499

The kernel driver API manual, Release 4.13.0-rc4+

i2c_register_board_info(); bus numbers identify adapters that aren’t yet available. For add-on
boards, i2c_new_device() does this dynamically with the adapter already known.
I2C_BOARD_INFO(dev_type, dev_addr)

macro used to list an i2c device and its address
Parameters
dev_type identifies the device type
dev_addr the device’s address on the bus.
Description
This macro initializes essential fields of a struct i2c_board_info, declaring what has been provided on a
particular board. Optional fields (such as associated irq, or device-specific platform_data) are provided
using conventional syntax.
struct i2c_algorithm

represent I2C transfer method
Definition

struct i2c_algorithm {
int (* master_xfer) (struct i2c_adapter *adap, struct i2c_msg *msgs, int num);
int (* smbus_xfer) (struct i2c_adapter *adap, u16 addr,unsigned short flags, char read_write,␣

↪→u8 command, int size, union i2c_smbus_data *data);
u32 (* functionality) (struct i2c_adapter *);

#if IS_ENABLED(CONFIG_I2C_SLAVE
int (* reg_slave) (struct i2c_client *client);
int (* unreg_slave) (struct i2c_client *client);

#endif
};

Members
master_xfer Issue a set of i2c transactions to the given I2C adapter defined by the msgs array, with num

messages available to transfer via the adapter specified by adap.
smbus_xfer Issue smbus transactions to the given I2C adapter. If this is not present, then the bus layer

will try and convert the SMBus calls into I2C transfers instead.
functionality Return the flags that this algorithm/adapter pair supports from the I2C_FUNC_* flags.
reg_slave Register given client to I2C slave mode of this adapter
unreg_slave Unregister given client from I2C slave mode of this adapter
Description
The following structs are for those who like to implement new bus drivers: i2c_algorithm is the interface
to a class of hardware solutions which can be addressed using the same bus algorithms - i.e. bit-banging
or the PCF8584 to name two of the most common.
The return codes from the master_xfer field should indicate the type of error code that occurred during
the transfer, as documented in the kernel Documentation file Documentation/i2c/fault-codes.
struct i2c_lock_operations

represent I2C locking operations
Definition

struct i2c_lock_operations {
void (* lock_bus) (struct i2c_adapter *, unsigned int flags);
int (* trylock_bus) (struct i2c_adapter *, unsigned int flags);
void (* unlock_bus) (struct i2c_adapter *, unsigned int flags);

};

Members

500 Chapter 17. I2C and SMBus Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

lock_bus Get exclusive access to an I2C bus segment
trylock_bus Try to get exclusive access to an I2C bus segment
unlock_bus Release exclusive access to an I2C bus segment
Description
The main operations are wrapped by i2c_lock_bus and i2c_unlock_bus.
struct i2c_timings

I2C timing information
Definition

struct i2c_timings {
u32 bus_freq_hz;
u32 scl_rise_ns;
u32 scl_fall_ns;
u32 scl_int_delay_ns;
u32 sda_fall_ns;

};

Members
bus_freq_hz the bus frequency in Hz
scl_rise_ns time SCL signal takes to rise in ns; t(r) in the I2C specification
scl_fall_ns time SCL signal takes to fall in ns; t(f) in the I2C specification
scl_int_delay_ns time IP core additionally needs to setup SCL in ns
sda_fall_ns time SDA signal takes to fall in ns; t(f) in the I2C specification
struct i2c_bus_recovery_info

I2C bus recovery information
Definition

struct i2c_bus_recovery_info {
int (* recover_bus) (struct i2c_adapter *);
int (* get_scl) (struct i2c_adapter *);
void (* set_scl) (struct i2c_adapter *, int val);
int (* get_sda) (struct i2c_adapter *);
void (* prepare_recovery) (struct i2c_adapter *);
void (* unprepare_recovery) (struct i2c_adapter *);
int scl_gpio;
int sda_gpio;

};

Members
recover_bus Recover routine. Either pass driver’s recover_bus() routine, or

i2c_generic_scl_recovery() or i2c_generic_gpio_recovery().
get_scl This gets current value of SCL line. Mandatory for generic SCL recovery. Used internally for

generic GPIO recovery.
set_scl This sets/clears SCL line. Mandatory for generic SCL recovery. Used internally for generic GPIO

recovery.
get_sda This gets current value of SDA line. Optional for generic SCL recovery. Used internally, if sda_gpio

is a valid GPIO, for generic GPIO recovery.
prepare_recovery This will be called before starting recovery. Platform may configure padmux here for

SDA/SCL line or something else they want.

501

The kernel driver API manual, Release 4.13.0-rc4+

unprepare_recovery This will be called after completing recovery. Platform may configure padmux here
for SDA/SCL line or something else they want.

scl_gpio gpio number of the SCL line. Only required for GPIO recovery.
sda_gpio gpio number of the SDA line. Only required for GPIO recovery.
struct i2c_adapter_quirks

describe flaws of an i2c adapter
Definition

struct i2c_adapter_quirks {
u64 flags;
int max_num_msgs;
u16 max_write_len;
u16 max_read_len;
u16 max_comb_1st_msg_len;
u16 max_comb_2nd_msg_len;

};

Members
flags see I2C_AQ_* for possible flags and read below
max_num_msgs maximum number of messages per transfer
max_write_len maximum length of a write message
max_read_len maximum length of a read message
max_comb_1st_msg_len maximum length of the first msg in a combined message
max_comb_2nd_msg_len maximum length of the second msg in a combined message
Description
Note about combined messages: Some I2C controllers can only send one message per transfer, plus
something called combined message or write-then-read. This is (usually) a small write message followed
by a read message and barely enough to access register based devices like EEPROMs. There is a flag
to support this mode. It implies max_num_msg = 2 and does the length checks with max_comb_*_len
because combined message mode usually has its own limitations. Because of HW implementations, some
controllers can actually do write-then-anything or other variants. To support that, write-then-read has been
broken out into smaller bits like write-first and read-second which can be combined as needed.
void i2c_lock_bus(struct i2c_adapter * adapter, unsigned int flags)

Get exclusive access to an I2C bus segment
Parameters
struct i2c_adapter * adapter Target I2C bus segment
unsigned int flags I2C_LOCK_ROOT_ADAPTER locks the root i2c adapter, I2C_LOCK_SEGMENT locks

only this branch in the adapter tree
int i2c_trylock_bus(struct i2c_adapter * adapter, unsigned int flags)

Try to get exclusive access to an I2C bus segment
Parameters
struct i2c_adapter * adapter Target I2C bus segment
unsigned int flags I2C_LOCK_ROOT_ADAPTER tries to locks the root i2c adapter, I2C_LOCK_SEGMENT

tries to lock only this branch in the adapter tree
Return
true if the I2C bus segment is locked, false otherwise

502 Chapter 17. I2C and SMBus Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

void i2c_unlock_bus(struct i2c_adapter * adapter, unsigned int flags)
Release exclusive access to an I2C bus segment

Parameters
struct i2c_adapter * adapter Target I2C bus segment
unsigned int flags I2C_LOCK_ROOT_ADAPTER unlocks the root i2c adapter, I2C_LOCK_SEGMENT un-

locks only this branch in the adapter tree
bool i2c_check_quirks(struct i2c_adapter * adap, u64 quirks)

Function for checking the quirk flags in an i2c adapter
Parameters
struct i2c_adapter * adap i2c adapter
u64 quirks quirk flags
Return
true if the adapter has all the specified quirk flags, false if not
module_i2c_driver(__i2c_driver)

Helper macro for registering a modular I2C driver
Parameters
__i2c_driver i2c_driver struct
Description
Helper macro for I2C drivers which do not do anything special in module init/exit. This eliminates a lot
of boilerplate. Each module may only use this macro once, and calling it replaces module_init() and
module_exit()

builtin_i2c_driver(__i2c_driver)
Helper macro for registering a builtin I2C driver

Parameters
__i2c_driver i2c_driver struct
Description
Helper macro for I2C drivers which do not do anything special in their init. This eliminates a lot of boiler-
plate. Each driver may only use this macro once, and calling it replaces device_initcall().
int i2c_register_board_info(int busnum, struct i2c_board_info const * info, unsigned len)

statically declare I2C devices
Parameters
int busnum identifies the bus to which these devices belong
struct i2c_board_info const * info vector of i2c device descriptors
unsigned len how many descriptors in the vector; may be zero to reserve the specified bus number.
Description
Systems using the Linux I2C driver stack can declare tables of board info while they initialize. This should
be done in board-specific init code near arch_initcall() time, or equivalent, before any I2C adapter
driver is registered. For example, mainboard init code could define several devices, as could the init code
for each daughtercard in a board stack.
The I2C devices will be created later, after the adapter for the relevant bus has been registered. After
that moment, standard driver model tools are used to bind “new style” I2C drivers to the devices. The
bus number for any device declared using this routine is not available for dynamic allocation.
The board info passed can safely be __initdata, but be careful of embedded pointers (for platform_data,
functions, etc) since that won’t be copied. Device properties are deep-copied though.

503

The kernel driver API manual, Release 4.13.0-rc4+

struct i2c_client * i2c_verify_client(struct device * dev)
return parameter as i2c_client, or NULL

Parameters
struct device * dev device, probably from some driver model iterator
Description
When traversing the driver model tree, perhaps using driver model iterators like de-
vice_for_each_child(), you can’t assume very much about the nodes you find. Use this function
to avoid oopses caused by wrongly treating some non-I2C device as an i2c_client.
struct i2c_client * i2c_new_device(struct i2c_adapter * adap, struct i2c_board_info const * info)

instantiate an i2c device
Parameters
struct i2c_adapter * adap the adapter managing the device
struct i2c_board_info const * info describes one I2C device; bus_num is ignored
Context
can sleep
Description
Create an i2c device. Binding is handled through driver model probe()/remove() methods. A driver may
be bound to this device when we return from this function, or any later moment (e.g. maybe hotplugging
will load the driver module). This call is not appropriate for use by mainboard initialization logic, which
usually runs during an arch_initcall() long before any i2c_adapter could exist.
This returns the new i2c client, which may be saved for later use with i2c_unregister_device(); or NULL
to indicate an error.
void i2c_unregister_device(struct i2c_client * client)

reverse effect of i2c_new_device()
Parameters
struct i2c_client * client value returned from i2c_new_device()

Context
can sleep
struct i2c_client * i2c_new_dummy(struct i2c_adapter * adapter, u16 address)

return a new i2c device bound to a dummy driver
Parameters
struct i2c_adapter * adapter the adapter managing the device
u16 address seven bit address to be used
Context
can sleep
Description
This returns an I2C client bound to the “dummy” driver, intended for use with devices that consume
multiple addresses. Examples of such chips include various EEPROMS (like 24c04 and 24c08 models).
These dummy devices have two main uses. First, most I2C and SMBus calls except i2c_transfer() need
a client handle; the dummy will be that handle. And second, this prevents the specified address from
being bound to a different driver.
This returns the new i2c client, which should be saved for later use with i2c_unregister_device(); or
NULL to indicate an error.

504 Chapter 17. I2C and SMBus Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

struct i2c_client * i2c_new_secondary_device(struct i2c_client * client, const char * name,
u16 default_addr)

Helper to get the instantiated secondary address and create the associated device
Parameters
struct i2c_client * client Handle to the primary client
const char * name Handle to specify which secondary address to get
u16 default_addr Used as a fallback if no secondary address was specified
Context
can sleep
Description
I2C clients can be composed of multiple I2C slaves bound together in a single component. The I2C client
driver then binds to the master I2C slave and needs to create I2C dummy clients to communicate with all
the other slaves.
This function creates and returns an I2C dummy client whose I2C address is retrieved from the platform
firmware based on the given slave name. If no address is specified by the firmware default_addr is used.
On DT-based platforms the address is retrieved from the “reg” property entry cell whose “reg-names”
value matches the slave name.
This returns the new i2c client, which should be saved for later use with i2c_unregister_device(); or
NULL to indicate an error.
struct i2c_adapter * i2c_verify_adapter(struct device * dev)

return parameter as i2c_adapter or NULL
Parameters
struct device * dev device, probably from some driver model iterator
Description
When traversing the driver model tree, perhaps using driver model iterators like de-
vice_for_each_child(), you can’t assume very much about the nodes you find. Use this function
to avoid oopses caused by wrongly treating some non-I2C device as an i2c_adapter.
int i2c_handle_smbus_host_notify(struct i2c_adapter * adap, unsigned short addr)

Forward a Host Notify event to the correct I2C client.
Parameters
struct i2c_adapter * adap the adapter
unsigned short addr the I2C address of the notifying device
Context
can’t sleep
Description
Helper function to be called from an I2C bus driver’s interrupt handler. It will schedule the Host Notify IRQ.

int i2c_add_adapter(struct i2c_adapter * adapter)
declare i2c adapter, use dynamic bus number

Parameters
struct i2c_adapter * adapter the adapter to add
Context
can sleep

505

The kernel driver API manual, Release 4.13.0-rc4+

Description
This routine is used to declare an I2C adapter when its bus number doesn’t matter or when its bus num-
ber is specified by an dt alias. Examples of bases when the bus number doesn’t matter: I2C adapters
dynamically added by USB links or PCI plugin cards.
When this returns zero, a new bus number was allocated and stored in adap->nr, and the specified adapter
became available for clients. Otherwise, a negative errno value is returned.
int i2c_add_numbered_adapter(struct i2c_adapter * adap)

declare i2c adapter, use static bus number
Parameters
struct i2c_adapter * adap the adapter to register (with adap->nr initialized)
Context
can sleep
Description
This routine is used to declare an I2C adapter when its bus number matters. For example, use it for
I2C adapters from system-on-chip CPUs, or otherwise built in to the system’s mainboard, and where
i2c_board_info is used to properly configure I2C devices.
If the requested bus number is set to -1, then this function will behave identically to i2c_add_adapter, and
will dynamically assign a bus number.
If no devices have pre-been declared for this bus, then be sure to register the adapter before any dynam-
ically allocated ones. Otherwise the required bus ID may not be available.
When this returns zero, the specified adapter became available for clients using the bus number provided
in adap->nr. Also, the table of I2C devices pre-declared using i2c_register_board_info() is scanned,
and the appropriate driver model device nodes are created. Otherwise, a negative errno value is returned.

void i2c_del_adapter(struct i2c_adapter * adap)
unregister I2C adapter

Parameters
struct i2c_adapter * adap the adapter being unregistered
Context
can sleep
Description
This unregisters an I2C adapter which was previously registered by i2c_add_adapter or
i2c_add_numbered_adapter.
void i2c_parse_fw_timings(struct device * dev, struct i2c_timings * t, bool use_defaults)

get I2C related timing parameters from firmware
Parameters
struct device * dev The device to scan for I2C timing properties
struct i2c_timings * t the i2c_timings struct to be filled with values
bool use_defaults bool to use sane defaults derived from the I2C specification when properties are not

found, otherwise use 0
Description
Scan the device for the generic I2C properties describing timing parameters for the signal and fill the given
struct with the results. If a property was not found and use_defaults was true, then maximum timings are
assumed which are derived from the I2C specification. If use_defaults is not used, the results will be 0,
so drivers can apply their own defaults later. The latter is mainly intended for avoiding regressions of

506 Chapter 17. I2C and SMBus Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

existing drivers which want to switch to this function. New drivers almost always should use the defaults.

void i2c_del_driver(struct i2c_driver * driver)
unregister I2C driver

Parameters
struct i2c_driver * driver the driver being unregistered
Context
can sleep
struct i2c_client * i2c_use_client(struct i2c_client * client)

increments the reference count of the i2c client structure
Parameters
struct i2c_client * client the client being referenced
Description
Each live reference to a client should be refcounted. The driver model does that automatically as part
of driver binding, so that most drivers don’t need to do this explicitly: they hold a reference until they’re
unbound from the device.
A pointer to the client with the incremented reference counter is returned.
void i2c_release_client(struct i2c_client * client)

release a use of the i2c client structure
Parameters
struct i2c_client * client the client being no longer referenced
Description
Must be called when a user of a client is finished with it.
int __i2c_transfer(struct i2c_adapter * adap, struct i2c_msg * msgs, int num)

unlocked flavor of i2c_transfer
Parameters
struct i2c_adapter * adap Handle to I2C bus
struct i2c_msg * msgs One or more messages to execute before STOP is issued to terminate the op-

eration; each message begins with a START.
int num Number of messages to be executed.
Description
Returns negative errno, else the number of messages executed.
Adapter lock must be held when calling this function. No debug logging takes place. adap->algo-
>master_xfer existence isn’t checked.
int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg * msgs, int num)

execute a single or combined I2C message
Parameters
struct i2c_adapter * adap Handle to I2C bus
struct i2c_msg * msgs One or more messages to execute before STOP is issued to terminate the op-

eration; each message begins with a START.
int num Number of messages to be executed.

507

The kernel driver API manual, Release 4.13.0-rc4+

Description
Returns negative errno, else the number of messages executed.
Note that there is no requirement that each message be sent to the same slave address, although that is
the most common model.
int i2c_master_send(const struct i2c_client * client, const char * buf, int count)

issue a single I2C message in master transmit mode
Parameters
const struct i2c_client * client Handle to slave device
const char * buf Data that will be written to the slave
int count How many bytes to write, must be less than 64k since msg.len is u16
Description
Returns negative errno, or else the number of bytes written.
int i2c_master_recv(const struct i2c_client * client, char * buf, int count)

issue a single I2C message in master receive mode
Parameters
const struct i2c_client * client Handle to slave device
char * buf Where to store data read from slave
int count How many bytes to read, must be less than 64k since msg.len is u16
Description
Returns negative errno, or else the number of bytes read.
s32 i2c_smbus_read_byte(const struct i2c_client * client)

SMBus “receive byte” protocol
Parameters
const struct i2c_client * client Handle to slave device
Description
This executes the SMBus “receive byte” protocol, returning negative errno else the byte received from the
device.
s32 i2c_smbus_write_byte(const struct i2c_client * client, u8 value)

SMBus “send byte” protocol
Parameters
const struct i2c_client * client Handle to slave device
u8 value Byte to be sent
Description
This executes the SMBus “send byte” protocol, returning negative errno else zero on success.
s32 i2c_smbus_read_byte_data(const struct i2c_client * client, u8 command)

SMBus “read byte” protocol
Parameters
const struct i2c_client * client Handle to slave device
u8 command Byte interpreted by slave
Description
This executes the SMBus “read byte” protocol, returning negative errno else a data byte received from
the device.

508 Chapter 17. I2C and SMBus Subsystem

The kernel driver API manual, Release 4.13.0-rc4+

s32 i2c_smbus_write_byte_data(const struct i2c_client * client, u8 command, u8 value)
SMBus “write byte” protocol

Parameters
const struct i2c_client * client Handle to slave device
u8 command Byte interpreted by slave
u8 value Byte being written
Description
This executes the SMBus “write byte” protocol, returning negative errno else zero on success.
s32 i2c_smbus_read_word_data(const struct i2c_client * client, u8 command)

SMBus “read word” protocol
Parameters
const struct i2c_client * client Handle to slave device
u8 command Byte interpreted by slave
Description
This executes the SMBus “read word” protocol, returning negative errno else a 16-bit unsigned “word”
received from the device.
s32 i2c_smbus_write_word_data(const struct i2c_client * client, u8 command, u16 value)

SMBus “write word” protocol
Parameters
const struct i2c_client * client Handle to slave device
u8 command Byte interpreted by slave
u16 value 16-bit “word” being written
Description
This executes the SMBus “write word” protocol, returning negative errno else zero on success.
s32 i2c_smbus_read_block_data(const struct i2c_client * client, u8 command, u8 * values)

SMBus “block read” protocol
Parameters
const struct i2c_client * client Handle to slave device
u8 command Byte interpreted by slave
u8 * values Byte array into which data will be read; big enough to hold the data returned by the slave.

SMBus allows at most 32 bytes.
Description
This executes the SMBus “block read” protocol, returning negative errno else the number of data bytes in
the slave’s response.
Note that using this function requires that the client’s adapter support the
I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers support this; its emula-
tion through I2C messaging relies on a specific mechanism (I2C_M_RECV_LEN) which may not be
implemented.
s32 i2c_smbus_write_block_data(const struct i2c_client * client, u8 command, u8 length, const

u8 * values)
SMBus “block write” protocol

Parameters
const struct i2c_client * client Handle to slave device

509

The kernel driver API manual, Release 4.13.0-rc4+

u8 command Byte interpreted by slave
u8 length Size of data block; SMBus allows at most 32 bytes
const u8 * values Byte array which will be written.
Description
This executes the SMBus “block write” protocol, returning negative errno else zero on success.
s32 i2c_smbus_xfer(struct i2c_adapter * adapter, u16 addr, unsigned short flags, char read_write,

u8 command, int protocol, union i2c_smbus_data * data)
execute SMBus protocol operations

Parameters
struct i2c_adapter * adapter Handle to I2C bus
u16 addr Address of SMBus slave on that bus
unsigned short flags I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
char read_write I2C_SMBUS_READ or I2C_SMBUS_WRITE
u8 command Byte interpreted by slave, for protocols which use such bytes
int protocol SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
union i2c_smbus_data * data Data to be read or written
Description
This executes an SMBus protocol operation, and returns a negative errno code else zero on success.
s32 i2c_smbus_read_i2c_block_data_or_emulated(const struct i2c_client * client, u8 command,

u8 length, u8 * values)
read block or emulate

Parameters
const struct i2c_client * client Handle to slave device
u8 command Byte interpreted by slave
u8 length Size of data block; SMBus allows at most I2C_SMBUS_BLOCK_MAX bytes
u8 * values Byte array into which data will be read; big enough to hold the data returned by the slave.

SMBus allows at most I2C_SMBUS_BLOCK_MAX bytes.
Description
This executes the SMBus “block read” protocol if supported by the adapter. If block read is not supported,
it emulates it using either word or byte read protocols depending on availability.
The addresses of the I2C slave device that are accessed with this function must be mapped to a linear
region, so that a block read will have the same effect as a byte read. Before using this function you must
double-check if the I2C slave does support exchanging a block transfer with a byte transfer.

510 Chapter 17. I2C and SMBus Subsystem

CHAPTER

EIGHTEEN

HIGH SPEED SYNCHRONOUS SERIAL INTERFACE (HSI)

18.1 Introduction

High Speed Syncronous Interface (HSI) is a fullduplex, low latency protocol, that is optimized for die-level
interconnect between an Application Processor and a Baseband chipset. It has been specified by the MIPI
alliance in 2003 and implemented by multiple vendors since then.
The HSI interface supports full duplex communication over multiple channels (typically 8) and is capable
of reaching speeds up to 200 Mbit/s.
The serial protocol uses two signals, DATA and FLAG as combined data and clock signals and an additional
READY signal for flow control. An additional WAKE signal can be used to wakeup the chips from standby
modes. The signals are commonly prefixed by AC for signals going from the application die to the cellular
die and CA for signals going the other way around.

+------------+ +---------------+
Cellular		Application
Die		Die
	- - - - - - CAWAKE - - - - - - >	
T	------------ CADATA ------------>	R
X	------------ CAFLAG ------------>	X
	<----------- ACREADY ------------	
	< - - - - - ACWAKE - - - - - - -	
R	<----------- ACDATA -------------	T
X	<----------- ACFLAG -------------	X
	------------ CAREADY ----------->	
+------------+ +---------------+

18.2 HSI Subsystem in Linux

In the Linux kernel the hsi subsystem is supposed to be used for HSI devices. The hsi subsystem contains
drivers for hsi controllers including support for multi-port controllers and provides a generic API for using
the HSI ports.
It also contains HSI client drivers, which make use of the generic API to implement a protocol used on the
HSI interface. These client drivers can use an arbitrary number of channels.

511

The kernel driver API manual, Release 4.13.0-rc4+

18.3 hsi-char Device

Each port automatically registers a generic client driver called hsi_char, which provides a charecter device
for userspace representing the HSI port. It can be used to communicate via HSI from userspace. Userspace
may configure the hsi_char device using the following ioctl commands:
HSC_RESET flush the HSI port
HSC_SET_PM enable or disable the client.
HSC_SEND_BREAK send break
HSC_SET_RX set RX configuration
HSC_GET_RX get RX configuration
HSC_SET_TX set TX configuration
HSC_GET_TX get TX configuration

18.4 The kernel HSI API

struct hsi_channel
channel resource used by the hsi clients

Definition

struct hsi_channel {
unsigned int id;
const char * name;

};

Members
id Channel number
name Channel name
struct hsi_config

Configuration for RX/TX HSI modules
Definition

struct hsi_config {
unsigned int mode;
struct hsi_channel * channels;
unsigned int num_channels;
unsigned int num_hw_channels;
unsigned int speed;
union {unnamed_union};

};

Members
mode Bit transmission mode (STREAM or FRAME)
channels Channel resources used by the client
num_channels Number of channel resources
num_hw_channels Number of channels the transceiver is configured for [1..16]
speed Max bit transmission speed (Kbit/s)
{unnamed_union} anonymous

512 Chapter 18. High Speed Synchronous Serial Interface (HSI)

The kernel driver API manual, Release 4.13.0-rc4+

struct hsi_board_info
HSI client board info

Definition

struct hsi_board_info {
const char * name;
unsigned int hsi_id;
unsigned int port;
struct hsi_config tx_cfg;
struct hsi_config rx_cfg;
void * platform_data;
struct dev_archdata * archdata;

};

Members
name Name for the HSI device
hsi_id HSI controller id where the client sits
port Port number in the controller where the client sits
tx_cfg HSI TX configuration
rx_cfg HSI RX configuration
platform_data Platform related data
archdata Architecture-dependent device data
struct hsi_client

HSI client attached to an HSI port
Definition

struct hsi_client {
struct device device;
struct hsi_config tx_cfg;
struct hsi_config rx_cfg;

};

Members
device Driver model representation of the device
tx_cfg HSI TX configuration
rx_cfg HSI RX configuration
struct hsi_client_driver

Driver associated to an HSI client
Definition

struct hsi_client_driver {
struct device_driver driver;

};

Members
driver Driver model representation of the driver
struct hsi_msg

HSI message descriptor
Definition

18.4. The kernel HSI API 513

The kernel driver API manual, Release 4.13.0-rc4+

struct hsi_msg {
struct list_head link;
struct hsi_client * cl;
struct sg_table sgt;
void * context;
void (* complete) (struct hsi_msg *msg);
void (* destructor) (struct hsi_msg *msg);
int status;
unsigned int actual_len;
unsigned int channel;
unsigned int ttype:1;
unsigned int break_frame:1;

};

Members
link Free to use by the current descriptor owner
cl HSI device client that issues the transfer
sgt Head of the scatterlist array
context Client context data associated to the transfer
complete Transfer completion callback
destructor Destructor to free resources when flushing
status Status of the transfer when completed
actual_len Actual length of data transferred on completion
channel Channel were to TX/RX the message
ttype Transfer type (TX if set, RX otherwise)
break_frame if true HSI will send/receive a break frame. Data buffers are ignored in the request.
struct hsi_port

HSI port device
Definition

struct hsi_port {
struct device device;
struct hsi_config tx_cfg;
struct hsi_config rx_cfg;
unsigned int num;
unsigned int shared:1;
int claimed;
struct mutex lock;
int (* async) (struct hsi_msg *msg);
int (* setup) (struct hsi_client *cl);
int (* flush) (struct hsi_client *cl);
int (* start_tx) (struct hsi_client *cl);
int (* stop_tx) (struct hsi_client *cl);
int (* release) (struct hsi_client *cl);
struct blocking_notifier_head n_head;

};

Members
device Driver model representation of the device
tx_cfg Current TX path configuration
rx_cfg Current RX path configuration
num Port number

514 Chapter 18. High Speed Synchronous Serial Interface (HSI)

The kernel driver API manual, Release 4.13.0-rc4+

shared Set when port can be shared by different clients
claimed Reference count of clients which claimed the port
lock Serialize port claim
async Asynchronous transfer callback
setup Callback to set the HSI client configuration
flush Callback to clean the HW state and destroy all pending transfers
start_tx Callback to inform that a client wants to TX data
stop_tx Callback to inform that a client no longer wishes to TX data
release Callback to inform that a client no longer uses the port
n_head Notifier chain for signaling port events to the clients.
struct hsi_controller

HSI controller device
Definition

struct hsi_controller {
struct device device;
struct module * owner;
unsigned int id;
unsigned int num_ports;
struct hsi_port ** port;

};

Members
device Driver model representation of the device
owner Pointer to the module owning the controller
id HSI controller ID
num_ports Number of ports in the HSI controller
port Array of HSI ports
unsigned int hsi_id(struct hsi_client * cl)

Get HSI controller ID associated to a client
Parameters
struct hsi_client * cl Pointer to a HSI client
Description
Return the controller id where the client is attached to
unsigned int hsi_port_id(struct hsi_client * cl)

Gets the port number a client is attached to
Parameters
struct hsi_client * cl Pointer to HSI client
Description
Return the port number associated to the client
int hsi_setup(struct hsi_client * cl)

Configure the client’s port
Parameters
struct hsi_client * cl Pointer to the HSI client

18.4. The kernel HSI API 515

The kernel driver API manual, Release 4.13.0-rc4+

Description
When sharing ports, clients should either relay on a single client setup or have the same setup for all of
them.
Return -errno on failure, 0 on success
int hsi_flush(struct hsi_client * cl)

Flush all pending transactions on the client’s port
Parameters
struct hsi_client * cl Pointer to the HSI client
Description
This function will destroy all pending hsi_msg in the port and reset the HW port so it is ready to receive
and transmit from a clean state.
Return -errno on failure, 0 on success
int hsi_async_read(struct hsi_client * cl, struct hsi_msg * msg)

Submit a read transfer
Parameters
struct hsi_client * cl Pointer to the HSI client
struct hsi_msg * msg HSI message descriptor of the transfer
Description
Return -errno on failure, 0 on success
int hsi_async_write(struct hsi_client * cl, struct hsi_msg * msg)

Submit a write transfer
Parameters
struct hsi_client * cl Pointer to the HSI client
struct hsi_msg * msg HSI message descriptor of the transfer
Description
Return -errno on failure, 0 on success
int hsi_start_tx(struct hsi_client * cl)

Signal the port that the client wants to start a TX
Parameters
struct hsi_client * cl Pointer to the HSI client
Description
Return -errno on failure, 0 on success
int hsi_stop_tx(struct hsi_client * cl)

Signal the port that the client no longer wants to transmit
Parameters
struct hsi_client * cl Pointer to the HSI client
Description
Return -errno on failure, 0 on success
void hsi_port_unregister_clients(struct hsi_port * port)

Unregister an HSI port
Parameters
struct hsi_port * port The HSI port to unregister

516 Chapter 18. High Speed Synchronous Serial Interface (HSI)

The kernel driver API manual, Release 4.13.0-rc4+

void hsi_unregister_controller(struct hsi_controller * hsi)
Unregister an HSI controller

Parameters
struct hsi_controller * hsi The HSI controller to register
int hsi_register_controller(struct hsi_controller * hsi)

Register an HSI controller and its ports
Parameters
struct hsi_controller * hsi The HSI controller to register
Description
Returns -errno on failure, 0 on success.
int hsi_register_client_driver(struct hsi_client_driver * drv)

Register an HSI client to the HSI bus
Parameters
struct hsi_client_driver * drv HSI client driver to register
Description
Returns -errno on failure, 0 on success.
void hsi_put_controller(struct hsi_controller * hsi)

Free an HSI controller
Parameters
struct hsi_controller * hsi Pointer to the HSI controller to freed
Description
HSI controller drivers should only use this function if they need to free their allocated hsi_controller struc-
tures before a successful call to hsi_register_controller. Other use is not allowed.
struct hsi_controller * hsi_alloc_controller(unsigned int n_ports, gfp_t flags)

Allocate an HSI controller and its ports
Parameters
unsigned int n_ports Number of ports on the HSI controller
gfp_t flags Kernel allocation flags
Description
Return NULL on failure or a pointer to an hsi_controller on success.
void hsi_free_msg(struct hsi_msg * msg)

Free an HSI message
Parameters
struct hsi_msg * msg Pointer to the HSI message
Description
Client is responsible to free the buffers pointed by the scatterlists.
struct hsi_msg * hsi_alloc_msg(unsigned int nents, gfp_t flags)

Allocate an HSI message
Parameters
unsigned int nents Number of memory entries
gfp_t flags Kernel allocation flags

18.4. The kernel HSI API 517

The kernel driver API manual, Release 4.13.0-rc4+

Description
nents can be 0. This mainly makes sense for read transfer. In that case, HSI drivers will call the complete
callback when there is data to be read without consuming it.
Return NULL on failure or a pointer to an hsi_msg on success.
int hsi_async(struct hsi_client * cl, struct hsi_msg * msg)

Submit an HSI transfer to the controller
Parameters
struct hsi_client * cl HSI client sending the transfer
struct hsi_msg * msg The HSI transfer passed to controller
Description
The HSI message must have the channel, ttype, complete and destructor fields set beforehand. If nents
> 0 then the client has to initialize also the scatterlists to point to the buffers to write to or read from.
HSI controllers relay on pre-allocated buffers from their clients and they do not allocate buffers on their
own.
Once the HSI message transfer finishes, the HSI controller calls the complete callback with the status and
actual_len fields of the HSI message updated. The complete callback can be called before returning from
hsi_async.
Returns -errno on failure or 0 on success
int hsi_claim_port(struct hsi_client * cl, unsigned int share)

Claim the HSI client’s port
Parameters
struct hsi_client * cl HSI client that wants to claim its port
unsigned int share Flag to indicate if the client wants to share the port or not.
Description
Returns -errno on failure, 0 on success.
void hsi_release_port(struct hsi_client * cl)

Release the HSI client’s port
Parameters
struct hsi_client * cl HSI client which previously claimed its port
int hsi_register_port_event(struct hsi_client * cl, void (*handler) (struct hsi_client *, un-

signed long)
Register a client to receive port events

Parameters
struct hsi_client * cl HSI client that wants to receive port events
void (*)(struct hsi_client *,unsigned long) handler Event handler callback
Description
Clients should register a callback to be able to receive events from the ports. Registration should happen
after claiming the port. The handler can be called in interrupt context.
Returns -errno on error, or 0 on success.
int hsi_unregister_port_event(struct hsi_client * cl)

Stop receiving port events for a client
Parameters
struct hsi_client * cl HSI client that wants to stop receiving port events

518 Chapter 18. High Speed Synchronous Serial Interface (HSI)

The kernel driver API manual, Release 4.13.0-rc4+

Description
Clients should call this function before releasing their associated port.
Returns -errno on error, or 0 on success.
int hsi_event(struct hsi_port * port, unsigned long event)

Notifies clients about port events
Parameters
struct hsi_port * port Port where the event occurred
unsigned long event The event type
Description
Clients should not be concerned about wake line behavior. However, due to a race condition in HSI HW
protocol, clients need to be notified about wake line changes, so they can implement a workaround for it.
Events: HSI_EVENT_START_RX - Incoming wake line high HSI_EVENT_STOP_RX - Incoming wake line down
Returns -errno on error, or 0 on success.
int hsi_get_channel_id_by_name(struct hsi_client * cl, char * name)

acquire channel id by channel name
Parameters
struct hsi_client * cl HSI client, which uses the channel
char * name name the channel is known under
Description
Clients can call this function to get the hsi channel ids similar to requesting IRQs or GPIOs by name. This
function assumes the same channel configuration is used for RX and TX.
Returns -errno on error or channel id on success.

18.4. The kernel HSI API 519

The kernel driver API manual, Release 4.13.0-rc4+

520 Chapter 18. High Speed Synchronous Serial Interface (HSI)

CHAPTER

NINETEEN

ERROR DETECTION AND CORRECTION (EDAC) DEVICES

19.1 Main Concepts used at the EDAC subsystem

There are several things to be aware of that aren’t at all obvious, like sockets, *socket sets, banks, rows,
chip-select rows, channels, etc...
These are some of the many terms that are thrown about that don’t always mean what people think
they mean (Inconceivable!). In the interest of creating a common ground for discussion, terms and their
definitions will be established.
• Memory devices

The individual DRAM chips on a memory stick. These devices commonly output 4 and 8 bits each (x4,
x8). Grouping several of these in parallel provides the number of bits that the memory controller expects:
typically 72 bits, in order to provide 64 bits + 8 bits of ECC data.
• Memory Stick

A printed circuit board that aggregates multiple memory devices in parallel. In general, this is the Field
Replaceable Unit (FRU) which gets replaced, in the case of excessive errors. Most often it is also called
DIMM (Dual Inline Memory Module).
• Memory Socket

A physical connector on the motherboard that accepts a single memory stick. Also called as “slot” on
several datasheets.
• Channel

A memory controller channel, responsible to communicate with a group of DIMMs. Each channel has its
own independent control (command) and data bus, and can be used independently or grouped with other
channels.
• Branch

It is typically the highest hierarchy on a Fully-Buffered DIMM memory controller. Typically, it contains
two channels. Two channels at the same branch can be used in single mode or in lockstep mode. When
lockstep is enabled, the cacheline is doubled, but it generally brings some performance penalty. Also, it
is generally not possible to point to just one memory stick when an error occurs, as the error correction
code is calculated using two DIMMs instead of one. Due to that, it is capable of correcting more errors
than on single mode.
• Single-channel

The data accessed by the memory controller is contained into one dimm only. E. g. if the data is 64 bits-
wide, the data flows to the CPU using one 64 bits parallel access. Typically used with SDR, DDR, DDR2
and DDR3 memories. FB-DIMM and RAMBUS use a different concept for channel, so this concept doesn’t
apply there.
• Double-channel

521

The kernel driver API manual, Release 4.13.0-rc4+

The data size accessed by the memory controller is interlaced into two dimms, accessed at the same time.
E. g. if the DIMM is 64 bits-wide (72 bits with ECC), the data flows to the CPU using a 128 bits parallel
access.
• Chip-select row

This is the name of the DRAM signal used to select the DRAM ranks to be accessed. Common chip-select
rows for single channel are 64 bits, for dual channel 128 bits. It may not be visible by the memory
controller, as some DIMM types have a memory buffer that can hide direct access to it from the Memory
Controller.
• Single-Ranked stick

A Single-ranked stick has 1 chip-select row of memory. Motherboards commonly drive two chip-select pins
to a memory stick. A single-ranked stick, will occupy only one of those rows. The other will be unused.
• Double-Ranked stick

A double-ranked stick has two chip-select rows which access different sets of memory devices. The two
rows cannot be accessed concurrently.
• Double-sided stick

DEPRECATED TERM, see Double-Ranked stick .
A double-sided stick has two chip-select rows which access different sets of memory devices. The two rows
cannot be accessed concurrently. “Double-sided” is irrespective of the memory devices being mounted
on both sides of the memory stick.
• Socket set

All of the memory sticks that are required for a single memory access or all of the memory sticks spanned
by a chip-select row. A single socket set has two chip-select rows and if double-sided sticks are used these
will occupy those chip-select rows.
• Bank

This term is avoided because it is unclear when needing to distinguish between chip-select rows and
socket sets.

19.2 Memory Controllers

Most of the EDAC core is focused on doing Memory Controller error detection. The edac_mc_alloc(). It
uses internally the struct mem_ctl_info to describe the memory controllers, with is an opaque struct for
the EDAC drivers. Only the EDAC core is allowed to touch it.
enum dev_type

describe the type of memory DRAM chips used at the stick
Constants
DEV_UNKNOWN Can’t be determined, or MC doesn’t support detect it
DEV_X1 1 bit for data
DEV_X2 2 bits for data
DEV_X4 4 bits for data
DEV_X8 8 bits for data
DEV_X16 16 bits for data
DEV_X32 32 bits for data
DEV_X64 64 bits for data

522 Chapter 19. Error Detection And Correction (EDAC) Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description
Typical values are x4 and x8.
enum hw_event_mc_err_type

type of the detected error
Constants
HW_EVENT_ERR_CORRECTED Corrected Error - Indicates that an ECC corrected error was detected
HW_EVENT_ERR_UNCORRECTED Uncorrected Error - Indicates an error that can’t be corrected by ECC, but it

is not fatal (maybe it is on an unused memory area, or the memory controller could recover from it
for example, by re-trying the operation).

HW_EVENT_ERR_DEFERRED Deferred Error - Indicates an uncorrectable error whose handling is not urgent.
This could be due to hardware data poisoning where the system can continue operation until the
poisoned data is consumed. Preemptive measures may also be taken, e.g. offlining pages, etc.

HW_EVENT_ERR_FATAL Fatal Error - Uncorrected error that could not be recovered.
HW_EVENT_ERR_INFO Informational - The CPER spec defines a forth type of error: informational logs.
enum mem_type

memory types. For a more detailed reference, please see http://en.wikipedia.org/wiki/DRAM
Constants
MEM_EMPTY Empty csrow
MEM_RESERVED Reserved csrow type
MEM_UNKNOWN Unknown csrow type
MEM_FPM FPM - Fast Page Mode, used on systems up to 1995.
MEM_EDO EDO - Extended data out, used on systems up to 1998.
MEM_BEDO BEDO - Burst Extended data out, an EDO variant.
MEM_SDR SDR - Single data rate SDRAM http://en.wikipedia.org/wiki/Synchronous_dynamic_

random-access_memory They use 3 pins for chip select: Pins 0 and 2 are for rank 0; pins 1
and 3 are for rank 1, if the memory is dual-rank.

MEM_RDR Registered SDR SDRAM
MEM_DDR Double data rate SDRAM http://en.wikipedia.org/wiki/DDR_SDRAM
MEM_RDDR Registered Double data rate SDRAM This is a variant of the DDR memories. A registered mem-

ory has a buffer inside it, hiding part of the memory details to the memory controller.
MEM_RMBS Rambus DRAM, used on a few Pentium III/IV controllers.
MEM_DDR2 DDR2 RAM, as described at JEDEC JESD79-2F. Those memories are labeled as “PC2-” instead of

“PC” to differentiate from DDR.
MEM_FB_DDR2 Fully-Buffered DDR2, as described at JEDEC Std No. 205 and JESD206. Those memories are

accessed per DIMM slot, and not by a chip select signal.
MEM_RDDR2 Registered DDR2 RAM This is a variant of the DDR2 memories.
MEM_XDR Rambus XDR It is an evolution of the original RAMBUS memories, created to compete with DDR2.

Weren’t used on any x86 arch, but cell_edac PPC memory controller uses it.
MEM_DDR3 DDR3 RAM
MEM_RDDR3 Registered DDR3 RAM This is a variant of the DDR3 memories.
MEM_LRDDR3 Load-Reduced DDR3 memory.
MEM_DDR4 Unbuffered DDR4 RAM
MEM_RDDR4 Registered DDR4 RAM This is a variant of the DDR4 memories.

19.2. Memory Controllers 523

http://en.wikipedia.org/wiki/DRAM
http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
http://en.wikipedia.org/wiki/DDR_SDRAM

The kernel driver API manual, Release 4.13.0-rc4+

MEM_LRDDR4 Load-Reduced DDR4 memory.
enum edac_type

type - Error Detection and Correction capabilities and mode
Constants
EDAC_UNKNOWN Unknown if ECC is available
EDAC_NONE Doesn’t support ECC
EDAC_RESERVED Reserved ECC type
EDAC_PARITY Detects parity errors
EDAC_EC Error Checking - no correction
EDAC_SECDED Single bit error correction, Double detection
EDAC_S2ECD2ED Chipkill x2 devices - do these exist?
EDAC_S4ECD4ED Chipkill x4 devices
EDAC_S8ECD8ED Chipkill x8 devices
EDAC_S16ECD16ED Chipkill x16 devices
enum scrub_type

scrubbing capabilities
Constants
SCRUB_UNKNOWN Unknown if scrubber is available
SCRUB_NONE No scrubber
SCRUB_SW_PROG SW progressive (sequential) scrubbing
SCRUB_SW_SRC Software scrub only errors
SCRUB_SW_PROG_SRC Progressive software scrub from an error
SCRUB_SW_TUNABLE Software scrub frequency is tunable
SCRUB_HW_PROG HW progressive (sequential) scrubbing
SCRUB_HW_SRC Hardware scrub only errors
SCRUB_HW_PROG_SRC Progressive hardware scrub from an error
SCRUB_HW_TUNABLE Hardware scrub frequency is tunable
enum edac_mc_layer_type

memory controller hierarchy layer
Constants
EDAC_MC_LAYER_BRANCH memory layer is named “branch”
EDAC_MC_LAYER_CHANNEL memory layer is named “channel”
EDAC_MC_LAYER_SLOT memory layer is named “slot”
EDAC_MC_LAYER_CHIP_SELECT memory layer is named “chip select”
EDAC_MC_LAYER_ALL_MEM memory layout is unknown. All memory is mapped as a single memory area.

This is used when retrieving errors from a firmware driven driver.
Description
This enum is used by the drivers to tell edac_mc_sysfs what name should be used when describing a
memory stick location.
struct edac_mc_layer

describes the memory controller hierarchy

524 Chapter 19. Error Detection And Correction (EDAC) Devices

The kernel driver API manual, Release 4.13.0-rc4+

Definition

struct edac_mc_layer {
enum edac_mc_layer_type type;
unsigned size;
bool is_virt_csrow;

};

Members
type layer type
size number of components per layer. For example, if the channel layer has two channels, size = 2
is_virt_csrow This layer is part of the “csrow” when old API compatibility mode is enabled. Otherwise,

it is a channel
EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2)

Macro responsible to get a pointer offset inside a pointer array for the element given by
[layer0,layer1,layer2] position

Parameters
layers a struct edac_mc_layer array, describing how many elements were allocated for each layer
nlayers Number of layers at the layers array
layer0 layer0 position
layer1 layer1 position. Unused if n_layers < 2
layer2 layer2 position. Unused if n_layers < 3
Description
For 1 layer, this macro returns “var[layer0] - var”;
For 2 layers, this macro is similar to allocate a bi-dimensional array and to return “var[layer0][layer1] -
var”;
For 3 layers, this macro is similar to allocate a tri-dimensional array and to return
“var[layer0][layer1][layer2] - var”.
A loop could be used here to make it more generic, but, as we only have 3 layers, this is a little faster.
By design, layers can never be 0 or more than 3. If that ever happens, a NULL is returned, causing an
OOPS during the memory allocation routine, with would point to the developer that he’s doing something
wrong.
EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2)

Macro responsible to get a pointer inside a pointer array for the element given by
[layer0,layer1,layer2] position

Parameters
layers a struct edac_mc_layer array, describing how many elements were allocated for each layer
var name of the var where we want to get the pointer (like mci->dimms)
nlayers Number of layers at the layers array
layer0 layer0 position
layer1 layer1 position. Unused if n_layers < 2
layer2 layer2 position. Unused if n_layers < 3
Description
For 1 layer, this macro returns “var[layer0]”;
For 2 layers, this macro is similar to allocate a bi-dimensional array and to return “var[layer0][layer1]”;

19.2. Memory Controllers 525

The kernel driver API manual, Release 4.13.0-rc4+

For 3 layers, this macro is similar to allocate a tri-dimensional array and to return
“var[layer0][layer1][layer2]”;
struct rank_info

contains the information for one DIMM rank
Definition

struct rank_info {
int chan_idx;
struct csrow_info * csrow;
struct dimm_info * dimm;
u32 ce_count;

};

Members
chan_idx channel number where the rank is (typically, 0 or 1)
csrow A pointer to the chip select row structure (the parent structure). The location of the rank is given

by the (csrow->csrow_idx, chan_idx) vector.
dimm A pointer to the DIMM structure, where the DIMM label information is stored.
ce_count number of correctable errors for this rank
Description
FIXME: Currently, the EDAC core model will assume one DIMM per rank. This is a bad assump-

tion, but it makes this patch easier. Later patches in this series will fix this issue.
struct edac_raw_error_desc

Raw error report structure
Definition

struct edac_raw_error_desc {
char location;
char label;
long grain;
u16 error_count;
int top_layer;
int mid_layer;
int low_layer;
unsigned long page_frame_number;
unsigned long offset_in_page;
unsigned long syndrome;
const char * msg;
const char * other_detail;
bool enable_per_layer_report;

};

Members
location location of the error
label label of the affected DIMM(s)
grain minimum granularity for an error report, in bytes
error_count number of errors of the same type
top_layer top layer of the error (layer[0])
mid_layer middle layer of the error (layer[1])
low_layer low layer of the error (layer[2])
page_frame_number page where the error happened

526 Chapter 19. Error Detection And Correction (EDAC) Devices

The kernel driver API manual, Release 4.13.0-rc4+

offset_in_page page offset
syndrome syndrome of the error (or 0 if unknown or if the syndrome is not applicable)
msg error message
other_detail other driver-specific detail about the error
enable_per_layer_report if false, the error affects all layers (typically, a memory controller error)
struct mem_ctl_info * edac_mc_alloc(unsigned mc_num, unsigned n_layers, struct edac_mc_layer

* layers, unsigned sz_pvt)
Allocate and partially fill a struct mem_ctl_info.

Parameters
unsigned mc_num Memory controller number
unsigned n_layers Number of MC hierarchy layers
struct edac_mc_layer * layers Describes each layer as seen by the Memory Controller
unsigned sz_pvt size of private storage needed
Description
Everything is kmalloc’ed as one big chunk - more efficient. Only can be used if all structures have the
same lifetime - otherwise you have to allocate and initialize your own structures.
Use edac_mc_free() to free mc structures allocated by this function.

Note:

drivers handle multi-rank memories in different ways: in some drivers, one multi-rank memory stick is
mapped as one entry, while, in others, a single multi-rank memory stick would be mapped into several
entries. Currently, this function will allocate multiple struct dimm_info on such scenarios, as grouping
the multiple ranks require drivers change.

Return
On success, return a pointer to struct mem_ctl_info pointer; NULL otherwise

int edac_mc_add_mc_with_groups(struct mem_ctl_info * mci, const struct attribute_group
** groups)

Insert themci structure into the mci global list and create sysfs entries associated withmci structure.
Parameters
struct mem_ctl_info * mci pointer to the mci structure to be added to the list
const struct attribute_group ** groups optional attribute groups for the driver-specific sysfs en-

tries
Return

0 on Success, or an error code on failure
void edac_mc_free(struct mem_ctl_info * mci)

Frees a previously allocated mci structure
Parameters
struct mem_ctl_info * mci pointer to a struct mem_ctl_info structure
bool edac_has_mcs(void)

Check if any MCs have been allocated.
Parameters
void no arguments

19.2. Memory Controllers 527

The kernel driver API manual, Release 4.13.0-rc4+

Return
True if MC instances have been registered successfully. False otherwise.

struct mem_ctl_info * edac_mc_find(int idx)
Search for a mem_ctl_info structure whose index is idx.

Parameters
int idx index to be seek
Description
If found, return a pointer to the structure. Else return NULL.
struct mem_ctl_info * find_mci_by_dev(struct device * dev)

Scan list of controllers looking for the one that manages the dev device.
Parameters
struct device * dev pointer to a struct device related with the MCI
Return
on success, returns a pointer to struct mem_ctl_info; NULL otherwise.
struct mem_ctl_info * edac_mc_del_mc(struct device * dev)

Remove sysfs entries for mci structure associated with dev and remove mci structure from global
list.

Parameters
struct device * dev Pointer to struct device representing mci structure to remove.
Return
pointer to removed mci structure, or NULL if device not found.
int edac_mc_find_csrow_by_page(struct mem_ctl_info * mci, unsigned long page)

Ancillary routine to identify what csrow contains a memory page.
Parameters
struct mem_ctl_info * mci pointer to a struct mem_ctl_info structure
unsigned long page memory page to find
Return
on success, returns the csrow. -1 if not found.
void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, struct mem_ctl_info

* mci, struct edac_raw_error_desc * e)
Reports a memory event to userspace without doing anything to discover the error location.

Parameters
const enum hw_event_mc_err_type type severity of the error (CE/UE/Fatal)
struct mem_ctl_info * mci a struct mem_ctl_info pointer
struct edac_raw_error_desc * e error description
Description
This raw function is used internally by edac_mc_handle_error(). It should only be called directly when
the hardware error come directly from BIOS, like in the case of APEI GHES driver.

528 Chapter 19. Error Detection And Correction (EDAC) Devices

The kernel driver API manual, Release 4.13.0-rc4+

void edac_mc_handle_error(const enum hw_event_mc_err_type type, struct mem_ctl_info * mci,
const u16 error_count, const unsigned long page_frame_number,
const unsigned long offset_in_page, const unsigned long syndrome,
const int top_layer, const int mid_layer, const int low_layer, const char
* msg, const char * other_detail)

Reports a memory event to userspace.
Parameters
const enum hw_event_mc_err_type type severity of the error (CE/UE/Fatal)
struct mem_ctl_info * mci a struct mem_ctl_info pointer
const u16 error_count Number of errors of the same type
const unsigned long page_frame_number mem page where the error occurred
const unsigned long offset_in_page offset of the error inside the page
const unsigned long syndrome ECC syndrome
const int top_layer Memory layer[0] position
const int mid_layer Memory layer[1] position
const int low_layer Memory layer[2] position
const char * msg Message meaningful to the end users that explains the event
const char * other_detail Technical details about the event that may help hardware manufacturers

and EDAC developers to analyse the event

19.3 PCI Controllers

The EDAC subsystem provides a mechanism to handle PCI controllers by calling the
edac_pci_alloc_ctl_info(). It will use the struct edac_pci_ctl_info to describe the PCI controllers.
struct edac_pci_ctl_info * edac_pci_alloc_ctl_info(unsigned int sz_pvt, const char

* edac_pci_name)
Parameters
unsigned int sz_pvt size of the private info at struct edac_pci_ctl_info
const char * edac_pci_name name of the PCI device
Description

The alloc() function for the ‘edac_pci’ control info structure.
The chip driver will allocate one of these for each edac_pci it is going to control/register with the EDAC
CORE.
Return
a pointer to struct edac_pci_ctl_info on success; NULL otherwise.
void edac_pci_free_ctl_info(struct edac_pci_ctl_info * pci)
Parameters
struct edac_pci_ctl_info * pci pointer to struct edac_pci_ctl_info
Description

Last action on the pci control structure.
Calls the remove sysfs information, which will unregister this control struct’s kobj. When that kobj’s ref
count goes to zero, its release function will be call and then kfree() the memory.
int edac_pci_alloc_index(void)

19.3. PCI Controllers 529

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
void no arguments
Return

allocated index number
int edac_pci_add_device(struct edac_pci_ctl_info * pci, int edac_idx)
Parameters
struct edac_pci_ctl_info * pci pointer to the edac_device structure to be added to the list
int edac_idx A unique numeric identifier to be assigned to the ‘edac_pci’ structure.
Description

edac_pci global list and create sysfs entries associated with edac_pci structure.
Return

0 on Success, or an error code on failure
struct edac_pci_ctl_info * edac_pci_del_device(struct device * dev)
Parameters
struct device * dev Pointer to ‘struct device’ representing edac_pci structure to remove
Description

Remove sysfs entries for specified edac_pci structure and then remove edac_pci structure from
global list

Return
Pointer to removed edac_pci structure, or NULL if device not found

struct edac_pci_ctl_info * edac_pci_create_generic_ctl(struct device * dev, const char
* mod_name)

Parameters
struct device * dev pointer to struct device;
const char * mod_name name of the PCI device
Description

A generic constructor for a PCI parity polling device Some systems have more than one domain
of PCI busses. For systems with one domain, then this API will provide for a generic poller.

This routine calls the edac_pci_alloc_ctl_info() for the generic device, with default values
Return
Pointer to struct edac_pci_ctl_info on success, NULL on failure.
void edac_pci_release_generic_ctl(struct edac_pci_ctl_info * pci)
Parameters
struct edac_pci_ctl_info * pci pointer to struct edac_pci_ctl_info
Description

The release function of a generic EDAC PCI polling device
int edac_pci_create_sysfs(struct edac_pci_ctl_info * pci)
Parameters
struct edac_pci_ctl_info * pci pointer to struct edac_pci_ctl_info
Description

530 Chapter 19. Error Detection And Correction (EDAC) Devices

The kernel driver API manual, Release 4.13.0-rc4+

Create the controls/attributes for the specified EDAC PCI device
void edac_pci_remove_sysfs(struct edac_pci_ctl_info * pci)
Parameters
struct edac_pci_ctl_info * pci pointer to struct edac_pci_ctl_info
Description

remove the controls and attributes for this EDAC PCI device

19.4 EDAC Blocks

The EDAC subsystem also provides a generic mechanism to report errors on other parts of the hardware
via edac_device_alloc_ctl_info() function.
The structures edac_dev_sysfs_block_attribute, edac_device_block, edac_device_instance and
edac_device_ctl_info provide a generic or abstract ‘edac_device’ representation at sysfs.
This set of structures and the code that implements the APIs for the same, provide for registering EDAC
type devices which are NOT standard memory or PCI, like:
• CPU caches (L1 and L2)
• DMA engines
• Core CPU switches
• Fabric switch units
• PCIe interface controllers
• other EDAC/ECC type devices that can be monitored for errors, etc.

It allows for a 2 level set of hierarchy.
For example, a cache could be composed of L1, L2 and L3 levels of cache. Each CPU core would have its
own L1 cache, while sharing L2 and maybe L3 caches. On such case, those can be represented via the
following sysfs nodes:

/sys/devices/system/edac/..

pci/ <existing pci directory (if available)>
mc/ <existing memory device directory>
cpu/cpu0/.. <L1 and L2 block directory>

/L1-cache/ce_count
/ue_count

/L2-cache/ce_count
/ue_count

cpu/cpu1/.. <L1 and L2 block directory>
/L1-cache/ce_count

/ue_count
/L2-cache/ce_count

/ue_count
...

the L1 and L2 directories would be "edac_device_block's"

int edac_device_add_device(struct edac_device_ctl_info * edac_dev)
Parameters
struct edac_device_ctl_info * edac_dev pointer to edac_device structure to be added to the list

‘edac_device’ structure.
Description

19.4. EDAC Blocks 531

The kernel driver API manual, Release 4.13.0-rc4+

edac_device global list and create sysfs entries associated with edac_device structure.
Return

0 on Success, or an error code on failure
struct edac_device_ctl_info * edac_device_del_device(struct device * dev)
Parameters
struct device * dev Pointer to struct device representing the edac device structure to remove.
Description

Remove sysfs entries for specified edac_device structure and then remove edac_device struc-
ture from global list

Return
Pointer to removed edac_device structure, or NULL if device not found.

void edac_device_handle_ue(struct edac_device_ctl_info * edac_dev, int inst_nr, int block_nr,
const char * msg)

Parameters
struct edac_device_ctl_info * edac_dev pointer to struct edac_device_ctl_info
int inst_nr number of the instance where the UE error happened
int block_nr number of the block where the UE error happened
const char * msg message to be printed
Description

perform a common output and handling of an ‘edac_dev’ UE event
void edac_device_handle_ce(struct edac_device_ctl_info * edac_dev, int inst_nr, int block_nr,

const char * msg)
Parameters
struct edac_device_ctl_info * edac_dev pointer to struct edac_device_ctl_info
int inst_nr number of the instance where the CE error happened
int block_nr number of the block where the CE error happened
const char * msg message to be printed
Description

perform a common output and handling of an ‘edac_dev’ CE event
int edac_device_alloc_index(void)
Parameters
void no arguments
Return

allocated index number

532 Chapter 19. Error Detection And Correction (EDAC) Devices

CHAPTER

TWENTY

SCSI INTERFACES GUIDE

Author James Bottomley
Author Rob Landley

20.1 Introduction

20.1.1 Protocol vs bus

Once upon a time, the Small Computer Systems Interface defined both a parallel I/O bus and a data
protocol to connect a wide variety of peripherals (disk drives, tape drives, modems, printers, scanners,
optical drives, test equipment, and medical devices) to a host computer.
Although the old parallel (fast/wide/ultra) SCSI bus has largely fallen out of use, the SCSI command set is
more widely used than ever to communicate with devices over a number of different busses.
The SCSI protocol is a big-endian peer-to-peer packet based protocol. SCSI commands are 6, 10, 12, or
16 bytes long, often followed by an associated data payload.
SCSI commands can be transported over just about any kind of bus, and are the default protocol for
storage devices attached to USB, SATA, SAS, Fibre Channel, FireWire, and ATAPI devices. SCSI packets are
also commonly exchanged over Infiniband, I20, TCP/IP (iSCSI), even Parallel ports.

20.1.2 Design of the Linux SCSI subsystem

The SCSI subsystem uses a three layer design, with upper, mid, and low layers. Every operation involving
the SCSI subsystem (such as reading a sector from a disk) uses one driver at each of the 3 levels: one
upper layer driver, one lower layer driver, and the SCSI midlayer.
The SCSI upper layer provides the interface between userspace and the kernel, in the form of block and
char device nodes for I/O and ioctl(). The SCSI lower layer contains drivers for specific hardware devices.
In between is the SCSI mid-layer, analogous to a network routing layer such as the IPv4 stack. The SCSI
mid-layer routes a packet based data protocol between the upper layer’s /dev nodes and the corresponding
devices in the lower layer. It manages command queues, provides error handling and power management
functions, and responds to ioctl() requests.

20.2 SCSI upper layer

The upper layer supports the user-kernel interface by providing device nodes.

20.2.1 sd (SCSI Disk)

sd (sd_mod.o)

533

http://www.t10.org/scsi-3.htm
http://i2o.shadowconnect.com/faq.php
https://en.wikipedia.org/wiki/ISCSI
http://cyberelk.net/tim/parport/parscsi.html

The kernel driver API manual, Release 4.13.0-rc4+

20.2.2 sr (SCSI CD-ROM)

sr (sr_mod.o)

20.2.3 st (SCSI Tape)

st (st.o)

20.2.4 sg (SCSI Generic)

sg (sg.o)

20.2.5 ch (SCSI Media Changer)

ch (ch.c)

20.3 SCSI mid layer

20.3.1 SCSI midlayer implementation

include/scsi/scsi_device.h

shost_for_each_device(sdev, shost)
iterate over all devices of a host

Parameters
sdev the struct scsi_device to use as a cursor
shost the struct scsi_host to iterate over
Description
Iterator that returns each device attached to shost. This loop takes a reference on each device and
releases it at the end. If you break out of the loop, you must call scsi_device_put(sdev).
__shost_for_each_device(sdev, shost)

iterate over all devices of a host (UNLOCKED)
Parameters
sdev the struct scsi_device to use as a cursor
shost the struct scsi_host to iterate over
Description
Iterator that returns each device attached to shost. It does _not_ take a reference on the scsi_device, so
the whole loop must be protected by shost->host_lock.
Note
The only reason to use this is because you need to access the device list in interrupt context. Otherwise
you really want to use shost_for_each_device instead.
int scsi_device_supports_vpd(struct scsi_device * sdev)

test if a device supports VPD pages
Parameters
struct scsi_device * sdev the struct scsi_device to test

534 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
If the ‘try_vpd_pages’ flag is set it takes precedence. Otherwise we will assume VPD pages are supported
if the SCSI level is at least SPC-3 and ‘skip_vpd_pages’ is not set.

drivers/scsi/scsi.c

Main file for the SCSI midlayer.
void scsi_cmd_get_serial(struct Scsi_Host * host, struct scsi_cmnd * cmd)

Assign a serial number to a command
Parameters
struct Scsi_Host * host the scsi host
struct scsi_cmnd * cmd command to assign serial number to
Description
a serial number identifies a request for error recovery and debugging purposes. Protected by the
Host_Lock of host.
int scsi_change_queue_depth(struct scsi_device * sdev, int depth)

change a device’s queue depth
Parameters
struct scsi_device * sdev SCSI Device in question
int depth number of commands allowed to be queued to the driver
Description
Sets the device queue depth and returns the new value.
int scsi_track_queue_full(struct scsi_device * sdev, int depth)

track QUEUE_FULL events to adjust queue depth
Parameters
struct scsi_device * sdev SCSI Device in question
int depth Current number of outstanding SCSI commands on this device, not counting the one returned

as QUEUE_FULL.
Description
This function will track successive QUEUE_FULL events on a specific SCSI device to determine if

and when there is a need to adjust the queue depth on the device.
Return
0 - No change needed, >0 - Adjust queue depth to this new depth,

-1 - Drop back to untagged operation using host->cmd_per_lun as the untagged command
depth

Lock Status: None held on entry
Notes
Low level drivers may call this at any time and we will do “The Right Thing.” We are interrupt

context safe.
int scsi_get_vpd_page(struct scsi_device * sdev, u8 page, unsigned char * buf, int buf_len)

Get Vital Product Data from a SCSI device
Parameters
struct scsi_device * sdev The device to ask

20.3. SCSI mid layer 535

The kernel driver API manual, Release 4.13.0-rc4+

u8 page Which Vital Product Data to return
unsigned char * buf where to store the VPD
int buf_len number of bytes in the VPD buffer area
Description
SCSI devices may optionally supply Vital Product Data. Each ‘page’ of VPD is defined in the appropriate
SCSI document (eg SPC, SBC). If the device supports this VPD page, this routine returns a pointer to a
buffer containing the data from that page. The caller is responsible for calling kfree() on this pointer
when it is no longer needed. If we cannot retrieve the VPD page this routine returns NULL.
int scsi_report_opcode(struct scsi_device * sdev, unsigned char * buffer, unsigned int len, un-

signed char opcode)
Find out if a given command opcode is supported

Parameters
struct scsi_device * sdev scsi device to query
unsigned char * buffer scratch buffer (must be at least 20 bytes long)
unsigned int len length of buffer
unsigned char opcode opcode for command to look up
Description
Uses the REPORT SUPPORTED OPERATION CODES to look up the given opcode. Returns -EINVAL if RSOC
fails, 0 if the command opcode is unsupported and 1 if the device claims to support the command.
int scsi_device_get(struct scsi_device * sdev)

get an additional reference to a scsi_device
Parameters
struct scsi_device * sdev device to get a reference to
Description
Gets a reference to the scsi_device and increments the use count of the underlying LLDD module. You
must hold host_lock of the parent Scsi_Host or already have a reference when calling this.
This will fail if a device is deleted or cancelled, or when the LLDmodule is in the process of being unloaded.

void scsi_device_put(struct scsi_device * sdev)
release a reference to a scsi_device

Parameters
struct scsi_device * sdev device to release a reference on.
Description
Release a reference to the scsi_device and decrements the use count of the underlying LLDD module. The
device is freed once the last user vanishes.
void starget_for_each_device(struct scsi_target * starget, void * data, void (*fn) (struct

scsi_device *, void *)
helper to walk all devices of a target

Parameters
struct scsi_target * starget target whose devices we want to iterate over.
void * data Opaque passed to each function call.
void (*)(struct scsi_device *,void *) fn Function to call on each device

536 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
This traverses over each device of starget. The devices have a reference that must be released by
scsi_host_put when breaking out of the loop.
void __starget_for_each_device(struct scsi_target * starget, void * data, void (*fn) (struct

scsi_device *, void *)
helper to walk all devices of a target (UNLOCKED)

Parameters
struct scsi_target * starget target whose devices we want to iterate over.
void * data parameter for callback fn()
void (*)(struct scsi_device *,void *) fn callback function that is invoked for each device
Description
This traverses over each device of starget. It does _not_ take a reference on the scsi_device, so the
whole loop must be protected by shost->host_lock.
Note
The only reason why drivers would want to use this is because they need to access the device list in irq
context. Otherwise you really want to use starget_for_each_device instead.
struct scsi_device * __scsi_device_lookup_by_target(struct scsi_target * starget, u64 lun)

find a device given the target (UNLOCKED)
Parameters
struct scsi_target * starget SCSI target pointer
u64 lun SCSI Logical Unit Number
Description
Looks up the scsi_device with the specified lun for a given starget. The returned scsi_device does not
have an additional reference. You must hold the host’s host_lock over this call and any access to the
returned scsi_device. A scsi_device in state SDEV_DEL is skipped.
Note
The only reason why drivers should use this is because they need to access the device list in irq context.
Otherwise you really want to use scsi_device_lookup_by_target instead.
struct scsi_device * scsi_device_lookup_by_target(struct scsi_target * starget, u64 lun)

find a device given the target
Parameters
struct scsi_target * starget SCSI target pointer
u64 lun SCSI Logical Unit Number
Description
Looks up the scsi_device with the specified lun for a given starget. The returned scsi_device has an
additional reference that needs to be released with scsi_device_put once you’re done with it.
struct scsi_device * __scsi_device_lookup(struct Scsi_Host * shost, uint channel, uint id, u64 lun)

find a device given the host (UNLOCKED)
Parameters
struct Scsi_Host * shost SCSI host pointer
uint channel SCSI channel (zero if only one channel)
uint id SCSI target number (physical unit number)
u64 lun SCSI Logical Unit Number

20.3. SCSI mid layer 537

The kernel driver API manual, Release 4.13.0-rc4+

Description
Looks up the scsi_device with the specified channel, id, lun for a given host. The returned scsi_device
does not have an additional reference. You must hold the host’s host_lock over this call and any access
to the returned scsi_device.
Note
The only reason why drivers would want to use this is because they need to access the device list in irq
context. Otherwise you really want to use scsi_device_lookup instead.
struct scsi_device * scsi_device_lookup(struct Scsi_Host * shost, uint channel, uint id, u64 lun)

find a device given the host
Parameters
struct Scsi_Host * shost SCSI host pointer
uint channel SCSI channel (zero if only one channel)
uint id SCSI target number (physical unit number)
u64 lun SCSI Logical Unit Number
Description
Looks up the scsi_device with the specified channel, id, lun for a given host. The returned scsi_device
has an additional reference that needs to be released with scsi_device_put once you’re done with it.

drivers/scsi/scsicam.c

SCSI Common Access Method support functions, for use with HDIO_GETGEO, etc.
unsigned char * scsi_bios_ptable(struct block_device * dev)

Read PC partition table out of first sector of device.
Parameters
struct block_device * dev from this device
Description
Reads the first sector from the device and returns 0x42 bytes starting at offset 0x1be.
Return
partition table in kmalloc(GFP_KERNEL) memory, or NULL on error.
int scsicam_bios_param(struct block_device * bdev, sector_t capacity, int * ip)

Determine geometry of a disk in cylinders/heads/sectors.
Parameters
struct block_device * bdev which device
sector_t capacity size of the disk in sectors
int * ip return value: ip[0]=heads, ip[1]=sectors, ip[2]=cylinders
Description
determine the BIOS mapping/geometry used for a drive in a SCSI-CAM system, storing the results

in ip as required by the HDIO_GETGEO ioctl().
Return
-1 on failure, 0 on success.
int scsi_partsize(unsigned char * buf, unsigned long capacity, unsigned int * cyls, unsigned int

* hds, unsigned int * secs)
Parse cylinders/heads/sectors from PC partition table

538 Chapter 20. SCSI Interfaces Guide

http://www.t10.org/ftp/t10/drafts/cam/cam-r12b.pdf

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
unsigned char * buf partition table, see scsi_bios_ptable()
unsigned long capacity size of the disk in sectors
unsigned int * cyls put cylinders here
unsigned int * hds put heads here
unsigned int * secs put sectors here
Description
Determine the BIOS mapping/geometry used to create the partition table, storing the results in cyls, hds,
and secs
Return
-1 on failure, 0 on success.

drivers/scsi/scsi_error.c

Common SCSI error/timeout handling routines.
void scsi_schedule_eh(struct Scsi_Host * shost)

schedule EH for SCSI host
Parameters
struct Scsi_Host * shost SCSI host to invoke error handling on.
Description
Schedule SCSI EH without scmd.
int scsi_block_when_processing_errors(struct scsi_device * sdev)

Prevent cmds from being queued.
Parameters
struct scsi_device * sdev Device on which we are performing recovery.
Description

We block until the host is out of error recovery, and then check to see whether the host or the
device is offline.

Return value: 0 when dev was taken offline by error recovery. 1 OK to proceed.
int scsi_check_sense(struct scsi_cmnd * scmd)

Examine scsi cmd sense
Parameters
struct scsi_cmnd * scmd Cmd to have sense checked.
Description
Return value: SUCCESS or FAILED or NEEDS_RETRY or ADD_TO_MLQUEUE
Notes

When a deferred error is detected the current command has not been executed and needs
retrying.

void scsi_eh_prep_cmnd(struct scsi_cmnd * scmd, struct scsi_eh_save * ses, unsigned char * cmnd,
int cmnd_size, unsigned sense_bytes)

Save a scsi command info as part of error recovery
Parameters

20.3. SCSI mid layer 539

The kernel driver API manual, Release 4.13.0-rc4+

struct scsi_cmnd * scmd SCSI command structure to hijack
struct scsi_eh_save * ses structure to save restore information
unsigned char * cmnd CDB to send. Can be NULL if no new cmnd is needed
int cmnd_size size in bytes of cmnd (must be <= BLK_MAX_CDB)
unsigned sense_bytes size of sense data to copy. or 0 (if != 0 cmnd is ignored)
Description
This function is used to save a scsi command information before re-execution as part of the error recov-
ery process. If sense_bytes is 0 the command sent must be one that does not transfer any data. If
sense_bytes != 0 cmnd is ignored and this functions sets up a REQUEST_SENSE command and cmnd
buffers to read sense_bytes into scmd->sense_buffer.
void scsi_eh_restore_cmnd(struct scsi_cmnd * scmd, struct scsi_eh_save * ses)

Restore a scsi command info as part of error recovery
Parameters
struct scsi_cmnd * scmd SCSI command structure to restore
struct scsi_eh_save * ses saved information from a coresponding call to scsi_eh_prep_cmnd
Description
Undo any damage done by above scsi_eh_prep_cmnd().
void scsi_eh_finish_cmd(struct scsi_cmnd * scmd, struct list_head * done_q)

Handle a cmd that eh is finished with.
Parameters
struct scsi_cmnd * scmd Original SCSI cmd that eh has finished.
struct list_head * done_q Queue for processed commands.
Notes

We don’t want to use the normal command completion while we are are still handling errors - it
may cause other commands to be queued, and that would disturb what we are doing. Thus we
really want to keep a list of pending commands for final completion, and once we are ready to
leave error handling we handle completion for real.

int scsi_eh_get_sense(struct list_head * work_q, struct list_head * done_q)
Get device sense data.

Parameters
struct list_head * work_q Queue of commands to process.
struct list_head * done_q Queue of processed commands.
Description

See if we need to request sense information. if so, then get it now, so we have a better idea of
what to do.

Notes
This has the unfortunate side effect that if a shost adapter does not automatically request sense
information, we end up shutting it down before we request it.
All drivers should request sense information internally these days, so for now all I have to say
is tough noogies if you end up in here.
XXX: Long term this code should go away, but that needs an audit of all LLDDs first.

void scsi_eh_ready_devs(struct Scsi_Host * shost, struct list_head * work_q, struct list_head
* done_q)

check device ready state and recover if not.

540 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct Scsi_Host * shost host to be recovered.
struct list_head * work_q list_head for pending commands.
struct list_head * done_q list_head for processed commands.
void scsi_eh_flush_done_q(struct list_head * done_q)

finish processed commands or retry them.
Parameters
struct list_head * done_q list_head of processed commands.
int scsi_ioctl_reset(struct scsi_device * dev, int __user * arg)
Parameters
struct scsi_device * dev scsi_device to operate on
int __user * arg reset type (see sg.h)
bool scsi_get_sense_info_fld(const u8 * sense_buffer, int sb_len, u64 * info_out)

get information field from sense data (either fixed or descriptor format)
Parameters
const u8 * sense_buffer byte array of sense data
int sb_len number of valid bytes in sense_buffer
u64 * info_out pointer to 64 integer where 8 or 4 byte information field will be placed if found.
Description
Return value: true if information field found, false if not found.

drivers/scsi/scsi_devinfo.c

Manage scsi_dev_info_list, which tracks blacklisted and whitelisted devices.
int scsi_dev_info_list_add(int compatible, char * vendor, char * model, char * strflags, int flags)

add one dev_info list entry.
Parameters
int compatible if true, null terminate short strings. Otherwise space pad.
char * vendor vendor string
char * model model (product) string
char * strflags integer string
int flags if strflags NULL, use this flag value
Description

Create and add one dev_info entry for vendor,model, strflags or flag. If compatible, add to
the tail of the list, do not space pad, and set devinfo->compatible. The scsi_static_device_list
entries are added with compatible 1 and clfags NULL.

Return
0 OK, -error on failure.
struct scsi_dev_info_list * scsi_dev_info_list_find(const char * vendor, const char * model,

int key)
find a matching dev_info list entry.

Parameters

20.3. SCSI mid layer 541

The kernel driver API manual, Release 4.13.0-rc4+

const char * vendor vendor string
const char * model model (product) string
int key specify list to use
Description

Finds the first dev_info entry matching vendor, model in list specified by key.
Return
pointer to matching entry, or ERR_PTR on failure.
int scsi_dev_info_list_add_str(char * dev_list)

parse dev_list and add to the scsi_dev_info_list.
Parameters
char * dev_list string of device flags to add
Description

Parse dev_list, and add entries to the scsi_dev_info_list. dev_list is of the form “ven-
dor:product:flag,vendor:product:flag”. dev_list is modified via strsep. Can be called for com-
mand line addition, for proc or mabye a sysfs interface.

Return
0 if OK, -error on failure.
int scsi_get_device_flags(struct scsi_device * sdev, const unsigned char * vendor, const un-

signed char * model)
get device specific flags from the dynamic device list.

Parameters
struct scsi_device * sdev scsi_device to get flags for
const unsigned char * vendor vendor name
const unsigned char * model model name
Description

Search the global scsi_dev_info_list (specified by list zero) for an entry matching vendor and
model, if found, return the matching flags value, else return the host or global default settings.
Called during scan time.

void scsi_exit_devinfo(void)
remove /proc/scsi/device_info & the scsi_dev_info_list

Parameters
void no arguments
int scsi_init_devinfo(void)

set up the dynamic device list.
Parameters
void no arguments
Description

Add command line entries from scsi_dev_flags, then add scsi_static_device_list entries to the
scsi device info list.

542 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

drivers/scsi/scsi_ioctl.c

Handle ioctl() calls for SCSI devices.
int scsi_ioctl(struct scsi_device * sdev, int cmd, void __user * arg)

Dispatch ioctl to scsi device
Parameters
struct scsi_device * sdev scsi device receiving ioctl
int cmd which ioctl is it
void __user * arg data associated with ioctl
Description
The scsi_ioctl() function differs from most ioctls in that it does not take a major/minor number as the
dev field. Rather, it takes a pointer to a struct scsi_device.

drivers/scsi/scsi_lib.c

SCSI queuing library.
int scsi_execute(struct scsi_device * sdev, const unsigned char * cmd, int data_direction, void

* buffer, unsigned bufflen, unsigned char * sense, struct scsi_sense_hdr * sshdr,
int timeout, int retries, u64 flags, req_flags_t rq_flags, int * resid)

insert request and wait for the result
Parameters
struct scsi_device * sdev scsi device
const unsigned char * cmd scsi command
int data_direction data direction
void * buffer data buffer
unsigned bufflen len of buffer
unsigned char * sense optional sense buffer
struct scsi_sense_hdr * sshdr optional decoded sense header
int timeout request timeout in seconds
int retries number of times to retry request
u64 flags flags for ->cmd_flags
req_flags_t rq_flags flags for ->rq_flags
int * resid optional residual length
Description
Returns the scsi_cmnd result field if a command was executed, or a negative Linux error code if we didn’t
get that far.
void scsi_initialize_rq(struct request * rq)

initialize struct scsi_cmnd.req
Parameters
struct request * rq undescribed

Description
Called from inside blk_get_request().

20.3. SCSI mid layer 543

The kernel driver API manual, Release 4.13.0-rc4+

struct scsi_device * scsi_device_from_queue(struct request_queue * q)
return sdev associated with a request_queue

Parameters
struct request_queue * q The request queue to return the sdev from
Description
Return the sdev associated with a request queue or NULL if the request_queue does not reference a SCSI
device.
int scsi_mode_select(struct scsi_device * sdev, int pf, int sp, int modepage, unsigned char

* buffer, int len, int timeout, int retries, struct scsi_mode_data * data, struct
scsi_sense_hdr * sshdr)

issue a mode select
Parameters
struct scsi_device * sdev SCSI device to be queried
int pf Page format bit (1 == standard, 0 == vendor specific)
int sp Save page bit (0 == don’t save, 1 == save)
int modepage mode page being requested
unsigned char * buffer request buffer (may not be smaller than eight bytes)
int len length of request buffer.
int timeout command timeout
int retries number of retries before failing
struct scsi_mode_data * data returns a structure abstracting the mode header data
struct scsi_sense_hdr * sshdr place to put sense data (or NULL if no sense to be collected). must be

SCSI_SENSE_BUFFERSIZE big.
Description

Returns zero if successful; negative error number or scsi status on error
int scsi_mode_sense(struct scsi_device * sdev, int dbd, int modepage, unsigned char * buffer,

int len, int timeout, int retries, struct scsi_mode_data * data, struct
scsi_sense_hdr * sshdr)

issue a mode sense, falling back from 10 to six bytes if necessary.
Parameters
struct scsi_device * sdev SCSI device to be queried
int dbd set if mode sense will allow block descriptors to be returned
int modepage mode page being requested
unsigned char * buffer request buffer (may not be smaller than eight bytes)
int len length of request buffer.
int timeout command timeout
int retries number of retries before failing
struct scsi_mode_data * data returns a structure abstracting the mode header data
struct scsi_sense_hdr * sshdr place to put sense data (or NULL if no sense to be collected). must be

SCSI_SENSE_BUFFERSIZE big.
Description

Returns zero if unsuccessful, or the header offset (either 4 or 8 depending on whether a six or
ten byte command was issued) if successful.

544 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

int scsi_test_unit_ready(struct scsi_device * sdev, int timeout, int retries, struct scsi_sense_hdr
* sshdr)

test if unit is ready
Parameters
struct scsi_device * sdev scsi device to change the state of.
int timeout command timeout
int retries number of retries before failing
struct scsi_sense_hdr * sshdr outpout pointer for decoded sense information.
Description

Returns zero if unsuccessful or an error if TUR failed. For removable media, UNIT_ATTENTION
sets ->changed flag.

int scsi_device_set_state(struct scsi_device * sdev, enum scsi_device_state state)
Take the given device through the device state model.

Parameters
struct scsi_device * sdev scsi device to change the state of.
enum scsi_device_state state state to change to.
Description

Returns zero if unsuccessful or an error if the requested transition is illegal.
void sdev_evt_send(struct scsi_device * sdev, struct scsi_event * evt)

send asserted event to uevent thread
Parameters
struct scsi_device * sdev scsi_device event occurred on
struct scsi_event * evt event to send
Description

Assert scsi device event asynchronously.
struct scsi_event * sdev_evt_alloc(enum scsi_device_event evt_type, gfp_t gfpflags)

allocate a new scsi event
Parameters
enum scsi_device_event evt_type type of event to allocate
gfp_t gfpflags GFP flags for allocation
Description

Allocates and returns a new scsi_event.
void sdev_evt_send_simple(struct scsi_device * sdev, enum scsi_device_event evt_type,

gfp_t gfpflags)
send asserted event to uevent thread

Parameters
struct scsi_device * sdev scsi_device event occurred on
enum scsi_device_event evt_type type of event to send
gfp_t gfpflags GFP flags for allocation
Description

Assert scsi device event asynchronously, given an event type.

20.3. SCSI mid layer 545

The kernel driver API manual, Release 4.13.0-rc4+

int scsi_device_quiesce(struct scsi_device * sdev)
Block user issued commands.

Parameters
struct scsi_device * sdev scsi device to quiesce.
Description

This works by trying to transition to the SDEV_QUIESCE state (which must be a legal transition).
When the device is in this state, only special requests will be accepted, all others will be deferred.
Since special requests may also be requeued requests, a successful return doesn’t guarantee
the device will be totally quiescent.
Must be called with user context, may sleep.
Returns zero if unsuccessful or an error if not.

void scsi_device_resume(struct scsi_device * sdev)
Restart user issued commands to a quiesced device.

Parameters
struct scsi_device * sdev scsi device to resume.
Description

Moves the device from quiesced back to running and restarts the queues.
Must be called with user context, may sleep.

int scsi_internal_device_block_nowait(struct scsi_device * sdev)
try to transition to the SDEV_BLOCK state

Parameters
struct scsi_device * sdev device to block
Description
Pause SCSI command processing on the specified device. Does not sleep.
Returns zero if successful or a negative error code upon failure.
Notes
This routine transitions the device to the SDEV_BLOCK state (which must be a legal transition). When the
device is in this state, command processing is paused until the device leaves the SDEV_BLOCK state. See
also scsi_internal_device_unblock_nowait().
int scsi_internal_device_unblock_nowait(struct scsi_device * sdev, enum

scsi_device_state new_state)
resume a device after a block request

Parameters
struct scsi_device * sdev device to resume
enum scsi_device_state new_state state to set the device to after unblocking
Description
Restart the device queue for a previously suspended SCSI device. Does not sleep.
Returns zero if successful or a negative error code upon failure.
Notes
This routine transitions the device to the SDEV_RUNNING state or to one of the offline states (which must
be a legal transition) allowing the midlayer to goose the queue for this device.
void * scsi_kmap_atomic_sg(struct scatterlist * sgl, int sg_count, size_t * offset, size_t * len)

find and atomically map an sg-elemnt

546 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct scatterlist * sgl scatter-gather list
int sg_count number of segments in sg
size_t * offset offset in bytes into sg, on return offset into the mapped area
size_t * len bytes to map, on return number of bytes mapped
Description
Returns virtual address of the start of the mapped page
void scsi_kunmap_atomic_sg(void * virt)

atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
Parameters
void * virt virtual address to be unmapped
int scsi_vpd_lun_id(struct scsi_device * sdev, char * id, size_t id_len)

return a unique device identification
Parameters
struct scsi_device * sdev SCSI device
char * id buffer for the identification
size_t id_len length of the buffer
Description
Copies a unique device identification into id based on the information in the VPD page 0x83 of the device.
The string will be formatted as a SCSI name string.
Returns the length of the identification or error on failure. If the identifier is longer than the supplied buffer
the actual identifier length is returned and the buffer is not zero-padded.

drivers/scsi/scsi_lib_dma.c

SCSI library functions depending on DMA (map and unmap scatter-gather lists).
int scsi_dma_map(struct scsi_cmnd * cmd)

perform DMA mapping against command’s sg lists
Parameters
struct scsi_cmnd * cmd scsi command
Description
Returns the number of sg lists actually used, zero if the sg lists is NULL, or -ENOMEM if the mapping failed.

void scsi_dma_unmap(struct scsi_cmnd * cmd)
unmap command’s sg lists mapped by scsi_dma_map

Parameters
struct scsi_cmnd * cmd scsi command

drivers/scsi/scsi_module.c

The file drivers/scsi/scsi_module.c contains legacy support for old-style host templates. It should never
be used by any new driver.

20.3. SCSI mid layer 547

The kernel driver API manual, Release 4.13.0-rc4+

drivers/scsi/scsi_proc.c

The functions in this file provide an interface between the PROC file system and the SCSI device drivers It is
mainly used for debugging, statistics and to pass information directly to the lowlevel driver. I.E. plumbing
to manage /proc/scsi/*
void scsi_proc_hostdir_add(struct scsi_host_template * sht)

Create directory in /proc for a scsi host
Parameters
struct scsi_host_template * sht owner of this directory
Description
Sets sht->proc_dir to the new directory.
void scsi_proc_hostdir_rm(struct scsi_host_template * sht)

remove directory in /proc for a scsi host
Parameters
struct scsi_host_template * sht owner of directory
void scsi_proc_host_add(struct Scsi_Host * shost)

Add entry for this host to appropriate /proc dir
Parameters
struct Scsi_Host * shost host to add
void scsi_proc_host_rm(struct Scsi_Host * shost)

remove this host’s entry from /proc
Parameters
struct Scsi_Host * shost which host
int proc_print_scsidevice(struct device * dev, void * data)

return data about this host
Parameters
struct device * dev A scsi device
void * data struct seq_file to output to.
Description
prints Host, Channel, Id, Lun, Vendor, Model, Rev, Type, and revision.
int scsi_add_single_device(uint host, uint channel, uint id, uint lun)

Respond to user request to probe for/add device
Parameters
uint host user-supplied decimal integer
uint channel user-supplied decimal integer
uint id user-supplied decimal integer
uint lun user-supplied decimal integer
Description
called by writing “scsi add-single-device” to /proc/scsi/scsi.
does scsi_host_lookup() and either user_scan() if that transport type supports it, or else
scsi_scan_host_selected()

Note
this seems to be aimed exclusively at SCSI parallel busses.

548 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

int scsi_remove_single_device(uint host, uint channel, uint id, uint lun)
Respond to user request to remove a device

Parameters
uint host user-supplied decimal integer
uint channel user-supplied decimal integer
uint id user-supplied decimal integer
uint lun user-supplied decimal integer
Description
called by writing “scsi remove-single-device” to /proc/scsi/scsi. Does a scsi_device_lookup() and
scsi_remove_device()

ssize_t proc_scsi_write(struct file * file, const char __user * buf, size_t length, loff_t * ppos)
handle writes to /proc/scsi/scsi

Parameters
struct file * file not used
const char __user * buf buffer to write
size_t length length of buf, at most PAGE_SIZE
loff_t * ppos not used
Description
this provides a legacy mechanism to add or remove devices by Host, Channel, ID, and Lun. To use,
“echo ‘scsi add-single-device 0 1 2 3’ > /proc/scsi/scsi” or “echo ‘scsi remove-single-device 0 1 2 3’ >
/proc/scsi/scsi” with “0 1 2 3” replaced by the Host, Channel, Id, and Lun.
Note
this seems to be aimed at parallel SCSI. Most modern busses (USB, SATA, Firewire, Fibre Channel, etc)
dynamically assign these values to provide a unique identifier and nothing more.
int proc_scsi_open(struct inode * inode, struct file * file)

glue function
Parameters
struct inode * inode not used
struct file * file passed to single_open()
Description
Associates proc_scsi_show with this file
int scsi_init_procfs(void)

create scsi and scsi/scsi in procfs
Parameters
void no arguments
void scsi_exit_procfs(void)

Remove scsi/scsi and scsi from procfs
Parameters
void no arguments

20.3. SCSI mid layer 549

The kernel driver API manual, Release 4.13.0-rc4+

drivers/scsi/scsi_netlink.c

Infrastructure to provide async events from transports to userspace via netlink, using a single
NETLINK_SCSITRANSPORT protocol for all transports. See the original patch submission for more details.
void scsi_nl_rcv_msg(struct sk_buff * skb)

Receive message handler.
Parameters
struct sk_buff * skb socket receive buffer
Description
Extracts message from a receive buffer. Validates message header and calls appropriate transport

message handler
void scsi_netlink_init(void)

Called by SCSI subsystem to initialize the SCSI transport netlink interface
Parameters
void no arguments
void scsi_netlink_exit(void)

Called by SCSI subsystem to disable the SCSI transport netlink interface
Parameters
void no arguments

drivers/scsi/scsi_scan.c

Scan a host to determine which (if any) devices are attached. The general scanning/probing algorithm is
as follows, exceptions are made to it depending on device specific flags, compilation options, and global
variable (boot or module load time) settings. A specific LUN is scanned via an INQUIRY command; if the
LUN has a device attached, a scsi_device is allocated and setup for it. For every id of every channel on the
given host, start by scanning LUN 0. Skip hosts that don’t respond at all to a scan of LUN 0. Otherwise,
if LUN 0 has a device attached, allocate and setup a scsi_device for it. If target is SCSI-3 or up, issue a
REPORT LUN, and scan all of the LUNs returned by the REPORT LUN; else, sequentially scan LUNs up until
some maximum is reached, or a LUN is seen that cannot have a device attached to it.
int scsi_complete_async_scans(void)

Wait for asynchronous scans to complete
Parameters
void no arguments
Description
When this function returns, any host which started scanning before this function was called will have
finished its scan. Hosts which started scanning after this function was calledmay or may not have finished.

void scsi_unlock_floptical(struct scsi_device * sdev, unsigned char * result)
unlock device via a special MODE SENSE command

Parameters
struct scsi_device * sdev scsi device to send command to
unsigned char * result area to store the result of the MODE SENSE
Description

Send a vendor specific MODE SENSE (not a MODE SELECT) command. Called for BLIST_KEY
devices.

550 Chapter 20. SCSI Interfaces Guide

http://marc.info/?l=linux-scsi&m=115507374832500&w=2

The kernel driver API manual, Release 4.13.0-rc4+

struct scsi_device * scsi_alloc_sdev(struct scsi_target * starget, u64 lun, void * hostdata)
allocate and setup a scsi_Device

Parameters
struct scsi_target * starget which target to allocate a scsi_device for
u64 lun which lun
void * hostdata usually NULL and set by ->slave_alloc instead
Description

Allocate, initialize for io, and return a pointer to a scsi_Device. Stores the shost, channel, id,
and lun in the scsi_Device, and adds scsi_Device to the appropriate list.

Return value: scsi_Device pointer, or NULL on failure.
void scsi_target_reap_ref_release(struct kref * kref)

remove target from visibility
Parameters
struct kref * kref the reap_ref in the target being released
Description
Called on last put of reap_ref, which is the indication that no device under this target is visible anymore,
so render the target invisible in sysfs. Note: we have to be in user context here because the target reaps
should be done in places where the scsi device visibility is being removed.
struct scsi_target * scsi_alloc_target(struct device * parent, int channel, uint id)

allocate a new or find an existing target
Parameters
struct device * parent parent of the target (need not be a scsi host)
int channel target channel number (zero if no channels)
uint id target id number
Description
Return an existing target if one exists, provided it hasn’t already gone into STARGET_DEL state, otherwise
allocate a new target.
The target is returned with an incremented reference, so the caller is responsible for both reaping and
doing a last put
void scsi_target_reap(struct scsi_target * starget)

check to see if target is in use and destroy if not
Parameters
struct scsi_target * starget target to be checked
Description
This is used after removing a LUN or doing a last put of the target it checks atomically that nothing is
using the target and removes it if so.
int scsi_probe_lun(struct scsi_device * sdev, unsigned char * inq_result, int result_len, int * bflags)

probe a single LUN using a SCSI INQUIRY
Parameters
struct scsi_device * sdev scsi_device to probe
unsigned char * inq_result area to store the INQUIRY result
int result_len len of inq_result
int * bflags store any bflags found here

20.3. SCSI mid layer 551

The kernel driver API manual, Release 4.13.0-rc4+

Description
Probe the lun associated with req using a standard SCSI INQUIRY;
If the INQUIRY is successful, zero is returned and the INQUIRY data is in inq_result; the scsi_level
and INQUIRY length are copied to the scsi_device any flags value is stored in *bflags.

int scsi_add_lun(struct scsi_device * sdev, unsigned char * inq_result, int * bflags, int async)
allocate and fully initialze a scsi_device

Parameters
struct scsi_device * sdev holds information to be stored in the new scsi_device
unsigned char * inq_result holds the result of a previous INQUIRY to the LUN
int * bflags black/white list flag
int async 1 if this device is being scanned asynchronously
Description

Initialize the scsi_device sdev. Optionally set fields based on values in *bflags.
Return

SCSI_SCAN_NO_RESPONSE: could not allocate or setup a scsi_device SCSI_SCAN_LUN_PRESENT:
a new scsi_device was allocated and initialized

unsigned char * scsi_inq_str(unsigned char * buf, unsigned char * inq, unsigned first, un-
signed end)

print INQUIRY data from min to max index, strip trailing whitespace
Parameters
unsigned char * buf Output buffer with at least end-first+1 bytes of space
unsigned char * inq Inquiry buffer (input)
unsigned first Offset of string into inq
unsigned end Index after last character in inq
int scsi_probe_and_add_lun(struct scsi_target * starget, u64 lun, int * bflagsp, struct scsi_device

** sdevp, enum scsi_scan_mode rescan, void * hostdata)
probe a LUN, if a LUN is found add it

Parameters
struct scsi_target * starget pointer to target device structure
u64 lun LUN of target device
int * bflagsp store bflags here if not NULL
struct scsi_device ** sdevp probe the LUN corresponding to this scsi_device
enum scsi_scan_mode rescan if not equal to SCSI_SCAN_INITIAL skip some code only needed on first

scan
void * hostdata passed to scsi_alloc_sdev()
Description

Call scsi_probe_lun, if a LUN with an attached device is found, allocate and set it up by calling
scsi_add_lun.

Return
• SCSI_SCAN_NO_RESPONSE: could not allocate or setup a scsi_device
• SCSI_SCAN_TARGET_PRESENT: target responded, but no device is attached at the LUN
• SCSI_SCAN_LUN_PRESENT: a new scsi_device was allocated and initialized

552 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

void scsi_sequential_lun_scan(struct scsi_target * starget, int bflags, int scsi_level, enum
scsi_scan_mode rescan)

sequentially scan a SCSI target
Parameters
struct scsi_target * starget pointer to target structure to scan
int bflags black/white list flag for LUN 0
int scsi_level Which version of the standard does this device adhere to
enum scsi_scan_mode rescan passed to scsi_probe_add_lun()
Description

Generally, scan from LUN 1 (LUN 0 is assumed to already have been scanned) to somemaximum
lun until a LUN is found with no device attached. Use the bflags to figure out any oddities.
Modifies sdevscan->lun.

int scsi_report_lun_scan(struct scsi_target * starget, int bflags, enum scsi_scan_mode rescan)
Scan using SCSI REPORT LUN results

Parameters
struct scsi_target * starget which target
int bflags Zero or a mix of BLIST_NOLUN, BLIST_REPORTLUN2, or BLIST_NOREPORTLUN
enum scsi_scan_mode rescan nonzero if we can skip code only needed on first scan
Description

Fast scanning for modern (SCSI-3) devices by sending a REPORT LUN command. Scan the re-
sulting list of LUNs by calling scsi_probe_and_add_lun.
If BLINK_REPORTLUN2 is set, scan a target that supports more than 8 LUNs even if it’s older than
SCSI-3. If BLIST_NOREPORTLUN is set, return 1 always. If BLIST_NOLUN is set, return 0 always.
If starget->no_report_luns is set, return 1 always.

Return
0: scan completed (or no memory, so further scanning is futile) 1: could not scan with REPORT
LUN

struct async_scan_data * scsi_prep_async_scan(struct Scsi_Host * shost)
prepare for an async scan

Parameters
struct Scsi_Host * shost the host which will be scanned
Return
a cookie to be passed to scsi_finish_async_scan()
Tells the midlayer this host is going to do an asynchronous scan. It reserves the host’s position in the
scanning list and ensures that other asynchronous scans started after this one won’t affect the ordering
of the discovered devices.
void scsi_finish_async_scan(struct async_scan_data * data)

asynchronous scan has finished
Parameters
struct async_scan_data * data cookie returned from earlier call to scsi_prep_async_scan()
Description
All the devices currently attached to this host have been found. This function announces all the devices
it has found to the rest of the system.

20.3. SCSI mid layer 553

The kernel driver API manual, Release 4.13.0-rc4+

drivers/scsi/scsi_sysctl.c

Set up the sysctl entry: “/dev/scsi/logging_level” (DEV_SCSI_LOGGING_LEVEL) which sets/returns
scsi_logging_level.

drivers/scsi/scsi_sysfs.c

SCSI sysfs interface routines.
void scsi_remove_device(struct scsi_device * sdev)

unregister a device from the scsi bus
Parameters
struct scsi_device * sdev scsi_device to unregister
void scsi_remove_target(struct device * dev)

try to remove a target and all its devices
Parameters
struct device * dev generic starget or parent of generic stargets to be removed
Note
This is slightly racy. It is possible that if the user requests the addition of another device then the target
won’t be removed.

drivers/scsi/hosts.c

mid to lowlevel SCSI driver interface
int scsi_host_set_state(struct Scsi_Host * shost, enum scsi_host_state state)

Take the given host through the host state model.
Parameters
struct Scsi_Host * shost scsi host to change the state of.
enum scsi_host_state state state to change to.
Description

Returns zero if unsuccessful or an error if the requested transition is illegal.
void scsi_remove_host(struct Scsi_Host * shost)

remove a scsi host
Parameters
struct Scsi_Host * shost a pointer to a scsi host to remove
int scsi_add_host_with_dma(struct Scsi_Host * shost, struct device * dev, struct device

* dma_dev)
add a scsi host with dma device

Parameters
struct Scsi_Host * shost scsi host pointer to add
struct device * dev a struct device of type scsi class
struct device * dma_dev dma device for the host
Note
You rarely need to worry about this unless you’re in a virtualised host environments, so use the simpler
scsi_add_host() function instead.

554 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

Return value: 0 on success / != 0 for error
struct Scsi_Host * scsi_host_alloc(struct scsi_host_template * sht, int privsize)

register a scsi host adapter instance.
Parameters
struct scsi_host_template * sht pointer to scsi host template
int privsize extra bytes to allocate for driver
Note

Allocate a new Scsi_Host and perform basic initialization. The host is not published to the scsi
midlayer until scsi_add_host is called.

Return value: Pointer to a new Scsi_Host
struct Scsi_Host * scsi_host_lookup(unsigned short hostnum)

get a reference to a Scsi_Host by host no
Parameters
unsigned short hostnum host number to locate
Description
Return value: A pointer to located Scsi_Host or NULL.

The caller must do a scsi_host_put() to drop the reference that scsi_host_get() took. The
put_device() below dropped the reference from class_find_device().

struct Scsi_Host * scsi_host_get(struct Scsi_Host * shost)
inc a Scsi_Host ref count

Parameters
struct Scsi_Host * shost Pointer to Scsi_Host to inc.
void scsi_host_put(struct Scsi_Host * shost)

dec a Scsi_Host ref count
Parameters
struct Scsi_Host * shost Pointer to Scsi_Host to dec.
int scsi_queue_work(struct Scsi_Host * shost, struct work_struct * work)

Queue work to the Scsi_Host workqueue.
Parameters
struct Scsi_Host * shost Pointer to Scsi_Host.
struct work_struct * work Work to queue for execution.
Description
Return value: 1 - work queued for execution 0 - work is already queued -EINVAL - work queue doesn’t

exist
void scsi_flush_work(struct Scsi_Host * shost)

Flush a Scsi_Host’s workqueue.
Parameters
struct Scsi_Host * shost Pointer to Scsi_Host.

20.3.2 Transport classes

Transport classes are service libraries for drivers in the SCSI lower layer, which expose transport attributes
in sysfs.

20.3. SCSI mid layer 555

The kernel driver API manual, Release 4.13.0-rc4+

Fibre Channel transport

The file drivers/scsi/scsi_transport_fc.c defines transport attributes for Fibre Channel.
u32 fc_get_event_number(void)

Obtain the next sequential FC event number
Parameters
void no arguments
Notes

We could have inlined this, but it would have required fc_event_seq to be exposed. For now,
live with the subroutine call. Atomic used to avoid lock/unlock...

void fc_host_post_event(struct Scsi_Host * shost, u32 event_number, enum
fc_host_event_code event_code, u32 event_data)

called to post an even on an fc_host.
Parameters
struct Scsi_Host * shost host the event occurred on
u32 event_number fc event number obtained from get_fc_event_number()

enum fc_host_event_code event_code fc_host event being posted
u32 event_data 32bits of data for the event being posted
Notes

This routine assumes no locks are held on entry.
void fc_host_post_vendor_event(struct Scsi_Host * shost, u32 event_number, u32 data_len, char

* data_buf, u64 vendor_id)
called to post a vendor unique event on an fc_host

Parameters
struct Scsi_Host * shost host the event occurred on
u32 event_number fc event number obtained from get_fc_event_number()

u32 data_len amount, in bytes, of vendor unique data
char * data_buf pointer to vendor unique data
u64 vendor_id Vendor id
Notes

This routine assumes no locks are held on entry.
enum blk_eh_timer_return fc_eh_timed_out(struct scsi_cmnd * scmd)

FC Transport I/O timeout intercept handler
Parameters
struct scsi_cmnd * scmd The SCSI command which timed out
Description
This routine protects against error handlers getting invoked while a rport is in a blocked state, typically
due to a temporarily loss of connectivity. If the error handlers are allowed to proceed, requests to abort
i/o, reset the target, etc will likely fail as there is no way to communicate with the device to perform the
requested function. These failures may result in the midlayer taking the device offline, requiring manual
intervention to restore operation.
This routine, called whenever an i/o times out, validates the state of the underlying rport. If the rport is
blocked, it returns EH_RESET_TIMER, which will continue to reschedule the timeout. Eventually, either the

556 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

device will return, or devloss_tmo will fire, and when the timeout then fires, it will be handled normally. If
the rport is not blocked, normal error handling continues.
Notes

This routine assumes no locks are held on entry.
void fc_remove_host(struct Scsi_Host * shost)

called to terminate any fc_transport-related elements for a scsi host.
Parameters
struct Scsi_Host * shost Which Scsi_Host
Description
This routine is expected to be called immediately preceding the a driver’s call to scsi_remove_host().
WARNING: A driver utilizing the fc_transport, which fails to call this routine prior to

scsi_remove_host(), will leave dangling objects in /sys/class/fc_remote_ports. Access to any
of these objects can result in a system crash !!!

Notes
This routine assumes no locks are held on entry.

struct fc_rport * fc_remote_port_add(struct Scsi_Host * shost, int channel, struct
fc_rport_identifiers * ids)

notify fc transport of the existence of a remote FC port.
Parameters
struct Scsi_Host * shost scsi host the remote port is connected to.
int channel Channel on shost port connected to.
struct fc_rport_identifiers * ids The world wide names, fc address, and FC4 port roles for the

remote port.
Description
The LLDD calls this routine to notify the transport of the existence of a remote port. The LLDD provides
the unique identifiers (wwpn,wwn) of the port, it’s FC address (port_id), and the FC4 roles that are active
for the port.
For ports that are FCP targets (aka scsi targets), the FC transport maintains consistent target id bindings on
behalf of the LLDD. A consistent target id binding is an assignment of a target id to a remote port identifier,
which persists while the scsi host is attached. The remote port can disappear, then later reappear, and
it’s target id assignment remains the same. This allows for shifts in FC addressing (if binding by wwpn or
wwnn) with no apparent changes to the scsi subsystem which is based on scsi host number and target
id values. Bindings are only valid during the attachment of the scsi host. If the host detaches, then later
re-attaches, target id bindings may change.
This routine is responsible for returning a remote port structure. The routine will search the list of remote
ports it maintains internally on behalf of consistent target id mappings. If found, the remote port structure
will be reused. Otherwise, a new remote port structure will be allocated.
Whenever a remote port is allocated, a new fc_remote_port class device is created.
Should not be called from interrupt context.
Notes

This routine assumes no locks are held on entry.
void fc_remote_port_delete(struct fc_rport * rport)

notifies the fc transport that a remote port is no longer in existence.
Parameters
struct fc_rport * rport The remote port that no longer exists

20.3. SCSI mid layer 557

The kernel driver API manual, Release 4.13.0-rc4+

Description
The LLDD calls this routine to notify the transport that a remote port is no longer part of the topology.
Note: Although a port may no longer be part of the topology, it may persist in the remote ports displayed
by the fc_host. We do this under 2 conditions:
1. If the port was a scsi target, we delay its deletion by “blocking” it. This allows the port to temporarily
disappear, then reappear without disrupting the SCSI device tree attached to it. During the “blocked”
period the port will still exist.

2. If the port was a scsi target and disappears for longer than we expect, we’ll delete the port and
the tear down the SCSI device tree attached to it. However, we want to semi-persist the target id
assigned to that port if it eventually does exist. The port structure will remain (although with minimal
information) so that the target id bindings also remain.

If the remote port is not an FCP Target, it will be fully torn down and deallocated, including the
fc_remote_port class device.
If the remote port is an FCP Target, the port will be placed in a temporary blocked state. From the LLDD’s
perspective, the rport no longer exists. From the SCSI midlayer’s perspective, the SCSI target exists, but
all sdevs on it are blocked from further I/O. The following is then expected.

If the remote port does not return (signaled by a LLDD call to fc_remote_port_add()) within the
dev_loss_tmo timeout, then the scsi target is removed - killing all outstanding i/o and removing
the scsi devices attached to it. The port structure will be marked Not Present and be partially
cleared, leaving only enough information to recognize the remote port relative to the scsi target
id binding if it later appears. The port will remain as long as there is a valid binding (e.g. until
the user changes the binding type or unloads the scsi host with the binding).
If the remote port returns within the dev_loss_tmo value (and matches according to the target
id binding type), the port structure will be reused. If it is no longer a SCSI target, the target will
be torn down. If it continues to be a SCSI target, then the target will be unblocked (allowing i/o
to be resumed), and a scan will be activated to ensure that all luns are detected.

Called from normal process context only - cannot be called from interrupt.
Notes

This routine assumes no locks are held on entry.
void fc_remote_port_rolechg(struct fc_rport * rport, u32 roles)

notifies the fc transport that the roles on a remote may have changed.
Parameters
struct fc_rport * rport The remote port that changed.
u32 roles New roles for this port.
Description
The LLDD calls this routine to notify the transport that the roles on a remote port may have changed. The
largest effect of this is if a port now becomes a FCP Target, it must be allocated a scsi target id. If the
port is no longer a FCP target, any scsi target id value assigned to it will persist in case the role changes
back to include FCP Target. No changes in the scsi midlayer will be invoked if the role changes (in the
expectation that the role will be resumed. If it doesn’t normal error processing will take place).
Should not be called from interrupt context.
Notes

This routine assumes no locks are held on entry.
int fc_block_scsi_eh(struct scsi_cmnd * cmnd)

Block SCSI eh thread for blocked fc_rport
Parameters
struct scsi_cmnd * cmnd SCSI command that scsi_eh is trying to recover

558 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
This routine can be called from a FC LLD scsi_eh callback. It blocks the scsi_eh thread until the fc_rport
leaves the FC_PORTSTATE_BLOCKED, or the fast_io_fail_tmo fires. This is necessary to avoid the scsi_eh
failing recovery actions for blocked rports which would lead to offlined SCSI devices.
Return
0 if the fc_rport left the state FC_PORTSTATE_BLOCKED. FAST_IO_FAIL if the fast_io_fail_tmo fired,

this should be passed back to scsi_eh.
struct fc_vport * fc_vport_create(struct Scsi_Host * shost, int channel, struct fc_vport_identifiers

* ids)
Admin App or LLDD requests creation of a vport

Parameters
struct Scsi_Host * shost scsi host the virtual port is connected to.
int channel channel on shost port connected to.
struct fc_vport_identifiers * ids The world wide names, FC4 port roles, etc for the virtual port.
Notes

This routine assumes no locks are held on entry.
int fc_vport_terminate(struct fc_vport * vport)

Admin App or LLDD requests termination of a vport
Parameters
struct fc_vport * vport fc_vport to be terminated
Description
Calls the LLDD vport_delete() function, then deallocates and removes the vport from the shost and
object tree.
Notes

This routine assumes no locks are held on entry.

iSCSI transport class

The file drivers/scsi/scsi_transport_iscsi.c defines transport attributes for the iSCSI class, which sends SCSI
packets over TCP/IP connections.
struct iscsi_bus_flash_session * iscsi_create_flashnode_sess(struct Scsi_Host * shost, int index,

struct iscsi_transport * transport,
int dd_size)

Add flashnode session entry in sysfs
Parameters
struct Scsi_Host * shost pointer to host data
int index index of flashnode to add in sysfs
struct iscsi_transport * transport pointer to transport data
int dd_size total size to allocate
Description
Adds a sysfs entry for the flashnode session attributes
Return

pointer to allocated flashnode sess on success NULL on failure

20.3. SCSI mid layer 559

The kernel driver API manual, Release 4.13.0-rc4+

struct iscsi_bus_flash_conn * iscsi_create_flashnode_conn(struct Scsi_Host * shost, struct
iscsi_bus_flash_session * fnode_sess,
struct iscsi_transport * transport,
int dd_size)

Add flashnode conn entry in sysfs
Parameters
struct Scsi_Host * shost pointer to host data
struct iscsi_bus_flash_session * fnode_sess pointer to the parent flashnode session entry
struct iscsi_transport * transport pointer to transport data
int dd_size total size to allocate
Description
Adds a sysfs entry for the flashnode connection attributes
Return

pointer to allocated flashnode conn on success NULL on failure
struct device * iscsi_find_flashnode_sess(struct Scsi_Host * shost, void * data, int (*fn) (struct

device *dev, void *data)
finds flashnode session entry

Parameters
struct Scsi_Host * shost pointer to host data
void * data pointer to data containing value to use for comparison
int (*)(struct device *dev,void *data) fn function pointer that does actual comparison
Description
Finds the flashnode session object comparing the data passed using logic defined in passed function
pointer
Return

pointer to found flashnode session device object on success NULL on failure
struct device * iscsi_find_flashnode_conn(struct iscsi_bus_flash_session * fnode_sess)

finds flashnode connection entry
Parameters
struct iscsi_bus_flash_session * fnode_sess pointer to parent flashnode session entry
Description
Finds the flashnode connection object comparing the data passed using logic defined in passed function
pointer
Return

pointer to found flashnode connection device object on success NULL on failure
void iscsi_destroy_flashnode_sess(struct iscsi_bus_flash_session * fnode_sess)

destroy flashnode session entry
Parameters
struct iscsi_bus_flash_session * fnode_sess pointer to flashnode session entry to be destroyed
Description
Deletes the flashnode session entry and all children flashnode connection entries from sysfs
void iscsi_destroy_all_flashnode(struct Scsi_Host * shost)

destroy all flashnode session entries

560 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct Scsi_Host * shost pointer to host data
Description
Destroys all the flashnode session entries and all corresponding children flashnode connection entries
from sysfs
int iscsi_scan_finished(struct Scsi_Host * shost, unsigned long time)

helper to report when running scans are done
Parameters
struct Scsi_Host * shost scsi host
unsigned long time scan run time
Description
This function can be used by drives like qla4xxx to report to the scsi layer when the scans it kicked off at
module load time are done.
int iscsi_block_scsi_eh(struct scsi_cmnd * cmd)

block scsi eh until session state has transistioned
Parameters
struct scsi_cmnd * cmd scsi cmd passed to scsi eh handler
Description
If the session is down this function will wait for the recovery timer to fire or for the session to be logged
back in. If the recovery timer fires then FAST_IO_FAIL is returned. The caller should pass this error value
to the scsi eh.
void iscsi_unblock_session(struct iscsi_cls_session * session)

set a session as logged in and start IO.
Parameters
struct iscsi_cls_session * session iscsi session
Description
Mark a session as ready to accept IO.
struct iscsi_cls_session * iscsi_create_session(struct Scsi_Host * shost, struct iscsi_transport

* transport, int dd_size, unsigned int target_id)
create iscsi class session

Parameters
struct Scsi_Host * shost scsi host
struct iscsi_transport * transport iscsi transport
int dd_size private driver data size
unsigned int target_id which target
Description
This can be called from a LLD or iscsi_transport.
int iscsi_destroy_session(struct iscsi_cls_session * session)

destroy iscsi session
Parameters
struct iscsi_cls_session * session iscsi_session

20.3. SCSI mid layer 561

The kernel driver API manual, Release 4.13.0-rc4+

Description
Can be called by a LLD or iscsi_transport. There must not be any running connections.
struct iscsi_cls_conn * iscsi_create_conn(struct iscsi_cls_session * session, int dd_size,

uint32_t cid)
create iscsi class connection

Parameters
struct iscsi_cls_session * session iscsi cls session
int dd_size private driver data size
uint32_t cid connection id
Description
This can be called from a LLD or iscsi_transport. The connection is child of the session so cid must be
unique for all connections on the session.
Since we do not support MCS, cid will normally be zero. In some cases for software iscsi we could be trying
to preallocate a connection struct in which case there could be two connection structs and cid would be
non-zero.
int iscsi_destroy_conn(struct iscsi_cls_conn * conn)

destroy iscsi class connection
Parameters
struct iscsi_cls_conn * conn iscsi cls session
Description
This can be called from a LLD or iscsi_transport.
int iscsi_session_event(struct iscsi_cls_session * session, enum iscsi_uevent_e event)

send session destr. completion event
Parameters
struct iscsi_cls_session * session iscsi class session
enum iscsi_uevent_e event type of event

Serial Attached SCSI (SAS) transport class

The file drivers/scsi/scsi_transport_sas.c defines transport attributes for Serial Attached SCSI, a variant of
SATA aimed at large high-end systems.
The SAS transport class contains common code to deal with SAS HBAs, an aproximated representation of
SAS topologies in the driver model, and various sysfs attributes to expose these topologies and manage-
ment interfaces to userspace.
In addition to the basic SCSI core objects this transport class introduces two additional intermediate ob-
jects: The SAS PHY as represented by struct sas_phy defines an “outgoing” PHY on a SAS HBA or Expander,
and the SAS remote PHY represented by struct sas_rphy defines an “incoming” PHY on a SAS Expander or
end device. Note that this is purely a software concept, the underlying hardware for a PHY and a remote
PHY is the exactly the same.
There is no concept of a SAS port in this code, users can see what PHYs form a wide port based on the
port_identifier attribute, which is the same for all PHYs in a port.
void sas_remove_children(struct device * dev)

tear down a devices SAS data structures
Parameters
struct device * dev device belonging to the sas object

562 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
Removes all SAS PHYs and remote PHYs for a given object
void sas_remove_host(struct Scsi_Host * shost)

tear down a Scsi_Host’s SAS data structures
Parameters
struct Scsi_Host * shost Scsi Host that is torn down
Description
Removes all SAS PHYs and remote PHYs for a given Scsi_Host and remove the Scsi_Host as well.
Note
Do not call scsi_remove_host() on the Scsi_Host any more, as it is already removed.
u64 sas_get_address(struct scsi_device * sdev)

return the SAS address of the device
Parameters
struct scsi_device * sdev scsi device
Description
Returns the SAS address of the scsi device
unsigned int sas_tlr_supported(struct scsi_device * sdev)

checking TLR bit in vpd 0x90
Parameters
struct scsi_device * sdev scsi device struct
Description
Check Transport Layer Retries are supported or not. If vpd page 0x90 is present, TRL is supported.
void sas_disable_tlr(struct scsi_device * sdev)

setting TLR flags
Parameters
struct scsi_device * sdev scsi device struct
Description
Seting tlr_enabled flag to 0.
void sas_enable_tlr(struct scsi_device * sdev)

setting TLR flags
Parameters
struct scsi_device * sdev scsi device struct
Description
Seting tlr_enabled flag 1.
struct sas_phy * sas_phy_alloc(struct device * parent, int number)

allocates and initialize a SAS PHY structure
Parameters
struct device * parent Parent device
int number Phy index

20.3. SCSI mid layer 563

The kernel driver API manual, Release 4.13.0-rc4+

Description
Allocates an SAS PHY structure. It will be added in the device tree below the device specified by parent,
which has to be either a Scsi_Host or sas_rphy.
Return

SAS PHY allocated or NULL if the allocation failed.
int sas_phy_add(struct sas_phy * phy)

add a SAS PHY to the device hierarchy
Parameters
struct sas_phy * phy The PHY to be added
Description
Publishes a SAS PHY to the rest of the system.
void sas_phy_free(struct sas_phy * phy)

free a SAS PHY
Parameters
struct sas_phy * phy SAS PHY to free
Description
Frees the specified SAS PHY.
Note

This function must only be called on a PHY that has not successfully been added using
sas_phy_add().

void sas_phy_delete(struct sas_phy * phy)
remove SAS PHY

Parameters
struct sas_phy * phy SAS PHY to remove
Description
Removes the specified SAS PHY. If the SAS PHY has an associated remote PHY it is removed before.
int scsi_is_sas_phy(const struct device * dev)

check if a struct device represents a SAS PHY
Parameters
const struct device * dev device to check
Return

1 if the device represents a SAS PHY, 0 else
int sas_port_add(struct sas_port * port)

add a SAS port to the device hierarchy
Parameters
struct sas_port * port port to be added
Description
publishes a port to the rest of the system
void sas_port_free(struct sas_port * port)

free a SAS PORT
Parameters
struct sas_port * port SAS PORT to free

564 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
Frees the specified SAS PORT.
Note

This function must only be called on a PORT that has not successfully been added using
sas_port_add().

void sas_port_delete(struct sas_port * port)
remove SAS PORT

Parameters
struct sas_port * port SAS PORT to remove
Description
Removes the specified SAS PORT. If the SAS PORT has an associated phys, unlink them from the port as
well.
int scsi_is_sas_port(const struct device * dev)

check if a struct device represents a SAS port
Parameters
const struct device * dev device to check
Return

1 if the device represents a SAS Port, 0 else
struct sas_phy * sas_port_get_phy(struct sas_port * port)

try to take a reference on a port member
Parameters
struct sas_port * port port to check
void sas_port_add_phy(struct sas_port * port, struct sas_phy * phy)

add another phy to a port to form a wide port
Parameters
struct sas_port * port port to add the phy to
struct sas_phy * phy phy to add
Description
When a port is initially created, it is empty (has no phys). All ports must have at least one phy to operated,
and all wide ports must have at least two. The current code makes no difference between ports and wide
ports, but the only object that can be connected to a remote device is a port, so ports must be formed on
all devices with phys if they’re connected to anything.
void sas_port_delete_phy(struct sas_port * port, struct sas_phy * phy)

remove a phy from a port or wide port
Parameters
struct sas_port * port port to remove the phy from
struct sas_phy * phy phy to remove
Description
This operation is used for tearing down ports again. It must be done to every port or wide port before
calling sas_port_delete.
struct sas_rphy * sas_end_device_alloc(struct sas_port * parent)

allocate an rphy for an end device
Parameters

20.3. SCSI mid layer 565

The kernel driver API manual, Release 4.13.0-rc4+

struct sas_port * parent which port
Description
Allocates an SAS remote PHY structure, connected to parent.
Return

SAS PHY allocated or NULL if the allocation failed.
struct sas_rphy * sas_expander_alloc(struct sas_port * parent, enum sas_device_type type)

allocate an rphy for an end device
Parameters
struct sas_port * parent which port
enum sas_device_type type SAS_EDGE_EXPANDER_DEVICE or SAS_FANOUT_EXPANDER_DEVICE
Description
Allocates an SAS remote PHY structure, connected to parent.
Return

SAS PHY allocated or NULL if the allocation failed.
int sas_rphy_add(struct sas_rphy * rphy)

add a SAS remote PHY to the device hierarchy
Parameters
struct sas_rphy * rphy The remote PHY to be added
Description
Publishes a SAS remote PHY to the rest of the system.
void sas_rphy_free(struct sas_rphy * rphy)

free a SAS remote PHY
Parameters
struct sas_rphy * rphy SAS remote PHY to free
Description
Frees the specified SAS remote PHY.
Note

This function must only be called on a remote PHY that has not successfully been added using
sas_rphy_add() (or has been sas_rphy_remove()‘d)

void sas_rphy_delete(struct sas_rphy * rphy)
remove and free SAS remote PHY

Parameters
struct sas_rphy * rphy SAS remote PHY to remove and free
Description
Removes the specified SAS remote PHY and frees it.
void sas_rphy_unlink(struct sas_rphy * rphy)

unlink SAS remote PHY
Parameters
struct sas_rphy * rphy SAS remote phy to unlink from its parent port
Description
Removes port reference to an rphy

566 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

void sas_rphy_remove(struct sas_rphy * rphy)
remove SAS remote PHY

Parameters
struct sas_rphy * rphy SAS remote phy to remove
Description
Removes the specified SAS remote PHY.
int scsi_is_sas_rphy(const struct device * dev)

check if a struct device represents a SAS remote PHY
Parameters
const struct device * dev device to check
Return

1 if the device represents a SAS remote PHY, 0 else
struct scsi_transport_template * sas_attach_transport(struct sas_function_template * ft)

instantiate SAS transport template
Parameters
struct sas_function_template * ft SAS transport class function template
void sas_release_transport(struct scsi_transport_template * t)

release SAS transport template instance
Parameters
struct scsi_transport_template * t transport template instance

SATA transport class

The SATA transport is handled by libata, which has its own book of documentation in this directory.

Parallel SCSI (SPI) transport class

The file drivers/scsi/scsi_transport_spi.c defines transport attributes for traditional (fast/wide/ultra) SCSI
busses.
void spi_schedule_dv_device(struct scsi_device * sdev)

schedule domain validation to occur on the device
Parameters
struct scsi_device * sdev The device to validate
Description

Identical to spi_dv_device() above, except that the DV will be scheduled to occur in a
workqueue later. All memory allocations are atomic, so may be called from any context in-
cluding those holding SCSI locks.

void spi_display_xfer_agreement(struct scsi_target * starget)
Print the current target transfer agreement

Parameters
struct scsi_target * starget The target for which to display the agreement
Description
Each SPI port is required to maintain a transfer agreement for each other port on the bus. This function
prints a one-line summary of the current agreement; more detailed information is available in sysfs.

20.3. SCSI mid layer 567

The kernel driver API manual, Release 4.13.0-rc4+

int spi_populate_tag_msg(unsigned char * msg, struct scsi_cmnd * cmd)
place a tag message in a buffer

Parameters
unsigned char * msg pointer to the area to place the tag
struct scsi_cmnd * cmd pointer to the scsi command for the tag
Notes

designed to create the correct type of tag message for the particular request. Returns the size
of the tag message. May return 0 if TCQ is disabled for this device.

SCSI RDMA (SRP) transport class

The file drivers/scsi/scsi_transport_srp.c defines transport attributes for SCSI over Remote Direct Memory
Access.
int srp_tmo_valid(int reconnect_delay, int fast_io_fail_tmo, int dev_loss_tmo)

check timeout combination validity
Parameters
int reconnect_delay Reconnect delay in seconds.
int fast_io_fail_tmo Fast I/O fail timeout in seconds.
int dev_loss_tmo Device loss timeout in seconds.
Description
The combination of the timeout parameters must be such that SCSI commands are finished in a reasonable
time. Hence do not allow the fast I/O fail timeout to exceed SCSI_DEVICE_BLOCK_MAX_TIMEOUT nor allow
dev_loss_tmo to exceed that limit if failing I/O fast has been disabled. Furthermore, these parameters
must be such that multipath can detect failed paths timely. Hence do not allow all three parameters to
be disabled simultaneously.
void srp_start_tl_fail_timers(struct srp_rport * rport)

start the transport layer failure timers
Parameters
struct srp_rport * rport SRP target port.
Description
Start the transport layer fast I/O failure and device loss timers. Do not modify a timer that was already
started.
int srp_reconnect_rport(struct srp_rport * rport)

reconnect to an SRP target port
Parameters
struct srp_rport * rport SRP target port.
Description
Blocks SCSI command queueing before invoking reconnect() such that queuecommand() won’t be in-
voked concurrently with reconnect() from outside the SCSI EH. This is important since a reconnect()
implementation may reallocate resources needed by queuecommand().
Notes
• This function neither waits until outstanding requests have finished nor tries to abort these. It is the
responsibility of the reconnect() function to finish outstanding commands before reconnecting to
the target port.

568 Chapter 20. SCSI Interfaces Guide

The kernel driver API manual, Release 4.13.0-rc4+

• It is the responsibility of the caller to ensure that the resources reallocated by the reconnect() func-
tion won’t be used while this function is in progress. One possible strategy is to invoke this function
from the context of the SCSI EH thread only. Another possible strategy is to lock the rport mutex
inside each SCSI LLD callback that can be invoked by the SCSI EH (the scsi_host_template.eh_*()
functions and also the scsi_host_template.:c:func:queuecommand() function).

enum blk_eh_timer_return srp_timed_out(struct scsi_cmnd * scmd)
SRP transport intercept of the SCSI timeout EH

Parameters
struct scsi_cmnd * scmd SCSI command.
Description
If a timeout occurs while an rport is in the blocked state, ask the SCSI EH to continue waiting
(BLK_EH_RESET_TIMER). Otherwise let the SCSI core handle the timeout (BLK_EH_NOT_HANDLED).
Note
This function is called from soft-IRQ context and with the request queue lock held.
void srp_rport_get(struct srp_rport * rport)

increment rport reference count
Parameters
struct srp_rport * rport SRP target port.
void srp_rport_put(struct srp_rport * rport)

decrement rport reference count
Parameters
struct srp_rport * rport SRP target port.
struct srp_rport * srp_rport_add(struct Scsi_Host * shost, struct srp_rport_identifiers * ids)

add a SRP remote port to the device hierarchy
Parameters
struct Scsi_Host * shost scsi host the remote port is connected to.
struct srp_rport_identifiers * ids The port id for the remote port.
Description
Publishes a port to the rest of the system.
void srp_rport_del(struct srp_rport * rport)

remove a SRP remote port
Parameters
struct srp_rport * rport SRP remote port to remove
Description
Removes the specified SRP remote port.
void srp_remove_host(struct Scsi_Host * shost)

tear down a Scsi_Host’s SRP data structures
Parameters
struct Scsi_Host * shost Scsi Host that is torn down
Description
Removes all SRP remote ports for a given Scsi_Host. Must be called just before scsi_remove_host for SRP
HBAs.

20.3. SCSI mid layer 569

The kernel driver API manual, Release 4.13.0-rc4+

void srp_stop_rport_timers(struct srp_rport * rport)
stop the transport layer recovery timers

Parameters
struct srp_rport * rport SRP remote port for which to stop the timers.
Description
Must be called after srp_remove_host() and scsi_remove_host(). The caller must hold a reference on
the rport (rport->dev) and on the SCSI host (rport->dev.parent).
struct scsi_transport_template * srp_attach_transport(struct srp_function_template * ft)

instantiate SRP transport template
Parameters
struct srp_function_template * ft SRP transport class function template
void srp_release_transport(struct scsi_transport_template * t)

release SRP transport template instance
Parameters
struct scsi_transport_template * t transport template instance

20.4 SCSI lower layer

20.4.1 Host Bus Adapter transport types

Many modern device controllers use the SCSI command set as a protocol to communicate with their
devices through many different types of physical connections.
In SCSI language a bus capable of carrying SCSI commands is called a “transport”, and a controller con-
necting to such a bus is called a “host bus adapter” (HBA).

Debug transport

The file drivers/scsi/scsi_debug.c simulates a host adapter with a variable number of disks (or disk like
devices) attached, sharing a common amount of RAM. Does a lot of checking to make sure that we are
not getting blocks mixed up, and panics the kernel if anything out of the ordinary is seen.
To be more realistic, the simulated devices have the transport attributes of SAS disks.
For documentation see http://sg.danny.cz/sg/sdebug26.html

todo

Parallel (fast/wide/ultra) SCSI, USB, SATA, SAS, Fibre Channel, FireWire, ATAPI devices, Infiniband, I20,
iSCSI, Parallel ports, netlink...

570 Chapter 20. SCSI Interfaces Guide

http://sg.danny.cz/sg/sdebug26.html

CHAPTER

TWENTYONE

LIBATA DEVELOPER’S GUIDE

Author Jeff Garzik

21.1 Introduction

libATA is a library used inside the Linux kernel to support ATA host controllers and devices. libATA provides
an ATA driver API, class transports for ATA and ATAPI devices, and SCSI<->ATA translation for ATA devices
according to the T10 SAT specification.
This Guide documents the libATA driver API, library functions, library internals, and a couple sample ATA
low-level drivers.

21.2 libata Driver API

struct ata_port_operations is defined for every low-level libata hardware driver, and it controls how
the low-level driver interfaces with the ATA and SCSI layers.
FIS-based drivers will hook into the system with ->qc_prep() and ->qc_issue() high-level hooks. Hard-
ware which behaves in a manner similar to PCI IDE hardware may utilize several generic helpers, defining
at a bare minimum the bus I/O addresses of the ATA shadow register blocks.

21.2.1 struct ata_port_operations

Disable ATA port

void (*port_disable) (struct ata_port *);

Called from ata_bus_probe() error path, as well as when unregistering from the SCSI module (rmmod,
hot unplug). This function should do whatever needs to be done to take the port out of use. In most cases,
ata_port_disable() can be used as this hook.
Called from ata_bus_probe() on a failed probe. Called from ata_scsi_release().

Post-IDENTIFY device configuration

void (*dev_config) (struct ata_port *, struct ata_device *);

Called after IDENTIFY [PACKET] DEVICE is issued to each device found. Typically used to apply device-
specific fixups prior to issue of SET FEATURES - XFER MODE, and prior to operation.
This entry may be specified as NULL in ata_port_operations.

571

The kernel driver API manual, Release 4.13.0-rc4+

Set PIO/DMA mode

void (*set_piomode) (struct ata_port *, struct ata_device *);
void (*set_dmamode) (struct ata_port *, struct ata_device *);
void (*post_set_mode) (struct ata_port *);
unsigned int (*mode_filter) (struct ata_port *, struct ata_device *, unsigned int);

Hooks called prior to the issue of SET FEATURES - XFER MODE command. The optional ->mode_filter()
hook is called when libata has built a mask of the possible modes. This is passed to the ->mode_filter()
function which should return a mask of valid modes after filtering those unsuitable due to hardware limits.
It is not valid to use this interface to add modes.
dev->pio_mode and dev->dma_mode are guaranteed to be valid when ->set_piomode() and when -
>set_dmamode() is called. The timings for any other drive sharing the cable will also be valid at this
point. That is the library records the decisions for the modes of each drive on a channel before it attempts
to set any of them.
->post_set_mode() is called unconditionally, after the SET FEATURES - XFER MODE command completes
successfully.
->set_piomode() is always called (if present), but ->set_dma_mode() is only called if DMA is possible.

Taskfile read/write

void (*sff_tf_load) (struct ata_port *ap, struct ata_taskfile *tf);
void (*sff_tf_read) (struct ata_port *ap, struct ata_taskfile *tf);

->tf_load() is called to load the given taskfile into hardware registers / DMA buffers. ->tf_read() is
called to read the hardware registers / DMA buffers, to obtain the current set of taskfile register values.
Most drivers for taskfile-based hardware (PIO or MMIO) use ata_sff_tf_load() and ata_sff_tf_read()
for these hooks.

PIO data read/write

void (*sff_data_xfer) (struct ata_device *, unsigned char *, unsigned int, int);

All bmdma-style drivers must implement this hook. This is the low-level operation that actually copies the
data bytes during a PIO data transfer. Typically the driver will choose one of ata_sff_data_xfer_noirq(),
ata_sff_data_xfer(), or ata_sff_data_xfer32().

ATA command execute

void (*sff_exec_command)(struct ata_port *ap, struct ata_taskfile *tf);

causes an ATA command, previously loaded with ->tf_load(), to be initiated in hardware. Most drivers
for taskfile-based hardware use ata_sff_exec_command() for this hook.

Per-cmd ATAPI DMA capabilities filter

int (*check_atapi_dma) (struct ata_queued_cmd *qc);

Allow low-level driver to filter ATA PACKET commands, returning a status indicating whether or not it is OK
to use DMA for the supplied PACKET command.
This hook may be specified as NULL, in which case libata will assume that atapi dma can be supported.

572 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Read specific ATA shadow registers

u8 (*sff_check_status)(struct ata_port *ap);
u8 (*sff_check_altstatus)(struct ata_port *ap);

Reads the Status/AltStatus ATA shadow register from hardware. On some hardware, reading the Status
register has the side effect of clearing the interrupt condition. Most drivers for taskfile-based hardware
use ata_sff_check_status() for this hook.

Write specific ATA shadow register

void (*sff_set_devctl)(struct ata_port *ap, u8 ctl);

Write the device control ATA shadow register to the hardware. Most drivers don’t need to define this.

Select ATA device on bus

void (*sff_dev_select)(struct ata_port *ap, unsigned int device);

Issues the low-level hardware command(s) that causes one of N hardware devices to be considered ‘se-
lected’ (active and available for use) on the ATA bus. This generally has no meaning on FIS-based devices.
Most drivers for taskfile-based hardware use ata_sff_dev_select() for this hook.

Private tuning method

void (*set_mode) (struct ata_port *ap);

By default libata performs drive and controller tuning in accordance with the ATA timing rules and also
applies blacklists and cable limits. Some controllers need special handling and have custom tuning rules,
typically raid controllers that use ATA commands but do not actually do drive timing.

Warning
This hook should not be used to replace the standard controller tuning logic when a controller
has quirks. Replacing the default tuning logic in that case would bypass handling for drive and
bridge quirks that may be important to data reliability. If a controller needs to filter the mode
selection it should use the mode_filter hook instead.

Control PCI IDE BMDMA engine

void (*bmdma_setup) (struct ata_queued_cmd *qc);
void (*bmdma_start) (struct ata_queued_cmd *qc);
void (*bmdma_stop) (struct ata_port *ap);
u8 (*bmdma_status) (struct ata_port *ap);

When setting up an IDE BMDMA transaction, these hooks arm (->bmdma_setup), fire (->bmdma_start),
and halt (->bmdma_stop) the hardware’s DMA engine. ->bmdma_status is used to read the standard PCI
IDE DMA Status register.
These hooks are typically either no-ops, or simply not implemented, in FIS-based drivers.
Most legacy IDE drivers use ata_bmdma_setup() for the bmdma_setup() hook. ata_bmdma_setup() will
write the pointer to the PRD table to the IDE PRD Table Address register, enable DMA in the DMA Command
register, and call exec_command() to begin the transfer.
Most legacy IDE drivers use ata_bmdma_start() for the bmdma_start() hook. ata_bmdma_start() will
write the ATA_DMA_START flag to the DMA Command register.

21.2. libata Driver API 573

The kernel driver API manual, Release 4.13.0-rc4+

Many legacy IDE drivers use ata_bmdma_stop() for the bmdma_stop() hook. ata_bmdma_stop() clears
the ATA_DMA_START flag in the DMA command register.
Many legacy IDE drivers use ata_bmdma_status() as the bmdma_status() hook.

High-level taskfile hooks

void (*qc_prep) (struct ata_queued_cmd *qc);
int (*qc_issue) (struct ata_queued_cmd *qc);

Higher-level hooks, these two hooks can potentially supercede several of the above taskfile/DMA engine
hooks. ->qc_prep is called after the buffers have been DMA-mapped, and is typically used to populate
the hardware’s DMA scatter-gather table. Most drivers use the standard ata_qc_prep() helper function,
but more advanced drivers roll their own.
->qc_issue is used to make a command active, once the hardware and S/G tables have been prepared.
IDE BMDMA drivers use the helper function ata_qc_issue_prot() for taskfile protocol-based dispatch.
More advanced drivers implement their own ->qc_issue.
ata_qc_issue_prot() calls ->tf_load(), ->bmdma_setup(), and ->bmdma_start() as necessary to ini-
tiate a transfer.

Exception and probe handling (EH)

void (*eng_timeout) (struct ata_port *ap);
void (*phy_reset) (struct ata_port *ap);

Deprecated. Use ->error_handler() instead.

void (*freeze) (struct ata_port *ap);
void (*thaw) (struct ata_port *ap);

ata_port_freeze() is called when HSM violations or some other condition disrupts normal operation of
the port. A frozen port is not allowed to perform any operation until the port is thawed, which usually
follows a successful reset.
The optional ->freeze() callback can be used for freezing the port hardware-wise (e.g. mask interrupt
and stop DMA engine). If a port cannot be frozen hardware-wise, the interrupt handler must ack and clear
interrupts unconditionally while the port is frozen.
The optional ->thaw() callback is called to perform the opposite of ->freeze(): prepare the port for
normal operation once again. Unmask interrupts, start DMA engine, etc.

void (*error_handler) (struct ata_port *ap);

->error_handler() is a driver’s hook into probe, hotplug, and recovery and other exceptional conditions.
The primary responsibility of an implementation is to call ata_do_eh() or ata_bmdma_drive_eh() with a
set of EH hooks as arguments:
‘prereset’ hook (may be NULL) is called during an EH reset, before any other actions are taken.
‘postreset’ hook (may be NULL) is called after the EH reset is performed. Based on existing conditions,
severity of the problem, and hardware capabilities,
Either ‘softreset’ (may be NULL) or ‘hardreset’ (may be NULL) will be called to perform the low-level EH
reset.

void (*post_internal_cmd) (struct ata_queued_cmd *qc);

Perform any hardware-specific actions necessary to finish processing after executing a probe-time or EH-
time command via ata_exec_internal().

574 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Hardware interrupt handling

irqreturn_t (*irq_handler)(int, void *, struct pt_regs *);
void (*irq_clear) (struct ata_port *);

->irq_handler is the interrupt handling routine registered with the system, by libata. ->irq_clear is
called during probe just before the interrupt handler is registered, to be sure hardware is quiet.
The second argument, dev_instance, should be cast to a pointer to struct ata_host_set.
Most legacy IDE drivers use ata_sff_interrupt() for the irq_handler hook, which scans all ports in the
host_set, determines which queued command was active (if any), and calls ata_sff_host_intr(ap,qc).
Most legacy IDE drivers use ata_sff_irq_clear() for the irq_clear() hook, which simply clears the
interrupt and error flags in the DMA status register.

SATA phy read/write

int (*scr_read) (struct ata_port *ap, unsigned int sc_reg,
u32 *val);

int (*scr_write) (struct ata_port *ap, unsigned int sc_reg,
u32 val);

Read and write standard SATA phy registers. Currently only used if ->phy_reset hook called the
sata_phy_reset() helper function. sc_reg is one of SCR_STATUS, SCR_CONTROL, SCR_ERROR, or
SCR_ACTIVE.

Init and shutdown

int (*port_start) (struct ata_port *ap);
void (*port_stop) (struct ata_port *ap);
void (*host_stop) (struct ata_host_set *host_set);

->port_start() is called just after the data structures for each port are initialized. Typically this is used
to alloc per-port DMA buffers / tables / rings, enable DMA engines, and similar tasks. Some drivers also
use this entry point as a chance to allocate driver-private memory for ap->private_data.
Many drivers use ata_port_start() as this hook or call it from their own port_start() hooks.
ata_port_start() allocates space for a legacy IDE PRD table and returns.
->port_stop() is called after ->host_stop(). Its sole function is to release DMA/memory resources, now
that they are no longer actively being used. Many drivers also free driver-private data from port at this
time.
->host_stop() is called after all ->port_stop() calls have completed. The hook must finalize hardware
shutdown, release DMA and other resources, etc. This hook may be specified as NULL, in which case it is
not called.

21.3 Error handling

This chapter describes how errors are handled under libata. Readers are advised to read SCSI EH (Docu-
mentation/scsi/scsi_eh.txt) and ATA exceptions doc first.

21.3. Error handling 575

The kernel driver API manual, Release 4.13.0-rc4+

21.3.1 Origins of commands

In libata, a command is represented with struct ata_queued_cmd or qc. qc’s are preallocated during
port initialization and repetitively used for command executions. Currently only one qc is allocated per
port but yet-to-be-merged NCQ branch allocates one for each tag and maps each qc to NCQ tag 1-to-1.
libata commands can originate from two sources - libata itself and SCSI midlayer. libata internal commands
are used for initialization and error handling. All normal blk requests and commands for SCSI emulation
are passed as SCSI commands through queuecommand callback of SCSI host template.

21.3.2 How commands are issued

Internal commands First, qc is allocated and initialized using ata_qc_new_init(). Although
ata_qc_new_init() doesn’t implement any wait or retry mechanism when qc is not available, inter-
nal commands are currently issued only during initialization and error recovery, so no other command
is active and allocation is guaranteed to succeed.
Once allocated qc’s taskfile is initialized for the command to be executed. qc currently has two
mechanisms to notify completion. One is via qc->complete_fn() callback and the other is com-
pletion qc->waiting. qc->complete_fn() callback is the asynchronous path used by normal SCSI
translated commands and qc->waiting is the synchronous (issuer sleeps in process context) path
used by internal commands.
Once initialization is complete, host_set lock is acquired and the qc is issued.

SCSI commands All libata drivers use ata_scsi_queuecmd() as hostt->queuecommand callback. scmds
can either be simulated or translated. No qc is involved in processing a simulated scmd. The result
is computed right away and the scmd is completed.
For a translated scmd, ata_qc_new_init() is invoked to allocate a qc and the scmd is translated
into the qc. SCSI midlayer’s completion notification function pointer is stored into qc->scsidone.
qc->complete_fn() callback is used for completion notification. ATA commands use
ata_scsi_qc_complete() while ATAPI commands use atapi_qc_complete(). Both functions end
up calling qc->scsidone to notify upper layer when the qc is finished. After translation is completed,
the qc is issued with ata_qc_issue().
Note that SCSI midlayer invokes hostt->queuecommand while holding host_set lock, so all above
occur while holding host_set lock.

21.3.3 How commands are processed

Depending on which protocol and which controller are used, commands are processed differently. For the
purpose of discussion, a controller which uses taskfile interface and all standard callbacks is assumed.
Currently 6 ATA command protocols are used. They can be sorted into the following four categories
according to how they are processed.
ATA NO DATA or DMA ATA_PROT_NODATA and ATA_PROT_DMA fall into this category. These types of

commands don’t require any software intervention once issued. Device will raise interrupt on com-
pletion.

ATA PIO ATA_PROT_PIO is in this category. libata currently implements PIO with polling. ATA_NIEN bit is
set to turn off interrupt and pio_task on ata_wq performs polling and IO.

ATAPI NODATA or DMA ATA_PROT_ATAPI_NODATA and ATA_PROT_ATAPI_DMA are in this category.
packet_task is used to poll BSY bit after issuing PACKET command. Once BSY is turned off by the
device, packet_task transfers CDB and hands off processing to interrupt handler.

ATAPI PIO ATA_PROT_ATAPI is in this category. ATA_NIEN bit is set and, as in ATAPI NODATA or DMA,
packet_task submits cdb. However, after submitting cdb, further processing (data transfer) is handed
off to pio_task.

576 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

21.3.4 How commands are completed

Once issued, all qc’s are either completed with ata_qc_complete() or time out. For commands which
are handled by interrupts, ata_host_intr() invokes ata_qc_complete(), and, for PIO tasks, pio_task
invokes ata_qc_complete(). In error cases, packet_task may also complete commands.
ata_qc_complete() does the following.
1. DMA memory is unmapped.
2. ATA_QCFLAG_ACTIVE is cleared from qc->flags.
3. qc->complete_fn() callback is invoked. If the return value of the callback is not zero. Completion
is short circuited and ata_qc_complete() returns.

4. __ata_qc_complete() is called, which does
(a) qc->flags is cleared to zero.
(b) ap->active_tag and qc->tag are poisoned.
(c) qc->waiting is cleared & completed (in that order).
(d) qc is deallocated by clearing appropriate bit in ap->qactive.

So, it basically notifies upper layer and deallocates qc. One exception is short-circuit path in #3 which is
used by atapi_qc_complete().
For all non-ATAPI commands, whether it fails or not, almost the same code path is taken and very little error
handling takes place. A qc is completed with success status if it succeeded, with failed status otherwise.
However, failed ATAPI commands require more handling as REQUEST SENSE is needed to acquire sense
data. If an ATAPI command fails, ata_qc_complete() is invoked with error status, which in turn invokes
atapi_qc_complete() via qc->complete_fn() callback.
This makes atapi_qc_complete() set scmd->result to SAM_STAT_CHECK_CONDITION, complete the
scmd and return 1. As the sense data is empty but scmd->result is CHECK CONDITION, SCSI midlayer
will invoke EH for the scmd, and returning 1 makes ata_qc_complete() to return without deallocating the
qc. This leads us to ata_scsi_error() with partially completed qc.

21.3.5 ata_scsi_error()

ata_scsi_error() is the current transportt->eh_strategy_handler() for libata. As discussed above,
this will be entered in two cases - timeout and ATAPI error completion. This function calls low level libata
driver’s eng_timeout() callback, the standard callback for which is ata_eng_timeout(). It checks if a qc
is active and calls ata_qc_timeout() on the qc if so. Actual error handling occurs in ata_qc_timeout().
If EH is invoked for timeout, ata_qc_timeout() stops BMDMA and completes the qc. Note that as we’re
currently in EH, we cannot call scsi_done. As described in SCSI EH doc, a recovered scmd should be
either retried with scsi_queue_insert() or finished with scsi_finish_command(). Here, we override
qc->scsidone with scsi_finish_command() and calls ata_qc_complete().
If EH is invoked due to a failed ATAPI qc, the qc here is completed but not deallocated. The purpose of this
half-completion is to use the qc as place holder to make EH code reach this place. This is a bit hackish,
but it works.
Once control reaches here, the qc is deallocated by invoking __ata_qc_complete() explicitly. Then,
internal qc for REQUEST SENSE is issued. Once sense data is acquired, scmd is finished by directly invoking
scsi_finish_command() on the scmd. Note that as we already have completed and deallocated the qc
which was associated with the scmd, we don’t need to/cannot call ata_qc_complete() again.

21.3. Error handling 577

The kernel driver API manual, Release 4.13.0-rc4+

21.3.6 Problems with the current EH

• Error representation is too crude. Currently any and all error conditions are represented with ATA
STATUS and ERROR registers. Errors which aren’t ATA device errors are treated as ATA device er-
rors by setting ATA_ERR bit. Better error descriptor which can properly represent ATA and other
errors/exceptions is needed.

• When handling timeouts, no action is taken to make device forget about the timed out command and
ready for new commands.

• EH handling via ata_scsi_error() is not properly protected from usual command processing. On
EH entrance, the device is not in quiescent state. Timed out commands may succeed or fail any
time. pio_task and atapi_task may still be running.

• Too weak error recovery. Devices / controllers causing HSM mismatch errors and other errors quite
often require reset to return to known state. Also, advanced error handling is necessary to support
features like NCQ and hotplug.

• ATA errors are directly handled in the interrupt handler and PIO errors in pio_task. This is problematic
for advanced error handling for the following reasons.
First, advanced error handling often requires context and internal qc execution.
Second, even a simple failure (say, CRC error) needs information gathering and could trigger complex
error handling (say, resetting & reconfiguring). Having multiple code paths to gather information,
enter EH and trigger actions makes life painful.
Third, scattered EH code makes implementing low level drivers difficult. Low level drivers override
libata callbacks. If EH is scattered over several places, each affected callbacks should perform its
part of error handling. This can be error prone and painful.

21.4 libata Library

struct ata_link * ata_link_next(struct ata_link * link, struct ata_port * ap, enum
ata_link_iter_mode mode)

link iteration helper
Parameters
struct ata_link * link the previous link, NULL to start
struct ata_port * ap ATA port containing links to iterate
enum ata_link_iter_mode mode iteration mode, one of ATA_LITER_*
Description

LOCKING: Host lock or EH context.
Return

Pointer to the next link.
struct ata_device * ata_dev_next(struct ata_device * dev, struct ata_link * link, enum

ata_dev_iter_mode mode)
device iteration helper

Parameters
struct ata_device * dev the previous device, NULL to start
struct ata_link * link ATA link containing devices to iterate
enum ata_dev_iter_mode mode iteration mode, one of ATA_DITER_*
Description

578 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

LOCKING: Host lock or EH context.
Return

Pointer to the next device.
int atapi_cmd_type(u8 opcode)

Determine ATAPI command type from SCSI opcode
Parameters
u8 opcode SCSI opcode
Description

Determine ATAPI command type from opcode.
LOCKING: None.

Return
ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}

void ata_tf_to_fis(const struct ata_taskfile * tf, u8 pmp, int is_cmd, u8 * fis)
Convert ATA taskfile to SATA FIS structure

Parameters
const struct ata_taskfile * tf Taskfile to convert
u8 pmp Port multiplier port
int is_cmd This FIS is for command
u8 * fis Buffer into which data will output
Description

Converts a standard ATA taskfile to a Serial ATA FIS structure (Register - Host to Device).
LOCKING: Inherited from caller.

void ata_tf_from_fis(const u8 * fis, struct ata_taskfile * tf)
Convert SATA FIS to ATA taskfile

Parameters
const u8 * fis Buffer from which data will be input
struct ata_taskfile * tf Taskfile to output
Description

Converts a serial ATA FIS structure to a standard ATA taskfile.
LOCKING: Inherited from caller.

unsigned long ata_pack_xfermask(unsigned long pio_mask, unsigned long mwdma_mask, un-
signed long udma_mask)

Pack pio, mwdma and udma masks into xfer_mask
Parameters
unsigned long pio_mask pio_mask
unsigned long mwdma_mask mwdma_mask
unsigned long udma_mask udma_mask
Description

Pack pio_mask, mwdma_mask and udma_mask into a single unsigned int xfer_mask.
LOCKING: None.

Return

21.4. libata Library 579

The kernel driver API manual, Release 4.13.0-rc4+

Packed xfer_mask.
void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long * pio_mask, unsigned long

* mwdma_mask, unsigned long * udma_mask)
Unpack xfer_mask into pio, mwdma and udma masks

Parameters
unsigned long xfer_mask xfer_mask to unpack
unsigned long * pio_mask resulting pio_mask
unsigned long * mwdma_mask resulting mwdma_mask
unsigned long * udma_mask resulting udma_mask
Description

Unpack xfer_mask into pio_mask, mwdma_mask and udma_mask. Any NULL destination
masks will be ignored.

u8 ata_xfer_mask2mode(unsigned long xfer_mask)
Find matching XFER_* for the given xfer_mask

Parameters
unsigned long xfer_mask xfer_mask of interest
Description

Return matching XFER_* value for xfer_mask. Only the highest bit of xfer_mask is considered.
LOCKING: None.

Return
Matching XFER_* value, 0xff if no match found.

unsigned long ata_xfer_mode2mask(u8 xfer_mode)
Find matching xfer_mask for XFER_*

Parameters
u8 xfer_mode XFER_* of interest
Description

Return matching xfer_mask for xfer_mode.
LOCKING: None.

Return
Matching xfer_mask, 0 if no match found.

int ata_xfer_mode2shift(unsigned long xfer_mode)
Find matching xfer_shift for XFER_*

Parameters
unsigned long xfer_mode XFER_* of interest
Description

Return matching xfer_shift for xfer_mode.
LOCKING: None.

Return
Matching xfer_shift, -1 if no match found.

const char * ata_mode_string(unsigned long xfer_mask)
convert xfer_mask to string

580 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
unsigned long xfer_mask mask of bits supported; only highest bit counts.
Description

Determine string which represents the highest speed (highest bit in modemask).
LOCKING: None.

Return
Constant C string representing highest speed listed in mode_mask, or the constant C string
“<n/a>”.

unsigned int ata_dev_classify(const struct ata_taskfile * tf)
determine device type based on ATA-spec signature

Parameters
const struct ata_taskfile * tf ATA taskfile register set for device to be identified
Description

Determine from taskfile register contents whether a device is ATA or ATAPI, as per “Signature
and persistence” section of ATA/PI spec (volume 1, sect 5.14).
LOCKING: None.

Return
Device type, ATA_DEV_ATA, ATA_DEV_ATAPI, ATA_DEV_PMP, ATA_DEV_ZAC, or ATA_DEV_UNKNOWN
the event of failure.

void ata_id_string(const u16 * id, unsigned char * s, unsigned int ofs, unsigned int len)
Convert IDENTIFY DEVICE page into string

Parameters
const u16 * id IDENTIFY DEVICE results we will examine
unsigned char * s string into which data is output
unsigned int ofs offset into identify device page
unsigned int len length of string to return. must be an even number.
Description

The strings in the IDENTIFY DEVICE page are broken up into 16-bit chunks. Run through the
string, and output each 8-bit chunk linearly, regardless of platform.
LOCKING: caller.

void ata_id_c_string(const u16 * id, unsigned char * s, unsigned int ofs, unsigned int len)
Convert IDENTIFY DEVICE page into C string

Parameters
const u16 * id IDENTIFY DEVICE results we will examine
unsigned char * s string into which data is output
unsigned int ofs offset into identify device page
unsigned int len length of string to return. must be an odd number.
Description

This function is identical to ata_id_string except that it trims trailing spaces and terminates the
resulting string with null. len must be actual maximum length (even number) + 1.
LOCKING: caller.

21.4. libata Library 581

The kernel driver API manual, Release 4.13.0-rc4+

unsigned long ata_id_xfermask(const u16 * id)
Compute xfermask from the given IDENTIFY data

Parameters
const u16 * id IDENTIFY data to compute xfer mask from
Description

Compute the xfermask for this device. This is not as trivial as it seems if we must consider early
devices correctly.
FIXME: pre IDE drive timing (do we care ?).
LOCKING: None.

Return
Computed xfermask

unsigned int ata_pio_need_iordy(const struct ata_device * adev)
check if iordy needed

Parameters
const struct ata_device * adev ATA device
Description

Check if the current speed of the device requires IORDY. Used by various controllers for chip
configuration.

unsigned int ata_do_dev_read_id(struct ata_device * dev, struct ata_taskfile * tf, u16 * id)
default ID read method

Parameters
struct ata_device * dev device
struct ata_taskfile * tf proposed taskfile
u16 * id data buffer
Description

Issue the identify taskfile and hand back the buffer containing identify data. For some RAID
controllers and for pre ATA devices this function is wrapped or replaced by the driver

int ata_cable_40wire(struct ata_port * ap)
return 40 wire cable type

Parameters
struct ata_port * ap port
Description

Helper method for drivers which want to hardwire 40 wire cable detection.
int ata_cable_80wire(struct ata_port * ap)

return 80 wire cable type
Parameters
struct ata_port * ap port
Description

Helper method for drivers which want to hardwire 80 wire cable detection.
int ata_cable_unknown(struct ata_port * ap)

return unknown PATA cable.
Parameters

582 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct ata_port * ap port
Description

Helper method for drivers which have no PATA cable detection.
int ata_cable_ignore(struct ata_port * ap)

return ignored PATA cable.
Parameters
struct ata_port * ap port
Description

Helper method for drivers which don’t use cable type to limit transfer mode.
int ata_cable_sata(struct ata_port * ap)

return SATA cable type
Parameters
struct ata_port * ap port
Description

Helper method for drivers which have SATA cables
struct ata_device * ata_dev_pair(struct ata_device * adev)

return other device on cable
Parameters
struct ata_device * adev device
Description

Obtain the other device on the same cable, or if none is present NULL is returned
int sata_set_spd(struct ata_link * link)

set SATA spd according to spd limit
Parameters
struct ata_link * link Link to set SATA spd for
Description

Set SATA spd of link according to sata_spd_limit.
LOCKING: Inherited from caller.

Return
0 if spd doesn’t need to be changed, 1 if spd has been changed. Negative errno if SCR registers
are inaccessible.

u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
find xfer mode for the specified cycle duration

Parameters
unsigned int xfer_shift ATA_SHIFT_* value for transfer type to examine.
int cycle cycle duration in ns
Description

Return matching xfer mode for cycle. The returned mode is of the transfer type specified by
xfer_shift. If cycle is too slow for xfer_shift, 0xff is returned. If cycle is faster than the fastest
known mode, the fasted mode is returned.
LOCKING: None.

Return

21.4. libata Library 583

The kernel driver API manual, Release 4.13.0-rc4+

Matching xfer_mode, 0xff if no match found.
int ata_do_set_mode(struct ata_link * link, struct ata_device ** r_failed_dev)

Program timings and issue SET FEATURES - XFER
Parameters
struct ata_link * link link on which timings will be programmed
struct ata_device ** r_failed_dev out parameter for failed device
Description

Standard implementation of the function used to tune and set ATA device disk transfer mode
(PIO3, UDMA6, etc.). If ata_dev_set_mode() fails, pointer to the failing device is returned in
r_failed_dev.
LOCKING: PCI/etc. bus probe sem.

Return
0 on success, negative errno otherwise

int ata_wait_after_reset(struct ata_link * link, unsigned long deadline, int (*check_ready) (struct
ata_link *link)

wait for link to become ready after reset
Parameters
struct ata_link * link link to be waited on
unsigned long deadline deadline jiffies for the operation
int (*)(struct ata_link *link) check_ready callback to check link readiness
Description

Wait for link to become ready after reset.
LOCKING: EH context.

Return
0 if link is ready before deadline; otherwise, -errno.

int sata_link_debounce(struct ata_link * link, const unsigned long * params, unsigned
long deadline)

debounce SATA phy status
Parameters
struct ata_link * link ATA link to debounce SATA phy status for
const unsigned long * params timing parameters { interval, duration, timeout } in msec
unsigned long deadline deadline jiffies for the operation
Description

Make sure SStatus of link reaches stable state, determined by holding the same value where
DET is not 1 for duration polled every interval, before timeout. Timeout constraints the begin-
ning of the stable state. Because DET gets stuck at 1 on some controllers after hot unplugging,
this functions waits until timeout then returns 0 if DET is stable at 1.
timeout is further limited by deadline. The sooner of the two is used.
LOCKING: Kernel thread context (may sleep)

Return
0 on success, -errno on failure.

int sata_link_resume(struct ata_link * link, const unsigned long * params, unsigned long deadline)
resume SATA link

584 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct ata_link * link ATA link to resume SATA
const unsigned long * params timing parameters { interval, duration, timeout } in msec
unsigned long deadline deadline jiffies for the operation
Description

Resume SATA phy link and debounce it.
LOCKING: Kernel thread context (may sleep)

Return
0 on success, -errno on failure.

int sata_link_scr_lpm(struct ata_link * link, enum ata_lpm_policy policy, bool spm_wakeup)
manipulate SControl IPM and SPM fields

Parameters
struct ata_link * link ATA link to manipulate SControl for
enum ata_lpm_policy policy LPM policy to configure
bool spm_wakeup initiate LPM transition to active state
Description

Manipulate the IPM field of the SControl register of link according to policy. If policy is
ATA_LPM_MAX_POWER and spm_wakeup is true, the SPM field is manipulated to wake up the
link. This function also clears PHYRDY_CHG before returning.
LOCKING: EH context.

Return
0 on success, -errno otherwise.

int ata_std_prereset(struct ata_link * link, unsigned long deadline)
prepare for reset

Parameters
struct ata_link * link ATA link to be reset
unsigned long deadline deadline jiffies for the operation
Description

link is about to be reset. Initialize it. Failure from prereset makes libata abort whole reset
sequence and give up that port, so prereset should be best-effort. It does its best to prepare for
reset sequence but if things go wrong, it should just whine, not fail.
LOCKING: Kernel thread context (may sleep)

Return
0 on success, -errno otherwise.

int sata_link_hardreset(struct ata_link * link, const unsigned long * timing, unsigned
long deadline, bool * online, int (*check_ready) (struct ata_link *)

reset link via SATA phy reset
Parameters
struct ata_link * link link to reset
const unsigned long * timing timing parameters { interval, duration, timeout } in msec
unsigned long deadline deadline jiffies for the operation
bool * online optional out parameter indicating link onlineness

21.4. libata Library 585

The kernel driver API manual, Release 4.13.0-rc4+

int (*)(struct ata_link *) check_ready optional callback to check link readiness
Description

SATA phy-reset link using DET bits of SControl register. After hardreset, link readiness is waited
upon using ata_wait_ready() if check_ready is specified. LLDs are allowed to not specify
check_ready and wait itself after this function returns. Device classification is LLD’s responsi-
bility.
*online is set to one iff reset succeeded and link is online after reset.
LOCKING: Kernel thread context (may sleep)

Return
0 on success, -errno otherwise.

int sata_std_hardreset(struct ata_link * link, unsigned int * class, unsigned long deadline)
COMRESET w/o waiting or classification

Parameters
struct ata_link * link link to reset
unsigned int * class resulting class of attached device
unsigned long deadline deadline jiffies for the operation
Description

Standard SATA COMRESET w/o waiting or classification.
LOCKING: Kernel thread context (may sleep)

Return
0 if link offline, -EAGAIN if link online, -errno on errors.

void ata_std_postreset(struct ata_link * link, unsigned int * classes)
standard postreset callback

Parameters
struct ata_link * link the target ata_link
unsigned int * classes classes of attached devices
Description

This function is invoked after a successful reset. Note that the device might have been reset
more than once using different reset methods before postreset is invoked.
LOCKING: Kernel thread context (may sleep)

unsigned int ata_dev_set_feature(struct ata_device * dev, u8 enable, u8 feature)
Issue SET FEATURES - SATA FEATURES

Parameters
struct ata_device * dev Device to which command will be sent
u8 enable Whether to enable or disable the feature
u8 feature The sector count represents the feature to set
Description

Issue SET FEATURES - SATA FEATURES command to device dev on port ap with sector count
LOCKING: PCI/etc. bus probe sem.

Return
0 on success, AC_ERR_* mask otherwise.

586 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

int ata_std_qc_defer(struct ata_queued_cmd * qc)
Check whether a qc needs to be deferred

Parameters
struct ata_queued_cmd * qc ATA command in question
Description

Non-NCQ commands cannot run with any other command, NCQ or not. As upper layer only
knows the queue depth, we are responsible for maintaining exclusion. This function checks
whether a new command qc can be issued.
LOCKING: spin_lock_irqsave(host lock)

Return
ATA_DEFER_* if deferring is needed, 0 otherwise.

void ata_sg_init(struct ata_queued_cmd * qc, struct scatterlist * sg, unsigned int n_elem)
Associate command with scatter-gather table.

Parameters
struct ata_queued_cmd * qc Command to be associated
struct scatterlist * sg Scatter-gather table.
unsigned int n_elem Number of elements in s/g table.
Description

Initialize the data-related elements of queued_cmd qc to point to a scatter-gather table sg,
containing n_elem elements.
LOCKING: spin_lock_irqsave(host lock)

void ata_qc_complete(struct ata_queued_cmd * qc)
Complete an active ATA command

Parameters
struct ata_queued_cmd * qc Command to complete
Description

Indicate to the mid and upper layers that an ATA command has completed, with either an ok or
not-ok status.
Refrain from calling this function multiple times when successfully completing multiple NCQ
commands. ata_qc_complete_multiple() should be used instead, which will properly update
IRQ expect state.
LOCKING: spin_lock_irqsave(host lock)

int ata_qc_complete_multiple(struct ata_port * ap, u32 qc_active)
Complete multiple qcs successfully

Parameters
struct ata_port * ap port in question
u32 qc_active new qc_active mask
Description

Complete in-flight commands. This functions is meant to be called from low-level driver’s in-
terrupt routine to complete requests normally. ap->qc_active and qc_active is compared and
commands are completed accordingly.
Always use this function when completing multiple NCQ commands from IRQ handlers instead
of calling ata_qc_complete() multiple times to keep IRQ expect status properly in sync.

21.4. libata Library 587

The kernel driver API manual, Release 4.13.0-rc4+

LOCKING: spin_lock_irqsave(host lock)
Return

Number of completed commands on success, -errno otherwise.
int sata_scr_valid(struct ata_link * link)

test whether SCRs are accessible
Parameters
struct ata_link * link ATA link to test SCR accessibility for
Description

Test whether SCRs are accessible for link.
LOCKING: None.

Return
1 if SCRs are accessible, 0 otherwise.

int sata_scr_read(struct ata_link * link, int reg, u32 * val)
read SCR register of the specified port

Parameters
struct ata_link * link ATA link to read SCR for
int reg SCR to read
u32 * val Place to store read value
Description

Read SCR register reg of link into *val. This function is guaranteed to succeed if link is ap-
>link, the cable type of the port is SATA and the port implements ->scr_read.
LOCKING: None if link is ap->link. Kernel thread context otherwise.

Return
0 on success, negative errno on failure.

int sata_scr_write(struct ata_link * link, int reg, u32 val)
write SCR register of the specified port

Parameters
struct ata_link * link ATA link to write SCR for
int reg SCR to write
u32 val value to write
Description

Write val to SCR register reg of link. This function is guaranteed to succeed if link is ap->link,
the cable type of the port is SATA and the port implements ->scr_read.
LOCKING: None if link is ap->link. Kernel thread context otherwise.

Return
0 on success, negative errno on failure.

int sata_scr_write_flush(struct ata_link * link, int reg, u32 val)
write SCR register of the specified port and flush

Parameters
struct ata_link * link ATA link to write SCR for
int reg SCR to write

588 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

u32 val value to write
Description

This function is identical to sata_scr_write() except that this function performs flush after
writing to the register.
LOCKING: None if link is ap->link. Kernel thread context otherwise.

Return
0 on success, negative errno on failure.

bool ata_link_online(struct ata_link * link)
test whether the given link is online

Parameters
struct ata_link * link ATA link to test
Description

Test whether link is online. This is identical to ata_phys_link_online() when there’s no slave
link. When there’s a slave link, this function should only be called on the master link and will
return true if any of M/S links is online.
LOCKING: None.

Return
True if the port online status is available and online.

bool ata_link_offline(struct ata_link * link)
test whether the given link is offline

Parameters
struct ata_link * link ATA link to test
Description

Test whether link is offline. This is identical to ata_phys_link_offline() when there’s no
slave link. When there’s a slave link, this function should only be called on the master link and
will return true if both M/S links are offline.
LOCKING: None.

Return
True if the port offline status is available and offline.

int ata_host_suspend(struct ata_host * host, pm_message_t mesg)
suspend host

Parameters
struct ata_host * host host to suspend
pm_message_t mesg PM message
Description

Suspend host. Actual operation is performed by port suspend.
void ata_host_resume(struct ata_host * host)

resume host
Parameters
struct ata_host * host host to resume
Description

Resume host. Actual operation is performed by port resume.

21.4. libata Library 589

The kernel driver API manual, Release 4.13.0-rc4+

struct ata_host * ata_host_alloc(struct device * dev, int max_ports)
allocate and init basic ATA host resources

Parameters
struct device * dev generic device this host is associated with
int max_ports maximum number of ATA ports associated with this host
Description

Allocate and initialize basic ATA host resources. LLD calls this function to allocate a host, initial-
izes it fully and attaches it using ata_host_register().
max_ports ports are allocated and host->n_ports is initialized to max_ports. The caller is
allowed to decrease host->n_ports before calling ata_host_register(). The unused ports will
be automatically freed on registration.

Return
Allocate ATA host on success, NULL on failure.
LOCKING: Inherited from calling layer (may sleep).

struct ata_host * ata_host_alloc_pinfo(struct device * dev, const struct ata_port_info *const * ppi,
int n_ports)

alloc host and init with port_info array
Parameters
struct device * dev generic device this host is associated with
const struct ata_port_info *const * ppi array of ATA port_info to initialize host with
int n_ports number of ATA ports attached to this host
Description

Allocate ATA host and initialize with info from ppi. If NULL terminated, ppi may contain fewer
entries than n_ports. The last entry will be used for the remaining ports.

Return
Allocate ATA host on success, NULL on failure.
LOCKING: Inherited from calling layer (may sleep).

int ata_slave_link_init(struct ata_port * ap)
initialize slave link

Parameters
struct ata_port * ap port to initialize slave link for
Description

Create and initialize slave link for ap. This enables slave link handling on the port.
In libata, a port contains links and a link contains devices. There is single host link but if a PMP
is attached to it, there can be multiple fan-out links. On SATA, there’s usually a single device
connected to a link but PATA and SATA controllers emulating TF based interface can have two -
master and slave.
However, there are a few controllers which don’t fit into this abstraction too well - SATA con-
trollers which emulate TF interface with both master and slave devices but also have separate
SCR register sets for each device. These controllers need separate links for physical link han-
dling (e.g. onlineness, link speed) but should be treated like a traditional M/S controller for
everything else (e.g. command issue, softreset).
slave_link is libata’s way of handling this class of controllers without impacting core layer too
much. For anything other than physical link handling, the default host link is used for both
master and slave. For physical link handling, separate ap->slave_link is used. All dirty details

590 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

are implemented inside libata core layer. From LLD’s POV, the only difference is that prereset,
hardreset and postreset are called once more for the slave link, so the reset sequence looks like
the following.
prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> softreset(M) -> postreset(M) ->
postreset(S)
Note that softreset is called only for the master. Softreset resets both M/S by definition, so SRST
on master should handle both (the standard method will work just fine).
LOCKING: Should be called before host is registered.

Return
0 on success, -errno on failure.

int ata_host_start(struct ata_host * host)
start and freeze ports of an ATA host

Parameters
struct ata_host * host ATA host to start ports for
Description

Start and then freeze ports of host. Started status is recorded in host->flags, so this function
can be called multiple times. Ports are guaranteed to get started only once. If host->ops isn’t
initialized yet, its set to the first non-dummy port ops.
LOCKING: Inherited from calling layer (may sleep).

Return
0 if all ports are started successfully, -errno otherwise.

void ata_host_init(struct ata_host * host, struct device * dev, struct ata_port_operations * ops)
Initialize a host struct for sas (ipr, libsas)

Parameters
struct ata_host * host host to initialize
struct device * dev device host is attached to
struct ata_port_operations * ops port_ops
int ata_host_register(struct ata_host * host, struct scsi_host_template * sht)

register initialized ATA host
Parameters
struct ata_host * host ATA host to register
struct scsi_host_template * sht template for SCSI host
Description

Register initialized ATA host. host is allocated using ata_host_alloc() and fully initialized by
LLD. This function starts ports, registers host with ATA and SCSI layers and probe registered
devices.
LOCKING: Inherited from calling layer (may sleep).

Return
0 on success, -errno otherwise.

int ata_host_activate(struct ata_host * host, int irq, irq_handler_t irq_handler, unsigned
long irq_flags, struct scsi_host_template * sht)

start host, request IRQ and register it
Parameters

21.4. libata Library 591

The kernel driver API manual, Release 4.13.0-rc4+

struct ata_host * host target ATA host
int irq IRQ to request
irq_handler_t irq_handler irq_handler used when requesting IRQ
unsigned long irq_flags irq_flags used when requesting IRQ
struct scsi_host_template * sht scsi_host_template to use when registering the host
Description

After allocating an ATA host and initializing it, most libata LLDs perform three steps to activate
the host - start host, request IRQ and register it. This helper takes necessary arguments and
performs the three steps in one go.
An invalid IRQ skips the IRQ registration and expects the host to have set polling mode on the
port. In this case, irq_handler should be NULL.
LOCKING: Inherited from calling layer (may sleep).

Return
0 on success, -errno otherwise.

void ata_host_detach(struct ata_host * host)
Detach all ports of an ATA host

Parameters
struct ata_host * host Host to detach
Description

Detach all ports of host.
LOCKING: Kernel thread context (may sleep).

void ata_pci_remove_one(struct pci_dev * pdev)
PCI layer callback for device removal

Parameters
struct pci_dev * pdev PCI device that was removed
Description

PCI layer indicates to libata via this hook that hot-unplug or module unload event has occurred.
Detach all ports. Resource release is handled via devres.
LOCKING: Inherited from PCI layer (may sleep).

int ata_platform_remove_one(struct platform_device * pdev)
Platform layer callback for device removal

Parameters
struct platform_device * pdev Platform device that was removed
Description

Platform layer indicates to libata via this hook that hot-unplug or module unload event has
occurred. Detach all ports. Resource release is handled via devres.
LOCKING: Inherited from platform layer (may sleep).

void ata_msleep(struct ata_port * ap, unsigned int msecs)
ATA EH owner aware msleep

Parameters
struct ata_port * ap ATA port to attribute the sleep to
unsigned int msecs duration to sleep in milliseconds

592 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
Sleeps msecs. If the current task is owner of ap‘s EH, the ownership is released before going
to sleep and reacquired after the sleep is complete. IOW, other ports sharing the ap->host will
be allowed to own the EH while this task is sleeping.
LOCKING: Might sleep.

u32 ata_wait_register(struct ata_port * ap, void __iomem * reg, u32 mask, u32 val, unsigned
long interval, unsigned long timeout)

wait until register value changes
Parameters
struct ata_port * ap ATA port to wait register for, can be NULL
void __iomem * reg IO-mapped register
u32 mask Mask to apply to read register value
u32 val Wait condition
unsigned long interval polling interval in milliseconds
unsigned long timeout timeout in milliseconds
Description

Waiting for some bits of register to change is a common operation for ATA controllers. This
function reads 32bit LE IO-mapped register reg and tests for the following condition.
(*reg & mask) != val
If the condition is met, it returns; otherwise, the process is repeated after interval_msec until
timeout.
LOCKING: Kernel thread context (may sleep)

Return
The final register value.

bool sata_lpm_ignore_phy_events(struct ata_link * link)
test if PHY event should be ignored

Parameters
struct ata_link * link Link receiving the event
Description

Test whether the received PHY event has to be ignored or not.
LOCKING: None:

Return
True if the event has to be ignored.

21.5 libata Core Internals

struct ata_link * ata_dev_phys_link(struct ata_device * dev)
find physical link for a device

Parameters
struct ata_device * dev ATA device to look up physical link for
Description

21.5. libata Core Internals 593

The kernel driver API manual, Release 4.13.0-rc4+

Look up physical link which dev is attached to. Note that this is different from dev->link only
when dev is on slave link. For all other cases, it’s the same as dev->link.
LOCKING: Don’t care.

Return
Pointer to the found physical link.

void ata_force_cbl(struct ata_port * ap)
force cable type according to libata.force

Parameters
struct ata_port * ap ATA port of interest
Description

Force cable type according to libata.force and whine about it. The last entry which has matching
port number is used, so it can be specified as part of device force parameters. For example,
both “a:40c,1.00:udma4” and “1.00:40c,udma4” have the same effect.
LOCKING: EH context.

void ata_force_link_limits(struct ata_link * link)
force link limits according to libata.force

Parameters
struct ata_link * link ATA link of interest
Description

Force link flags and SATA spd limit according to libata.force and whine about it. When only the
port part is specified (e.g. 1:), the limit applies to all links connected to both the host link and
all fan-out ports connected via PMP. If the device part is specified as 0 (e.g. 1.00:), it specifies
the first fan-out link not the host link. Device number 15 always points to the host link whether
PMP is attached or not. If the controller has slave link, device number 16 points to it.
LOCKING: EH context.

void ata_force_xfermask(struct ata_device * dev)
force xfermask according to libata.force

Parameters
struct ata_device * dev ATA device of interest
Description

Force xfer_mask according to libata.force and whine about it. For consistency with link selection,
device number 15 selects the first device connected to the host link.
LOCKING: EH context.

void ata_force_horkage(struct ata_device * dev)
force horkage according to libata.force

Parameters
struct ata_device * dev ATA device of interest
Description

Force horkage according to libata.force and whine about it. For consistency with link selection,
device number 15 selects the first device connected to the host link.
LOCKING: EH context.

int ata_rwcmd_protocol(struct ata_taskfile * tf, struct ata_device * dev)
set taskfile r/w commands and protocol

Parameters

594 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct ata_taskfile * tf command to examine and configure
struct ata_device * dev device tf belongs to
Description

Examine the device configuration and tf->flags to calculate the proper read/write commands
and protocol to use.
LOCKING: caller.

u64 ata_tf_read_block(const struct ata_taskfile * tf, struct ata_device * dev)
Read block address from ATA taskfile

Parameters
const struct ata_taskfile * tf ATA taskfile of interest
struct ata_device * dev ATA device tf belongs to
Description

LOCKING: None.
Read block address from tf. This function can handle all three address formats - LBA, LBA48
and CHS. tf->protocol and flags select the address format to use.

Return
Block address read from tf.

int ata_build_rw_tf(struct ata_taskfile * tf, struct ata_device * dev, u64 block, u32 n_block, un-
signed int tf_flags, unsigned int tag, int class)

Build ATA taskfile for given read/write request
Parameters
struct ata_taskfile * tf Target ATA taskfile
struct ata_device * dev ATA device tf belongs to
u64 block Block address
u32 n_block Number of blocks
unsigned int tf_flags RW/FUA etc...
unsigned int tag tag
int class IO priority class
Description

LOCKING: None.
Build ATA taskfile tf for read/write request described by block, n_block, tf_flags and tag on
dev.

Return
0 on success, -ERANGE if the request is too large for dev, -EINVAL if the request is invalid.

int ata_read_native_max_address(struct ata_device * dev, u64 * max_sectors)
Read native max address

Parameters
struct ata_device * dev target device
u64 * max_sectors out parameter for the result native max address
Description

Perform an LBA48 or LBA28 native size query upon the device in question.

21.5. libata Core Internals 595

The kernel driver API manual, Release 4.13.0-rc4+

Return
0 on success, -EACCES if command is aborted by the drive. -EIO on other errors.

int ata_set_max_sectors(struct ata_device * dev, u64 new_sectors)
Set max sectors

Parameters
struct ata_device * dev target device
u64 new_sectors new max sectors value to set for the device
Description

Set max sectors of dev to new_sectors.
Return

0 on success, -EACCES if command is aborted or denied (due to previous non-volatile SET_MAX)
by the drive. -EIO on other errors.

int ata_hpa_resize(struct ata_device * dev)
Resize a device with an HPA set

Parameters
struct ata_device * dev Device to resize
Description

Read the size of an LBA28 or LBA48 disk with HPA features and resize it if required to the full
size of the media. The caller must check the drive has the HPA feature set enabled.

Return
0 on success, -errno on failure.

void ata_dump_id(const u16 * id)
IDENTIFY DEVICE info debugging output

Parameters
const u16 * id IDENTIFY DEVICE page to dump
Description

Dump selected 16-bit words from the given IDENTIFY DEVICE page.
LOCKING: caller.

unsigned ata_exec_internal_sg(struct ata_device * dev, struct ata_taskfile * tf, const u8 * cdb,
int dma_dir, struct scatterlist * sgl, unsigned int n_elem, unsigned
long timeout)

execute libata internal command
Parameters
struct ata_device * dev Device to which the command is sent
struct ata_taskfile * tf Taskfile registers for the command and the result
const u8 * cdb CDB for packet command
int dma_dir Data transfer direction of the command
struct scatterlist * sgl sg list for the data buffer of the command
unsigned int n_elem Number of sg entries
unsigned long timeout Timeout in msecs (0 for default)
Description

596 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Executes libata internal command with timeout. tf contains command on entry and result on
return. Timeout and error conditions are reported via return value. No recovery action is taken
after a command times out. It’s caller’s duty to clean up after timeout.
LOCKING: None. Should be called with kernel context, might sleep.

Return
Zero on success, AC_ERR_* mask on failure

unsigned ata_exec_internal(struct ata_device * dev, struct ata_taskfile * tf, const u8 * cdb,
int dma_dir, void * buf, unsigned int buflen, unsigned long timeout)

execute libata internal command
Parameters
struct ata_device * dev Device to which the command is sent
struct ata_taskfile * tf Taskfile registers for the command and the result
const u8 * cdb CDB for packet command
int dma_dir Data transfer direction of the command
void * buf Data buffer of the command
unsigned int buflen Length of data buffer
unsigned long timeout Timeout in msecs (0 for default)
Description

Wrapper around ata_exec_internal_sg() which takes simple buffer instead of sg list.
LOCKING: None. Should be called with kernel context, might sleep.

Return
Zero on success, AC_ERR_* mask on failure

u32 ata_pio_mask_no_iordy(const struct ata_device * adev)
Return the non IORDY mask

Parameters
const struct ata_device * adev ATA device
Description

Compute the highest mode possible if we are not using iordy. Return -1 if no iordy mode is
available.

int ata_dev_read_id(struct ata_device * dev, unsigned int * p_class, unsigned int flags, u16 * id)
Read ID data from the specified device

Parameters
struct ata_device * dev target device
unsigned int * p_class pointer to class of the target device (may be changed)
unsigned int flags ATA_READID_* flags
u16 * id buffer to read IDENTIFY data into
Description

Read ID data from the specified device. ATA_CMD_ID_ATA is performed on ATA devices and
ATA_CMD_ID_ATAPI on ATAPI devices. This function also issues ATA_CMD_INIT_DEV_PARAMS for
pre-ATA4 drives.
FIXME: ATA_CMD_ID_ATA is optional for early drives and right now we abort if we hit that case.
LOCKING: Kernel thread context (may sleep)

21.5. libata Core Internals 597

The kernel driver API manual, Release 4.13.0-rc4+

Return
0 on success, -errno otherwise.

unsigned int ata_read_log_page(struct ata_device * dev, u8 log, u8 page, void * buf, unsigned
int sectors)

read a specific log page
Parameters
struct ata_device * dev target device
u8 log log to read
u8 page page to read
void * buf buffer to store read page
unsigned int sectors number of sectors to read
Description

Read log page using READ_LOG_EXT command.
LOCKING: Kernel thread context (may sleep).

Return
0 on success, AC_ERR_* mask otherwise.

int ata_dev_configure(struct ata_device * dev)
Configure the specified ATA/ATAPI device

Parameters
struct ata_device * dev Target device to configure
Description

Configure dev according to dev->id. Generic and low-level driver specific fixups are also ap-
plied.
LOCKING: Kernel thread context (may sleep)

Return
0 on success, -errno otherwise

int ata_bus_probe(struct ata_port * ap)
Reset and probe ATA bus

Parameters
struct ata_port * ap Bus to probe
Description

Master ATA bus probing function. Initiates a hardware-dependent bus reset, then attempts to
identify any devices found on the bus.
LOCKING: PCI/etc. bus probe sem.

Return
Zero on success, negative errno otherwise.

void sata_print_link_status(struct ata_link * link)
Print SATA link status

Parameters
struct ata_link * link SATA link to printk link status about
Description

598 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

This function prints link speed and status of a SATA link.
LOCKING: None.

int sata_down_spd_limit(struct ata_link * link, u32 spd_limit)
adjust SATA spd limit downward

Parameters
struct ata_link * link Link to adjust SATA spd limit for
u32 spd_limit Additional limit
Description

Adjust SATA spd limit of link downward. Note that this function only adjusts the limit. The
change must be applied using sata_set_spd().
If spd_limit is non-zero, the speed is limited to equal to or lower than spd_limit if such speed
is supported. If spd_limit is slower than any supported speed, only the lowest supported speed
is allowed.
LOCKING: Inherited from caller.

Return
0 on success, negative errno on failure

int sata_set_spd_needed(struct ata_link * link)
is SATA spd configuration needed

Parameters
struct ata_link * link Link in question
Description

Test whether the spd limit in SControl matches link->sata_spd_limit. This function is used to
determine whether hardreset is necessary to apply SATA spd configuration.
LOCKING: Inherited from caller.

Return
1 if SATA spd configuration is needed, 0 otherwise.

int ata_down_xfermask_limit(struct ata_device * dev, unsigned int sel)
adjust dev xfer masks downward

Parameters
struct ata_device * dev Device to adjust xfer masks
unsigned int sel ATA_DNXFER_* selector
Description

Adjust xfer masks of dev downward. Note that this function does not apply the change. Invoking
ata_set_mode() afterwards will apply the limit.
LOCKING: Inherited from caller.

Return
0 on success, negative errno on failure

int ata_wait_ready(struct ata_link * link, unsigned long deadline, int (*check_ready) (struct
ata_link *link)

wait for link to become ready
Parameters
struct ata_link * link link to be waited on

21.5. libata Core Internals 599

The kernel driver API manual, Release 4.13.0-rc4+

unsigned long deadline deadline jiffies for the operation
int (*)(struct ata_link *link) check_ready callback to check link readiness
Description

Wait for link to become ready. check_ready should return positive number if link is ready, 0
if it isn’t, -ENODEV if link doesn’t seem to be occupied, other errno for other error conditions.
Transient -ENODEV conditions are allowed for ATA_TMOUT_FF_WAIT.
LOCKING: EH context.

Return
0 if link is ready before deadline; otherwise, -errno.

int ata_dev_same_device(struct ata_device * dev, unsigned int new_class, const u16 * new_id)
Determine whether new ID matches configured device

Parameters
struct ata_device * dev device to compare against
unsigned int new_class class of the new device
const u16 * new_id IDENTIFY page of the new device
Description

Compare new_class and new_id against dev and determine whether dev is the device indi-
cated by new_class and new_id.
LOCKING: None.

Return
1 if dev matches new_class and new_id, 0 otherwise.

int ata_dev_reread_id(struct ata_device * dev, unsigned int readid_flags)
Re-read IDENTIFY data

Parameters
struct ata_device * dev target ATA device
unsigned int readid_flags read ID flags
Description

Re-read IDENTIFY page and make sure dev is still attached to the port.
LOCKING: Kernel thread context (may sleep)

Return
0 on success, negative errno otherwise

int ata_dev_revalidate(struct ata_device * dev, unsigned int new_class, unsigned
int readid_flags)

Revalidate ATA device
Parameters
struct ata_device * dev device to revalidate
unsigned int new_class new class code
unsigned int readid_flags read ID flags
Description

600 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Re-read IDENTIFY page, make sure dev is still attached to the port and reconfigure it according
to the new IDENTIFY page.
LOCKING: Kernel thread context (may sleep)

Return
0 on success, negative errno otherwise

int ata_is_40wire(struct ata_device * dev)
check drive side detection

Parameters
struct ata_device * dev device
Description

Perform drive side detection decoding, allowing for device vendors who can’t follow the docu-
mentation.

int cable_is_40wire(struct ata_port * ap)
40/80/SATA decider

Parameters
struct ata_port * ap port to consider
Description

This function encapsulates the policy for speed management in one place. At the moment we
don’t cache the result but there is a good case for setting ap->cbl to the result when we are
called with unknown cables (and figuring out if it impacts hotplug at all).
Return 1 if the cable appears to be 40 wire.

void ata_dev_xfermask(struct ata_device * dev)
Compute supported xfermask of the given device

Parameters
struct ata_device * dev Device to compute xfermask for
Description

Compute supported xfermask of dev and store it in dev->*_mask. This function is responsible
for applying all known limits including host controller limits, device blacklist, etc...
LOCKING: None.

unsigned int ata_dev_set_xfermode(struct ata_device * dev)
Issue SET FEATURES - XFER MODE command

Parameters
struct ata_device * dev Device to which command will be sent
Description

Issue SET FEATURES - XFER MODE command to device dev on port ap.
LOCKING: PCI/etc. bus probe sem.

Return
0 on success, AC_ERR_* mask otherwise.

unsigned int ata_dev_init_params(struct ata_device * dev, u16 heads, u16 sectors)
Issue INIT DEV PARAMS command

Parameters
struct ata_device * dev Device to which command will be sent

21.5. libata Core Internals 601

The kernel driver API manual, Release 4.13.0-rc4+

u16 heads Number of heads (taskfile parameter)
u16 sectors Number of sectors (taskfile parameter)
Description

LOCKING: Kernel thread context (may sleep)
Return

0 on success, AC_ERR_* mask otherwise.
int atapi_check_dma(struct ata_queued_cmd * qc)

Check whether ATAPI DMA can be supported
Parameters
struct ata_queued_cmd * qc Metadata associated with taskfile to check
Description

Allow low-level driver to filter ATA PACKET commands, returning a status indicating whether or
not it is OK to use DMA for the supplied PACKET command.
LOCKING: spin_lock_irqsave(host lock)

Return
0 when ATAPI DMA can be used nonzero otherwise
void ata_sg_clean(struct ata_queued_cmd * qc)

Unmap DMA memory associated with command
Parameters
struct ata_queued_cmd * qc Command containing DMA memory to be released
Description

Unmap all mapped DMA memory associated with this command.
LOCKING: spin_lock_irqsave(host lock)

int ata_sg_setup(struct ata_queued_cmd * qc)
DMA-map the scatter-gather table associated with a command.

Parameters
struct ata_queued_cmd * qc Command with scatter-gather table to be mapped.
Description

DMA-map the scatter-gather table associated with queued_cmd qc.
LOCKING: spin_lock_irqsave(host lock)

Return
Zero on success, negative on error.

void swap_buf_le16(u16 * buf, unsigned int buf_words)
swap halves of 16-bit words in place

Parameters
u16 * buf Buffer to swap
unsigned int buf_words Number of 16-bit words in buffer.
Description

Swap halves of 16-bit words if needed to convert from little-endian byte order to native cpu byte
order, or vice-versa.
LOCKING: Inherited from caller.

602 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct ata_queued_cmd * ata_qc_new_init(struct ata_device * dev, int tag)
Request an available ATA command, and initialize it

Parameters
struct ata_device * dev Device from whom we request an available command structure
int tag tag
Description

LOCKING: None.
void ata_qc_free(struct ata_queued_cmd * qc)

free unused ata_queued_cmd
Parameters
struct ata_queued_cmd * qc Command to complete
Description

Designed to free unused ata_queued_cmd object in case something prevents using it.
LOCKING: spin_lock_irqsave(host lock)

void ata_qc_issue(struct ata_queued_cmd * qc)
issue taskfile to device

Parameters
struct ata_queued_cmd * qc command to issue to device
Description

Prepare an ATA command to submission to device. This includes mapping the data into a DMA-
able area, filling in the S/G table, and finally writing the taskfile to hardware, starting the com-
mand.
LOCKING: spin_lock_irqsave(host lock)

bool ata_phys_link_online(struct ata_link * link)
test whether the given link is online

Parameters
struct ata_link * link ATA link to test
Description

Test whether link is online. Note that this function returns 0 if online status of link cannot be
obtained, so ata_link_online(link) != !ata_link_offline(link).
LOCKING: None.

Return
True if the port online status is available and online.

bool ata_phys_link_offline(struct ata_link * link)
test whether the given link is offline

Parameters
struct ata_link * link ATA link to test
Description

Test whether link is offline. Note that this function returns 0 if offline status of link cannot be
obtained, so ata_link_online(link) != !ata_link_offline(link).
LOCKING: None.

Return

21.5. libata Core Internals 603

The kernel driver API manual, Release 4.13.0-rc4+

True if the port offline status is available and offline.
void ata_dev_init(struct ata_device * dev)

Initialize an ata_device structure
Parameters
struct ata_device * dev Device structure to initialize
Description

Initialize dev in preparation for probing.
LOCKING: Inherited from caller.

void ata_link_init(struct ata_port * ap, struct ata_link * link, int pmp)
Initialize an ata_link structure

Parameters
struct ata_port * ap ATA port link is attached to
struct ata_link * link Link structure to initialize
int pmp Port multiplier port number
Description

Initialize link.
LOCKING: Kernel thread context (may sleep)

int sata_link_init_spd(struct ata_link * link)
Initialize link->sata_spd_limit

Parameters
struct ata_link * link Link to configure sata_spd_limit for
Description

Initialize link->[hw_]sata_spd_limit to the currently configured value.
LOCKING: Kernel thread context (may sleep).

Return
0 on success, -errno on failure.

struct ata_port * ata_port_alloc(struct ata_host * host)
allocate and initialize basic ATA port resources

Parameters
struct ata_host * host ATA host this allocated port belongs to
Description

Allocate and initialize basic ATA port resources.
Return

Allocate ATA port on success, NULL on failure.
LOCKING: Inherited from calling layer (may sleep).

void ata_finalize_port_ops(struct ata_port_operations * ops)
finalize ata_port_operations

Parameters
struct ata_port_operations * ops ata_port_operations to finalize
Description

604 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

An ata_port_operations can inherit from another ops and that ops can again inherit from another.
This can go on as many times as necessary as long as there is no loop in the inheritance chain.
Ops tables are finalized when the host is started. NULL or unspecified entries are inherited from
the closet ancestor which has the method and the entry is populated with it. After finalization,
the ops table directly points to all themethods and ->inherits is no longer necessary and cleared.
Using ATA_OP_NULL, inheriting ops can force a method to NULL.
LOCKING: None.

void ata_port_detach(struct ata_port * ap)
Detach ATA port in preparation of device removal

Parameters
struct ata_port * ap ATA port to be detached
Description

Detach all ATA devices and the associated SCSI devices of ap; then, remove the associated SCSI
host. ap is guaranteed to be quiescent on return from this function.
LOCKING: Kernel thread context (may sleep).

void __ata_ehi_push_desc(struct ata_eh_info * ehi, const char * fmt, ...)
push error description without adding separator

Parameters
struct ata_eh_info * ehi target EHI
const char * fmt printf format string
... variable arguments
Description

Format string according to fmt and append it to ehi->desc.
LOCKING: spin_lock_irqsave(host lock)

void ata_ehi_push_desc(struct ata_eh_info * ehi, const char * fmt, ...)
push error description with separator

Parameters
struct ata_eh_info * ehi target EHI
const char * fmt printf format string
... variable arguments
Description

Format string according to fmt and append it to ehi->desc. If ehi->desc is not empty, ”, ” is
added in-between.
LOCKING: spin_lock_irqsave(host lock)

void ata_ehi_clear_desc(struct ata_eh_info * ehi)
clean error description

Parameters
struct ata_eh_info * ehi target EHI
Description

Clear ehi->desc.
LOCKING: spin_lock_irqsave(host lock)

21.5. libata Core Internals 605

The kernel driver API manual, Release 4.13.0-rc4+

void ata_port_desc(struct ata_port * ap, const char * fmt, ...)
append port description

Parameters
struct ata_port * ap target ATA port
const char * fmt printf format string
... variable arguments
Description

Format string according to fmt and append it to port description. If port description is not empty,
” ” is added in-between. This function is to be used while initializing ata_host. The description
is printed on host registration.
LOCKING: None.

void ata_port_pbar_desc(struct ata_port * ap, int bar, ssize_t offset, const char * name)
append PCI BAR description

Parameters
struct ata_port * ap target ATA port
int bar target PCI BAR
ssize_t offset offset into PCI BAR
const char * name name of the area
Description

If offset is negative, this function formats a string which contains the name, address, size and
type of the BAR and appends it to the port description. If offset is zero or positive, only name
and offsetted address is appended.
LOCKING: None.

unsigned long ata_internal_cmd_timeout(struct ata_device * dev, u8 cmd)
determine timeout for an internal command

Parameters
struct ata_device * dev target device
u8 cmd internal command to be issued
Description

Determine timeout for internal command cmd for dev.
LOCKING: EH context.

Return
Determined timeout.

void ata_internal_cmd_timed_out(struct ata_device * dev, u8 cmd)
notification for internal command timeout

Parameters
struct ata_device * dev target device
u8 cmd internal command which timed out
Description

Notify EH that internal command cmd for dev timed out. This function should be called only for
commands whose timeouts are determined using ata_internal_cmd_timeout().
LOCKING: EH context.

606 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

void ata_eh_acquire(struct ata_port * ap)
acquire EH ownership

Parameters
struct ata_port * ap ATA port to acquire EH ownership for
Description

Acquire EH ownership for ap. This is the basic exclusion mechanism for ports sharing a host.
Only one port hanging off the same host can claim the ownership of EH.
LOCKING: EH context.

void ata_eh_release(struct ata_port * ap)
release EH ownership

Parameters
struct ata_port * ap ATA port to release EH ownership for
Description

Release EH ownership for ap if the caller. The caller must have acquired EH ownership using
ata_eh_acquire() previously.
LOCKING: EH context.

enum blk_eh_timer_return ata_scsi_timed_out(struct scsi_cmnd * cmd)
SCSI layer time out callback

Parameters
struct scsi_cmnd * cmd timed out SCSI command
Description

Handles SCSI layer timeout. We race with normal completion of the qc for cmd. If the qc is
already gone, we lose and let the scsi command finish (EH_HANDLED). Otherwise, the qc has
timed out and EH should be invoked. Prevent ata_qc_complete() from finishing it by setting
EH_SCHEDULED and return EH_NOT_HANDLED.
TODO: kill this function once old EH is gone.
LOCKING: Called from timer context

Return
EH_HANDLED or EH_NOT_HANDLED

void ata_scsi_error(struct Scsi_Host * host)
SCSI layer error handler callback

Parameters
struct Scsi_Host * host SCSI host on which error occurred
Description

Handles SCSI-layer-thrown error events.
LOCKING: Inherited from SCSI layer (none, can sleep)

Return
Zero.

void ata_scsi_cmd_error_handler(struct Scsi_Host * host, struct ata_port * ap, struct list_head
* eh_work_q)

error callback for a list of commands
Parameters
struct Scsi_Host * host scsi host containing the port

21.5. libata Core Internals 607

The kernel driver API manual, Release 4.13.0-rc4+

struct ata_port * ap ATA port within the host
struct list_head * eh_work_q list of commands to process
Description
process the given list of commands and return those finished to the ap->eh_done_q. This function is the
first part of the libata error handler which processes a given list of failed commands.
void ata_scsi_port_error_handler(struct Scsi_Host * host, struct ata_port * ap)

recover the port after the commands
Parameters
struct Scsi_Host * host SCSI host containing the port
struct ata_port * ap the ATA port
Description
Handle the recovery of the port ap after all the commands have been recovered.
void ata_port_wait_eh(struct ata_port * ap)

Wait for the currently pending EH to complete
Parameters
struct ata_port * ap Port to wait EH for
Description

Wait until the currently pending EH is complete.
LOCKING: Kernel thread context (may sleep).

void ata_eh_set_pending(struct ata_port * ap, int fastdrain)
set ATA_PFLAG_EH_PENDING and activate fast drain

Parameters
struct ata_port * ap target ATA port
int fastdrain activate fast drain
Description

Set ATA_PFLAG_EH_PENDING and activate fast drain if fastdrain is non-zero and EH wasn’t
pending before. Fast drain ensures that EH kicks in in timely manner.
LOCKING: spin_lock_irqsave(host lock)

void ata_qc_schedule_eh(struct ata_queued_cmd * qc)
schedule qc for error handling

Parameters
struct ata_queued_cmd * qc command to schedule error handling for
Description

Schedule error handling for qc. EH will kick in as soon as other commands are drained.
LOCKING: spin_lock_irqsave(host lock)

void ata_std_sched_eh(struct ata_port * ap)
non-libsas ata_ports issue eh with this common routine

Parameters
struct ata_port * ap ATA port to schedule EH for
Description

LOCKING: inherited from ata_port_schedule_eh spin_lock_irqsave(host lock)

608 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

void ata_std_end_eh(struct ata_port * ap)
non-libsas ata_ports complete eh with this common routine

Parameters
struct ata_port * ap ATA port to end EH for
Description
In the libata object model there is a 1:1 mapping of ata_port to shost, so host fields can be directly
manipulated under ap->lock, in the libsas case we need to hold a lock at the ha->level to coordinate
these events.

LOCKING: spin_lock_irqsave(host lock)
void ata_port_schedule_eh(struct ata_port * ap)

schedule error handling without a qc
Parameters
struct ata_port * ap ATA port to schedule EH for
Description

Schedule error handling for ap. EH will kick in as soon as all commands are drained.
LOCKING: spin_lock_irqsave(host lock)

int ata_link_abort(struct ata_link * link)
abort all qc’s on the link

Parameters
struct ata_link * link ATA link to abort qc’s for
Description

Abort all active qc’s active on link and schedule EH.
LOCKING: spin_lock_irqsave(host lock)

Return
Number of aborted qc’s.

int ata_port_abort(struct ata_port * ap)
abort all qc’s on the port

Parameters
struct ata_port * ap ATA port to abort qc’s for
Description

Abort all active qc’s of ap and schedule EH.
LOCKING: spin_lock_irqsave(host_set lock)

Return
Number of aborted qc’s.

void __ata_port_freeze(struct ata_port * ap)
freeze port

Parameters
struct ata_port * ap ATA port to freeze
Description

21.5. libata Core Internals 609

The kernel driver API manual, Release 4.13.0-rc4+

This function is called when HSM violation or some other condition disrupts normal operation
of the port. Frozen port is not allowed to perform any operation until the port is thawed, which
usually follows a successful reset.
ap->ops->:c:func:freeze() callback can be used for freezing the port hardware-wise (e.g. mask
interrupt and stop DMA engine). If a port cannot be frozen hardware-wise, the interrupt handler
must ack and clear interrupts unconditionally while the port is frozen.
LOCKING: spin_lock_irqsave(host lock)

int ata_port_freeze(struct ata_port * ap)
abort & freeze port

Parameters
struct ata_port * ap ATA port to freeze
Description

Abort and freeze ap. The freeze operation must be called first, because some hardware requires
special operations before the taskfile registers are accessible.
LOCKING: spin_lock_irqsave(host lock)

Return
Number of aborted commands.

int sata_async_notification(struct ata_port * ap)
SATA async notification handler

Parameters
struct ata_port * ap ATA port where async notification is received
Description

Handler to be called when async notification via SDB FIS is received. This function schedules
EH if necessary.
LOCKING: spin_lock_irqsave(host lock)

Return
1 if EH is scheduled, 0 otherwise.

void ata_eh_freeze_port(struct ata_port * ap)
EH helper to freeze port

Parameters
struct ata_port * ap ATA port to freeze
Description

Freeze ap.
LOCKING: None.

void ata_eh_thaw_port(struct ata_port * ap)
EH helper to thaw port

Parameters
struct ata_port * ap ATA port to thaw
Description

Thaw frozen port ap.
LOCKING: None.

void ata_eh_qc_complete(struct ata_queued_cmd * qc)
Complete an active ATA command from EH

610 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct ata_queued_cmd * qc Command to complete
Description

Indicate to the mid and upper layers that an ATA command has completed. To be used from EH.
void ata_eh_qc_retry(struct ata_queued_cmd * qc)

Tell midlayer to retry an ATA command after EH
Parameters
struct ata_queued_cmd * qc Command to retry
Description

Indicate to the mid and upper layers that an ATA command should be retried. To be used from
EH.
SCSI midlayer limits the number of retries to scmd->allowed. scmd->allowed is incremented
for commands which get retried due to unrelated failures (qc->err_mask is zero).

void ata_dev_disable(struct ata_device * dev)
disable ATA device

Parameters
struct ata_device * dev ATA device to disable
Description

Disable dev.
Locking: EH context.

void ata_eh_detach_dev(struct ata_device * dev)
detach ATA device

Parameters
struct ata_device * dev ATA device to detach
Description

Detach dev.
LOCKING: None.

void ata_eh_about_to_do(struct ata_link * link, struct ata_device * dev, unsigned int action)
about to perform eh_action

Parameters
struct ata_link * link target ATA link
struct ata_device * dev target ATA dev for per-dev action (can be NULL)
unsigned int action action about to be performed
Description

Called just before performing EH actions to clear related bits in link->eh_info such that eh
actions are not unnecessarily repeated.
LOCKING: None.

void ata_eh_done(struct ata_link * link, struct ata_device * dev, unsigned int action)
EH action complete

Parameters
struct ata_link * link ATA link for which EH actions are complete
struct ata_device * dev target ATA dev for per-dev action (can be NULL)

21.5. libata Core Internals 611

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int action action just completed
Description

Called right after performing EH actions to clear related bits in link->eh_context.
LOCKING: None.

const char * ata_err_string(unsigned int err_mask)
convert err_mask to descriptive string

Parameters
unsigned int err_mask error mask to convert to string
Description

Convert err_mask to descriptive string. Errors are prioritized according to severity and only
the most severe error is reported.
LOCKING: None.

Return
Descriptive string for err_mask

int ata_eh_read_log_10h(struct ata_device * dev, int * tag, struct ata_taskfile * tf)
Read log page 10h for NCQ error details

Parameters
struct ata_device * dev Device to read log page 10h from
int * tag Resulting tag of the failed command
struct ata_taskfile * tf Resulting taskfile registers of the failed command
Description

Read log page 10h to obtain NCQ error details and clear error condition.
LOCKING: Kernel thread context (may sleep).

Return
0 on success, -errno otherwise.

unsigned int atapi_eh_tur(struct ata_device * dev, u8 * r_sense_key)
perform ATAPI TEST_UNIT_READY

Parameters
struct ata_device * dev target ATAPI device
u8 * r_sense_key out parameter for sense_key
Description

Perform ATAPI TEST_UNIT_READY.
LOCKING: EH context (may sleep).

Return
0 on success, AC_ERR_* mask on failure.

void ata_eh_request_sense(struct ata_queued_cmd * qc, struct scsi_cmnd * cmd)
perform REQUEST_SENSE_DATA_EXT

Parameters
struct ata_queued_cmd * qc qc to perform REQUEST_SENSE_SENSE_DATA_EXT to
struct scsi_cmnd * cmd scsi command for which the sense code should be set
Description

612 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Perform REQUEST_SENSE_DATA_EXT after the device reported CHECK SENSE. This function is
an EH helper.
LOCKING: Kernel thread context (may sleep).

unsigned int atapi_eh_request_sense(struct ata_device * dev, u8 * sense_buf, u8 dfl_sense_key)
perform ATAPI REQUEST_SENSE

Parameters
struct ata_device * dev device to perform REQUEST_SENSE to
u8 * sense_buf result sense data buffer (SCSI_SENSE_BUFFERSIZE bytes long)
u8 dfl_sense_key default sense key to use
Description

Perform ATAPI REQUEST_SENSE after the device reported CHECK SENSE. This function is EH
helper.
LOCKING: Kernel thread context (may sleep).

Return
0 on success, AC_ERR_* mask on failure

void ata_eh_analyze_serror(struct ata_link * link)
analyze SError for a failed port

Parameters
struct ata_link * link ATA link to analyze SError for
Description

Analyze SError if available and further determine cause of failure.
LOCKING: None.

void ata_eh_analyze_ncq_error(struct ata_link * link)
analyze NCQ error

Parameters
struct ata_link * link ATA link to analyze NCQ error for
Description

Read log page 10h, determine the offending qc and acquire error status TF. For NCQ device
errors, all LLDDs have to do is setting AC_ERR_DEV in ehi->err_mask. This function takes care
of the rest.
LOCKING: Kernel thread context (may sleep).

unsigned int ata_eh_analyze_tf(struct ata_queued_cmd * qc, const struct ata_taskfile * tf)
analyze taskfile of a failed qc

Parameters
struct ata_queued_cmd * qc qc to analyze
const struct ata_taskfile * tf Taskfile registers to analyze
Description

Analyze taskfile of qc and further determine cause of failure. This function also requests ATAPI
sense data if available.
LOCKING: Kernel thread context (may sleep).

Return
Determined recovery action

21.5. libata Core Internals 613

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int ata_eh_speed_down_verdict(struct ata_device * dev)
Determine speed down verdict

Parameters
struct ata_device * dev Device of interest
Description

This function examines error ring of dev and determines whether NCQ needs to be turned off,
transfer speed should be stepped down, or falling back to PIO is necessary.
ECAT_ATA_BUS : ATA_BUS error for any command
ECAT_TOUT_HSM [TIMEOUT for any command or HSM violation for] IO commands
ECAT_UNK_DEV : Unknown DEV error for IO commands
ECAT_DUBIOUS_* [Identical to above three but occurred while] data transfer hasn’t been ver-

ified.
Verdicts are
NCQ_OFF : Turn off NCQ.
SPEED_DOWN [Speed down transfer speed but don’t fall back] to PIO.
FALLBACK_TO_PIO : Fall back to PIO.
Even if multiple verdicts are returned, only one action is taken per error. An action triggered by
non-DUBIOUS errors clears ering, while one triggered by DUBIOUS_* errors doesn’t. This is to
expedite speed down decisions right after device is initially configured.
The following are speed down rules. #1 and #2 deal with DUBIOUS errors.
1. If more than one DUBIOUS_ATA_BUS or DUBIOUS_TOUT_HSM errors occurred during last 5
mins, SPEED_DOWN and FALLBACK_TO_PIO.

2. If more than one DUBIOUS_TOUT_HSM or DUBIOUS_UNK_DEV errors occurred during last 5
mins, NCQ_OFF.

3. If more than 8 ATA_BUS, TOUT_HSM or UNK_DEV errors occurred during last 5 mins, FALL-
BACK_TO_PIO

4. If more than 3 TOUT_HSM or UNK_DEV errors occurred during last 10 mins, NCQ_OFF.
5. If more than 3 ATA_BUS or TOUT_HSM errors, or more than 6 UNK_DEV errors occurred
during last 10 mins, SPEED_DOWN.

LOCKING: Inherited from caller.
Return

OR of ATA_EH_SPDN_* flags.
unsigned int ata_eh_speed_down(struct ata_device * dev, unsigned int eflags, unsigned

int err_mask)
record error and speed down if necessary

Parameters
struct ata_device * dev Failed device
unsigned int eflags mask of ATA_EFLAG_* flags
unsigned int err_mask err_mask of the error
Description

Record error and examine error history to determine whether adjusting transmission speed is
necessary. It also sets transmission limits appropriately if such adjustment is necessary.
LOCKING: Kernel thread context (may sleep).

614 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Return
Determined recovery action.

int ata_eh_worth_retry(struct ata_queued_cmd * qc)
analyze error and decide whether to retry

Parameters
struct ata_queued_cmd * qc qc to possibly retry
Description

Look at the cause of the error and decide if a retry might be useful or not. We don’t want to
retry media errors because the drive itself has probably already taken 10-30 seconds doing its
own internal retries before reporting the failure.

void ata_eh_link_autopsy(struct ata_link * link)
analyze error and determine recovery action

Parameters
struct ata_link * link host link to perform autopsy on
Description

Analyze why link failed and determine which recovery actions are needed. This function also
sets more detailed AC_ERR_* values and fills sense data for ATAPI CHECK SENSE.
LOCKING: Kernel thread context (may sleep).

void ata_eh_autopsy(struct ata_port * ap)
analyze error and determine recovery action

Parameters
struct ata_port * ap host port to perform autopsy on
Description

Analyze all links of ap and determine why they failed and which recovery actions are needed.
LOCKING: Kernel thread context (may sleep).

const char * ata_get_cmd_descript(u8 command)
get description for ATA command

Parameters
u8 command ATA command code to get description for
Description

Return a textual description of the given command, or NULL if the command is not known.
LOCKING: None

void ata_eh_link_report(struct ata_link * link)
report error handling to user

Parameters
struct ata_link * link ATA link EH is going on
Description

Report EH to user.
LOCKING: None.

void ata_eh_report(struct ata_port * ap)
report error handling to user

Parameters

21.5. libata Core Internals 615

The kernel driver API manual, Release 4.13.0-rc4+

struct ata_port * ap ATA port to report EH about
Description

Report EH to user.
LOCKING: None.

int ata_set_mode(struct ata_link * link, struct ata_device ** r_failed_dev)
Program timings and issue SET FEATURES - XFER

Parameters
struct ata_link * link link on which timings will be programmed
struct ata_device ** r_failed_dev out parameter for failed device
Description

Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If ata_set_mode() fails, pointer to the
failing device is returned in r_failed_dev.
LOCKING: PCI/etc. bus probe sem.

Return
0 on success, negative errno otherwise

int atapi_eh_clear_ua(struct ata_device * dev)
Clear ATAPI UNIT ATTENTION after reset

Parameters
struct ata_device * dev ATAPI device to clear UA for
Description

Resets and other operations can make an ATAPI device raise UNIT ATTENTION which causes the
next operation to fail. This function clears UA.
LOCKING: EH context (may sleep).

Return
0 on success, -errno on failure.

int ata_eh_maybe_retry_flush(struct ata_device * dev)
Retry FLUSH if necessary

Parameters
struct ata_device * dev ATA device which may need FLUSH retry
Description

If dev failed FLUSH, it needs to be reported upper layer immediately as it means that dev failed
to remap and already lost at least a sector and further FLUSH retrials won’t make any difference
to the lost sector. However, if FLUSH failed for other reasons, for example transmission error,
FLUSH needs to be retried.
This function determines whether FLUSH failure retry is necessary and performs it if so.

Return
0 if EH can continue, -errno if EH needs to be repeated.

int ata_eh_set_lpm(struct ata_link * link, enum ata_lpm_policy policy, struct ata_device
** r_failed_dev)

configure SATA interface power management
Parameters
struct ata_link * link link to configure power management

616 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

enum ata_lpm_policy policy the link power management policy
struct ata_device ** r_failed_dev out parameter for failed device
Description

Enable SATA Interface power management. This will enable Device Interface Power Manage-
ment (DIPM) for min_power policy, and then call driver specific callbacks for enabling Host Ini-
tiated Power management.
LOCKING: EH context.

Return
0 on success, -errno on failure.

int ata_eh_recover(struct ata_port * ap, ata_prereset_fn_t prereset, ata_reset_fn_t softreset,
ata_reset_fn_t hardreset, ata_postreset_fn_t postreset, struct ata_link
** r_failed_link)

recover host port after error
Parameters
struct ata_port * ap host port to recover
ata_prereset_fn_t prereset prereset method (can be NULL)
ata_reset_fn_t softreset softreset method (can be NULL)
ata_reset_fn_t hardreset hardreset method (can be NULL)
ata_postreset_fn_t postreset postreset method (can be NULL)
struct ata_link ** r_failed_link out parameter for failed link
Description

This is the alpha and omega, eum and yang, heart and soul of libata exception handling. On
entry, actions required to recover each link and hotplug requests are recorded in the link’s
eh_context. This function executes all the operations with appropriate retrials and fallbacks to
resurrect failed devices, detach goners and greet newcomers.
LOCKING: Kernel thread context (may sleep).

Return
0 on success, -errno on failure.

void ata_eh_finish(struct ata_port * ap)
finish up EH

Parameters
struct ata_port * ap host port to finish EH for
Description

Recovery is complete. Clean up EH states and retry or finish failed qcs.
LOCKING: None.

void ata_do_eh(struct ata_port * ap, ata_prereset_fn_t prereset, ata_reset_fn_t softreset,
ata_reset_fn_t hardreset, ata_postreset_fn_t postreset)

do standard error handling
Parameters
struct ata_port * ap host port to handle error for
ata_prereset_fn_t prereset prereset method (can be NULL)
ata_reset_fn_t softreset softreset method (can be NULL)
ata_reset_fn_t hardreset hardreset method (can be NULL)

21.5. libata Core Internals 617

The kernel driver API manual, Release 4.13.0-rc4+

ata_postreset_fn_t postreset postreset method (can be NULL)
Description

Perform standard error handling sequence.
LOCKING: Kernel thread context (may sleep).

void ata_std_error_handler(struct ata_port * ap)
standard error handler

Parameters
struct ata_port * ap host port to handle error for
Description

Standard error handler
LOCKING: Kernel thread context (may sleep).

void ata_eh_handle_port_suspend(struct ata_port * ap)
perform port suspend operation

Parameters
struct ata_port * ap port to suspend
Description

Suspend ap.
LOCKING: Kernel thread context (may sleep).

void ata_eh_handle_port_resume(struct ata_port * ap)
perform port resume operation

Parameters
struct ata_port * ap port to resume
Description

Resume ap.
LOCKING: Kernel thread context (may sleep).

21.6 libata SCSI translation/emulation

struct ata_port * ata_sas_port_alloc(struct ata_host * host, struct ata_port_info * port_info, struct
Scsi_Host * shost)

Allocate port for a SAS attached SATA device
Parameters
struct ata_host * host ATA host container for all SAS ports
struct ata_port_info * port_info Information from low-level host driver
struct Scsi_Host * shost SCSI host that the scsi device is attached to
Description

LOCKING: PCI/etc. bus probe sem.
Return

ata_port pointer on success / NULL on failure.
int ata_sas_port_start(struct ata_port * ap)

Set port up for dma.

618 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct ata_port * ap Port to initialize
Description

Called just after data structures for each port are initialized.
May be used as the port_start() entry in ata_port_operations.
LOCKING: Inherited from caller.

void ata_sas_port_stop(struct ata_port * ap)
Undo ata_sas_port_start()

Parameters
struct ata_port * ap Port to shut down
Description

May be used as the port_stop() entry in ata_port_operations.
LOCKING: Inherited from caller.

void ata_sas_async_probe(struct ata_port * ap)
simply schedule probing and return

Parameters
struct ata_port * ap Port to probe
Description
For batch scheduling of probe for sas attached ata devices, assumes the port has already been through
ata_sas_port_init()

int ata_sas_port_init(struct ata_port * ap)
Initialize a SATA device

Parameters
struct ata_port * ap SATA port to initialize
Description

LOCKING: PCI/etc. bus probe sem.
Return

Zero on success, non-zero on error.
void ata_sas_port_destroy(struct ata_port * ap)

Destroy a SATA port allocated by ata_sas_port_alloc
Parameters
struct ata_port * ap SATA port to destroy
int ata_sas_slave_configure(struct scsi_device * sdev, struct ata_port * ap)

Default slave_config routine for libata devices
Parameters
struct scsi_device * sdev SCSI device to configure
struct ata_port * ap ATA port to which SCSI device is attached
Return

Zero.
int ata_sas_queuecmd(struct scsi_cmnd * cmd, struct ata_port * ap)

Issue SCSI cdb to libata-managed device

21.6. libata SCSI translation/emulation 619

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct scsi_cmnd * cmd SCSI command to be sent
struct ata_port * ap ATA port to which the command is being sent
Return

Return value from __ata_scsi_queuecmd() if cmd can be queued, 0 otherwise.
int ata_std_bios_param(struct scsi_device * sdev, struct block_device * bdev, sector_t capacity,

int geom)
generic bios head/sector/cylinder calculator used by sd.

Parameters
struct scsi_device * sdev SCSI device for which BIOS geometry is to be determined
struct block_device * bdev block device associated with sdev
sector_t capacity capacity of SCSI device
int geom location to which geometry will be output
Description

Generic bios head/sector/cylinder calculator used by sd. Most BIOSes nowadays expect a
XXX/255/16 (CHS) mapping. Some situations may arise where the disk is not bootable if this is
not used.
LOCKING: Defined by the SCSI layer. We don’t really care.

Return
Zero.

void ata_scsi_unlock_native_capacity(struct scsi_device * sdev)
unlock native capacity

Parameters
struct scsi_device * sdev SCSI device to adjust device capacity for
Description

This function is called if a partition on sdev extends beyond the end of the device. It requests
EH to unlock HPA.
LOCKING: Defined by the SCSI layer. Might sleep.

int ata_get_identity(struct ata_port * ap, struct scsi_device * sdev, void __user * arg)
Handler for HDIO_GET_IDENTITY ioctl

Parameters
struct ata_port * ap target port
struct scsi_device * sdev SCSI device to get identify data for
void __user * arg User buffer area for identify data
Description

LOCKING: Defined by the SCSI layer. We don’t really care.
Return

Zero on success, negative errno on error.
int ata_cmd_ioctl(struct scsi_device * scsidev, void __user * arg)

Handler for HDIO_DRIVE_CMD ioctl
Parameters
struct scsi_device * scsidev Device to which we are issuing command

620 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

void __user * arg User provided data for issuing command
Description

LOCKING: Defined by the SCSI layer. We don’t really care.
Return

Zero on success, negative errno on error.
int ata_task_ioctl(struct scsi_device * scsidev, void __user * arg)

Handler for HDIO_DRIVE_TASK ioctl
Parameters
struct scsi_device * scsidev Device to which we are issuing command
void __user * arg User provided data for issuing command
Description

LOCKING: Defined by the SCSI layer. We don’t really care.
Return

Zero on success, negative errno on error.
struct ata_queued_cmd * ata_scsi_qc_new(struct ata_device * dev, struct scsi_cmnd * cmd)

acquire new ata_queued_cmd reference
Parameters
struct ata_device * dev ATA device to which the new command is attached
struct scsi_cmnd * cmd SCSI command that originated this ATA command
Description

Obtain a reference to an unused ata_queued_cmd structure, which is the basic libata structure
representing a single ATA command sent to the hardware.
If a command was available, fill in the SCSI-specific portions of the structure with information
on the current command.
LOCKING: spin_lock_irqsave(host lock)

Return
Command allocated, or NULL if none available.

void ata_dump_status(unsigned id, struct ata_taskfile * tf)
user friendly display of error info

Parameters
unsigned id id of the port in question
struct ata_taskfile * tf ptr to filled out taskfile
Description

Decode and dump the ATA error/status registers for the user so that they have some idea what
really happened at the non make-believe layer.
LOCKING: inherited from caller

void ata_to_sense_error(unsigned id, u8 drv_stat, u8 drv_err, u8 * sk, u8 * asc, u8 * ascq,
int verbose)

convert ATA error to SCSI error
Parameters
unsigned id ATA device number
u8 drv_stat value contained in ATA status register

21.6. libata SCSI translation/emulation 621

The kernel driver API manual, Release 4.13.0-rc4+

u8 drv_err value contained in ATA error register
u8 * sk the sense key we’ll fill out
u8 * asc the additional sense code we’ll fill out
u8 * ascq the additional sense code qualifier we’ll fill out
int verbose be verbose
Description

Converts an ATA error into a SCSI error. Fill out pointers to SK, ASC, and ASCQ bytes for later
use in fixed or descriptor format sense blocks.
LOCKING: spin_lock_irqsave(host lock)

void ata_gen_ata_sense(struct ata_queued_cmd * qc)
generate a SCSI fixed sense block

Parameters
struct ata_queued_cmd * qc Command that we are erroring out
Description

Generate sense block for a failed ATA command qc. Descriptor format is used to accommodate
LBA48 block address.
LOCKING: None.

int atapi_drain_needed(struct request * rq)
Check whether data transfer may overflow

Parameters
struct request * rq request to be checked
Description

ATAPI commands which transfer variable length data to host might overflow due to application
error or hardware bug. This function checks whether overflow should be drained and ignored
for request.
LOCKING: None.

Return
1 if ; otherwise, 0.

int ata_scsi_slave_config(struct scsi_device * sdev)
Set SCSI device attributes

Parameters
struct scsi_device * sdev SCSI device to examine
Description

This is called before we actually start reading and writing to the device, to configure certain
SCSI mid-layer behaviors.
LOCKING: Defined by SCSI layer. We don’t really care.

void ata_scsi_slave_destroy(struct scsi_device * sdev)
SCSI device is about to be destroyed

Parameters
struct scsi_device * sdev SCSI device to be destroyed
Description

622 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

sdev is about to be destroyed for hot/warm unplugging. If this unplugging was initiated by
libata as indicated by NULL dev->sdev, this function doesn’t have to do anything. Otherwise,
SCSI layer initiated warm-unplug is in progress. Clear dev->sdev, schedule the device for ATA
detach and invoke EH.
LOCKING: Defined by SCSI layer. We don’t really care.

int __ata_change_queue_depth(struct ata_port * ap, struct scsi_device * sdev, int queue_depth)
helper for ata_scsi_change_queue_depth

Parameters
struct ata_port * ap ATA port to which the device change the queue depth
struct scsi_device * sdev SCSI device to configure queue depth for
int queue_depth new queue depth
Description

libsas and libata have different approaches for associating a sdev to its ata_port.
int ata_scsi_change_queue_depth(struct scsi_device * sdev, int queue_depth)

SCSI callback for queue depth config
Parameters
struct scsi_device * sdev SCSI device to configure queue depth for
int queue_depth new queue depth
Description

This is libata standard hostt->change_queue_depth callback. SCSI will call into this callback
when user tries to set queue depth via sysfs.
LOCKING: SCSI layer (we don’t care)

Return
Newly configured queue depth.

unsigned int ata_scsi_start_stop_xlat(struct ata_queued_cmd * qc)
Translate SCSI START STOP UNIT command

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile
Description

Sets up an ATA taskfile to issue STANDBY (to stop) or READ VERIFY (to start). Perhaps these
commands should be preceded by CHECK POWER MODE to see what power mode the device is
already in. [See SAT revision 5 at www.t10.org]
LOCKING: spin_lock_irqsave(host lock)

Return
Zero on success, non-zero on error.

unsigned int ata_scsi_flush_xlat(struct ata_queued_cmd * qc)
Translate SCSI SYNCHRONIZE CACHE command

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile
Description

Sets up an ATA taskfile to issue FLUSH CACHE or FLUSH CACHE EXT.
LOCKING: spin_lock_irqsave(host lock)

21.6. libata SCSI translation/emulation 623

The kernel driver API manual, Release 4.13.0-rc4+

Return
Zero on success, non-zero on error.

void scsi_6_lba_len(const u8 * cdb, u64 * plba, u32 * plen)
Get LBA and transfer length

Parameters
const u8 * cdb SCSI command to translate
u64 * plba the LBA
u32 * plen the transfer length
Description

Calculate LBA and transfer length for 6-byte commands.
void scsi_10_lba_len(const u8 * cdb, u64 * plba, u32 * plen)

Get LBA and transfer length
Parameters
const u8 * cdb SCSI command to translate
u64 * plba the LBA
u32 * plen the transfer length
Description

Calculate LBA and transfer length for 10-byte commands.
void scsi_16_lba_len(const u8 * cdb, u64 * plba, u32 * plen)

Get LBA and transfer length
Parameters
const u8 * cdb SCSI command to translate
u64 * plba the LBA
u32 * plen the transfer length
Description

Calculate LBA and transfer length for 16-byte commands.
unsigned int ata_scsi_verify_xlat(struct ata_queued_cmd * qc)

Translate SCSI VERIFY command into an ATA one
Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile
Description

Converts SCSI VERIFY command to an ATA READ VERIFY command.
LOCKING: spin_lock_irqsave(host lock)

Return
Zero on success, non-zero on error.

unsigned int ata_scsi_rw_xlat(struct ata_queued_cmd * qc)
Translate SCSI r/w command into an ATA one

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile
Description

624 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Converts any of six SCSI read/write commands into the ATA counterpart, including starting sector
(LBA), sector count, and taking into account the device’s LBA48 support.
Commands READ_6, READ_10, READ_16, WRITE_6, WRITE_10, and WRITE_16 are currently sup-
ported.
LOCKING: spin_lock_irqsave(host lock)

Return
Zero on success, non-zero on error.

int ata_scsi_translate(struct ata_device * dev, struct scsi_cmnd * cmd,
ata_xlat_func_t xlat_func)

Translate then issue SCSI command to ATA device
Parameters
struct ata_device * dev ATA device to which the command is addressed
struct scsi_cmnd * cmd SCSI command to execute
ata_xlat_func_t xlat_func Actor which translates cmd to an ATA taskfile
Description

Our ->:c:func:queuecommand() function has decided that the SCSI command issued can be
directly translated into an ATA command, rather than handled internally.
This function sets up an ata_queued_cmd structure for the SCSI command, and sends that
ata_queued_cmd to the hardware.
The xlat_func argument (actor) returns 0 if ready to execute ATA command, else 1 to finish
translation. If 1 is returned then cmd->result (and possibly cmd->sense_buffer) are assumed
to be set reflecting an error condition or clean (early) termination.
LOCKING: spin_lock_irqsave(host lock)

Return
0 on success, SCSI_ML_QUEUE_DEVICE_BUSY if the command needs to be deferred.

void * ata_scsi_rbuf_get(struct scsi_cmnd * cmd, bool copy_in, unsigned long * flags)
Map response buffer.

Parameters
struct scsi_cmnd * cmd SCSI command containing buffer to be mapped.
bool copy_in copy in from user buffer
unsigned long * flags unsigned long variable to store irq enable status
Description

Prepare buffer for simulated SCSI commands.
LOCKING: spin_lock_irqsave(ata_scsi_rbuf_lock) on success

Return
Pointer to response buffer.

void ata_scsi_rbuf_put(struct scsi_cmnd * cmd, bool copy_out, unsigned long * flags)
Unmap response buffer.

Parameters
struct scsi_cmnd * cmd SCSI command containing buffer to be unmapped.
bool copy_out copy out result
unsigned long * flags flags passed to ata_scsi_rbuf_get()

21.6. libata SCSI translation/emulation 625

The kernel driver API manual, Release 4.13.0-rc4+

Description
Returns rbuf buffer. The result is copied to cmd‘s buffer if copy_back is true.
LOCKING: Unlocks ata_scsi_rbuf_lock.

void ata_scsi_rbuf_fill(struct ata_scsi_args * args, unsigned int (*actor) (struct
ata_scsi_args *args, u8 *rbuf)

wrapper for SCSI command simulators
Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of interest.
unsigned int (*)(struct ata_scsi_args *args,u8 *rbuf) actor Callback hook for desired SCSI

command simulator
Description

Takes care of the hard work of simulating a SCSI command... Mapping the response buffer,
calling the command’s handler, and handling the handler’s return value. This return value
indicates whether the handler wishes the SCSI command to be completed successfully (0), or
not (in which case cmd->result and sense buffer are assumed to be set).
LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsiop_inq_std(struct ata_scsi_args * args, u8 * rbuf)
Simulate INQUIRY command

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of interest.
u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.
Description

Returns standard device identification data associated with non-VPD INQUIRY command output.
LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsiop_inq_00(struct ata_scsi_args * args, u8 * rbuf)
Simulate INQUIRY VPD page 0, list of pages

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of interest.
u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.
Description

Returns list of inquiry VPD pages available.
LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsiop_inq_80(struct ata_scsi_args * args, u8 * rbuf)
Simulate INQUIRY VPD page 80, device serial number

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of interest.
u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.
Description

Returns ATA device serial number.
LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsiop_inq_83(struct ata_scsi_args * args, u8 * rbuf)
Simulate INQUIRY VPD page 83, device identity

626 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of interest.
u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.
Description

Yields two logical unit device identification designators:
• vendor specific ASCII containing the ATA serial number
• SAT defined “t10 vendor id based” containing ASCII vendor name (“ATA ”), model and
serial numbers.

LOCKING: spin_lock_irqsave(host lock)
unsigned int ata_scsiop_inq_89(struct ata_scsi_args * args, u8 * rbuf)

Simulate INQUIRY VPD page 89, ATA info
Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of interest.
u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.
Description

Yields SAT-specified ATA VPD page.
LOCKING: spin_lock_irqsave(host lock)

void modecpy(u8 * dest, const u8 * src, int n, bool changeable)
Prepare response for MODE SENSE

Parameters
u8 * dest output buffer
const u8 * src data being copied
int n length of mode page
bool changeable whether changeable parameters are requested
Description

Generate a generic MODE SENSE page for either current or changeable parameters.
LOCKING: None.

unsigned int ata_msense_caching(u16 * id, u8 * buf, bool changeable)
Simulate MODE SENSE caching info page

Parameters
u16 * id device IDENTIFY data
u8 * buf output buffer
bool changeable whether changeable parameters are requested
Description

Generate a caching info page, which conditionally indicates write caching to the SCSI layer,
depending on device capabilities.
LOCKING: None.

unsigned int ata_msense_control(struct ata_device * dev, u8 * buf, bool changeable)
Simulate MODE SENSE control mode page

Parameters
struct ata_device * dev ATA device of interest

21.6. libata SCSI translation/emulation 627

The kernel driver API manual, Release 4.13.0-rc4+

u8 * buf output buffer
bool changeable whether changeable parameters are requested
Description

Generate a generic MODE SENSE control mode page.
LOCKING: None.

unsigned int ata_msense_rw_recovery(u8 * buf, bool changeable)
Simulate MODE SENSE r/w error recovery page

Parameters
u8 * buf output buffer
bool changeable whether changeable parameters are requested
Description

Generate a generic MODE SENSE r/w error recovery page.
LOCKING: None.

unsigned int ata_scsiop_mode_sense(struct ata_scsi_args * args, u8 * rbuf)
Simulate MODE SENSE 6, 10 commands

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of interest.
u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.
Description

Simulate MODE SENSE commands. Assume this is invoked for direct access devices (e.g. disks)
only. There should be no block descriptor for other device types.
LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsiop_read_cap(struct ata_scsi_args * args, u8 * rbuf)
Simulate READ CAPACITY[16] commands

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of interest.
u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.
Description

Simulate READ CAPACITY commands.
LOCKING: None.

unsigned int ata_scsiop_report_luns(struct ata_scsi_args * args, u8 * rbuf)
Simulate REPORT LUNS command

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of interest.
u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.
Description

Simulate REPORT LUNS command.
LOCKING: spin_lock_irqsave(host lock)

unsigned int atapi_xlat(struct ata_queued_cmd * qc)
Initialize PACKET taskfile

Parameters

628 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct ata_queued_cmd * qc command structure to be initialized
Description

LOCKING: spin_lock_irqsave(host lock)
Return

Zero on success, non-zero on failure.
struct ata_device * ata_scsi_find_dev(struct ata_port * ap, const struct scsi_device * scsidev)

lookup ata_device from scsi_cmnd
Parameters
struct ata_port * ap ATA port to which the device is attached
const struct scsi_device * scsidev SCSI device from which we derive the ATA device
Description

Given various information provided in struct scsi_cmnd, map that onto an ATA bus, and using
that mapping determine which ata_device is associated with the SCSI command to be sent.
LOCKING: spin_lock_irqsave(host lock)

Return
Associated ATA device, or NULL if not found.

unsigned int ata_scsi_pass_thru(struct ata_queued_cmd * qc)
convert ATA pass-thru CDB to taskfile

Parameters
struct ata_queued_cmd * qc command structure to be initialized
Description

Handles either 12, 16, or 32-byte versions of the CDB.
Return

Zero on success, non-zero on failure.
size_t ata_format_dsm_trim_descr(struct scsi_cmnd * cmd, u32 trmax, u64 sector, u32 count)

SATL Write Same to DSM Trim
Parameters
struct scsi_cmnd * cmd SCSI command being translated
u32 trmax Maximum number of entries that will fit in sector_size bytes.
u64 sector Starting sector
u32 count Total Range of request in logical sectors
Description
Rewrite the WRITE SAME descriptor to be a DSM TRIM little-endian formatted descriptor.
Upto 64 entries of the format:

63:48 Range Length 47:0 LBA
Range Length of 0 is ignored. LBA’s should be sorted order and not overlap.

NOTE
this is the same format as ADD LBA(S) TO NV CACHE PINNED SET
Return
Number of bytes copied into sglist.

21.6. libata SCSI translation/emulation 629

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int ata_scsi_write_same_xlat(struct ata_queued_cmd * qc)
SATL Write Same to ATA SCT Write Same

Parameters
struct ata_queued_cmd * qc Command to be translated
Description
Translate a SCSI WRITE SAME command to be either a DSM TRIM command or an SCT Write Same com-
mand. Based on WRITE SAME has the UNMAP flag:
• When set translate to DSM TRIM
• When clear translate to SCT Write Same

unsigned int ata_scsiop_maint_in(struct ata_scsi_args * args, u8 * rbuf)
Simulate a subset of MAINTENANCE_IN

Parameters
struct ata_scsi_args * args device MAINTENANCE_IN data / SCSI command of interest.
u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.
Description

Yields a subset to satisfy scsi_report_opcode()
LOCKING: spin_lock_irqsave(host lock)

void ata_scsi_report_zones_complete(struct ata_queued_cmd * qc)
convert ATA output

Parameters
struct ata_queued_cmd * qc command structure returning the data
Description

Convert T-13 little-endian field representation into T-10 big-endian field representation. What a
mess.

int ata_mselect_caching(struct ata_queued_cmd * qc, const u8 * buf, int len, u16 * fp)
Simulate MODE SELECT for caching info page

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile
const u8 * buf input buffer
int len number of valid bytes in the input buffer
u16 * fp out parameter for the failed field on error
Description

Prepare a taskfile to modify caching information for the device.
LOCKING: None.

int ata_mselect_control(struct ata_queued_cmd * qc, const u8 * buf, int len, u16 * fp)
Simulate MODE SELECT for control page

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile
const u8 * buf input buffer
int len number of valid bytes in the input buffer
u16 * fp out parameter for the failed field on error

630 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
Prepare a taskfile to modify caching information for the device.
LOCKING: None.

unsigned int ata_scsi_mode_select_xlat(struct ata_queued_cmd * qc)
Simulate MODE SELECT 6, 10 commands

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile
Description

Converts a MODE SELECT command to an ATA SET FEATURES taskfile. Assume this is invoked
for direct access devices (e.g. disks) only. There should be no block descriptor for other device
types.
LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsi_var_len_cdb_xlat(struct ata_queued_cmd * qc)
SATL variable length CDB to Handler

Parameters
struct ata_queued_cmd * qc Command to be translated
Description

Translate a SCSI variable length CDB to specified commands. It checks a service action value
in CDB to call corresponding handler.

Return
Zero on success, non-zero on failure

ata_xlat_func_t ata_get_xlat_func(struct ata_device * dev, u8 cmd)
check if SCSI to ATA translation is possible

Parameters
struct ata_device * dev ATA device
u8 cmd SCSI command opcode to consider
Description

Look up the SCSI command given, and determine whether the SCSI command is to be translated
or simulated.

Return
Pointer to translation function if possible, NULL if not.

void ata_scsi_dump_cdb(struct ata_port * ap, struct scsi_cmnd * cmd)
dump SCSI command contents to dmesg

Parameters
struct ata_port * ap ATA port to which the command was being sent
struct scsi_cmnd * cmd SCSI command to dump
Description

Prints the contents of a SCSI command via printk().
int ata_scsi_queuecmd(struct Scsi_Host * shost, struct scsi_cmnd * cmd)

Issue SCSI cdb to libata-managed device
Parameters
struct Scsi_Host * shost SCSI host of command to be sent

21.6. libata SCSI translation/emulation 631

The kernel driver API manual, Release 4.13.0-rc4+

struct scsi_cmnd * cmd SCSI command to be sent
Description

In some cases, this function translates SCSI commands into ATA taskfiles, and queues the task-
files to be sent to hardware. In other cases, this function simulates a SCSI device by evaluating
and responding to certain SCSI commands. This creates the overall effect of ATA and ATAPI
devices appearing as SCSI devices.
LOCKING: ATA host lock

Return
Return value from __ata_scsi_queuecmd() if cmd can be queued, 0 otherwise.

void ata_scsi_simulate(struct ata_device * dev, struct scsi_cmnd * cmd)
simulate SCSI command on ATA device

Parameters
struct ata_device * dev the target device
struct scsi_cmnd * cmd SCSI command being sent to device.
Description

Interprets and directly executes a select list of SCSI commands that can be handled internally.
LOCKING: spin_lock_irqsave(host lock)

int ata_scsi_offline_dev(struct ata_device * dev)
offline attached SCSI device

Parameters
struct ata_device * dev ATA device to offline attached SCSI device for
Description

This function is called from ata_eh_hotplug() and responsible for taking the SCSI device at-
tached to dev offline. This function is called with host lock which protects dev->sdev against
clearing.
LOCKING: spin_lock_irqsave(host lock)

Return
1 if attached SCSI device exists, 0 otherwise.

void ata_scsi_remove_dev(struct ata_device * dev)
remove attached SCSI device

Parameters
struct ata_device * dev ATA device to remove attached SCSI device for
Description

This function is called from ata_eh_scsi_hotplug() and responsible for removing the SCSI
device attached to dev.
LOCKING: Kernel thread context (may sleep).

void ata_scsi_media_change_notify(struct ata_device * dev)
send media change event

Parameters
struct ata_device * dev Pointer to the disk device with media change event
Description

632 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Tell the block layer to send a media change notification event.
LOCKING: spin_lock_irqsave(host lock)

void ata_scsi_hotplug(struct work_struct * work)
SCSI part of hotplug

Parameters
struct work_struct * work Pointer to ATA port to perform SCSI hotplug on
Description

Perform SCSI part of hotplug. It’s executed from a separate workqueue after EH completes. This
is necessary because SCSI hot plugging requires working EH and hot unplugging is synchronized
with hot plugging with a mutex.
LOCKING: Kernel thread context (may sleep).

int ata_scsi_user_scan(struct Scsi_Host * shost, unsigned int channel, unsigned int id, u64 lun)
indication for user-initiated bus scan

Parameters
struct Scsi_Host * shost SCSI host to scan
unsigned int channel Channel to scan
unsigned int id ID to scan
u64 lun LUN to scan
Description

This function is called when user explicitly requests bus scan. Set probe pending flag and invoke
EH.
LOCKING: SCSI layer (we don’t care)

Return
Zero.

void ata_scsi_dev_rescan(struct work_struct * work)
initiate scsi_rescan_device()

Parameters
struct work_struct * work Pointer to ATA port to perform scsi_rescan_device()

Description
After ATA pass thru (SAT) commands are executed successfully, libata need to propagate the
changes to SCSI layer.
LOCKING: Kernel thread context (may sleep).

21.7 ATA errors and exceptions

This chapter tries to identify what error/exception conditions exist for ATA/ATAPI devices and describe how
they should be handled in implementation-neutral way.
The term ‘error’ is used to describe conditions where either an explicit error condition is reported from
device or a command has timed out.
The term ‘exception’ is either used to describe exceptional conditions which are not errors (say, power or
hotplug events), or to describe both errors and non-error exceptional conditions. Where explicit distinction
between error and exception is necessary, the term ‘non-error exception’ is used.

21.7. ATA errors and exceptions 633

The kernel driver API manual, Release 4.13.0-rc4+

21.7.1 Exception categories

Exceptions are described primarily with respect to legacy taskfile + bus master IDE interface. If a con-
troller provides other better mechanism for error reporting, mapping those into categories described below
shouldn’t be difficult.
In the following sections, two recovery actions - reset and reconfiguring transport - are mentioned. These
are described further in EH recovery actions.

HSM violation

This error is indicated when STATUS value doesn’t match HSM requirement during issuing or execution
any ATA/ATAPI command.
• ATA_STATUS doesn’t contain !BSY && DRDY && !DRQ while trying to issue a command.
• !BSY && !DRQ during PIO data transfer.
• DRQ on command completion.
• !BSY && ERR after CDB transfer starts but before the last byte of CDB is transferred. ATA/ATAPI
standard states that “The device shall not terminate the PACKET command with an error before
the last byte of the command packet has been written” in the error outputs description of PACKET
command and the state diagram doesn’t include such transitions.

In these cases, HSM is violated and not much information regarding the error can be acquired from STATUS
or ERROR register. IOW, this error can be anything - driver bug, faulty device, controller and/or cable.
As HSM is violated, reset is necessary to restore known state. Reconfiguring transport for lower speed
might be helpful too as transmission errors sometimes cause this kind of errors.

ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION)

These are errors detected and reported by ATA/ATAPI devices indicating device problems. For this type of
errors, STATUS and ERROR register values are valid and describe error condition. Note that some of ATA
bus errors are detected by ATA/ATAPI devices and reported using the same mechanism as device errors.
Those cases are described later in this section.
For ATA commands, this type of errors are indicated by !BSY && ERR during command execution and on
completion.
For ATAPI commands,
• !BSY && ERR && ABRT right after issuing PACKET indicates that PACKET command is not supported
and falls in this category.

• !BSY && ERR(==CHK) && !ABRT after the last byte of CDB is transferred indicates CHECK CONDITION
and doesn’t fall in this category.

• !BSY && ERR(==CHK) && ABRT after the last byte of CDB is transferred *probably* indicates CHECK
CONDITION and doesn’t fall in this category.

Of errors detected as above, the following are not ATA/ATAPI device errors but ATA bus errors and should
be handled according to ATA bus error.
CRC error during data transfer This is indicated by ICRC bit in the ERROR register and means that

corruption occurred during data transfer. Up to ATA/ATAPI-7, the standard specifies that this bit is only
applicable to UDMA transfers but ATA/ATAPI-8 draft revision 1f says that the bit may be applicable to
multiword DMA and PIO.

ABRT error during data transfer or on completion Up to ATA/ATAPI-7, the standard specifies that
ABRT could be set on ICRC errors and on cases where a device is not able to complete a command.
Combined with the fact that MWDMA and PIO transfer errors aren’t allowed to use ICRC bit up to
ATA/ATAPI-7, it seems to imply that ABRT bit alone could indicate transfer errors.

634 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

However, ATA/ATAPI-8 draft revision 1f removes the part that ICRC errors can turn on ABRT. So, this
is kind of gray area. Some heuristics are needed here.

ATA/ATAPI device errors can be further categorized as follows.
Media errors This is indicated by UNC bit in the ERROR register. ATA devices reports UNC error only

after certain number of retries cannot recover the data, so there’s nothing much else to do other
than notifying upper layer.
READ and WRITE commands report CHS or LBA of the first failed sector but ATA/ATAPI standard
specifies that the amount of transferred data on error completion is indeterminate, so we cannot
assume that sectors preceding the failed sector have been transferred and thus cannot complete
those sectors successfully as SCSI does.

Media changed / media change requested error <<TODO: fill here>>
Address error This is indicated by IDNF bit in the ERROR register. Report to upper layer.
Other errors This can be invalid command or parameter indicated by ABRT ERROR bit or some other

error condition. Note that ABRT bit can indicate a lot of things including ICRC and Address errors.
Heuristics needed.

Depending on commands, not all STATUS/ERROR bits are applicable. These non-applicable bits aremarked
with “na” in the output descriptions but up to ATA/ATAPI-7 no definition of “na” can be found. However,
ATA/ATAPI-8 draft revision 1f describes “N/A” as follows.

3.2.3.3a N/A A keyword the indicates a field has no defined value in this standard and should
not be checked by the host or device. N/A fields should be cleared to zero.

So, it seems reasonable to assume that “na” bits are cleared to zero by devices and thus need no explicit
masking.

ATAPI device CHECK CONDITION

ATAPI device CHECK CONDITION error is indicated by set CHK bit (ERR bit) in the STATUS register after
the last byte of CDB is transferred for a PACKET command. For this kind of errors, sense data should be
acquired to gather information regarding the errors. REQUEST SENSE packet command should be used to
acquire sense data.
Once sense data is acquired, this type of errors can be handled similarly to other SCSI errors. Note that
sense data may indicate ATA bus error (e.g. Sense Key 04h HARDWARE ERROR && ASC/ASCQ 47h/00h
SCSI PARITY ERROR). In such cases, the error should be considered as an ATA bus error and handled
according to ATA bus error.

ATA device error (NCQ)

NCQ command error is indicated by cleared BSY and set ERR bit during NCQ command phase (one or more
NCQ commands outstanding). Although STATUS and ERROR registers will contain valid values describing
the error, READ LOG EXT is required to clear the error condition, determine which command has failed
and acquire more information.
READ LOG EXT Log Page 10h reports which tag has failed and taskfile register values describing the error.
With this information the failed command can be handled as a normal ATA command error as in ATA/ATAPI
device error (non-NCQ / non-CHECK CONDITION) and all other in-flight commands must be retried. Note
that this retry should not be counted - it’s likely that commands retried this way would have completed
normally if it were not for the failed command.
Note that ATA bus errors can be reported as ATA device NCQ errors. This should be handled as described
in ATA bus error.
If READ LOG EXT Log Page 10h fails or reports NQ, we’re thoroughly screwed. This condition should be
treated according to HSM violation.

21.7. ATA errors and exceptions 635

The kernel driver API manual, Release 4.13.0-rc4+

ATA bus error

ATA bus error means that data corruption occurred during transmission over ATA bus (SATA or PATA). This
type of errors can be indicated by
• ICRC or ABRT error as described in ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION).
• Controller-specific error completion with error information indicating transmission error.
• On some controllers, command timeout. In this case, there may be a mechanism to determine that
the timeout is due to transmission error.

• Unknown/random errors, timeouts and all sorts of weirdities.
As described above, transmission errors can cause wide variety of symptoms ranging from device ICRC
error to random device lockup, and, for many cases, there is no way to tell if an error condition is due to
transmission error or not; therefore, it’s necessary to employ some kind of heuristic when dealing with
errors and timeouts. For example, encountering repetitive ABRT errors for known supported command is
likely to indicate ATA bus error.
Once it’s determined that ATA bus errors have possibly occurred, lowering ATA bus transmission speed is
one of actions which may alleviate the problem. See Reconfigure transport for more information.

PCI bus error

Data corruption or other failures during transmission over PCI (or other system bus). For standard BMDMA,
this is indicated by Error bit in the BMDMA Status register. This type of errors must be logged as it indicates
something is very wrong with the system. Resetting host controller is recommended.

Late completion

This occurs when timeout occurs and the timeout handler finds out that the timed out command has
completed successfully or with error. This is usually caused by lost interrupts. This type of errors must be
logged. Resetting host controller is recommended.

Unknown error (timeout)

This is when timeout occurs and the command is still processing or the host and device are in unknown
state. When this occurs, HSM could be in any valid or invalid state. To bring the device to known state
and make it forget about the timed out command, resetting is necessary. The timed out command may
be retried.
Timeouts can also be caused by transmission errors. Refer to ATA bus error for more details.

Hotplug and power management exceptions

<<TODO: fill here>>

21.7.2 EH recovery actions

This section discusses several important recovery actions.

Clearing error condition

Many controllers require its error registers to be cleared by error handler. Different controllers may have
different requirements.
For SATA, it’s strongly recommended to clear at least SError register during error handling.

636 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Reset

During EH, resetting is necessary in the following cases.
• HSM is in unknown or invalid state
• HBA is in unknown or invalid state
• EH needs to make HBA/device forget about in-flight commands
• HBA/device behaves weirdly

Resetting during EHmight be a good idea regardless of error condition to improve EH robustness. Whether
to reset both or either one of HBA and device depends on situation but the following scheme is recom-
mended.
• When it’s known that HBA is in ready state but ATA/ATAPI device is in unknown state, reset only
device.

• If HBA is in unknown state, reset both HBA and device.
HBA resetting is implementation specific. For a controller complying to taskfile/BMDMA PCI IDE, stop-
ping active DMA transaction may be sufficient iff BMDMA state is the only HBA context. But even mostly
taskfile/BMDMA PCI IDE complying controllers may have implementation specific requirements and mech-
anism to reset themselves. This must be addressed by specific drivers.
OTOH, ATA/ATAPI standard describes in detail ways to reset ATA/ATAPI devices.
PATA hardware reset This is hardware initiated device reset signalled with asserted PATA RESET- signal.

There is no standard way to initiate hardware reset from software although some hardware provides
registers that allow driver to directly tweak the RESET- signal.

Software reset This is achieved by turning CONTROL SRST bit on for at least 5us. Both PATA and SATA
support it but, in case of SATA, this may require controller-specific support as the second Register
FIS to clear SRST should be transmitted while BSY bit is still set. Note that on PATA, this resets both
master and slave devices on a channel.

EXECUTE DEVICE DIAGNOSTIC command Although ATA/ATAPI standard doesn’t describe exactly, EDD
implies some level of resetting, possibly similar level with software reset. Host-side EDD protocol can
be handled with normal command processing and most SATA controllers should be able to handle
EDD’s just like other commands. As in software reset, EDD affects both devices on a PATA bus.
Although EDD does reset devices, this doesn’t suit error handling as EDD cannot be issued while BSY
is set and it’s unclear how it will act when device is in unknown/weird state.

ATAPI DEVICE RESET command This is very similar to software reset except that reset can be restricted
to the selected device without affecting the other device sharing the cable.

SATA phy reset This is the preferred way of resetting a SATA device. In effect, it’s identical to PATA
hardware reset. Note that this can be done with the standard SCR Control register. As such, it’s
usually easier to implement than software reset.

One more thing to consider when resetting devices is that resetting clears certain configuration parame-
ters and they need to be set to their previous or newly adjusted values after reset.
Parameters affected are.
• CHS set up with INITIALIZE DEVICE PARAMETERS (seldom used)
• Parameters set with SET FEATURES including transfer mode setting
• Block count set with SET MULTIPLE MODE
• Other parameters (SET MAX, MEDIA LOCK...)

ATA/ATAPI standard specifies that some parametersmust bemaintained across hardware or software reset,
but doesn’t strictly specify all of them. Always reconfiguring needed parameters after reset is required
for robustness. Note that this also applies when resuming from deep sleep (power-off).

21.7. ATA errors and exceptions 637

The kernel driver API manual, Release 4.13.0-rc4+

Also, ATA/ATAPI standard requires that IDENTIFY DEVICE / IDENTIFY PACKET DEVICE is issued after any
configuration parameter is updated or a hardware reset and the result used for further operation. OS
driver is required to implement revalidation mechanism to support this.

Reconfigure transport

For both PATA and SATA, a lot of corners are cut for cheap connectors, cables or controllers and it’s quite
common to see high transmission error rate. This can be mitigated by lowering transmission speed.
The following is a possible scheme Jeff Garzik suggested.

If more than $N (3?) transmission errors happen in 15 minutes,
• if SATA, decrease SATA PHY speed. if speed cannot be decreased,
• decrease UDMA xfer speed. if at UDMA0, switch to PIO4,
• decrease PIO xfer speed. if at PIO3, complain, but continue

21.8 ata_piix Internals

int ich_pata_cable_detect(struct ata_port * ap)
Probe host controller cable detect info

Parameters
struct ata_port * ap Port for which cable detect info is desired
Description

Read 80c cable indicator from ATA PCI device’s PCI config register. This register is normally set
by firmware (BIOS).
LOCKING: None (inherited from caller).

int piix_pata_prereset(struct ata_link * link, unsigned long deadline)
prereset for PATA host controller

Parameters
struct ata_link * link Target link
unsigned long deadline deadline jiffies for the operation
Description

LOCKING: None (inherited from caller).
void piix_set_piomode(struct ata_port * ap, struct ata_device * adev)

Initialize host controller PATA PIO timings
Parameters
struct ata_port * ap Port whose timings we are configuring
struct ata_device * adev Drive in question
Description

Set PIO mode for device, in host controller PCI config space.
LOCKING: None (inherited from caller).

void do_pata_set_dmamode(struct ata_port * ap, struct ata_device * adev, int isich)
Initialize host controller PATA PIO timings

Parameters
struct ata_port * ap Port whose timings we are configuring

638 Chapter 21. libATA Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct ata_device * adev Drive in question
int isich set if the chip is an ICH device
Description

Set UDMA mode for device, in host controller PCI config space.
LOCKING: None (inherited from caller).

void piix_set_dmamode(struct ata_port * ap, struct ata_device * adev)
Initialize host controller PATA DMA timings

Parameters
struct ata_port * ap Port whose timings we are configuring
struct ata_device * adev um
Description

Set MW/UDMA mode for device, in host controller PCI config space.
LOCKING: None (inherited from caller).

void ich_set_dmamode(struct ata_port * ap, struct ata_device * adev)
Initialize host controller PATA DMA timings

Parameters
struct ata_port * ap Port whose timings we are configuring
struct ata_device * adev um
Description

Set MW/UDMA mode for device, in host controller PCI config space.
LOCKING: None (inherited from caller).

int piix_check_450nx_errata(struct pci_dev * ata_dev)
Check for problem 450NX setup

Parameters
struct pci_dev * ata_dev the PCI device to check
Description

Check for the present of 450NX errata #19 and errata #25. If they are found return an error
code so we can turn off DMA

int piix_init_one(struct pci_dev * pdev, const struct pci_device_id * ent)
Register PIIX ATA PCI device with kernel services

Parameters
struct pci_dev * pdev PCI device to register
const struct pci_device_id * ent Entry in piix_pci_tbl matching with pdev
Description

Called from kernel PCI layer. We probe for combined mode (sigh), and then hand over control
to libata, for it to do the rest.
LOCKING: Inherited from PCI layer (may sleep).

Return
Zero on success, or -ERRNO value.

21.8. ata_piix Internals 639

The kernel driver API manual, Release 4.13.0-rc4+

21.9 sata_sil Internals

int sil_set_mode(struct ata_link * link, struct ata_device ** r_failed)
wrap set_mode functions

Parameters
struct ata_link * link link to set up
struct ata_device ** r_failed returned device when we fail
Description

Wrap the libata method for device setup as after the setup we need to inspect the results and
do some configuration work

void sil_dev_config(struct ata_device * dev)
Apply device/host-specific errata fixups

Parameters
struct ata_device * dev Device to be examined
Description

After the IDENTIFY [PACKET] DEVICE step is complete, and a device is known to be present, this
function is called. We apply two errata fixups which are specific to Silicon Image, a Seagate and
a Maxtor fixup.
For certain Seagate devices, we must limit the maximum sectors to under 8K.
For certain Maxtor devices, we must not program the drive beyond udma5.
Both fixups are unfairly pessimistic. As soon as I get more information on these errata, I will
create a more exhaustive list, and apply the fixups to only the specific devices/hosts/firmwares
that need it.
20040111 - Seagate drives affected by the Mod15Write bug are blacklisted The Maxtor quirk is
in the blacklist, but I’m keeping the original pessimistic fix for the following reasons... - There
seems to be less info on it, only one device gleaned off the Windows driver, maybe only one is
affected. More info would be greatly appreciated. - But then again UDMA5 is hardly anything to
complain about

21.10 Thanks

The bulk of the ATA knowledge comes thanks to long conversations with Andre Hedrick (www.linux-
ide.org), and long hours pondering the ATA and SCSI specifications.
Thanks to Alan Cox for pointing out similarities between SATA and SCSI, and in general for motivation to
hack on libata.
libata’s device detection method, ata_pio_devchk, and in general all the early probing was based on
extensive study of Hale Landis’s probe/reset code in his ATADRVR driver (www.ata-atapi.com).

640 Chapter 21. libATA Developer’s Guide

CHAPTER

TWENTYTWO

MTD NAND DRIVER PROGRAMMING INTERFACE

Author Thomas Gleixner

22.1 Introduction

The generic NAND driver supports almost all NAND and AG-AND based chips and connects them to the
Memory Technology Devices (MTD) subsystem of the Linux Kernel.
This documentation is provided for developers who want to implement board drivers or filesystem drivers
suitable for NAND devices.

22.2 Known Bugs And Assumptions

None.

22.3 Documentation hints

The function and structure docs are autogenerated. Each function and struct member has a short de-
scription which is marked with an [XXX] identifier. The following chapters explain the meaning of those
identifiers.

22.3.1 Function identifiers [XXX]

The functions are marked with [XXX] identifiers in the short comment. The identifiers explain the usage
and scope of the functions. Following identifiers are used:
• [MTD Interface]
These functions provide the interface to the MTD kernel API. They are not replaceable and provide
functionality which is complete hardware independent.

• [NAND Interface]
These functions are exported and provide the interface to the NAND kernel API.

• [GENERIC]
Generic functions are not replaceable and provide functionality which is complete hardware indepen-
dent.

• [DEFAULT]
Default functions provide hardware related functionality which is suitable for most of the implemen-
tations. These functions can be replaced by the board driver if necessary. Those functions are called
via pointers in the NAND chip description structure. The board driver can set the functions which

641

The kernel driver API manual, Release 4.13.0-rc4+

should be replaced by board dependent functions before calling nand_scan(). If the function pointer
is NULL on entry to nand_scan() then the pointer is set to the default function which is suitable for
the detected chip type.

22.3.2 Struct member identifiers [XXX]

The struct members are marked with [XXX] identifiers in the comment. The identifiers explain the usage
and scope of the members. Following identifiers are used:
• [INTERN]
These members are for NAND driver internal use only and must not be modified. Most of these values
are calculated from the chip geometry information which is evaluated during nand_scan().

• [REPLACEABLE]
Replaceable members hold hardware related functions which can be provided by the board driver.
The board driver can set the functions which should be replaced by board dependent functions before
calling nand_scan(). If the function pointer is NULL on entry to nand_scan() then the pointer is set to
the default function which is suitable for the detected chip type.

• [BOARDSPECIFIC]
Board specific members hold hardware related information which must be provided by the board
driver. The board driver must set the function pointers and datafields before calling nand_scan().

• [OPTIONAL]
Optional members can hold information relevant for the board driver. The generic NAND driver code
does not use this information.

22.4 Basic board driver

For most boards it will be sufficient to provide just the basic functions and fill out some really board
dependent members in the nand chip description structure.

22.4.1 Basic defines

At least you have to provide a nand_chip structure and a storage for the ioremap’ed chip address. You can
allocate the nand_chip structure using kmalloc or you can allocate it statically. The NAND chip structure
embeds an mtd structure which will be registered to the MTD subsystem. You can extract a pointer to the
mtd structure from a nand_chip pointer using the nand_to_mtd() helper.
Kmalloc based example

static struct mtd_info *board_mtd;
static void __iomem *baseaddr;

Static example

static struct nand_chip board_chip;
static void __iomem *baseaddr;

22.4.2 Partition defines

If you want to divide your device into partitions, then define a partitioning scheme suitable to your board.

642 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

#define NUM_PARTITIONS 2
static struct mtd_partition partition_info[] = {

{ .name = "Flash partition 1",
.offset = 0,
.size = 8 * 1024 * 1024 },

{ .name = "Flash partition 2",
.offset = MTDPART_OFS_NEXT,
.size = MTDPART_SIZ_FULL },

};

22.4.3 Hardware control function

The hardware control function provides access to the control pins of the NAND chip(s). The access can be
done by GPIO pins or by address lines. If you use address lines, make sure that the timing requirements
are met.
GPIO based example

static void board_hwcontrol(struct mtd_info *mtd, int cmd)
{

switch(cmd){
case NAND_CTL_SETCLE: /* Set CLE pin high */ break;
case NAND_CTL_CLRCLE: /* Set CLE pin low */ break;
case NAND_CTL_SETALE: /* Set ALE pin high */ break;
case NAND_CTL_CLRALE: /* Set ALE pin low */ break;
case NAND_CTL_SETNCE: /* Set nCE pin low */ break;
case NAND_CTL_CLRNCE: /* Set nCE pin high */ break;

}
}

Address lines based example. It’s assumed that the nCE pin is driven by a chip select decoder.

static void board_hwcontrol(struct mtd_info *mtd, int cmd)
{

struct nand_chip *this = mtd_to_nand(mtd);
switch(cmd){

case NAND_CTL_SETCLE: this->IO_ADDR_W |= CLE_ADRR_BIT; break;
case NAND_CTL_CLRCLE: this->IO_ADDR_W &= ~CLE_ADRR_BIT; break;
case NAND_CTL_SETALE: this->IO_ADDR_W |= ALE_ADRR_BIT; break;
case NAND_CTL_CLRALE: this->IO_ADDR_W &= ~ALE_ADRR_BIT; break;

}
}

22.4.4 Device ready function

If the hardware interface has the ready busy pin of the NAND chip connected to a GPIO or other accessible
I/O pin, this function is used to read back the state of the pin. The function has no arguments and should
return 0, if the device is busy (R/B pin is low) and 1, if the device is ready (R/B pin is high). If the hardware
interface does not give access to the ready busy pin, then the function must not be defined and the
function pointer this->dev_ready is set to NULL.

22.4.5 Init function

The init function allocates memory and sets up all the board specific parameters and function pointers.
When everything is set up nand_scan() is called. This function tries to detect and identify then chip. If a
chip is found all the internal data fields are initialized accordingly. The structure(s) have to be zeroed out
first and then filled with the necessary information about the device.

22.4. Basic board driver 643

The kernel driver API manual, Release 4.13.0-rc4+

static int __init board_init (void)
{

struct nand_chip *this;
int err = 0;

/* Allocate memory for MTD device structure and private data */
this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
if (!this) {

printk ("Unable to allocate NAND MTD device structure.\n");
err = -ENOMEM;
goto out;

}

board_mtd = nand_to_mtd(this);

/* map physical address */
baseaddr = ioremap(CHIP_PHYSICAL_ADDRESS, 1024);
if (!baseaddr) {

printk("Ioremap to access NAND chip failed\n");
err = -EIO;
goto out_mtd;

}

/* Set address of NAND IO lines */
this->IO_ADDR_R = baseaddr;
this->IO_ADDR_W = baseaddr;
/* Reference hardware control function */
this->hwcontrol = board_hwcontrol;
/* Set command delay time, see datasheet for correct value */
this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY;
/* Assign the device ready function, if available */
this->dev_ready = board_dev_ready;
this->eccmode = NAND_ECC_SOFT;

/* Scan to find existence of the device */
if (nand_scan (board_mtd, 1)) {

err = -ENXIO;
goto out_ior;

}

add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS);
goto out;

out_ior:
iounmap(baseaddr);

out_mtd:
kfree (this);

out:
return err;

}
module_init(board_init);

22.4.6 Exit function

The exit function is only necessary if the driver is compiled as a module. It releases all resources which
are held by the chip driver and unregisters the partitions in the MTD layer.

#ifdef MODULE
static void __exit board_cleanup (void)
{

/* Release resources, unregister device */

644 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

nand_release (board_mtd);

/* unmap physical address */
iounmap(baseaddr);

/* Free the MTD device structure */
kfree (mtd_to_nand(board_mtd));

}
module_exit(board_cleanup);
#endif

22.5 Advanced board driver functions

This chapter describes the advanced functionality of the NAND driver. For a list of functions which can be
overridden by the board driver see the documentation of the nand_chip structure.

22.5.1 Multiple chip control

The nand driver can control chip arrays. Therefore the board driver must provide an own select_chip
function. This function must (de)select the requested chip. The function pointer in the nand_chip structure
must be set before calling nand_scan(). The maxchip parameter of nand_scan() defines the maximum
number of chips to scan for. Make sure that the select_chip function can handle the requested number of
chips.
The nand driver concatenates the chips to one virtual chip and provides this virtual chip to the MTD layer.
Note: The driver can only handle linear chip arrays of equally sized chips. There is no support for parallel
arrays which extend the buswidth.

GPIO based example

static void board_select_chip (struct mtd_info *mtd, int chip)
{

/* Deselect all chips, set all nCE pins high */
GPIO(BOARD_NAND_NCE) |= 0xff;
if (chip >= 0)

GPIO(BOARD_NAND_NCE) &= ~ (1 << chip);
}

Address lines based example. Its assumed that the nCE pins are connected to an address decoder.

static void board_select_chip (struct mtd_info *mtd, int chip)
{

struct nand_chip *this = mtd_to_nand(mtd);

/* Deselect all chips */
this->IO_ADDR_R &= ~BOARD_NAND_ADDR_MASK;
this->IO_ADDR_W &= ~BOARD_NAND_ADDR_MASK;
switch (chip) {
case 0:

this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0;
this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0;
break;

....
case n:

this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn;
this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn;
break;

22.5. Advanced board driver functions 645

The kernel driver API manual, Release 4.13.0-rc4+

}
}

22.5.2 Hardware ECC support

Functions and constants

The nand driver supports three different types of hardware ECC.
• NAND_ECC_HW3_256
Hardware ECC generator providing 3 bytes ECC per 256 byte.

• NAND_ECC_HW3_512
Hardware ECC generator providing 3 bytes ECC per 512 byte.

• NAND_ECC_HW6_512
Hardware ECC generator providing 6 bytes ECC per 512 byte.

• NAND_ECC_HW8_512
Hardware ECC generator providing 6 bytes ECC per 512 byte.

If your hardware generator has a different functionality add it at the appropriate place in nand_base.c
The board driver must provide following functions:
• enable_hwecc
This function is called before reading / writing to the chip. Reset or initialize the hardware generator
in this function. The function is called with an argument which let you distinguish between read and
write operations.

• calculate_ecc
This function is called after read / write from / to the chip. Transfer the ECC from the hardware to the
buffer. If the option NAND_HWECC_SYNDROME is set then the function is only called on write. See
below.

• correct_data
In case of an ECC error this function is called for error detection and correction. Return 1 respectively
2 in case the error can be corrected. If the error is not correctable return -1. If your hardware
generator matches the default algorithm of the nand_ecc software generator then use the correction
function provided by nand_ecc instead of implementing duplicated code.

Hardware ECC with syndrome calculation

Many hardware ECC implementations provide Reed-Solomon codes and calculate an error syndrome on
read. The syndrome must be converted to a standard Reed-Solomon syndrome before calling the error
correction code in the generic Reed-Solomon library.
The ECC bytes must be placed immediately after the data bytes in order to make the syndrome generator
work. This is contrary to the usual layout used by software ECC. The separation of data and out of band
area is not longer possible. The nand driver code handles this layout and the remaining free bytes in
the oob area are managed by the autoplacement code. Provide a matching oob-layout in this case. See
rts_from4.c and diskonchip.c for implementation reference. In those cases we must also use bad block
tables on FLASH, because the ECC layout is interfering with the bad block marker positions. See bad block
table support for details.

646 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

22.5.3 Bad block table support

Most NAND chips mark the bad blocks at a defined position in the spare area. Those blocks must not be
erased under any circumstances as the bad block information would be lost. It is possible to check the
bad block mark each time when the blocks are accessed by reading the spare area of the first page in the
block. This is time consuming so a bad block table is used.
The nand driver supports various types of bad block tables.
• Per device
The bad block table contains all bad block information of the device which can consist of multiple
chips.

• Per chip
A bad block table is used per chip and contains the bad block information for this particular chip.

• Fixed offset
The bad block table is located at a fixed offset in the chip (device). This applies to various DiskOnChip
devices.

• Automatic placed
The bad block table is automatically placed and detected either at the end or at the beginning of a
chip (device)

• Mirrored tables
The bad block table is mirrored on the chip (device) to allow updates of the bad block table without
data loss.

nand_scan() calls the function nand_default_bbt(). nand_default_bbt() selects appropriate default bad
block table descriptors depending on the chip information which was retrieved by nand_scan().
The standard policy is scanning the device for bad blocks and build a ram based bad block table which
allows faster access than always checking the bad block information on the flash chip itself.

Flash based tables

It may be desired or necessary to keep a bad block table in FLASH. For AG-AND chips this is mandatory,
as they have no factory marked bad blocks. They have factory marked good blocks. The marker pattern
is erased when the block is erased to be reused. So in case of powerloss before writing the pattern back
to the chip this block would be lost and added to the bad blocks. Therefore we scan the chip(s) when we
detect them the first time for good blocks and store this information in a bad block table before erasing
any of the blocks.
The blocks in which the tables are stored are protected against accidental access by marking them bad in
the memory bad block table. The bad block table management functions are allowed to circumvent this
protection.
The simplest way to activate the FLASH based bad block table support is to set the option
NAND_BBT_USE_FLASH in the bbt_option field of the nand chip structure before calling nand_scan(). For
AG-AND chips is this done by default. This activates the default FLASH based bad block table functionality
of the NAND driver. The default bad block table options are
• Store bad block table per chip
• Use 2 bits per block
• Automatic placement at the end of the chip
• Use mirrored tables with version numbers
• Reserve 4 blocks at the end of the chip

22.5. Advanced board driver functions 647

The kernel driver API manual, Release 4.13.0-rc4+

User defined tables

User defined tables are created by filling out a nand_bbt_descr structure and storing the pointer in the
nand_chip structure member bbt_td before calling nand_scan(). If a mirror table is necessary a second
structure must be created and a pointer to this structure must be stored in bbt_md inside the nand_chip
structure. If the bbt_md member is set to NULL then only the main table is used and no scan for the
mirrored table is performed.
The most important field in the nand_bbt_descr structure is the options field. The options define most of
the table properties. Use the predefined constants from nand.h to define the options.
• Number of bits per block
The supported number of bits is 1, 2, 4, 8.

• Table per chip
Setting the constant NAND_BBT_PERCHIP selects that a bad block table is managed for each chip in
a chip array. If this option is not set then a per device bad block table is used.

• Table location is absolute
Use the option constant NAND_BBT_ABSPAGE and define the absolute page number where the bad
block table starts in the field pages. If you have selected bad block tables per chip and you have
a multi chip array then the start page must be given for each chip in the chip array. Note: there
is no scan for a table ident pattern performed, so the fields pattern, veroffs, offs, len can be left
uninitialized

• Table location is automatically detected
The table can either be located in the first or the last good blocks of the chip (device). Set
NAND_BBT_LASTBLOCK to place the bad block table at the end of the chip (device). The bad block
tables are marked and identified by a pattern which is stored in the spare area of the first page in
the block which holds the bad block table. Store a pointer to the pattern in the pattern field. Further
the length of the pattern has to be stored in len and the offset in the spare area must be given in the
offs member of the nand_bbt_descr structure. For mirrored bad block tables different patterns are
mandatory.

• Table creation
Set the option NAND_BBT_CREATE to enable the table creation if no table can be found during the
scan. Usually this is done only once if a new chip is found.

• Table write support
Set the option NAND_BBT_WRITE to enable the table write support. This allows the update of the
bad block table(s) in case a block has to be marked bad due to wear. The MTD interface function
block_markbad is calling the update function of the bad block table. If the write support is enabled
then the table is updated on FLASH.
Note: Write support should only be enabled for mirrored tables with version control.

• Table version control
Set the option NAND_BBT_VERSION to enable the table version control. It’s highly recommended to
enable this for mirrored tables with write support. It makes sure that the risk of losing the bad block
table information is reduced to the loss of the information about the one worn out block which should
be marked bad. The version is stored in 4 consecutive bytes in the spare area of the device. The
position of the version number is defined by the member veroffs in the bad block table descriptor.

• Save block contents on write
In case that the block which holds the bad block table does contain other useful information, set the
option NAND_BBT_SAVECONTENT. When the bad block table is written then the whole block is read
the bad block table is updated and the block is erased and everything is written back. If this option
is not set only the bad block table is written and everything else in the block is ignored and erased.

648 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

• Number of reserved blocks
For automatic placement some blocks must be reserved for bad block table storage. The number
of reserved blocks is defined in the maxblocks member of the bad block table description structure.
Reserving 4 blocks for mirrored tables should be a reasonable number. This also limits the number
of blocks which are scanned for the bad block table ident pattern.

22.5.4 Spare area (auto)placement

The nand driver implements different possibilities for placement of filesystem data in the spare area,
• Placement defined by fs driver
• Automatic placement

The default placement function is automatic placement. The nand driver has built in default placement
schemes for the various chiptypes. If due to hardware ECC functionality the default placement does not
fit then the board driver can provide a own placement scheme.
File system drivers can provide a own placement scheme which is used instead of the default placement
scheme.
Placement schemes are defined by a nand_oobinfo structure

struct nand_oobinfo {
int useecc;
int eccbytes;
int eccpos[24];
int oobfree[8][2];

};

• useecc
The useecc member controls the ecc and placement function. The header file include/mtd/mtd-abi.h
contains constants to select ecc and placement. MTD_NANDECC_OFF switches off the ecc complete.
This is not recommended and available for testing and diagnosis only. MTD_NANDECC_PLACE selects
caller defined placement, MTD_NANDECC_AUTOPLACE selects automatic placement.

• eccbytes
The eccbytes member defines the number of ecc bytes per page.

• eccpos
The eccpos array holds the byte offsets in the spare area where the ecc codes are placed.

• oobfree
The oobfree array defines the areas in the spare area which can be used for automatic placement.
The information is given in the format {offset, size}. offset defines the start of the usable area, size
the length in bytes. More than one area can be defined. The list is terminated by an {0, 0} entry.

Placement defined by fs driver

The calling function provides a pointer to a nand_oobinfo structure which defines the ecc placement. For
writes the caller must provide a spare area buffer along with the data buffer. The spare area buffer size is
(number of pages) * (size of spare area). For reads the buffer size is (number of pages) * ((size of spare
area) + (number of ecc steps per page) * sizeof (int)). The driver stores the result of the ecc check for
each tuple in the spare buffer. The storage sequence is:

<spare data page 0><ecc result 0>...<ecc result n>

...

22.5. Advanced board driver functions 649

The kernel driver API manual, Release 4.13.0-rc4+

<spare data page n><ecc result 0>...<ecc result n>

This is a legacy mode used by YAFFS1.
If the spare area buffer is NULL then only the ECC placement is done according to the given scheme in
the nand_oobinfo structure.

Automatic placement

Automatic placement uses the built in defaults to place the ecc bytes in the spare area. If filesystem data
have to be stored / read into the spare area then the calling function must provide a buffer. The buffer
size per page is determined by the oobfree array in the nand_oobinfo structure.
If the spare area buffer is NULL then only the ECC placement is done according to the default builtin
scheme.

22.5.5 Spare area autoplacement default schemes

256 byte pagesize

Off-
set

Content Comment

0x00 ECC byte
0

Error correction code byte 0

0x01 ECC byte
1

Error correction code byte 1

0x02 ECC byte
2

Error correction code byte 2

0x03 Autoplace
0

0x04 Autoplace
1

0x05 Bad block
marker

If any bit in this byte is zero, then this block is bad. This applies only to the first
page in a block. In the remaining pages this byte is reserved

0x06 Autoplace
2

0x07 Autoplace
3

650 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

512 byte pagesize

Offset Content Comment
0x00 ECC byte

0
Error correction code byte 0 of the lower 256 Byte data in this page

0x01 ECC byte
1

Error correction code byte 1 of the lower 256 Bytes of data in this page

0x02 ECC byte
2

Error correction code byte 2 of the lower 256 Bytes of data in this page

0x03 ECC byte
3

Error correction code byte 0 of the upper 256 Bytes of data in this page

0x04 reserved reserved
0x05 Bad block

marker
If any bit in this byte is zero, then this block is bad. This applies only to the first
page in a block. In the remaining pages this byte is reserved

0x06 ECC byte
4

Error correction code byte 1 of the upper 256 Bytes of data in this page

0x07 ECC byte
5

Error correction code byte 2 of the upper 256 Bytes of data in this page

0x08 -
0x0F

Autoplace
0 - 7

22.5. Advanced board driver functions 651

The kernel driver API manual, Release 4.13.0-rc4+

2048 byte pagesize

Offset Content Comment
0x00 Bad block

marker
If any bit in this byte is zero, then this block is bad. This applies only to the first
page in a block. In the remaining pages this byte is reserved

0x01 Reserved Reserved
0x02-
0x27

Autoplace
0 - 37

0x28 ECC byte
0

Error correction code byte 0 of the first 256 Byte data in this page

0x29 ECC byte
1

Error correction code byte 1 of the first 256 Bytes of data in this page

0x2A ECC byte
2

Error correction code byte 2 of the first 256 Bytes data in this page

0x2B ECC byte
3

Error correction code byte 0 of the second 256 Bytes of data in this page

0x2C ECC byte
4

Error correction code byte 1 of the second 256 Bytes of data in this page

0x2D ECC byte
5

Error correction code byte 2 of the second 256 Bytes of data in this page

0x2E ECC byte
6

Error correction code byte 0 of the third 256 Bytes of data in this page

0x2F ECC byte
7

Error correction code byte 1 of the third 256 Bytes of data in this page

0x30 ECC byte
8

Error correction code byte 2 of the third 256 Bytes of data in this page

0x31 ECC byte
9

Error correction code byte 0 of the fourth 256 Bytes of data in this page

0x32 ECC byte
10

Error correction code byte 1 of the fourth 256 Bytes of data in this page

0x33 ECC byte
11

Error correction code byte 2 of the fourth 256 Bytes of data in this page

0x34 ECC byte
12

Error correction code byte 0 of the fifth 256 Bytes of data in this page

0x35 ECC byte
13

Error correction code byte 1 of the fifth 256 Bytes of data in this page

0x36 ECC byte
14

Error correction code byte 2 of the fifth 256 Bytes of data in this page

0x37 ECC byte
15

Error correction code byte 0 of the sixth 256 Bytes of data in this page

0x38 ECC byte
16

Error correction code byte 1 of the sixth 256 Bytes of data in this page

0x39 ECC byte
17

Error correction code byte 2 of the sixth 256 Bytes of data in this page

0x3A ECC byte
18

Error correction code byte 0 of the seventh 256 Bytes of data in this page

0x3B ECC byte
19

Error correction code byte 1 of the seventh 256 Bytes of data in this page

0x3C ECC byte
20

Error correction code byte 2 of the seventh 256 Bytes of data in this page

0x3D ECC byte
21

Error correction code byte 0 of the eighth 256 Bytes of data in this page

0x3E ECC byte
22

Error correction code byte 1 of the eighth 256 Bytes of data in this page

0x3F ECC byte
23

Error correction code byte 2 of the eighth 256 Bytes of data in this page

652 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

22.6 Filesystem support

The NAND driver provides all necessary functions for a filesystem via the MTD interface.
Filesystems must be aware of the NAND peculiarities and restrictions. One major restrictions of NAND
Flash is, that you cannot write as often as you want to a page. The consecutive writes to a page, before
erasing it again, are restricted to 1-3 writes, depending on the manufacturers specifications. This applies
similar to the spare area.
Therefore NAND aware filesystems must either write in page size chunks or hold a writebuffer to collect
smaller writes until they sum up to pagesize. Available NAND aware filesystems: JFFS2, YAFFS.
The spare area usage to store filesystem data is controlled by the spare area placement functionality
which is described in one of the earlier chapters.

22.7 Tools

The MTD project provides a couple of helpful tools to handle NAND Flash.
• flasherase, flasheraseall: Erase and format FLASH partitions
• nandwrite: write filesystem images to NAND FLASH
• nanddump: dump the contents of a NAND FLASH partitions

These tools are aware of the NAND restrictions. Please use those tools instead of complaining about errors
which are caused by non NAND aware access methods.

22.8 Constants

This chapter describes the constants which might be relevant for a driver developer.

22.8.1 Chip option constants

Constants for chip id table

These constants are defined in nand.h. They are OR-ed together to describe the chip functionality:

/* Buswitdh is 16 bit */
#define NAND_BUSWIDTH_16 0x00000002
/* Device supports partial programming without padding */
#define NAND_NO_PADDING 0x00000004
/* Chip has cache program function */
#define NAND_CACHEPRG 0x00000008
/* Chip has copy back function */
#define NAND_COPYBACK 0x00000010
/* AND Chip which has 4 banks and a confusing page / block
* assignment. See Renesas datasheet for further information */
#define NAND_IS_AND 0x00000020
/* Chip has a array of 4 pages which can be read without
* additional ready /busy waits */
#define NAND_4PAGE_ARRAY 0x00000040

Constants for runtime options

These constants are defined in nand.h. They are OR-ed together to describe the functionality:

22.6. Filesystem support 653

The kernel driver API manual, Release 4.13.0-rc4+

/* The hw ecc generator provides a syndrome instead a ecc value on read
* This can only work if we have the ecc bytes directly behind the
* data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
#define NAND_HWECC_SYNDROME 0x00020000

22.8.2 ECC selection constants

Use these constants to select the ECC algorithm:

/* No ECC. Usage is not recommended ! */
#define NAND_ECC_NONE 0
/* Software ECC 3 byte ECC per 256 Byte data */
#define NAND_ECC_SOFT 1
/* Hardware ECC 3 byte ECC per 256 Byte data */
#define NAND_ECC_HW3_256 2
/* Hardware ECC 3 byte ECC per 512 Byte data */
#define NAND_ECC_HW3_512 3
/* Hardware ECC 6 byte ECC per 512 Byte data */
#define NAND_ECC_HW6_512 4
/* Hardware ECC 6 byte ECC per 512 Byte data */
#define NAND_ECC_HW8_512 6

22.8.3 Hardware control related constants

These constants describe the requested hardware access function when the boardspecific hardware con-
trol function is called:

/* Select the chip by setting nCE to low */
#define NAND_CTL_SETNCE 1
/* Deselect the chip by setting nCE to high */
#define NAND_CTL_CLRNCE 2
/* Select the command latch by setting CLE to high */
#define NAND_CTL_SETCLE 3
/* Deselect the command latch by setting CLE to low */
#define NAND_CTL_CLRCLE 4
/* Select the address latch by setting ALE to high */
#define NAND_CTL_SETALE 5
/* Deselect the address latch by setting ALE to low */
#define NAND_CTL_CLRALE 6
/* Set write protection by setting WP to high. Not used! */
#define NAND_CTL_SETWP 7
/* Clear write protection by setting WP to low. Not used! */
#define NAND_CTL_CLRWP 8

22.8.4 Bad block table related constants

These constants describe the options used for bad block table descriptors:

/* Options for the bad block table descriptors */

/* The number of bits used per block in the bbt on the device */
#define NAND_BBT_NRBITS_MSK 0x0000000F
#define NAND_BBT_1BIT 0x00000001
#define NAND_BBT_2BIT 0x00000002
#define NAND_BBT_4BIT 0x00000004
#define NAND_BBT_8BIT 0x00000008
/* The bad block table is in the last good block of the device */

654 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

#define NAND_BBT_LASTBLOCK 0x00000010
/* The bbt is at the given page, else we must scan for the bbt */
#define NAND_BBT_ABSPAGE 0x00000020
/* bbt is stored per chip on multichip devices */
#define NAND_BBT_PERCHIP 0x00000080
/* bbt has a version counter at offset veroffs */
#define NAND_BBT_VERSION 0x00000100
/* Create a bbt if none axists */
#define NAND_BBT_CREATE 0x00000200
/* Write bbt if necessary */
#define NAND_BBT_WRITE 0x00001000
/* Read and write back block contents when writing bbt */
#define NAND_BBT_SAVECONTENT 0x00002000

22.9 Structures

This chapter contains the autogenerated documentation of the structures which are used in the NAND
driver and might be relevant for a driver developer. Each struct member has a short description which is
marked with an [XXX] identifier. See the chapter “Documentation hints” for an explanation.
struct nand_id

NAND id structure
Definition

struct nand_id {
u8 data;
int len;

};

Members
data buffer containing the id bytes. Currently 8 bytes large, but can be extended if required.
len ID length.
struct nand_hw_control

Control structure for hardware controller (e.g ECC generator) shared among independent devices
Definition

struct nand_hw_control {
spinlock_t lock;
struct nand_chip * active;
wait_queue_head_t wq;

};

Members
lock protection lock
active the mtd device which holds the controller currently
wq wait queue to sleep on if a NAND operation is in progress used instead of the per chip wait queue when

a hw controller is available.
struct nand_ecc_step_info

ECC step information of ECC engine
Definition

22.9. Structures 655

The kernel driver API manual, Release 4.13.0-rc4+

struct nand_ecc_step_info {
int stepsize;
const int * strengths;
int nstrengths;

};

Members
stepsize data bytes per ECC step
strengths array of supported strengths
nstrengths number of supported strengths
struct nand_ecc_caps

capability of ECC engine
Definition

struct nand_ecc_caps {
const struct nand_ecc_step_info * stepinfos;
int nstepinfos;
int (* calc_ecc_bytes) (int step_size, int strength);

};

Members
stepinfos array of ECC step information
nstepinfos number of ECC step information
calc_ecc_bytes driver’s hook to calculate ECC bytes per step
struct nand_ecc_ctrl

Control structure for ECC
Definition

struct nand_ecc_ctrl {
nand_ecc_modes_t mode;
enum nand_ecc_algo algo;
int steps;
int size;
int bytes;
int total;
int strength;
int prepad;
int postpad;
unsigned int options;
void * priv;
void (* hwctl) (struct mtd_info *mtd, int mode);
int (* calculate) (struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code);
int (* correct) (struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc);
int (* read_page_raw) (struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_

↪→required, int page);
int (* write_page_raw) (struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int␣

↪→oob_required, int page);
int (* read_page) (struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_

↪→required, int page);
int (* read_subpage) (struct mtd_info *mtd, struct nand_chip *chip, uint32_t offs, uint32_t␣

↪→len, uint8_t *buf, int page);
int (* write_subpage) (struct mtd_info *mtd, struct nand_chip *chip,uint32_t offset, uint32_t␣

↪→data_len, const uint8_t *data_buf, int oob_required, int page);
int (* write_page) (struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_

↪→required, int page);
int (* write_oob_raw) (struct mtd_info *mtd, struct nand_chip *chip, int page);

656 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

int (* read_oob_raw) (struct mtd_info *mtd, struct nand_chip *chip, int page);
int (* read_oob) (struct mtd_info *mtd, struct nand_chip *chip, int page);
int (* write_oob) (struct mtd_info *mtd, struct nand_chip *chip, int page);

};

Members
mode ECC mode
algo ECC algorithm
steps number of ECC steps per page
size data bytes per ECC step
bytes ECC bytes per step
total total number of ECC bytes per page
strength max number of correctible bits per ECC step
prepad padding information for syndrome based ECC generators
postpad padding information for syndrome based ECC generators
options ECC specific options (see NAND_ECC_XXX flags defined above)
priv pointer to private ECC control data
hwctl function to control hardware ECC generator. Must only be provided if an hardware ECC is available
calculate function for ECC calculation or readback from ECC hardware
correct function for ECC correction, matching to ECC generator (sw/hw). Should return a positive num-

ber representing the number of corrected bitflips, -EBADMSG if the number of bitflips exceed ECC
strength, or any other error code if the error is not directly related to correction. If -EBADMSG is
returned the input buffers should be left untouched.

read_page_raw function to read a raw page without ECC. This function should hide the specific layout
used by the ECC controller and always return contiguous in-band and out-of-band data even if they’re
not stored contiguously on the NAND chip (e.g. NAND_ECC_HW_SYNDROME interleaves in-band and
out-of-band data).

write_page_raw function to write a raw page without ECC. This function should hide the specific layout
used by the ECC controller and consider the passed data as contiguous in-band and out-of-band data.
ECC controller is responsible for doing the appropriate transformations to adapt to its specific layout
(e.g. NAND_ECC_HW_SYNDROME interleaves in-band and out-of-band data).

read_page function to read a page according to the ECC generator requirements; returns maximum num-
ber of bitflips corrected in any single ECC step, -EIO hw error

read_subpage function to read parts of the page covered by ECC; returns same as read_page()
write_subpage function to write parts of the page covered by ECC.
write_page function to write a page according to the ECC generator requirements.
write_oob_raw function to write chip OOB data without ECC
read_oob_raw function to read chip OOB data without ECC
read_oob function to read chip OOB data
write_oob function to write chip OOB data
struct nand_buffers

buffer structure for read/write
Definition

22.9. Structures 657

The kernel driver API manual, Release 4.13.0-rc4+

struct nand_buffers {
uint8_t * ecccalc;
uint8_t * ecccode;
uint8_t * databuf;

};

Members
ecccalc buffer pointer for calculated ECC, size is oobsize.
ecccode buffer pointer for ECC read from flash, size is oobsize.
databuf buffer pointer for data, size is (page size + oobsize).
Description
Do not change the order of buffers. databuf and oobrbuf must be in consecutive order.
struct nand_sdr_timings

SDR NAND chip timings
Definition

struct nand_sdr_timings {
u32 tBERS_max;
u32 tCCS_min;
u32 tPROG_max;
u32 tR_max;
u32 tALH_min;
u32 tADL_min;
u32 tALS_min;
u32 tAR_min;
u32 tCEA_max;
u32 tCEH_min;
u32 tCH_min;
u32 tCHZ_max;
u32 tCLH_min;
u32 tCLR_min;
u32 tCLS_min;
u32 tCOH_min;
u32 tCS_min;
u32 tDH_min;
u32 tDS_min;
u32 tFEAT_max;
u32 tIR_min;
u32 tITC_max;
u32 tRC_min;
u32 tREA_max;
u32 tREH_min;
u32 tRHOH_min;
u32 tRHW_min;
u32 tRHZ_max;
u32 tRLOH_min;
u32 tRP_min;
u32 tRR_min;
u64 tRST_max;
u32 tWB_max;
u32 tWC_min;
u32 tWH_min;
u32 tWHR_min;
u32 tWP_min;
u32 tWW_min;

};

Members

658 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

tBERS_max Block erase time
tCCS_min Change column setup time
tPROG_max Page program time
tR_max Page read time
tALH_min ALE hold time
tADL_min ALE to data loading time
tALS_min ALE setup time
tAR_min ALE to RE# delay
tCEA_max CE# access time
tCEH_min CE# high hold time
tCH_min CE# hold time
tCHZ_max CE# high to output hi-Z
tCLH_min CLE hold time
tCLR_min CLE to RE# delay
tCLS_min CLE setup time
tCOH_min CE# high to output hold
tCS_min CE# setup time
tDH_min Data hold time
tDS_min Data setup time
tFEAT_max Busy time for Set Features and Get Features
tIR_min Output hi-Z to RE# low
tITC_max Interface and Timing Mode Change time
tRC_min RE# cycle time
tREA_max RE# access time
tREH_min RE# high hold time
tRHOH_min RE# high to output hold
tRHW_min RE# high to WE# low
tRHZ_max RE# high to output hi-Z
tRLOH_min RE# low to output hold
tRP_min RE# pulse width
tRR_min Ready to RE# low (data only)
tRST_max Device reset time, measured from the falling edge of R/B# to the rising edge of R/B#.
tWB_max WE# high to SR[6] low
tWC_min WE# cycle time
tWH_min WE# high hold time
tWHR_min WE# high to RE# low
tWP_min WE# pulse width
tWW_min WP# transition to WE# low

22.9. Structures 659

The kernel driver API manual, Release 4.13.0-rc4+

Description
This struct defines the timing requirements of a SDR NAND chip. These information can be
found in every NAND datasheets and the timings meaning are described in the ONFI specifications:
www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing Parameters)
All these timings are expressed in picoseconds.
enum nand_data_interface_type

NAND interface timing type
Constants
NAND_SDR_IFACE Single Data Rate interface
struct nand_data_interface

NAND interface timing
Definition

struct nand_data_interface {
enum nand_data_interface_type type;
union timings;

};

Members
type type of the timing
timings The timing, type according to type
const struct nand_sdr_timings * nand_get_sdr_timings(const struct nand_data_interface * conf)

get SDR timing from data interface
Parameters
const struct nand_data_interface * conf The data interface
struct nand_manufacturer_ops

NAND Manufacturer operations
Definition

struct nand_manufacturer_ops {
void (* detect) (struct nand_chip *chip);
int (* init) (struct nand_chip *chip);
void (* cleanup) (struct nand_chip *chip);

};

Members
detect detect the NAND memory organization and capabilities
init initialize all vendor specific fields (like the ->:c:func:read_retry() implementation) if any.
cleanup the ->:c:func:init() function may have allocated resources, ->:c:func:cleanup() is here to let ven-

dor specific code release those resources.
struct nand_chip

NAND Private Flash Chip Data
Definition

struct nand_chip {
struct mtd_info mtd;
void __iomem * IO_ADDR_R;
void __iomem * IO_ADDR_W;
uint8_t (* read_byte) (struct mtd_info *mtd);
u16 (* read_word) (struct mtd_info *mtd);

660 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

void (* write_byte) (struct mtd_info *mtd, uint8_t byte);
void (* write_buf) (struct mtd_info *mtd, const uint8_t *buf, int len);
void (* read_buf) (struct mtd_info *mtd, uint8_t *buf, int len);
void (* select_chip) (struct mtd_info *mtd, int chip);
int (* block_bad) (struct mtd_info *mtd, loff_t ofs);
int (* block_markbad) (struct mtd_info *mtd, loff_t ofs);
void (* cmd_ctrl) (struct mtd_info *mtd, int dat, unsigned int ctrl);
int (* dev_ready) (struct mtd_info *mtd);
void (* cmdfunc) (struct mtd_info *mtd, unsigned command, int column, int page_addr);
int(* waitfunc) (struct mtd_info *mtd, struct nand_chip *this);
int (* erase) (struct mtd_info *mtd, int page);
int (* scan_bbt) (struct mtd_info *mtd);
int (* onfi_set_features) (struct mtd_info *mtd, struct nand_chip *chip, int feature_addr,␣

↪→uint8_t *subfeature_para);
int (* onfi_get_features) (struct mtd_info *mtd, struct nand_chip *chip, int feature_addr,␣

↪→uint8_t *subfeature_para);
int (* setup_read_retry) (struct mtd_info *mtd, int retry_mode);
int (* setup_data_interface) (struct mtd_info *mtd, int chipnr, const struct nand_data_

↪→interface *conf);
int chip_delay;
unsigned int options;
unsigned int bbt_options;
int page_shift;
int phys_erase_shift;
int bbt_erase_shift;
int chip_shift;
int numchips;
uint64_t chipsize;
int pagemask;
int pagebuf;
unsigned int pagebuf_bitflips;
int subpagesize;
uint8_t bits_per_cell;
uint16_t ecc_strength_ds;
uint16_t ecc_step_ds;
int onfi_timing_mode_default;
int badblockpos;
int badblockbits;
struct nand_id id;
int onfi_version;
int jedec_version;
union manufacturer;

};

Members
mtd MTD device registered to the MTD framework
IO_ADDR_R [BOARDSPECIFIC] address to read the 8 I/O lines of the flash device
IO_ADDR_W [BOARDSPECIFIC] address to write the 8 I/O lines of the flash device.
read_byte [REPLACEABLE] read one byte from the chip
read_word [REPLACEABLE] read one word from the chip
write_byte [REPLACEABLE] write a single byte to the chip on the low 8 I/O lines
write_buf [REPLACEABLE] write data from the buffer to the chip
read_buf [REPLACEABLE] read data from the chip into the buffer
select_chip [REPLACEABLE] select chip nr
block_bad [REPLACEABLE] check if a block is bad, using OOB markers
block_markbad [REPLACEABLE] mark a block bad

22.9. Structures 661

The kernel driver API manual, Release 4.13.0-rc4+

cmd_ctrl [BOARDSPECIFIC] hardwarespecific function for controlling ALE/CLE/nCE. Also used to write
command and address

dev_ready [BOARDSPECIFIC] hardwarespecific function for accessing device ready/busy line. If set to
NULL no access to ready/busy is available and the ready/busy information is read from the chip
status register.

cmdfunc [REPLACEABLE] hardwarespecific function for writing commands to the chip.
waitfunc [REPLACEABLE] hardwarespecific function for wait on ready.
erase [REPLACEABLE] erase function
scan_bbt [REPLACEABLE] function to scan bad block table
onfi_set_features [REPLACEABLE] set the features for ONFI nand
onfi_get_features [REPLACEABLE] get the features for ONFI nand
setup_read_retry [FLASHSPECIFIC] flash (vendor) specific function for setting the read-retry mode.

Mostly needed for MLC NAND.
setup_data_interface [OPTIONAL] setup the data interface and timing. If chipnr is set to

NAND_DATA_IFACE_CHECK_ONLY this means the configuration should not be applied but only checked.
chip_delay [BOARDSPECIFIC] chip dependent delay for transferring data from array to read regs (tR).
options [BOARDSPECIFIC] various chip options. They can partly be set to inform nand_scan about special

functionality. See the defines for further explanation.
bbt_options [INTERN] bad block specific options. All options used here must come from bbm.h. By

default, these options will be copied to the appropriate nand_bbt_descr’s.
page_shift [INTERN] number of address bits in a page (column address bits).
phys_erase_shift [INTERN] number of address bits in a physical eraseblock
bbt_erase_shift [INTERN] number of address bits in a bbt entry
chip_shift [INTERN] number of address bits in one chip
numchips [INTERN] number of physical chips
chipsize [INTERN] the size of one chip for multichip arrays
pagemask [INTERN] page number mask = number of (pages / chip) - 1
pagebuf [INTERN] holds the pagenumber which is currently in data_buf.
pagebuf_bitflips [INTERN] holds the bitflip count for the page which is currently in data_buf.
subpagesize [INTERN] holds the subpagesize
bits_per_cell [INTERN] number of bits per cell. i.e., 1 means SLC.
ecc_strength_ds [INTERN] ECC correctability from the datasheet. Minimum amount of bit errors per

ecc_step_ds guaranteed to be correctable. If unknown, set to zero.
ecc_step_ds [INTERN] ECC step required by the ecc_strength_ds, also from the datasheet. It is the

recommended ECC step size, if known; if unknown, set to zero.
onfi_timing_mode_default [INTERN] default ONFI timing mode. This field is set to the actually used

ONFI mode if the chip is ONFI compliant or deduced from the datasheet if the NAND chip is not ONFI
compliant.

badblockpos [INTERN] position of the bad block marker in the oob area.
badblockbits [INTERN] minimum number of set bits in a good block’s bad block marker position; i.e.,

BBM == 11110111b is not bad when badblockbits == 7
id [INTERN] holds NAND ID
onfi_version [INTERN] holds the chip ONFI version (BCD encoded), non 0 if ONFI supported.

662 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

jedec_version [INTERN] holds the chip JEDEC version (BCD encoded), non 0 if JEDEC supported.
manufacturer [INTERN] Contains manufacturer information
struct nand_flash_dev

NAND Flash Device ID Structure
Definition

struct nand_flash_dev {
char * name;
union ecc;
int onfi_timing_mode_default;

};

Members
name a human-readable name of the NAND chip
ecc The ECC step required by the ecc.strength_ds, same as the ecc_step_ds in nand_chip{}, also from

the datasheet. For example, the “4bit ECC for each 512Byte” can be set with NAND_ECC_INFO(4,
512).

onfi_timing_mode_default the default ONFI timing mode entered after a NAND reset. Should be de-
duced from timings described in the datasheet.

struct nand_manufacturer
NAND Flash Manufacturer structure

Definition

struct nand_manufacturer {
int id;
char * name;
const struct nand_manufacturer_ops * ops;

};

Members
id manufacturer ID code of device.
name Manufacturer name
ops manufacturer operations
struct platform_nand_chip

chip level device structure
Definition

struct platform_nand_chip {
int nr_chips;
int chip_offset;
int nr_partitions;
struct mtd_partition * partitions;
int chip_delay;
unsigned int options;
unsigned int bbt_options;
const char ** part_probe_types;

};

Members
nr_chips max. number of chips to scan for
chip_offset chip number offset
nr_partitions number of partitions pointed to by partitions (or zero)

22.9. Structures 663

The kernel driver API manual, Release 4.13.0-rc4+

partitions mtd partition list
chip_delay R/B delay value in us
options Option flags, e.g. 16bit buswidth
bbt_options BBT option flags, e.g. NAND_BBT_USE_FLASH
part_probe_types NULL-terminated array of probe types
struct platform_nand_ctrl

controller level device structure
Definition

struct platform_nand_ctrl {
int (* probe) (struct platform_device *pdev);
void (* remove) (struct platform_device *pdev);
void (* hwcontrol) (struct mtd_info *mtd, int cmd);
int (* dev_ready) (struct mtd_info *mtd);
void (* select_chip) (struct mtd_info *mtd, int chip);
void (* cmd_ctrl) (struct mtd_info *mtd, int dat, unsigned int ctrl);
void (* write_buf) (struct mtd_info *mtd, const uint8_t *buf, int len);
void (* read_buf) (struct mtd_info *mtd, uint8_t *buf, int len);
unsigned char (* read_byte) (struct mtd_info *mtd);
void * priv;

};

Members
probe platform specific function to probe/setup hardware
remove platform specific function to remove/teardown hardware
hwcontrol platform specific hardware control structure
dev_ready platform specific function to read ready/busy pin
select_chip platform specific chip select function
cmd_ctrl platform specific function for controlling ALE/CLE/nCE. Also used to write command and address
write_buf platform specific function for write buffer
read_buf platform specific function for read buffer
read_byte platform specific function to read one byte from chip
priv private data to transport driver specific settings
Description
All fields are optional and depend on the hardware driver requirements
struct platform_nand_data

container structure for platform-specific data
Definition

struct platform_nand_data {
struct platform_nand_chip chip;
struct platform_nand_ctrl ctrl;

};

Members
chip chip level chip structure
ctrl controller level device structure
int nand_opcode_8bits(unsigned int command)

664 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
unsigned int command opcode to check

22.10 Public Functions Provided

This chapter contains the autogenerated documentation of the NAND kernel API functions which are ex-
ported. Each function has a short description which is marked with an [XXX] identifier. See the chapter
“Documentation hints” for an explanation.
void nand_wait_ready(struct mtd_info * mtd)

[GENERIC] Wait for the ready pin after commands.
Parameters
struct mtd_info * mtd MTD device structure
Description
Wait for the ready pin after a command, and warn if a timeout occurs.
int nand_unlock(struct mtd_info * mtd, loff_t ofs, uint64_t len)

[REPLACEABLE] unlocks specified locked blocks
Parameters
struct mtd_info * mtd mtd info
loff_t ofs offset to start unlock from
uint64_t len length to unlock
Description
Returns unlock status.
int nand_lock(struct mtd_info * mtd, loff_t ofs, uint64_t len)

[REPLACEABLE] locks all blocks present in the device
Parameters
struct mtd_info * mtd mtd info
loff_t ofs offset to start unlock from
uint64_t len length to unlock
Description
This feature is not supported in many NAND parts. ‘Micron’ NAND parts do have this feature, but it allows
only to lock all blocks, not for specified range for block. Implementing ‘lock’ feature by making use of
‘unlock’, for now.
Returns lock status.
int nand_check_erased_ecc_chunk(void * data, int datalen, void * ecc, int ecclen, void * extraoob,

int extraooblen, int bitflips_threshold)
check if an ECC chunk contains (almost) only 0xff data

Parameters
void * data data buffer to test
int datalen data length
void * ecc ECC buffer
int ecclen ECC length
void * extraoob extra OOB buffer

22.10. Public Functions Provided 665

The kernel driver API manual, Release 4.13.0-rc4+

int extraooblen extra OOB length
int bitflips_threshold maximum number of bitflips
Description
Check if a data buffer and its associated ECC and OOB data contains only 0xff pattern, which means the
underlying region has been erased and is ready to be programmed. The bitflips_threshold specify the
maximum number of bitflips before considering the region as not erased.
Note
1/ ECC algorithms are working on pre-defined block sizes which are usually different from the

NAND page size. When fixing bitflips, ECC engines will report the number of errors per chunk, and
the NAND core infrastructure expect you to return the maximum number of bitflips for the whole
page. This is why you should always use this function on a single chunk and not on the whole page.
After checking each chunk you should update your max_bitflips value accordingly.

2/ When checking for bitflips in erased pages you should not only check the payload data but
also their associated ECC data, because a user might have programmed almost all bits to 1 but
a few. In this case, we shouldn’t consider the chunk as erased, and checking ECC bytes prevent this
case.

3/ The extraoob argument is optional, and should be used if some of your OOB data are pro-
tected by the ECC engine. It could also be used if you support subpages and want to attach some
extra OOB data to an ECC chunk.

Returns a positive number of bitflips less than or equal to bitflips_threshold, or -ERROR_CODE for bitflips
in excess of the threshold. In case of success, the passed buffers are filled with 0xff.
int nand_read_page_raw(struct mtd_info * mtd, struct nand_chip * chip, uint8_t * buf,

int oob_required, int page)
[INTERN] read raw page data without ecc

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
uint8_t * buf buffer to store read data
int oob_required caller requires OOB data read to chip->oob_poi
int page page number to read
Description
Not for syndrome calculating ECC controllers, which use a special oob layout.
int nand_read_oob_std(struct mtd_info * mtd, struct nand_chip * chip, int page)

[REPLACEABLE] the most common OOB data read function
Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
int page page number to read
int nand_read_oob_syndrome(struct mtd_info * mtd, struct nand_chip * chip, int page)

[REPLACEABLE] OOB data read function for HW ECC with syndromes
Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
int page page number to read

666 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

int nand_write_oob_std(struct mtd_info * mtd, struct nand_chip * chip, int page)
[REPLACEABLE] the most common OOB data write function

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
int page page number to write
int nand_write_oob_syndrome(struct mtd_info * mtd, struct nand_chip * chip, int page)

[REPLACEABLE] OOB data write function for HW ECC with syndrome - only for large page flash
Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
int page page number to write
int nand_write_page_raw(struct mtd_info * mtd, struct nand_chip * chip, const uint8_t * buf,

int oob_required, int page)
[INTERN] raw page write function

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
const uint8_t * buf data buffer
int oob_required must write chip->oob_poi to OOB
int page page number to write
Description
Not for syndrome calculating ECC controllers, which use a special oob layout.
int nand_onfi_get_set_features_notsupp(struct mtd_info * mtd, struct nand_chip * chip, int addr,

u8 * subfeature_param)
set/get features stub returning -ENOTSUPP

Parameters
struct mtd_info * mtd MTD device structure
struct nand_chip * chip nand chip info structure
int addr feature address.
u8 * subfeature_param the subfeature parameters, a four bytes array.
Description
Should be used by NAND controller drivers that do not support the SET/GET FEATURES operations.
int nand_scan_ident(struct mtd_info * mtd, int maxchips, struct nand_flash_dev * table)

[NAND Interface] Scan for the NAND device
Parameters
struct mtd_info * mtd MTD device structure
int maxchips number of chips to scan for
struct nand_flash_dev * table alternative NAND ID table
Description
This is the first phase of the normal nand_scan() function. It reads the flash ID and sets up MTD fields
accordingly.

22.10. Public Functions Provided 667

The kernel driver API manual, Release 4.13.0-rc4+

int nand_check_ecc_caps(struct nand_chip * chip, const struct nand_ecc_caps * caps, int oobavail)
check the sanity of preset ECC settings

Parameters
struct nand_chip * chip nand chip info structure
const struct nand_ecc_caps * caps ECC caps info structure
int oobavail OOB size that the ECC engine can use
Description
When ECC step size and strength are already set, check if they are supported by the controller and the
calculated ECC bytes fit within the chip’s OOB. On success, the calculated ECC bytes is set.
int nand_match_ecc_req(struct nand_chip * chip, const struct nand_ecc_caps * caps, int oobavail)

meet the chip’s requirement with least ECC bytes
Parameters
struct nand_chip * chip nand chip info structure
const struct nand_ecc_caps * caps ECC engine caps info structure
int oobavail OOB size that the ECC engine can use
Description
If a chip’s ECC requirement is provided, try to meet it with the least number of ECC bytes (i.e. with the
largest number of OOB-free bytes). On success, the chosen ECC settings are set.
int nand_maximize_ecc(struct nand_chip * chip, const struct nand_ecc_caps * caps, int oobavail)

choose the max ECC strength available
Parameters
struct nand_chip * chip nand chip info structure
const struct nand_ecc_caps * caps ECC engine caps info structure
int oobavail OOB size that the ECC engine can use
Description
Choose the max ECC strength that is supported on the controller, and can fit within the chip’s OOB. On
success, the chosen ECC settings are set.
int nand_scan_tail(struct mtd_info * mtd)

[NAND Interface] Scan for the NAND device
Parameters
struct mtd_info * mtd MTD device structure
Description
This is the second phase of the normal nand_scan() function. It fills out all the uninitialized function
pointers with the defaults and scans for a bad block table if appropriate.
int nand_scan(struct mtd_info * mtd, int maxchips)

[NAND Interface] Scan for the NAND device
Parameters
struct mtd_info * mtd MTD device structure
int maxchips number of chips to scan for
Description
This fills out all the uninitialized function pointers with the defaults. The flash ID is read and the mtd/chip
structures are filled with the appropriate values.

668 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

void nand_cleanup(struct nand_chip * chip)
[NAND Interface] Free resources held by the NAND device

Parameters
struct nand_chip * chip NAND chip object
void nand_release(struct mtd_info * mtd)

[NAND Interface] Unregister the MTD device and free resources held by the NAND device
Parameters
struct mtd_info * mtd MTD device structure
void __nand_calculate_ecc(const unsigned char * buf, unsigned int eccsize, unsigned char * code)

[NAND Interface] Calculate 3-byte ECC for 256/512-byte block
Parameters
const unsigned char * buf input buffer with raw data
unsigned int eccsize data bytes per ECC step (256 or 512)
unsigned char * code output buffer with ECC
int nand_calculate_ecc(struct mtd_info * mtd, const unsigned char * buf, unsigned char * code)

[NAND Interface] Calculate 3-byte ECC for 256/512-byte block
Parameters
struct mtd_info * mtd MTD block structure
const unsigned char * buf input buffer with raw data
unsigned char * code output buffer with ECC
int __nand_correct_data(unsigned char * buf, unsigned char * read_ecc, unsigned char * calc_ecc,

unsigned int eccsize)
[NAND Interface] Detect and correct bit error(s)

Parameters
unsigned char * buf raw data read from the chip
unsigned char * read_ecc ECC from the chip
unsigned char * calc_ecc the ECC calculated from raw data
unsigned int eccsize data bytes per ECC step (256 or 512)
Description
Detect and correct a 1 bit error for eccsize byte block
int nand_correct_data(struct mtd_info * mtd, unsigned char * buf, unsigned char * read_ecc, un-

signed char * calc_ecc)
[NAND Interface] Detect and correct bit error(s)

Parameters
struct mtd_info * mtd MTD block structure
unsigned char * buf raw data read from the chip
unsigned char * read_ecc ECC from the chip
unsigned char * calc_ecc the ECC calculated from raw data
Description
Detect and correct a 1 bit error for 256/512 byte block

22.10. Public Functions Provided 669

The kernel driver API manual, Release 4.13.0-rc4+

22.11 Internal Functions Provided

This chapter contains the autogenerated documentation of the NAND driver internal functions. Each
function has a short description which is marked with an [XXX] identifier. See the chapter “Documentation
hints” for an explanation. The functions marked with [DEFAULT] might be relevant for a board driver
developer.
void nand_release_device(struct mtd_info * mtd)

[GENERIC] release chip
Parameters
struct mtd_info * mtd MTD device structure
Description
Release chip lock and wake up anyone waiting on the device.
uint8_t nand_read_byte(struct mtd_info * mtd)

[DEFAULT] read one byte from the chip
Parameters
struct mtd_info * mtd MTD device structure
Description
Default read function for 8bit buswidth
uint8_t nand_read_byte16(struct mtd_info * mtd)

[DEFAULT] read one byte endianness aware from the chip
Parameters
struct mtd_info * mtd MTD device structure
Description
Default read function for 16bit buswidth with endianness conversion.
u16 nand_read_word(struct mtd_info * mtd)

[DEFAULT] read one word from the chip
Parameters
struct mtd_info * mtd MTD device structure
Description
Default read function for 16bit buswidth without endianness conversion.
void nand_select_chip(struct mtd_info * mtd, int chipnr)

[DEFAULT] control CE line
Parameters
struct mtd_info * mtd MTD device structure
int chipnr chipnumber to select, -1 for deselect
Description
Default select function for 1 chip devices.
void nand_write_byte(struct mtd_info * mtd, uint8_t byte)

[DEFAULT] write single byte to chip
Parameters
struct mtd_info * mtd MTD device structure
uint8_t byte value to write

670 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

Description
Default function to write a byte to I/O[7:0]
void nand_write_byte16(struct mtd_info * mtd, uint8_t byte)

[DEFAULT] write single byte to a chip with width 16
Parameters
struct mtd_info * mtd MTD device structure
uint8_t byte value to write
Description
Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
void nand_write_buf(struct mtd_info * mtd, const uint8_t * buf, int len)

[DEFAULT] write buffer to chip
Parameters
struct mtd_info * mtd MTD device structure
const uint8_t * buf data buffer
int len number of bytes to write
Description
Default write function for 8bit buswidth.
void nand_read_buf(struct mtd_info * mtd, uint8_t * buf, int len)

[DEFAULT] read chip data into buffer
Parameters
struct mtd_info * mtd MTD device structure
uint8_t * buf buffer to store date
int len number of bytes to read
Description
Default read function for 8bit buswidth.
void nand_write_buf16(struct mtd_info * mtd, const uint8_t * buf, int len)

[DEFAULT] write buffer to chip
Parameters
struct mtd_info * mtd MTD device structure
const uint8_t * buf data buffer
int len number of bytes to write
Description
Default write function for 16bit buswidth.
void nand_read_buf16(struct mtd_info * mtd, uint8_t * buf, int len)

[DEFAULT] read chip data into buffer
Parameters
struct mtd_info * mtd MTD device structure
uint8_t * buf buffer to store date
int len number of bytes to read
Description
Default read function for 16bit buswidth.

22.11. Internal Functions Provided 671

The kernel driver API manual, Release 4.13.0-rc4+

int nand_block_bad(struct mtd_info * mtd, loff_t ofs)
[DEFAULT] Read bad block marker from the chip

Parameters
struct mtd_info * mtd MTD device structure
loff_t ofs offset from device start
Description
Check, if the block is bad.
int nand_default_block_markbad(struct mtd_info * mtd, loff_t ofs)

[DEFAULT] mark a block bad via bad block marker
Parameters
struct mtd_info * mtd MTD device structure
loff_t ofs offset from device start
Description
This is the default implementation, which can be overridden by a hardware specific driver. It provides the
details for writing a bad block marker to a block.
int nand_block_markbad_lowlevel(struct mtd_info * mtd, loff_t ofs)

mark a block bad
Parameters
struct mtd_info * mtd MTD device structure
loff_t ofs offset from device start
Description
This function performs the generic NAND bad block marking steps (i.e., bad block table(s) and/or
marker(s)). We only allow the hardware driver to specify how to write bad block markers to OOB (chip-
>block_markbad).
We try operations in the following order:
1. erase the affected block, to allow OOB marker to be written cleanly
2. write bad block marker to OOB area of affected block (unless flag NAND_BBT_NO_OOB_BBM is
present)

3. update the BBT
Note that we retain the first error encountered in (2) or (3), finish the procedures, and dump the error in
the end.
int nand_check_wp(struct mtd_info * mtd)

[GENERIC] check if the chip is write protected
Parameters
struct mtd_info * mtd MTD device structure
Description
Check, if the device is write protected. The function expects, that the device is already selected.
int nand_block_isreserved(struct mtd_info * mtd, loff_t ofs)

[GENERIC] Check if a block is marked reserved.
Parameters
struct mtd_info * mtd MTD device structure
loff_t ofs offset from device start

672 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

Description
Check if the block is marked as reserved.
int nand_block_checkbad(struct mtd_info * mtd, loff_t ofs, int allowbbt)

[GENERIC] Check if a block is marked bad
Parameters
struct mtd_info * mtd MTD device structure
loff_t ofs offset from device start
int allowbbt 1, if its allowed to access the bbt area
Description
Check, if the block is bad. Either by reading the bad block table or calling of the scan function.
void panic_nand_wait_ready(struct mtd_info * mtd, unsigned long timeo)

[GENERIC] Wait for the ready pin after commands.
Parameters
struct mtd_info * mtd MTD device structure
unsigned long timeo Timeout
Description
Helper function for nand_wait_ready used when needing to wait in interrupt context.
void nand_wait_status_ready(struct mtd_info * mtd, unsigned long timeo)

[GENERIC] Wait for the ready status after commands.
Parameters
struct mtd_info * mtd MTD device structure
unsigned long timeo Timeout in ms
Description
Wait for status ready (i.e. command done) or timeout.
void nand_command(struct mtd_info * mtd, unsigned int command, int column, int page_addr)

[DEFAULT] Send command to NAND device
Parameters
struct mtd_info * mtd MTD device structure
unsigned int command the command to be sent
int column the column address for this command, -1 if none
int page_addr the page address for this command, -1 if none
Description
Send command to NAND device. This function is used for small page devices (512 Bytes per page).
void nand_command_lp(struct mtd_info * mtd, unsigned int command, int column, int page_addr)

[DEFAULT] Send command to NAND large page device
Parameters
struct mtd_info * mtd MTD device structure
unsigned int command the command to be sent
int column the column address for this command, -1 if none
int page_addr the page address for this command, -1 if none

22.11. Internal Functions Provided 673

The kernel driver API manual, Release 4.13.0-rc4+

Description
Send command to NAND device. This is the version for the new large page devices. We don’t have the
separate regions as we have in the small page devices. We must emulate NAND_CMD_READOOB to keep
the code compatible.
void panic_nand_get_device(struct nand_chip * chip, struct mtd_info * mtd, int new_state)

[GENERIC] Get chip for selected access
Parameters
struct nand_chip * chip the nand chip descriptor
struct mtd_info * mtd MTD device structure
int new_state the state which is requested
Description
Used when in panic, no locks are taken.
int nand_get_device(struct mtd_info * mtd, int new_state)

[GENERIC] Get chip for selected access
Parameters
struct mtd_info * mtd MTD device structure
int new_state the state which is requested
Description
Get the device and lock it for exclusive access
void panic_nand_wait(struct mtd_info * mtd, struct nand_chip * chip, unsigned long timeo)

[GENERIC] wait until the command is done
Parameters
struct mtd_info * mtd MTD device structure
struct nand_chip * chip NAND chip structure
unsigned long timeo timeout
Description
Wait for command done. This is a helper function for nand_wait used when we are in interrupt context.
May happen when in panic and trying to write an oops through mtdoops.
int nand_wait(struct mtd_info * mtd, struct nand_chip * chip)

[DEFAULT] wait until the command is done
Parameters
struct mtd_info * mtd MTD device structure
struct nand_chip * chip NAND chip structure
Description
Wait for command done. This applies to erase and program only.
int nand_reset_data_interface(struct nand_chip * chip, int chipnr)

Reset data interface and timings
Parameters
struct nand_chip * chip The NAND chip
int chipnr Internal die id

674 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

Description
Reset the Data interface and timings to ONFI mode 0.
Returns 0 for success or negative error code otherwise.
int nand_setup_data_interface(struct nand_chip * chip, int chipnr)

Setup the best data interface and timings
Parameters
struct nand_chip * chip The NAND chip
int chipnr Internal die id
Description
Find and configure the best data interface and NAND timings supported by the chip and the driver. First
tries to retrieve supported timing modes from ONFI information, and if the NAND chip does not support
ONFI, relies on the ->onfi_timing_mode_default specified in the nand_ids table.
Returns 0 for success or negative error code otherwise.
int nand_init_data_interface(struct nand_chip * chip)

find the best data interface and timings
Parameters
struct nand_chip * chip The NAND chip
Description
Find the best data interface and NAND timings supported by the chip and the driver. First tries to retrieve
supported timing modes from ONFI information, and if the NAND chip does not support ONFI, relies on the
->onfi_timing_mode_default specified in the nand_ids table. After this function nand_chip->data_interface
is initialized with the best timing mode available.
Returns 0 for success or negative error code otherwise.
int nand_reset(struct nand_chip * chip, int chipnr)

Reset and initialize a NAND device
Parameters
struct nand_chip * chip The NAND chip
int chipnr Internal die id
Description
Returns 0 for success or negative error code otherwise
int __nand_unlock(struct mtd_info * mtd, loff_t ofs, uint64_t len, int invert)

[REPLACEABLE] unlocks specified locked blocks
Parameters
struct mtd_info * mtd mtd info
loff_t ofs offset to start unlock from
uint64_t len length to unlock
int invert

• when = 0, unlock the range of blocks within the lower and upper boundary address
• when = 1, unlock the range of blocks outside the boundaries of the lower and upper

boundary address
Description
Returs unlock status.

22.11. Internal Functions Provided 675

The kernel driver API manual, Release 4.13.0-rc4+

int nand_check_erased_buf(void * buf, int len, int bitflips_threshold)
check if a buffer contains (almost) only 0xff data

Parameters
void * buf buffer to test
int len buffer length
int bitflips_threshold maximum number of bitflips
Description
Check if a buffer contains only 0xff, which means the underlying region has been erased and is ready to
be programmed. The bitflips_threshold specify the maximum number of bitflips before considering the
region is not erased.
Note
The logic of this function has been extracted from the memweight implementation, except that
nand_check_erased_buf function exit before testing the whole buffer if the number of bitflips exceed the
bitflips_threshold value.
Returns a positive number of bitflips less than or equal to bitflips_threshold, or -ERROR_CODE for bitflips
in excess of the threshold.
int nand_read_page_raw_syndrome(struct mtd_info * mtd, struct nand_chip * chip, uint8_t * buf,

int oob_required, int page)
[INTERN] read raw page data without ecc

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
uint8_t * buf buffer to store read data
int oob_required caller requires OOB data read to chip->oob_poi
int page page number to read
Description
We need a special oob layout and handling even when OOB isn’t used.
int nand_read_page_swecc(struct mtd_info * mtd, struct nand_chip * chip, uint8_t * buf,

int oob_required, int page)
[REPLACEABLE] software ECC based page read function

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
uint8_t * buf buffer to store read data
int oob_required caller requires OOB data read to chip->oob_poi
int page page number to read
int nand_read_subpage(struct mtd_info * mtd, struct nand_chip * chip, uint32_t data_offs,

uint32_t readlen, uint8_t * bufpoi, int page)
[REPLACEABLE] ECC based sub-page read function

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
uint32_t data_offs offset of requested data within the page

676 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

uint32_t readlen data length
uint8_t * bufpoi buffer to store read data
int page page number to read
int nand_read_page_hwecc(struct mtd_info * mtd, struct nand_chip * chip, uint8_t * buf,

int oob_required, int page)
[REPLACEABLE] hardware ECC based page read function

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
uint8_t * buf buffer to store read data
int oob_required caller requires OOB data read to chip->oob_poi
int page page number to read
Description
Not for syndrome calculating ECC controllers which need a special oob layout.
int nand_read_page_hwecc_oob_first(struct mtd_info * mtd, struct nand_chip * chip, uint8_t * buf,

int oob_required, int page)
[REPLACEABLE] hw ecc, read oob first

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
uint8_t * buf buffer to store read data
int oob_required caller requires OOB data read to chip->oob_poi
int page page number to read
Description
Hardware ECC for large page chips, require OOB to be read first. For this ECC mode, the write_page
method is re-used from ECC_HW. These methods read/write ECC from the OOB area, unlike the
ECC_HW_SYNDROME support with multiple ECC steps, follows the “infix ECC” scheme and reads/writes
ECC from the data area, by overwriting the NAND manufacturer bad block markings.
int nand_read_page_syndrome(struct mtd_info * mtd, struct nand_chip * chip, uint8_t * buf,

int oob_required, int page)
[REPLACEABLE] hardware ECC syndrome based page read

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
uint8_t * buf buffer to store read data
int oob_required caller requires OOB data read to chip->oob_poi
int page page number to read
Description
The hw generator calculates the error syndrome automatically. Therefore we need a special oob layout
and handling.
uint8_t * nand_transfer_oob(struct mtd_info * mtd, uint8_t * oob, struct mtd_oob_ops * ops,

size_t len)
[INTERN] Transfer oob to client buffer

22.11. Internal Functions Provided 677

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct mtd_info * mtd mtd info structure
uint8_t * oob oob destination address
struct mtd_oob_ops * ops oob ops structure
size_t len size of oob to transfer
int nand_setup_read_retry(struct mtd_info * mtd, int retry_mode)

[INTERN] Set the READ RETRY mode
Parameters
struct mtd_info * mtd MTD device structure
int retry_mode the retry mode to use
Description
Some vendors supply a special command to shift the Vt threshold, to be used when there are too many
bitflips in a page (i.e., ECC error). After setting a new threshold, the host should retry reading the page.
int nand_do_read_ops(struct mtd_info * mtd, loff_t from, struct mtd_oob_ops * ops)

[INTERN] Read data with ECC
Parameters
struct mtd_info * mtd MTD device structure
loff_t from offset to read from
struct mtd_oob_ops * ops oob ops structure
Description
Internal function. Called with chip held.
int nand_read(struct mtd_info * mtd, loff_t from, size_t len, size_t * retlen, uint8_t * buf)

[MTD Interface] MTD compatibility function for nand_do_read_ecc
Parameters
struct mtd_info * mtd MTD device structure
loff_t from offset to read from
size_t len number of bytes to read
size_t * retlen pointer to variable to store the number of read bytes
uint8_t * buf the databuffer to put data
Description
Get hold of the chip and call nand_do_read.
int nand_do_read_oob(struct mtd_info * mtd, loff_t from, struct mtd_oob_ops * ops)

[INTERN] NAND read out-of-band
Parameters
struct mtd_info * mtd MTD device structure
loff_t from offset to read from
struct mtd_oob_ops * ops oob operations description structure
Description
NAND read out-of-band data from the spare area.
int nand_read_oob(struct mtd_info * mtd, loff_t from, struct mtd_oob_ops * ops)

[MTD Interface] NAND read data and/or out-of-band

678 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct mtd_info * mtd MTD device structure
loff_t from offset to read from
struct mtd_oob_ops * ops oob operation description structure
Description
NAND read data and/or out-of-band data.
int nand_write_page_raw_syndrome(struct mtd_info * mtd, struct nand_chip * chip, const uint8_t

* buf, int oob_required, int page)
[INTERN] raw page write function

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
const uint8_t * buf data buffer
int oob_required must write chip->oob_poi to OOB
int page page number to write
Description
We need a special oob layout and handling even when ECC isn’t checked.
int nand_write_page_swecc(struct mtd_info * mtd, struct nand_chip * chip, const uint8_t * buf,

int oob_required, int page)
[REPLACEABLE] software ECC based page write function

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
const uint8_t * buf data buffer
int oob_required must write chip->oob_poi to OOB
int page page number to write
int nand_write_page_hwecc(struct mtd_info * mtd, struct nand_chip * chip, const uint8_t * buf,

int oob_required, int page)
[REPLACEABLE] hardware ECC based page write function

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
const uint8_t * buf data buffer
int oob_required must write chip->oob_poi to OOB
int page page number to write
int nand_write_subpage_hwecc(struct mtd_info * mtd, struct nand_chip * chip, uint32_t offset,

uint32_t data_len, const uint8_t * buf, int oob_required, int page)
[REPLACEABLE] hardware ECC based subpage write

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
uint32_t offset column address of subpage within the page

22.11. Internal Functions Provided 679

The kernel driver API manual, Release 4.13.0-rc4+

uint32_t data_len data length
const uint8_t * buf data buffer
int oob_required must write chip->oob_poi to OOB
int page page number to write
int nand_write_page_syndrome(struct mtd_info * mtd, struct nand_chip * chip, const uint8_t * buf,

int oob_required, int page)
[REPLACEABLE] hardware ECC syndrome based page write

Parameters
struct mtd_info * mtd mtd info structure
struct nand_chip * chip nand chip info structure
const uint8_t * buf data buffer
int oob_required must write chip->oob_poi to OOB
int page page number to write
Description
The hw generator calculates the error syndrome automatically. Therefore we need a special oob layout
and handling.
int nand_write_page(struct mtd_info * mtd, struct nand_chip * chip, uint32_t offset, int data_len,

const uint8_t * buf, int oob_required, int page, int raw)
write one page

Parameters
struct mtd_info * mtd MTD device structure
struct nand_chip * chip NAND chip descriptor
uint32_t offset address offset within the page
int data_len length of actual data to be written
const uint8_t * buf the data to write
int oob_required must write chip->oob_poi to OOB
int page page number to write
int raw use _raw version of write_page
uint8_t * nand_fill_oob(struct mtd_info * mtd, uint8_t * oob, size_t len, struct mtd_oob_ops * ops)

[INTERN] Transfer client buffer to oob
Parameters
struct mtd_info * mtd MTD device structure
uint8_t * oob oob data buffer
size_t len oob data write length
struct mtd_oob_ops * ops oob ops structure
int nand_do_write_ops(struct mtd_info * mtd, loff_t to, struct mtd_oob_ops * ops)

[INTERN] NAND write with ECC
Parameters
struct mtd_info * mtd MTD device structure
loff_t to offset to write to
struct mtd_oob_ops * ops oob operations description structure

680 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

Description
NAND write with ECC.
int panic_nand_write(struct mtd_info * mtd, loff_t to, size_t len, size_t * retlen, const uint8_t * buf)

[MTD Interface] NAND write with ECC
Parameters
struct mtd_info * mtd MTD device structure
loff_t to offset to write to
size_t len number of bytes to write
size_t * retlen pointer to variable to store the number of written bytes
const uint8_t * buf the data to write
Description
NAND write with ECC. Used when performing writes in interrupt context, this may for example be called
by mtdoops when writing an oops while in panic.
int nand_write(struct mtd_info * mtd, loff_t to, size_t len, size_t * retlen, const uint8_t * buf)

[MTD Interface] NAND write with ECC
Parameters
struct mtd_info * mtd MTD device structure
loff_t to offset to write to
size_t len number of bytes to write
size_t * retlen pointer to variable to store the number of written bytes
const uint8_t * buf the data to write
Description
NAND write with ECC.
int nand_do_write_oob(struct mtd_info * mtd, loff_t to, struct mtd_oob_ops * ops)

[MTD Interface] NAND write out-of-band
Parameters
struct mtd_info * mtd MTD device structure
loff_t to offset to write to
struct mtd_oob_ops * ops oob operation description structure
Description
NAND write out-of-band.
int nand_write_oob(struct mtd_info * mtd, loff_t to, struct mtd_oob_ops * ops)

[MTD Interface] NAND write data and/or out-of-band
Parameters
struct mtd_info * mtd MTD device structure
loff_t to offset to write to
struct mtd_oob_ops * ops oob operation description structure
int single_erase(struct mtd_info * mtd, int page)

[GENERIC] NAND standard block erase command function
Parameters
struct mtd_info * mtd MTD device structure

22.11. Internal Functions Provided 681

The kernel driver API manual, Release 4.13.0-rc4+

int page the page address of the block which will be erased
Description
Standard erase command for NAND chips. Returns NAND status.
int nand_erase(struct mtd_info * mtd, struct erase_info * instr)

[MTD Interface] erase block(s)
Parameters
struct mtd_info * mtd MTD device structure
struct erase_info * instr erase instruction
Description
Erase one ore more blocks.
int nand_erase_nand(struct mtd_info * mtd, struct erase_info * instr, int allowbbt)

[INTERN] erase block(s)
Parameters
struct mtd_info * mtd MTD device structure
struct erase_info * instr erase instruction
int allowbbt allow erasing the bbt area
Description
Erase one ore more blocks.
void nand_sync(struct mtd_info * mtd)

[MTD Interface] sync
Parameters
struct mtd_info * mtd MTD device structure
Description
Sync is actually a wait for chip ready function.
int nand_block_isbad(struct mtd_info * mtd, loff_t offs)

[MTD Interface] Check if block at offset is bad
Parameters
struct mtd_info * mtd MTD device structure
loff_t offs offset relative to mtd start
int nand_block_markbad(struct mtd_info * mtd, loff_t ofs)

[MTD Interface] Mark block at the given offset as bad
Parameters
struct mtd_info * mtd MTD device structure
loff_t ofs offset relative to mtd start
int nand_max_bad_blocks(struct mtd_info * mtd, loff_t ofs, size_t len)

[MTD Interface] Max number of bad blocks for an mtd
Parameters
struct mtd_info * mtd MTD device structure
loff_t ofs offset relative to mtd start
size_t len length of mtd

682 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

int nand_onfi_set_features(struct mtd_info * mtd, struct nand_chip * chip, int addr, uint8_t * sub-
feature_param)

[REPLACEABLE] set features for ONFI nand
Parameters
struct mtd_info * mtd MTD device structure
struct nand_chip * chip nand chip info structure
int addr feature address.
uint8_t * subfeature_param the subfeature parameters, a four bytes array.
int nand_onfi_get_features(struct mtd_info * mtd, struct nand_chip * chip, int addr, uint8_t * sub-

feature_param)
[REPLACEABLE] get features for ONFI nand

Parameters
struct mtd_info * mtd MTD device structure
struct nand_chip * chip nand chip info structure
int addr feature address.
uint8_t * subfeature_param the subfeature parameters, a four bytes array.
int nand_suspend(struct mtd_info * mtd)

[MTD Interface] Suspend the NAND flash
Parameters
struct mtd_info * mtd MTD device structure
void nand_resume(struct mtd_info * mtd)

[MTD Interface] Resume the NAND flash
Parameters
struct mtd_info * mtd MTD device structure
void nand_shutdown(struct mtd_info * mtd)

[MTD Interface] Finish the current NAND operation and prevent further operations
Parameters
struct mtd_info * mtd MTD device structure
int check_pattern(uint8_t * buf, int len, int paglen, struct nand_bbt_descr * td)

[GENERIC] check if a pattern is in the buffer
Parameters
uint8_t * buf the buffer to search
int len the length of buffer to search
int paglen the pagelength
struct nand_bbt_descr * td search pattern descriptor
Description
Check for a pattern at the given place. Used to search bad block tables and good / bad block identifiers.
int check_short_pattern(uint8_t * buf, struct nand_bbt_descr * td)

[GENERIC] check if a pattern is in the buffer
Parameters
uint8_t * buf the buffer to search
struct nand_bbt_descr * td search pattern descriptor

22.11. Internal Functions Provided 683

The kernel driver API manual, Release 4.13.0-rc4+

Description
Check for a pattern at the given place. Used to search bad block tables and good / bad block identifiers.
Same as check_pattern, but no optional empty check.
u32 add_marker_len(struct nand_bbt_descr * td)

compute the length of the marker in data area
Parameters
struct nand_bbt_descr * td BBT descriptor used for computation
Description
The length will be 0 if the marker is located in OOB area.
int read_bbt(struct mtd_info * mtd, uint8_t * buf, int page, int num, struct nand_bbt_descr * td,

int offs)
[GENERIC] Read the bad block table starting from page

Parameters
struct mtd_info * mtd MTD device structure
uint8_t * buf temporary buffer
int page the starting page
int num the number of bbt descriptors to read
struct nand_bbt_descr * td the bbt describtion table
int offs block number offset in the table
Description
Read the bad block table starting from page.
int read_abs_bbt(struct mtd_info * mtd, uint8_t * buf, struct nand_bbt_descr * td, int chip)

[GENERIC] Read the bad block table starting at a given page
Parameters
struct mtd_info * mtd MTD device structure
uint8_t * buf temporary buffer
struct nand_bbt_descr * td descriptor for the bad block table
int chip read the table for a specific chip, -1 read all chips; applies only if NAND_BBT_PERCHIP option is

set
Description
Read the bad block table for all chips starting at a given page. We assume that the bbt bits are in
consecutive order.
int scan_read_oob(struct mtd_info * mtd, uint8_t * buf, loff_t offs, size_t len)

[GENERIC] Scan data+OOB region to buffer
Parameters
struct mtd_info * mtd MTD device structure
uint8_t * buf temporary buffer
loff_t offs offset at which to scan
size_t len length of data region to read
Description

684 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

Scan read data from data+OOB. May traverse multiple pages, interleaving page,OOB,page,OOB,... in
buf. Completes transfer and returns the “strongest” ECC condition (error or bitflip). May quit on the first
(non-ECC) error.
void read_abs_bbts(struct mtd_info * mtd, uint8_t * buf, struct nand_bbt_descr * td, struct

nand_bbt_descr * md)
[GENERIC] Read the bad block table(s) for all chips starting at a given page

Parameters
struct mtd_info * mtd MTD device structure
uint8_t * buf temporary buffer
struct nand_bbt_descr * td descriptor for the bad block table
struct nand_bbt_descr * md descriptor for the bad block table mirror
Description
Read the bad block table(s) for all chips starting at a given page. We assume that the bbt bits are in
consecutive order.
int create_bbt(struct mtd_info * mtd, uint8_t * buf, struct nand_bbt_descr * bd, int chip)

[GENERIC] Create a bad block table by scanning the device
Parameters
struct mtd_info * mtd MTD device structure
uint8_t * buf temporary buffer
struct nand_bbt_descr * bd descriptor for the good/bad block search pattern
int chip create the table for a specific chip, -1 read all chips; applies only if NAND_BBT_PERCHIP option

is set
Description
Create a bad block table by scanning the device for the given good/bad block identify pattern.
int search_bbt(struct mtd_info * mtd, uint8_t * buf, struct nand_bbt_descr * td)

[GENERIC] scan the device for a specific bad block table
Parameters
struct mtd_info * mtd MTD device structure
uint8_t * buf temporary buffer
struct nand_bbt_descr * td descriptor for the bad block table
Description
Read the bad block table by searching for a given ident pattern. Search is preformed either from the
beginning up or from the end of the device downwards. The search starts always at the start of a block.
If the option NAND_BBT_PERCHIP is given, each chip is searched for a bbt, which contains the bad block
information of this chip. This is necessary to provide support for certain DOC devices.
The bbt ident pattern resides in the oob area of the first page in a block.
void search_read_bbts(struct mtd_info * mtd, uint8_t * buf, struct nand_bbt_descr * td, struct

nand_bbt_descr * md)
[GENERIC] scan the device for bad block table(s)

Parameters
struct mtd_info * mtd MTD device structure
uint8_t * buf temporary buffer
struct nand_bbt_descr * td descriptor for the bad block table

22.11. Internal Functions Provided 685

The kernel driver API manual, Release 4.13.0-rc4+

struct nand_bbt_descr * md descriptor for the bad block table mirror
Description
Search and read the bad block table(s).
int get_bbt_block(struct nand_chip * this, struct nand_bbt_descr * td, struct nand_bbt_descr * md,

int chip)
Get the first valid eraseblock suitable to store a BBT

Parameters
struct nand_chip * this the NAND device
struct nand_bbt_descr * td the BBT description
struct nand_bbt_descr * md the mirror BBT descriptor
int chip the CHIP selector
Description
This functions returns a positive block number pointing a valid eraseblock suitable to store a BBT (i.e. in
the range reserved for BBT), or -ENOSPC if all blocks are already used of marked bad. If td->pages[chip]
was already pointing to a valid block we re-use it, otherwise we search for the next valid one.
void mark_bbt_block_bad(struct nand_chip * this, struct nand_bbt_descr * td, int chip, int block)

Mark one of the block reserved for BBT bad
Parameters
struct nand_chip * this the NAND device
struct nand_bbt_descr * td the BBT description
int chip the CHIP selector
int block the BBT block to mark
Description
Blocks reserved for BBT can become bad. This functions is an helper to mark such blocks as bad. It takes
care of updating the in-memory BBT, marking the block as bad using a bad block marker and invalidating
the associated td->pages[] entry.
int write_bbt(struct mtd_info * mtd, uint8_t * buf, struct nand_bbt_descr * td, struct

nand_bbt_descr * md, int chipsel)
[GENERIC] (Re)write the bad block table

Parameters
struct mtd_info * mtd MTD device structure
uint8_t * buf temporary buffer
struct nand_bbt_descr * td descriptor for the bad block table
struct nand_bbt_descr * md descriptor for the bad block table mirror
int chipsel selector for a specific chip, -1 for all
Description
(Re)write the bad block table.
int nand_memory_bbt(struct mtd_info * mtd, struct nand_bbt_descr * bd)

[GENERIC] create a memory based bad block table
Parameters
struct mtd_info * mtd MTD device structure
struct nand_bbt_descr * bd descriptor for the good/bad block search pattern

686 Chapter 22. MTD NAND Driver Programming Interface

The kernel driver API manual, Release 4.13.0-rc4+

Description
The function creates a memory based bbt by scanning the device for manufacturer / software marked
good / bad blocks.
int check_create(struct mtd_info * mtd, uint8_t * buf, struct nand_bbt_descr * bd)

[GENERIC] create and write bbt(s) if necessary
Parameters
struct mtd_info * mtd MTD device structure
uint8_t * buf temporary buffer
struct nand_bbt_descr * bd descriptor for the good/bad block search pattern
Description
The function checks the results of the previous call to read_bbt and creates / updates the bbt(s) if nec-
essary. Creation is necessary if no bbt was found for the chip/device. Update is necessary if one of the
tables is missing or the version nr. of one table is less than the other.
void mark_bbt_region(struct mtd_info * mtd, struct nand_bbt_descr * td)

[GENERIC] mark the bad block table regions
Parameters
struct mtd_info * mtd MTD device structure
struct nand_bbt_descr * td bad block table descriptor
Description
The bad block table regions are marked as “bad” to prevent accidental erasures / writes. The regions are
identified by the mark 0x02.
void verify_bbt_descr(struct mtd_info * mtd, struct nand_bbt_descr * bd)

verify the bad block description
Parameters
struct mtd_info * mtd MTD device structure
struct nand_bbt_descr * bd the table to verify
Description
This functions performs a few sanity checks on the bad block description table.
int nand_scan_bbt(struct mtd_info * mtd, struct nand_bbt_descr * bd)

[NAND Interface] scan, find, read and maybe create bad block table(s)
Parameters
struct mtd_info * mtd MTD device structure
struct nand_bbt_descr * bd descriptor for the good/bad block search pattern
Description
The function checks, if a bad block table(s) is/are already available. If not it scans the device for manu-
facturer marked good / bad blocks and writes the bad block table(s) to the selected place.
The bad block table memory is allocated here. It must be freed by calling the nand_free_bbt function.
int nand_update_bbt(struct mtd_info * mtd, loff_t offs)

update bad block table(s)
Parameters
struct mtd_info * mtd MTD device structure
loff_t offs the offset of the newly marked block

22.11. Internal Functions Provided 687

The kernel driver API manual, Release 4.13.0-rc4+

Description
The function updates the bad block table(s).
int nand_create_badblock_pattern(struct nand_chip * this)

[INTERN] Creates a BBT descriptor structure
Parameters
struct nand_chip * this NAND chip to create descriptor for
Description
This function allocates and initializes a nand_bbt_descr for BBM detection based on the properties of this.
The new descriptor is stored in this->badblock_pattern. Thus, this->badblock_pattern should be NULL
when passed to this function.
int nand_default_bbt(struct mtd_info * mtd)

[NAND Interface] Select a default bad block table for the device
Parameters
struct mtd_info * mtd MTD device structure
Description
This function selects the default bad block table support for the device and calls the nand_scan_bbt func-
tion.
int nand_isreserved_bbt(struct mtd_info * mtd, loff_t offs)

[NAND Interface] Check if a block is reserved
Parameters
struct mtd_info * mtd MTD device structure
loff_t offs offset in the device
int nand_isbad_bbt(struct mtd_info * mtd, loff_t offs, int allowbbt)

[NAND Interface] Check if a block is bad
Parameters
struct mtd_info * mtd MTD device structure
loff_t offs offset in the device
int allowbbt allow access to bad block table region
int nand_markbad_bbt(struct mtd_info * mtd, loff_t offs)

[NAND Interface] Mark a block bad in the BBT
Parameters
struct mtd_info * mtd MTD device structure
loff_t offs offset of the bad block

22.12 Credits

The following people have contributed to the NAND driver:
1. Steven J. Hillsjhill@realitydiluted.com
2. David Woodhousedwmw2@infradead.org
3. Thomas Gleixnertglx@linutronix.de

A lot of users have provided bugfixes, improvements and helping hands for testing. Thanks a lot.
The following people have contributed to this document:

688 Chapter 22. MTD NAND Driver Programming Interface

mailto:sjhill@realitydiluted.com
mailto:dwmw2@infradead.org
mailto:tglx@linutronix.de

The kernel driver API manual, Release 4.13.0-rc4+

1. Thomas Gleixnertglx@linutronix.de

22.12. Credits 689

mailto:tglx@linutronix.de

The kernel driver API manual, Release 4.13.0-rc4+

690 Chapter 22. MTD NAND Driver Programming Interface

CHAPTER

TWENTYTHREE

PARALLEL PORT DEVICES

int parport_yield(struct pardevice * dev)
relinquish a parallel port temporarily

Parameters
struct pardevice * dev a device on the parallel port
Description
This function relinquishes the port if it would be helpful to other drivers to do so. Afterwards it tries to
reclaim the port using parport_claim(), and the return value is the same as for parport_claim(). If it
fails, the port is left unclaimed and it is the driver’s responsibility to reclaim the port.
The parport_yield() and parport_yield_blocking() functions are for marking points in the driver at
which other drivers may claim the port and use their devices. Yielding the port is similar to releasing it
and reclaiming it, but is more efficient because no action is taken if there are no other devices needing the
port. In fact, nothing is done even if there are other devices waiting but the current device is still within
its “timeslice”. The default timeslice is half a second, but it can be adjusted via the /proc interface.
int parport_yield_blocking(struct pardevice * dev)

relinquish a parallel port temporarily
Parameters
struct pardevice * dev a device on the parallel port
Description
This function relinquishes the port if it would be helpful to other drivers to do so. Afterwards it tries
to reclaim the port using parport_claim_or_block(), and the return value is the same as for par-
port_claim_or_block().
int parport_wait_event(struct parport * port, signed long timeout)

wait for an event on a parallel port
Parameters
struct parport * port port to wait on
signed long timeout time to wait (in jiffies)
Description

This function waits for up to timeout jiffies for an interrupt to occur on a parallel port. If the
port timeout is set to zero, it returns immediately.
If an interrupt occurs before the timeout period elapses, this function returns zero immediately.
If it times out, it returns one. An error code less than zero indicates an error (most likely a
pending signal), and the calling code should finish what it’s doing as soon as it can.

int parport_wait_peripheral(struct parport * port, unsigned char mask, unsigned char result)
wait for status lines to change in 35ms

Parameters

691

The kernel driver API manual, Release 4.13.0-rc4+

struct parport * port port to watch
unsigned char mask status lines to watch
unsigned char result desired values of chosen status lines
Description

This function waits until the masked status lines have the desired values, or until 35ms have
elapsed (see IEEE 1284-1994 page 24 to 25 for why this value in particular is hardcoded). The
mask and result parameters are bitmasks, with the bits defined by the constants in parport.h:
PARPORT_STATUS_BUSY, and so on.
The port is polled quickly to start off with, in anticipation of a fast response from the peripheral.
This fast polling time is configurable (using /proc), and defaults to 500usec. If the timeout for
this port (see parport_set_timeout()) is zero, the fast polling time is 35ms, and this function
does not call schedule().
If the timeout for this port is non-zero, after the fast polling fails it uses parport_wait_event()
to wait for up to 10ms, waking up if an interrupt occurs.

int parport_negotiate(struct parport * port, int mode)
negotiate an IEEE 1284 mode

Parameters
struct parport * port port to use
int mode mode to negotiate to
Description

Use this to negotiate to a particular IEEE 1284 transfer mode. The mode parameter should be
one of the constants in parport.h starting IEEE1284_MODE_xxx.
The return value is 0 if the peripheral has accepted the negotiation to the mode specified, -1
if the peripheral is not IEEE 1284 compliant (or not present), or 1 if the peripheral has rejected
the negotiation.

ssize_t parport_write(struct parport * port, const void * buffer, size_t len)
write a block of data to a parallel port

Parameters
struct parport * port port to write to
const void * buffer data buffer (in kernel space)
size_t len number of bytes of data to transfer
Description

This will write up to len bytes of buffer to the port specified, using the IEEE 1284 transfer
modemost recently negotiated to (using parport_negotiate()), as long as that mode supports
forward transfers (host to peripheral).
It is the caller’s responsibility to ensure that the first len bytes of buffer are valid.
This function returns the number of bytes transferred (if zero or positive), or else an error code.

ssize_t parport_read(struct parport * port, void * buffer, size_t len)
read a block of data from a parallel port

Parameters
struct parport * port port to read from
void * buffer data buffer (in kernel space)
size_t len number of bytes of data to transfer
Description

692 Chapter 23. Parallel Port Devices

The kernel driver API manual, Release 4.13.0-rc4+

This will read up to len bytes of buffer to the port specified, using the IEEE 1284 transfer
modemost recently negotiated to (using parport_negotiate()), as long as that mode supports
reverse transfers (peripheral to host).
It is the caller’s responsibility to ensure that the first len bytes of buffer are available to write
to.
This function returns the number of bytes transferred (if zero or positive), or else an error code.

long parport_set_timeout(struct pardevice * dev, long inactivity)
set the inactivity timeout for a device

Parameters
struct pardevice * dev device on a port
long inactivity inactivity timeout (in jiffies)
Description

This sets the inactivity timeout for a particular device on a port. This affects functions like
parport_wait_peripheral(). The special value 0 means not to call schedule() while dealing
with this device.
The return value is the previous inactivity timeout.
Any callers of parport_wait_event() for this device are woken up.

int __parport_register_driver(struct parport_driver * drv, struct module * owner, const char
* mod_name)

register a parallel port device driver
Parameters
struct parport_driver * drv structure describing the driver
struct module * owner owner module of drv
const char * mod_name module name string
Description

This can be called by a parallel port device driver in order to receive notifications about ports
being found in the system, as well as ports no longer available.
If devmodel is true then the new device model is used for registration.
The drv structure is allocated by the caller and must not be deallocated until after calling par-
port_unregister_driver().
If using the non device model: The driver’s attach() function may block. The port that at-
tach() is given will be valid for the duration of the callback, but if the driver wants to take a copy
of the pointer it must call parport_get_port() to do so. Calling parport_register_device()
on that port will do this for you.
The driver’s detach() function may block. The port that detach() is given will be valid for
the duration of the callback, but if the driver wants to take a copy of the pointer it must call
parport_get_port() to do so.
Returns 0 on success. The non device model will always succeeds. but the new device model
can fail and will return the error code.

void parport_unregister_driver(struct parport_driver * drv)
deregister a parallel port device driver

Parameters
struct parport_driver * drv structure describing the driver that was given to par-

port_register_driver()

Description

693

The kernel driver API manual, Release 4.13.0-rc4+

This should be called by a parallel port device driver that has registered itself using par-
port_register_driver() when it is about to be unloaded.
When it returns, the driver’s attach() routine will no longer be called, and for each port that
attach() was called for, the detach() routine will have been called.
All the driver’s attach() and detach() calls are guaranteed to have finished by the time this
function returns.

struct parport * parport_get_port(struct parport * port)
increment a port’s reference count

Parameters
struct parport * port the port
Description

This ensures that a struct parport pointer remains valid until the matching parport_put_port()
call.

void parport_put_port(struct parport * port)
decrement a port’s reference count

Parameters
struct parport * port the port
Description

This should be called once for each call to parport_get_port(), once the port is no longer
needed. When the reference count reaches zero (port is no longer used), free_port is called.

struct parport * parport_register_port(unsigned long base, int irq, int dma, struct par-
port_operations * ops)

register a parallel port
Parameters
unsigned long base base I/O address
int irq IRQ line
int dma DMA channel
struct parport_operations * ops pointer to the port driver’s port operations structure
Description

When a parallel port (lowlevel) driver finds a port that should be made available to parallel port
device drivers, it should call parport_register_port(). The base, irq, and dma parameters
are for the convenience of port drivers, and for ports where they aren’t meaningful needn’t be
set to anything special. They can be altered afterwards by adjusting the relevant members of
the parport structure that is returned and represents the port. They should not be tampered
with after calling parport_announce_port, however.
If there are parallel port device drivers in the system that have registered themselves using
parport_register_driver(), they are not told about the port at this time; that is done by
parport_announce_port().
The ops structure is allocated by the caller, and must not be deallocated before calling par-
port_remove_port().
If there is no memory to allocate a new parport structure, this function will return NULL.

void parport_announce_port(struct parport * port)
tell device drivers about a parallel port

Parameters
struct parport * port parallel port to announce

694 Chapter 23. Parallel Port Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description
After a port driver has registered a parallel port with parport_register_port, and performed any
necessary initialisation or adjustments, it should call parport_announce_port() in order to no-
tify all device drivers that have called parport_register_driver(). Their attach() functions
will be called, with port as the parameter.

void parport_remove_port(struct parport * port)
deregister a parallel port

Parameters
struct parport * port parallel port to deregister
Description

When a parallel port driver is forcibly unloaded, or a parallel port becomes inaccessible, the port
driver must call this function in order to deal with device drivers that still want to use it.
The parport structure associated with the port has its operations structure replaced with one
containing ‘null’ operations that return errors or just don’t do anything.
Any drivers that have registered themselves using parport_register_driver() are notified
that the port is no longer accessible by having their detach() routines called with port as the
parameter.

struct pardevice * parport_register_device(struct parport * port, const char * name, int (*pf)
(void *, void (*kf) (void *, void (*irq_func) (void *,
int flags, void * handle)

register a device on a parallel port
Parameters
struct parport * port port to which the device is attached
const char * name a name to refer to the device
int (*)(void *) pf preemption callback
void (*)(void *) kf kick callback (wake-up)
void (*)(void *) irq_func interrupt handler
int flags registration flags
void * handle data for callback functions
Description

This function, called by parallel port device drivers, declares that a device is connected to a
port, and tells the system all it needs to know.
The name is allocated by the caller and must not be deallocated until the caller calls par-
port_unregister_device for that device.
The preemption callback function, pf, is called when this device driver has claimed access to
the port but another device driver wants to use it. It is given handle as its parameter, and
should return zero if it is willing for the system to release the port to another driver on its behalf.
If it wants to keep control of the port it should return non-zero, and no action will be taken.
It is good manners for the driver to try to release the port at the earliest opportunity after its
preemption callback rejects a preemption attempt. Note that if a preemption callback is happy
for preemption to go ahead, there is no need to release the port; it is done automatically. This
function may not block, as it may be called from interrupt context. If the device driver does not
support preemption, pf can be NULL.
The wake-up (“kick”) callback function, kf, is called when the port is available to be claimed for
exclusive access; that is, parport_claim() is guaranteed to succeed when called from inside
the wake-up callback function. If the driver wants to claim the port it should do so; otherwise,
it need not take any action. This function may not block, as it may be called from interrupt

695

The kernel driver API manual, Release 4.13.0-rc4+

context. If the device driver does not want to be explicitly invited to claim the port in this way,
kf can be NULL.
The interrupt handler, irq_func, is called when an interrupt arrives from the parallel port. Note
that if a device driver wants to use interrupts it should use parport_enable_irq(), and can
also check the irq member of the parport structure representing the port.
The parallel port (lowlevel) driver is the one that has called request_irq() and whose interrupt
handler is called first. This handler does whatever needs to be done to the hardware to acknowl-
edge the interrupt (for PC-style ports there is nothing special to be done). It then tells the IEEE
1284 code about the interrupt, which may involve reacting to an IEEE 1284 event depending
on the current IEEE 1284 phase. After this, it calls irq_func. Needless to say, irq_func will be
called from interrupt context, and may not block.
The PARPORT_DEV_EXCL flag is for preventing port sharing, and so should only be used when
sharing the port with other device drivers is impossible and would lead to incorrect behaviour.
Use it sparingly! Normally, flags will be zero.
This function returns a pointer to a structure that represents the device on the port, or NULL if
there is not enough memory to allocate space for that structure.

void parport_unregister_device(struct pardevice * dev)
deregister a device on a parallel port

Parameters
struct pardevice * dev pointer to structure representing device
Description

This undoes the effect of parport_register_device().
struct parport * parport_find_number(int number)

find a parallel port by number
Parameters
int number parallel port number
Description

This returns the parallel port with the specified number, or NULL if there is none.
There is an implicit parport_get_port() done already; to throw away the reference to the port
that parport_find_number() gives you, use parport_put_port().

struct parport * parport_find_base(unsigned long base)
find a parallel port by base address

Parameters
unsigned long base base I/O address
Description

This returns the parallel port with the specified base address, or NULL if there is none.
There is an implicit parport_get_port() done already; to throw away the reference to the port
that parport_find_base() gives you, use parport_put_port().

int parport_claim(struct pardevice * dev)
claim access to a parallel port device

Parameters
struct pardevice * dev pointer to structure representing a device on the port
Description

696 Chapter 23. Parallel Port Devices

The kernel driver API manual, Release 4.13.0-rc4+

This function will not block and so can be used from interrupt context. If parport_claim()
succeeds in claiming access to the port it returns zero and the port is available to use. It may
fail (returning non-zero) if the port is in use by another driver and that driver is not willing to
relinquish control of the port.

int parport_claim_or_block(struct pardevice * dev)
claim access to a parallel port device

Parameters
struct pardevice * dev pointer to structure representing a device on the port
Description

This behaves like parport_claim(), but will block if necessary to wait for the port to be free. A
return value of 1 indicates that it slept; 0 means that it succeeded without needing to sleep. A
negative error code indicates failure.

void parport_release(struct pardevice * dev)
give up access to a parallel port device

Parameters
struct pardevice * dev pointer to structure representing parallel port device
Description

This function cannot fail, but it should not be called without the port claimed. Similarly, if the
port is already claimed you should not try claiming it again.

struct pardevice * parport_open(int devnum, const char * name)
find a device by canonical device number

Parameters
int devnum canonical device number
const char * name name to associate with the device
Description

This function is similar to parport_register_device(), except that it locates a device by its
number rather than by the port it is attached to.
All parameters except for devnum are the same as for parport_register_device(). The
return value is the same as for parport_register_device().

void parport_close(struct pardevice * dev)
close a device opened with parport_open()

Parameters
struct pardevice * dev device to close
Description

This is to parport_open() as parport_unregister_device() is to par-
port_register_device().

697

The kernel driver API manual, Release 4.13.0-rc4+

698 Chapter 23. Parallel Port Devices

CHAPTER

TWENTYFOUR

16X50 UART DRIVER

void uart_update_timeout(struct uart_port * port, unsigned int cflag, unsigned int baud)
update per-port FIFO timeout.

Parameters
struct uart_port * port uart_port structure describing the port
unsigned int cflag termios cflag value
unsigned int baud speed of the port
Description

Set the port FIFO timeout value. The cflag value should reflect the actual hardware settings.
unsigned int uart_get_baud_rate(struct uart_port * port, struct ktermios * termios, struct ktermios

* old, unsigned int min, unsigned int max)
return baud rate for a particular port

Parameters
struct uart_port * port uart_port structure describing the port in question.
struct ktermios * termios desired termios settings.
struct ktermios * old old termios (or NULL)
unsigned int min minimum acceptable baud rate
unsigned int max maximum acceptable baud rate
Description

Decode the termios structure into a numeric baud rate, taking account of the magic 38400 baud
rate (with spd_* flags), and mapping the B0 rate to 9600 baud.
If the new baud rate is invalid, try the old termios setting. If it’s still invalid, we try 9600 baud.
Update the termios structure to reflect the baud rate we’re actually going to be using. Don’t
do this for the case where B0 is requested (“hang up”).

unsigned int uart_get_divisor(struct uart_port * port, unsigned int baud)
return uart clock divisor

Parameters
struct uart_port * port uart_port structure describing the port.
unsigned int baud desired baud rate
Description

Calculate the uart clock divisor for the port.
void uart_console_write(struct uart_port * port, const char * s, unsigned int count, void (*putchar)

(struct uart_port *, int)
write a console message to a serial port

699

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct uart_port * port the port to write the message
const char * s array of characters
unsigned int count number of characters in string to write
void (*)(struct uart_port *,int) putchar function to write character to port
int uart_parse_earlycon(char * p, unsigned char * iotype, resource_size_t * addr, char ** options)

Parse earlycon options
Parameters
char * p ptr to 2nd field (ie., just beyond ‘<name>,’)
unsigned char * iotype ptr for decoded iotype (out)
resource_size_t * addr ptr for decoded mapbase/iobase (out)
char ** options ptr for <options> field; NULL if not present (out)
Description

Decodes earlycon kernel command line parameters of the form
earlycon=<name>,io|mmio|mmio16|mmio32|mmio32be|mmio32native,<addr>,<options>
console=<name>,io|mmio|mmio16|mmio32|mmio32be|mmio32native,<addr>,<options>

The optional form earlycon=<name>,0x<addr>,<options> con-
sole=<name>,0x<addr>,<options>

is also accepted; the returned iotype will be UPIO_MEM.
Returns 0 on success or -EINVAL on failure

void uart_parse_options(char * options, int * baud, int * parity, int * bits, int * flow)
Parse serial port baud/parity/bits/flow control.

Parameters
char * options pointer to option string
int * baud pointer to an ‘int’ variable for the baud rate.
int * parity pointer to an ‘int’ variable for the parity.
int * bits pointer to an ‘int’ variable for the number of data bits.
int * flow pointer to an ‘int’ variable for the flow control character.
Description

uart_parse_options decodes a string containing the serial console options. The format of the
string is <baud><parity><bits><flow>, eg: 115200n8r

int uart_set_options(struct uart_port * port, struct console * co, int baud, int parity, int bits,
int flow)

setup the serial console parameters
Parameters
struct uart_port * port pointer to the serial ports uart_port structure
struct console * co console pointer
int baud baud rate
int parity parity character - ‘n’ (none), ‘o’ (odd), ‘e’ (even)
int bits number of data bits
int flow flow control character - ‘r’ (rts)

700 Chapter 24. 16x50 UART Driver

The kernel driver API manual, Release 4.13.0-rc4+

int uart_register_driver(struct uart_driver * drv)
register a driver with the uart core layer

Parameters
struct uart_driver * drv low level driver structure
Description

Register a uart driver with the core driver. We in turn register with the tty layer, and initialise
the core driver per-port state.
We have a proc file in /proc/tty/driver which is named after the normal driver.
drv->port should be NULL, and the per-port structures should be registered using
uart_add_one_port after this call has succeeded.

void uart_unregister_driver(struct uart_driver * drv)
remove a driver from the uart core layer

Parameters
struct uart_driver * drv low level driver structure
Description

Remove all references to a driver from the core driver. The low level driver must have removed
all its ports via the uart_remove_one_port() if it registered them with uart_add_one_port().
(ie, drv->port == NULL)

int uart_add_one_port(struct uart_driver * drv, struct uart_port * uport)
attach a driver-defined port structure

Parameters
struct uart_driver * drv pointer to the uart low level driver structure for this port
struct uart_port * uport uart port structure to use for this port.
Description

This allows the driver to register its own uart_port structure with the core driver. The main
purpose is to allow the low level uart drivers to expand uart_port, rather than having yet more
levels of structures.

int uart_remove_one_port(struct uart_driver * drv, struct uart_port * uport)
detach a driver defined port structure

Parameters
struct uart_driver * drv pointer to the uart low level driver structure for this port
struct uart_port * uport uart port structure for this port
Description

This unhooks (and hangs up) the specified port structure from the core driver. No further calls
will be made to the low-level code for this port.

void uart_handle_dcd_change(struct uart_port * uport, unsigned int status)
handle a change of carrier detect state

Parameters
struct uart_port * uport uart_port structure for the open port
unsigned int status new carrier detect status, nonzero if active
Description

Caller must hold uport->lock

701

The kernel driver API manual, Release 4.13.0-rc4+

void uart_handle_cts_change(struct uart_port * uport, unsigned int status)
handle a change of clear-to-send state

Parameters
struct uart_port * uport uart_port structure for the open port
unsigned int status new clear to send status, nonzero if active
Description

Caller must hold uport->lock
void uart_insert_char(struct uart_port * port, unsigned int status, unsigned int overrun, unsigned

int ch, unsigned int flag)
push a char to the uart layer

Parameters
struct uart_port * port corresponding port
unsigned int status state of the serial port RX buffer (LSR for 8250)
unsigned int overrun mask of overrun bits in status
unsigned int ch character to push
unsigned int flag flag for the character (see TTY_NORMAL and friends)
Description
User is responsible to call tty_flip_buffer_push when they are done with insertion.
struct uart_8250_port * serial8250_get_port(int line)

retrieve struct uart_8250_port
Parameters
int line serial line number
Description
This function retrieves struct uart_8250_port for the specific line. This structmust not be used to perform
a 8250 or serial core operation which is not accessible otherwise. Its only purpose is to make the struct
accessible to the runtime-pm callbacks for context suspend/restore. The lock assumption made here
is none because runtime-pm suspend/resume callbacks should not be invoked if there is any operation
performed on the port.
void serial8250_suspend_port(int line)

suspend one serial port
Parameters
int line serial line number
Description

Suspend one serial port.
void serial8250_resume_port(int line)

resume one serial port
Parameters
int line serial line number
Description

Resume one serial port.
int serial8250_register_8250_port(struct uart_8250_port * up)

register a serial port
Parameters

702 Chapter 24. 16x50 UART Driver

The kernel driver API manual, Release 4.13.0-rc4+

struct uart_8250_port * up serial port template
Description

Configure the serial port specified by the request. If the port exists and is in use, it is hung up
and unregistered first.
The port is then probed and if necessary the IRQ is autodetected If this fails an error is returned.
On success the port is ready to use and the line number is returned.

void serial8250_unregister_port(int line)
remove a 16x50 serial port at runtime

Parameters
int line serial line number
Description

Remove one serial port. This may not be called from interrupt context. We hand the port back
to the our control.

703

The kernel driver API manual, Release 4.13.0-rc4+

704 Chapter 24. 16x50 UART Driver

CHAPTER

TWENTYFIVE

PULSE-WIDTH MODULATION (PWM)

Pulse-width modulation is a modulation technique primarily used to control power supplied to electrical
devices.
The PWM framework provides an abstraction for providers and consumers of PWM signals. A controller
that provides one or more PWM signals is registered as struct pwm_chip. Providers are expected to
embed this structure in a driver-specific structure. This structure contains fields that describe a particular
chip.
A chip exposes one or more PWM signal sources, each of which exposed as a struct pwm_device. Op-
erations can be performed on PWM devices to control the period, duty cycle, polarity and active state of
the signal.
Note that PWM devices are exclusive resources: they can always only be used by one consumer at a time.

enum pwm_polarity
polarity of a PWM signal

Constants
PWM_POLARITY_NORMAL a high signal for the duration of the duty- cycle, followed by a low signal for the

remainder of the pulse period
PWM_POLARITY_INVERSED a low signal for the duration of the duty- cycle, followed by a high signal for the

remainder of the pulse period
struct pwm_args

board-dependent PWM arguments
Definition

struct pwm_args {
unsigned int period;
enum pwm_polarity polarity;

};

Members
period reference period
polarity reference polarity
Description
This structure describes board-dependent arguments attached to a PWM device. These arguments are
usually retrieved from the PWM lookup table or device tree.
Do not confuse this with the PWM state: PWM arguments represent the initial configuration that users
want to use on this PWM device rather than the current PWM hardware state.
struct pwm_device

PWM channel object

705

The kernel driver API manual, Release 4.13.0-rc4+

Definition

struct pwm_device {
const char * label;
unsigned long flags;
unsigned int hwpwm;
unsigned int pwm;
struct pwm_chip * chip;
void * chip_data;
struct pwm_args args;
struct pwm_state state;

};

Members
label name of the PWM device
flags flags associated with the PWM device
hwpwm per-chip relative index of the PWM device
pwm global index of the PWM device
chip PWM chip providing this PWM device
chip_data chip-private data associated with the PWM device
args PWM arguments
state curent PWM channel state
void pwm_get_state(const struct pwm_device * pwm, struct pwm_state * state)

retrieve the current PWM state
Parameters
const struct pwm_device * pwm PWM device
struct pwm_state * state state to fill with the current PWM state
void pwm_init_state(const struct pwm_device * pwm, struct pwm_state * state)

prepare a new state to be applied with pwm_apply_state()
Parameters
const struct pwm_device * pwm PWM device
struct pwm_state * state state to fill with the prepared PWM state
Description
This functions prepares a state that can later be tweaked and applied to the PWM device with
pwm_apply_state(). This is a convenient function that first retrieves the current PWM state and the
replaces the period and polarity fields with the reference values defined in pwm->args. Once the func-
tion returns, you can adjust the ->enabled and ->duty_cycle fields according to your needs before calling
pwm_apply_state().
->duty_cycle is initially set to zero to avoid cases where the current ->duty_cycle value exceed the
pwm_args->period one, which would trigger an error if the user calls pwm_apply_state() without ad-
justing ->duty_cycle first.
unsigned int pwm_get_relative_duty_cycle(const struct pwm_state * state, unsigned int scale)

Get a relative duty cycle value
Parameters
const struct pwm_state * state PWM state to extract the duty cycle from
unsigned int scale target scale of the relative duty cycle

706 Chapter 25. Pulse-Width Modulation (PWM)

The kernel driver API manual, Release 4.13.0-rc4+

Description
This functions converts the absolute duty cycle stored in state (expressed in nanosecond) into a value
relative to the period.
For example if you want to get the duty_cycle expressed in percent, call:
pwm_get_state(pwm, state); duty = pwm_get_relative_duty_cycle(state, 100);
int pwm_set_relative_duty_cycle(struct pwm_state * state, unsigned int duty_cycle, unsigned

int scale)
Set a relative duty cycle value

Parameters
struct pwm_state * state PWM state to fill
unsigned int duty_cycle relative duty cycle value
unsigned int scale scale in which duty_cycle is expressed
Description
This functions converts a relative into an absolute duty cycle (expressed in nanoseconds), and puts the
result in state->duty_cycle.
For example if you want to configure a 50% duty cycle, call:
pwm_init_state(pwm, state); pwm_set_relative_duty_cycle(state, 50, 100); pwm_apply_state(pwm,
state);
This functions returns -EINVAL if duty_cycle and/or scale are inconsistent (scale == 0 or duty_cycle >
scale).
struct pwm_ops

PWM controller operations
Definition

struct pwm_ops {
int (* request) (struct pwm_chip *chip, struct pwm_device *pwm);
void (* free) (struct pwm_chip *chip, struct pwm_device *pwm);
int (* config) (struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns, int period_ns);
int (* set_polarity) (struct pwm_chip *chip, struct pwm_device *pwm, enum pwm_polarity␣

↪→polarity);
int (* capture) (struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_capture *result,␣

↪→unsigned long timeout);
int (* enable) (struct pwm_chip *chip, struct pwm_device *pwm);
void (* disable) (struct pwm_chip *chip, struct pwm_device *pwm);
int (* apply) (struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state);
void (* get_state) (struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state);

#ifdef CONFIG_DEBUG_FS
void (* dbg_show) (struct pwm_chip *chip, struct seq_file *s);

#endif
struct module * owner;

};

Members
request optional hook for requesting a PWM
free optional hook for freeing a PWM
config configure duty cycles and period length for this PWM
set_polarity configure the polarity of this PWM
capture capture and report PWM signal
enable enable PWM output toggling

707

The kernel driver API manual, Release 4.13.0-rc4+

disable disable PWM output toggling
apply atomically apply a new PWM config. The state argument should be adjusted with the real hardware

config (if the approximate the period or duty_cycle value, state should reflect it)
get_state get the current PWM state. This function is only called once per PWM device when the PWM

chip is registered.
dbg_show optional routine to show contents in debugfs
owner helps prevent removal of modules exporting active PWMs
struct pwm_chip

abstract a PWM controller
Definition

struct pwm_chip {
struct device * dev;
struct list_head list;
const struct pwm_ops * ops;
int base;
unsigned int npwm;
struct pwm_device * pwms;
struct pwm_device * (* of_xlate) (struct pwm_chip *pc, const struct of_phandle_args *args);
unsigned int of_pwm_n_cells;

};

Members
dev device providing the PWMs
list list node for internal use
ops callbacks for this PWM controller
base number of first PWM controlled by this chip
npwm number of PWMs controlled by this chip
pwms array of PWM devices allocated by the framework
of_xlate request a PWM device given a device tree PWM specifier
of_pwm_n_cells number of cells expected in the device tree PWM specifier
struct pwm_capture

PWM capture data
Definition

struct pwm_capture {
unsigned int period;
unsigned int duty_cycle;

};

Members
period period of the PWM signal (in nanoseconds)
duty_cycle duty cycle of the PWM signal (in nanoseconds)
int pwm_config(struct pwm_device * pwm, int duty_ns, int period_ns)

change a PWM device configuration
Parameters
struct pwm_device * pwm PWM device
int duty_ns “on” time (in nanoseconds)

708 Chapter 25. Pulse-Width Modulation (PWM)

The kernel driver API manual, Release 4.13.0-rc4+

int period_ns duration (in nanoseconds) of one cycle
Return
0 on success or a negative error code on failure.
int pwm_set_polarity(struct pwm_device * pwm, enum pwm_polarity polarity)

configure the polarity of a PWM signal
Parameters
struct pwm_device * pwm PWM device
enum pwm_polarity polarity new polarity of the PWM signal
Description
Note that the polarity cannot be configured while the PWM device is enabled.
Return
0 on success or a negative error code on failure.
int pwm_enable(struct pwm_device * pwm)

start a PWM output toggling
Parameters
struct pwm_device * pwm PWM device
Return
0 on success or a negative error code on failure.
void pwm_disable(struct pwm_device * pwm)

stop a PWM output toggling
Parameters
struct pwm_device * pwm PWM device
int pwm_set_chip_data(struct pwm_device * pwm, void * data)

set private chip data for a PWM
Parameters
struct pwm_device * pwm PWM device
void * data pointer to chip-specific data
Return
0 on success or a negative error code on failure.
void * pwm_get_chip_data(struct pwm_device * pwm)

get private chip data for a PWM
Parameters
struct pwm_device * pwm PWM device
Return
A pointer to the chip-private data for the PWM device.
int pwmchip_add_with_polarity(struct pwm_chip * chip, enum pwm_polarity polarity)

register a new PWM chip
Parameters
struct pwm_chip * chip the PWM chip to add
enum pwm_polarity polarity initial polarity of PWM channels

709

The kernel driver API manual, Release 4.13.0-rc4+

Description
Register a new PWM chip. If chip->base < 0 then a dynamically assigned base will be used. The initial
polarity for all channels is specified by the polarity parameter.
Return
0 on success or a negative error code on failure.
int pwmchip_add(struct pwm_chip * chip)

register a new PWM chip
Parameters
struct pwm_chip * chip the PWM chip to add
Description
Register a new PWM chip. If chip->base < 0 then a dynamically assigned base will be used. The initial
polarity for all channels is normal.
Return
0 on success or a negative error code on failure.
int pwmchip_remove(struct pwm_chip * chip)

remove a PWM chip
Parameters
struct pwm_chip * chip the PWM chip to remove
Description
Removes a PWM chip. This function may return busy if the PWM chip provides a PWM device that is still
requested.
Return
0 on success or a negative error code on failure.
struct pwm_device * pwm_request(int pwm, const char * label)

request a PWM device
Parameters
int pwm global PWM device index
const char * label PWM device label
Description
This function is deprecated, use pwm_get() instead.
Return
A pointer to a PWM device or an ERR_PTR()-encoded error code on failure.
struct pwm_device * pwm_request_from_chip(struct pwm_chip * chip, unsigned int index, const

char * label)
request a PWM device relative to a PWM chip

Parameters
struct pwm_chip * chip PWM chip
unsigned int index per-chip index of the PWM to request
const char * label a literal description string of this PWM
Return
A pointer to the PWM device at the given index of the given PWM chip. A negative error code is returned
if the index is not valid for the specified PWM chip or if the PWM device cannot be requested.

710 Chapter 25. Pulse-Width Modulation (PWM)

The kernel driver API manual, Release 4.13.0-rc4+

void pwm_free(struct pwm_device * pwm)
free a PWM device

Parameters
struct pwm_device * pwm PWM device
Description
This function is deprecated, use pwm_put() instead.
int pwm_apply_state(struct pwm_device * pwm, struct pwm_state * state)

atomically apply a new state to a PWM device
Parameters
struct pwm_device * pwm PWM device
struct pwm_state * state new state to apply. This can be adjusted by the PWM driver if the requested

config is not achievable, for example, ->duty_cycle and ->period might be approximated.
int pwm_capture(struct pwm_device * pwm, struct pwm_capture * result, unsigned long timeout)

capture and report a PWM signal
Parameters
struct pwm_device * pwm PWM device
struct pwm_capture * result structure to fill with capture result
unsigned long timeout time to wait, in milliseconds, before giving up on capture
Return
0 on success or a negative error code on failure.
int pwm_adjust_config(struct pwm_device * pwm)

adjust the current PWM config to the PWM arguments
Parameters
struct pwm_device * pwm PWM device
Description
This function will adjust the PWM config to the PWM arguments provided by the DT or PWM lookup table.
This is particularly useful to adapt the bootloader config to the Linux one.
struct pwm_device * of_pwm_get(struct device_node * np, const char * con_id)

request a PWM via the PWM framework
Parameters
struct device_node * np device node to get the PWM from
const char * con_id consumer name
Description
Returns the PWM device parsed from the phandle and index specified in the “pwms” property of a device
tree node or a negative error-code on failure. Values parsed from the device tree are stored in the returned
PWM device object.
If con_id is NULL, the first PWM device listed in the “pwms” property will be requested. Otherwise the
“pwm-names” property is used to do a reverse lookup of the PWM index. This also means that the “pwm-
names” property becomes mandatory for devices that look up the PWM device via the con_id parameter.
Return
A pointer to the requested PWM device or an ERR_PTR()-encoded error code on failure.
struct pwm_device * pwm_get(struct device * dev, const char * con_id)

look up and request a PWM device

711

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct device * dev device for PWM consumer
const char * con_id consumer name
Description
Lookup is first attempted using DT. If the device was not instantiated from a device tree, a PWM chip and
a relative index is looked up via a table supplied by board setup code (see pwm_add_table()).
Once a PWM chip has been found the specified PWM device will be requested and is ready to be used.
Return
A pointer to the requested PWM device or an ERR_PTR()-encoded error code on failure.
void pwm_put(struct pwm_device * pwm)

release a PWM device
Parameters
struct pwm_device * pwm PWM device
struct pwm_device * devm_pwm_get(struct device * dev, const char * con_id)

resource managed pwm_get()
Parameters
struct device * dev device for PWM consumer
const char * con_id consumer name
Description
This function performs like pwm_get() but the acquired PWM device will automatically be released on
driver detach.
Return
A pointer to the requested PWM device or an ERR_PTR()-encoded error code on failure.
struct pwm_device * devm_of_pwm_get(struct device * dev, struct device_node * np, const char

* con_id)
resource managed of_pwm_get()

Parameters
struct device * dev device for PWM consumer
struct device_node * np device node to get the PWM from
const char * con_id consumer name
Description
This function performs like of_pwm_get() but the acquired PWM device will automatically be released on
driver detach.
Return
A pointer to the requested PWM device or an ERR_PTR()-encoded error code on failure.
void devm_pwm_put(struct device * dev, struct pwm_device * pwm)

resource managed pwm_put()
Parameters
struct device * dev device for PWM consumer
struct pwm_device * pwm PWM device

712 Chapter 25. Pulse-Width Modulation (PWM)

The kernel driver API manual, Release 4.13.0-rc4+

Description
Release a PWM previously allocated using devm_pwm_get(). Calling this function is usually not needed
because devm-allocated resources are automatically released on driver detach.

713

The kernel driver API manual, Release 4.13.0-rc4+

714 Chapter 25. Pulse-Width Modulation (PWM)

CHAPTER

TWENTYSIX

W1: DALLAS’ 1-WIRE BUS

Author David Fries

26.1 W1 API internal to the kernel

26.1.1 W1 API internal to the kernel

include/linux/w1.h

W1 kernel API functions.
struct w1_reg_num

broken out slave device id
Definition

struct w1_reg_num {
#if defined(__LITTLE_ENDIAN_BITFIELD
__u64 family:8;
__u64 id:48;
__u64 crc:8;

#elif defined(__BIG_ENDIAN_BITFIELD
__u64 crc:8;
__u64 id:48;
__u64 family:8;

#else
#error "Please fix \\\lt;asm/byteorder.h\\\gt;"
#endif
};

Members
family identifies the type of device
id along with family is the unique device id
crc checksum of the other bytes
crc checksum of the other bytes
id along with family is the unique device id
family identifies the type of device
struct w1_slave

holds a single slave device on the bus
Definition

715

The kernel driver API manual, Release 4.13.0-rc4+

struct w1_slave {
struct module * owner;
unsigned char name;
struct list_head w1_slave_entry;
struct w1_reg_num reg_num;
atomic_t refcnt;
int ttl;
unsigned long flags;
struct w1_master * master;
struct w1_family * family;
void * family_data;
struct device dev;

};

Members
owner Points to the one wire “wire” kernel module.
name Device id is ascii.
w1_slave_entry data for the linked list
reg_num the slave id in binary
refcnt reference count, delete when 0
ttl decrement per search this slave isn’t found, deatch at 0
flags bit flags for W1_SLAVE_ACTIVE W1_SLAVE_DETACH
master bus which this slave is on
family module for device family type
family_data pointer for use by the family module
dev kernel device identifier
struct w1_bus_master

operations available on a bus master
Definition

struct w1_bus_master {
void * data;
u8 (* read_bit) (void *);
void (* write_bit) (void *, u8);
u8 (* touch_bit) (void *, u8);
u8 (* read_byte) (void *);
void (* write_byte) (void *, u8);
u8 (* read_block) (void *, u8 *, int);
void (* write_block) (void *, const u8 *, int);
u8 (* triplet) (void *, u8);
u8 (* reset_bus) (void *);
u8 (* set_pullup) (void *, int);
void (* search) (void *, struct w1_master *, u8, w1_slave_found_callback);

};

Members
data the first parameter in all the functions below
read_bit Sample the line level return the level read (0 or 1)
write_bit Sets the line level
touch_bit the lowest-level function for devices that really support the 1-wire protocol. touch_bit(0) =

write-0 cycle touch_bit(1) = write-1 / read cycle return the bit read (0 or 1)

716 Chapter 26. W1: Dallas’ 1-wire bus

The kernel driver API manual, Release 4.13.0-rc4+

read_byte Reads a bytes. Same as 8 touch_bit(1) calls. return the byte read
write_byte Writes a byte. Same as 8 touch_bit(x) calls.
read_block Same as a series of read_byte() calls return the number of bytes read
write_block Same as a series of write_byte() calls
triplet Combines two reads and a smart write for ROM searches return bit0=Id bit1=comp_id

bit2=dir_taken
reset_bus long write-0 with a read for the presence pulse detection return -1=Error, 0=Device present,

1=No device present
set_pullup Put out a strong pull-up pulse of the specified duration. return -1=Error, 0=completed
search Really nice hardware can handles the different types of ROM search w1_master* is passed to the

slave found callback. u8 is search_type, W1_SEARCH or W1_ALARM_SEARCH
Note
read_bit and write_bit are very low level functions and should only be used with hardware that doesn’t
really support 1-wire operations, like a parallel/serial port. Either define read_bit and write_bit OR define,
at minimum, touch_bit and reset_bus.
enum w1_master_flags

bitfields used in w1_master.flags
Constants
W1_ABORT_SEARCH abort searching early on shutdown
W1_WARN_MAX_COUNT limit warning when the maximum count is reached
struct w1_master

one per bus master
Definition

struct w1_master {
struct list_head w1_master_entry;
struct module * owner;
unsigned char name;
struct mutex list_mutex;
struct list_head slist;
struct list_head async_list;
int max_slave_count;
int slave_count;
unsigned long attempts;
int slave_ttl;
int initialized;
u32 id;
int search_count;
u64 search_id;
atomic_t refcnt;
void * priv;
int enable_pullup;
int pullup_duration;
long flags;
struct task_struct * thread;
struct mutex mutex;
struct mutex bus_mutex;
struct device_driver * driver;
struct device dev;
struct w1_bus_master * bus_master;
u32 seq;

};

26.1. W1 API internal to the kernel 717

The kernel driver API manual, Release 4.13.0-rc4+

Members
w1_master_entry master linked list
owner module owner
name dynamically allocate bus name
list_mutex protect slist and async_list
slist linked list of slaves
async_list linked list of netlink commands to execute
max_slave_count maximum number of slaves to search for at a time
slave_count current number of slaves known
attempts number of searches ran
slave_ttl number of searches before a slave is timed out
initialized prevent init/removal race conditions
id w1 bus number
search_count number of automatic searches to run, -1 unlimited
search_id allows continuing a search
refcnt reference count
priv private data storage
enable_pullup allows a strong pullup
pullup_duration time for the next strong pullup
flags one of w1_master_flags
thread thread for bus search and netlink commands
mutex protect most of w1_master
bus_mutex pretect concurrent bus access
driver sysfs driver
dev sysfs device
bus_master io operations available
seq sequence number used for netlink broadcasts
struct w1_family_ops

operations for a family type
Definition

struct w1_family_ops {
int (* add_slave) (struct w1_slave *sl);
void (* remove_slave) (struct w1_slave *sl);
const struct attribute_group ** groups;

};

Members
add_slave add_slave
remove_slave remove_slave
groups sysfs group
struct w1_family

reference counted family structure.

718 Chapter 26. W1: Dallas’ 1-wire bus

The kernel driver API manual, Release 4.13.0-rc4+

Definition

struct w1_family {
struct list_head family_entry;
u8 fid;
struct w1_family_ops * fops;
atomic_t refcnt;

};

Members
family_entry family linked list
fid 8 bit family identifier
fops operations for this family
refcnt reference counter
module_w1_family(__w1_family)

Helper macro for registering a 1-Wire families
Parameters
__w1_family w1_family struct
Description
Helper macro for 1-Wire families which do not do anything special in module init/exit. This eliminates a
lot of boilerplate. Each module may only use this macro once, and calling it replaces module_init() and
module_exit()

drivers/w1/w1.c

W1 core functions.
void w1_search(struct w1_master * dev, u8 search_type, w1_slave_found_callback cb)

Performs a ROM Search & registers any devices found.
Parameters
struct w1_master * dev The master device to search
u8 search_type W1_SEARCH to search all devices, or W1_ALARM_SEARCH to return only devices in the

alarmed state
w1_slave_found_callback cb Function to call when a device is found
Description
The 1-wire search is a simple binary tree search. For each bit of the address, we read two bits and write
one bit. The bit written will put to sleep all devies that don’t match that bit. When the two reads differ,
the direction choice is obvious. When both bits are 0, we must choose a path to take. When we can scan
all 64 bits without having to choose a path, we are done.
See “Application note 187 1-wire search algorithm” at www.maxim-ic.com
int w1_process_callbacks(struct w1_master * dev)

execute each dev->async_list callback entry
Parameters
struct w1_master * dev w1_master device
Description
The w1 master list_mutex must be held.
Return

26.1. W1 API internal to the kernel 719

The kernel driver API manual, Release 4.13.0-rc4+

1 if there were commands to executed 0 otherwise

drivers/w1/w1_family.c

Allows registering device family operations.
int w1_register_family(struct w1_family * newf)

register a device family driver
Parameters
struct w1_family * newf family to register
void w1_unregister_family(struct w1_family * fent)

unregister a device family driver
Parameters
struct w1_family * fent family to unregister

drivers/w1/w1_internal.h

W1 internal initialization for master devices.
struct w1_async_cmd

execute callback from the w1_process kthread
Definition

struct w1_async_cmd {
struct list_head async_entry;
void (* cb) (struct w1_master *dev, struct w1_async_cmd *async_cmd);

};

Members
async_entry link entry
cb callback function, must list_del and destroy this list before returning
Description
When inserted into the w1_master async_list, w1_process will execute the callback. Embed this into the
structure with the command details.

drivers/w1/w1_int.c

W1 internal initialization for master devices.
int w1_add_master_device(struct w1_bus_master * master)

registers a new master device
Parameters
struct w1_bus_master * master master bus device to register
void w1_remove_master_device(struct w1_bus_master * bm)

unregister a master device
Parameters
struct w1_bus_master * bm master bus device to remove

720 Chapter 26. W1: Dallas’ 1-wire bus

The kernel driver API manual, Release 4.13.0-rc4+

drivers/w1/w1_netlink.h

W1 external netlink API structures and commands.
enum w1_cn_msg_flags

bitfield flags for struct cn_msg.flags
Constants
W1_CN_BUNDLE Request bundling replies into fewer messagse. Be prepared to handle multiple struct

cn_msg, struct w1_netlink_msg, and struct w1_netlink_cmd in one packet.
enum w1_netlink_message_types

message type
Constants
W1_SLAVE_ADD notification that a slave device was added
W1_SLAVE_REMOVE notification that a slave device was removed
W1_MASTER_ADD notification that a new bus master was added
W1_MASTER_REMOVE notification that a bus masterwas removed
W1_MASTER_CMD initiate operations on a specific master
W1_SLAVE_CMD sends reset, selects the slave, then does a read/write/touch operation
W1_LIST_MASTERS used to determine the bus master identifiers
struct w1_netlink_msg

holds w1 message type, id, and result
Definition

struct w1_netlink_msg {
__u8 type;
__u8 status;
__u16 len;
union id;
__u8 data;

};

Members
type one of enum w1_netlink_message_types
status kernel feedback for success 0 or errno failure value
len length of data following w1_netlink_msg
id union holding master bus id (msg.id) and slave device id (id[8]).
data start address of any following data
Description
The base message structure for w1 messages over netlink. The netlink connector data sequence is, struct
nlmsghdr, struct cn_msg, then one or more struct w1_netlink_msg (each with optional data).
enum w1_commands

commands available for master or slave operations
Constants
W1_CMD_READ read len bytes
W1_CMD_WRITE write len bytes
W1_CMD_SEARCH initiate a standard search, returns only the slave devices found during that search

26.1. W1 API internal to the kernel 721

The kernel driver API manual, Release 4.13.0-rc4+

W1_CMD_ALARM_SEARCH search for devices that are currently alarming
W1_CMD_TOUCH Touches a series of bytes.
W1_CMD_RESET sends a bus reset on the given master
W1_CMD_SLAVE_ADD adds a slave to the given master, 8 byte slave id at data[0]
W1_CMD_SLAVE_REMOVE removes a slave to the given master, 8 byte slave id at data[0]
W1_CMD_LIST_SLAVES list of slaves registered on this master
W1_CMD_MAX number of available commands
struct w1_netlink_cmd

holds the command and data
Definition

struct w1_netlink_cmd {
__u8 cmd;
__u8 res;
__u16 len;
__u8 data;

};

Members
cmd one of enum w1_commands
res reserved
len length of data following w1_netlink_cmd
data start address of any following data
Description
One or more struct w1_netlink_cmd is placed starting at w1_netlink_msg.data each with optional data.

drivers/w1/w1_io.c

W1 input/output.
void w1_write_8(struct w1_master * dev, u8 byte)

Writes 8 bits.
Parameters
struct w1_master * dev the master device
u8 byte the byte to write
u8 w1_triplet(struct w1_master * dev, int bdir)

•Does a triplet - used for searching ROM addresses.
Parameters
struct w1_master * dev the master device
int bdir the bit to write if both id_bit and comp_bit are 0
Description
Return bits: bit 0 = id_bit bit 1 = comp_bit bit 2 = dir_taken
If both bits 0 & 1 are set, the search should be restarted.
Return
bit fields - see above

722 Chapter 26. W1: Dallas’ 1-wire bus

The kernel driver API manual, Release 4.13.0-rc4+

u8 w1_read_8(struct w1_master * dev)
Reads 8 bits.

Parameters
struct w1_master * dev the master device
Return
the byte read
void w1_write_block(struct w1_master * dev, const u8 * buf, int len)

Writes a series of bytes.
Parameters
struct w1_master * dev the master device
const u8 * buf pointer to the data to write
int len the number of bytes to write
void w1_touch_block(struct w1_master * dev, u8 * buf, int len)

Touches a series of bytes.
Parameters
struct w1_master * dev the master device
u8 * buf pointer to the data to write
int len the number of bytes to write
u8 w1_read_block(struct w1_master * dev, u8 * buf, int len)

Reads a series of bytes.
Parameters
struct w1_master * dev the master device
u8 * buf pointer to the buffer to fill
int len the number of bytes to read
Return
the number of bytes read
int w1_reset_bus(struct w1_master * dev)

Issues a reset bus sequence.
Parameters
struct w1_master * dev the master device
Return
0=Device present, 1=No device present or error
int w1_reset_select_slave(struct w1_slave * sl)

reset and select a slave
Parameters
struct w1_slave * sl the slave to select
Description
Resets the bus and then selects the slave by sending either a skip rom or a rom match. A skip rom is
issued if there is only one device registered on the bus. The w1 master lock must be held.
Return
0=success, anything else=error

26.1. W1 API internal to the kernel 723

The kernel driver API manual, Release 4.13.0-rc4+

int w1_reset_resume_command(struct w1_master * dev)
resume instead of another match ROM

Parameters
struct w1_master * dev the master device
Description
When the workflow with a slave amongst many requires several successive commands a reset between
each, this function is similar to doing a reset then a match ROM for the last matched ROM. The advantage
being that the matched ROM step is skipped in favor of the resume command. The slave must support
the command of course.
If the bus has only one slave, traditionnaly the match ROM is skipped and a “SKIP ROM” is done for
efficiency. On multi-slave busses, this doesn’t work of course, but the resume command is the next best
thing.
The w1 master lock must be held.
void w1_next_pullup(struct w1_master * dev, int delay)

register for a strong pullup
Parameters
struct w1_master * dev the master device
int delay time in milliseconds
Description
Put out a strong pull-up of the specified duration after the next write operation. Not all hardware supports
strong pullups. Hardware that doesn’t support strong pullups will sleep for the given time after the write
operation without a strong pullup. This is a one shot request for the next write, specifying zero will clear
a previous request. The w1 master lock must be held.
Return
0=success, anything else=error
u8 w1_touch_bit(struct w1_master * dev, int bit)

Generates a write-0 or write-1 cycle and samples the level.
Parameters
struct w1_master * dev the master device
int bit 0 - write a 0, 1 - write a 0 read the level
void w1_write_bit(struct w1_master * dev, int bit)

Generates a write-0 or write-1 cycle.
Parameters
struct w1_master * dev the master device
int bit bit to write
Description
Only call if dev->bus_master->touch_bit is NULL
void w1_pre_write(struct w1_master * dev)

pre-write operations
Parameters
struct w1_master * dev the master device
Description
Pre-write operation, currently only supporting strong pullups. Program the hardware for a strong pullup,
if one has been requested and the hardware supports it.

724 Chapter 26. W1: Dallas’ 1-wire bus

The kernel driver API manual, Release 4.13.0-rc4+

void w1_post_write(struct w1_master * dev)
post-write options

Parameters
struct w1_master * dev the master device
Description
Post-write operation, currently only supporting strong pullups. If a strong pullup was requested, clear it if
the hardware supports them, or execute the delay otherwise, in either case clear the request.
u8 w1_read_bit(struct w1_master * dev)

Generates a write-1 cycle and samples the level.
Parameters
struct w1_master * dev the master device
Description
Only call if dev->bus_master->touch_bit is NULL

26.1. W1 API internal to the kernel 725

The kernel driver API manual, Release 4.13.0-rc4+

726 Chapter 26. W1: Dallas’ 1-wire bus

CHAPTER

TWENTYSEVEN

RAPIDIO SUBSYSTEM GUIDE

Author Matt Porter

27.1 Introduction

RapidIO is a high speed switched fabric interconnect with features aimed at the embedded market. Ra-
pidIO provides support for memory-mapped I/O as well as message-based transactions over the switched
fabric network. RapidIO has a standardized discovery mechanism not unlike the PCI bus standard that
allows simple detection of devices in a network.
This documentation is provided for developers intending to support RapidIO on new architectures, write
new drivers, or to understand the subsystem internals.

27.2 Known Bugs and Limitations

27.2.1 Bugs

None. ;)

27.2.2 Limitations

1. Access/management of RapidIO memory regions is not supported
2. Multiple host enumeration is not supported

27.3 RapidIO driver interface

Drivers are provided a set of calls in order to interface with the subsystem to gather info on devices,
request/map memory region resources, and manage mailboxes/doorbells.

27.3.1 Functions

int rio_local_read_config_32(struct rio_mport * port, u32 offset, u32 * data)
Read 32 bits from local configuration space

Parameters
struct rio_mport * port Master port
u32 offset Offset into local configuration space
u32 * data Pointer to read data into

727

The kernel driver API manual, Release 4.13.0-rc4+

Description
Reads 32 bits of data from the specified offset within the local device’s configuration space.
int rio_local_write_config_32(struct rio_mport * port, u32 offset, u32 data)

Write 32 bits to local configuration space
Parameters
struct rio_mport * port Master port
u32 offset Offset into local configuration space
u32 data Data to be written
Description
Writes 32 bits of data to the specified offset within the local device’s configuration space.
int rio_local_read_config_16(struct rio_mport * port, u32 offset, u16 * data)

Read 16 bits from local configuration space
Parameters
struct rio_mport * port Master port
u32 offset Offset into local configuration space
u16 * data Pointer to read data into
Description
Reads 16 bits of data from the specified offset within the local device’s configuration space.
int rio_local_write_config_16(struct rio_mport * port, u32 offset, u16 data)

Write 16 bits to local configuration space
Parameters
struct rio_mport * port Master port
u32 offset Offset into local configuration space
u16 data Data to be written
Description
Writes 16 bits of data to the specified offset within the local device’s configuration space.
int rio_local_read_config_8(struct rio_mport * port, u32 offset, u8 * data)

Read 8 bits from local configuration space
Parameters
struct rio_mport * port Master port
u32 offset Offset into local configuration space
u8 * data Pointer to read data into
Description
Reads 8 bits of data from the specified offset within the local device’s configuration space.
int rio_local_write_config_8(struct rio_mport * port, u32 offset, u8 data)

Write 8 bits to local configuration space
Parameters
struct rio_mport * port Master port
u32 offset Offset into local configuration space
u8 data Data to be written

728 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
Writes 8 bits of data to the specified offset within the local device’s configuration space.
int rio_read_config_32(struct rio_dev * rdev, u32 offset, u32 * data)

Read 32 bits from configuration space
Parameters
struct rio_dev * rdev RIO device
u32 offset Offset into device configuration space
u32 * data Pointer to read data into
Description
Reads 32 bits of data from the specified offset within the RIO device’s configuration space.
int rio_write_config_32(struct rio_dev * rdev, u32 offset, u32 data)

Write 32 bits to configuration space
Parameters
struct rio_dev * rdev RIO device
u32 offset Offset into device configuration space
u32 data Data to be written
Description
Writes 32 bits of data to the specified offset within the RIO device’s configuration space.
int rio_read_config_16(struct rio_dev * rdev, u32 offset, u16 * data)

Read 16 bits from configuration space
Parameters
struct rio_dev * rdev RIO device
u32 offset Offset into device configuration space
u16 * data Pointer to read data into
Description
Reads 16 bits of data from the specified offset within the RIO device’s configuration space.
int rio_write_config_16(struct rio_dev * rdev, u32 offset, u16 data)

Write 16 bits to configuration space
Parameters
struct rio_dev * rdev RIO device
u32 offset Offset into device configuration space
u16 data Data to be written
Description
Writes 16 bits of data to the specified offset within the RIO device’s configuration space.
int rio_read_config_8(struct rio_dev * rdev, u32 offset, u8 * data)

Read 8 bits from configuration space
Parameters
struct rio_dev * rdev RIO device
u32 offset Offset into device configuration space
u8 * data Pointer to read data into

27.3. RapidIO driver interface 729

The kernel driver API manual, Release 4.13.0-rc4+

Description
Reads 8 bits of data from the specified offset within the RIO device’s configuration space.
int rio_write_config_8(struct rio_dev * rdev, u32 offset, u8 data)

Write 8 bits to configuration space
Parameters
struct rio_dev * rdev RIO device
u32 offset Offset into device configuration space
u8 data Data to be written
Description
Writes 8 bits of data to the specified offset within the RIO device’s configuration space.
int rio_send_doorbell(struct rio_dev * rdev, u16 data)

Send a doorbell message to a device
Parameters
struct rio_dev * rdev RIO device
u16 data Doorbell message data
Description
Send a doorbell message to a RIO device. The doorbell message has a 16-bit info field provided by the
data argument.
void rio_init_mbox_res(struct resource * res, int start, int end)

Initialize a RIO mailbox resource
Parameters
struct resource * res resource struct
int start start of mailbox range
int end end of mailbox range
Description
This function is used to initialize the fields of a resource for use as a mailbox resource. It initializes a range
of mailboxes using the start and end arguments.
void rio_init_dbell_res(struct resource * res, u16 start, u16 end)

Initialize a RIO doorbell resource
Parameters
struct resource * res resource struct
u16 start start of doorbell range
u16 end end of doorbell range
Description
This function is used to initialize the fields of a resource for use as a doorbell resource. It initializes a range
of doorbell messages using the start and end arguments.
RIO_DEVICE(dev, ven)

macro used to describe a specific RIO device
Parameters
dev the 16 bit RIO device ID
ven the 16 bit RIO vendor ID

730 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
This macro is used to create a struct rio_device_id that matches a specific device. The assembly vendor
and assembly device fields will be set to RIO_ANY_ID.
int rio_add_outb_message(struct rio_mport * mport, struct rio_dev * rdev, int mbox, void * buffer,

size_t len)
Add RIO message to an outbound mailbox queue

Parameters
struct rio_mport * mport RIO master port containing the outbound queue
struct rio_dev * rdev RIO device the message is be sent to
int mbox The outbound mailbox queue
void * buffer Pointer to the message buffer
size_t len Length of the message buffer
Description
Adds a RIO message buffer to an outbound mailbox queue for transmission. Returns 0 on success.
int rio_add_inb_buffer(struct rio_mport * mport, int mbox, void * buffer)

Add buffer to an inbound mailbox queue
Parameters
struct rio_mport * mport Master port containing the inbound mailbox
int mbox The inbound mailbox number
void * buffer Pointer to the message buffer
Description
Adds a buffer to an inbound mailbox queue for reception. Returns 0 on success.
void * rio_get_inb_message(struct rio_mport * mport, int mbox)

Get A RIO message from an inbound mailbox queue
Parameters
struct rio_mport * mport Master port containing the inbound mailbox
int mbox The inbound mailbox number
Description
Get a RIO message from an inbound mailbox queue. Returns 0 on success.
const char * rio_name(struct rio_dev * rdev)

Get the unique RIO device identifier
Parameters
struct rio_dev * rdev RIO device
Description
Get the unique RIO device identifier. Returns the device identifier string.
void * rio_get_drvdata(struct rio_dev * rdev)

Get RIO driver specific data
Parameters
struct rio_dev * rdev RIO device
Description
Get RIO driver specific data. Returns a pointer to the driver specific data.

27.3. RapidIO driver interface 731

The kernel driver API manual, Release 4.13.0-rc4+

void rio_set_drvdata(struct rio_dev * rdev, void * data)
Set RIO driver specific data

Parameters
struct rio_dev * rdev RIO device
void * data Pointer to driver specific data
Description
Set RIO driver specific data. device struct driver data pointer is set to the data argument.
struct rio_dev * rio_dev_get(struct rio_dev * rdev)

Increments the reference count of the RIO device structure
Parameters
struct rio_dev * rdev RIO device being referenced
Description
Each live reference to a device should be refcounted.
Drivers for RIO devices should normally record such references in their probe()methods, when they bind
to a device, and release them by calling rio_dev_put(), in their disconnect() methods.
void rio_dev_put(struct rio_dev * rdev)

Release a use of the RIO device structure
Parameters
struct rio_dev * rdev RIO device being disconnected
Description
Must be called when a user of a device is finished with it. When the last user of the device calls this
function, the memory of the device is freed.
int rio_register_driver(struct rio_driver * rdrv)

register a new RIO driver
Parameters
struct rio_driver * rdrv the RIO driver structure to register
Description

Adds a struct rio_driver to the list of registered drivers. Returns a negative value on error,
otherwise 0. If no error occurred, the driver remains registered even if no device was claimed
during registration.

void rio_unregister_driver(struct rio_driver * rdrv)
unregister a RIO driver

Parameters
struct rio_driver * rdrv the RIO driver structure to unregister
Description

Deletes the struct rio_driver from the list of registered RIO drivers, gives it a chance to
clean up by calling its remove() function for each device it was responsible for, and marks
those devices as driverless.

u16 rio_local_get_device_id(struct rio_mport * port)
Get the base/extended device id for a port

Parameters
struct rio_mport * port RIO master port from which to get the deviceid

732 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
Reads the base/extended device id from the local device implementing the master port. Returns the
8/16-bit device id.
int rio_query_mport(struct rio_mport * port, struct rio_mport_attr * mport_attr)

Query mport device attributes
Parameters
struct rio_mport * port mport device to query
struct rio_mport_attr * mport_attr mport attributes data structure
Description
Returns attributes of specified mport through the pointer to attributes data structure.
struct rio_net * rio_alloc_net(struct rio_mport * mport)

Allocate and initialize a new RIO network data structure
Parameters
struct rio_mport * mport Master port associated with the RIO network
Description
Allocates a RIO network structure, initializes per-network list heads, and adds the associated master port
to the network list of associated master ports. Returns a RIO network pointer on success or NULL on failure.

void rio_local_set_device_id(struct rio_mport * port, u16 did)
Set the base/extended device id for a port

Parameters
struct rio_mport * port RIO master port
u16 did Device ID value to be written
Description
Writes the base/extended device id from a device.
int rio_add_device(struct rio_dev * rdev)

Adds a RIO device to the device model
Parameters
struct rio_dev * rdev RIO device
Description
Adds the RIO device to the global device list and adds the RIO device to the RIO device list. Creates the
generic sysfs nodes for an RIO device.
int rio_request_inb_mbox(struct rio_mport * mport, void * dev_id, int mbox, int entries, void

(*minb) (struct rio_mport * mport, void *dev_id, int mbox, int slot)
request inbound mailbox service

Parameters
struct rio_mport * mport RIO master port from which to allocate the mailbox resource
void * dev_id Device specific pointer to pass on event
int mbox Mailbox number to claim
int entries Number of entries in inbound mailbox queue
void (*) (struct rio_mport * mport,void *dev_id,int mbox,int slot) minb Callback to exe-

cute when inbound message is received

27.3. RapidIO driver interface 733

The kernel driver API manual, Release 4.13.0-rc4+

Description
Requests ownership of an inboundmailbox resource and binds a callback function to the resource. Returns
0 on success.
int rio_release_inb_mbox(struct rio_mport * mport, int mbox)

release inbound mailbox message service
Parameters
struct rio_mport * mport RIO master port from which to release the mailbox resource
int mbox Mailbox number to release
Description
Releases ownership of an inbound mailbox resource. Returns 0 if the request has been satisfied.
int rio_request_outb_mbox(struct rio_mport * mport, void * dev_id, int mbox, int entries, void

(*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot)
request outbound mailbox service

Parameters
struct rio_mport * mport RIO master port from which to allocate the mailbox resource
void * dev_id Device specific pointer to pass on event
int mbox Mailbox number to claim
int entries Number of entries in outbound mailbox queue
void (*) (struct rio_mport * mport,void *dev_id,int mbox,int slot) moutb Callback to exe-

cute when outbound message is sent
Description
Requests ownership of an outbound mailbox resource and binds a callback function to the resource. Re-
turns 0 on success.
int rio_release_outb_mbox(struct rio_mport * mport, int mbox)

release outbound mailbox message service
Parameters
struct rio_mport * mport RIO master port from which to release the mailbox resource
int mbox Mailbox number to release
Description
Releases ownership of an inbound mailbox resource. Returns 0 if the request has been satisfied.
int rio_request_inb_dbell(struct rio_mport * mport, void * dev_id, u16 start, u16 end, void (*dinb)

(struct rio_mport * mport, void *dev_id, u16 src, u16 dst, u16 info)
request inbound doorbell message service

Parameters
struct rio_mport * mport RIO master port from which to allocate the doorbell resource
void * dev_id Device specific pointer to pass on event
u16 start Doorbell info range start
u16 end Doorbell info range end
void (*) (struct rio_mport * mport,void *dev_id,u16 src,u16 dst,u16 info) dinb Callback

to execute when doorbell is received
Description
Requests ownership of an inbound doorbell resource and binds a callback function to the resource. Returns
0 if the request has been satisfied.

734 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

int rio_release_inb_dbell(struct rio_mport * mport, u16 start, u16 end)
release inbound doorbell message service

Parameters
struct rio_mport * mport RIO master port from which to release the doorbell resource
u16 start Doorbell info range start
u16 end Doorbell info range end
Description
Releases ownership of an inbound doorbell resource and removes callback from the doorbell event list.
Returns 0 if the request has been satisfied.
struct resource * rio_request_outb_dbell(struct rio_dev * rdev, u16 start, u16 end)

request outbound doorbell message range
Parameters
struct rio_dev * rdev RIO device from which to allocate the doorbell resource
u16 start Doorbell message range start
u16 end Doorbell message range end
Description
Requests ownership of a doorbell message range. Returns a resource if the request has been satisfied or
NULL on failure.
int rio_release_outb_dbell(struct rio_dev * rdev, struct resource * res)

release outbound doorbell message range
Parameters
struct rio_dev * rdev RIO device from which to release the doorbell resource
struct resource * res Doorbell resource to be freed
Description
Releases ownership of a doorbell message range. Returns 0 if the request has been satisfied.
int rio_add_mport_pw_handler(struct rio_mport * mport, void * context, int (*pwcback) (struct

rio_mport *mport, void *context, union rio_pw_msg *msg, int step)
add port-write message handler into the list of mport specific pw handlers

Parameters
struct rio_mport * mport RIO master port to bind the portwrite callback
void * context Handler specific context to pass on event
int (*)(struct rio_mport *mport,void *context,union rio_pw_msg *msg,int step) pwcback

Callback to execute when portwrite is received
Description
Returns 0 if the request has been satisfied.
int rio_del_mport_pw_handler(struct rio_mport * mport, void * context, int (*pwcback) (struct

rio_mport *mport, void *context, union rio_pw_msg *msg, int step)
remove port-write message handler from the list of mport specific pw handlers

Parameters
struct rio_mport * mport RIO master port to bind the portwrite callback
void * context Registered handler specific context to pass on event
int (*)(struct rio_mport *mport,void *context,union rio_pw_msg *msg,int step) pwcback

Registered callback function

27.3. RapidIO driver interface 735

The kernel driver API manual, Release 4.13.0-rc4+

Description
Returns 0 if the request has been satisfied.
int rio_request_inb_pwrite(struct rio_dev * rdev, int (*pwcback) (struct rio_dev *rdev, union

rio_pw_msg *msg, int step)
request inbound port-write message service for specific RapidIO device

Parameters
struct rio_dev * rdev RIO device to which register inbound port-write callback routine
int (*)(struct rio_dev *rdev,union rio_pw_msg *msg,int step) pwcback Callback routine to ex-

ecute when port-write is received
Description
Binds a port-write callback function to the RapidIO device. Returns 0 if the request has been satisfied.
int rio_release_inb_pwrite(struct rio_dev * rdev)

release inbound port-write message service associated with specific RapidIO device
Parameters
struct rio_dev * rdev RIO device which registered for inbound port-write callback
Description
Removes callback from the rio_dev structure. Returns 0 if the request has been satisfied.
void rio_pw_enable(struct rio_mport * mport, int enable)

Enables/disables port-write handling by a master port
Parameters
struct rio_mport * mport Master port associated with port-write handling
int enable 1=enable, 0=disable
int rio_map_inb_region(struct rio_mport * mport, dma_addr_t local, u64 rbase, u32 size,

u32 rflags)
•Map inbound memory region.

Parameters
struct rio_mport * mport Master port.
dma_addr_t local physical address of memory region to be mapped
u64 rbase RIO base address assigned to this window
u32 size Size of the memory region
u32 rflags Flags for mapping.
Return
0 – Success.
This function will create the mapping from RIO space to local memory.
void rio_unmap_inb_region(struct rio_mport * mport, dma_addr_t lstart)

•Unmap the inbound memory region
Parameters
struct rio_mport * mport Master port
dma_addr_t lstart physical address of memory region to be unmapped
int rio_map_outb_region(struct rio_mport * mport, u16 destid, u64 rbase, u32 size, u32 rflags,

dma_addr_t * local)

736 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

•Map outbound memory region.
Parameters
struct rio_mport * mport Master port.
u16 destid destination id window points to
u64 rbase RIO base address window translates to
u32 size Size of the memory region
u32 rflags Flags for mapping.
dma_addr_t * local physical address of memory region mapped
Return
0 – Success.
This function will create the mapping from RIO space to local memory.
void rio_unmap_outb_region(struct rio_mport * mport, u16 destid, u64 rstart)

•Unmap the inbound memory region
Parameters
struct rio_mport * mport Master port
u16 destid destination id mapping points to
u64 rstart RIO base address window translates to
u32 rio_mport_get_physefb(struct rio_mport * port, int local, u16 destid, u8 hopcount, u32

* rmap)
Helper function that returns register offset for Physical Layer Extended Features Block.

Parameters
struct rio_mport * port Master port to issue transaction
int local Indicate a local master port or remote device access
u16 destid Destination ID of the device
u8 hopcount Number of switch hops to the device
u32 * rmap pointer to location to store register map type info
struct rio_dev * rio_get_comptag(u32 comp_tag, struct rio_dev * from)

Begin or continue searching for a RIO device by component tag
Parameters
u32 comp_tag RIO component tag to match
struct rio_dev * from Previous RIO device found in search, or NULL for new search
Description
Iterates through the list of known RIO devices. If a RIO device is found with a matching comp_tag, a
pointer to its device structure is returned. Otherwise, NULL is returned. A new search is initiated by
passing NULL to the from argument. Otherwise, if from is not NULL, searches continue from next device
on the global list.
int rio_set_port_lockout(struct rio_dev * rdev, u32 pnum, int lock)

Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
Parameters
struct rio_dev * rdev Pointer to RIO device control structure
u32 pnum Switch port number to set LOCKOUT bit

27.3. RapidIO driver interface 737

The kernel driver API manual, Release 4.13.0-rc4+

int lock Operation : set (=1) or clear (=0)
int rio_enable_rx_tx_port(struct rio_mport * port, int local, u16 destid, u8 hopcount,

u8 port_num)
enable input receiver and output transmitter of given port

Parameters
struct rio_mport * port Master port associated with the RIO network
int local local=1 select local port otherwise a far device is reached
u16 destid Destination ID of the device to check host bit
u8 hopcount Number of hops to reach the target
u8 port_num Port (-number on switch) to enable on a far end device
Description
Returns 0 or 1 from on General Control Command and Status Register (EXT_PTR+0x3C)
int rio_mport_chk_dev_access(struct rio_mport * mport, u16 destid, u8 hopcount)

Validate access to the specified device.
Parameters
struct rio_mport * mport Master port to send transactions
u16 destid Device destination ID in network
u8 hopcount Number of hops into the network
int rio_inb_pwrite_handler(struct rio_mport * mport, union rio_pw_msg * pw_msg)

inbound port-write message handler
Parameters
struct rio_mport * mport mport device associated with port-write
union rio_pw_msg * pw_msg pointer to inbound port-write message
Description
Processes an inbound port-write message. Returns 0 if the request has been satisfied.
u32 rio_mport_get_efb(struct rio_mport * port, int local, u16 destid, u8 hopcount, u32 from)

get pointer to next extended features block
Parameters
struct rio_mport * port Master port to issue transaction
int local Indicate a local master port or remote device access
u16 destid Destination ID of the device
u8 hopcount Number of switch hops to the device
u32 from Offset of current Extended Feature block header (if 0 starts from ExtFeaturePtr)
u32 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid, u8 hopcount, int ftr)

query for devices’ extended features
Parameters
struct rio_mport * port Master port to issue transaction
int local Indicate a local master port or remote device access
u16 destid Destination ID of the device
u8 hopcount Number of switch hops to the device
int ftr Extended feature code

738 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
Tell if a device supports a given RapidIO capability. Returns the offset of the requested extended feature
block within the device’s RIO configuration space or 0 in case the device does not support it.
struct rio_dev * rio_get_asm(u16 vid, u16 did, u16 asm_vid, u16 asm_did, struct rio_dev * from)

Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
Parameters
u16 vid RIO vid to match or RIO_ANY_ID to match all vids
u16 did RIO did to match or RIO_ANY_ID to match all dids
u16 asm_vid RIO asm_vid to match or RIO_ANY_ID to match all asm_vids
u16 asm_did RIO asm_did to match or RIO_ANY_ID to match all asm_dids
struct rio_dev * from Previous RIO device found in search, or NULL for new search
Description
Iterates through the list of known RIO devices. If a RIO device is found with a matching vid, did, asm_vid,
asm_did, the reference count to the device is incrememted and a pointer to its device structure is re-
turned. Otherwise, NULL is returned. A new search is initiated by passing NULL to the from argument.
Otherwise, if from is not NULL, searches continue from next device on the global list. The reference count
for from is always decremented if it is not NULL.
struct rio_dev * rio_get_device(u16 vid, u16 did, struct rio_dev * from)

Begin or continue searching for a RIO device by vid/did
Parameters
u16 vid RIO vid to match or RIO_ANY_ID to match all vids
u16 did RIO did to match or RIO_ANY_ID to match all dids
struct rio_dev * from Previous RIO device found in search, or NULL for new search
Description
Iterates through the list of known RIO devices. If a RIO device is found with a matching vid and did, the
reference count to the device is incrememted and a pointer to its device structure is returned. Otherwise,
NULL is returned. A new search is initiated by passing NULL to the from argument. Otherwise, if from is
not NULL, searches continue from next device on the global list. The reference count for from is always
decremented if it is not NULL.
int rio_lock_device(struct rio_mport * port, u16 destid, u8 hopcount, int wait_ms)

Acquires host device lock for specified device
Parameters
struct rio_mport * port Master port to send transaction
u16 destid Destination ID for device/switch
u8 hopcount Hopcount to reach switch
int wait_ms Max wait time in msec (0 = no timeout)
Description
Attepts to acquire host device lock for specified device Returns 0 if device lock acquired or EINVAL if
timeout expires.
int rio_unlock_device(struct rio_mport * port, u16 destid, u8 hopcount)

Releases host device lock for specified device
Parameters
struct rio_mport * port Master port to send transaction
u16 destid Destination ID for device/switch

27.3. RapidIO driver interface 739

The kernel driver API manual, Release 4.13.0-rc4+

u8 hopcount Hopcount to reach switch
Description
Returns 0 if device lock released or EINVAL if fails.
int rio_route_add_entry(struct rio_dev * rdev, u16 table, u16 route_destid, u8 route_port,

int lock)
Add a route entry to a switch routing table

Parameters
struct rio_dev * rdev RIO device
u16 table Routing table ID
u16 route_destid Destination ID to be routed
u8 route_port Port number to be routed
int lock apply a hardware lock on switch device flag (1=lock, 0=no_lock)
Description
If available calls the switch specific add_entry() method to add a route entry into a switch routing table.
Otherwise uses standard RT update method as defined by RapidIO specification. A specific routing table
can be selected using the table argument if a switch has per port routing tables or the standard (or global)
table may be used by passing RIO_GLOBAL_TABLE in table.
Returns 0 on success or -EINVAL on failure.
int rio_route_get_entry(struct rio_dev * rdev, u16 table, u16 route_destid, u8 * route_port,

int lock)
Read an entry from a switch routing table

Parameters
struct rio_dev * rdev RIO device
u16 table Routing table ID
u16 route_destid Destination ID to be routed
u8 * route_port Pointer to read port number into
int lock apply a hardware lock on switch device flag (1=lock, 0=no_lock)
Description
If available calls the switch specific get_entry() method to fetch a route entry from a switch routing
table. Otherwise uses standard RT read method as defined by RapidIO specification. A specific routing
table can be selected using the table argument if a switch has per port routing tables or the standard (or
global) table may be used by passing RIO_GLOBAL_TABLE in table.
Returns 0 on success or -EINVAL on failure.
int rio_route_clr_table(struct rio_dev * rdev, u16 table, int lock)

Clear a switch routing table
Parameters
struct rio_dev * rdev RIO device
u16 table Routing table ID
int lock apply a hardware lock on switch device flag (1=lock, 0=no_lock)
Description
If available calls the switch specific clr_table() method to clear a switch routing table. Otherwise uses
standard RT write method as defined by RapidIO specification. A specific routing table can be selected
using the table argument if a switch has per port routing tables or the standard (or global) table may be
used by passing RIO_GLOBAL_TABLE in table.

740 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

Returns 0 on success or -EINVAL on failure.
struct dma_chan * rio_request_mport_dma(struct rio_mport * mport)

request RapidIO capable DMA channel associated with specified local RapidIO mport device.
Parameters
struct rio_mport * mport RIO mport to perform DMA data transfers
Description
Returns pointer to allocated DMA channel or NULL if failed.
struct dma_chan * rio_request_dma(struct rio_dev * rdev)

request RapidIO capable DMA channel that supports specified target RapidIO device.
Parameters
struct rio_dev * rdev RIO device associated with DMA transfer
Description
Returns pointer to allocated DMA channel or NULL if failed.
void rio_release_dma(struct dma_chan * dchan)

release specified DMA channel
Parameters
struct dma_chan * dchan DMA channel to release
struct dma_async_tx_descriptor * rio_dma_prep_xfer(struct dma_chan * dchan, u16 destid,

struct rio_dma_data * data, enum
dma_transfer_direction direction, unsigned
long flags)

RapidIO specific wrapper for device_prep_slave_sg callback defined by DMAENGINE.
Parameters
struct dma_chan * dchan DMA channel to configure
u16 destid target RapidIO device destination ID
struct rio_dma_data * data RIO specific data descriptor
enum dma_transfer_direction direction DMA data transfer direction (TO or FROM the device)
unsigned long flags dmaengine defined flags
Description
Initializes RapidIO capable DMA channel for the specified data transfer. Uses DMA channel private exten-
sion to pass information related to remote target RIO device.
Return
pointer to DMA transaction descriptor if successful, error-valued pointer or NULL if failed.
struct dma_async_tx_descriptor * rio_dma_prep_slave_sg(struct rio_dev * rdev, struct dma_chan

* dchan, struct rio_dma_data * data,
enum dma_transfer_direction direction,
unsigned long flags)

RapidIO specific wrapper for device_prep_slave_sg callback defined by DMAENGINE.
Parameters
struct rio_dev * rdev RIO device control structure
struct dma_chan * dchan DMA channel to configure
struct rio_dma_data * data RIO specific data descriptor
enum dma_transfer_direction direction DMA data transfer direction (TO or FROM the device)

27.3. RapidIO driver interface 741

The kernel driver API manual, Release 4.13.0-rc4+

unsigned long flags dmaengine defined flags
Description
Initializes RapidIO capable DMA channel for the specified data transfer. Uses DMA channel private exten-
sion to pass information related to remote target RIO device.
Return
pointer to DMA transaction descriptor if successful, error-valued pointer or NULL if failed.
int rio_register_scan(int mport_id, struct rio_scan * scan_ops)

enumeration/discovery method registration interface
Parameters
int mport_id mport device ID for which fabric scan routine has to be set (RIO_MPORT_ANY = set for all

available mports)
struct rio_scan * scan_ops enumeration/discovery operations structure
Description
Registers enumeration/discovery operations with RapidIO subsystem and attaches it to the specified
mport device (or all available mports if RIO_MPORT_ANY is specified).
Returns error if the mport already has an enumerator attached to it. In case of RIO_MPORT_ANY skips
mports with valid scan routines (no error).
int rio_unregister_scan(int mport_id, struct rio_scan * scan_ops)

removes enumeration/discovery method from mport
Parameters
int mport_id mport device ID for which fabric scan routine has to be unregistered (RIO_MPORT_ANY =

apply to all mports that use the specified scan_ops)
struct rio_scan * scan_ops enumeration/discovery operations structure
Description
Removes enumeration or discovery method assigned to the specified mport device. If RIO_MPORT_ANY is
specified, removes the specified operations from all mports that have them attached.

27.4 Internals

This chapter contains the autogenerated documentation of the RapidIO subsystem.

27.4.1 Structures

struct rio_switch
RIO switch info

Definition

struct rio_switch {
struct list_head node;
u8 * route_table;
u32 port_ok;
struct rio_switch_ops * ops;
spinlock_t lock;
struct rio_dev * nextdev;

};

Members

742 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

node Node in global list of switches
route_table Copy of switch routing table
port_ok Status of each port (one bit per port) - OK=1 or UNINIT=0
ops pointer to switch-specific operations
lock lock to serialize operations updates
nextdev Array of per-port pointers to the next attached device
struct rio_switch_ops

Per-switch operations
Definition

struct rio_switch_ops {
struct module * owner;
int (* add_entry) (struct rio_mport *mport, u16 destid, u8 hopcount, u16 table, u16 route_

↪→destid, u8 route_port);
int (* get_entry) (struct rio_mport *mport, u16 destid, u8 hopcount, u16 table, u16 route_

↪→destid, u8 *route_port);
int (* clr_table) (struct rio_mport *mport, u16 destid, u8 hopcount, u16 table);
int (* set_domain) (struct rio_mport *mport, u16 destid, u8 hopcount, u8 sw_domain);
int (* get_domain) (struct rio_mport *mport, u16 destid, u8 hopcount, u8 *sw_domain);
int (* em_init) (struct rio_dev *dev);
int (* em_handle) (struct rio_dev *dev, u8 swport);

};

Members
owner The module owner of this structure
add_entry Callback for switch-specific route add function
get_entry Callback for switch-specific route get function
clr_table Callback for switch-specific clear route table function
set_domain Callback for switch-specific domain setting function
get_domain Callback for switch-specific domain get function
em_init Callback for switch-specific error management init function
em_handle Callback for switch-specific error management handler function
Description
Defines the operations that are necessary to initialize/control a particular RIO switch device.
struct rio_dev

RIO device info
Definition

struct rio_dev {
struct list_head global_list;
struct list_head net_list;
struct rio_net * net;
bool do_enum;
u16 did;
u16 vid;
u32 device_rev;
u16 asm_did;
u16 asm_vid;
u16 asm_rev;
u16 efptr;
u32 pef;

27.4. Internals 743

The kernel driver API manual, Release 4.13.0-rc4+

u32 swpinfo;
u32 src_ops;
u32 dst_ops;
u32 comp_tag;
u32 phys_efptr;
u32 phys_rmap;
u32 em_efptr;
u64 dma_mask;
struct rio_driver * driver;
struct device dev;
struct resource riores;
int (* pwcback) (struct rio_dev *rdev, union rio_pw_msg *msg, int step);
u16 destid;
u8 hopcount;
struct rio_dev * prev;
atomic_t state;
struct rio_switch rswitch;

};

Members
global_list Node in list of all RIO devices
net_list Node in list of RIO devices in a network
net Network this device is a part of
do_enum Enumeration flag
did Device ID
vid Vendor ID
device_rev Device revision
asm_did Assembly device ID
asm_vid Assembly vendor ID
asm_rev Assembly revision
efptr Extended feature pointer
pef Processing element features
swpinfo Switch port info
src_ops Source operation capabilities
dst_ops Destination operation capabilities
comp_tag RIO component tag
phys_efptr RIO device extended features pointer
phys_rmap LP-Serial Register Map Type (1 or 2)
em_efptr RIO Error Management features pointer
dma_mask Mask of bits of RIO address this device implements
driver Driver claiming this device
dev Device model device
riores RIO resources this device owns
pwcback port-write callback function for this device
destid Network destination ID (or associated destid for switch)
hopcount Hopcount to this device

744 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

prev Previous RIO device connected to the current one
state device state
rswitch struct rio_switch (if valid for this device)
struct rio_msg

RIO message event
Definition

struct rio_msg {
struct resource * res;
void (* mcback) (struct rio_mport * mport, void *dev_id, int mbox, int slot);

};

Members
res Mailbox resource
mcback Message event callback
struct rio_dbell

RIO doorbell event
Definition

struct rio_dbell {
struct list_head node;
struct resource * res;
void (* dinb) (struct rio_mport *mport, void *dev_id, u16 src, u16 dst, u16 info);
void * dev_id;

};

Members
node Node in list of doorbell events
res Doorbell resource
dinb Doorbell event callback
dev_id Device specific pointer to pass on event
struct rio_mport

RIO master port info
Definition

struct rio_mport {
struct list_head dbells;
struct list_head pwrites;
struct list_head node;
struct list_head nnode;
struct rio_net * net;
struct mutex lock;
struct resource iores;
struct resource riores;
struct rio_msg inb_msg;
struct rio_msg outb_msg;
int host_deviceid;
struct rio_ops * ops;
unsigned char id;
unsigned char index;
unsigned int sys_size;
u32 phys_efptr;
u32 phys_rmap;
unsigned char name;

27.4. Internals 745

The kernel driver API manual, Release 4.13.0-rc4+

struct device dev;
void * priv;

#ifdef CONFIG_RAPIDIO_DMA_ENGINE
struct dma_device dma;

#endif
struct rio_scan * nscan;
atomic_t state;
unsigned int pwe_refcnt;

};

Members
dbells List of doorbell events
pwrites List of portwrite events
node Node in global list of master ports
nnode Node in network list of master ports
net RIO net this mport is attached to
lock lock to synchronize lists manipulations
iores I/O mem resource that this master port interface owns
riores RIO resources that this master port interfaces owns
inb_msg RIO inbound message event descriptors
outb_msg RIO outbound message event descriptors
host_deviceid Host device ID associated with this master port
ops configuration space functions
id Port ID, unique among all ports
index Port index, unique among all port interfaces of the same type
sys_size RapidIO common transport system size
phys_efptr RIO port extended features pointer
phys_rmap LP-Serial EFB Register Mapping type (1 or 2).
name Port name string
dev device structure associated with an mport
priv Master port private data
dma DMA device associated with mport
nscan RapidIO network enumeration/discovery operations
state mport device state
pwe_refcnt port-write enable ref counter to track enable/disable requests
struct rio_net

RIO network info
Definition

struct rio_net {
struct list_head node;
struct list_head devices;
struct list_head switches;
struct list_head mports;
struct rio_mport * hport;
unsigned char id;

746 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct device dev;
void * enum_data;
void (* release) (struct rio_net *net);

};

Members
node Node in global list of RIO networks
devices List of devices in this network
switches List of switches in this network
mports List of master ports accessing this network
hport Default port for accessing this network
id RIO network ID
dev Device object
enum_data private data specific to a network enumerator
release enumerator-specific release callback
struct rio_mport_attr

RIO mport device attributes
Definition

struct rio_mport_attr {
int flags;
int link_speed;
int link_width;
int dma_max_sge;
int dma_max_size;
int dma_align;

};

Members
flags mport device capability flags
link_speed SRIO link speed value (as defined by RapidIO specification)
link_width SRIO link width value (as defined by RapidIO specification)
dma_max_sge number of SG list entries that can be handled by DMA channel(s)
dma_max_size max number of bytes in single DMA transfer (SG entry)
dma_align alignment shift for DMA operations (as for other DMA operations)
struct rio_ops

Low-level RIO configuration space operations
Definition

struct rio_ops {
int (* lcread) (struct rio_mport *mport, int index, u32 offset, int len, u32 *data);
int (* lcwrite) (struct rio_mport *mport, int index, u32 offset, int len, u32 data);
int (* cread) (struct rio_mport *mport, int index, u16 destid, u8 hopcount, u32 offset, int␣

↪→len, u32 *data);
int (* cwrite) (struct rio_mport *mport, int index, u16 destid, u8 hopcount, u32 offset, int␣

↪→len, u32 data);
int (* dsend) (struct rio_mport *mport, int index, u16 destid, u16 data);
int (* pwenable) (struct rio_mport *mport, int enable);
int (* open_outb_mbox) (struct rio_mport *mport, void *dev_id, int mbox, int entries);
void (* close_outb_mbox) (struct rio_mport *mport, int mbox);

27.4. Internals 747

The kernel driver API manual, Release 4.13.0-rc4+

int (* open_inb_mbox) (struct rio_mport *mport, void *dev_id, int mbox, int entries);
void (* close_inb_mbox) (struct rio_mport *mport, int mbox);
int (* add_outb_message) (struct rio_mport *mport, struct rio_dev *rdev, int mbox, void␣

↪→*buffer, size_t len);
int (* add_inb_buffer) (struct rio_mport *mport, int mbox, void *buf);
void *(* get_inb_message) (struct rio_mport *mport, int mbox);
int (* map_inb) (struct rio_mport *mport, dma_addr_t lstart, u64 rstart, u64 size, u32 flags);
void (* unmap_inb) (struct rio_mport *mport, dma_addr_t lstart);
int (* query_mport) (struct rio_mport *mport, struct rio_mport_attr *attr);
int (* map_outb) (struct rio_mport *mport, u16 destid, u64 rstart, u32 size, u32 flags, dma_

↪→addr_t *laddr);
void (* unmap_outb) (struct rio_mport *mport, u16 destid, u64 rstart);

};

Members
lcread Callback to perform local (master port) read of config space.
lcwrite Callback to perform local (master port) write of config space.
cread Callback to perform network read of config space.
cwrite Callback to perform network write of config space.
dsend Callback to send a doorbell message.
pwenable Callback to enable/disable port-write message handling.
open_outb_mbox Callback to initialize outbound mailbox.
close_outb_mbox Callback to shut down outbound mailbox.
open_inb_mbox Callback to initialize inbound mailbox.
close_inb_mbox Callback to shut down inbound mailbox.
add_outb_message Callback to add a message to an outbound mailbox queue.
add_inb_buffer Callback to add a buffer to an inbound mailbox queue.
get_inb_message Callback to get a message from an inbound mailbox queue.
map_inb Callback to map RapidIO address region into local memory space.
unmap_inb Callback to unmap RapidIO address region mapped with map_inb().
query_mport Callback to query mport device attributes.
map_outb Callback to map outbound address region into local memory space.
unmap_outb Callback to unmap outbound RapidIO address region.
struct rio_driver

RIO driver info
Definition

struct rio_driver {
struct list_head node;
char * name;
const struct rio_device_id * id_table;
int (* probe) (struct rio_dev * dev, const struct rio_device_id * id);
void (* remove) (struct rio_dev * dev);
void (* shutdown) (struct rio_dev *dev);
int (* suspend) (struct rio_dev * dev, u32 state);
int (* resume) (struct rio_dev * dev);
int (* enable_wake) (struct rio_dev * dev, u32 state, int enable);
struct device_driver driver;

};

748 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

Members
node Node in list of drivers
name RIO driver name
id_table RIO device ids to be associated with this driver
probe RIO device inserted
remove RIO device removed
shutdown shutdown notification callback
suspend RIO device suspended
resume RIO device awakened
enable_wake RIO device enable wake event
driver LDM driver struct
Description
Provides info on a RIO device driver for insertion/removal and power management purposes.
struct rio_scan

RIO enumeration and discovery operations
Definition

struct rio_scan {
struct module * owner;
int (* enumerate) (struct rio_mport *mport, u32 flags);
int (* discover) (struct rio_mport *mport, u32 flags);

};

Members
owner The module owner of this structure
enumerate Callback to perform RapidIO fabric enumeration.
discover Callback to perform RapidIO fabric discovery.
struct rio_scan_node

list node to register RapidIO enumeration and discovery methods with RapidIO core.
Definition

struct rio_scan_node {
int mport_id;
struct list_head node;
struct rio_scan * ops;

};

Members
mport_id ID of an mport (net) serviced by this enumerator
node node in global list of registered enumerators
ops RIO enumeration and discovery operations

27.4.2 Enumeration and Discovery

u16 rio_destid_alloc(struct rio_net * net)
Allocate next available destID for given network

Parameters

27.4. Internals 749

The kernel driver API manual, Release 4.13.0-rc4+

struct rio_net * net RIO network
Description
Returns next available device destination ID for the specified RIO network. Marks allocated ID as one in
use. Returns RIO_INVALID_DESTID if new destID is not available.
int rio_destid_reserve(struct rio_net * net, u16 destid)

Reserve the specivied destID
Parameters
struct rio_net * net RIO network
u16 destid destID to reserve
Description
Tries to reserve the specified destID. Returns 0 if successful.
void rio_destid_free(struct rio_net * net, u16 destid)

free a previously allocated destID
Parameters
struct rio_net * net RIO network
u16 destid destID to free
Description
Makes the specified destID available for use.
u16 rio_destid_first(struct rio_net * net)

return first destID in use
Parameters
struct rio_net * net RIO network
u16 rio_destid_next(struct rio_net * net, u16 from)

return next destID in use
Parameters
struct rio_net * net RIO network
u16 from destination ID from which search shall continue
u16 rio_get_device_id(struct rio_mport * port, u16 destid, u8 hopcount)

Get the base/extended device id for a device
Parameters
struct rio_mport * port RIO master port
u16 destid Destination ID of device
u8 hopcount Hopcount to device
Description
Reads the base/extended device id from a device. Returns the 8/16-bit device ID.
void rio_set_device_id(struct rio_mport * port, u16 destid, u8 hopcount, u16 did)

Set the base/extended device id for a device
Parameters
struct rio_mport * port RIO master port
u16 destid Destination ID of device
u8 hopcount Hopcount to device

750 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

u16 did Device ID value to be written
Description
Writes the base/extended device id from a device.
int rio_clear_locks(struct rio_net * net)

Release all host locks and signal enumeration complete
Parameters
struct rio_net * net RIO network to run on
Description
Marks the component tag CSR on each device with the enumeration complete flag. When complete, it
then release the host locks on each device. Returns 0 on success or -EINVAL on failure.
int rio_enum_host(struct rio_mport * port)

Set host lock and initialize host destination ID
Parameters
struct rio_mport * port Master port to issue transaction
Description
Sets the local host master port lock and destination ID register with the host device ID value. The host
device ID value is provided by the platform. Returns 0 on success or -1 on failure.
int rio_device_has_destid(struct rio_mport * port, int src_ops, int dst_ops)

Test if a device contains a destination ID register
Parameters
struct rio_mport * port Master port to issue transaction
int src_ops RIO device source operations
int dst_ops RIO device destination operations
Description
Checks the provided src_ops and dst_ops for the necessary transaction capabilities that indicate whether
or not a device will implement a destination ID register. Returns 1 if true or 0 if false.
void rio_release_dev(struct device * dev)

Frees a RIO device struct
Parameters
struct device * dev LDM device associated with a RIO device struct
Description
Gets the RIO device struct associated a RIO device struct. The RIO device struct is freed.
int rio_is_switch(struct rio_dev * rdev)

Tests if a RIO device has switch capabilities
Parameters
struct rio_dev * rdev RIO device
Description
Gets the RIO device Processing Element Features register contents and tests for switch capabilities. Re-
turns 1 if the device is a switch or 0 if it is not a switch. The RIO device struct is freed.
struct rio_dev * rio_setup_device(struct rio_net * net, struct rio_mport * port, u16 destid,

u8 hopcount, int do_enum)
Allocates and sets up a RIO device

Parameters

27.4. Internals 751

The kernel driver API manual, Release 4.13.0-rc4+

struct rio_net * net RIO network
struct rio_mport * port Master port to send transactions
u16 destid Current destination ID
u8 hopcount Current hopcount
int do_enum Enumeration/Discovery mode flag
Description
Allocates a RIO device and configures fields based on configuration space contents. If device has a des-
tination ID register, a destination ID is either assigned in enumeration mode or read from configuration
space in discovery mode. If the device has switch capabilities, then a switch is allocated and configured
appropriately. Returns a pointer to a RIO device on success or NULL on failure.
int rio_sport_is_active(struct rio_dev * rdev, int sp)

Tests if a switch port has an active connection.
Parameters
struct rio_dev * rdev RapidIO device object
int sp Switch port number
Description
Reads the port error status CSR for a particular switch port to determine if the port has an active link.
Returns RIO_PORT_N_ERR_STS_PORT_OK if the port is active or 0 if it is inactive.
u16 rio_get_host_deviceid_lock(struct rio_mport * port, u8 hopcount)

Reads the Host Device ID Lock CSR on a device
Parameters
struct rio_mport * port Master port to send transaction
u8 hopcount Number of hops to the device
Description
Used during enumeration to read the Host Device ID Lock CSR on a RIO device. Returns the value of the
lock register.
int rio_enum_peer(struct rio_net * net, struct rio_mport * port, u8 hopcount, struct rio_dev * prev,

int prev_port)
Recursively enumerate a RIO network through a master port

Parameters
struct rio_net * net RIO network being enumerated
struct rio_mport * port Master port to send transactions
u8 hopcount Number of hops into the network
struct rio_dev * prev Previous RIO device connected to the enumerated one
int prev_port Port on previous RIO device
Description
Recursively enumerates a RIO network. Transactions are sent via the master port passed in port.
int rio_enum_complete(struct rio_mport * port)

Tests if enumeration of a network is complete
Parameters
struct rio_mport * port Master port to send transaction

752 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
Tests the PGCCSR discovered bit for non-zero value (enumeration complete flag). Return 1 if enumeration
is complete or 0 if enumeration is incomplete.
int rio_disc_peer(struct rio_net * net, struct rio_mport * port, u16 destid, u8 hopcount, struct

rio_dev * prev, int prev_port)
Recursively discovers a RIO network through a master port

Parameters
struct rio_net * net RIO network being discovered
struct rio_mport * port Master port to send transactions
u16 destid Current destination ID in network
u8 hopcount Number of hops into the network
struct rio_dev * prev previous rio_dev
int prev_port previous port number
Description
Recursively discovers a RIO network. Transactions are sent via the master port passed in port.
int rio_mport_is_active(struct rio_mport * port)

Tests if master port link is active
Parameters
struct rio_mport * port Master port to test
Description
Reads the port error status CSR for the master port to determine if the port has an active link. Returns
RIO_PORT_N_ERR_STS_PORT_OK if the master port is active or 0 if it is inactive.
void rio_update_route_tables(struct rio_net * net)

Updates route tables in switches
Parameters
struct rio_net * net RIO network to run update on
Description
For each enumerated device, ensure that each switch in a system has correct routing entries. Add routes
for devices that where unknown dirung the first enumeration pass through the switch.
void rio_init_em(struct rio_dev * rdev)

Initializes RIO Error Management (for switches)
Parameters
struct rio_dev * rdev RIO device
Description
For each enumerated switch, call device-specific error management initialization routine (if supplied by
the switch driver).
int rio_enum_mport(struct rio_mport * mport, u32 flags)

Start enumeration through a master port
Parameters
struct rio_mport * mport Master port to send transactions
u32 flags Enumeration control flags

27.4. Internals 753

The kernel driver API manual, Release 4.13.0-rc4+

Description
Starts the enumeration process. If somebody has enumerated our master port device, then give up. If not
and we have an active link, then start recursive peer enumeration. Returns 0 if enumeration succeeds or
-EBUSY if enumeration fails.
void rio_build_route_tables(struct rio_net * net)

Generate route tables from switch route entries
Parameters
struct rio_net * net RIO network to run route tables scan on
Description
For each switch device, generate a route table by copying existing route entries from the switch.
int rio_disc_mport(struct rio_mport * mport, u32 flags)

Start discovery through a master port
Parameters
struct rio_mport * mport Master port to send transactions
u32 flags discovery control flags
Description
Starts the discovery process. If we have an active link, then wait for the signal that enumeration is
complete (if wait is allowed). When enumeration completion is signaled, start recursive peer discovery.
Returns 0 if discovery succeeds or -EBUSY on failure.
int rio_basic_attach(void)
Parameters
void no arguments
Description
When this enumeration/discovery method is loaded as a module this function registers its specific enumer-
ation and discover routines for all available RapidIO mport devices. The “scan” command line parameter
controls ability of the module to start RapidIO enumeration/discovery automatically.
Returns 0 for success or -EIO if unable to register itself.
This enumeration/discovery method cannot be unloaded and therefore does not provide a matching
cleanup_module routine.

27.4.3 Driver functionality

int rio_setup_inb_dbell(struct rio_mport * mport, void * dev_id, struct resource * res, void (*dinb)
(struct rio_mport * mport, void *dev_id, u16 src, u16 dst, u16 info)

bind inbound doorbell callback
Parameters
struct rio_mport * mport RIO master port to bind the doorbell callback
void * dev_id Device specific pointer to pass on event
struct resource * res Doorbell message resource
void (*) (struct rio_mport * mport,void *dev_id,u16 src,u16 dst,u16 info) dinb Callback

to execute when doorbell is received
Description
Adds a doorbell resource/callback pair into a port’s doorbell event list. Returns 0 if the request has been
satisfied.

754 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

int rio_chk_dev_route(struct rio_dev * rdev, struct rio_dev ** nrdev, int * npnum)
Validate route to the specified device.

Parameters
struct rio_dev * rdev RIO device failed to respond
struct rio_dev ** nrdev Last active device on the route to rdev
int * npnum nrdev’s port number on the route to rdev
Description
Follows a route to the specified RIO device to determine the last available device (and corresponding RIO
port) on the route.
int rio_chk_dev_access(struct rio_dev * rdev)

Validate access to the specified device.
Parameters
struct rio_dev * rdev Pointer to RIO device control structure
int rio_get_input_status(struct rio_dev * rdev, int pnum, u32 * lnkresp)

Sends a Link-Request/Input-Status control symbol and returns link-response (if requested).
Parameters
struct rio_dev * rdev RIO devive to issue Input-status command
int pnum Device port number to issue the command
u32 * lnkresp Response from a link partner
int rio_clr_err_stopped(struct rio_dev * rdev, u32 pnum, u32 err_status)

Clears port Error-stopped states.
Parameters
struct rio_dev * rdev Pointer to RIO device control structure
u32 pnum Switch port number to clear errors
u32 err_status port error status (if 0 reads register from device)
Description
TODO: Currently this routine is not compatible with recovery process specified for idt_gen3 RapidIO switch
devices. It has to be reviewed to implement universal recovery process that is compatible full range off
available devices. IDT gen3 switch driver now implements HW-specific error handler that issues soft port
reset to the port to reset ERR_STOP bits and ackIDs.
int rio_std_route_add_entry(struct rio_mport * mport, u16 destid, u8 hopcount, u16 table,

u16 route_destid, u8 route_port)
Add switch route table entry using standard registers defined in RIO specification rev.1.3

Parameters
struct rio_mport * mport Master port to issue transaction
u16 destid Destination ID of the device
u8 hopcount Number of switch hops to the device
u16 table routing table ID (global or port-specific)
u16 route_destid destID entry in the RT
u8 route_port destination port for specified destID

27.4. Internals 755

The kernel driver API manual, Release 4.13.0-rc4+

int rio_std_route_get_entry(struct rio_mport * mport, u16 destid, u8 hopcount, u16 table,
u16 route_destid, u8 * route_port)

Read switch route table entry (port number) associated with specified destID using standard registers
defined in RIO specification rev.1.3

Parameters
struct rio_mport * mport Master port to issue transaction
u16 destid Destination ID of the device
u8 hopcount Number of switch hops to the device
u16 table routing table ID (global or port-specific)
u16 route_destid destID entry in the RT
u8 * route_port returned destination port for specified destID
int rio_std_route_clr_table(struct rio_mport * mport, u16 destid, u8 hopcount, u16 table)

Clear swotch route table using standard registers defined in RIO specification rev.1.3.
Parameters
struct rio_mport * mport Master port to issue transaction
u16 destid Destination ID of the device
u8 hopcount Number of switch hops to the device
u16 table routing table ID (global or port-specific)
struct rio_mport * rio_find_mport(int mport_id)

find RIO mport by its ID
Parameters
int mport_id number (ID) of mport device
Description
Given a RIO mport number, the desired mport is located in the global list of mports. If the mport is found,
a pointer to its data structure is returned. If no mport is found, NULL is returned.
int rio_mport_scan(int mport_id)

execute enumeration/discovery on the specified mport
Parameters
int mport_id number (ID) of mport device
RIO_LOP_READ(size, type, len)

Generate rio_local_read_config_* functions
Parameters
size Size of configuration space read (8, 16, 32 bits)
type C type of value argument
len Length of configuration space read (1, 2, 4 bytes)
Description
Generates rio_local_read_config_* functions used to access configuration space registers on the local de-
vice.
RIO_LOP_WRITE(size, type, len)

Generate rio_local_write_config_* functions
Parameters
size Size of configuration space write (8, 16, 32 bits)

756 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

type C type of value argument
len Length of configuration space write (1, 2, 4 bytes)
Description
Generates rio_local_write_config_* functions used to access configuration space registers on the local
device.
RIO_OP_READ(size, type, len)

Generate rio_mport_read_config_* functions
Parameters
size Size of configuration space read (8, 16, 32 bits)
type C type of value argument
len Length of configuration space read (1, 2, 4 bytes)
Description
Generates rio_mport_read_config_* functions used to access configuration space registers on the local
device.
RIO_OP_WRITE(size, type, len)

Generate rio_mport_write_config_* functions
Parameters
size Size of configuration space write (8, 16, 32 bits)
type C type of value argument
len Length of configuration space write (1, 2, 4 bytes)
Description
Generates rio_mport_write_config_* functions used to access configuration space registers on the local
device.

27.4.4 Device model support

const struct rio_device_id * rio_match_device(const struct rio_device_id * id, const struct rio_dev
* rdev)

Tell if a RIO device has a matching RIO device id structure
Parameters
const struct rio_device_id * id the RIO device id structure to match against
const struct rio_dev * rdev the RIO device structure to match against
Description

Used from driver probe and bus matching to check whether a RIO device matches a device id
structure provided by a RIO driver. Returns the matching struct rio_device_id or NULL if
there is no match.

int rio_device_probe(struct device * dev)
Tell if a RIO device structure has a matching RIO device id structure

Parameters
struct device * dev the RIO device structure to match against
Description
return 0 and set rio_dev->driver when drv claims rio_dev, else error

27.4. Internals 757

The kernel driver API manual, Release 4.13.0-rc4+

int rio_device_remove(struct device * dev)
Remove a RIO device from the system

Parameters
struct device * dev the RIO device structure to match against
Description
Remove a RIO device from the system. If it has an associated driver, then run the driver remove()method.
Then update the reference count.
int rio_match_bus(struct device * dev, struct device_driver * drv)

Tell if a RIO device structure has a matching RIO driver device id structure
Parameters
struct device * dev the standard device structure to match against
struct device_driver * drv the standard driver structure containing the ids to match against
Description

Used by a driver to check whether a RIO device present in the system is in its list of supported
devices. Returns 1 if there is a matching struct rio_device_id or 0 if there is no match.

int rio_bus_init(void)
Register the RapidIO bus with the device model

Parameters
void no arguments
Description

Registers the RIO mport device class and RIO bus type with the Linux device model.

27.4.5 PPC32 support

int fsl_local_config_read(struct rio_mport * mport, int index, u32 offset, int len, u32 * data)
Generate a MPC85xx local config space read

Parameters
struct rio_mport * mport RapidIO master port info
int index ID of RapdiIO interface
u32 offset Offset into configuration space
int len Length (in bytes) of the maintenance transaction
u32 * data Value to be read into
Description
Generates a MPC85xx local configuration space read. Returns 0 on success or -EINVAL on failure.
int fsl_local_config_write(struct rio_mport * mport, int index, u32 offset, int len, u32 data)

Generate a MPC85xx local config space write
Parameters
struct rio_mport * mport RapidIO master port info
int index ID of RapdiIO interface
u32 offset Offset into configuration space
int len Length (in bytes) of the maintenance transaction
u32 data Value to be written

758 Chapter 27. RapidIO Subsystem Guide

The kernel driver API manual, Release 4.13.0-rc4+

Description
Generates a MPC85xx local configuration space write. Returns 0 on success or -EINVAL on failure.
int fsl_rio_config_read(struct rio_mport * mport, int index, u16 destid, u8 hopcount, u32 offset,

int len, u32 * val)
Generate a MPC85xx read maintenance transaction

Parameters
struct rio_mport * mport RapidIO master port info
int index ID of RapdiIO interface
u16 destid Destination ID of transaction
u8 hopcount Number of hops to target device
u32 offset Offset into configuration space
int len Length (in bytes) of the maintenance transaction
u32 * val Location to be read into
Description
Generates a MPC85xx read maintenance transaction. Returns 0 on success or -EINVAL on failure.
int fsl_rio_config_write(struct rio_mport * mport, int index, u16 destid, u8 hopcount, u32 offset,

int len, u32 val)
Generate a MPC85xx write maintenance transaction

Parameters
struct rio_mport * mport RapidIO master port info
int index ID of RapdiIO interface
u16 destid Destination ID of transaction
u8 hopcount Number of hops to target device
u32 offset Offset into configuration space
int len Length (in bytes) of the maintenance transaction
u32 val Value to be written
Description
Generates an MPC85xx write maintenance transaction. Returns 0 on success or -EINVAL on failure.
int fsl_rio_setup(struct platform_device * dev)

Setup Freescale PowerPC RapidIO interface
Parameters
struct platform_device * dev platform_device pointer
Description
Initializes MPC85xx RapidIO hardware interface, configures master port with system-specific info, and
registers the master port with the RapidIO subsystem.

27.5 Credits

The following people have contributed to the RapidIO subsystem directly or indirectly:
1. Matt Portermporter@kernel.crashing.org
2. Randy Vinsonrvinson@mvista.com

27.5. Credits 759

mailto:mporter@kernel.crashing.org
mailto:rvinson@mvista.com

The kernel driver API manual, Release 4.13.0-rc4+

3. Dan Malekdan@embeddedalley.com
The following people have contributed to this document:
1. Matt Portermporter@kernel.crashing.org

760 Chapter 27. RapidIO Subsystem Guide

mailto:dan@embeddedalley.com
mailto:mporter@kernel.crashing.org

CHAPTER

TWENTYEIGHT

WRITING S390 CHANNEL DEVICE DRIVERS

Author Cornelia Huck

28.1 Introduction

This document describes the interfaces available for device drivers that drive s390 based channel attached
I/O devices. This includes interfaces for interaction with the hardware and interfaces for interacting with
the common driver core. Those interfaces are provided by the s390 common I/O layer.
The document assumes a familarity with the technical terms associated with the s390 channel I/O archi-
tecture. For a description of this architecture, please refer to the “z/Architecture: Principles of Operation”,
IBM publication no. SA22-7832.
While most I/O devices on a s390 system are typically driven through the channel I/O mechanism de-
scribed here, there are various other methods (like the diag interface). These are out of the scope of this
document.
Some additional information can also be found in the kernel source under Documentation/s390/driver-
model.txt.

28.2 The ccw bus

The ccw bus typically contains themajority of devices available to a s390 system. Named after the channel
command word (ccw), the basic command structure used to address its devices, the ccw bus contains so-
called channel attached devices. They are addressed via I/O subchannels, visible on the css bus. A device
driver for channel-attached devices, however, will never interact with the subchannel directly, but only
via the I/O device on the ccw bus, the ccw device.

28.2.1 I/O functions for channel-attached devices

Some hardware structures have been translated into C structures for use by the common I/O layer and
device drivers. For more information on the hardware structures represented here, please consult the
Principles of Operation.
struct ccw1

channel command word
Definition

struct ccw1 {
__u8 cmd_code;
__u8 flags;
__u16 count;
__u32 cda;

};

761

The kernel driver API manual, Release 4.13.0-rc4+

Members
cmd_code command code
flags flags, like IDA addressing, etc.
count byte count
cda data address
Description
The ccw is the basic structure to build channel programs that perform operations with the device or the
control unit. Only Format-1 channel command words are supported.
struct ccw0

channel command word
Definition

struct ccw0 {
__u8 cmd_code;
__u32 cda:24;
__u8 flags;
__u8 reserved;
__u16 count;

};

Members
cmd_code command code
cda data address
flags flags, like IDA addressing, etc.
reserved will be ignored
count byte count
Description
The format-0 ccw structure.
struct erw

extended report word
Definition

struct erw {
__u32 res0:3;
__u32 auth:1;
__u32 pvrf:1;
__u32 cpt:1;
__u32 fsavf:1;
__u32 cons:1;
__u32 scavf:1;
__u32 fsaf:1;
__u32 scnt:6;
__u32 res16:16;

};

Members
res0 reserved
auth authorization check
pvrf path-verification-required flag
cpt channel-path timeout

762 Chapter 28. Writing s390 channel device drivers

The kernel driver API manual, Release 4.13.0-rc4+

fsavf failing storage address validity flag
cons concurrent sense
scavf secondary ccw address validity flag
fsaf failing storage address format
scnt sense count, if cons == 1

res16 reserved
struct erw_eadm

EADM Subchannel extended report word
Definition

struct erw_eadm {
__u32 b:1;
__u32 r:1;

};

Members
b aob error
r arsb error
struct sublog

subchannel logout area
Definition

struct sublog {
__u32 res0:1;
__u32 esf:7;
__u32 lpum:8;
__u32 arep:1;
__u32 fvf:5;
__u32 sacc:2;
__u32 termc:2;
__u32 devsc:1;
__u32 serr:1;
__u32 ioerr:1;
__u32 seqc:3;

};

Members
res0 reserved
esf extended status flags
lpum last path used mask
arep ancillary report
fvf field-validity flags
sacc storage access code
termc termination code
devsc device-status check
serr secondary error
ioerr i/o-error alert
seqc sequence code

28.2. The ccw bus 763

The kernel driver API manual, Release 4.13.0-rc4+

struct esw0
Format 0 Extended Status Word (ESW)

Definition

struct esw0 {
struct sublog sublog;
struct erw erw;
__u32 faddr;
__u32 saddr;

};

Members
sublog subchannel logout
erw extended report word
faddr failing storage address
saddr secondary ccw address
struct esw1

Format 1 Extended Status Word (ESW)
Definition

struct esw1 {
__u8 zero0;
__u8 lpum;
__u16 zero16;
struct erw erw;
__u32 zeros;

};

Members
zero0 reserved zeros
lpum last path used mask
zero16 reserved zeros
erw extended report word
zeros three fullwords of zeros
struct esw2

Format 2 Extended Status Word (ESW)
Definition

struct esw2 {
__u8 zero0;
__u8 lpum;
__u16 dcti;
struct erw erw;
__u32 zeros;

};

Members
zero0 reserved zeros
lpum last path used mask
dcti device-connect-time interval
erw extended report word

764 Chapter 28. Writing s390 channel device drivers

The kernel driver API manual, Release 4.13.0-rc4+

zeros three fullwords of zeros
struct esw3

Format 3 Extended Status Word (ESW)
Definition

struct esw3 {
__u8 zero0;
__u8 lpum;
__u16 res;
struct erw erw;
__u32 zeros;

};

Members
zero0 reserved zeros
lpum last path used mask
res reserved
erw extended report word
zeros three fullwords of zeros
struct esw_eadm

EADM Subchannel Extended Status Word (ESW)
Definition

struct esw_eadm {
__u32 sublog;
struct erw_eadm erw;

};

Members
sublog subchannel logout
erw extended report word
struct irb

interruption response block
Definition

struct irb {
union scsw scsw;
union esw;
__u8 ecw;

};

Members
scsw subchannel status word
esw extended status word
ecw extended control word
Description
The irb that is handed to the device driver when an interrupt occurs. For solicited interrupts, the common
I/O layer already performs checks whether a field is valid; a field not being valid is always passed as 0.
If a unit check occurred, ecw may contain sense data; this is retrieved by the common I/O layer itself if
the device doesn’t support concurrent sense (so that the device driver never needs to perform basic sene
itself). For unsolicited interrupts, the irb is passed as-is (expect for sense data, if applicable).

28.2. The ccw bus 765

The kernel driver API manual, Release 4.13.0-rc4+

struct ciw
command information word (CIW) layout

Definition

struct ciw {
__u32 et:2;
__u32 reserved:2;
__u32 ct:4;
__u32 cmd:8;
__u32 count:16;

};

Members
et entry type
reserved reserved bits
ct command type
cmd command code
count command count
struct ccw_dev_id

unique identifier for ccw devices
Definition

struct ccw_dev_id {
u8 ssid;
u16 devno;

};

Members
ssid subchannel set id
devno device number
Description
This structure is not directly based on any hardware structure. The hardware identifies a device by its
device number and its subchannel, which is in turn identified by its id. In order to get a unique identifier
for ccw devices across subchannel sets, struct ccw_dev_id has been introduced.
int ccw_dev_id_is_equal(struct ccw_dev_id * dev_id1, struct ccw_dev_id * dev_id2)

compare two ccw_dev_ids
Parameters
struct ccw_dev_id * dev_id1 a ccw_dev_id
struct ccw_dev_id * dev_id2 another ccw_dev_id
Return

1 if the two structures are equal field-by-field, 0 if not.
Context
any
u8 pathmask_to_pos(u8 mask)

find the position of the left-most bit in a pathmask
Parameters
u8 mask pathmask with at least one bit set

766 Chapter 28. Writing s390 channel device drivers

The kernel driver API manual, Release 4.13.0-rc4+

28.2.2 ccw devices

Devices that want to initiate channel I/O need to attach to the ccw bus. Interaction with the driver core is
done via the common I/O layer, which provides the abstractions of ccw devices and ccw device drivers.
The functions that initiate or terminate channel I/O all act upon a ccw device structure. Device drivers
must not bypass those functions or strange side effects may happen.
struct ccw_device

channel attached device
Definition

struct ccw_device {
spinlock_t * ccwlock;
struct ccw_device_id id;
struct ccw_driver * drv;
struct device dev;
int online;
void (* handler) (struct ccw_device *, unsigned long, struct irb *);

};

Members
ccwlock pointer to device lock
id id of this device
drv ccw driver for this device
dev embedded device structure
online online status of device
handler interrupt handler
Description
handler is a member of the device rather than the driver since a driver can have different interrupt
handlers for different ccw devices (multi-subchannel drivers).
struct ccw_driver

device driver for channel attached devices
Definition

struct ccw_driver {
struct ccw_device_id * ids;
int (* probe) (struct ccw_device *);
void (* remove) (struct ccw_device *);
int (* set_online) (struct ccw_device *);
int (* set_offline) (struct ccw_device *);
int (* notify) (struct ccw_device *, int);
void (* path_event) (struct ccw_device *, int *);
void (* shutdown) (struct ccw_device *);
int (* prepare) (struct ccw_device *);
void (* complete) (struct ccw_device *);
int (* freeze) (struct ccw_device *);
int (* thaw) (struct ccw_device *);
int (* restore) (struct ccw_device *);
enum uc_todo (* uc_handler) (struct ccw_device *, struct irb *);
struct device_driver driver;
enum interruption_class int_class;

};

Members
ids ids supported by this driver

28.2. The ccw bus 767

The kernel driver API manual, Release 4.13.0-rc4+

probe function called on probe
remove function called on remove
set_online called when setting device online
set_offline called when setting device offline
notify notify driver of device state changes
path_event notify driver of channel path events
shutdown called at device shutdown
prepare prepare for pm state transition
complete undo work done in prepare
freeze callback for freezing during hibernation snapshotting
thaw undo work done in freeze
restore callback for restoring after hibernation
uc_handler callback for unit check handler
driver embedded device driver structure
int_class interruption class to use for accounting interrupts
int ccw_device_set_offline(struct ccw_device * cdev)

disable a ccw device for I/O
Parameters
struct ccw_device * cdev target ccw device
Description
This function calls the driver’s set_offline() function for cdev, if given, and then disables cdev.
Return

0 on success and a negative error value on failure.
Context
enabled, ccw device lock not held
int ccw_device_set_online(struct ccw_device * cdev)

enable a ccw device for I/O
Parameters
struct ccw_device * cdev target ccw device
Description
This function first enables cdev and then calls the driver’s set_online() function for cdev, if given. If
set_online() returns an error, cdev is disabled again.
Return

0 on success and a negative error value on failure.
Context
enabled, ccw device lock not held
struct ccw_device * get_ccwdev_by_dev_id(struct ccw_dev_id * dev_id)

obtain device from a ccw device id
Parameters
struct ccw_dev_id * dev_id id of the device to be searched

768 Chapter 28. Writing s390 channel device drivers

The kernel driver API manual, Release 4.13.0-rc4+

Description
This function searches all devices attached to the ccw bus for a device matching dev_id.
Return

If a device is found its reference count is increased and returned; else NULL is returned.
struct ccw_device * get_ccwdev_by_busid(struct ccw_driver * cdrv, const char * bus_id)

obtain device from a bus id
Parameters
struct ccw_driver * cdrv driver the device is owned by
const char * bus_id bus id of the device to be searched
Description
This function searches all devices owned by cdrv for a device with a bus id matching bus_id.
Return

If a match is found, its reference count of the found device is increased and it is returned; else
NULL is returned.

int ccw_driver_register(struct ccw_driver * cdriver)
register a ccw driver

Parameters
struct ccw_driver * cdriver driver to be registered
Description
This function is mainly a wrapper around driver_register().
Return

0 on success and a negative error value on failure.
void ccw_driver_unregister(struct ccw_driver * cdriver)

deregister a ccw driver
Parameters
struct ccw_driver * cdriver driver to be deregistered
Description
This function is mainly a wrapper around driver_unregister().
int ccw_device_siosl(struct ccw_device * cdev)

initiate logging
Parameters
struct ccw_device * cdev ccw device
Description
This function is used to invoke model-dependent logging within the channel subsystem.
int ccw_device_set_options_mask(struct ccw_device * cdev, unsigned long flags)

set some options and unset the rest
Parameters
struct ccw_device * cdev device for which the options are to be set
unsigned long flags options to be set

28.2. The ccw bus 769

The kernel driver API manual, Release 4.13.0-rc4+

Description
All flags specified in flags are set, all flags not specified in flags are cleared.
Return

0 on success, -EINVAL on an invalid flag combination.
int ccw_device_set_options(struct ccw_device * cdev, unsigned long flags)

set some options
Parameters
struct ccw_device * cdev device for which the options are to be set
unsigned long flags options to be set
Description
All flags specified in flags are set, the remainder is left untouched.
Return

0 on success, -EINVAL if an invalid flag combination would ensue.
void ccw_device_clear_options(struct ccw_device * cdev, unsigned long flags)

clear some options
Parameters
struct ccw_device * cdev device for which the options are to be cleared
unsigned long flags options to be cleared
Description
All flags specified in flags are cleared, the remainder is left untouched.
int ccw_device_is_pathgroup(struct ccw_device * cdev)

determine if paths to this device are grouped
Parameters
struct ccw_device * cdev ccw device
Description
Return non-zero if there is a path group, zero otherwise.
int ccw_device_is_multipath(struct ccw_device * cdev)

determine if device is operating in multipath mode
Parameters
struct ccw_device * cdev ccw device
Description
Return non-zero if device is operating in multipath mode, zero otherwise.
int ccw_device_clear(struct ccw_device * cdev, unsigned long intparm)

terminate I/O request processing
Parameters
struct ccw_device * cdev target ccw device
unsigned long intparm interruption parameter; value is only used if no I/O is outstanding, otherwise

the intparm associated with the I/O request is returned
Description
ccw_device_clear() calls csch on cdev‘s subchannel.
Return

770 Chapter 28. Writing s390 channel device drivers

The kernel driver API manual, Release 4.13.0-rc4+

0 on success, -ENODEV on device not operational, -EINVAL on invalid device state.
Context
Interrupts disabled, ccw device lock held
int ccw_device_start_key(struct ccw_device * cdev, struct ccw1 * cpa, unsigned long intparm,

__u8 lpm, __u8 key, unsigned long flags)
start a s390 channel program with key

Parameters
struct ccw_device * cdev target ccw device
struct ccw1 * cpa logical start address of channel program
unsigned long intparm user specific interruption parameter; will be presented back to cdev‘s interrupt

handler. Allows a device driver to associate the interrupt with a particular I/O request.
__u8 lpm defines the channel path to be used for a specific I/O request. A value of 0 will make cio use

the opm.
__u8 key storage key to be used for the I/O
unsigned long flags additional flags; defines the action to be performed for I/O processing.
Description
Start a S/390 channel program. When the interrupt arrives, the IRQ handler is called, either immediately,
delayed (dev-end missing, or sense required) or never (no IRQ handler registered).
Return

0, if the operation was successful; -EBUSY, if the device is busy, or status pending; -EACCES, if
no path specified in lpm is operational; -ENODEV, if the device is not operational.

Context
Interrupts disabled, ccw device lock held
int ccw_device_start_timeout_key(struct ccw_device * cdev, struct ccw1 * cpa, unsigned

long intparm, __u8 lpm, __u8 key, unsigned long flags,
int expires)

start a s390 channel program with timeout and key
Parameters
struct ccw_device * cdev target ccw device
struct ccw1 * cpa logical start address of channel program
unsigned long intparm user specific interruption parameter; will be presented back to cdev‘s interrupt

handler. Allows a device driver to associate the interrupt with a particular I/O request.
__u8 lpm defines the channel path to be used for a specific I/O request. A value of 0 will make cio use

the opm.
__u8 key storage key to be used for the I/O
unsigned long flags additional flags; defines the action to be performed for I/O processing.
int expires timeout value in jiffies
Description
Start a S/390 channel program. When the interrupt arrives, the IRQ handler is called, either immediately,
delayed (dev-end missing, or sense required) or never (no IRQ handler registered). This function notifies
the device driver if the channel program has not completed during the time specified by expires. If a
timeout occurs, the channel program is terminated via xsch, hsch or csch, and the device’s interrupt
handler will be called with an irb containing ERR_PTR(-ETIMEDOUT).
Return

28.2. The ccw bus 771

The kernel driver API manual, Release 4.13.0-rc4+

0, if the operation was successful; -EBUSY, if the device is busy, or status pending; -EACCES, if
no path specified in lpm is operational; -ENODEV, if the device is not operational.

Context
Interrupts disabled, ccw device lock held
int ccw_device_start(struct ccw_device * cdev, struct ccw1 * cpa, unsigned long intparm,

__u8 lpm, unsigned long flags)
start a s390 channel program

Parameters
struct ccw_device * cdev target ccw device
struct ccw1 * cpa logical start address of channel program
unsigned long intparm user specific interruption parameter; will be presented back to cdev‘s interrupt

handler. Allows a device driver to associate the interrupt with a particular I/O request.
__u8 lpm defines the channel path to be used for a specific I/O request. A value of 0 will make cio use

the opm.
unsigned long flags additional flags; defines the action to be performed for I/O processing.
Description
Start a S/390 channel program. When the interrupt arrives, the IRQ handler is called, either immediately,
delayed (dev-end missing, or sense required) or never (no IRQ handler registered).
Return

0, if the operation was successful; -EBUSY, if the device is busy, or status pending; -EACCES, if
no path specified in lpm is operational; -ENODEV, if the device is not operational.

Context
Interrupts disabled, ccw device lock held
int ccw_device_start_timeout(struct ccw_device * cdev, struct ccw1 * cpa, unsigned

long intparm, __u8 lpm, unsigned long flags, int expires)
start a s390 channel program with timeout

Parameters
struct ccw_device * cdev target ccw device
struct ccw1 * cpa logical start address of channel program
unsigned long intparm user specific interruption parameter; will be presented back to cdev‘s interrupt

handler. Allows a device driver to associate the interrupt with a particular I/O request.
__u8 lpm defines the channel path to be used for a specific I/O request. A value of 0 will make cio use

the opm.
unsigned long flags additional flags; defines the action to be performed for I/O processing.
int expires timeout value in jiffies
Description
Start a S/390 channel program. When the interrupt arrives, the IRQ handler is called, either immediately,
delayed (dev-end missing, or sense required) or never (no IRQ handler registered). This function notifies
the device driver if the channel program has not completed during the time specified by expires. If a
timeout occurs, the channel program is terminated via xsch, hsch or csch, and the device’s interrupt
handler will be called with an irb containing ERR_PTR(-ETIMEDOUT).
Return

0, if the operation was successful; -EBUSY, if the device is busy, or status pending; -EACCES, if
no path specified in lpm is operational; -ENODEV, if the device is not operational.

772 Chapter 28. Writing s390 channel device drivers

The kernel driver API manual, Release 4.13.0-rc4+

Context
Interrupts disabled, ccw device lock held
int ccw_device_halt(struct ccw_device * cdev, unsigned long intparm)

halt I/O request processing
Parameters
struct ccw_device * cdev target ccw device
unsigned long intparm interruption parameter; value is only used if no I/O is outstanding, otherwise

the intparm associated with the I/O request is returned
Description
ccw_device_halt() calls hsch on cdev‘s subchannel.
Return

0 on success, -ENODEV on device not operational, -EINVAL on invalid device state, -EBUSY on
device busy or interrupt pending.

Context
Interrupts disabled, ccw device lock held
int ccw_device_resume(struct ccw_device * cdev)

resume channel program execution
Parameters
struct ccw_device * cdev target ccw device
Description
ccw_device_resume() calls rsch on cdev‘s subchannel.
Return

0 on success, -ENODEV on device not operational, -EINVAL on invalid device state, -EBUSY on
device busy or interrupt pending.

Context
Interrupts disabled, ccw device lock held
struct ciw * ccw_device_get_ciw(struct ccw_device * cdev, __u32 ct)

Search for CIW command in extended sense data.
Parameters
struct ccw_device * cdev ccw device to inspect
__u32 ct command type to look for
Description
During SenseID, command information words (CIWs) describing special commands available to the device
may have been stored in the extended sense data. This function searches for CIWs of a specified command
type in the extended sense data.
Return

NULL if no extended sense data has been stored or if no CIW of the specified command type
could be found, else a pointer to the CIW of the specified command type.

__u8 ccw_device_get_path_mask(struct ccw_device * cdev)
get currently available paths

Parameters
struct ccw_device * cdev ccw device to be queried

28.2. The ccw bus 773

The kernel driver API manual, Release 4.13.0-rc4+

Return
0 if no subchannel for the device is available, else the mask of currently available paths for the
ccw device’s subchannel.

struct channel_path_desc * ccw_device_get_chp_desc(struct ccw_device * cdev, int chp_idx)
return newly allocated channel-path descriptor

Parameters
struct ccw_device * cdev device to obtain the descriptor for
int chp_idx index of the channel path
Description
On success return a newly allocated copy of the channel-path description data associated with the given
channel path. Return NULL on error.
void ccw_device_get_id(struct ccw_device * cdev, struct ccw_dev_id * dev_id)

obtain a ccw device id
Parameters
struct ccw_device * cdev device to obtain the id for
struct ccw_dev_id * dev_id where to fill in the values
int ccw_device_tm_start_key(struct ccw_device * cdev, struct tcw * tcw, unsigned long intparm,

u8 lpm, u8 key)
perform start function

Parameters
struct ccw_device * cdev ccw device on which to perform the start function
struct tcw * tcw transport-command word to be started
unsigned long intparm user defined parameter to be passed to the interrupt handler
u8 lpm mask of paths to use
u8 key storage key to use for storage access
Description
Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.
int ccw_device_tm_start_timeout_key(struct ccw_device * cdev, struct tcw * tcw, unsigned

long intparm, u8 lpm, u8 key, int expires)
perform start function

Parameters
struct ccw_device * cdev ccw device on which to perform the start function
struct tcw * tcw transport-command word to be started
unsigned long intparm user defined parameter to be passed to the interrupt handler
u8 lpm mask of paths to use
u8 key storage key to use for storage access
int expires time span in jiffies after which to abort request
Description
Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.
int ccw_device_tm_start(struct ccw_device * cdev, struct tcw * tcw, unsigned long intparm,

u8 lpm)
perform start function

774 Chapter 28. Writing s390 channel device drivers

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct ccw_device * cdev ccw device on which to perform the start function
struct tcw * tcw transport-command word to be started
unsigned long intparm user defined parameter to be passed to the interrupt handler
u8 lpm mask of paths to use
Description
Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.
int ccw_device_tm_start_timeout(struct ccw_device * cdev, struct tcw * tcw, unsigned

long intparm, u8 lpm, int expires)
perform start function

Parameters
struct ccw_device * cdev ccw device on which to perform the start function
struct tcw * tcw transport-command word to be started
unsigned long intparm user defined parameter to be passed to the interrupt handler
u8 lpm mask of paths to use
int expires time span in jiffies after which to abort request
Description
Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.
int ccw_device_get_mdc(struct ccw_device * cdev, u8 mask)

accumulate max data count
Parameters
struct ccw_device * cdev ccw device for which the max data count is accumulated
u8 mask mask of paths to use
Description
Return the number of 64K-bytes blocks all paths at least support for a transport command. Return values
<= 0 indicate failures.
int ccw_device_tm_intrg(struct ccw_device * cdev)

perform interrogate function
Parameters
struct ccw_device * cdev ccw device on which to perform the interrogate function
Description
Perform an interrogate function on the given ccw device. Return zero on success, non-zero otherwise.
void ccw_device_get_schid(struct ccw_device * cdev, struct subchannel_id * schid)

obtain a subchannel id
Parameters
struct ccw_device * cdev device to obtain the id for
struct subchannel_id * schid where to fill in the values

28.2. The ccw bus 775

The kernel driver API manual, Release 4.13.0-rc4+

28.2.3 The channel-measurement facility

The channel-measurement facility provides a means to collect measurement data which is made available
by the channel subsystem for each channel attached device.
struct cmbdata

channel measurement block data for user space
Definition

struct cmbdata {
__u64 size;
__u64 elapsed_time;
__u64 ssch_rsch_count;
__u64 sample_count;
__u64 device_connect_time;
__u64 function_pending_time;
__u64 device_disconnect_time;
__u64 control_unit_queuing_time;
__u64 device_active_only_time;
__u64 device_busy_time;
__u64 initial_command_response_time;

};

Members
size size of the stored data
elapsed_time time since last sampling
ssch_rsch_count number of ssch and rsch
sample_count number of samples
device_connect_time time of device connect
function_pending_time time of function pending
device_disconnect_time time of device disconnect
control_unit_queuing_time time of control unit queuing
device_active_only_time time of device active only
device_busy_time time of device busy (ext. format)
initial_command_response_time initial command response time (ext. format)
Description
All values are stored as 64 bit for simplicity, especially in 32 bit emulation mode. All time values are
normalized to nanoseconds. Currently, two formats are known, which differ by the size of this structure,
i.e. the last two members are only set when the extended channel measurement facility (first shipped in
z990 machines) is activated. Potentially, more fields could be added, which would result in a new ioctl
number.
int enable_cmf(struct ccw_device * cdev)

switch on the channel measurement for a specific device
Parameters
struct ccw_device * cdev The ccw device to be enabled
Description

Returns 0 for success or a negative error value.
Note

776 Chapter 28. Writing s390 channel device drivers

The kernel driver API manual, Release 4.13.0-rc4+

If this is called on a device for which channel measurement is already enabled a reset of the
measurement data is triggered.

Context
non-atomic
int disable_cmf(struct ccw_device * cdev)

switch off the channel measurement for a specific device
Parameters
struct ccw_device * cdev The ccw device to be disabled
Description

Returns 0 for success or a negative error value.
Context
non-atomic
u64 cmf_read(struct ccw_device * cdev, int index)

read one value from the current channel measurement block
Parameters
struct ccw_device * cdev the channel to be read
int index the index of the value to be read
Description
Returns the value read or 0 if the value cannot be read.
Context
any
int cmf_readall(struct ccw_device * cdev, struct cmbdata * data)

read the current channel measurement block
Parameters
struct ccw_device * cdev the channel to be read
struct cmbdata * data a pointer to a data block that will be filled
Description
Returns 0 on success, a negative error value otherwise.
Context
any

28.3 The ccwgroup bus

The ccwgroup bus only contains artificial devices, created by the user. Many networking devices (e.g.
qeth) are in fact composed of several ccw devices (like read, write and data channel for qeth). The
ccwgroup bus provides a mechanism to create a meta-device which contains those ccw devices as slave
devices and can be associated with the netdevice.

28.3.1 ccw group devices

struct ccwgroup_device
ccw group device

28.3. The ccwgroup bus 777

The kernel driver API manual, Release 4.13.0-rc4+

Definition

struct ccwgroup_device {
enum state;
unsigned int count;
struct device dev;
struct work_struct ungroup_work;
struct ccw_device * cdev;

};

Members
state online/offline state
count number of attached slave devices
dev embedded device structure
ungroup_work work to be done when a ccwgroup notifier has action type BUS_NOTIFY_UNBIND_DRIVER
cdev variable number of slave devices, allocated as needed
struct ccwgroup_driver

driver for ccw group devices
Definition

struct ccwgroup_driver {
int (* setup) (struct ccwgroup_device *);
void (* remove) (struct ccwgroup_device *);
int (* set_online) (struct ccwgroup_device *);
int (* set_offline) (struct ccwgroup_device *);
void (* shutdown) (struct ccwgroup_device *);
int (* prepare) (struct ccwgroup_device *);
void (* complete) (struct ccwgroup_device *);
int (* freeze) (struct ccwgroup_device *);
int (* thaw) (struct ccwgroup_device *);
int (* restore) (struct ccwgroup_device *);
struct device_driver driver;

};

Members
setup function called during device creation to setup the device
remove function called on remove
set_online function called when device is set online
set_offline function called when device is set offline
shutdown function called when device is shut down
prepare prepare for pm state transition
complete undo work done in prepare
freeze callback for freezing during hibernation snapshotting
thaw undo work done in freeze
restore callback for restoring after hibernation
driver embedded driver structure
int ccwgroup_set_online(struct ccwgroup_device * gdev)

enable a ccwgroup device
Parameters
struct ccwgroup_device * gdev target ccwgroup device

778 Chapter 28. Writing s390 channel device drivers

The kernel driver API manual, Release 4.13.0-rc4+

Description
This function attempts to put the ccwgroup device into the online state.
Return

0 on success and a negative error value on failure.
int ccwgroup_set_offline(struct ccwgroup_device * gdev)

disable a ccwgroup device
Parameters
struct ccwgroup_device * gdev target ccwgroup device
Description
This function attempts to put the ccwgroup device into the offline state.
Return

0 on success and a negative error value on failure.
int ccwgroup_create_dev(struct device * parent, struct ccwgroup_driver * gdrv, int num_devices,

const char * buf)
create and register a ccw group device

Parameters
struct device * parent parent device for the new device
struct ccwgroup_driver * gdrv driver for the new group device
int num_devices number of slave devices
const char * buf buffer containing comma separated bus ids of slave devices
Description
Create and register a new ccw group device as a child of parent. Slave devices are obtained from the list
of bus ids given in buf.
Return

0 on success and an error code on failure.
Context
non-atomic
int ccwgroup_driver_register(struct ccwgroup_driver * cdriver)

register a ccw group driver
Parameters
struct ccwgroup_driver * cdriver driver to be registered
Description
This function is mainly a wrapper around driver_register().
void ccwgroup_driver_unregister(struct ccwgroup_driver * cdriver)

deregister a ccw group driver
Parameters
struct ccwgroup_driver * cdriver driver to be deregistered
Description
This function is mainly a wrapper around driver_unregister().
int ccwgroup_probe_ccwdev(struct ccw_device * cdev)

probe function for slave devices

28.3. The ccwgroup bus 779

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct ccw_device * cdev ccw device to be probed
Description
This is a dummy probe function for ccw devices that are slave devices in a ccw group device.
Return

always 0
void ccwgroup_remove_ccwdev(struct ccw_device * cdev)

remove function for slave devices
Parameters
struct ccw_device * cdev ccw device to be removed
Description
This is a remove function for ccw devices that are slave devices in a ccw group device. It sets the ccw
device offline and also deregisters the embedding ccw group device.

28.4 Generic interfaces

Some interfaces are available to other drivers that do not necessarily have anything to do with the busses
described above, but still are indirectly using basic infrastructure in the common I/O layer. One example
is the support for adapter interrupts.
int register_adapter_interrupt(struct airq_struct * airq)

register adapter interrupt handler
Parameters
struct airq_struct * airq pointer to adapter interrupt descriptor
Description
Returns 0 on success, or -EINVAL.
void unregister_adapter_interrupt(struct airq_struct * airq)

unregister adapter interrupt handler
Parameters
struct airq_struct * airq pointer to adapter interrupt descriptor
struct airq_iv * airq_iv_create(unsigned long bits, unsigned long flags)

create an interrupt vector
Parameters
unsigned long bits number of bits in the interrupt vector
unsigned long flags allocation flags
Description
Returns a pointer to an interrupt vector structure
void airq_iv_release(struct airq_iv * iv)

release an interrupt vector
Parameters
struct airq_iv * iv pointer to interrupt vector structure
unsigned long airq_iv_alloc(struct airq_iv * iv, unsigned long num)

allocate irq bits from an interrupt vector

780 Chapter 28. Writing s390 channel device drivers

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct airq_iv * iv pointer to an interrupt vector structure
unsigned long num number of consecutive irq bits to allocate
Description
Returns the bit number of the first irq in the allocated block of irqs, or -1UL if no bit is available or the
AIRQ_IV_ALLOC flag has not been specified
void airq_iv_free(struct airq_iv * iv, unsigned long bit, unsigned long num)

free irq bits of an interrupt vector
Parameters
struct airq_iv * iv pointer to interrupt vector structure
unsigned long bit number of the first irq bit to free
unsigned long num number of consecutive irq bits to free
unsigned long airq_iv_scan(struct airq_iv * iv, unsigned long start, unsigned long end)

scan interrupt vector for non-zero bits
Parameters
struct airq_iv * iv pointer to interrupt vector structure
unsigned long start bit number to start the search
unsigned long end bit number to end the search
Description
Returns the bit number of the next non-zero interrupt bit, or -1UL if the scan completed without finding
any more any non-zero bits.

28.4. Generic interfaces 781

The kernel driver API manual, Release 4.13.0-rc4+

782 Chapter 28. Writing s390 channel device drivers

CHAPTER

TWENTYNINE

VME DEVICE DRIVERS

29.1 Driver registration

As with other subsystems within the Linux kernel, VME device drivers register with the VME subsystem,
typically called from the devices init routine. This is achieved via a call to vme_register_driver().
A pointer to a structure of type struct vme_driver must be provided to the registration function. Along
with the maximum number of devices your driver is able to support.
At the minimum, the ‘.name’, ‘.match’ and ‘.probe’ elements of struct vme_driver should be correctly
set. The ‘.name’ element is a pointer to a string holding the device driver’s name.
The ‘.match’ function allows control over which VME devices should be registered with the driver. The
match function should return 1 if a device should be probed and 0 otherwise. This example match function
(from vme_user.c) limits the number of devices probed to one:

#define USER_BUS_MAX 1
...
static int vme_user_match(struct vme_dev *vdev)
{

if (vdev->id.num >= USER_BUS_MAX)
return 0;

return 1;
}

The ‘.probe’ element should contain a pointer to the probe routine. The probe routine is passed a struct
vme_dev pointer as an argument.
Here, the ‘num’ field refers to the sequential device ID for this specific driver. The bridge number (or bus
number) can be accessed using dev->bridge->num.
A function is also provided to unregister the driver from the VME core called vme_unregister_driver()
and should usually be called from the device driver’s exit routine.

29.2 Resource management

Once a driver has registered with the VME core the provided match routine will be called the number of
times specified during the registration. If a match succeeds, a non-zero value should be returned. A zero
return value indicates failure. For all successful matches, the probe routine of the corresponding driver
is called. The probe routine is passed a pointer to the devices device structure. This pointer should be
saved, it will be required for requesting VME resources.
The driver can request ownership of one or more master windows (vme_master_request()), slave win-
dows (vme_slave_request()) and/or dma channels (vme_dma_request()). Rather than allowing the de-
vice driver to request a specific window or DMA channel (which may be used by a different driver) the API
allows a resource to be assigned based on the required attributes of the driver in question. For slave win-
dows these attributes are split into the VME address spaces that need to be accessed in ‘aspace’ and VME

783

The kernel driver API manual, Release 4.13.0-rc4+

bus cycle types required in ‘cycle’. Master windows add a further set of attributes in ‘width’ specifying the
required data transfer widths. These attributes are defined as bitmasks and as such any combination of
the attributes can be requested for a single window, the core will assign a window that meets the require-
ments, returning a pointer of type vme_resource that should be used to identify the allocated resource
when it is used. For DMA controllers, the request function requires the potential direction of any transfers
to be provided in the route attributes. This is typically VME-to-MEM and/or MEM-to-VME, though some
hardware can support VME-to-VME and MEM-to-MEM transfers as well as test pattern generation. If an
unallocated window fitting the requirements can not be found a NULL pointer will be returned.
Functions are also provided to free window allocations once they are no longer required. These functions
(vme_master_free(), vme_slave_free() and vme_dma_free()) should be passed the pointer to the re-
source provided during resource allocation.

29.3 Master windows

Master windows provide access from the local processor[s] out onto the VME bus. The number of windows
available and the available access modes is dependent on the underlying chipset. A window must be
configured before it can be used.

29.3.1 Master window configuration

Once a master window has been assigned vme_master_set() can be used to configure it and
vme_master_get() to retrieve the current settings. The address spaces, transfer widths and cycle types
are the same as described under resource management, however some of the options are mutually ex-
clusive. For example, only one address space may be specified.

29.3.2 Master window access

The function vme_master_read() can be used to read from and vme_master_write() used to write to
configured master windows.
In addition to simple reads and writes, vme_master_rmw() is provided to do a read-modify-write transac-
tion. Parts of a VME window can also be mapped into user space memory using vme_master_mmap().

29.4 Slave windows

Slave windows provide devices on the VME bus access into mapped portions of the local memory. The
number of windows available and the access modes that can be used is dependent on the underlying
chipset. A window must be configured before it can be used.

29.4.1 Slave window configuration

Once a slave window has been assigned vme_slave_set() can be used to configure it and
vme_slave_get() to retrieve the current settings.
The address spaces, transfer widths and cycle types are the same as described under resource manage-
ment, however some of the options are mutually exclusive. For example, only one address space may be
specified.

784 Chapter 29. VME Device Drivers

The kernel driver API manual, Release 4.13.0-rc4+

29.4.2 Slave window buffer allocation

Functions are provided to allow the user to allocate (vme_alloc_consistent()) and free
(vme_free_consistent()) contiguous buffers which will be accessible by the VME bridge. These
functions do not have to be used, other methods can be used to allocate a buffer, though care must be
taken to ensure that they are contiguous and accessible by the VME bridge.

29.4.3 Slave window access

Slave windows map local memory onto the VME bus, the standard methods for accessing memory should
be used.

29.5 DMA channels

The VME DMA transfer provides the ability to run link-list DMA transfers. The API introduces the concept
of DMA lists. Each DMA list is a link-list which can be passed to a DMA controller. Multiple lists can be
created, extended, executed, reused and destroyed.

29.5.1 List Management

The function vme_new_dma_list() is provided to create and vme_dma_list_free() to destroy DMA lists.
Execution of a list will not automatically destroy the list, thus enabling a list to be reused for repetitive
tasks.

29.5.2 List Population

An item can be added to a list using vme_dma_list_add() (the source and destination attributes need to
be created before calling this function, this is covered under “Transfer Attributes”).

Note:

The detailed attributes of the transfers source and destination are not checked until an entry is added
to a DMA list, the request for a DMA channel purely checks the directions in which the controller is
expected to transfer data. As a result it is possible for this call to return an error, for example if the
source or destination is in an unsupported VME address space.

29.5.3 Transfer Attributes

The attributes for the source and destination are handled separately from adding an item to a list. This
is due to the diverse attributes required for each type of source and destination. There are functions to
create attributes for PCI, VME and pattern sources and destinations (where appropriate):
• PCI source or destination: vme_dma_pci_attribute()
• VME source or destination: vme_dma_vme_attribute()
• Pattern source: vme_dma_pattern_attribute()

The function vme_dma_free_attribute() should be used to free an attribute.

29.5. DMA channels 785

The kernel driver API manual, Release 4.13.0-rc4+

29.5.4 List Execution

The function vme_dma_list_exec() queues a list for execution and will return once the list has been
executed.

29.6 Interrupts

The VME API provides functions to attach and detach callbacks to specific VME level and status ID combi-
nations and for the generation of VME interrupts with specific VME level and status IDs.

29.6.1 Attaching Interrupt Handlers

The function vme_irq_request() can be used to attach and vme_irq_free() to free a specific VME level
and status ID combination. Any given combination can only be assigned a single callback function. A
void pointer parameter is provided, the value of which is passed to the callback function, the use of this
pointer is user undefined. The callback parameters are as follows. Care must be taken in writing a callback
function, callback functions run in interrupt context:

void callback(int level, int statid, void *priv);

29.6.2 Interrupt Generation

The function vme_irq_generate() can be used to generate a VME interrupt at a given VME level and VME
status ID.

29.7 Location monitors

The VME API provides the following functionality to configure the location monitor.

29.7.1 Location Monitor Management

The function vme_lm_request() is provided to request the use of a block of location monitors and
vme_lm_free() to free them after they are no longer required. Each block may provide a number of
location monitors, monitoring adjacent locations. The function vme_lm_count() can be used to deter-
mine how many locations are provided.

29.7.2 Location Monitor Configuration

Once a bank of location monitors has been allocated, the function vme_lm_set() is provided to configure
the location and mode of the location monitor. The function vme_lm_get() can be used to retrieve existing
settings.

29.7.3 Location Monitor Use

The function vme_lm_attach() enables a callback to be attached and vme_lm_detach() allows on to be
detached from each location monitor location. Each location monitor can monitor a number of adjacent
locations. The callback function is declared as follows.

void callback(void *data);

786 Chapter 29. VME Device Drivers

The kernel driver API manual, Release 4.13.0-rc4+

29.8 Slot Detection

The function vme_slot_num() returns the slot ID of the provided bridge.

29.9 Bus Detection

The function vme_bus_num() returns the bus ID of the provided bridge.

29.10 VME API

struct vme_dev
Structure representing a VME device

Definition

struct vme_dev {
int num;
struct vme_bridge * bridge;
struct device dev;
struct list_head drv_list;
struct list_head bridge_list;

};

Members
num The device number
bridge Pointer to the bridge device this device is on
dev Internal device structure
drv_list List of devices (per driver)
bridge_list List of devices (per bridge)
struct vme_driver

Structure representing a VME driver
Definition

struct vme_driver {
const char * name;
int (* match) (struct vme_dev *);
int (* probe) (struct vme_dev *);
int (* remove) (struct vme_dev *);
struct device_driver driver;
struct list_head devices;

};

Members
name Driver name, should be unique among VME drivers and usually the same as the module name.
match Callback used to determine whether probe should be run.
probe Callback for device binding, called when new device is detected.
remove Callback, called on device removal.
driver Underlying generic device driver structure.
devices List of VME devices (struct vme_dev) associated with this driver.

29.8. Slot Detection 787

The kernel driver API manual, Release 4.13.0-rc4+

void * vme_alloc_consistent(struct vme_resource * resource, size_t size, dma_addr_t * dma)
Allocate contiguous memory.

Parameters
struct vme_resource * resource Pointer to VME resource.
size_t size Size of allocation required.
dma_addr_t * dma Pointer to variable to store physical address of allocation.
Description
Allocate a contiguous block of memory for use by the driver. This is used to create the buffers for the
slave windows.
Return
Virtual address of allocation on success, NULL on failure.
void vme_free_consistent(struct vme_resource * resource, size_t size, void * vaddr,

dma_addr_t dma)
Free previously allocated memory.

Parameters
struct vme_resource * resource Pointer to VME resource.
size_t size Size of allocation to free.
void * vaddr Virtual address of allocation.
dma_addr_t dma Physical address of allocation.
Description
Free previously allocated block of contiguous memory.
size_t vme_get_size(struct vme_resource * resource)

Helper function returning size of a VME window
Parameters
struct vme_resource * resource Pointer to VME slave or master resource.
Description
Determine the size of the VME window provided. This is a helper function, wrappering the call to
vme_master_get or vme_slave_get depending on the type of window resource handed to it.
Return
Size of the window on success, zero on failure.
struct vme_resource * vme_slave_request(struct vme_dev * vdev, u32 address, u32 cycle)

Request a VME slave window resource.
Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver instance.
u32 address Required VME address space.
u32 cycle Required VME data transfer cycle type.
Description
Request use of a VME window resource capable of being set for the requested address space and data
transfer cycle.
Return
Pointer to VME resource on success, NULL on failure.

788 Chapter 29. VME Device Drivers

The kernel driver API manual, Release 4.13.0-rc4+

int vme_slave_set(struct vme_resource * resource, int enabled, unsigned long long vme_base, un-
signed long long size, dma_addr_t buf_base, u32 aspace, u32 cycle)

Set VME slave window configuration.
Parameters
struct vme_resource * resource Pointer to VME slave resource.
int enabled State to which the window should be configured.
unsigned long long vme_base Base address for the window.
unsigned long long size Size of the VME window.
dma_addr_t buf_base Based address of buffer used to provide VME slave window storage.
u32 aspace VME address space for the VME window.
u32 cycle VME data transfer cycle type for the VME window.
Description
Set configuration for provided VME slave window.
Return
Zero on success, -EINVAL if operation is not supported on this device, if an invalid resource has

been provided or invalid attributes are provided. Hardware specific errors may also be returned.
int vme_slave_get(struct vme_resource * resource, int * enabled, unsigned long long * vme_base,

unsigned long long * size, dma_addr_t * buf_base, u32 * aspace, u32 * cycle)
Retrieve VME slave window configuration.

Parameters
struct vme_resource * resource Pointer to VME slave resource.
int * enabled Pointer to variable for storing state.
unsigned long long * vme_base Pointer to variable for storing window base address.
unsigned long long * size Pointer to variable for storing window size.
dma_addr_t * buf_base Pointer to variable for storing slave buffer base address.
u32 * aspace Pointer to variable for storing VME address space.
u32 * cycle Pointer to variable for storing VME data transfer cycle type.
Description
Return configuration for provided VME slave window.
Return
Zero on success, -EINVAL if operation is not supported on this device or if an invalid resource has

been provided.
void vme_slave_free(struct vme_resource * resource)

Free VME slave window
Parameters
struct vme_resource * resource Pointer to VME slave resource.
Description
Free the provided slave resource so that it may be reallocated.
struct vme_resource * vme_master_request(struct vme_dev * vdev, u32 address, u32 cycle,

u32 dwidth)
Request a VME master window resource.

Parameters

29.10. VME API 789

The kernel driver API manual, Release 4.13.0-rc4+

struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver instance.
u32 address Required VME address space.
u32 cycle Required VME data transfer cycle type.
u32 dwidth Required VME data transfer width.
Description
Request use of a VME window resource capable of being set for the requested address space, data transfer
cycle and width.
Return
Pointer to VME resource on success, NULL on failure.
int vme_master_set(struct vme_resource * resource, int enabled, unsigned long long vme_base, un-

signed long long size, u32 aspace, u32 cycle, u32 dwidth)
Set VME master window configuration.

Parameters
struct vme_resource * resource Pointer to VME master resource.
int enabled State to which the window should be configured.
unsigned long long vme_base Base address for the window.
unsigned long long size Size of the VME window.
u32 aspace VME address space for the VME window.
u32 cycle VME data transfer cycle type for the VME window.
u32 dwidth VME data transfer width for the VME window.
Description
Set configuration for provided VME master window.
Return
Zero on success, -EINVAL if operation is not supported on this device, if an invalid resource has

been provided or invalid attributes are provided. Hardware specific errors may also be returned.
int vme_master_get(struct vme_resource * resource, int * enabled, unsigned long long * vme_base,

unsigned long long * size, u32 * aspace, u32 * cycle, u32 * dwidth)
Retrieve VME master window configuration.

Parameters
struct vme_resource * resource Pointer to VME master resource.
int * enabled Pointer to variable for storing state.
unsigned long long * vme_base Pointer to variable for storing window base address.
unsigned long long * size Pointer to variable for storing window size.
u32 * aspace Pointer to variable for storing VME address space.
u32 * cycle Pointer to variable for storing VME data transfer cycle type.
u32 * dwidth Pointer to variable for storing VME data transfer width.
Description
Return configuration for provided VME master window.
Return
Zero on success, -EINVAL if operation is not supported on this device or if an invalid resource has

been provided.

790 Chapter 29. VME Device Drivers

The kernel driver API manual, Release 4.13.0-rc4+

ssize_t vme_master_read(struct vme_resource * resource, void * buf, size_t count, loff_t offset)
Read data from VME space into a buffer.

Parameters
struct vme_resource * resource Pointer to VME master resource.
void * buf Pointer to buffer where data should be transferred.
size_t count Number of bytes to transfer.
loff_t offset Offset into VME master window at which to start transfer.
Description
Perform read of count bytes of data from location on VME bus which maps into the VME master window
at offset to buf.
Return
Number of bytes read, -EINVAL if resource is not a VME master resource or read operation is not

supported. -EFAULT returned if invalid offset is provided. Hardware specific errors may also be re-
turned.

ssize_t vme_master_write(struct vme_resource * resource, void * buf, size_t count, loff_t offset)
Write data out to VME space from a buffer.

Parameters
struct vme_resource * resource Pointer to VME master resource.
void * buf Pointer to buffer holding data to transfer.
size_t count Number of bytes to transfer.
loff_t offset Offset into VME master window at which to start transfer.
Description
Perform write of count bytes of data from buf to location on VME bus which maps into the VME master
window at offset.
Return
Number of bytes written, -EINVAL if resource is not a VME master resource or write operation is

not supported. -EFAULT returned if invalid offset is provided. Hardware specific errors may also be
returned.

unsigned int vme_master_rmw(struct vme_resource * resource, unsigned int mask, unsigned
int compare, unsigned int swap, loff_t offset)

Perform read-modify-write cycle.
Parameters
struct vme_resource * resource Pointer to VME master resource.
unsigned int mask Bits to be compared and swapped in operation.
unsigned int compare Bits to be compared with data read from offset.
unsigned int swap Bits to be swapped in data read from offset.
loff_t offset Offset into VME master window at which to perform operation.
Description
Perform read-modify-write cycle on provided location: - Location on VME bus is read. - Bits selected by
mask are compared with compare. - Where a selected bit matches that in compare and are selected in
swap, the bit is swapped. - Result written back to location on VME bus.
Return

29.10. VME API 791

The kernel driver API manual, Release 4.13.0-rc4+

Bytes written on success, -EINVAL if resource is not a VME master resource or RMW operation is
not supported. Hardware specific errors may also be returned.

int vme_master_mmap(struct vme_resource * resource, struct vm_area_struct * vma)
Mmap region of VME master window.

Parameters
struct vme_resource * resource Pointer to VME master resource.
struct vm_area_struct * vma Pointer to definition of user mapping.
Description
Memory map a region of the VME master window into user space.
Return
Zero on success, -EINVAL if resource is not a VME master resource or -EFAULT if map exceeds win-

dow size. Other generic mmap errors may also be returned.
void vme_master_free(struct vme_resource * resource)

Free VME master window
Parameters
struct vme_resource * resource Pointer to VME master resource.
Description
Free the provided master resource so that it may be reallocated.
struct vme_resource * vme_dma_request(struct vme_dev * vdev, u32 route)

Request a DMA controller.
Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver instance.
u32 route Required src/destination combination.
Description
Request a VME DMA controller with capability to perform transfers bewteen requested source/destination
combination.
Return
Pointer to VME DMA resource on success, NULL on failure.
struct vme_dma_list * vme_new_dma_list(struct vme_resource * resource)

Create new VME DMA list.
Parameters
struct vme_resource * resource Pointer to VME DMA resource.
Description
Create a new VME DMA list. It is the responsibility of the user to free the list once it is no longer required
with vme_dma_list_free().
Return
Pointer to new VME DMA list, NULL on allocation failure or invalid VME DMA resource.
struct vme_dma_attr * vme_dma_pattern_attribute(u32 pattern, u32 type)

Create “Pattern” type VME DMA list attribute.
Parameters
u32 pattern Value to use used as pattern
u32 type Type of pattern to be written.

792 Chapter 29. VME Device Drivers

The kernel driver API manual, Release 4.13.0-rc4+

Description
Create VME DMA list attribute for pattern generation. It is the responsibility of the user to free used
attributes using vme_dma_free_attribute().
Return
Pointer to VME DMA attribute, NULL on failure.
struct vme_dma_attr * vme_dma_pci_attribute(dma_addr_t address)

Create “PCI” type VME DMA list attribute.
Parameters
dma_addr_t address PCI base address for DMA transfer.
Description
Create VME DMA list attribute pointing to a location on PCI for DMA transfers. It is the responsibility of the
user to free used attributes using vme_dma_free_attribute().
Return
Pointer to VME DMA attribute, NULL on failure.
struct vme_dma_attr * vme_dma_vme_attribute(unsigned long long address, u32 aspace,

u32 cycle, u32 dwidth)
Create “VME” type VME DMA list attribute.

Parameters
unsigned long long address VME base address for DMA transfer.
u32 aspace VME address space to use for DMA transfer.
u32 cycle VME bus cycle to use for DMA transfer.
u32 dwidth VME data width to use for DMA transfer.
Description
Create VME DMA list attribute pointing to a location on the VME bus for DMA transfers. It is the responsi-
bility of the user to free used attributes using vme_dma_free_attribute().
Return
Pointer to VME DMA attribute, NULL on failure.
void vme_dma_free_attribute(struct vme_dma_attr * attributes)

Free DMA list attribute.
Parameters
struct vme_dma_attr * attributes Pointer to DMA list attribute.
Description
Free VME DMA list attribute. VME DMA list attributes can be safely freed once vme_dma_list_add() has
returned.
int vme_dma_list_add(struct vme_dma_list * list, struct vme_dma_attr * src, struct vme_dma_attr

* dest, size_t count)
Add enty to a VME DMA list.

Parameters
struct vme_dma_list * list Pointer to VME list.
struct vme_dma_attr * src Pointer to DMA list attribute to use as source.
struct vme_dma_attr * dest Pointer to DMA list attribute to use as destination.
size_t count Number of bytes to transfer.

29.10. VME API 793

The kernel driver API manual, Release 4.13.0-rc4+

Description
Add an entry to the provided VME DMA list. Entry requires pointers to source and destination DMA at-
tributes and a count.
Please note, the attributes supported as source and destinations for transfers are hardware dependent.
Return
Zero on success, -EINVAL if operation is not supported on this device or if the link list has already

been submitted for execution. Hardware specific errors also possible.
int vme_dma_list_exec(struct vme_dma_list * list)

Queue a VME DMA list for execution.
Parameters
struct vme_dma_list * list Pointer to VME list.
Description
Queue the provided VME DMA list for execution. The call will return once the list has been executed.
Return
Zero on success, -EINVAL if operation is not supported on this device. Hardware specific errors

also possible.
int vme_dma_list_free(struct vme_dma_list * list)

Free a VME DMA list.
Parameters
struct vme_dma_list * list Pointer to VME list.
Description
Free the provided DMA list and all its entries.
Return
Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource is still in use. Hardware

specific errors also possible.
int vme_dma_free(struct vme_resource * resource)

Free a VME DMA resource.
Parameters
struct vme_resource * resource Pointer to VME DMA resource.
Description
Free the provided DMA resource so that it may be reallocated.
Return
Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource is still active.
int vme_irq_request(struct vme_dev * vdev, int level, int statid, void (*callback) (int, int, void *,

void * priv_data)
Request a specific VME interrupt.

Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver instance.
int level Interrupt priority being requested.
int statid Interrupt vector being requested.
void (*)(int,int,void *) callback Pointer to callback function called when VME interrupt/vector re-

ceived.

794 Chapter 29. VME Device Drivers

The kernel driver API manual, Release 4.13.0-rc4+

void * priv_data Generic pointer that will be passed to the callback function.
Description
Request callback to be attached as a handler for VME interrupts with provided level and statid.
Return
Zero on success, -EINVAL on invalid vme device, level or if the function is not supported, -EBUSY

if the level/statid combination is already in use. Hardware specific errors also possible.
void vme_irq_free(struct vme_dev * vdev, int level, int statid)

Free a VME interrupt.
Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver instance.
int level Interrupt priority of interrupt being freed.
int statid Interrupt vector of interrupt being freed.
Description
Remove previously attached callback from VME interrupt priority/vector.
int vme_irq_generate(struct vme_dev * vdev, int level, int statid)

Generate VME interrupt.
Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver instance.
int level Interrupt priority at which to assert the interrupt.
int statid Interrupt vector to associate with the interrupt.
Description
Generate a VME interrupt of the provided level and with the provided statid.
Return
Zero on success, -EINVAL on invalid vme device, level or if the function is not supported. Hard-

ware specific errors also possible.
struct vme_resource * vme_lm_request(struct vme_dev * vdev)

Request a VME location monitor
Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver instance.
Description
Allocate a location monitor resource to the driver. A location monitor allows the driver to monitor accesses
to a contiguous number of addresses on the VME bus.
Return
Pointer to a VME resource on success or NULL on failure.
int vme_lm_count(struct vme_resource * resource)

Determine number of VME Addresses monitored
Parameters
struct vme_resource * resource Pointer to VME location monitor resource.
Description
The number of contiguous addresses monitored is hardware dependent. Return the number of contiguous
addresses monitored by the location monitor.
Return

29.10. VME API 795

The kernel driver API manual, Release 4.13.0-rc4+

Count of addresses monitored or -EINVAL when provided with an invalid location monitor re-
source.

int vme_lm_set(struct vme_resource * resource, unsigned long long lm_base, u32 aspace,
u32 cycle)

Configure location monitor
Parameters
struct vme_resource * resource Pointer to VME location monitor resource.
unsigned long long lm_base Base address to monitor.
u32 aspace VME address space to monitor.
u32 cycle VME bus cycle type to monitor.
Description
Set the base address, address space and cycle type of accesses to be monitored by the location monitor.
Return
Zero on success, -EINVAL when provided with an invalid location monitor resource or function is

not supported. Hardware specific errors may also be returned.
int vme_lm_get(struct vme_resource * resource, unsigned long long * lm_base, u32 * aspace, u32

* cycle)
Retrieve location monitor settings

Parameters
struct vme_resource * resource Pointer to VME location monitor resource.
unsigned long long * lm_base Pointer used to output the base address monitored.
u32 * aspace Pointer used to output the address space monitored.
u32 * cycle Pointer used to output the VME bus cycle type monitored.
Description
Retrieve the base address, address space and cycle type of accesses to be monitored by the location
monitor.
Return
Zero on success, -EINVAL when provided with an invalid location monitor resource or function is

not supported. Hardware specific errors may also be returned.
int vme_lm_attach(struct vme_resource * resource, int monitor, void (*callback) (void *, void * data)

Provide callback for location monitor address
Parameters
struct vme_resource * resource Pointer to VME location monitor resource.
int monitor Offset to which callback should be attached.
void (*)(void *) callback Pointer to callback function called when triggered.
void * data Generic pointer that will be passed to the callback function.
Description
Attach a callback to the specificed offset into the locationmonitors monitored addresses. A generic pointer
is provided to allow data to be passed to the callback when called.
Return
Zero on success, -EINVAL when provided with an invalid location monitor resource or function is

not supported. Hardware specific errors may also be returned.

796 Chapter 29. VME Device Drivers

The kernel driver API manual, Release 4.13.0-rc4+

int vme_lm_detach(struct vme_resource * resource, int monitor)
Remove callback for location monitor address

Parameters
struct vme_resource * resource Pointer to VME location monitor resource.
int monitor Offset to which callback should be removed.
Description
Remove the callback associated with the specificed offset into the location monitors monitored addresses.
Return
Zero on success, -EINVAL when provided with an invalid location monitor resource or function is

not supported. Hardware specific errors may also be returned.
void vme_lm_free(struct vme_resource * resource)

Free allocated VME location monitor
Parameters
struct vme_resource * resource Pointer to VME location monitor resource.
Description
Free allocation of a VME location monitor.
WARNING: This function currently expects that any callbacks that have been attached to the lo-

cation monitor have been removed.
Return
Zero on success, -EINVAL when provided with an invalid location monitor resource.
int vme_slot_num(struct vme_dev * vdev)

Retrieve slot ID
Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver instance.
Description
Retrieve the slot ID associated with the provided VME device.
Return
The slot ID on success, -EINVAL if VME bridge cannot be determined or the function is not sup-

ported. Hardware specific errors may also be returned.
int vme_bus_num(struct vme_dev * vdev)

Retrieve bus number
Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver instance.
Description
Retrieve the bus enumeration associated with the provided VME device.
Return
The bus number on success, -EINVAL if VME bridge cannot be determined.
int vme_register_driver(struct vme_driver * drv, unsigned int ndevs)

Register a VME driver
Parameters
struct vme_driver * drv Pointer to VME driver structure to register.
unsigned int ndevs Maximum number of devices to allow to be enumerated.

29.10. VME API 797

The kernel driver API manual, Release 4.13.0-rc4+

Description
Register a VME device driver with the VME subsystem.
Return
Zero on success, error value on registration failure.
void vme_unregister_driver(struct vme_driver * drv)

Unregister a VME driver
Parameters
struct vme_driver * drv Pointer to VME driver structure to unregister.
Description
Unregister a VME device driver from the VME subsystem.

798 Chapter 29. VME Device Drivers

CHAPTER

THIRTY

LINUX 802.11 DRIVER DEVELOPER’S GUIDE

30.1 Introduction

Explaining wireless 802.11 networking in the Linux kernel
Copyright 2007-2009 Johannes Berg
These books attempt to give a description of the various subsystems that play a role in 802.11 wireless
networking in Linux. Since these books are for kernel developers they attempts to document the structures
and functions used in the kernel as well as giving a higher-level overview.
The reader is expected to be familiar with the 802.11 standard as published by the IEEE in 802.11-2007
(or possibly later versions). References to this standard will be given as “802.11-2007 8.1.5”.

30.2 cfg80211 subsystem

cfg80211 is the configuration API for 802.11 devices in Linux. It bridges userspace and drivers, and offers
some utility functionality associated with 802.11. cfg80211 must, directly or indirectly via mac80211,
be used by all modern wireless drivers in Linux, so that they offer a consistent API through nl80211.
For backward compatibility, cfg80211 also offers wireless extensions to userspace, but hides them from
drivers completely.
Additionally, cfg80211 contains code to help enforce regulatory spectrum use restrictions.

30.2.1 Device registration

In order for a driver to use cfg80211, it must register the hardware device with cfg80211. This happens
through a number of hardware capability structs described below.
The fundamental structure for each device is the ‘wiphy’, of which each instance describes a physical
wireless device connected to the system. Each such wiphy can have zero, one, or many virtual interfaces
associated with it, which need to be identified as such by pointing the network interface’s ieee80211_ptr
pointer to a struct wireless_dev which further describes the wireless part of the interface, normally this
struct is embedded in the network interface’s private data area. Drivers can optionally allow creating or
destroying virtual interfaces on the fly, but without at least one or the ability to create some the wireless
device isn’t useful.
Each wiphy structure contains device capability information, and also has a pointer to the various opera-
tions the driver offers. The definitions and structures here describe these capabilities in detail.
enum ieee80211_channel_flags

channel flags
Constants
IEEE80211_CHAN_DISABLED This channel is disabled.
IEEE80211_CHAN_NO_IR do not initiate radiation, this includes sending probe requests or beaconing.

799

The kernel driver API manual, Release 4.13.0-rc4+

IEEE80211_CHAN_RADAR Radar detection is required on this channel.
IEEE80211_CHAN_NO_HT40PLUS extension channel above this channel is not permitted.
IEEE80211_CHAN_NO_HT40MINUS extension channel below this channel is not permitted.
IEEE80211_CHAN_NO_OFDM OFDM is not allowed on this channel.
IEEE80211_CHAN_NO_80MHZ If the driver supports 80 MHz on the band, this flag indicates that an 80 MHz

channel cannot use this channel as the control or any of the secondary channels. This may be due
to the driver or due to regulatory bandwidth restrictions.

IEEE80211_CHAN_NO_160MHZ If the driver supports 160 MHz on the band, this flag indicates that an 160
MHz channel cannot use this channel as the control or any of the secondary channels. This may be
due to the driver or due to regulatory bandwidth restrictions.

IEEE80211_CHAN_INDOOR_ONLY see NL80211_FREQUENCY_ATTR_INDOOR_ONLY
IEEE80211_CHAN_IR_CONCURRENT see NL80211_FREQUENCY_ATTR_IR_CONCURRENT
IEEE80211_CHAN_NO_20MHZ 20 MHz bandwidth is not permitted on this channel.
IEEE80211_CHAN_NO_10MHZ 10 MHz bandwidth is not permitted on this channel.
Description
Channel flags set by the regulatory control code.
struct ieee80211_channel

channel definition
Definition

struct ieee80211_channel {
enum nl80211_band band;
u16 center_freq;
u16 hw_value;
u32 flags;
int max_antenna_gain;
int max_power;
int max_reg_power;
bool beacon_found;
u32 orig_flags;
int orig_mag;
int orig_mpwr;
enum nl80211_dfs_state dfs_state;
unsigned long dfs_state_entered;
unsigned int dfs_cac_ms;

};

Members
band band this channel belongs to.
center_freq center frequency in MHz
hw_value hardware-specific value for the channel
flags channel flags from enum ieee80211_channel_flags.
max_antenna_gain maximum antenna gain in dBi
max_power maximum transmission power (in dBm)
max_reg_power maximum regulatory transmission power (in dBm)
beacon_found helper to regulatory code to indicate when a beacon has been found on this channel. Use

regulatory_hint_found_beacon() to enable this, this is useful only on 5 GHz band.
orig_flags channel flags at registration time, used by regulatory code to support devices with additional

restrictions

800 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

orig_mag internal use
orig_mpwr internal use
dfs_state current state of this channel. Only relevant if radar is required on this channel.
dfs_state_entered timestamp (jiffies) when the dfs state was entered.
dfs_cac_ms DFS CAC time in milliseconds, this is valid for DFS channels.
Description
This structure describes a single channel for use with cfg80211.
enum ieee80211_rate_flags

rate flags
Constants
IEEE80211_RATE_SHORT_PREAMBLE Hardware can send with short preamble on this bitrate; only relevant

in 2.4GHz band and with CCK rates.
IEEE80211_RATE_MANDATORY_A This bitrate is a mandatory rate when used with 802.11a (on the 5 GHz

band); filled by the core code when registering the wiphy.
IEEE80211_RATE_MANDATORY_B This bitrate is a mandatory rate when used with 802.11b (on the 2.4 GHz

band); filled by the core code when registering the wiphy.
IEEE80211_RATE_MANDATORY_G This bitrate is a mandatory rate when used with 802.11g (on the 2.4 GHz

band); filled by the core code when registering the wiphy.
IEEE80211_RATE_ERP_G This is an ERP rate in 802.11g mode.
IEEE80211_RATE_SUPPORTS_5MHZ Rate can be used in 5 MHz mode
IEEE80211_RATE_SUPPORTS_10MHZ Rate can be used in 10 MHz mode
Description
Hardware/specification flags for rates. These are structured in a way that allows using the same bitrate
structure for different bands/PHY modes.
struct ieee80211_rate

bitrate definition
Definition

struct ieee80211_rate {
u32 flags;
u16 bitrate;
u16 hw_value;
u16 hw_value_short;

};

Members
flags rate-specific flags
bitrate bitrate in units of 100 Kbps
hw_value driver/hardware value for this rate
hw_value_short driver/hardware value for this rate when short preamble is used
Description
This structure describes a bitrate that an 802.11 PHY can operate with. The two values hw_value and
hw_value_short are only for driver use when pointers to this structure are passed around.
struct ieee80211_sta_ht_cap

STA’s HT capabilities

30.2. cfg80211 subsystem 801

The kernel driver API manual, Release 4.13.0-rc4+

Definition

struct ieee80211_sta_ht_cap {
u16 cap;
bool ht_supported;
u8 ampdu_factor;
u8 ampdu_density;
struct ieee80211_mcs_info mcs;

};

Members
cap HT capabilities map as described in 802.11n spec
ht_supported is HT supported by the STA
ampdu_factor Maximum A-MPDU length factor
ampdu_density Minimum A-MPDU spacing
mcs Supported MCS rates
Description
This structure describes most essential parameters needed to describe 802.11n HT capabilities for an STA.

struct ieee80211_supported_band
frequency band definition

Definition

struct ieee80211_supported_band {
struct ieee80211_channel * channels;
struct ieee80211_rate * bitrates;
enum nl80211_band band;
int n_channels;
int n_bitrates;
struct ieee80211_sta_ht_cap ht_cap;
struct ieee80211_sta_vht_cap vht_cap;

};

Members
channels Array of channels the hardware can operate in in this band.
bitrates Array of bitrates the hardware can operate with in this band. Must be sorted to give a valid

“supported rates” IE, i.e. CCK rates first, then OFDM.
band the band this structure represents
n_channels Number of channels in channels
n_bitrates Number of bitrates in bitrates
ht_cap HT capabilities in this band
vht_cap VHT capabilities in this band
Description
This structure describes a frequency band a wiphy is able to operate in.
enum cfg80211_signal_type

signal type
Constants
CFG80211_SIGNAL_TYPE_NONE no signal strength information available
CFG80211_SIGNAL_TYPE_MBM signal strength in mBm (100*dBm)

802 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

CFG80211_SIGNAL_TYPE_UNSPEC signal strength, increasing from 0 through 100
enum wiphy_params_flags

set_wiphy_params bitfield values
Constants
WIPHY_PARAM_RETRY_SHORT wiphy->retry_short has changed
WIPHY_PARAM_RETRY_LONG wiphy->retry_long has changed
WIPHY_PARAM_FRAG_THRESHOLD wiphy->frag_threshold has changed
WIPHY_PARAM_RTS_THRESHOLD wiphy->rts_threshold has changed
WIPHY_PARAM_COVERAGE_CLASS coverage class changed
WIPHY_PARAM_DYN_ACK dynack has been enabled
enum wiphy_flags

wiphy capability flags
Constants
WIPHY_FLAG_NETNS_OK if not set, do not allow changing the netns of this wiphy at all
WIPHY_FLAG_PS_ON_BY_DEFAULT if set to true, powersave will be enabled by default – this flag will be set

depending on the kernel’s default on wiphy_new(), but can be changed by the driver if it has a good
reason to override the default

WIPHY_FLAG_4ADDR_AP supports 4addr mode even on AP (with a single station on a VLAN interface)
WIPHY_FLAG_4ADDR_STATION supports 4addr mode even as a station
WIPHY_FLAG_CONTROL_PORT_PROTOCOL This device supports setting the control port protocol ethertype.

The device also honours the control_port_no_encrypt flag.
WIPHY_FLAG_IBSS_RSN The device supports IBSS RSN.
WIPHY_FLAG_MESH_AUTH The device supports mesh authentication by routing auth frames to userspace.

See NL80211_MESH_SETUP_USERSPACE_AUTH.
WIPHY_FLAG_SUPPORTS_FW_ROAM The device supports roaming feature in the firmware.
WIPHY_FLAG_AP_UAPSD The device supports uapsd on AP.
WIPHY_FLAG_SUPPORTS_TDLS The device supports TDLS (802.11z) operation.
WIPHY_FLAG_TDLS_EXTERNAL_SETUP The device does not handle TDLS (802.11z) link setup/discovery

operations internally. Setup, discovery and teardown packets should be sent through the
NL80211_CMD_TDLS_MGMT command. When this flag is not set, NL80211_CMD_TDLS_OPER
should be used for asking the driver/firmware to perform a TDLS operation.

WIPHY_FLAG_HAVE_AP_SME device integrates AP SME
WIPHY_FLAG_REPORTS_OBSS the device will report beacons from other BSSes when there are virtual inter-

faces in AP mode by calling cfg80211_report_obss_beacon().
WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD When operating as an AP, the device responds to probe-requests

in hardware.
WIPHY_FLAG_OFFCHAN_TX Device supports direct off-channel TX.
WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL Device supports remain-on-channel call.
WIPHY_FLAG_SUPPORTS_5_10_MHZ Device supports 5 MHz and 10 MHz channels.
WIPHY_FLAG_HAS_CHANNEL_SWITCH Device supports channel switch in beaconing mode (AP, IBSS, Mesh,

...).
WIPHY_FLAG_HAS_STATIC_WEP The device supports static WEP key installation before connection.

30.2. cfg80211 subsystem 803

The kernel driver API manual, Release 4.13.0-rc4+

struct wiphy
wireless hardware description

Definition

struct wiphy {
u8 perm_addr;
u8 addr_mask;
struct mac_address * addresses;
const struct ieee80211_txrx_stypes * mgmt_stypes;
const struct ieee80211_iface_combination * iface_combinations;
int n_iface_combinations;
u16 software_iftypes;
u16 n_addresses;
u16 interface_modes;
u16 max_acl_mac_addrs;
u32 flags;
u32 regulatory_flags;
u32 features;
u8 ext_features;
u32 ap_sme_capa;
enum cfg80211_signal_type signal_type;
int bss_priv_size;
u8 max_scan_ssids;
u8 max_sched_scan_reqs;
u8 max_sched_scan_ssids;
u8 max_match_sets;
u16 max_scan_ie_len;
u16 max_sched_scan_ie_len;
u32 max_sched_scan_plans;
u32 max_sched_scan_plan_interval;
u32 max_sched_scan_plan_iterations;
int n_cipher_suites;
const u32 * cipher_suites;
u8 retry_short;
u8 retry_long;
u32 frag_threshold;
u32 rts_threshold;
u8 coverage_class;
char fw_version;
u32 hw_version;

#ifdef CONFIG_PM
const struct wiphy_wowlan_support * wowlan;
struct cfg80211_wowlan * wowlan_config;

#endif
u16 max_remain_on_channel_duration;
u8 max_num_pmkids;
u32 available_antennas_tx;
u32 available_antennas_rx;
u32 probe_resp_offload;
const u8 * extended_capabilities;
const u8 * extended_capabilities_mask;
u8 extended_capabilities_len;
const struct wiphy_iftype_ext_capab * iftype_ext_capab;
unsigned int num_iftype_ext_capab;
const void * privid;
struct ieee80211_supported_band * bands;
void (* reg_notifier) (struct wiphy *wiphy, struct regulatory_request *request);
const struct ieee80211_regdomain __rcu * regd;
struct device dev;
bool registered;
struct dentry * debugfsdir;
const struct ieee80211_ht_cap * ht_capa_mod_mask;

804 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

const struct ieee80211_vht_cap * vht_capa_mod_mask;
struct list_head wdev_list;
possible_net_t _net;

#ifdef CONFIG_CFG80211_WEXT
const struct iw_handler_def * wext;

#endif
const struct wiphy_coalesce_support * coalesce;
const struct wiphy_vendor_command * vendor_commands;
const struct nl80211_vendor_cmd_info * vendor_events;
int n_vendor_commands;
int n_vendor_events;
u16 max_ap_assoc_sta;
u8 max_num_csa_counters;
u8 max_adj_channel_rssi_comp;
u32 bss_select_support;
u64 cookie_counter;
u8 nan_supported_bands;
char priv;

};

Members
perm_addr permanent MAC address of this device
addr_mask If the device supports multiple MAC addresses by masking, set this to a mask with variable bits

set to 1, e.g. if the last four bits are variable then set it to 00-00-00-00-00-0f. The actual variable bits
shall be determined by the interfaces added, with interfaces not matching the mask being rejected
to be brought up.

addresses If the device has more than one address, set this pointer to a list of addresses (6 bytes each).
The first one will be used by default for perm_addr. In this case, the mask should be set to all-zeroes.
In this case it is assumed that the device can handle the same number of arbitrary MAC addresses.

mgmt_stypes bitmasks of frame subtypes that can be subscribed to or transmitted through nl80211,
points to an array indexed by interface type

iface_combinations Valid interface combinations array, should not list single interface types.
n_iface_combinations number of entries in iface_combinations array.
software_iftypes bitmask of software interface types, these are not subject to any restrictions since

they are purely managed in SW.
n_addresses number of addresses in addresses.
interface_modes bitmask of interfaces types valid for this wiphy, must be set by driver
max_acl_mac_addrs Maximum number of MAC addresses that the device supports for ACL.
flags wiphy flags, see enum wiphy_flags

regulatory_flags wiphy regulatory flags, see enum ieee80211_regulatory_flags

features features advertised to nl80211, see enum nl80211_feature_flags.
ext_features extended features advertised to nl80211, see enum nl80211_ext_feature_index.
ap_sme_capa AP SME capabilities, flags from enum nl80211_ap_sme_features.
signal_type signal type reported in struct cfg80211_bss.
bss_priv_size each BSS struct has private data allocated with it, this variable determines its size
max_scan_ssids maximum number of SSIDs the device can scan for in any given scan
max_sched_scan_reqs maximum number of scheduled scan requests that the device can run concur-

rently.
max_sched_scan_ssids maximum number of SSIDs the device can scan for in any given scheduled scan

30.2. cfg80211 subsystem 805

The kernel driver API manual, Release 4.13.0-rc4+

max_match_sets maximum number of match sets the device can handle when performing a scheduled
scan, 0 if filtering is not supported.

max_scan_ie_len maximum length of user-controlled IEs device can add to probe request frames trans-
mitted during a scan, must not include fixed IEs like supported rates

max_sched_scan_ie_len same as max_scan_ie_len, but for scheduled scans
max_sched_scan_plans maximum number of scan plans (scan interval and number of iterations) for

scheduled scan supported by the device.
max_sched_scan_plan_interval maximum interval (in seconds) for a single scan plan supported by the

device.
max_sched_scan_plan_iterations maximum number of iterations for a single scan plan supported by

the device.
n_cipher_suites number of supported cipher suites
cipher_suites supported cipher suites
retry_short Retry limit for short frames (dot11ShortRetryLimit)
retry_long Retry limit for long frames (dot11LongRetryLimit)
frag_threshold Fragmentation threshold (dot11FragmentationThreshold); -1 = fragmentation disabled,

only odd values >= 256 used
rts_threshold RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled
coverage_class current coverage class
fw_version firmware version for ethtool reporting
hw_version hardware version for ethtool reporting
wowlan WoWLAN support information
wowlan_config current WoWLAN configuration; this should usually not be used since access to it is nec-

essarily racy, use the parameter passed to the suspend() operation instead.
max_remain_on_channel_duration Maximum time a remain-on-channel operation may request, if im-

plemented.
max_num_pmkids maximum number of PMKIDs supported by device
available_antennas_tx bitmap of antennas which are available to be configured as TX antennas. An-

tenna configuration commands will be rejected unless this or available_antennas_rx is set.
available_antennas_rx bitmap of antennas which are available to be configured as RX antennas. An-

tenna configuration commands will be rejected unless this or available_antennas_tx is set.
probe_resp_offload Bitmap of supported protocols for probe response offloading. See

enum nl80211_probe_resp_offload_support_attr. Only valid when the wiphy flag
WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.

extended_capabilities extended capabilities supported by the driver, additional capabilities might be
supported by userspace; these are the 802.11 extended capabilities (“Extended Capabilities ele-
ment”) and are in the same format as in the information element. See 802.11-2012 8.4.2.29 for
the defined fields. These are the default extended capabilities to be used if the capabilities are not
specified for a specific interface type in iftype_ext_capab.

extended_capabilities_mask mask of the valid values
extended_capabilities_len length of the extended capabilities
iftype_ext_capab array of extended capabilities per interface type
num_iftype_ext_capab number of interface types for which extended capabilities are specified sepa-

rately.
privid a pointer that drivers can use to identify if an arbitrary wiphy is theirs, e.g. in global notifiers

806 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

bands information about bands/channels supported by this device
reg_notifier the driver’s regulatory notification callback, note that if your driver uses

wiphy_apply_custom_regulatory() the reg_notifier’s request can be passed as NULL
regd the driver’s regulatory domain, if one was requested via the regulatory_hint() API. This can be

used by the driver on the reg_notifier() if it chooses to ignore future regulatory domain changes
caused by other drivers.

dev (virtual) struct device for this wiphy
registered helps synchronize suspend/resume with wiphy unregister
debugfsdir debugfs directory used for this wiphy, will be renamed automatically on wiphy renames
ht_capa_mod_mask Specify what ht_cap values can be over-ridden. If null, then none can be over-ridden.
vht_capa_mod_mask Specify what VHT capabilities can be over-ridden. If null, then none can be over-

ridden.
wdev_list the list of associated (virtual) interfaces; this list must not be modified by the driver, but can

be read with RTNL/RCU protection.
_net the network namespace this wiphy currently lives in
wext wireless extension handlers
coalesce packet coalescing support information
vendor_commands array of vendor commands supported by the hardware
vendor_events array of vendor events supported by the hardware
n_vendor_commands number of vendor commands
n_vendor_events number of vendor events
max_ap_assoc_sta maximum number of associated stations supported in AP mode (including P2P GO) or

0 to indicate no such limit is advertised. The driver is allowed to advertise a theoretical limit that it
can reach in some cases, but may not always reach.

max_num_csa_counters Number of supported csa_counters in beacons and probe responses. This value
should be set if the driver wishes to limit the number of csa counters. Default (0) means infinite.

max_adj_channel_rssi_comp max offset of between the channel on which the frame was sent and the
channel on which the frame was heard for which the reported rssi is still valid. If a driver is able to
compensate the low rssi when a frame is heard on different channel, then it should set this variable
to the maximal offset for which it can compensate. This value should be set in MHz.

bss_select_support bitmask indicating the BSS selection criteria supported by the driver in the
.:c:func:connect() callback. The bit position maps to the attribute indices defined in enum
nl80211_bss_select_attr.

cookie_counter unique generic cookie counter, used to identify objects.
nan_supported_bands bands supported by the device in NAN mode, a bitmap of enum nl80211_band

values. For instance, for NL80211_BAND_2GHZ, bit 0 would be set (i.e. BIT(NL80211_BAND_2GHZ)).
priv driver private data (sized according to wiphy_new() parameter)
struct wireless_dev

wireless device state
Definition

struct wireless_dev {
struct wiphy * wiphy;
enum nl80211_iftype iftype;
struct list_head list;
struct net_device * netdev;
u32 identifier;

30.2. cfg80211 subsystem 807

The kernel driver API manual, Release 4.13.0-rc4+

struct list_head mgmt_registrations;
spinlock_t mgmt_registrations_lock;
struct mutex mtx;
bool use_4addr;
bool is_running;
u8 address;
u8 ssid;
u8 ssid_len;
u8 mesh_id_len;
u8 mesh_id_up_len;
struct cfg80211_conn * conn;
struct cfg80211_cached_keys * connect_keys;
enum ieee80211_bss_type conn_bss_type;
u32 conn_owner_nlportid;
struct work_struct disconnect_wk;
u8 disconnect_bssid;
struct list_head event_list;
spinlock_t event_lock;
struct cfg80211_internal_bss * current_bss;
struct cfg80211_chan_def preset_chandef;
struct cfg80211_chan_def chandef;
bool ibss_fixed;
bool ibss_dfs_possible;
bool ps;
int ps_timeout;
int beacon_interval;
u32 ap_unexpected_nlportid;
u32 owner_nlportid;
bool nl_owner_dead;
bool cac_started;
unsigned long cac_start_time;
unsigned int cac_time_ms;

#ifdef CONFIG_CFG80211_WEXT
struct wext;

#endif
struct cfg80211_cqm_config * cqm_config;

};

Members
wiphy pointer to hardware description
iftype interface type
list (private) Used to collect the interfaces
netdev (private) Used to reference back to the netdev, may be NULL
identifier (private) Identifier used in nl80211 to identify this wireless device if it has no netdev
mgmt_registrations list of registrations for management frames
mgmt_registrations_lock lock for the list
mtx mutex used to lock data in this struct, may be used by drivers and some API functions require it held
use_4addr indicates 4addr mode is used on this interface, must be set by driver (if supported) on

add_interface BEFORE registering the netdev and may otherwise be used by driver read-only, will be
update by cfg80211 on change_interface

is_running true if this is a non-netdev device that has been started, e.g. the P2P Device.
address The address for this device, valid only if netdev is NULL
ssid (private) Used by the internal configuration code
ssid_len (private) Used by the internal configuration code

808 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

mesh_id_len (private) Used by the internal configuration code
mesh_id_up_len (private) Used by the internal configuration code
conn (private) cfg80211 software SME connection state machine data
connect_keys (private) keys to set after connection is established
conn_bss_type connecting/connected BSS type
conn_owner_nlportid (private) connection owner socket port ID
disconnect_wk (private) auto-disconnect work
disconnect_bssid (private) the BSSID to use for auto-disconnect
event_list (private) list for internal event processing
event_lock (private) lock for event list
current_bss (private) Used by the internal configuration code
preset_chandef (private) Used by the internal configuration code to track the channel to be used for AP

later
chandef (private) Used by the internal configuration code to track the user-set channel definition.
ibss_fixed (private) IBSS is using fixed BSSID
ibss_dfs_possible (private) IBSS may change to a DFS channel
ps powersave mode is enabled
ps_timeout dynamic powersave timeout
beacon_interval beacon interval used on this device for transmitting beacons, 0 when not valid
ap_unexpected_nlportid (private) netlink port ID of application registered for unexpected class 3 frames

(AP mode)
owner_nlportid (private) owner socket port ID
nl_owner_dead (private) owner socket went away
cac_started true if DFS channel availability check has been started
cac_start_time timestamp (jiffies) when the dfs state was entered.
cac_time_ms CAC time in ms
wext (private) Used by the internal wireless extensions compat code
cqm_config (private) nl80211 RSSI monitor state
Description
For netdevs, this structure must be allocated by the driver that uses the ieee80211_ptr field in struct
net_device (this is intentional so it can be allocated along with the netdev.) It need not be registered then
as netdev registration will be intercepted by cfg80211 to see the new wireless device.
For non-netdev uses, it must also be allocated by the driver in response to the cfg80211 callbacks that re-
quire it, as there’s no netdev registration in that case it may not be allocated outside of callback operations
that return it.
struct wiphy * wiphy_new(const struct cfg80211_ops * ops, int sizeof_priv)

create a new wiphy for use with cfg80211
Parameters
const struct cfg80211_ops * ops The configuration operations for this device
int sizeof_priv The size of the private area to allocate

30.2. cfg80211 subsystem 809

The kernel driver API manual, Release 4.13.0-rc4+

Description
Create a new wiphy and associate the given operations with it. sizeof_priv bytes are allocated for private
use.
Return
A pointer to the new wiphy. This pointer must be assigned to each netdev’s ieee80211_ptr for proper
operation.
void wiphy_read_of_freq_limits(struct wiphy * wiphy)

read frequency limits from device tree
Parameters
struct wiphy * wiphy the wireless device to get extra limits for
Description
Some devices may have extra limitations specified in DT. This may be useful for chipsets that normally
support more bands but are limited due to board design (e.g. by antennas or external power amplifier).
This function reads info from DT and uses it to modify channels (disable unavailable ones). It’s usually a
bad idea to use it in drivers with shared channel data as DT limitations are device specific. You should
make sure to call it only if channels in wiphy are copied and can be modified without affecting other
devices.
As this function access device node it has to be called after set_wiphy_dev. It also modifies channels so
they have to be set first. If using this helper, call it before wiphy_register().
int wiphy_register(struct wiphy * wiphy)

register a wiphy with cfg80211
Parameters
struct wiphy * wiphy The wiphy to register.
Return
A non-negative wiphy index or a negative error code.
void wiphy_unregister(struct wiphy * wiphy)

deregister a wiphy from cfg80211
Parameters
struct wiphy * wiphy The wiphy to unregister.
Description
After this call, no more requests can be made with this priv pointer, but the call may sleep to wait for an
outstanding request that is being handled.
void wiphy_free(struct wiphy * wiphy)

free wiphy
Parameters
struct wiphy * wiphy The wiphy to free
const char * wiphy_name(const struct wiphy * wiphy)

get wiphy name
Parameters
const struct wiphy * wiphy The wiphy whose name to return
Return
The name of wiphy.
struct device * wiphy_dev(struct wiphy * wiphy)

get wiphy dev pointer

810 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct wiphy * wiphy The wiphy whose device struct to look up
Return
The dev of wiphy.
void * wiphy_priv(struct wiphy * wiphy)

return priv from wiphy
Parameters
struct wiphy * wiphy the wiphy whose priv pointer to return
Return
The priv of wiphy.
struct wiphy * priv_to_wiphy(void * priv)

return the wiphy containing the priv
Parameters
void * priv a pointer previously returned by wiphy_priv
Return
The wiphy of priv.
void set_wiphy_dev(struct wiphy * wiphy, struct device * dev)

set device pointer for wiphy
Parameters
struct wiphy * wiphy The wiphy whose device to bind
struct device * dev The device to parent it to
void * wdev_priv(struct wireless_dev * wdev)

return wiphy priv from wireless_dev
Parameters
struct wireless_dev * wdev The wireless device whose wiphy’s priv pointer to return
Return
The wiphy priv of wdev.
struct ieee80211_iface_limit

limit on certain interface types
Definition

struct ieee80211_iface_limit {
u16 max;
u16 types;

};

Members
max maximum number of interfaces of these types
types interface types (bits)
struct ieee80211_iface_combination

possible interface combination
Definition

30.2. cfg80211 subsystem 811

The kernel driver API manual, Release 4.13.0-rc4+

struct ieee80211_iface_combination {
const struct ieee80211_iface_limit * limits;
u32 num_different_channels;
u16 max_interfaces;
u8 n_limits;
bool beacon_int_infra_match;
u8 radar_detect_widths;
u8 radar_detect_regions;
u32 beacon_int_min_gcd;

};

Members
limits limits for the given interface types
num_different_channels can use up to this many different channels
max_interfaces maximum number of interfaces in total allowed in this group
n_limits number of limitations
beacon_int_infra_match In this combination, the beacon intervals between infrastructure and AP types

must match. This is required only in special cases.
radar_detect_widths bitmap of channel widths supported for radar detection
radar_detect_regions bitmap of regions supported for radar detection
beacon_int_min_gcd This interface combination supports different beacon intervals.

= 0 all beacon intervals for different interface must be same.
> 0 any beacon interval for the interface part of this combination AND GCD of all beacon intervals

from beaconing interfaces of this combination must be greater or equal to this value.
Description
With this structure the driver can describe which interface combinations it supports concurrently.
Examples
1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:

struct ieee80211_iface_limit limits1[] = {
{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
{ .max = 1, .types = BIT(NL80211_IFTYPE_AP}, },

};
struct ieee80211_iface_combination combination1 = {

.limits = limits1,

.n_limits = ARRAY_SIZE(limits1),

.max_interfaces = 2,

.beacon_int_infra_match = true,
};

2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:

struct ieee80211_iface_limit limits2[] = {
{ .max = 8, .types = BIT(NL80211_IFTYPE_AP) |

BIT(NL80211_IFTYPE_P2P_GO), },
};
struct ieee80211_iface_combination combination2 = {

.limits = limits2,

.n_limits = ARRAY_SIZE(limits2),

.max_interfaces = 8,

.num_different_channels = 1,
};

812 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.
This allows for an infrastructure connection and three P2P connections.

struct ieee80211_iface_limit limits3[] = {
{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
{ .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |

BIT(NL80211_IFTYPE_P2P_CLIENT), },
};
struct ieee80211_iface_combination combination3 = {

.limits = limits3,

.n_limits = ARRAY_SIZE(limits3),

.max_interfaces = 4,

.num_different_channels = 2,
};

int cfg80211_check_combinations(struct wiphy * wiphy, struct iface_combination_params
* params)

check interface combinations
Parameters
struct wiphy * wiphy the wiphy
struct iface_combination_params * params the interface combinations parameter
Description
This function can be called by the driver to check whether a combination of interfaces and their types are
allowed according to the interface combinations.

30.2.2 Actions and configuration

Each wireless device and each virtual interface offer a set of configuration operations and other actions
that are invoked by userspace. Each of these actions is described in the operations structure, and the
parameters these operations use are described separately.
Additionally, some operations are asynchronous and expect to get status information via some functions
that drivers need to call.
Scanning and BSS list handling with its associated functionality is described in a separate chapter.
struct cfg80211_ops

backend description for wireless configuration
Definition

struct cfg80211_ops {
int (* suspend) (struct wiphy *wiphy, struct cfg80211_wowlan *wow);
int (* resume) (struct wiphy *wiphy);
void (* set_wakeup) (struct wiphy *wiphy, bool enabled);
struct wireless_dev * (* add_virtual_intf) (struct wiphy *wiphy,const char *name,unsigned␣

↪→char name_assign_type,enum nl80211_iftype type, struct vif_params *params);
int (* del_virtual_intf) (struct wiphy *wiphy, struct wireless_dev *wdev);
int (* change_virtual_intf) (struct wiphy *wiphy,struct net_device *dev,enum nl80211_iftype␣

↪→type, struct vif_params *params);
int (* add_key) (struct wiphy *wiphy, struct net_device *netdev,u8 key_index, bool pairwise,␣

↪→const u8 *mac_addr, struct key_params *params);
int (* get_key) (struct wiphy *wiphy, struct net_device *netdev,u8 key_index, bool pairwise,␣

↪→const u8 *mac_addr,void *cookie, void (*callback);
int (* del_key) (struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise,␣

↪→const u8 *mac_addr);
int (* set_default_key) (struct wiphy *wiphy,struct net_device *netdev, u8 key_index, bool␣

↪→unicast, bool multicast);
int (* set_default_mgmt_key) (struct wiphy *wiphy,struct net_device *netdev, u8 key_index);

30.2. cfg80211 subsystem 813

The kernel driver API manual, Release 4.13.0-rc4+

int (* start_ap) (struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ap_settings␣
↪→*settings);
int (* change_beacon) (struct wiphy *wiphy, struct net_device *dev, struct cfg80211_beacon_

↪→data *info);
int (* stop_ap) (struct wiphy *wiphy, struct net_device *dev);
int (* add_station) (struct wiphy *wiphy, struct net_device *dev,const u8 *mac, struct␣

↪→station_parameters *params);
int (* del_station) (struct wiphy *wiphy, struct net_device *dev, struct station_del_

↪→parameters *params);
int (* change_station) (struct wiphy *wiphy, struct net_device *dev,const u8 *mac, struct␣

↪→station_parameters *params);
int (* get_station) (struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct␣

↪→station_info *sinfo);
int (* dump_station) (struct wiphy *wiphy, struct net_device *dev, int idx, u8 *mac, struct␣

↪→station_info *sinfo);
int (* add_mpath) (struct wiphy *wiphy, struct net_device *dev, const u8 *dst, const u8 *next_

↪→hop);
int (* del_mpath) (struct wiphy *wiphy, struct net_device *dev, const u8 *dst);
int (* change_mpath) (struct wiphy *wiphy, struct net_device *dev, const u8 *dst, const u8␣

↪→*next_hop);
int (* get_mpath) (struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *next_hop, struct␣

↪→mpath_info *pinfo);
int (* dump_mpath) (struct wiphy *wiphy, struct net_device *dev,int idx, u8 *dst, u8 *next_

↪→hop, struct mpath_info *pinfo);
int (* get_mpp) (struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *mpp, struct mpath_

↪→info *pinfo);
int (* dump_mpp) (struct wiphy *wiphy, struct net_device *dev,int idx, u8 *dst, u8 *mpp,␣

↪→struct mpath_info *pinfo);
int (* get_mesh_config) (struct wiphy *wiphy,struct net_device *dev, struct mesh_config␣

↪→*conf);
int (* update_mesh_config) (struct wiphy *wiphy,struct net_device *dev, u32 mask, const␣

↪→struct mesh_config *nconf);
int (* join_mesh) (struct wiphy *wiphy, struct net_device *dev,const struct mesh_config *conf,

↪→ const struct mesh_setup *setup);
int (* leave_mesh) (struct wiphy *wiphy, struct net_device *dev);
int (* join_ocb) (struct wiphy *wiphy, struct net_device *dev, struct ocb_setup *setup);
int (* leave_ocb) (struct wiphy *wiphy, struct net_device *dev);
int (* change_bss) (struct wiphy *wiphy, struct net_device *dev, struct bss_parameters␣

↪→*params);
int (* set_txq_params) (struct wiphy *wiphy, struct net_device *dev, struct ieee80211_txq_

↪→params *params);
int (* libertas_set_mesh_channel) (struct wiphy *wiphy,struct net_device *dev, struct␣

↪→ieee80211_channel *chan);
int (* set_monitor_channel) (struct wiphy *wiphy, struct cfg80211_chan_def *chandef);
int (* scan) (struct wiphy *wiphy, struct cfg80211_scan_request *request);
void (* abort_scan) (struct wiphy *wiphy, struct wireless_dev *wdev);
int (* auth) (struct wiphy *wiphy, struct net_device *dev, struct cfg80211_auth_request *req);
int (* assoc) (struct wiphy *wiphy, struct net_device *dev, struct cfg80211_assoc_request␣

↪→*req);
int (* deauth) (struct wiphy *wiphy, struct net_device *dev, struct cfg80211_deauth_request␣

↪→*req);
int (* disassoc) (struct wiphy *wiphy, struct net_device *dev, struct cfg80211_disassoc_

↪→request *req);
int (* connect) (struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params␣

↪→*sme);
int (* update_connect_params) (struct wiphy *wiphy,struct net_device *dev,struct cfg80211_

↪→connect_params *sme, u32 changed);
int (* disconnect) (struct wiphy *wiphy, struct net_device *dev, u16 reason_code);
int (* join_ibss) (struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params␣

↪→*params);
int (* leave_ibss) (struct wiphy *wiphy, struct net_device *dev);
int (* set_mcast_rate) (struct wiphy *wiphy, struct net_device *dev, int rate[NUM_NL80211_

↪→BANDS]);

814 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

int (* set_wiphy_params) (struct wiphy *wiphy, u32 changed);
int (* set_tx_power) (struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_tx_power_

↪→setting type, int mbm);
int (* get_tx_power) (struct wiphy *wiphy, struct wireless_dev *wdev, int *dbm);
int (* set_wds_peer) (struct wiphy *wiphy, struct net_device *dev, const u8 *addr);
void (* rfkill_poll) (struct wiphy *wiphy);

#ifdef CONFIG_NL80211_TESTMODE
int (* testmode_cmd) (struct wiphy *wiphy, struct wireless_dev *wdev, void *data, int len);
int (* testmode_dump) (struct wiphy *wiphy, struct sk_buff *skb,struct netlink_callback *cb,␣

↪→void *data, int len);
#endif
int (* set_bitrate_mask) (struct wiphy *wiphy,struct net_device *dev,const u8 *peer, const␣

↪→struct cfg80211_bitrate_mask *mask);
int (* dump_survey) (struct wiphy *wiphy, struct net_device *netdev, int idx, struct survey_

↪→info *info);
int (* set_pmksa) (struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa␣

↪→*pmksa);
int (* del_pmksa) (struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa␣

↪→*pmksa);
int (* flush_pmksa) (struct wiphy *wiphy, struct net_device *netdev);
int (* remain_on_channel) (struct wiphy *wiphy,struct wireless_dev *wdev,struct ieee80211_

↪→channel *chan,unsigned int duration, u64 *cookie);
int (* cancel_remain_on_channel) (struct wiphy *wiphy,struct wireless_dev *wdev, u64 cookie);
int (* mgmt_tx) (struct wiphy *wiphy, struct wireless_dev *wdev,struct cfg80211_mgmt_tx_

↪→params *params, u64 *cookie);
int (* mgmt_tx_cancel_wait) (struct wiphy *wiphy,struct wireless_dev *wdev, u64 cookie);
int (* set_power_mgmt) (struct wiphy *wiphy, struct net_device *dev, bool enabled, int␣

↪→timeout);
int (* set_cqm_rssi_config) (struct wiphy *wiphy,struct net_device *dev, s32 rssi_thold, u32␣

↪→rssi_hyst);
int (* set_cqm_rssi_range_config) (struct wiphy *wiphy,struct net_device *dev, s32 rssi_low,␣

↪→s32 rssi_high);
int (* set_cqm_txe_config) (struct wiphy *wiphy,struct net_device *dev, u32 rate, u32 pkts,␣

↪→u32 intvl);
void (* mgmt_frame_register) (struct wiphy *wiphy,struct wireless_dev *wdev, u16 frame_type,␣

↪→bool reg);
int (* set_antenna) (struct wiphy *wiphy, u32 tx_ant, u32 rx_ant);
int (* get_antenna) (struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant);
int (* sched_scan_start) (struct wiphy *wiphy,struct net_device *dev, struct cfg80211_sched_

↪→scan_request *request);
int (* sched_scan_stop) (struct wiphy *wiphy, struct net_device *dev, u64 reqid);
int (* set_rekey_data) (struct wiphy *wiphy, struct net_device *dev, struct cfg80211_gtk_

↪→rekey_data *data);
int (* tdls_mgmt) (struct wiphy *wiphy, struct net_device *dev,const u8 *peer, u8 action_code,

↪→ u8 dialog_token,u16 status_code, u32 peer_capability, bool initiator, const u8 *buf, size_t␣
↪→len);
int (* tdls_oper) (struct wiphy *wiphy, struct net_device *dev, const u8 *peer, enum nl80211_

↪→tdls_operation oper);
int (* probe_client) (struct wiphy *wiphy, struct net_device *dev, const u8 *peer, u64␣

↪→*cookie);
int (* set_noack_map) (struct wiphy *wiphy,struct net_device *dev, u16 noack_map);
int (* get_channel) (struct wiphy *wiphy,struct wireless_dev *wdev, struct cfg80211_chan_def␣

↪→*chandef);
int (* start_p2p_device) (struct wiphy *wiphy, struct wireless_dev *wdev);
void (* stop_p2p_device) (struct wiphy *wiphy, struct wireless_dev *wdev);
int (* set_mac_acl) (struct wiphy *wiphy, struct net_device *dev, const struct cfg80211_acl_

↪→data *params);
int (* start_radar_detection) (struct wiphy *wiphy,struct net_device *dev,struct cfg80211_

↪→chan_def *chandef, u32 cac_time_ms);
int (* update_ft_ies) (struct wiphy *wiphy, struct net_device *dev, struct cfg80211_update_ft_

↪→ies_params *ftie);
int (* crit_proto_start) (struct wiphy *wiphy,struct wireless_dev *wdev,enum nl80211_crit_

↪→proto_id protocol, u16 duration);

30.2. cfg80211 subsystem 815

The kernel driver API manual, Release 4.13.0-rc4+

void (* crit_proto_stop) (struct wiphy *wiphy, struct wireless_dev *wdev);
int (* set_coalesce) (struct wiphy *wiphy, struct cfg80211_coalesce *coalesce);
int (* channel_switch) (struct wiphy *wiphy,struct net_device *dev, struct cfg80211_csa_

↪→settings *params);
int (* set_qos_map) (struct wiphy *wiphy,struct net_device *dev, struct cfg80211_qos_map *qos_

↪→map);
int (* set_ap_chanwidth) (struct wiphy *wiphy, struct net_device *dev, struct cfg80211_chan_

↪→def *chandef);
int (* add_tx_ts) (struct wiphy *wiphy, struct net_device *dev,u8 tsid, const u8 *peer, u8␣

↪→user_prio, u16 admitted_time);
int (* del_tx_ts) (struct wiphy *wiphy, struct net_device *dev, u8 tsid, const u8 *peer);
int (* tdls_channel_switch) (struct wiphy *wiphy,struct net_device *dev,const u8 *addr, u8␣

↪→oper_class, struct cfg80211_chan_def *chandef);
void (* tdls_cancel_channel_switch) (struct wiphy *wiphy,struct net_device *dev, const u8␣

↪→*addr);
int (* start_nan) (struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_nan_conf␣

↪→*conf);
void (* stop_nan) (struct wiphy *wiphy, struct wireless_dev *wdev);
int (* add_nan_func) (struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_nan_

↪→func *nan_func);
void (* del_nan_func) (struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie);
int (* nan_change_conf) (struct wiphy *wiphy,struct wireless_dev *wdev,struct cfg80211_nan_

↪→conf *conf, u32 changes);
int (* set_multicast_to_unicast) (struct wiphy *wiphy,struct net_device *dev, const bool␣

↪→enabled);
int (* set_pmk) (struct wiphy *wiphy, struct net_device *dev, const struct cfg80211_pmk_conf␣

↪→*conf);
int (* del_pmk) (struct wiphy *wiphy, struct net_device *dev, const u8 *aa);

};

Members
suspend wiphy device needs to be suspended. The variable wow will be NULL or contain the enabled

Wake-on-Wireless triggers that are configured for the device.
resume wiphy device needs to be resumed
set_wakeup Called when WoWLAN is enabled/disabled, use this callback to call de-

vice_set_wakeup_enable() to enable/disable wakeup from the device.
add_virtual_intf create a new virtual interface with the given name, must set the struct wireless_dev’s

iftype. Beware: You must create the new netdev in the wiphy’s network namespace! Returns the
struct wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must also set the address
member in the wdev.

del_virtual_intf remove the virtual interface
change_virtual_intf change type/configuration of virtual interface, keep the struct wireless_dev’s

iftype updated.
add_key add a key with the given parameters. mac_addr will be NULL when adding a group key.
get_key get information about the key with the given parameters. mac_addr will be NULL when request-

ing information for a group key. All pointers given to the callback function need not be valid after
it returns. This function should return an error if it is not possible to retrieve the key, -ENOENT if it
doesn’t exist.

del_key remove a key given themac_addr (NULL for a group key) and key_index, return -ENOENT if the
key doesn’t exist.

set_default_key set the default key on an interface
set_default_mgmt_key set the default management frame key on an interface
start_ap Start acting in AP mode defined by the parameters.

816 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

change_beacon Change the beacon parameters for an access point mode interface. This should reject
the call when AP mode wasn’t started.

stop_ap Stop being an AP, including stopping beaconing.
add_station Add a new station.
del_station Remove a station
change_station Modify a given station. Note that flags changes are not much validated in

cfg80211, in particular the auth/assoc/authorized flags might come to the driver in invalid
combinations – make sure to check them, also against the existing state! Drivers must call
cfg80211_check_station_change() to validate the information.

get_station get station information for the station identified by mac
dump_station dump station callback – resume dump at index idx
add_mpath add a fixed mesh path
del_mpath delete a given mesh path
change_mpath change a given mesh path
get_mpath get a mesh path for the given parameters
dump_mpath dump mesh path callback – resume dump at index idx
get_mpp get a mesh proxy path for the given parameters
dump_mpp dump mesh proxy path callback – resume dump at index idx
get_mesh_config Get the current mesh configuration
update_mesh_config Update mesh parameters on a running mesh. The mask is a bitfield which tells us

which parameters to set, and which to leave alone.
join_mesh join the mesh network with the specified parameters (invoked with the wireless_dev mutex

held)
leave_mesh leave the current mesh network (invoked with the wireless_dev mutex held)
join_ocb join the OCB network with the specified parameters (invoked with the wireless_dev mutex held)
leave_ocb leave the current OCB network (invoked with the wireless_dev mutex held)
change_bss Modify parameters for a given BSS.
set_txq_params Set TX queue parameters
libertas_set_mesh_channel Only for backward compatibility for libertas, as it doesn’t implement

join_mesh and needs to set the channel to join the mesh instead.
set_monitor_channel Set the monitor mode channel for the device. If other interfaces are active this

callback should reject the configuration. If no interfaces are active or the device is down, the channel
should be stored for when a monitor interface becomes active.

scan Request to do a scan. If returning zero, the scan request is given the driver, and will be valid until
passed to cfg80211_scan_done(). For scan results, call cfg80211_inform_bss(); you can call this
outside the scan/scan_done bracket too.

abort_scan Tell the driver to abort an ongoing scan. The driver shall indicate the status of the scan
through cfg80211_scan_done().

auth Request to authenticate with the specified peer (invoked with the wireless_dev mutex held)
assoc Request to (re)associate with the specified peer (invoked with the wireless_dev mutex held)
deauth Request to deauthenticate from the specified peer (invoked with the wireless_dev mutex held)
disassoc Request to disassociate from the specified peer (invoked with the wireless_dev mutex held)

30.2. cfg80211 subsystem 817

The kernel driver API manual, Release 4.13.0-rc4+

connect Connect to the ESS with the specified parameters. When connected, call
cfg80211_connect_result()/cfg80211_connect_bss() with status code WLAN_STATUS_SUCCESS. If
the connection fails for some reason, call cfg80211_connect_result()/cfg80211_connect_bss()
with the status code from the AP or cfg80211_connect_timeout() if no frame with status code was
received. The driver is allowed to roam to other BSSes within the ESS when the other BSS matches
the connect parameters. When such roaming is initiated by the driver, the driver is expected to
verify that the target matches the configured security parameters and to use Reassociation Request
frame instead of Association Request frame. The connect function can also be used to request the
driver to perform a specific roam when connected to an ESS. In that case, the prev_bssid parameter
is set to the BSSID of the currently associated BSS as an indication of requesting reassociation. In
both the driver-initiated and new connect() call initiated roaming cases, the result of roaming is
indicated with a call to cfg80211_roamed(). (invoked with the wireless_dev mutex held)

update_connect_params Update the connect parameters while connected to a BSS. The updated param-
eters can be used by driver/firmware for subsequent BSS selection (roaming) decisions and to form
the Authentication/(Re)Association Request frames. This call does not request an immediate disas-
sociation or reassociation with the current BSS, i.e., this impacts only subsequent (re)associations.
The bits in changed are defined in enum cfg80211_connect_params_changed. (invoked with the
wireless_dev mutex held)

disconnect Disconnect from the BSS/ESS or stop connection attempts if connection is in progress. Once
done, call cfg80211_disconnected() in case connection was already established (invoked with the
wireless_dev mutex held), otherwise call cfg80211_connect_timeout().

join_ibss Join the specified IBSS (or create if necessary). Once done, call cfg80211_ibss_joined(),
also call that function when changing BSSID due to a merge. (invoked with the wireless_dev mutex
held)

leave_ibss Leave the IBSS. (invoked with the wireless_dev mutex held)
set_mcast_rate Set the specified multicast rate (only if vif is in ADHOC or MESH mode)
set_wiphy_params Notify that wiphy parameters have changed; changed bitfield (see enum

wiphy_params_flags) describes which values have changed. The actual parameter values are avail-
able in struct wiphy. If returning an error, no value should be changed.

set_tx_power set the transmit power according to the parameters, the power passed is in mBm, to get
dBm use MBM_TO_DBM(). The wdev may be NULL if power was set for the wiphy, and will always be
NULL unless the driver supports per-vif TX power (as advertised by the nl80211 feature flag.)

get_tx_power store the current TX power into the dbm variable; return 0 if successful
set_wds_peer set the WDS peer for a WDS interface
rfkill_poll polls the hw rfkill line, use cfg80211 reporting functions to adjust rfkill hw state
testmode_cmd run a test mode command; wdev may be NULL
testmode_dump Implement a test mode dump. The cb->args[2] and up may be used by the function, but

0 and 1 must not be touched. Additionally, return error codes other than -ENOBUFS and -ENOENT
will terminate the dump and return to userspace with an error, so be careful. If any data was passed
in from userspace then the data/len arguments will be present and point to the data contained in
NL80211_ATTR_TESTDATA.

set_bitrate_mask set the bitrate mask configuration
dump_survey get site survey information.
set_pmksa Cache a PMKID for a BSSID. This is mostly useful for fullmac devices running firmwares capable

of generating the (re) association RSN IE. It allows for faster roaming between WPA2 BSSIDs.
del_pmksa Delete a cached PMKID.
flush_pmksa Flush all cached PMKIDs.
remain_on_channel Request the driver to remain awake on the specified channel for the specified

duration to complete an off-channel operation (e.g., public action frame exchange). When the

818 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

driver is ready on the requested channel, it must indicate this with an event notification by calling
cfg80211_ready_on_channel().

cancel_remain_on_channel Cancel an on-going remain-on-channel operation. This allows the operation
to be terminated prior to timeout based on the duration value.

mgmt_tx Transmit a management frame.
mgmt_tx_cancel_wait Cancel the wait time from transmitting a management frame on another channel
set_power_mgmt Configure WLAN power management. A timeout value of -1 allows the driver to adjust

the dynamic ps timeout value.
set_cqm_rssi_config Configure connection quality monitor RSSI threshold. After configuration, the

driver should (soon) send an event indicating the current level is above/below the configured thresh-
old; this may need some care when the configuration is changed (without first being disabled.)

set_cqm_rssi_range_config Configure two RSSI thresholds in the connection quality monitor. An event
is to be sent only when the signal level is found to be outside the two values. The driver should set
NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented. If it is provided then there’s
no point providing set_cqm_rssi_config.

set_cqm_txe_config Configure connection quality monitor TX error thresholds.
mgmt_frame_register Notify driver that a management frame type was registered. The callback is al-

lowed to sleep.
set_antenna Set antenna configuration (tx_ant, rx_ant) on the device. Parameters are bitmaps of allowed

antennas to use for TX/RX. Drivers may reject TX/RX mask combinations they cannot support by
returning -EINVAL (also see nl80211.h NL80211_ATTR_WIPHY_ANTENNA_TX).

get_antenna Get current antenna configuration from device (tx_ant, rx_ant).
sched_scan_start Tell the driver to start a scheduled scan.
sched_scan_stop Tell the driver to stop an ongoing scheduled scan with given request id. This call must

stop the scheduled scan and be ready for starting a new one before it returns, i.e. sched_scan_start
may be called immediately after that again and should not fail in that case. The driver should not
call cfg80211_sched_scan_stopped() for a requested stop (when this method returns 0).

set_rekey_data give the data necessary for GTK rekeying to the driver
tdls_mgmt Transmit a TDLS management frame.
tdls_oper Perform a high-level TDLS operation (e.g. TDLS link setup).
probe_client probe an associated client, must return a cookie that it later passes to

cfg80211_probe_status().
set_noack_map Set the NoAck Map for the TIDs.
get_channel Get the current operating channel for the virtual interface. For monitor interfaces, it should

return NULL unless there’s a single current monitoring channel.
start_p2p_device Start the given P2P device.
stop_p2p_device Stop the given P2P device.
set_mac_acl Sets MAC address control list in AP and P2P GO mode. Parameters include ACL policy, an

array of MAC address of stations and the number of MAC addresses. If there is already a list in driver
this new list replaces the existing one. Driver has to clear its ACL when number of MAC addresses
entries is passed as 0. Drivers which advertise the support for MAC based ACL have to implement
this callback.

start_radar_detection Start radar detection in the driver.
update_ft_ies Provide updated Fast BSS Transition information to the driver. If the SME is in the

driver/firmware, this information can be used in building Authentication and Reassociation Request
frames.

30.2. cfg80211 subsystem 819

The kernel driver API manual, Release 4.13.0-rc4+

crit_proto_start Indicates a critical protocol needs more link reliability for a given duration (millisec-
onds). The protocol is provided so the driver can take the most appropriate actions.

crit_proto_stop Indicates critical protocol no longer needs increased link reliability. This operation can
not fail.

set_coalesce Set coalesce parameters.
channel_switch initiate channel-switch procedure (with CSA). Driver is responsible for veryfing if the

switch is possible. Since this is inherently tricky driver may decide to disconnect an interface later
with cfg80211_stop_iface(). This doesn’t mean driver can accept everything. It should do it’s best
to verify requests and reject them as soon as possible.

set_qos_map Set QoS mapping information to the driver
set_ap_chanwidth Set the AP (including P2P GO) mode channel width for the given interface This is used

e.g. for dynamic HT 20/40 MHz channel width changes during the lifetime of the BSS.
add_tx_ts validate (if admitted_time is 0) or add a TX TS to the device with the given parameters; action

frame exchange has been handled by userspace so this just has to modify the TX path to take the
TS into account. If the admitted time is 0 just validate the parameters to make sure the session can
be created at all; it is valid to just always return success for that but that may result in inefficient
behaviour (handshake with the peer followed by immediate teardown when the addition is later
rejected)

del_tx_ts remove an existing TX TS
tdls_channel_switch Start channel-switching with a TDLS peer. The driver is responsible for continually

initiating channel-switching operations and returning to the base channel for communication with
the AP.

tdls_cancel_channel_switch Stop channel-switching with a TDLS peer. Both peers must be on the base
channel when the call completes.

start_nan Start the NAN interface.
stop_nan Stop the NAN interface.
add_nan_func Add a NAN function. Returns negative value on failure. On success nan_func ownership is

transferred to the driver and it may access it outside of the scope of this function. The driver should
free the nan_func when no longer needed by calling cfg80211_free_nan_func(). On success the
driver should assign an instance_id in the provided nan_func.

del_nan_func Delete a NAN function.
nan_change_conf changes NAN configuration. The changed parameters must be specified in changes

(using enum cfg80211_nan_conf_changes); All other parameters must be ignored.
set_multicast_to_unicast configure multicast to unicast conversion for BSS
set_pmk configure the PMK to be used for offloaded 802.1X 4-Way handshake. If not deleted through

del_pmk the PMK remains valid until disconnect upon which the driver should clear it. (invoked with
the wireless_dev mutex held)

del_pmk delete the previously configured PMK for the given authenticator. (invoked with the wireless_dev
mutex held)

Description
This struct is registered by fullmac card drivers and/or wireless stacks in order to handle configuration
requests on their interfaces.
All callbacks except where otherwise noted should return 0 on success or a negative error code.
All operations are currently invoked under rtnl for consistency with the wireless extensions but this is
subject to reevaluation as soon as this code is used more widely and we have a first user without wext.
struct vif_params

describes virtual interface parameters

820 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Definition

struct vif_params {
u32 flags;
int use_4addr;
u8 macaddr;
const u8 * vht_mumimo_groups;
const u8 * vht_mumimo_follow_addr;

};

Members
flags monitor interface flags, unchanged if 0, otherwise MONITOR_FLAG_CHANGED will be set
use_4addr use 4-address frames
macaddr address to use for this virtual interface. If this parameter is set to zero address the driver may

determine the address as needed. This feature is only fully supported by drivers that enable the
NL80211_FEATURE_MAC_ON_CREATE flag. Others may support creating * only p2p devices with speci-
fied MAC.

vht_mumimo_groups MU-MIMO groupID, used for monitoring MU-MIMO packets belonging to that MU-
MIMO groupID; NULL if not changed

vht_mumimo_follow_addr MU-MIMO follow address, used for monitoring MU-MIMO packets going to the
specified station; NULL if not changed

struct key_params
key information

Definition

struct key_params {
const u8 * key;
const u8 * seq;
int key_len;
int seq_len;
u32 cipher;

};

Members
key key material
seq sequence counter (IV/PN) for TKIP and CCMP keys, only used with the get_key() callback, must be

in little endian, length given by seq_len.
key_len length of key material
seq_len length of seq.
cipher cipher suite selector
Description
Information about a key
enum survey_info_flags

survey information flags
Constants
SURVEY_INFO_NOISE_DBM noise (in dBm) was filled in
SURVEY_INFO_IN_USE channel is currently being used
SURVEY_INFO_TIME active time (in ms) was filled in
SURVEY_INFO_TIME_BUSY busy time was filled in

30.2. cfg80211 subsystem 821

The kernel driver API manual, Release 4.13.0-rc4+

SURVEY_INFO_TIME_EXT_BUSY extension channel busy time was filled in
SURVEY_INFO_TIME_RX receive time was filled in
SURVEY_INFO_TIME_TX transmit time was filled in
SURVEY_INFO_TIME_SCAN scan time was filled in
Description
Used by the driver to indicate which info in struct survey_info it has filled in during the get_survey().

struct survey_info
channel survey response

Definition

struct survey_info {
struct ieee80211_channel * channel;
u64 time;
u64 time_busy;
u64 time_ext_busy;
u64 time_rx;
u64 time_tx;
u64 time_scan;
u32 filled;
s8 noise;

};

Members
channel the channel this survey record reports, may be NULL for a single record to report global statistics
time amount of time in ms the radio was turn on (on the channel)
time_busy amount of time the primary channel was sensed busy
time_ext_busy amount of time the extension channel was sensed busy
time_rx amount of time the radio spent receiving data
time_tx amount of time the radio spent transmitting data
time_scan amount of time the radio spent for scanning
filled bitflag of flags from enum survey_info_flags

noise channel noise in dBm. This and all following fields are optional
Description
Used by dump_survey() to report back per-channel survey information.
This structure can later be expanded with things like channel duty cycle etc.
struct cfg80211_beacon_data

beacon data
Definition

struct cfg80211_beacon_data {
const u8 * head;
const u8 * tail;
const u8 * beacon_ies;
const u8 * proberesp_ies;
const u8 * assocresp_ies;
const u8 * probe_resp;
size_t head_len;
size_t tail_len;

822 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

size_t beacon_ies_len;
size_t proberesp_ies_len;
size_t assocresp_ies_len;
size_t probe_resp_len;

};

Members
head head portion of beacon (before TIM IE) or NULL if not changed
tail tail portion of beacon (after TIM IE) or NULL if not changed
beacon_ies extra information element(s) to add into Beacon frames or NULL
proberesp_ies extra information element(s) to add into Probe Response frames or NULL
assocresp_ies extra information element(s) to add into (Re)Association Response frames or NULL
probe_resp probe response template (AP mode only)
head_len length of head
tail_len length of tail
beacon_ies_len length of beacon_ies in octets
proberesp_ies_len length of proberesp_ies in octets
assocresp_ies_len length of assocresp_ies in octets
probe_resp_len length of probe response template (probe_resp)
struct cfg80211_ap_settings

AP configuration
Definition

struct cfg80211_ap_settings {
struct cfg80211_chan_def chandef;
struct cfg80211_beacon_data beacon;
int beacon_interval;
int dtim_period;
const u8 * ssid;
size_t ssid_len;
enum nl80211_hidden_ssid hidden_ssid;
struct cfg80211_crypto_settings crypto;
bool privacy;
enum nl80211_auth_type auth_type;
enum nl80211_smps_mode smps_mode;
int inactivity_timeout;
u8 p2p_ctwindow;
bool p2p_opp_ps;
const struct cfg80211_acl_data * acl;
bool pbss;
struct cfg80211_bitrate_mask beacon_rate;
const struct ieee80211_ht_cap * ht_cap;
const struct ieee80211_vht_cap * vht_cap;
bool ht_required;
bool vht_required;

};

Members
chandef defines the channel to use
beacon beacon data
beacon_interval beacon interval

30.2. cfg80211 subsystem 823

The kernel driver API manual, Release 4.13.0-rc4+

dtim_period DTIM period
ssid SSID to be used in the BSS (note: may be NULL if not provided from user space)
ssid_len length of ssid
hidden_ssid whether to hide the SSID in Beacon/Probe Response frames
crypto crypto settings
privacy the BSS uses privacy
auth_type Authentication type (algorithm)
smps_mode SMPS mode
inactivity_timeout time in seconds to determine station’s inactivity.
p2p_ctwindow P2P CT Window
p2p_opp_ps P2P opportunistic PS
acl ACL configuration used by the drivers which has support for MAC address based access control
pbss If set, start as a PCP instead of AP. Relevant for DMG networks.
beacon_rate bitrate to be used for beacons
ht_cap HT capabilities (or NULL if HT isn’t enabled)
vht_cap VHT capabilities (or NULL if VHT isn’t enabled)
ht_required stations must support HT
vht_required stations must support VHT
Description
Used to configure an AP interface.
struct station_parameters

station parameters
Definition

struct station_parameters {
const u8 * supported_rates;
struct net_device * vlan;
u32 sta_flags_mask;
u32 sta_flags_set;
u32 sta_modify_mask;
int listen_interval;
u16 aid;
u16 peer_aid;
u8 supported_rates_len;
u8 plink_action;
u8 plink_state;
const struct ieee80211_ht_cap * ht_capa;
const struct ieee80211_vht_cap * vht_capa;
u8 uapsd_queues;
u8 max_sp;
enum nl80211_mesh_power_mode local_pm;
u16 capability;
const u8 * ext_capab;
u8 ext_capab_len;
const u8 * supported_channels;
u8 supported_channels_len;
const u8 * supported_oper_classes;
u8 supported_oper_classes_len;
u8 opmode_notif;
bool opmode_notif_used;

824 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

int support_p2p_ps;
};

Members
supported_rates supported rates in IEEE 802.11 format (or NULL for no change)
vlan vlan interface station should belong to
sta_flags_mask station flags that changed (bitmask of BIT(NL80211_STA_FLAG_...))
sta_flags_set station flags values (bitmask of BIT(NL80211_STA_FLAG_...))
sta_modify_mask bitmap indicating which parameters changed (for those that don’t have a natural “no

change” value), see enum station_parameters_apply_mask

listen_interval listen interval or -1 for no change
aid AID or zero for no change
peer_aid mesh peer AID or zero for no change
supported_rates_len number of supported rates
plink_action plink action to take
plink_state set the peer link state for a station
ht_capa HT capabilities of station
vht_capa VHT capabilities of station
uapsd_queues bitmap of queues configured for uapsd. same format as the AC bitmap in the QoS info field
max_sp max Service Period. same format as the MAX_SP in the QoS info field (but already shifted down)
local_pm local link-specific mesh power save mode (no change when set to unknown)
capability station capability
ext_capab extended capabilities of the station
ext_capab_len number of extended capabilities
supported_channels supported channels in IEEE 802.11 format
supported_channels_len number of supported channels
supported_oper_classes supported oper classes in IEEE 802.11 format
supported_oper_classes_len number of supported operating classes
opmode_notif operating mode field from Operating Mode Notification
opmode_notif_used information if operating mode field is used
support_p2p_ps information if station supports P2P PS mechanism
Description
Used to change and create a new station.
enum rate_info_flags

bitrate info flags
Constants
RATE_INFO_FLAGS_MCS mcs field filled with HT MCS
RATE_INFO_FLAGS_VHT_MCS mcs field filled with VHT MCS
RATE_INFO_FLAGS_SHORT_GI 400ns guard interval
RATE_INFO_FLAGS_60G 60GHz MCS

30.2. cfg80211 subsystem 825

The kernel driver API manual, Release 4.13.0-rc4+

Description
Used by the driver to indicate the specific rate transmission type for 802.11n transmissions.
struct rate_info

bitrate information
Definition

struct rate_info {
u8 flags;
u8 mcs;
u16 legacy;
u8 nss;
u8 bw;

};

Members
flags bitflag of flags from enum rate_info_flags

mcs mcs index if struct describes a 802.11n bitrate
legacy bitrate in 100kbit/s for 802.11abg
nss number of streams (VHT only)
bw bandwidth (from enum rate_info_bw)
Description
Information about a receiving or transmitting bitrate
struct station_info

station information
Definition

struct station_info {
u64 filled;
u32 connected_time;
u32 inactive_time;
u64 rx_bytes;
u64 tx_bytes;
u16 llid;
u16 plid;
u8 plink_state;
s8 signal;
s8 signal_avg;
u8 chains;
s8 chain_signal;
s8 chain_signal_avg;
struct rate_info txrate;
struct rate_info rxrate;
u32 rx_packets;
u32 tx_packets;
u32 tx_retries;
u32 tx_failed;
u32 rx_dropped_misc;
struct sta_bss_parameters bss_param;
struct nl80211_sta_flag_update sta_flags;
int generation;
const u8 * assoc_req_ies;
size_t assoc_req_ies_len;
u32 beacon_loss_count;
s64 t_offset;
enum nl80211_mesh_power_mode local_pm;

826 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

enum nl80211_mesh_power_mode peer_pm;
enum nl80211_mesh_power_mode nonpeer_pm;
u32 expected_throughput;
u64 rx_beacon;
u64 rx_duration;
u8 rx_beacon_signal_avg;
struct cfg80211_tid_stats pertid;

};

Members
filled bitflag of flags using the bits of enum nl80211_sta_info to indicate the relevant values in this

struct for them
connected_time time(in secs) since a station is last connected
inactive_time time since last station activity (tx/rx) in milliseconds
rx_bytes bytes (size of MPDUs) received from this station
tx_bytes bytes (size of MPDUs) transmitted to this station
llid mesh local link id
plid mesh peer link id
plink_state mesh peer link state
signal The signal strength, type depends on the wiphy’s signal_type. For CFG80211_SIGNAL_TYPE_MBM,

value is expressed in _dBm_.
signal_avg Average signal strength, type depends on the wiphy’s signal_type. For

CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
chains bitmask for filled values in chain_signal, chain_signal_avg
chain_signal per-chain signal strength of last received packet in dBm
chain_signal_avg per-chain signal strength average in dBm
txrate current unicast bitrate from this station
rxrate current unicast bitrate to this station
rx_packets packets (MSDUs & MMPDUs) received from this station
tx_packets packets (MSDUs & MMPDUs) transmitted to this station
tx_retries cumulative retry counts (MPDUs)
tx_failed number of failed transmissions (MPDUs) (retries exceeded, no ACK)
rx_dropped_misc Dropped for un-specified reason.
bss_param current BSS parameters
sta_flags station flags mask & values
generation generation number for nl80211 dumps. This number should increase every time the list of

stations changes, i.e. when a station is added or removed, so that userspace can tell whether it got
a consistent snapshot.

assoc_req_ies IEs from (Re)Association Request. This is used only when in AP mode with drivers
that do not use user space MLME/SME implementation. The information is provided for the
cfg80211_new_sta() calls to notify user space of the IEs.

assoc_req_ies_len Length of assoc_req_ies buffer in octets.
beacon_loss_count Number of times beacon loss event has triggered.
t_offset Time offset of the station relative to this host.

30.2. cfg80211 subsystem 827

The kernel driver API manual, Release 4.13.0-rc4+

local_pm local mesh STA power save mode
peer_pm peer mesh STA power save mode
nonpeer_pm non-peer mesh STA power save mode
expected_throughput expected throughput in kbps (including 802.11 headers) towards this station.
rx_beacon number of beacons received from this peer
rx_duration aggregate PPDU duration(usecs) for all the frames from a peer
rx_beacon_signal_avg signal strength average (in dBm) for beacons received from this peer
pertid per-TID statistics, see struct cfg80211_tid_stats, using the last (IEEE80211_NUM_TIDS) index

for MSDUs not encapsulated in QoS-MPDUs.
Description
Station information filled by driver for get_station() and dump_station.
enum monitor_flags

monitor flags
Constants
MONITOR_FLAG_CHANGED set if the flags were changed
MONITOR_FLAG_FCSFAIL pass frames with bad FCS
MONITOR_FLAG_PLCPFAIL pass frames with bad PLCP
MONITOR_FLAG_CONTROL pass control frames
MONITOR_FLAG_OTHER_BSS disable BSSID filtering
MONITOR_FLAG_COOK_FRAMES report frames after processing
MONITOR_FLAG_ACTIVE active monitor, ACKs frames on its MAC address
Description
Monitor interface configuration flags. Note that these must be the bits according to the nl80211 flags.
enum mpath_info_flags

mesh path information flags
Constants
MPATH_INFO_FRAME_QLEN frame_qlen filled
MPATH_INFO_SN sn filled
MPATH_INFO_METRIC metric filled
MPATH_INFO_EXPTIME exptime filled
MPATH_INFO_DISCOVERY_TIMEOUT discovery_timeout filled
MPATH_INFO_DISCOVERY_RETRIES discovery_retries filled
MPATH_INFO_FLAGS flags filled
Description
Used by the driver to indicate which info in struct mpath_info it has filled in during get_station() or
dump_station().
struct mpath_info

mesh path information
Definition

828 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct mpath_info {
u32 filled;
u32 frame_qlen;
u32 sn;
u32 metric;
u32 exptime;
u32 discovery_timeout;
u8 discovery_retries;
u8 flags;
int generation;

};

Members
filled bitfield of flags from enum mpath_info_flags

frame_qlen number of queued frames for this destination
sn target sequence number
metric metric (cost) of this mesh path
exptime expiration time for the mesh path from now, in msecs
discovery_timeout total mesh path discovery timeout, in msecs
discovery_retries mesh path discovery retries
flags mesh path flags
generation generation number for nl80211 dumps. This number should increase every time the list of

mesh paths changes, i.e. when a station is added or removed, so that userspace can tell whether it
got a consistent snapshot.

Description
Mesh path information filled by driver for get_mpath() and dump_mpath().
struct bss_parameters

BSS parameters
Definition

struct bss_parameters {
int use_cts_prot;
int use_short_preamble;
int use_short_slot_time;
const u8 * basic_rates;
u8 basic_rates_len;
int ap_isolate;
int ht_opmode;
s8 p2p_ctwindow;
s8 p2p_opp_ps;

};

Members
use_cts_prot Whether to use CTS protection (0 = no, 1 = yes, -1 = do not change)
use_short_preamble Whether the use of short preambles is allowed (0 = no, 1 = yes, -1 = do not change)
use_short_slot_time Whether the use of short slot time is allowed (0 = no, 1 = yes, -1 = do not change)
basic_rates basic rates in IEEE 802.11 format (or NULL for no change)
basic_rates_len number of basic rates
ap_isolate do not forward packets between connected stations
ht_opmode HT Operation mode (u16 = opmode, -1 = do not change)

30.2. cfg80211 subsystem 829

The kernel driver API manual, Release 4.13.0-rc4+

p2p_ctwindow P2P CT Window (-1 = no change)
p2p_opp_ps P2P opportunistic PS (-1 = no change)
Description
Used to change BSS parameters (mainly for AP mode).
struct ieee80211_txq_params

TX queue parameters
Definition

struct ieee80211_txq_params {
enum nl80211_ac ac;
u16 txop;
u16 cwmin;
u16 cwmax;
u8 aifs;

};

Members
ac AC identifier
txop Maximum burst time in units of 32 usecs, 0 meaning disabled
cwmin Minimum contention window [a value of the form 2^n-1 in the range 1..32767]
cwmax Maximum contention window [a value of the form 2^n-1 in the range 1..32767]
aifs Arbitration interframe space [0..255]
struct cfg80211_crypto_settings

Crypto settings
Definition

struct cfg80211_crypto_settings {
u32 wpa_versions;
u32 cipher_group;
int n_ciphers_pairwise;
u32 ciphers_pairwise;
int n_akm_suites;
u32 akm_suites;
bool control_port;
__be16 control_port_ethertype;
bool control_port_no_encrypt;
struct key_params * wep_keys;
int wep_tx_key;
const u8 * psk;

};

Members
wpa_versions indicates which, if any, WPA versions are enabled (from enum nl80211_wpa_versions)
cipher_group group key cipher suite (or 0 if unset)
n_ciphers_pairwise number of AP supported unicast ciphers
ciphers_pairwise unicast key cipher suites
n_akm_suites number of AKM suites
akm_suites AKM suites
control_port Whether user space controls IEEE 802.1X port, i.e., sets/clears

NL80211_STA_FLAG_AUTHORIZED. If true, the driver is required to assume that the port is unautho-
rized until authorized by user space. Otherwise, port is marked authorized by default.

830 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

control_port_ethertype the control port protocol that should be allowed through even on unauthorized
ports

control_port_no_encrypt TRUE to prevent encryption of control port protocol frames.
wep_keys static WEP keys, if not NULL points to an array of CFG80211_MAX_WEP_KEYS WEP keys
wep_tx_key key index (0..3) of the default TX static WEP key
psk PSK (for devices supporting 4-way-handshake offload)
struct cfg80211_auth_request

Authentication request data
Definition

struct cfg80211_auth_request {
struct cfg80211_bss * bss;
const u8 * ie;
size_t ie_len;
enum nl80211_auth_type auth_type;
const u8 * key;
u8 key_len;
u8 key_idx;
const u8 * auth_data;
size_t auth_data_len;

};

Members
bss The BSS to authenticate with, the callee must obtain a reference to it if it needs to keep it.
ie Extra IEs to add to Authentication frame or NULL
ie_len Length of ie buffer in octets
auth_type Authentication type (algorithm)
key WEP key for shared key authentication
key_len length of WEP key for shared key authentication
key_idx index of WEP key for shared key authentication
auth_data Fields and elements in Authentication frames. This contains the authentication frame body

(non-IE and IE data), excluding the Authentication algorithm number, i.e., starting at the Authenti-
cation transaction sequence number field.

auth_data_len Length of auth_data buffer in octets
Description
This structure provides information needed to complete IEEE 802.11 authentication.
struct cfg80211_assoc_request

(Re)Association request data
Definition

struct cfg80211_assoc_request {
struct cfg80211_bss * bss;
const u8 * ie;
const u8 * prev_bssid;
size_t ie_len;
struct cfg80211_crypto_settings crypto;
bool use_mfp;
u32 flags;
struct ieee80211_ht_cap ht_capa;
struct ieee80211_ht_cap ht_capa_mask;
struct ieee80211_vht_cap vht_capa;

30.2. cfg80211 subsystem 831

The kernel driver API manual, Release 4.13.0-rc4+

struct ieee80211_vht_cap vht_capa_mask;
const u8 * fils_kek;
size_t fils_kek_len;
const u8 * fils_nonces;

};

Members
bss The BSS to associate with. If the call is successful the driver is given a reference that it must give back

to cfg80211_send_rx_assoc() or to cfg80211_assoc_timeout(). To ensure proper refcounting,
new association requests while already associating must be rejected.

ie Extra IEs to add to (Re)Association Request frame or NULL
prev_bssid previous BSSID, if not NULL use reassociate frame. This is used to indicate a request to

reassociate within the ESS instead of a request do the initial association with the ESS. When included,
this is set to the BSSID of the current association, i.e., to the value that is included in the Current AP
address field of the Reassociation Request frame.

ie_len Length of ie buffer in octets
crypto crypto settings
use_mfp Use management frame protection (IEEE 802.11w) in this association
flags See enum cfg80211_assoc_req_flags

ht_capa HT Capabilities over-rides. Values set in ht_capa_mask will be used in ht_capa. Un-supported
values will be ignored.

ht_capa_mask The bits of ht_capa which are to be used.
vht_capa VHT capability override
vht_capa_mask VHT capability mask indicating which fields to use
fils_kek FILS KEK for protecting (Re)Association Request/Response frame or NULL if FILS is not used.
fils_kek_len Length of fils_kek in octets
fils_nonces FILS nonces (part of AAD) for protecting (Re)Association Request/Response frame or NULL

if FILS is not used. This field starts with 16 octets of STA Nonce followed by 16 octets of AP Nonce.
Description
This structure provides information needed to complete IEEE 802.11 (re)association.
struct cfg80211_deauth_request

Deauthentication request data
Definition

struct cfg80211_deauth_request {
const u8 * bssid;
const u8 * ie;
size_t ie_len;
u16 reason_code;
bool local_state_change;

};

Members
bssid the BSSID of the BSS to deauthenticate from
ie Extra IEs to add to Deauthentication frame or NULL
ie_len Length of ie buffer in octets
reason_code The reason code for the deauthentication

832 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

local_state_change if set, change local state only and do not set a deauth frame
Description
This structure provides information needed to complete IEEE 802.11 deauthentication.
struct cfg80211_disassoc_request

Disassociation request data
Definition

struct cfg80211_disassoc_request {
struct cfg80211_bss * bss;
const u8 * ie;
size_t ie_len;
u16 reason_code;
bool local_state_change;

};

Members
bss the BSS to disassociate from
ie Extra IEs to add to Disassociation frame or NULL
ie_len Length of ie buffer in octets
reason_code The reason code for the disassociation
local_state_change This is a request for a local state only, i.e., no Disassociation frame is to be trans-

mitted.
Description
This structure provides information needed to complete IEEE 802.11 disassociation.
struct cfg80211_ibss_params

IBSS parameters
Definition

struct cfg80211_ibss_params {
const u8 * ssid;
const u8 * bssid;
struct cfg80211_chan_def chandef;
const u8 * ie;
u8 ssid_len;
u8 ie_len;
u16 beacon_interval;
u32 basic_rates;
bool channel_fixed;
bool privacy;
bool control_port;
bool userspace_handles_dfs;
int mcast_rate;
struct ieee80211_ht_cap ht_capa;
struct ieee80211_ht_cap ht_capa_mask;

};

Members
ssid The SSID, will always be non-null.
bssid Fixed BSSID requested, maybe be NULL, if set do not search for IBSSs with a different BSSID.
chandef defines the channel to use if no other IBSS to join can be found
ie information element(s) to include in the beacon

30.2. cfg80211 subsystem 833

The kernel driver API manual, Release 4.13.0-rc4+

ssid_len The length of the SSID, will always be non-zero.
ie_len length of that
beacon_interval beacon interval to use
basic_rates bitmap of basic rates to use when creating the IBSS
channel_fixed The channel should be fixed – do not search for IBSSs to join on other channels.
privacy this is a protected network, keys will be configured after joining
control_port whether user space controls IEEE 802.1X port, i.e., sets/clears

NL80211_STA_FLAG_AUTHORIZED. If true, the driver is required to assume that the port is unautho-
rized until authorized by user space. Otherwise, port is marked authorized by default.

userspace_handles_dfs whether user space controls DFS operation, i.e. changes the channel when a
radar is detected. This is required to operate on DFS channels.

mcast_rate per-band multicast rate index + 1 (0: disabled)
ht_capa HT Capabilities over-rides. Values set in ht_capa_mask will be used in ht_capa. Un-supported

values will be ignored.
ht_capa_mask The bits of ht_capa which are to be used.
Description
This structure defines the IBSS parameters for the join_ibss() method.
struct cfg80211_connect_params

Connection parameters
Definition

struct cfg80211_connect_params {
struct ieee80211_channel * channel;
struct ieee80211_channel * channel_hint;
const u8 * bssid;
const u8 * bssid_hint;
const u8 * ssid;
size_t ssid_len;
enum nl80211_auth_type auth_type;
const u8 * ie;
size_t ie_len;
bool privacy;
enum nl80211_mfp mfp;
struct cfg80211_crypto_settings crypto;
const u8 * key;
u8 key_len;
u8 key_idx;
u32 flags;
int bg_scan_period;
struct ieee80211_ht_cap ht_capa;
struct ieee80211_ht_cap ht_capa_mask;
struct ieee80211_vht_cap vht_capa;
struct ieee80211_vht_cap vht_capa_mask;
bool pbss;
struct cfg80211_bss_selection bss_select;
const u8 * prev_bssid;
const u8 * fils_erp_username;
size_t fils_erp_username_len;
const u8 * fils_erp_realm;
size_t fils_erp_realm_len;
u16 fils_erp_next_seq_num;
const u8 * fils_erp_rrk;
size_t fils_erp_rrk_len;

834 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

bool want_1x;
};

Members
channel The channel to use or NULL if not specified (auto-select based on scan results)
channel_hint The channel of the recommended BSS for initial connection or NULL if not specified
bssid The AP BSSID or NULL if not specified (auto-select based on scan results)
bssid_hint The recommended AP BSSID for initial connection to the BSS or NULL if not specified. Unlike

the bssid parameter, the driver is allowed to ignore this bssid_hint if it has knowledge of a better
BSS to use.

ssid SSID
ssid_len Length of ssid in octets
auth_type Authentication type (algorithm)
ie IEs for association request
ie_len Length of assoc_ie in octets
privacy indicates whether privacy-enabled APs should be used
mfp indicate whether management frame protection is used
crypto crypto settings
key WEP key for shared key authentication
key_len length of WEP key for shared key authentication
key_idx index of WEP key for shared key authentication
flags See enum cfg80211_assoc_req_flags

bg_scan_period Background scan period in seconds or -1 to indicate that default value is to be used.
ht_capa HT Capabilities over-rides. Values set in ht_capa_mask will be used in ht_capa. Un-supported

values will be ignored.
ht_capa_mask The bits of ht_capa which are to be used.
vht_capa VHT Capability overrides
vht_capa_mask The bits of vht_capa which are to be used.
pbss if set, connect to a PCP instead of AP. Valid for DMG networks.
bss_select criteria to be used for BSS selection.
prev_bssid previous BSSID, if not NULL use reassociate frame. This is used to indicate a request to

reassociate within the ESS instead of a request do the initial association with the ESS. When included,
this is set to the BSSID of the current association, i.e., to the value that is included in the Current AP
address field of the Reassociation Request frame.

fils_erp_username EAP re-authentication protocol (ERP) username part of the NAI or NULL if not speci-
fied. This is used to construct FILS wrapped data IE.

fils_erp_username_len Length of fils_erp_username in octets.
fils_erp_realm EAP re-authentication protocol (ERP) realm part of NAI or NULL if not specified. This

specifies the domain name of ER server and is used to construct FILS wrapped data IE.
fils_erp_realm_len Length of fils_erp_realm in octets.
fils_erp_next_seq_num The next sequence number to use in the FILS ERP messages. This is also used

to construct FILS wrapped data IE.

30.2. cfg80211 subsystem 835

The kernel driver API manual, Release 4.13.0-rc4+

fils_erp_rrk ERP re-authentication Root Key (rRK) used to derive additional keys in FILS or NULL if not
specified.

fils_erp_rrk_len Length of fils_erp_rrk in octets.
want_1x indicates user-space supports and wants to use 802.1X driver offload of 4-way handshake.
Description
This structure provides information needed to complete IEEE 802.11 authentication and association.
struct cfg80211_pmksa

PMK Security Association
Definition

struct cfg80211_pmksa {
const u8 * bssid;
const u8 * pmkid;
const u8 * pmk;
size_t pmk_len;
const u8 * ssid;
size_t ssid_len;
const u8 * cache_id;

};

Members
bssid The AP’s BSSID (may be NULL).
pmkid The identifier to refer a PMKSA.
pmk The PMK for the PMKSA identified by pmkid. This is used for key derivation by a FILS STA. Otherwise,

NULL.
pmk_len Length of the pmk. The length of pmk can differ depending on the hash algorithm used to

generate this.
ssid SSID to specify the ESS within which a PMKSA is valid when using FILS cache identifier (may be

NULL).
ssid_len Length of the ssid in octets.
cache_id 2-octet cache identifier advertized by a FILS AP identifying the scope of PMKSA. This is valid

only if ssid_len is non-zero (may be NULL).
Description
This structure is passed to the set/del_pmksa() method for PMKSA caching.
void cfg80211_rx_mlme_mgmt(struct net_device * dev, const u8 * buf, size_t len)

notification of processed MLME management frame
Parameters
struct net_device * dev network device
const u8 * buf authentication frame (header + body)
size_t len length of the frame data
Description
This function is called whenever an authentication, disassociation or deauthentication frame has been
received and processed in station mode. After being asked to authenticate via cfg80211_ops::auth()
the driver must call either this function or cfg80211_auth_timeout(). After being asked to associate
via cfg80211_ops::assoc() the driver must call either this function or cfg80211_auth_timeout(). While
connected, the driver must calls this for received and processed disassociation and deauthentication
frames. If the frame couldn’t be used because it was unprotected, the driver must call the function
cfg80211_rx_unprot_mlme_mgmt() instead.

836 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

This function may sleep. The caller must hold the corresponding wdev’s mutex.
void cfg80211_auth_timeout(struct net_device * dev, const u8 * addr)

notification of timed out authentication
Parameters
struct net_device * dev network device
const u8 * addr The MAC address of the device with which the authentication timed out
Description
This function may sleep. The caller must hold the corresponding wdev’s mutex.
void cfg80211_rx_assoc_resp(struct net_device * dev, struct cfg80211_bss * bss, const u8 * buf,

size_t len, int uapsd_queues)
notification of processed association response

Parameters
struct net_device * dev network device
struct cfg80211_bss * bss the BSS that association was requested with, ownership of the pointer

moves to cfg80211 in this call
const u8 * buf authentication frame (header + body)
size_t len length of the frame data
int uapsd_queues bitmap of queues configured for uapsd. Same format as the AC bitmap in the QoS

info field
Description
After being asked to associate via cfg80211_ops::assoc() the driver must call either this function or
cfg80211_auth_timeout().
This function may sleep. The caller must hold the corresponding wdev’s mutex.
void cfg80211_assoc_timeout(struct net_device * dev, struct cfg80211_bss * bss)

notification of timed out association
Parameters
struct net_device * dev network device
struct cfg80211_bss * bss The BSS entry with which association timed out.
Description
This function may sleep. The caller must hold the corresponding wdev’s mutex.
void cfg80211_tx_mlme_mgmt(struct net_device * dev, const u8 * buf, size_t len)

notification of transmitted deauth/disassoc frame
Parameters
struct net_device * dev network device
const u8 * buf 802.11 frame (header + body)
size_t len length of the frame data
Description
This function is called whenever deauthentication has been processed in station mode. This includes both
received deauthentication frames and locally generated ones. This function may sleep. The caller must
hold the corresponding wdev’s mutex.
void cfg80211_ibss_joined(struct net_device * dev, const u8 * bssid, struct ieee80211_channel

* channel, gfp_t gfp)
notify cfg80211 that device joined an IBSS

30.2. cfg80211 subsystem 837

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct net_device * dev network device
const u8 * bssid the BSSID of the IBSS joined
struct ieee80211_channel * channel the channel of the IBSS joined
gfp_t gfp allocation flags
Description
This function notifies cfg80211 that the device joined an IBSS or switched to a different BSSID. Before
this function can be called, either a beacon has to have been received from the IBSS, or one of the
cfg80211_inform_bss{,_frame} functions must have been called with the locally generated beacon – this
guarantees that there is always a scan result for this IBSS. cfg80211 will handle the rest.
struct cfg80211_connect_resp_params

Connection response params
Definition

struct cfg80211_connect_resp_params {
int status;
const u8 * bssid;
struct cfg80211_bss * bss;
const u8 * req_ie;
size_t req_ie_len;
const u8 * resp_ie;
size_t resp_ie_len;
const u8 * fils_kek;
size_t fils_kek_len;
bool update_erp_next_seq_num;
u16 fils_erp_next_seq_num;
const u8 * pmk;
size_t pmk_len;
const u8 * pmkid;
enum nl80211_timeout_reason timeout_reason;

};

Members
status Status code, WLAN_STATUS_SUCCESS for successful connection, use

WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you the real status code for
failures. If this call is used to report a failure due to a timeout (e.g., not receiving an Authentication
frame from the AP) instead of an explicit rejection by the AP, -1 is used to indicate that this is a
failure, but without a status code. timeout_reason is used to report the reason for the timeout in
that case.

bssid The BSSID of the AP (may be NULL)
bss Entry of bss to which STA got connected to, can be obtained through cfg80211_get_bss() (may be

NULL). Only one parameter among bssid and bss needs to be specified.
req_ie Association request IEs (may be NULL)
req_ie_len Association request IEs length
resp_ie Association response IEs (may be NULL)
resp_ie_len Association response IEs length
fils_kek KEK derived from a successful FILS connection (may be NULL)
fils_kek_len Length of fils_kek in octets
update_erp_next_seq_num Boolean value to specify whether the value in fils_erp_next_seq_num is

valid.

838 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

fils_erp_next_seq_num The next sequence number to use in ERP message in FILS Authentication. This
value should be specified irrespective of the status for a FILS connection.

pmk A new PMK if derived from a successful FILS connection (may be NULL).
pmk_len Length of pmk in octets
pmkid A new PMKID if derived from a successful FILS connection or the PMKID used for this FILS connection

(may be NULL).
timeout_reason Reason for connection timeout. This is used when the connection fails due to a timeout

instead of an explicit rejection from the AP. NL80211_TIMEOUT_UNSPECIFIED is used when the timeout
reason is not known. This value is used only if status < 0 to indicate that the failure is due to a
timeout and not due to explicit rejection by the AP. This value is ignored in other cases (status >=
0).

void cfg80211_connect_done(struct net_device * dev, struct cfg80211_connect_resp_params
* params, gfp_t gfp)

notify cfg80211 of connection result
Parameters
struct net_device * dev network device
struct cfg80211_connect_resp_params * params connection response parameters
gfp_t gfp allocation flags
Description
It should be called by the underlying driver once execution of the connection request from con-
nect() has been completed. This is similar to cfg80211_connect_bss(), but takes a structure pointer
for connection response parameters. Only one of the functions among cfg80211_connect_bss(),
cfg80211_connect_result(), cfg80211_connect_timeout(), and cfg80211_connect_done() should
be called.
void cfg80211_connect_result(struct net_device * dev, const u8 * bssid, const u8 * req_ie,

size_t req_ie_len, const u8 * resp_ie, size_t resp_ie_len, u16 status,
gfp_t gfp)

notify cfg80211 of connection result
Parameters
struct net_device * dev network device
const u8 * bssid the BSSID of the AP
const u8 * req_ie association request IEs (maybe be NULL)
size_t req_ie_len association request IEs length
const u8 * resp_ie association response IEs (may be NULL)
size_t resp_ie_len assoc response IEs length
u16 status status code, WLAN_STATUS_SUCCESS for successful connection, use

WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you the real status code for
failures.

gfp_t gfp allocation flags
Description
It should be called by the underlying driver once execution of the connection request from connect()
has been completed. This is similar to cfg80211_connect_bss() which allows the exact bss entry to
be specified. Only one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(),
cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.

30.2. cfg80211 subsystem 839

The kernel driver API manual, Release 4.13.0-rc4+

void cfg80211_connect_bss(struct net_device * dev, const u8 * bssid, struct cfg80211_bss
* bss, const u8 * req_ie, size_t req_ie_len, const u8
* resp_ie, size_t resp_ie_len, int status, gfp_t gfp, enum
nl80211_timeout_reason timeout_reason)

notify cfg80211 of connection result
Parameters
struct net_device * dev network device
const u8 * bssid the BSSID of the AP
struct cfg80211_bss * bss entry of bss to which STA got connected to, can be obtained through

cfg80211_get_bss (may be NULL)
const u8 * req_ie association request IEs (maybe be NULL)
size_t req_ie_len association request IEs length
const u8 * resp_ie association response IEs (may be NULL)
size_t resp_ie_len assoc response IEs length
int status status code, WLAN_STATUS_SUCCESS for successful connection, use

WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you the real status code for
failures. If this call is used to report a failure due to a timeout (e.g., not receiving an Authentication
frame from the AP) instead of an explicit rejection by the AP, -1 is used to indicate that this is a
failure, but without a status code. timeout_reason is used to report the reason for the timeout in
that case.

gfp_t gfp allocation flags
enum nl80211_timeout_reason timeout_reason reason for connection timeout. This is used

when the connection fails due to a timeout instead of an explicit rejection from the AP.
NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is not known. This value is used
only if status < 0 to indicate that the failure is due to a timeout and not due to explicit rejection by
the AP. This value is ignored in other cases (status >= 0).

Description
It should be called by the underlying driver once execution of the connection request from connect()
has been completed. This is similar to cfg80211_connect_result(), but with the option of identifying
the exact bss entry for the connection. Only one of the functions among cfg80211_connect_bss(),
cfg80211_connect_result(), cfg80211_connect_timeout(), and cfg80211_connect_done() should
be called.
void cfg80211_connect_timeout(struct net_device * dev, const u8 * bssid, const

u8 * req_ie, size_t req_ie_len, gfp_t gfp, enum
nl80211_timeout_reason timeout_reason)

notify cfg80211 of connection timeout
Parameters
struct net_device * dev network device
const u8 * bssid the BSSID of the AP
const u8 * req_ie association request IEs (maybe be NULL)
size_t req_ie_len association request IEs length
gfp_t gfp allocation flags
enum nl80211_timeout_reason timeout_reason reason for connection timeout.
Description
It should be called by the underlying driver whenever connect() has failed in a sequence where no
explicit authentication/association rejection was received from the AP. This could happen, e.g., due to not
being able to send out the Authentication or Association Request frame or timing out while waiting for the

840 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

response. Only one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(),
cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
void cfg80211_roamed(struct net_device * dev, struct cfg80211_roam_info * info, gfp_t gfp)

notify cfg80211 of roaming
Parameters
struct net_device * dev network device
struct cfg80211_roam_info * info information about the new BSS. struct cfg80211_roam_info.
gfp_t gfp allocation flags
Description
This function may be called with the driver passing either the BSSID of the new AP or passing the bss entry
to avoid a race in timeout of the bss entry. It should be called by the underlying driver whenever it roamed
from one AP to another while connected. Drivers which have roaming implemented in firmware should
pass the bss entry to avoid a race in bss entry timeout where the bss entry of the new AP is seen in the
driver, but gets timed out by the time it is accessed in __cfg80211_roamed() due to delay in scheduling
rdev->event_work. In case of any failures, the reference is released either in cfg80211_roamed() or in
__cfg80211_romed(), Otherwise, it will be released while diconneting from the current bss.
void cfg80211_disconnected(struct net_device * dev, u16 reason, const u8 * ie, size_t ie_len,

bool locally_generated, gfp_t gfp)
notify cfg80211 that connection was dropped

Parameters
struct net_device * dev network device
u16 reason reason code for the disconnection, set it to 0 if unknown
const u8 * ie information elements of the deauth/disassoc frame (may be NULL)
size_t ie_len length of IEs
bool locally_generated disconnection was requested locally
gfp_t gfp allocation flags
Description
After it calls this function, the driver should enter an idle state and not try to connect to any AP any more.

void cfg80211_ready_on_channel(struct wireless_dev * wdev, u64 cookie, struct
ieee80211_channel * chan, unsigned int duration, gfp_t gfp)

notification of remain_on_channel start
Parameters
struct wireless_dev * wdev wireless device
u64 cookie the request cookie
struct ieee80211_channel * chan The current channel (from remain_on_channel request)
unsigned int duration Duration in milliseconds that the driver intents to remain on the channel
gfp_t gfp allocation flags
void cfg80211_remain_on_channel_expired(struct wireless_dev * wdev, u64 cookie, struct

ieee80211_channel * chan, gfp_t gfp)
remain_on_channel duration expired

Parameters
struct wireless_dev * wdev wireless device
u64 cookie the request cookie

30.2. cfg80211 subsystem 841

The kernel driver API manual, Release 4.13.0-rc4+

struct ieee80211_channel * chan The current channel (from remain_on_channel request)
gfp_t gfp allocation flags
void cfg80211_new_sta(struct net_device * dev, const u8 * mac_addr, struct station_info * sinfo,

gfp_t gfp)
notify userspace about station

Parameters
struct net_device * dev the netdev
const u8 * mac_addr the station’s address
struct station_info * sinfo the station information
gfp_t gfp allocation flags
bool cfg80211_rx_mgmt(struct wireless_dev * wdev, int freq, int sig_dbm, const u8 * buf, size_t len,

u32 flags)
notification of received, unprocessed management frame

Parameters
struct wireless_dev * wdev wireless device receiving the frame
int freq Frequency on which the frame was received in MHz
int sig_dbm signal strength in mBm, or 0 if unknown
const u8 * buf Management frame (header + body)
size_t len length of the frame data
u32 flags flags, as defined in enum nl80211_rxmgmt_flags
Description
This function is called whenever an Action frame is received for a station mode interface, but is not
processed in kernel.
Return
true if a user space application has registered for this frame. For action frames, that makes it responsible
for rejecting unrecognized action frames; false otherwise, in which case for action frames the driver is
responsible for rejecting the frame.
void cfg80211_mgmt_tx_status(struct wireless_dev * wdev, u64 cookie, const u8 * buf, size_t len,

bool ack, gfp_t gfp)
notification of TX status for management frame

Parameters
struct wireless_dev * wdev wireless device receiving the frame
u64 cookie Cookie returned by cfg80211_ops::mgmt_tx()
const u8 * buf Management frame (header + body)
size_t len length of the frame data
bool ack Whether frame was acknowledged
gfp_t gfp context flags
Description
This function is called whenever a management frame was requested to be transmitted with
cfg80211_ops::mgmt_tx() to report the TX status of the transmission attempt.
void cfg80211_cqm_rssi_notify(struct net_device * dev, enumnl80211_cqm_rssi_threshold_event rssi_event,

s32 rssi_level, gfp_t gfp)
connection quality monitoring rssi event

842 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct net_device * dev network device
enum nl80211_cqm_rssi_threshold_event rssi_event the triggered RSSI event
s32 rssi_level new RSSI level value or 0 if not available
gfp_t gfp context flags
Description
This function is called when a configured connection quality monitoring rssi threshold reached event oc-
curs.
void cfg80211_cqm_pktloss_notify(struct net_device * dev, const u8 * peer, u32 num_packets,

gfp_t gfp)
notify userspace about packetloss to peer

Parameters
struct net_device * dev network device
const u8 * peer peer’s MAC address
u32 num_packets how many packets were lost – should be a fixed threshold but probably no less than

maybe 50, or maybe a throughput dependent threshold (to account for temporary interference)
gfp_t gfp context flags
void cfg80211_michael_mic_failure(struct net_device * dev, const u8 * addr, enum

nl80211_key_type key_type, int key_id, const u8 * tsc,
gfp_t gfp)

notification of Michael MIC failure (TKIP)
Parameters
struct net_device * dev network device
const u8 * addr The source MAC address of the frame
enum nl80211_key_type key_type The key type that the received frame used
int key_id Key identifier (0..3). Can be -1 if missing.
const u8 * tsc The TSC value of the frame that generated the MIC failure (6 octets)
gfp_t gfp allocation flags
Description
This function is called whenever the local MAC detects a MIC failure in a received frame. This matches
with MLME-MICHAELMICFAILURE.:c:func:indication() primitive.

30.2.3 Scanning and BSS list handling

The scanning process itself is fairly simple, but cfg80211 offers quite a bit of helper functionality. To
start a scan, the scan operation will be invoked with a scan definition. This scan definition contains the
channels to scan, and the SSIDs to send probe requests for (including the wildcard, if desired). A passive
scan is indicated by having no SSIDs to probe. Additionally, a scan request may contain extra information
elements that should be added to the probe request. The IEs are guaranteed to be well-formed, and will
not exceed the maximum length the driver advertised in the wiphy structure.
When scanning finds a BSS, cfg80211 needs to be notified of that, because it is responsible for maintaining
the BSS list; the driver should not maintain a list itself. For this notification, various functions exist.
Since drivers do not maintain a BSS list, there are also a number of functions to search for a BSS and obtain
information about it from the BSS structure cfg80211 maintains. The BSS list is also made available to
userspace.

30.2. cfg80211 subsystem 843

The kernel driver API manual, Release 4.13.0-rc4+

struct cfg80211_ssid
SSID description

Definition

struct cfg80211_ssid {
u8 ssid;
u8 ssid_len;

};

Members
ssid the SSID
ssid_len length of the ssid
struct cfg80211_scan_request

scan request description
Definition

struct cfg80211_scan_request {
struct cfg80211_ssid * ssids;
int n_ssids;
u32 n_channels;
enum nl80211_bss_scan_width scan_width;
const u8 * ie;
size_t ie_len;
u16 duration;
bool duration_mandatory;
u32 flags;
u32 rates;
struct wireless_dev * wdev;
u8 mac_addr;
u8 mac_addr_mask;
u8 bssid;
struct wiphy * wiphy;
unsigned long scan_start;
struct cfg80211_scan_info info;
bool notified;
bool no_cck;
struct ieee80211_channel * channels;

};

Members
ssids SSIDs to scan for (active scan only)
n_ssids number of SSIDs
n_channels total number of channels to scan
scan_width channel width for scanning
ie optional information element(s) to add into Probe Request or NULL
ie_len length of ie in octets
duration how long to listen on each channel, in TUs. If duration_mandatory is not set, this is the maxi-

mum dwell time and the actual dwell time may be shorter.
duration_mandatory if set, the scan duration must be as specified by the duration field.
flags bit field of flags controlling operation
rates bitmap of rates to advertise for each band
wdev the wireless device to scan for

844 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

mac_addr MAC address used with randomisation
mac_addr_mask MAC address mask used with randomisation, bits that are 0 in the mask should be ran-

domised, bits that are 1 should be taken from the mac_addr
bssid BSSID to scan for (most commonly, the wildcard BSSID)
wiphy the wiphy this was for
scan_start time (in jiffies) when the scan started
info (internal) information about completed scan
notified (internal) scan request was notified as done or aborted
no_cck used to send probe requests at non CCK rate in 2GHz band
channels channels to scan on.
void cfg80211_scan_done(struct cfg80211_scan_request * request, struct cfg80211_scan_info

* info)
notify that scan finished

Parameters
struct cfg80211_scan_request * request the corresponding scan request
struct cfg80211_scan_info * info information about the completed scan
struct cfg80211_bss

BSS description
Definition

struct cfg80211_bss {
struct ieee80211_channel * channel;
enum nl80211_bss_scan_width scan_width;
const struct cfg80211_bss_ies __rcu * ies;
const struct cfg80211_bss_ies __rcu * beacon_ies;
const struct cfg80211_bss_ies __rcu * proberesp_ies;
struct cfg80211_bss * hidden_beacon_bss;
s32 signal;
u16 beacon_interval;
u16 capability;
u8 bssid;
u8 priv;

};

Members
channel channel this BSS is on
scan_width width of the control channel
ies the information elements (Note that there is no guarantee that these are well-formed!); this is a

pointer to either the beacon_ies or proberesp_ies depending on whether Probe Response frame has
been received. It is always non-NULL.

beacon_ies the information elements from the last Beacon frame (implementation note: if hid-
den_beacon_bss is set this struct doesn’t own the beacon_ies, but they’re just pointers to the ones
from the hidden_beacon_bss struct)

proberesp_ies the information elements from the last Probe Response frame
hidden_beacon_bss in case this BSS struct represents a probe response from a BSS that hides the SSID

in its beacon, this points to the BSS struct that holds the beacon data. beacon_ies is still valid, of
course, and points to the same data as hidden_beacon_bss->beacon_ies in that case.

signal signal strength value (type depends on the wiphy’s signal_type)
beacon_interval the beacon interval as from the frame

30.2. cfg80211 subsystem 845

The kernel driver API manual, Release 4.13.0-rc4+

capability the capability field in host byte order
bssid BSSID of the BSS
priv private area for driver use, has at least wiphy->bss_priv_size bytes
Description
This structure describes a BSS (which may also be a mesh network) for use in scan results and similar.
struct cfg80211_inform_bss

BSS inform data
Definition

struct cfg80211_inform_bss {
struct ieee80211_channel * chan;
enum nl80211_bss_scan_width scan_width;
s32 signal;
u64 boottime_ns;
u64 parent_tsf;
u8 parent_bssid;

};

Members
chan channel the frame was received on
scan_width scan width that was used
signal signal strength value, according to the wiphy’s signal type
boottime_ns timestamp (CLOCK_BOOTTIME) when the information was received; should match the time

when the frame was actually received by the device (not just by the host, in case it was buffered on
the device) and be accurate to about 10ms. If the frame isn’t buffered, just passing the return value
of ktime_get_boot_ns() is likely appropriate.

parent_tsf the time at the start of reception of the first octet of the timestamp field of the frame. The
time is the TSF of the BSS specified by parent_bssid.

parent_bssid the BSS according to which parent_tsf is set. This is set to the BSS that requested the
scan in which the beacon/probe was received.

struct cfg80211_bss * cfg80211_inform_bss_frame_data(struct wiphy * wiphy, struct
cfg80211_inform_bss * data, struct
ieee80211_mgmt * mgmt, size_t len,
gfp_t gfp)

inform cfg80211 of a received BSS frame
Parameters
struct wiphy * wiphy the wiphy reporting the BSS
struct cfg80211_inform_bss * data the BSS metadata
struct ieee80211_mgmt * mgmt the management frame (probe response or beacon)
size_t len length of the management frame
gfp_t gfp context flags
Description
This informs cfg80211 that BSS information was found and the BSS should be updated/added.
Return
A referenced struct, must be released with cfg80211_put_bss()! Or NULL on error.

846 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct cfg80211_bss * cfg80211_inform_bss_data(struct wiphy * wiphy, struct
cfg80211_inform_bss * data, enum
cfg80211_bss_frame_type ftype, const
u8 * bssid, u64 tsf, u16 capability,
u16 beacon_interval, const u8 * ie, size_t ielen,
gfp_t gfp)

inform cfg80211 of a new BSS
Parameters
struct wiphy * wiphy the wiphy reporting the BSS
struct cfg80211_inform_bss * data the BSS metadata
enum cfg80211_bss_frame_type ftype frame type (if known)
const u8 * bssid the BSSID of the BSS
u64 tsf the TSF sent by the peer in the beacon/probe response (or 0)
u16 capability the capability field sent by the peer
u16 beacon_interval the beacon interval announced by the peer
const u8 * ie additional IEs sent by the peer
size_t ielen length of the additional IEs
gfp_t gfp context flags
Description
This informs cfg80211 that BSS information was found and the BSS should be updated/added.
Return
A referenced struct, must be released with cfg80211_put_bss()! Or NULL on error.
void cfg80211_unlink_bss(struct wiphy * wiphy, struct cfg80211_bss * bss)

unlink BSS from internal data structures
Parameters
struct wiphy * wiphy the wiphy
struct cfg80211_bss * bss the bss to remove
Description
This function removes the given BSS from the internal data structures thereby making it no longer show
up in scan results etc. Use this function when you detect a BSS is gone. Normally BSSes will also time
out, so it is not necessary to use this function at all.
const u8 * cfg80211_find_ie(u8 eid, const u8 * ies, int len)

find information element in data
Parameters
u8 eid element ID
const u8 * ies data consisting of IEs
int len length of data
Return
NULL if the element ID could not be found or if the element is invalid (claims to be longer than the given
data), or a pointer to the first byte of the requested element, that is the byte containing the element ID.
Note
There are no checks on the element length other than having to fit into the given data.

30.2. cfg80211 subsystem 847

The kernel driver API manual, Release 4.13.0-rc4+

const u8 * ieee80211_bss_get_ie(struct cfg80211_bss * bss, u8 ie)
find IE with given ID

Parameters
struct cfg80211_bss * bss the bss to search
u8 ie the IE ID
Description
Note that the return value is an RCU-protected pointer, so rcu_read_lock() must be held when calling
this function.
Return
NULL if not found.

30.2.4 Utility functions

cfg80211 offers a number of utility functions that can be useful.
int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)

convert channel number to frequency
Parameters
int chan channel number
enum nl80211_band band band, necessary due to channel number overlap
Return
The corresponding frequency (in MHz), or 0 if the conversion failed.
int ieee80211_frequency_to_channel(int freq)

convert frequency to channel number
Parameters
int freq center frequency
Return
The corresponding channel, or 0 if the conversion failed.
struct ieee80211_channel * ieee80211_get_channel(struct wiphy * wiphy, int freq)

get channel struct from wiphy for specified frequency
Parameters
struct wiphy * wiphy the struct wiphy to get the channel for
int freq the center frequency of the channel
Return
The channel struct from wiphy at freq.
struct ieee80211_rate * ieee80211_get_response_rate(struct ieee80211_supported_band

* sband, u32 basic_rates, int bitrate)
get basic rate for a given rate

Parameters
struct ieee80211_supported_band * sband the band to look for rates in
u32 basic_rates bitmap of basic rates
int bitrate the bitrate for which to find the basic rate

848 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Return
The basic rate corresponding to a given bitrate, that is the next lower bitrate contained in the basic rate
map, which is, for this function, given as a bitmap of indices of rates in the band’s bitrate table.
unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)

get header length in bytes from frame control
Parameters
__le16 fc frame control field in little-endian format
Return
The header length in bytes.
unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)

get header length from data
Parameters
const struct sk_buff * skb the frame
Description
Given an skb with a raw 802.11 header at the data pointer this function returns the 802.11 header length.
Return
The 802.11 header length in bytes (not including encryption headers). Or 0 if the data in the sk_buff is
too short to contain a valid 802.11 header.
struct ieee80211_radiotap_iterator

tracks walk thru present radiotap args
Definition

struct ieee80211_radiotap_iterator {
struct ieee80211_radiotap_header * _rtheader;
const struct ieee80211_radiotap_vendor_namespaces * _vns;
const struct ieee80211_radiotap_namespace * current_namespace;
unsigned char * _arg;
unsigned char * _next_ns_data;
__le32 * _next_bitmap;
unsigned char * this_arg;
int this_arg_index;
int this_arg_size;
int is_radiotap_ns;
int _max_length;
int _arg_index;
uint32_t _bitmap_shifter;
int _reset_on_ext;

};

Members
_rtheader pointer to the radiotap header we are walking through
_vns vendor namespace definitions
current_namespace pointer to the current namespace definition (or internally NULL if the current names-

pace is unknown)
_arg next argument pointer
_next_ns_data beginning of the next namespace’s data
_next_bitmap internal pointer to next present u32

30.2. cfg80211 subsystem 849

The kernel driver API manual, Release 4.13.0-rc4+

this_arg pointer to current radiotap arg; it is valid after each call to
ieee80211_radiotap_iterator_next() but also after ieee80211_radiotap_iterator_init()
where it will point to the beginning of the actual data portion

this_arg_index index of current arg, valid after each successful call to
ieee80211_radiotap_iterator_next()

this_arg_size length of the current arg, for convenience
is_radiotap_ns indicates whether the current namespace is the default radiotap namespace or not
_max_length length of radiotap header in cpu byte ordering
_arg_index next argument index
_bitmap_shifter internal shifter for curr u32 bitmap, b0 set == arg present
_reset_on_ext internal; reset the arg index to 0 when going to the next bitmap word
Description
Describes the radiotap parser state. Fields prefixed with an underscore must not be used by users of the
parser, only by the parser internally.

30.2.5 Data path helpers

In addition to generic utilities, cfg80211 also offers functions that help implement the data path for devices
that do not do the 802.11/802.3 conversion on the device.
int ieee80211_data_to_8023(struct sk_buff * skb, const u8 * addr, enum nl80211_iftype iftype)

convert an 802.11 data frame to 802.3
Parameters
struct sk_buff * skb the 802.11 data frame
const u8 * addr the device MAC address
enum nl80211_iftype iftype the virtual interface type
Return
0 on success. Non-zero on error.
int ieee80211_data_from_8023(struct sk_buff * skb, const u8 * addr, enum nl80211_iftype iftype,

const u8 * bssid, bool qos)
convert an 802.3 frame to 802.11

Parameters
struct sk_buff * skb the 802.3 frame
const u8 * addr the device MAC address
enum nl80211_iftype iftype the virtual interface type
const u8 * bssid the network bssid (used only for iftype STATION and ADHOC)
bool qos build 802.11 QoS data frame
Return
0 on success, or a negative error code.
void ieee80211_amsdu_to_8023s(struct sk_buff * skb, struct sk_buff_head * list, const u8 * addr,

enum nl80211_iftype iftype, const unsigned int extra_headroom,
const u8 * check_da, const u8 * check_sa)

decode an IEEE 802.11n A-MSDU frame
Parameters

850 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct sk_buff * skb The input A-MSDU frame without any headers.
struct sk_buff_head * list The output list of 802.3 frames. It must be allocated and initialized by by

the caller.
const u8 * addr The device MAC address.
enum nl80211_iftype iftype The device interface type.
const unsigned int extra_headroom The hardware extra headroom for SKBs in the list.
const u8 * check_da DA to check in the inner ethernet header, or NULL
const u8 * check_sa SA to check in the inner ethernet header, or NULL
Description
Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames. The list will be empty if the
decode fails. The skb must be fully header-less before being passed in here; it is freed in this function.
unsigned int cfg80211_classify8021d(struct sk_buff * skb, struct cfg80211_qos_map * qos_map)

determine the 802.1p/1d tag for a data frame
Parameters
struct sk_buff * skb the data frame
struct cfg80211_qos_map * qos_map Interworking QoS mapping or NULL if not in use
Return
The 802.1p/1d tag.

30.2.6 Regulatory enforcement infrastructure

TODO
int regulatory_hint(struct wiphy * wiphy, const char * alpha2)

driver hint to the wireless core a regulatory domain
Parameters
struct wiphy * wiphy the wireless device giving the hint (used only for reporting conflicts)
const char * alpha2 the ISO/IEC 3166 alpha2 the driver claims its regulatory domain should be in. If

rd is set this should be NULL. Note that if you set this to NULL you should still set rd->alpha2 to some
accepted alpha2.

Description
Wireless drivers can use this function to hint to the wireless core what it believes should be the current
regulatory domain by giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory domain should
be in or by providing a completely build regulatory domain. If the driver provides an ISO/IEC 3166 alpha2
userspace will be queried for a regulatory domain structure for the respective country.
The wiphy must have been registered to cfg80211 prior to this call. For cfg80211 drivers this means you
must first use wiphy_register(), for mac80211 drivers you must first use ieee80211_register_hw().
Drivers should check the return value, its possible you can get an -ENOMEM.
Return
0 on success. -ENOMEM.
void wiphy_apply_custom_regulatory(struct wiphy * wiphy, const struct ieee80211_regdomain

* regd)
apply a custom driver regulatory domain

Parameters
struct wiphy * wiphy the wireless device we want to process the regulatory domain on

30.2. cfg80211 subsystem 851

The kernel driver API manual, Release 4.13.0-rc4+

const struct ieee80211_regdomain * regd the custom regulatory domain to use for this wiphy
Description
Drivers can sometimes have custom regulatory domains which do not apply to a specific country. Drivers
can use this to apply such custom regulatory domains. This routine must be called prior to wiphy regis-
tration. The custom regulatory domain will be trusted completely and as such previous default channel
settings will be disregarded. If no rule is found for a channel on the regulatory domain the channel will
be disabled. Drivers using this for a wiphy should also set the wiphy flag REGULATORY_CUSTOM_REG or
cfg80211 will set it for the wiphy that called this helper.
const struct ieee80211_reg_rule * freq_reg_info(struct wiphy * wiphy, u32 center_freq)

get regulatory information for the given frequency
Parameters
struct wiphy * wiphy the wiphy for which we want to process this rule for
u32 center_freq Frequency in KHz for which we want regulatory information for
Description
Use this function to get the regulatory rule for a specific frequency on a given wireless device. If the
device has a specific regulatory domain it wants to follow we respect that unless a country IE has been
received and processed already.
Return
A valid pointer, or, when an error occurs, for example if no rule can be found, the return value is encoded
using ERR_PTR(). Use IS_ERR() to check and PTR_ERR() to obtain the numeric return value. The numeric
return value will be -ERANGE if we determine the given center_freq does not even have a regulatory rule
for a frequency range in the center_freq’s band. See freq_in_rule_band() for our current definition of
a band – this is purely subjective and right now it’s 802.11 specific.

30.2.7 RFkill integration

RFkill integration in cfg80211 is almost invisible to drivers, as cfg80211 automatically registers an rfkill
instance for each wireless device it knows about. Soft kill is also translated into disconnecting and turning
all interfaces off, drivers are expected to turn off the device when all interfaces are down.
However, devices may have a hard RFkill line, in which case they also need to interact with the rfkill
subsystem, via cfg80211. They can do this with a few helper functions documented here.
void wiphy_rfkill_set_hw_state(struct wiphy * wiphy, bool blocked)

notify cfg80211 about hw block state
Parameters
struct wiphy * wiphy the wiphy
bool blocked block status
void wiphy_rfkill_start_polling(struct wiphy * wiphy)

start polling rfkill
Parameters
struct wiphy * wiphy the wiphy
void wiphy_rfkill_stop_polling(struct wiphy * wiphy)

stop polling rfkill
Parameters
struct wiphy * wiphy the wiphy

852 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

30.2.8 Test mode

Testmode is a set of utility functions to allow drivers to interact with driver-specific tools to aid, for instance,
factory programming.
This chapter describes how drivers interact with it, for more information see the nl80211 book’s chapter
on it.
struct sk_buff * cfg80211_testmode_alloc_reply_skb(struct wiphy * wiphy, int approxlen)

allocate testmode reply
Parameters
struct wiphy * wiphy the wiphy
int approxlen an upper bound of the length of the data that will be put into the skb
Description
This function allocates and pre-fills an skb for a reply to the testmode command. Since it is intended for
a reply, calling it outside of the testmode_cmd operation is invalid.
The returned skb is pre-filled with the wiphy index and set up in a way that any data that is put into the skb
(with skb_put(), nla_put() or similar) will end up being within the NL80211_ATTR_TESTDATA attribute,
so all that needs to be done with the skb is adding data for the corresponding userspace tool which can
then read that data out of the testdata attribute. You must not modify the skb in any other way.
When done, call cfg80211_testmode_reply() with the skb and return its error code as the result of the
testmode_cmd operation.
Return
An allocated and pre-filled skb. NULL if any errors happen.
int cfg80211_testmode_reply(struct sk_buff * skb)

send the reply skb
Parameters
struct sk_buff * skb The skb, must have been allocated with cfg80211_testmode_alloc_reply_skb()
Description
Since calling this function will usually be the last thing before returning from the testmode_cmd you
should return the error code. Note that this function consumes the skb regardless of the return value.
Return
An error code or 0 on success.
struct sk_buff * cfg80211_testmode_alloc_event_skb(struct wiphy * wiphy, int approxlen,

gfp_t gfp)
allocate testmode event

Parameters
struct wiphy * wiphy the wiphy
int approxlen an upper bound of the length of the data that will be put into the skb
gfp_t gfp allocation flags
Description
This function allocates and pre-fills an skb for an event on the testmode multicast group.
The returned skb is set up in the same way as with cfg80211_testmode_alloc_reply_skb() but
prepared for an event. As there, you should simply add data to it that will then end up in the
NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb in any other way.
When done filling the skb, call cfg80211_testmode_event() with the skb to send the event.

30.2. cfg80211 subsystem 853

The kernel driver API manual, Release 4.13.0-rc4+

Return
An allocated and pre-filled skb. NULL if any errors happen.
void cfg80211_testmode_event(struct sk_buff * skb, gfp_t gfp)

send the event
Parameters
struct sk_buff * skb The skb, must have been allocated with cfg80211_testmode_alloc_event_skb()
gfp_t gfp allocation flags
Description
This function sends the given skb, which must have been allocated by
cfg80211_testmode_alloc_event_skb(), as an event. It always consumes it.

30.3 mac80211 subsystem (basics)

You should read and understand the information contained within this part of the book while implementing
a mac80211 driver. In some chapters, advanced usage is noted, those may be skipped if this isn’t needed.
This part of the book only covers station and monitor mode functionality, additional information required
to implement the other modes is covered in the second part of the book.

30.3.1 Basic hardware handling

TBD
This chapter shall contain information on getting a hw struct allocated and registered with mac80211.
Since it is required to allocate rates/modes before registering a hw struct, this chapter shall also contain
information on setting up the rate/mode structs.
Additionally, some discussion about the callbacks and the general programming model should be in here,
including the definition of ieee80211_ops which will be referred to a lot.
Finally, a discussion of hardware capabilities should be done with references to other parts of the book.
struct ieee80211_hw

hardware information and state
Definition

struct ieee80211_hw {
struct ieee80211_conf conf;
struct wiphy * wiphy;
const char * rate_control_algorithm;
void * priv;
unsigned long flags;
unsigned int extra_tx_headroom;
unsigned int extra_beacon_tailroom;
int vif_data_size;
int sta_data_size;
int chanctx_data_size;
int txq_data_size;
u16 queues;
u16 max_listen_interval;
s8 max_signal;
u8 max_rates;
u8 max_report_rates;
u8 max_rate_tries;
u8 max_rx_aggregation_subframes;

854 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

u8 max_tx_aggregation_subframes;
u8 max_tx_fragments;
u8 offchannel_tx_hw_queue;
u8 radiotap_mcs_details;
u16 radiotap_vht_details;
struct radiotap_timestamp;
netdev_features_t netdev_features;
u8 uapsd_queues;
u8 uapsd_max_sp_len;
u8 n_cipher_schemes;
const struct ieee80211_cipher_scheme * cipher_schemes;
u8 max_nan_de_entries;

};

Members
conf struct ieee80211_conf, device configuration, don’t use.
wiphy This points to the struct wiphy allocated for this 802.11 PHY. You must fill in the perm_addr

and dev members of this structure using SET_IEEE80211_DEV() and SET_IEEE80211_PERM_ADDR().
Additionally, all supported bands (with channels, bitrates) are registered here.

rate_control_algorithm rate control algorithm for this hardware. If unset (NULL), the default algorithm
will be used. Must be set before calling ieee80211_register_hw().

priv pointer to private area that was allocated for driver use along with this structure.
flags hardware flags, see enum ieee80211_hw_flags.
extra_tx_headroom headroom to reserve in each transmit skb for use by the driver (e.g. for transmit

headers.)
extra_beacon_tailroom tailroom to reserve in each beacon tx skb. Can be used by drivers to add extra

IEs.
vif_data_size size (in bytes) of the drv_priv data area within struct ieee80211_vif.
sta_data_size size (in bytes) of the drv_priv data area within struct ieee80211_sta.
chanctx_data_size size (in bytes) of the drv_priv data area within struct ieee80211_chanctx_conf.
txq_data_size size (in bytes) of the drv_priv data area within struct ieee80211_txq.
queues number of available hardware transmit queues for data packets. WMM/QoS requires at least four,

these queues need to have configurable access parameters.
max_listen_interval max listen interval in units of beacon interval that HW supports
max_signal Maximum value for signal (rssi) in RX information, used only when

IEEE80211_HW_SIGNAL_UNSPEC or IEEE80211_HW_SIGNAL_DB
max_rates maximum number of alternate rate retry stages the hw can handle.
max_report_rates maximum number of alternate rate retry stages the hw can report back.
max_rate_tries maximum number of tries for each stage
max_rx_aggregation_subframes maximum buffer size (number of sub-frames) to be used for A-MPDU

block ack receiver aggregation. This is only relevant if the device has restrictions on the number of
subframes, if it relies on mac80211 to do reordering it shouldn’t be set.

max_tx_aggregation_subframes maximum number of subframes in an aggregate an HT driver will trans-
mit. Though ADDBA will advertise a constant value of 64 as some older APs can crash if the window
size is smaller (an example is LinkSys WRT120N with FW v1.0.07 build 002 Jun 18 2012).

max_tx_fragments maximum number of tx buffers per (A)-MSDU, sum of 1 + skb_shinfo(skb)->nr_frags
for each skb in the frag_list.

offchannel_tx_hw_queue HW queue ID to use for offchannel TX (if IEEE80211_HW_QUEUE_CONTROL is set)

30.3. mac80211 subsystem (basics) 855

The kernel driver API manual, Release 4.13.0-rc4+

radiotap_mcs_details lists which MCS information can the HW reports, by default it is set to _MCS, _GI
and _BW but doesn’t include _FMT. Use IEEE80211_RADIOTAP_MCS_HAVE_* values, only adding _BW
is supported today.

radiotap_vht_details lists which VHTMCS information the HW reports, the default is _GI | _BANDWIDTH.
Use the IEEE80211_RADIOTAP_VHT_KNOWN_* values.

radiotap_timestamp Information for the radiotap timestamp field; if the ‘units_pos’ member is set to a
non-negative value it must be set to a combination of a IEEE80211_RADIOTAP_TIMESTAMP_UNIT_*
and a IEEE80211_RADIOTAP_TIMESTAMP_SPOS_* value, and then the timestamp field will be added
and populated from the struct ieee80211_rx_status device_timestamp. If the ‘accuracy’ member
is non-negative, it’s put into the accuracy radiotap field and the accuracy known flag is set.

netdev_features netdev features to be set in each netdev created from this HW. Note that not all features
are usable with mac80211, other features will be rejected during HW registration.

uapsd_queues This bitmap is included in (re)association frame to indicate for each access category if it
is uAPSD trigger-enabled and delivery- enabled. Use IEEE80211_WMM_IE_STA_QOSINFO_AC_* to set
this bitmap. Each bit corresponds to different AC. Value ‘1’ in specific bit means that corresponding
AC is both trigger- and delivery-enabled. ‘0’ means neither enabled.

uapsd_max_sp_len maximum number of total buffered frames the WMM AP may deliver to a WMM STA
during any Service Period triggered by the WMM STA. Use IEEE80211_WMM_IE_STA_QOSINFO_SP_*
for correct values.

n_cipher_schemes a size of an array of cipher schemes definitions.
cipher_schemes a pointer to an array of cipher scheme definitions supported by HW.
max_nan_de_entries maximum number of NAN DE functions supported by the device.
Description
This structure contains the configuration and hardware information for an 802.11 PHY.
enum ieee80211_hw_flags

hardware flags
Constants
IEEE80211_HW_HAS_RATE_CONTROL The hardware or firmware includes rate control, and cannot be con-

trolled by the stack. As such, no rate control algorithm should be instantiated, and the TX rate
reported to userspace will be taken from the TX status instead of the rate control algorithm. Note
that this requires that the driver implement a number of callbacks so it has the correct information,
it needs to have the set_rts_threshold callback and must look at the BSS config use_cts_prot for
G/N protection, use_short_slot for slot timing in 2.4 GHz and use_short_preamble for preambles
for CCK frames.

IEEE80211_HW_RX_INCLUDES_FCS Indicates that received frames passed to the stack include the FCS at
the end.

IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING Some wireless LAN chipsets buffer broadcast/multicast
frames for power saving stations in the hardware/firmware and others rely on the host system for
such buffering. This option is used to configure the IEEE 802.11 upper layer to buffer broadcast
and multicast frames when there are power saving stations so that the driver can fetch them with
ieee80211_get_buffered_bc().

IEEE80211_HW_SIGNAL_UNSPEC Hardware can provide signal values but we don’t know its units. We ex-
pect values between 0 and max_signal. If possible please provide dB or dBm instead.

IEEE80211_HW_SIGNAL_DBM Hardware gives signal values in dBm, decibel difference from one milliwatt.
This is the preferred method since it is standardized between different devices. max_signal does
not need to be set.

IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC This device needs to get data from beacon before association
(i.e. dtim_period).

856 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

IEEE80211_HW_SPECTRUM_MGMT Hardware supports spectrum management defined in 802.11h Measure-
ment, Channel Switch, Quieting, TPC

IEEE80211_HW_AMPDU_AGGREGATION Hardware supports 11n A-MPDU aggregation.
IEEE80211_HW_SUPPORTS_PS Hardware has power save support (i.e. can go to sleep).
IEEE80211_HW_PS_NULLFUNC_STACK Hardware requires nullfunc frame handling in stack, implies stack

support for dynamic PS.
IEEE80211_HW_SUPPORTS_DYNAMIC_PS Hardware has support for dynamic PS.
IEEE80211_HW_MFP_CAPABLE Hardware supports management frame protection (MFP, IEEE 802.11w).
IEEE80211_HW_WANT_MONITOR_VIF The driver would like to be informed of a virtual monitor interface

when monitor interfaces are the only active interfaces.
IEEE80211_HW_NO_AUTO_VIF The driver would like for no wlanX to be created. It is expected user-space

will create vifs as desired (and thus have them named as desired).
IEEE80211_HW_SW_CRYPTO_CONTROL The driver wants to control which of the crypto algorithms can be

done in software - so don’t automatically try to fall back to it if hardware crypto fails, but do so only
if the driver returns 1. This also forces the driver to advertise its supported cipher suites.

IEEE80211_HW_SUPPORT_FAST_XMIT The driver/hardware supports fast-xmit, this currently requires only
the ability to calculate the duration for frames.

IEEE80211_HW_REPORTS_TX_ACK_STATUS Hardware can provide ack status reports of Tx frames to the
stack.

IEEE80211_HW_CONNECTION_MONITOR The hardware performs its own connection monitoring, including
periodic keep-alives to the AP and probing the AP on beacon loss.

IEEE80211_HW_QUEUE_CONTROL The driver wants to control per-interface queue mapping in order to use
different queues (not just one per AC) for different virtual interfaces. See the doc section on HW
queue control for more details.

IEEE80211_HW_SUPPORTS_PER_STA_GTK The device’s crypto engine supports per-station GTKs as used by
IBSS RSN or during fast transition. If the device doesn’t support per-station GTKs, but can be asked
not to decrypt group addressed frames, then IBSS RSN support is still possible but software crypto
will be used. Advertise the wiphy flag only in that case.

IEEE80211_HW_AP_LINK_PS When operating in AP mode the device autonomously manages the PS sta-
tus of connected stations. When this flag is set mac80211 will not trigger PS mode for connected
stations based on the PM bit of incoming frames. Use ieee80211_start_ps()/ieee8021_end_ps()
to manually configure the PS mode of connected stations.

IEEE80211_HW_TX_AMPDU_SETUP_IN_HW The device handles TX A-MPDU session setup strictly in HW.
mac80211 should not attempt to do this in software.

IEEE80211_HW_SUPPORTS_RC_TABLE The driver supports using a rate selection table provided by the rate
control algorithm.

IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF Use the P2P Device address for any P2P Interface. This will be
honoured even if more than one interface is supported.

IEEE80211_HW_TIMING_BEACON_ONLY Use sync timing from beacon frames only, to allow getting TBTT of
a DTIM beacon.

IEEE80211_HW_SUPPORTS_HT_CCK_RATES Hardware supports mixing HT/CCK rates and can cope with CCK
rates in an aggregation session (e.g. by not using aggregation for such frames.)

IEEE80211_HW_CHANCTX_STA_CSA Support 802.11h based channel-switch (CSA) for a single active chan-
nel while using channel contexts. When support is not enabled the default action is to disconnect
when getting the CSA frame.

IEEE80211_HW_SUPPORTS_CLONED_SKBS The driver will never modify the payload or tailroom of TX skbs
without copying them first.

30.3. mac80211 subsystem (basics) 857

The kernel driver API manual, Release 4.13.0-rc4+

IEEE80211_HW_SINGLE_SCAN_ON_ALL_BANDS The HW supports scanning on all bands in one command,
mac80211 doesn’t have to run separate scans per band.

IEEE80211_HW_TDLS_WIDER_BW The device/driver supports wider bandwidth than then BSS bandwidth for
a TDLS link on the base channel.

IEEE80211_HW_SUPPORTS_AMSDU_IN_AMPDU The driver supports receiving A-MSDUs within A-MPDU.
IEEE80211_HW_BEACON_TX_STATUS The device/driver provides TX status for sent beacons.
IEEE80211_HW_NEEDS_UNIQUE_STA_ADDR Hardware (or driver) requires that each station has a unique

address, i.e. each station entry can be identified by just its MAC address; this prevents, for example,
the same station from connecting to two virtual AP interfaces at the same time.

IEEE80211_HW_SUPPORTS_REORDERING_BUFFER Hardware (or driver) manages the reordering buffer inter-
nally, guaranteeing mac80211 receives frames in order and does not need to manage its own reorder
buffer or BA session timeout.

IEEE80211_HW_USES_RSS The device uses RSS and thus requires parallel RX, which implies using per-CPU
station statistics.

IEEE80211_HW_TX_AMSDU Hardware (or driver) supports software aggregated A-MSDU frames. Re-
quires software tx queueing and fast-xmit support. When not using minstrel/minstrel_ht rate con-
trol, the driver must limit the maximum A-MSDU size based on the current tx rate by setting
max_rc_amsdu_len in struct ieee80211_sta.

IEEE80211_HW_TX_FRAG_LIST Hardware (or driver) supports sending frag_list skbs, needed for zero-copy
software A-MSDU.

IEEE80211_HW_REPORTS_LOW_ACK The driver (or firmware) reports low ack event by
ieee80211_report_low_ack() based on its own algorithm. For such drivers, mac80211 packet loss
mechanism will not be triggered and driver is completely depending on firmware event for station
kickout.

IEEE80211_HW_SUPPORTS_TX_FRAG Hardware does fragmentation by itself. The stack will not do fragmen-
tation. The callback for set_frag_threshold should be set as well.

NUM_IEEE80211_HW_FLAGS number of hardware flags, used for sizing arrays
Description
These flags are used to indicate hardware capabilities to the stack. Generally, flags here should have their
meaning done in a way that the simplest hardware doesn’t need setting any particular flags. There are
some exceptions to this rule, however, so you are advised to review these flags carefully.
void SET_IEEE80211_DEV(struct ieee80211_hw * hw, struct device * dev)

set device for 802.11 hardware
Parameters
struct ieee80211_hw * hw the struct ieee80211_hw to set the device for
struct device * dev the struct device of this 802.11 device
void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw * hw, const u8 * addr)

set the permanent MAC address for 802.11 hardware
Parameters
struct ieee80211_hw * hw the struct ieee80211_hw to set the MAC address for
const u8 * addr the address to set
struct ieee80211_ops

callbacks from mac80211 to the driver
Definition

858 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct ieee80211_ops {
void (* tx) (struct ieee80211_hw *hw,struct ieee80211_tx_control *control, struct sk_buff␣

↪→*skb);
int (* start) (struct ieee80211_hw *hw);
void (* stop) (struct ieee80211_hw *hw);

#ifdef CONFIG_PM
int (* suspend) (struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan);
int (* resume) (struct ieee80211_hw *hw);
void (* set_wakeup) (struct ieee80211_hw *hw, bool enabled);

#endif
int (* add_interface) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
int (* change_interface) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, enum nl80211_

↪→iftype new_type, bool p2p);
void (* remove_interface) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
int (* config) (struct ieee80211_hw *hw, u32 changed);
void (* bss_info_changed) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_

↪→bss_conf *info, u32 changed);
int (* start_ap) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (* stop_ap) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
u64 (* prepare_multicast) (struct ieee80211_hw *hw, struct netdev_hw_addr_list *mc_list);
void (* configure_filter) (struct ieee80211_hw *hw,unsigned int changed_flags,unsigned int␣

↪→*total_flags, u64 multicast);
void (* config_iface_filter) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,unsigned int␣

↪→filter_flags, unsigned int changed_flags);
int (* set_tim) (struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set);
int (* set_key) (struct ieee80211_hw *hw, enum set_key_cmd cmd,struct ieee80211_vif *vif,␣

↪→struct ieee80211_sta *sta, struct ieee80211_key_conf *key);
void (* update_tkip_key) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_

↪→key_conf *conf,struct ieee80211_sta *sta, u32 iv32, u16 *phase1key);
void (* set_rekey_data) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct cfg80211_

↪→gtk_rekey_data *data);
void (* set_default_unicast_key) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, int␣

↪→idx);
int (* hw_scan) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_scan_

↪→request *req);
void (* cancel_hw_scan) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
int (* sched_scan_start) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct cfg80211_

↪→sched_scan_request *req, struct ieee80211_scan_ies *ies);
int (* sched_scan_stop) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (* sw_scan_start) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, const u8 *mac_

↪→addr);
void (* sw_scan_complete) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
int (* get_stats) (struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats);
void (* get_key_seq) (struct ieee80211_hw *hw,struct ieee80211_key_conf *key, struct␣

↪→ieee80211_key_seq *seq);
int (* set_frag_threshold) (struct ieee80211_hw *hw, u32 value);
int (* set_rts_threshold) (struct ieee80211_hw *hw, u32 value);
int (* sta_add) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta␣

↪→*sta);
int (* sta_remove) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta␣

↪→*sta);
#ifdef CONFIG_MAC80211_DEBUGFS
void (* sta_add_debugfs) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_

↪→sta *sta, struct dentry *dir);
#endif
void (* sta_notify) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum sta_notify_cmd,␣

↪→struct ieee80211_sta *sta);
int (* sta_state) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,struct ieee80211_sta␣

↪→*sta,enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state);
void (* sta_pre_rcu_remove) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct␣

↪→ieee80211_sta *sta);
void (* sta_rc_update) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_

↪→sta *sta, u32 changed);

30.3. mac80211 subsystem (basics) 859

The kernel driver API manual, Release 4.13.0-rc4+

void (* sta_rate_tbl_update) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct␣
↪→ieee80211_sta *sta);
void (* sta_statistics) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_

↪→sta *sta, struct station_info *sinfo);
int (* conf_tx) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, u16 ac, const struct␣

↪→ieee80211_tx_queue_params *params);
u64 (* get_tsf) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (* set_tsf) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf);
void (* offset_tsf) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, s64 offset);
void (* reset_tsf) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
int (* tx_last_beacon) (struct ieee80211_hw *hw);
int (* ampdu_action) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct ieee80211_

↪→ampdu_params *params);
int (* get_survey) (struct ieee80211_hw *hw, int idx, struct survey_info *survey);
void (* rfkill_poll) (struct ieee80211_hw *hw);
void (* set_coverage_class) (struct ieee80211_hw *hw, s16 coverage_class);

#ifdef CONFIG_NL80211_TESTMODE
int (* testmode_cmd) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int␣

↪→len);
int (* testmode_dump) (struct ieee80211_hw *hw, struct sk_buff *skb,struct netlink_callback␣

↪→*cb, void *data, int len);
#endif
void (* flush) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop);
void (* channel_switch) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct ieee80211_

↪→channel_switch *ch_switch);
int (* set_antenna) (struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
int (* get_antenna) (struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
int (* remain_on_channel) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_

↪→channel *chan,int duration, enum ieee80211_roc_type type);
int (* cancel_remain_on_channel) (struct ieee80211_hw *hw);
int (* set_ringparam) (struct ieee80211_hw *hw, u32 tx, u32 rx);
void (* get_ringparam) (struct ieee80211_hw *hw, u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
bool (* tx_frames_pending) (struct ieee80211_hw *hw);
int (* set_bitrate_mask) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, const struct␣

↪→cfg80211_bitrate_mask *mask);
void (* event_callback) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, const struct␣

↪→ieee80211_event *event);
void (* allow_buffered_frames) (struct ieee80211_hw *hw,struct ieee80211_sta *sta,u16 tids,␣

↪→int num_frames,enum ieee80211_frame_release_type reason, bool more_data);
void (* release_buffered_frames) (struct ieee80211_hw *hw,struct ieee80211_sta *sta,u16 tids,␣

↪→int num_frames,enum ieee80211_frame_release_type reason, bool more_data);
int (* get_et_sset_count) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, int sset);
void (* get_et_stats) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct ethtool_

↪→stats *stats, u64 *data);
void (* get_et_strings) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, u32 sset, u8␣

↪→*data);
void (* mgd_prepare_tx) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (* mgd_protect_tdls_discover) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
int (* add_chanctx) (struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx);
void (* remove_chanctx) (struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx);
void (* change_chanctx) (struct ieee80211_hw *hw,struct ieee80211_chanctx_conf *ctx, u32␣

↪→changed);
int (* assign_vif_chanctx) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct␣

↪→ieee80211_chanctx_conf *ctx);
void (* unassign_vif_chanctx) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct␣

↪→ieee80211_chanctx_conf *ctx);
int (* switch_vif_chanctx) (struct ieee80211_hw *hw,struct ieee80211_vif_chanctx_switch *vifs,

↪→int n_vifs, enum ieee80211_chanctx_switch_mode mode);
void (* reconfig_complete) (struct ieee80211_hw *hw, enum ieee80211_reconfig_type reconfig_

↪→type);
#if IS_ENABLED(CONFIG_IPV6
void (* ipv6_addr_change) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct inet6_

↪→dev *idev);

860 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

#endif
void (* channel_switch_beacon) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct␣

↪→cfg80211_chan_def *chandef);
int (* pre_channel_switch) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct␣

↪→ieee80211_channel_switch *ch_switch);
int (* post_channel_switch) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
int (* join_ibss) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (* leave_ibss) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
u32 (* get_expected_throughput) (struct ieee80211_hw *hw, struct ieee80211_sta *sta);
int (* get_txpower) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, int *dbm);
int (* tdls_channel_switch) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct␣

↪→ieee80211_sta *sta, u8 oper_class,struct cfg80211_chan_def *chandef, struct sk_buff *tmpl_skb,
↪→ u32 ch_sw_tm_ie);
void (* tdls_cancel_channel_switch) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,␣

↪→struct ieee80211_sta *sta);
void (* tdls_recv_channel_switch) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct␣

↪→ieee80211_tdls_ch_sw_params *params);
void (* wake_tx_queue) (struct ieee80211_hw *hw, struct ieee80211_txq *txq);
void (* sync_rx_queues) (struct ieee80211_hw *hw);
int (* start_nan) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct cfg80211_nan_

↪→conf *conf);
int (* stop_nan) (struct ieee80211_hw *hw, struct ieee80211_vif *vif);
int (* nan_change_conf) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, struct cfg80211_

↪→nan_conf *conf, u32 changes);
int (* add_nan_func) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, const struct␣

↪→cfg80211_nan_func *nan_func);
void (* del_nan_func) (struct ieee80211_hw *hw,struct ieee80211_vif *vif, u8 instance_id);

};

Members
tx Handler that 802.11 module calls for each transmitted frame. skb contains the buffer starting from

the IEEE 802.11 header. The low-level driver should send the frame out based on configuration in
the TX control data. This handler should, preferably, never fail and stop queues appropriately. Must
be atomic.

start Called before the first netdevice attached to the hardware is enabled. This should turn on the
hardware and must turn on frame reception (for possibly enabled monitor interfaces.) Returns neg-
ative error codes, these may be seen in userspace, or zero. When the device is started it should not
have a MAC address to avoid acknowledging frames before a non-monitor device is added. Must be
implemented and can sleep.

stop Called after last netdevice attached to the hardware is disabled. This should turn off the hardware
(at least it must turn off frame reception.) May be called right after add_interface if that rejects an
interface. If you added any work onto the mac80211 workqueue you should ensure to cancel it on
this callback. Must be implemented and can sleep.

suspend Suspend the device; mac80211 itself will quiesce before and stop transmitting and doing any
other configuration, and then ask the device to suspend. This is only invoked when WoWLAN is
configured, otherwise the device is deconfigured completely and reconfigured at resume time. The
driver may also impose special conditions under which it wants to use the “normal” suspend (decon-
figure), say if it only supports WoWLAN when the device is associated. In this case, it must return 1
from this function.

resume If WoWLAN was configured, this indicates that mac80211 is now resuming its operation, after this
the device must be fully functional again. If this returns an error, the only way out is to also unregister
the device. If it returns 1, thenmac80211 will also go through the regular complete restart on resume.

set_wakeup Enable or disable wakeup when WoWLAN configuration is modified. The reason is that de-
vice_set_wakeup_enable() is supposed to be called when the configuration changes, not only in
suspend().

add_interface Called when a netdevice attached to the hardware is enabled. Because it is not called

30.3. mac80211 subsystem (basics) 861

The kernel driver API manual, Release 4.13.0-rc4+

for monitor mode devices, start and stop must be implemented. The driver should perform any
initialization it needs before the device can be enabled. The initial configuration for the interface is
given in the conf parameter. The callback may refuse to add an interface by returning a negative
error code (which will be seen in userspace.) Must be implemented and can sleep.

change_interface Called when a netdevice changes type. This callback is optional, but only if it is
supported can interface types be switched while the interface is UP. The callback may sleep. Note
that while an interface is being switched, it will not be found by the interface iteration callbacks.

remove_interface Notifies a driver that an interface is going down. The stop callback is called after this
if it is the last interface and no monitor interfaces are present. When all interfaces are removed,
the MAC address in the hardware must be cleared so the device no longer acknowledges packets,
the mac_addr member of the conf structure is, however, set to the MAC address of the device going
away. Hence, this callback must be implemented. It can sleep.

config Handler for configuration requests. IEEE 802.11 code calls this function to change hardware con-
figuration, e.g., channel. This function should never fail but returns a negative error code if it does.
The callback can sleep.

bss_info_changed Handler for configuration requests related to BSS parameters that may vary during
BSS’s lifespan, and may affect low level driver (e.g. assoc/disassoc status, erp parameters). This
function should not be used if no BSS has been set, unless for association indication. The changed
parameter indicates which of the bss parameters has changed when a call is made. The callback can
sleep.

start_ap Start operation on the AP interface, this is called after all the information in bss_conf is set and
beacon can be retrieved. A channel context is bound before this is called. Note that if the driver uses
software scan or ROC, this (and stop_ap) isn’t called when the AP is just “paused” for scanning/ROC,
which is indicated by the beacon being disabled/enabled via bss_info_changed.

stop_ap Stop operation on the AP interface.
prepare_multicast Prepare for multicast filter configuration. This callback is optional, and its return

value is passed to configure_filter(). This callback must be atomic.
configure_filter Configure the device’s RX filter. See the section “Frame filtering” for more informa-

tion. This callback must be implemented and can sleep.
config_iface_filter Configure the interface’s RX filter. This callback is optional and is used to configure

which frames should be passed to mac80211. The filter_flags is the combination of FIF_* flags. The
changed_flags is a bit mask that indicates which flags are changed. This callback can sleep.

set_tim Set TIM bit. mac80211 calls this function when a TIM bit must be set or cleared for a given STA.
Must be atomic.

set_key See the section “Hardware crypto acceleration” This callback is only called between
add_interface and remove_interface calls, i.e. while the given virtual interface is enabled. Returns a
negative error code if the key can’t be added. The callback can sleep.

update_tkip_key See the section “Hardware crypto acceleration” This callback will be called in the con-
text of Rx. Called for drivers which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. The callback
must be atomic.

set_rekey_data If the device supports GTK rekeying, for example while the host is suspended, it can
assign this callback to retrieve the data necessary to do GTK rekeying, this is the KEK, KCK and
replay counter. After rekeying was done it should (for example during resume) notify userspace of
the new replay counter using ieee80211_gtk_rekey_notify().

set_default_unicast_key Set the default (unicast) key index, useful for WEP when the device sends
data packets autonomously, e.g. for ARP offloading. The index can be 0-3, or -1 for unsetting it.

hw_scan Ask the hardware to service the scan request, no need to start the scan state machine in
stack. The scan must honour the channel configuration done by the regulatory agent in the wiphy’s
registered bands. The hardware (or the driver) needs to make sure that power save is disabled.
The req ie/ie_len members are rewritten by mac80211 to contain the entire IEs after the SSID, so
that drivers need not look at these at all but just send them after the SSID – mac80211 includes

862 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

the (extended) supported rates and HT information (where applicable). When the scan finishes,
ieee80211_scan_completed() must be called; note that it also must be called when the scan can-
not finish due to any error unless this callback returned a negative error code. The callback can
sleep.

cancel_hw_scan Ask the low-level tp cancel the active hw scan. The driver should ask the hardware
to cancel the scan (if possible), but the scan will be completed only after the driver will call
ieee80211_scan_completed(). This callback is needed for wowlan, to prevent enqueueing a new
scan_work after the low-level driver was already suspended. The callback can sleep.

sched_scan_start Ask the hardware to start scanning repeatedly at specific intervals. The driver must
call the ieee80211_sched_scan_results() function whenever it finds results. This process will con-
tinue until sched_scan_stop is called.

sched_scan_stop Tell the hardware to stop an ongoing scheduled scan. In this case,
ieee80211_sched_scan_stopped() must not be called.

sw_scan_start Notifier function that is called just before a software scan is started.
Can be NULL, if the driver doesn’t need this notification. The mac_addr parame-
ter allows supporting NL80211_SCAN_FLAG_RANDOM_ADDR, the driver may set the
NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR flag if it can use this parameter. The callback
can sleep.

sw_scan_complete Notifier function that is called just after a software scan finished. Can be NULL, if the
driver doesn’t need this notification. The callback can sleep.

get_stats Return low-level statistics. Returns zero if statistics are available. The callback can sleep.
get_key_seq If your device implements encryption in hardware and does IV/PN assignment then this

callback should be provided to read the IV/PN for the given key from hardware. The callback must
be atomic.

set_frag_threshold Configuration of fragmentation threshold. Assign this if the device
does fragmentation by itself. Note that to prevent the stack from doing fragmentation
IEEE80211_HW_SUPPORTS_TX_FRAG should be set as well. The callback can sleep.

set_rts_threshold Configuration of RTS threshold (if device needs it) The callback can sleep.
sta_add Notifies low level driver about addition of an associated station, AP, IBSS/WDS/mesh peer etc.

This callback can sleep.
sta_remove Notifies low level driver about removal of an associated station, AP, IBSS/WDS/mesh peer

etc. Note that after the callback returns it isn’t safe to use the pointer, not even RCU pro-
tected; no RCU grace period is guaranteed between returning here and freeing the station. See
sta_pre_rcu_remove if needed. This callback can sleep.

sta_add_debugfs Drivers can use this callback to add debugfs files when a station is added to
mac80211’s station list. This callback should be within a CONFIG_MAC80211_DEBUGFS conditional.
This callback can sleep.

sta_notify Notifies low level driver about power state transition of an associated station, AP,
IBSS/WDS/mesh peer etc. For a VIF operating in AP mode, this callback will not be called when
the flag IEEE80211_HW_AP_LINK_PS is set. Must be atomic.

sta_state Notifies low level driver about state transition of a station (which can be the AP, a client,
IBSS/WDS/mesh peer etc.) This callback is mutually exclusive with sta_add/sta_remove. It must
not fail for down transitions but may fail for transitions up the list of states. Also note that after the
callback returns it isn’t safe to use the pointer, not even RCU protected - no RCU grace period is
guaranteed between returning here and freeing the station. See sta_pre_rcu_remove if needed.
The callback can sleep.

sta_pre_rcu_remove Notify driver about station removal before RCU synchronisation. This is useful if
a driver needs to have station pointers protected using RCU, it can then use this call to clear the
pointers instead of waiting for an RCU grace period to elapse in sta_state. The callback can sleep.

30.3. mac80211 subsystem (basics) 863

The kernel driver API manual, Release 4.13.0-rc4+

sta_rc_update Notifies the driver of changes to the bitrates that can be used to transmit to the station.
The changes are advertised with bits from enum ieee80211_rate_control_changed and the values
are reflected in the station data. This callback should only be used when the driver uses hardware
rate control (IEEE80211_HW_HAS_RATE_CONTROL) since otherwise the rate control algorithm is notified
directly. Must be atomic.

sta_rate_tbl_update Notifies the driver that the rate table changed. This is only used if the configured
rate control algorithm actually uses the new rate table API, and is therefore optional. Must be atomic.

sta_statistics Get statistics for this station. For example with beacon filtering, the statistics kept by
mac80211 might not be accurate, so let the driver pre-fill the statistics. The driver can fill most of
the values (indicating which by setting the filled bitmap), but not all of them make sense - see the
source for which ones are possible. Statistics that the driver doesn’t fill will be filled by mac80211.
The callback can sleep.

conf_tx Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), bursting) for a hardware TX
queue. Returns a negative error code on failure. The callback can sleep.

get_tsf Get the current TSF timer value from firmware/hardware. Currently, this is only used for IBSS
mode BSSID merging and debugging. Is not a required function. The callback can sleep.

set_tsf Set the TSF timer to the specified value in the firmware/hardware. Currently, this is only used
for IBSS mode debugging. Is not a required function. The callback can sleep.

offset_tsf Offset the TSF timer by the specified value in the firmware/hardware. Preferred to set_tsf as
it avoids delay between calling set_tsf() and hardware getting programmed, which will show up
as TSF delay. Is not a required function. The callback can sleep.

reset_tsf Reset the TSF timer and allow firmware/hardware to synchronize with other STAs in the IBSS.
This is only used in IBSS mode. This function is optional if the firmware/hardware takes full care of
TSF synchronization. The callback can sleep.

tx_last_beacon Determine whether the last IBSS beacon was sent by us. This is needed only for IBSS
mode and the result of this function is used to determine whether to reply to Probe Requests. Returns
non-zero if this device sent the last beacon. The callback can sleep.

ampdu_action Perform a certain A-MPDU action. The RA/TID combination determines the destina-
tion and TID we want the ampdu action to be performed for. The action is defined through
ieee80211_ampdu_mlme_action. When the action is set to IEEE80211_AMPDU_TX_OPERATIONAL the
driver may neither send aggregates containing more subframes than buf_size nor send aggregates
in a way that lost frames would exceed the buffer size. If just limiting the aggregate size, this would
be possible with a buf_size of 8:
• TX: 1.....7

• RX: 2....7 (lost frame #1)
• TX: 8..1...

which is invalid since #1 was now re-transmitted well past the buffer size of 8. Correct ways to
retransmit #1 would be:
• TX: 1 or

• TX: 18 or

• TX: 81

Even 189 would be wrong since 1 could be lost again.
Returns a negative error code on failure. The callback can sleep.

get_survey Return per-channel survey information
rfkill_poll Poll rfkill hardware state. If you need this, you also need to set wiphy->rfkill_poll to true

before registration, and need to call wiphy_rfkill_set_hw_state() in the callback. The callback
can sleep.

864 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

set_coverage_class Set slot time for given coverage class as specified in IEEE 802.11-2007 section
17.3.8.6 and modify ACK timeout accordingly; coverage class equals to -1 to enable ACK timeout
estimation algorithm (dynack). To disable dynack set valid value for coverage class. This callback is
not required and may sleep.

testmode_cmd Implement a cfg80211 test mode command. The passed vif may be NULL. The callback
can sleep.

testmode_dump Implement a cfg80211 test mode dump. The callback can sleep.
flush Flush all pending frames from the hardware queue, making sure that the hardware queues are

empty. The queues parameter is a bitmap of queues to flush, which is useful if different virtual
interfaces use different hardware queues; it may also indicate all queues. If the parameter drop is
set to true, pending frames may be dropped. Note that vif can be NULL. The callback can sleep.

channel_switch Drivers that need (or want) to offload the channel switch operation for CSAs received
from the AP may implement this callback. They must then call ieee80211_chswitch_done() to
indicate completion of the channel switch.

set_antenna Set antenna configuration (tx_ant, rx_ant) on the device. Parameters are bitmaps of allowed
antennas to use for TX/RX. Drivers may reject TX/RX mask combinations they cannot support by
returning -EINVAL (also see nl80211.h NL80211_ATTR_WIPHY_ANTENNA_TX).

get_antenna Get current antenna configuration from device (tx_ant, rx_ant).
remain_on_channel Starts an off-channel period on the given channel, must call back to

ieee80211_ready_on_channel() when on that channel. Note that normal channel traffic is not
stopped as this is intended for hw offload. Frames to transmit on the off-channel channel are trans-
mitted normally except for the IEEE80211_TX_CTL_TX_OFFCHAN flag. When the duration (which will
always be non-zero) expires, the driver must call ieee80211_remain_on_channel_expired(). Note
that this callback may be called while the device is in IDLE and must be accepted in this case. This
callback may sleep.

cancel_remain_on_channel Requests that an ongoing off-channel period is aborted before it expires.
This callback may sleep.

set_ringparam Set tx and rx ring sizes.
get_ringparam Get tx and rx ring current and maximum sizes.
tx_frames_pending Check if there is any pending frame in the hardware queues before entering power

save.
set_bitrate_mask Set a mask of rates to be used for rate control selection when transmitting a frame.

Currently only legacy rates are handled. The callback can sleep.
event_callback Notify driver about any event in mac80211. See enum ieee80211_event_type for the

different types. The callback must be atomic.
allow_buffered_frames Prepare device to allow the given number of frames to go out to the given

station. The frames will be sent by mac80211 via the usual TX path after this call. The TX information
for frames released will also have the IEEE80211_TX_CTL_NO_PS_BUFFER flag set and the last one
will also have IEEE80211_TX_STATUS_EOSP set. In case frames from multiple TIDs are released and
the driver might reorder them between the TIDs, it must set the IEEE80211_TX_STATUS_EOSP flag
on the last frame and clear it on all others and also handle the EOSP bit in the QoS header correctly.
Alternatively, it can also call the ieee80211_sta_eosp() function. The tids parameter is a bitmap
and tells the driver which TIDs the frames will be on; it will at most have two bits set. This callback
must be atomic.

release_buffered_frames Release buffered frames according to the given parameters. In the case
where the driver buffers some frames for sleeping stations mac80211 will use this callback to tell the
driver to release some frames, either for PS-poll or uAPSD. Note that if themore_data parameter is
false the driver must check if there are more frames on the given TIDs, and if there are more than
the frames being released then it must still set the more-data bit in the frame. If the more_data
parameter is true, then of course the more-data bit must always be set. The tids parameter tells
the driver which TIDs to release frames from, for PS-poll it will always have only a single bit set. In

30.3. mac80211 subsystem (basics) 865

The kernel driver API manual, Release 4.13.0-rc4+

the case this is used for a PS-poll initiated release, the num_frames parameter will always be 1 so
code can be shared. In this case the driver must also set IEEE80211_TX_STATUS_EOSP flag on the
TX status (and must report TX status) so that the PS-poll period is properly ended. This is used to
avoid sending multiple responses for a retried PS-poll frame. In the case this is used for uAPSD, the
num_frames parameter may be bigger than one, but the driver may send fewer frames (it must send
at least one, however). In this case it is also responsible for setting the EOSP flag in the QoS header
of the frames. Also, when the service period ends, the driver must set IEEE80211_TX_STATUS_EOSP
on the last frame in the SP. Alternatively, it may call the function ieee80211_sta_eosp() to inform
mac80211 of the end of the SP. This callback must be atomic.

get_et_sset_count Ethtool API to get string-set count.
get_et_stats Ethtool API to get a set of u64 stats.
get_et_strings Ethtool API to get a set of strings to describe stats and perhaps other supported types

of ethtool data-sets.
mgd_prepare_tx Prepare for transmitting a management frame for association before associated. In

multi-channel scenarios, a virtual interface is bound to a channel before it is associated, but as it
isn’t associated yet it need not necessarily be given airtime, in particular since any transmission to a
P2P GO needs to be synchronized against the GO’s powersave state. mac80211 will call this function
before transmitting a management frame prior to having successfully associated to allow the driver
to give it channel time for the transmission, to get a response and to be able to synchronize with the
GO. The callback will be called before each transmission and upon return mac80211 will transmit the
frame right away. The callback is optional and can (should!) sleep.

mgd_protect_tdls_discover Protect a TDLS discovery session. After sending a TDLS discovery-request,
we expect a reply to arrive on the AP’s channel. We must stay on the channel (no PSM, scan, etc.),
since a TDLS setup-response is a direct packet not buffered by the AP. mac80211 will call this function
just before the transmission of a TDLS discovery-request. The recommended period of protection is
at least 2 * (DTIM period). The callback is optional and can sleep.

add_chanctx Notifies device driver about new channel context creation. This callback may sleep.
remove_chanctx Notifies device driver about channel context destruction. This callback may sleep.
change_chanctx Notifies device driver about channel context changes that may happen when combining

different virtual interfaces on the same channel context with different settings This callback may
sleep.

assign_vif_chanctx Notifies device driver about channel context being bound to vif. Possible use is for
hw queue remapping. This callback may sleep.

unassign_vif_chanctx Notifies device driver about channel context being unbound from vif. This call-
back may sleep.

switch_vif_chanctx switch a number of vifs from one chanctx to another, as specified in the list
of ieee80211_vif_chanctx_switch passed to the driver, according to the mode defined in
ieee80211_chanctx_switch_mode. This callback may sleep.

reconfig_complete Called after a call to ieee80211_restart_hw() and during resume, when the recon-
figuration has completed. This can help the driver implement the reconfiguration step (and indicate
mac80211 is ready to receive frames). This callback may sleep.

ipv6_addr_change IPv6 address assignment on the given interface changed. Currently, this is only called
for managed or P2P client interfaces. This callback is optional; it must not sleep.

channel_switch_beacon Starts a channel switch to a new channel. Beacons are modified to include
CSA or ECSA IEs before calling this function. The corresponding count fields in these IEs must be
decremented, and when they reach 1 the driver must call ieee80211_csa_finish(). Drivers which
use ieee80211_beacon_get() get the csa counter decremented by mac80211, but must check if
it is 1 using ieee80211_csa_is_complete() after the beacon has been transmitted and then call
ieee80211_csa_finish(). If the CSA count starts as zero or 1, this function will not be called, since
there won’t be any time to beacon before the switch anyway.

866 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

pre_channel_switch This is an optional callback that is called before a channel switch procedure is
started (ie. when a STA gets a CSA or a userspace initiated channel-switch), allowing the driver
to prepare for the channel switch.

post_channel_switch This is an optional callback that is called after a channel switch procedure is com-
pleted, allowing the driver to go back to a normal configuration.

join_ibss Join an IBSS (on an IBSS interface); this is called after all information in bss_conf is set up and
the beacon can be retrieved. A channel context is bound before this is called.

leave_ibss Leave the IBSS again.
get_expected_throughput extract the expected throughput towards the specified station. The returned

value is expressed in Kbps. It returns 0 if the RC algorithm does not have proper data to provide.
get_txpower get current maximum tx power (in dBm) based on configuration and hardware limits.
tdls_channel_switch Start channel-switching with a TDLS peer. The driver is responsible for continually

initiating channel-switching operations and returning to the base channel for communication with
the AP. The driver receives a channel-switch request template and the location of the switch-timing
IE within the template as part of the invocation. The template is valid only within the call, and the
driver can optionally copy the skb for further re-use.

tdls_cancel_channel_switch Stop channel-switching with a TDLS peer. Both peers must be on the base
channel when the call completes.

tdls_recv_channel_switch a TDLS channel-switch related frame (request or response) has been re-
ceived from a remote peer. The driver gets parameters parsed from the incoming frame and may
use them to continue an ongoing channel-switch operation. In addition, a channel-switch response
template is provided, together with the location of the switch-timing IE within the template. The skb
can only be used within the function call.

wake_tx_queue Called when new packets have been added to the queue.
sync_rx_queues Process all pending frames in RSS queues. This is a synchronization which is needed in

case driver has in its RSS queues pending frames that were received prior to the control path action
currently taken (e.g. disassociation) but are not processed yet.

start_nan join an existing NAN cluster, or create a new one.
stop_nan leave the NAN cluster.
nan_change_conf change NAN configuration. The data in cfg80211_nan_conf contains full new configu-

ration and changes specify which parameters are changed with respect to the last NAN config. The
driver gets both full configuration and the changed parameters since some devices may need the
full configuration while others need only the changed parameters.

add_nan_func Add a NAN function. Returns 0 on success. The data in cfg80211_nan_func must not be
referenced outside the scope of this call.

del_nan_func Remove a NAN function. The driver must call ieee80211_nan_func_terminated() with
NL80211_NAN_FUNC_TERM_REASON_USER_REQUEST reason code upon removal.

Description
This structure contains various callbacks that the driver may handle or, in some cases, must handle, for
example to configure the hardware to a new channel or to transmit a frame.
struct ieee80211_hw * ieee80211_alloc_hw(size_t priv_data_len, const struct ieee80211_ops

* ops)
Allocate a new hardware device

Parameters
size_t priv_data_len length of private data
const struct ieee80211_ops * ops callbacks for this device

30.3. mac80211 subsystem (basics) 867

The kernel driver API manual, Release 4.13.0-rc4+

Description
This must be called once for each hardware device. The returned pointer must be used to refer to this
device when calling other functions. mac80211 allocates a private data area for the driver pointed to by
priv in struct ieee80211_hw, the size of this area is given as priv_data_len.
Return
A pointer to the new hardware device, or NULL on error.
int ieee80211_register_hw(struct ieee80211_hw * hw)

Register hardware device
Parameters
struct ieee80211_hw * hw the device to register as returned by ieee80211_alloc_hw()
Description
You must call this function before any other functions in mac80211. Note that before a hardware can be
registered, you need to fill the contained wiphy’s information.
Return
0 on success. An error code otherwise.
void ieee80211_unregister_hw(struct ieee80211_hw * hw)

Unregister a hardware device
Parameters
struct ieee80211_hw * hw the hardware to unregister
Description
This function instructs mac80211 to free allocated resources and unregister netdevices from the network-
ing subsystem.
void ieee80211_free_hw(struct ieee80211_hw * hw)

free hardware descriptor
Parameters
struct ieee80211_hw * hw the hardware to free
Description
This function frees everything that was allocated, including the private data for the driver. You must call
ieee80211_unregister_hw() before calling this function.

30.3.2 PHY configuration

TBD
This chapter should describe PHY handling including start/stop callbacks and the various structures used.

struct ieee80211_conf
configuration of the device

Definition

struct ieee80211_conf {
u32 flags;
int power_level;
int dynamic_ps_timeout;
u16 listen_interval;
u8 ps_dtim_period;
u8 long_frame_max_tx_count;

868 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

u8 short_frame_max_tx_count;
struct cfg80211_chan_def chandef;
bool radar_enabled;
enum ieee80211_smps_mode smps_mode;

};

Members
flags configuration flags defined above
power_level requested transmit power (in dBm), backward compatibility value only that is set to the

minimum of all interfaces
dynamic_ps_timeout The dynamic powersave timeout (in ms), see the powersave documentation below.

This variable is valid only when the CONF_PS flag is set.
listen_interval listen interval in units of beacon interval
ps_dtim_period The DTIM period of the AP we’re connected to, for use in power saving. Power saving

will not be enabled until a beacon has been received and the DTIM period is known.
long_frame_max_tx_count Maximum number of transmissions for a “long” frame (a frame not RTS pro-

tected), called “dot11LongRetryLimit” in 802.11, but actually means the number of transmissions
not the number of retries

short_frame_max_tx_count Maximum number of transmissions for a “short” frame, called
“dot11ShortRetryLimit” in 802.11, but actually means the number of transmissions not the
number of retries

chandef the channel definition to tune to
radar_enabled whether radar detection is enabled
smps_mode spatial multiplexing powersave mode; note that IEEE80211_SMPS_STATIC is used when the

device is not configured for an HT channel. Note that this is only valid if channel contexts are not
used, otherwise each channel context has the number of chains listed.

Description
This struct indicates how the driver shall configure the hardware.
enum ieee80211_conf_flags

configuration flags
Constants
IEEE80211_CONF_MONITOR there’s a monitor interface present – use this to determine for example

whether to calculate timestamps for packets or not, do not use instead of filter flags!
IEEE80211_CONF_PS Enable 802.11 power savemode (managedmode only). This is the power savemode

defined by IEEE 802.11-2007 section 11.2, meaning that the hardware still wakes up for beacons, is
able to transmit frames and receive the possible acknowledgment frames. Not to be confused with
hardware specific wakeup/sleep states, driver is responsible for that. See the section “Powersave
support” for more.

IEEE80211_CONF_IDLE The device is running, but idle; if the flag is set the driver should be prepared to
handle configuration requests but may turn the device off as much as possible. Typically, this flag
will be set when an interface is set UP but not associated or scanning, but it can also be unset in that
case when monitor interfaces are active.

IEEE80211_CONF_OFFCHANNEL The device is currently not on its main operating channel.
Description
Flags to define PHY configuration options

30.3. mac80211 subsystem (basics) 869

The kernel driver API manual, Release 4.13.0-rc4+

30.3.3 Virtual interfaces

TBD
This chapter should describe virtual interface basics that are relevant to the driver (VLANs, MGMT etc are
not.) It should explain the use of the add_iface/remove_iface callbacks as well as the interface configura-
tion callbacks.
Things related to AP mode should be discussed there.
Things related to supporting multiple interfaces should be in the appropriate chapter, a BIG FAT note
should be here about this though and the recommendation to allow only a single interface in STA mode
at first!
struct ieee80211_vif

per-interface data
Definition

struct ieee80211_vif {
enum nl80211_iftype type;
struct ieee80211_bss_conf bss_conf;
u8 addr;
bool p2p;
bool csa_active;
bool mu_mimo_owner;
u8 cab_queue;
u8 hw_queue;
struct ieee80211_txq * txq;
struct ieee80211_chanctx_conf __rcu * chanctx_conf;
u32 driver_flags;

#ifdef CONFIG_MAC80211_DEBUGFS
struct dentry * debugfs_dir;

#endif
unsigned int probe_req_reg;
u8 drv_priv;

};

Members
type type of this virtual interface
bss_conf BSS configuration for this interface, either our own or the BSS we’re associated to
addr address of this interface
p2p indicates whether this AP or STA interface is a p2p interface, i.e. a GO or p2p-sta respectively
csa_active marks whether a channel switch is going on. Internally it is write-protected by sdata_lock

and local->mtx so holding either is fine for read access.
mu_mimo_owner indicates interface owns MU-MIMO capability
cab_queue content-after-beacon (DTIM beacon really) queue, AP mode only
hw_queue hardware queue for each AC
txq the multicast data TX queue (if driver uses the TXQ abstraction)
chanctx_conf The channel context this interface is assigned to, or NULL when it is not assigned. This

pointer is RCU-protected due to the TX path needing to access it; even though the netdev carrier will
always be off when it is NULL there can still be races and packets could be processed after it switches
back to NULL.

driver_flags flags/capabilities the driver has for this interface, these need to be set (or cleared) when
the interface is added or, if supported by the driver, the interface type is changed at runtime,
mac80211 will never touch this field

870 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

debugfs_dir debugfs dentry, can be used by drivers to create own per interface debug files. Note that
it will be NULL for the virtual monitor interface (if that is requested.)

probe_req_reg probe requests should be reported to mac80211 for this interface.
drv_priv data area for driver use, will always be aligned to sizeof(void *).
Description
Data in this structure is continually present for driver use during the life of a virtual interface.

30.3.4 Receive and transmit processing

what should be here

TBD
This should describe the receive and transmit paths in mac80211/the drivers as well as transmit status
handling.

Frame format

As a general rule, when frames are passed between mac80211 and the driver, they start with the IEEE
802.11 header and include the same octets that are sent over the air except for the FCS which should be
calculated by the hardware.
There are, however, various exceptions to this rule for advanced features:
The first exception is for hardware encryption and decryption offload where the IV/ICV may or may not be
generated in hardware.
Secondly, when the hardware handles fragmentation, the frame handed to the driver from mac80211 is
the MSDU, not the MPDU.

Packet alignment

Drivers always need to pass packets that are aligned to two-byte boundaries to the stack.
Additionally, should, if possible, align the payload data in a way that guarantees that the contained IP
header is aligned to a four-byte boundary. In the case of regular frames, this simply means aligning
the payload to a four-byte boundary (because either the IP header is directly contained, or IV/RFC1042
headers that have a length divisible by four are in front of it). If the payload data is not properly aligned
and the architecture doesn’t support efficient unaligned operations, mac80211 will align the data.
With A-MSDU frames, however, the payload data address must yield two modulo four because there are
14-byte 802.3 headers within the A-MSDU frames that push the IP header further back to a multiple of
four again. Thankfully, the specs were sane enough this time around to require padding each A-MSDU
subframe to a length that is a multiple of four.
Padding like Atheros hardware adds which is between the 802.11 header and the payload is not supported,
the driver is required to move the 802.11 header to be directly in front of the payload in that case.

Calling into mac80211 from interrupts

Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be called in hardware inter-
rupt context. The low-level driver must not call any other functions in hardware interrupt context. If there
is a need for such call, the low-level driver should first ACK the interrupt and perform the IEEE 802.11
code call after this, e.g. from a scheduled workqueue or even tasklet function.
NOTE: If the driver opts to use the _irqsafe() functions, it may not also use the non-IRQ-safe

functions!

30.3. mac80211 subsystem (basics) 871

The kernel driver API manual, Release 4.13.0-rc4+

functions/definitions

struct ieee80211_rx_status
receive status

Definition

struct ieee80211_rx_status {
u64 mactime;
u64 boottime_ns;
u32 device_timestamp;
u32 ampdu_reference;
u32 flag;
u16 freq;
u8 enc_flags;
u8 encoding:2;
u8 bw:3;
u8 rate_idx;
u8 nss;
u8 rx_flags;
u8 band;
u8 antenna;
s8 signal;
u8 chains;
s8 chain_signal;
u8 ampdu_delimiter_crc;

};

Members
mactime value in microseconds of the 64-bit Time Synchronization Function (TSF) timer when the first

data symbol (MPDU) arrived at the hardware.
boottime_ns CLOCK_BOOTTIME timestamp the frame was received at, this is needed only for beacons

and probe responses that update the scan cache.
device_timestamp arbitrary timestamp for the device, mac80211 doesn’t use it but can store it and pass

it back to the driver for synchronisation
ampdu_reference A-MPDU reference number, must be a different value for each A-MPDU but the same

for each subframe within one A-MPDU
flag RX_FLAG_*
freq frequency the radio was tuned to when receiving this frame, in MHz This field must be set for man-

agement frames, but isn’t strictly needed for data (other) frames - for those it only affects radiotap
reporting.

enc_flags uses bits from enum mac80211_rx_encoding_flags

encoding enum mac80211_rx_encoding

bw enum rate_info_bw

rate_idx index of data rate into band’s supported rates or MCS index if HT or VHT is used
(RX_FLAG_HT/RX_FLAG_VHT)

nss number of streams (VHT and HE only)
rx_flags internal RX flags for mac80211
band the active band when this frame was received
antenna antenna used
signal signal strength when receiving this frame, either in dBm, in dB or unspecified depending on the

hardware capabilities flags IEEE80211_HW_SIGNAL_*

872 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

chains bitmask of receive chains for which separate signal strength values were filled.
chain_signal per-chain signal strength, in dBm (unlike signal, doesn’t support dB or unspecified units)
ampdu_delimiter_crc A-MPDU delimiter CRC
Description
The low-level driver should provide this information (the subset supported by hardware) to the 802.11
code with each received frame, in the skb’s control buffer (cb).
enum mac80211_rx_flags

receive flags
Constants
RX_FLAG_MMIC_ERROR Michael MIC error was reported on this frame. Use together with

RX_FLAG_MMIC_STRIPPED.
RX_FLAG_DECRYPTED This frame was decrypted in hardware.
RX_FLAG_MACTIME_PLCP_START The timestamp passed in the RX status (mactime field) is valid and con-

tains the time the SYNC preamble was received.
RX_FLAG_MMIC_STRIPPED the Michael MIC is stripped off this frame, verification has been done by the

hardware.
RX_FLAG_IV_STRIPPED The IV and ICV are stripped from this frame. If this flag is set, the stack cannot do

any replay detection hence the driver or hardware will have to do that.
RX_FLAG_FAILED_FCS_CRC Set this flag if the FCS check failed on the frame.
RX_FLAG_FAILED_PLCP_CRC Set this flag if the PCLP check failed on the frame.
RX_FLAG_MACTIME_START The timestamp passed in the RX status (mactime field) is valid and contains

the time the first symbol of the MPDU was received. This is useful in monitor mode and for proper
IBSS merging.

RX_FLAG_NO_SIGNAL_VAL The signal strength value is not present. Valid only for data frames (mainly
A-MPDU)

RX_FLAG_AMPDU_DETAILS A-MPDU details are known, in particular the reference number
(ampdu_reference) must be populated and be a distinct number for each A-MPDU

RX_FLAG_PN_VALIDATED Currently only valid for CCMP/GCMP frames, this flag indicates that the PN was
verified for replay protection. Note that this flag is also currently only supported when a frame is also
decrypted (ie. RX_FLAG_DECRYPTED must be set)

RX_FLAG_DUP_VALIDATED The driver should set this flag if it did de-duplication by itself.
RX_FLAG_AMPDU_LAST_KNOWN last subframe is known, should be set on all subframes of a single A-MPDU
RX_FLAG_AMPDU_IS_LAST this subframe is the last subframe of the A-MPDU
RX_FLAG_AMPDU_DELIM_CRC_ERROR A delimiter CRC error has been detected on this subframe
RX_FLAG_AMPDU_DELIM_CRC_KNOWN The delimiter CRC field is known (the CRC is stored in the am-

pdu_delimiter_crc field)
RX_FLAG_MACTIME_END The timestamp passed in the RX status (mactime field) is valid and contains the

time the last symbol of the MPDU (including FCS) was received.
RX_FLAG_ONLY_MONITOR Report frame only to monitor interfaces without processing it in any regular way.

This is useful if drivers offload some frames but still want to report them for sniffing purposes.
RX_FLAG_SKIP_MONITOR Process and report frame to all interfaces except monitor interfaces. This is use-

ful if drivers offload some frames but still want to report them for sniffing purposes.
RX_FLAG_AMSDU_MORE Some drivers may prefer to report separate A-MSDU subframes instead of a one

huge frame for performance reasons. All, but the last MSDU from an A-MSDU should have this flag
set. E.g. if an A-MSDU has 3 frames, the first 2must have the flag set, while the 3rd (last) onemust not

30.3. mac80211 subsystem (basics) 873

The kernel driver API manual, Release 4.13.0-rc4+

have this flag set. The flag is used to deal with retransmission/duplication recovery properly since
A-MSDU subframes share the same sequence number. Reported subframes can be either regular
MSDU or singly A-MSDUs. Subframes must not be interleaved with other frames.

RX_FLAG_RADIOTAP_VENDOR_DATA This frame contains vendor-specific radiotap data in the skb->data (be-
fore the frame) as described by the struct ieee80211_vendor_radiotap.

RX_FLAG_MIC_STRIPPED The mic was stripped of this packet. Decryption was done by the hardware
RX_FLAG_ALLOW_SAME_PN Allow the same PN as same packet before. This is used for AMSDU subframes

which can have the same PN as the first subframe.
RX_FLAG_ICV_STRIPPED The ICV is stripped from this frame. CRC checking must be done in the hardware.
Description
These flags are used with the flag member of struct ieee80211_rx_status.
enum mac80211_tx_info_flags

flags to describe transmission information/status
Constants
IEEE80211_TX_CTL_REQ_TX_STATUS require TX status callback for this frame.
IEEE80211_TX_CTL_ASSIGN_SEQ The driver has to assign a sequence number to this frame, taking

care of not overwriting the fragment number and increasing the sequence number only when the
IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly assign sequence numbers
to QoS-data frames but cannot do so correctly for non-QoS-data and management frames because
beacons need them from that counter as well and mac80211 cannot guarantee proper sequencing.
If this flag is set, the driver should instruct the hardware to assign a sequence number to the frame
or assign one itself. Cf. IEEE 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
beacons and always be clear for frames without a sequence number field.

IEEE80211_TX_CTL_NO_ACK tell the low level not to wait for an ack
IEEE80211_TX_CTL_CLEAR_PS_FILT clear powersave filter for destination station
IEEE80211_TX_CTL_FIRST_FRAGMENT this is a first fragment of the frame
IEEE80211_TX_CTL_SEND_AFTER_DTIM send this frame after DTIM beacon
IEEE80211_TX_CTL_AMPDU this frame should be sent as part of an A-MPDU
IEEE80211_TX_CTL_INJECTED Frame was injected, internal to mac80211.
IEEE80211_TX_STAT_TX_FILTERED The frame was not transmitted because the destination STA was in

powersave mode. Note that to avoid race conditions, the filter must be set by the hardware or
firmware upon receiving a frame that indicates that the station went to sleep (must be done on
device to filter frames already on the queue) and may only be unset after mac80211 gives the OK for
that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above), since only then is it guaranteed
that no more frames are in the hardware queue.

IEEE80211_TX_STAT_ACK Frame was acknowledged
IEEE80211_TX_STAT_AMPDU The frame was aggregated, so status is for the whole aggregation.
IEEE80211_TX_STAT_AMPDU_NO_BACK no block ack was returned, so consider using block ack request

(BAR).
IEEE80211_TX_CTL_RATE_CTRL_PROBE internal to mac80211, can be set by rate control algorithms to

indicate probe rate, will be cleared for fragmented frames (except on the last fragment)
IEEE80211_TX_INTFL_OFFCHAN_TX_OK Internal to mac80211. Used to indicate that a frame can be trans-

mitted while the queues are stopped for off-channel operation.
IEEE80211_TX_INTFL_NEED_TXPROCESSING completely internal to mac80211, used to indicate that a

pending frame requires TX processing before it can be sent out.

874 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

IEEE80211_TX_INTFL_RETRIED completely internal to mac80211, used to indicate that a frame was al-
ready retried due to PS

IEEE80211_TX_INTFL_DONT_ENCRYPT completely internal to mac80211, used to indicate frame should
not be encrypted

IEEE80211_TX_CTL_NO_PS_BUFFER This frame is a response to a poll frame (PS-Poll or uAPSD) or a non-
bufferable MMPDU and must be sent although the station is in powersave mode.

IEEE80211_TX_CTL_MORE_FRAMES More frames will be passed to the transmit function after the current
frame, this can be used by drivers to kick the DMA queue only if unset or when the queue gets full.

IEEE80211_TX_INTFL_RETRANSMISSION This frame is being retransmitted after TX status because the
destination was asleep, it must not be modified again (no seqno assignment, crypto, etc.)

IEEE80211_TX_INTFL_MLME_CONN_TX This frame was transmitted by the MLME code for connection es-
tablishment, this indicates that its status should kick the MLME state machine.

IEEE80211_TX_INTFL_NL80211_FRAME_TX Frame was requested through nl80211 MLME command (inter-
nal to mac80211 to figure out whether to send TX status to user space)

IEEE80211_TX_CTL_LDPC tells the driver to use LDPC for this frame
IEEE80211_TX_CTL_STBC Enables Space-Time Block Coding (STBC) for this frame and selects the maxi-

mum number of streams that it can use.
IEEE80211_TX_CTL_TX_OFFCHAN Marks this packet to be transmitted on the off-channel channel when a

remain-on-channel offload is done in hardware – normal packets still flow and are expected to be
handled properly by the device.

IEEE80211_TX_INTFL_TKIP_MIC_FAILURE Marks this packet to be used for TKIP testing. It will be sent
out with incorrect Michael MIC key to allow TKIP countermeasures to be tested.

IEEE80211_TX_CTL_NO_CCK_RATE This frame will be sent at non CCK rate. This flag is actually used for
management frame especially for P2P frames not being sent at CCK rate in 2GHz band.

IEEE80211_TX_STATUS_EOSP This packet marks the end of service period, when its status is reported the
service period ends. For frames in an SP that mac80211 transmits, it is already set; for driver frames
the driver may set this flag. It is also used to do the same for PS-Poll responses.

IEEE80211_TX_CTL_USE_MINRATE This frame will be sent at lowest rate. This flag is used to send nullfunc
frame at minimum rate when the nullfunc is used for connection monitoring purpose.

IEEE80211_TX_CTL_DONTFRAG Don’t fragment this packet even if it would be fragmented by size (this is
optional, only used for monitor injection).

IEEE80211_TX_STAT_NOACK_TRANSMITTED A frame that wasmarked with IEEE80211_TX_CTL_NO_ACK has
been successfully transmitted without any errors (like issues specific to the driver/HW). This flagmust
not be set for frames that don’t request no-ack behaviour with IEEE80211_TX_CTL_NO_ACK.

Description
These flags are used with the flags member of ieee80211_tx_info.
Note
If you have to add new flags to the enumeration, then don’t forget to update

IEEE80211_TX_TEMPORARY_FLAGS when necessary.
enum mac80211_tx_control_flags

flags to describe transmit control
Constants
IEEE80211_TX_CTRL_PORT_CTRL_PROTO this frame is a port control protocol frame (e.g. EAP)
IEEE80211_TX_CTRL_PS_RESPONSE This frame is a response to a poll frame (PS-Poll or uAPSD).
IEEE80211_TX_CTRL_RATE_INJECT This frame is injected with rate information
IEEE80211_TX_CTRL_AMSDU This frame is an A-MSDU frame

30.3. mac80211 subsystem (basics) 875

The kernel driver API manual, Release 4.13.0-rc4+

IEEE80211_TX_CTRL_FAST_XMIT This frame is going through the fast_xmit path
Description
These flags are used in tx_info->control.flags.
enum mac80211_rate_control_flags

per-rate flags set by the Rate Control algorithm.
Constants
IEEE80211_TX_RC_USE_RTS_CTS Use RTS/CTS exchange for this rate.
IEEE80211_TX_RC_USE_CTS_PROTECT CTS-to-self protection is required. This is set if the current BSS re-

quires ERP protection.
IEEE80211_TX_RC_USE_SHORT_PREAMBLE Use short preamble.
IEEE80211_TX_RC_MCS HT rate.
IEEE80211_TX_RC_GREEN_FIELD Indicates whether this rate should be used in Greenfield mode.
IEEE80211_TX_RC_40_MHZ_WIDTH Indicates if the Channel Width should be 40 MHz.
IEEE80211_TX_RC_DUP_DATA The frame should be transmitted on both of the adjacent 20 MHz channels,

if the current channel type is NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
IEEE80211_TX_RC_SHORT_GI Short Guard interval should be used for this rate.
IEEE80211_TX_RC_VHT_MCS VHT MCS rate, in this case the idx field is split into a higher 4 bits (Nss) and

lower 4 bits (MCS number)
IEEE80211_TX_RC_80_MHZ_WIDTH Indicates 80 MHz transmission
IEEE80211_TX_RC_160_MHZ_WIDTH Indicates 160 MHz transmission (80+80 isn’t supported yet)
Description
These flags are set by the Rate control algorithm for each rate during tx, in the flags member of struct
ieee80211_tx_rate.
struct ieee80211_tx_rate

rate selection/status
Definition

struct ieee80211_tx_rate {
s8 idx;
u16 count:5;
u16 flags:11;

};

Members
idx rate index to attempt to send with
count number of tries in this rate before going to the next rate
flags rate control flags (enum mac80211_rate_control_flags)
Description
A value of -1 for idx indicates an invalid rate and, if used in an array of retry rates, that no more rates
should be tried.
When used for transmit status reporting, the driver should always report the rate along with the flags it
used.
struct ieee80211_tx_info contains an array of these structs in the control information, and it will be
filled by the rate control algorithm according to what should be sent. For example, if this array contains,
in the format { <idx>, <count> } the information:

876 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

{ 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }

then this means that the frame should be transmitted up to twice at rate 3, up to twice at rate 2, and up
to four times at rate 1 if it doesn’t get acknowledged. Say it gets acknowledged by the peer after the fifth
attempt, the status information should then contain:

{ 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...

since it was transmitted twice at rate 3, twice at rate 2 and once at rate 1 after which we received an
acknowledgement.
struct ieee80211_tx_info

skb transmit information
Definition

struct ieee80211_tx_info {
u32 flags;
u8 band;
u8 hw_queue;
u16 ack_frame_id;
union {unnamed_union};

};

Members
flags transmit info flags, defined above
band the band to transmit on (use for checking for races)
hw_queue HW queue to put the frame on, skb_get_queue_mapping() gives the AC
ack_frame_id internal frame ID for TX status, used internally
{unnamed_union} anonymous
Description
This structure is placed in skb->cb for three uses:

1. mac80211 TX control - mac80211 tells the driver what to do
2. driver internal use (if applicable)
3. TX status information - driver tells mac80211 what happened

void ieee80211_tx_info_clear_status(struct ieee80211_tx_info * info)
clear TX status

Parameters
struct ieee80211_tx_info * info The struct ieee80211_tx_info to be cleared.
Description
When the driver passes an skb back to mac80211, it must report a number of things in TX status. This
function clears everything in the TX status but the rate control information (it does clear the count since
you need to fill that in anyway).
NOTE
You can only use this function if you do NOT use info->driver_data! Use info->rate_driver_data in-

stead if you need only the less space that allows.
void ieee80211_rx(struct ieee80211_hw * hw, struct sk_buff * skb)

receive frame
Parameters
struct ieee80211_hw * hw the hardware this frame came in on

30.3. mac80211 subsystem (basics) 877

The kernel driver API manual, Release 4.13.0-rc4+

struct sk_buff * skb the buffer to receive, owned by mac80211 after this call
Description
Use this function to hand received frames to mac80211. The receive buffer in skbmust start with an IEEE
802.11 header. In case of a paged skb is used, the driver is recommended to put the ieee80211 header
of the frame on the linear part of the skb to avoid memory allocation and/or memcpy by the stack.
This function may not be called in IRQ context. Calls to this function for a single hardware must be syn-
chronized against each other. Calls to this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe()
may not be mixed for a single hardware. Must not run concurrently with ieee80211_tx_status() or
ieee80211_tx_status_ni().
In process context use instead ieee80211_rx_ni().
void ieee80211_rx_ni(struct ieee80211_hw * hw, struct sk_buff * skb)

receive frame (in process context)
Parameters
struct ieee80211_hw * hw the hardware this frame came in on
struct sk_buff * skb the buffer to receive, owned by mac80211 after this call
Description
Like ieee80211_rx() but can be called in process context (internally disables bottom halves).
Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe()may not be mixed for a single hard-
ware. Must not run concurrently with ieee80211_tx_status() or ieee80211_tx_status_ni().
void ieee80211_rx_irqsafe(struct ieee80211_hw * hw, struct sk_buff * skb)

receive frame
Parameters
struct ieee80211_hw * hw the hardware this frame came in on
struct sk_buff * skb the buffer to receive, owned by mac80211 after this call
Description
Like ieee80211_rx() but can be called in IRQ context (internally defers to a tasklet.)
Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not be mixed for a single hard-
ware.Must not run concurrently with ieee80211_tx_status() or ieee80211_tx_status_ni().
struct ieee80211_tx_status

extended tx staus info for rate control
Definition

struct ieee80211_tx_status {
struct ieee80211_sta * sta;
struct ieee80211_tx_info * info;
struct sk_buff * skb;

};

Members
sta Station that the packet was transmitted for
info Basic tx status information
skb Packet skb (can be NULL if not provided by the driver)
void ieee80211_tx_status(struct ieee80211_hw * hw, struct sk_buff * skb)

transmit status callback
Parameters
struct ieee80211_hw * hw the hardware the frame was transmitted by

878 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct sk_buff * skb the frame that was transmitted, owned by mac80211 after this call
Description
Call this function for all transmitted frames after they have been transmitted. It is permissible to not call
this function for multicast frames but this can affect statistics.
This function may not be called in IRQ context. Calls to this function for a single hardware
must be synchronized against each other. Calls to this function, ieee80211_tx_status_ni() and
ieee80211_tx_status_irqsafe() may not be mixed for a single hardware. Must not run concurrently
with ieee80211_rx() or ieee80211_rx_ni().
void ieee80211_tx_status_ni(struct ieee80211_hw * hw, struct sk_buff * skb)

transmit status callback (in process context)
Parameters
struct ieee80211_hw * hw the hardware the frame was transmitted by
struct sk_buff * skb the frame that was transmitted, owned by mac80211 after this call
Description
Like ieee80211_tx_status() but can be called in process context.
Calls to this function, ieee80211_tx_status() and ieee80211_tx_status_irqsafe()may not be mixed
for a single hardware.
void ieee80211_tx_status_irqsafe(struct ieee80211_hw * hw, struct sk_buff * skb)

IRQ-safe transmit status callback
Parameters
struct ieee80211_hw * hw the hardware the frame was transmitted by
struct sk_buff * skb the frame that was transmitted, owned by mac80211 after this call
Description
Like ieee80211_tx_status() but can be called in IRQ context (internally defers to a tasklet.)
Calls to this function, ieee80211_tx_status() and ieee80211_tx_status_ni() may not be mixed for a
single hardware.
void ieee80211_rts_get(struct ieee80211_hw * hw, struct ieee80211_vif * vif, const void * frame,

size_t frame_len, const struct ieee80211_tx_info * frame_txctl, struct
ieee80211_rts * rts)

RTS frame generation function
Parameters
struct ieee80211_hw * hw pointer obtained from ieee80211_alloc_hw().
struct ieee80211_vif * vif struct ieee80211_vif pointer from the add_interface callback.
const void * frame pointer to the frame that is going to be protected by the RTS.
size_t frame_len the frame length (in octets).
const struct ieee80211_tx_info * frame_txctl struct ieee80211_tx_info of the frame.
struct ieee80211_rts * rts The buffer where to store the RTS frame.
Description
If the RTS frames are generated by the host system (i.e., not in hardware/firmware), the low-level driver
uses this function to receive the next RTS frame from the 802.11 code. The low-level is responsible for
calling this function before and RTS frame is needed.
__le16 ieee80211_rts_duration(struct ieee80211_hw * hw, struct ieee80211_vif * vif,

size_t frame_len, const struct ieee80211_tx_info * frame_txctl)
Get the duration field for an RTS frame

30.3. mac80211 subsystem (basics) 879

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct ieee80211_hw * hw pointer obtained from ieee80211_alloc_hw().
struct ieee80211_vif * vif struct ieee80211_vif pointer from the add_interface callback.
size_t frame_len the length of the frame that is going to be protected by the RTS.
const struct ieee80211_tx_info * frame_txctl struct ieee80211_tx_info of the frame.
Description
If the RTS is generated in firmware, but the host system must provide the duration field, the low-level
driver uses this function to receive the duration field value in little-endian byteorder.
Return
The duration.
void ieee80211_ctstoself_get(struct ieee80211_hw * hw, struct ieee80211_vif * vif, const

void * frame, size_t frame_len, const struct ieee80211_tx_info
* frame_txctl, struct ieee80211_cts * cts)

CTS-to-self frame generation function
Parameters
struct ieee80211_hw * hw pointer obtained from ieee80211_alloc_hw().
struct ieee80211_vif * vif struct ieee80211_vif pointer from the add_interface callback.
const void * frame pointer to the frame that is going to be protected by the CTS-to-self.
size_t frame_len the frame length (in octets).
const struct ieee80211_tx_info * frame_txctl struct ieee80211_tx_info of the frame.
struct ieee80211_cts * cts The buffer where to store the CTS-to-self frame.
Description
If the CTS-to-self frames are generated by the host system (i.e., not in hardware/firmware), the low-level
driver uses this function to receive the next CTS-to-self frame from the 802.11 code. The low-level is
responsible for calling this function before and CTS-to-self frame is needed.
__le16 ieee80211_ctstoself_duration(struct ieee80211_hw * hw, struct ieee80211_vif

* vif, size_t frame_len, const struct ieee80211_tx_info
* frame_txctl)

Get the duration field for a CTS-to-self frame
Parameters
struct ieee80211_hw * hw pointer obtained from ieee80211_alloc_hw().
struct ieee80211_vif * vif struct ieee80211_vif pointer from the add_interface callback.
size_t frame_len the length of the frame that is going to be protected by the CTS-to-self.
const struct ieee80211_tx_info * frame_txctl struct ieee80211_tx_info of the frame.
Description
If the CTS-to-self is generated in firmware, but the host system must provide the duration field, the low-
level driver uses this function to receive the duration field value in little-endian byteorder.
Return
The duration.
__le16 ieee80211_generic_frame_duration(struct ieee80211_hw * hw, struct ieee80211_vif * vif,

enum nl80211_band band, size_t frame_len, struct
ieee80211_rate * rate)

Calculate the duration field for a frame

880 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct ieee80211_hw * hw pointer obtained from ieee80211_alloc_hw().
struct ieee80211_vif * vif struct ieee80211_vif pointer from the add_interface callback.
enum nl80211_band band the band to calculate the frame duration on
size_t frame_len the length of the frame.
struct ieee80211_rate * rate the rate at which the frame is going to be transmitted.
Description
Calculate the duration field of some generic frame, given its length and transmission rate (in 100kbps).
Return
The duration.
void ieee80211_wake_queue(struct ieee80211_hw * hw, int queue)

wake specific queue
Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw().
int queue queue number (counted from zero).
Description
Drivers should use this function instead of netif_wake_queue.
void ieee80211_stop_queue(struct ieee80211_hw * hw, int queue)

stop specific queue
Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw().
int queue queue number (counted from zero).
Description
Drivers should use this function instead of netif_stop_queue.
void ieee80211_wake_queues(struct ieee80211_hw * hw)

wake all queues
Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw().
Description
Drivers should use this function instead of netif_wake_queue.
void ieee80211_stop_queues(struct ieee80211_hw * hw)

stop all queues
Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw().
Description
Drivers should use this function instead of netif_stop_queue.
int ieee80211_queue_stopped(struct ieee80211_hw * hw, int queue)

test status of the queue
Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw().
int queue queue number (counted from zero).

30.3. mac80211 subsystem (basics) 881

The kernel driver API manual, Release 4.13.0-rc4+

Description
Drivers should use this function instead of netif_stop_queue.
Return
true if the queue is stopped. false otherwise.

30.3.5 Frame filtering

mac80211 requires to see many management frames for proper operation, and users may want to see
many more frames when in monitor mode. However, for best CPU usage and power consumption, having
as few frames as possible percolate through the stack is desirable. Hence, the hardware should filter as
much as possible.
To achieve this, mac80211 uses filter flags (see below) to tell the driver’s configure_filter() function
which frames should be passed to mac80211 and which should be filtered out.
Before configure_filter() is invoked, the prepare_multicast() callback is invoked with the param-
eters mc_count and mc_list for the combined multicast address list of all virtual interfaces. It’s use is
optional, and it returns a u64 that is passed to configure_filter(). Additionally, configure_filter()
has the arguments changed_flags telling which flags were changed and total_flags with the new flag
states.
If your device has no multicast address filters your driver will need to check both the FIF_ALLMULTI flag
and the mc_count parameter to see whether multicast frames should be accepted or dropped.
All unsupported flags in total_flags must be cleared. Hardware does not support a flag if it is incapable
of _passing_ the frame to the stack. Otherwise the driver must ignore the flag, but not clear it. You must
only clear the flag (announce no support for the flag to mac80211) if you are not able to pass the packet
type to the stack (so the hardware always filters it). So for example, you should clear FIF_CONTROL, if
your hardware always filters control frames. If your hardware always passes control frames to the kernel
and is incapable of filtering them, you do _not_ clear the FIF_CONTROL flag. This rule applies to all other
FIF flags as well.
enum ieee80211_filter_flags

hardware filter flags
Constants
FIF_ALLMULTI pass all multicast frames, this is used if requested by the user or if the hardware is not

capable of filtering by multicast address.
FIF_FCSFAIL pass frames with failed FCS (but you need to set the RX_FLAG_FAILED_FCS_CRC for them)
FIF_PLCPFAIL pass frames with failed PLCP CRC (but you need to set the RX_FLAG_FAILED_PLCP_CRC for

them
FIF_BCN_PRBRESP_PROMISC This flag is set during scanning to indicate to the hardware that it should

not filter beacons or probe responses by BSSID. Filtering them can greatly reduce the amount of
processing mac80211 needs to do and the amount of CPU wakeups, so you should honour this flag
if possible.

FIF_CONTROL pass control frames (except for PS Poll) addressed to this station
FIF_OTHER_BSS pass frames destined to other BSSes
FIF_PSPOLL pass PS Poll frames
FIF_PROBE_REQ pass probe request frames
Description
These flags determine what the filter in hardware should be programmed to let through and what should
not be passed to the stack. It is always safe to pass more frames than requested, but this has negative
impact on power consumption.

882 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

30.3.6 The mac80211 workqueue

mac80211 provides its own workqueue for drivers and internal mac80211 use. The workqueue is a single
threaded workqueue and can only be accessed by helpers for sanity checking. Drivers must ensure all
work added onto the mac80211 workqueue should be cancelled on the driver stop() callback.
mac80211 will flushed the workqueue upon interface removal and during suspend.
All work performed on the mac80211 workqueue must not acquire the RTNL lock.
void ieee80211_queue_work(struct ieee80211_hw * hw, struct work_struct * work)

add work onto the mac80211 workqueue
Parameters
struct ieee80211_hw * hw the hardware struct for the interface we are adding work for
struct work_struct * work the work we want to add onto the mac80211 workqueue
Description
Drivers and mac80211 use this to add work onto the mac80211 workqueue. This helper ensures drivers
are not queueing work when they should not be.
void ieee80211_queue_delayed_work(struct ieee80211_hw * hw, struct delayed_work * dwork, un-

signed long delay)
add work onto the mac80211 workqueue

Parameters
struct ieee80211_hw * hw the hardware struct for the interface we are adding work for
struct delayed_work * dwork delayable work to queue onto the mac80211 workqueue
unsigned long delay number of jiffies to wait before queueing
Description
Drivers and mac80211 use this to queue delayed work onto the mac80211 workqueue.

30.4 mac80211 subsystem (advanced)

Information contained within this part of the book is of interest only for advanced interaction of mac80211
with drivers to exploit more hardware capabilities and improve performance.

30.4.1 LED support

Mac80211 supports various ways of blinking LEDs. Wherever possible, device LEDs should be exposed as
LED class devices and hooked up to the appropriate trigger, which will then be triggered appropriately by
mac80211.
const char * ieee80211_get_tx_led_name(struct ieee80211_hw * hw)

get name of TX LED
Parameters
struct ieee80211_hw * hw the hardware to get the LED trigger name for
Description
mac80211 creates a transmit LED trigger for each wireless hardware that can be used to drive LEDs if
your driver registers a LED device. This function returns the name (or NULL if not configured for LEDs) of
the trigger so you can automatically link the LED device.
Return
The name of the LED trigger. NULL if not configured for LEDs.

30.4. mac80211 subsystem (advanced) 883

The kernel driver API manual, Release 4.13.0-rc4+

const char * ieee80211_get_rx_led_name(struct ieee80211_hw * hw)
get name of RX LED

Parameters
struct ieee80211_hw * hw the hardware to get the LED trigger name for
Description
mac80211 creates a receive LED trigger for each wireless hardware that can be used to drive LEDs if your
driver registers a LED device. This function returns the name (or NULL if not configured for LEDs) of the
trigger so you can automatically link the LED device.
Return
The name of the LED trigger. NULL if not configured for LEDs.
const char * ieee80211_get_assoc_led_name(struct ieee80211_hw * hw)

get name of association LED
Parameters
struct ieee80211_hw * hw the hardware to get the LED trigger name for
Description
mac80211 creates a association LED trigger for each wireless hardware that can be used to drive LEDs if
your driver registers a LED device. This function returns the name (or NULL if not configured for LEDs) of
the trigger so you can automatically link the LED device.
Return
The name of the LED trigger. NULL if not configured for LEDs.
const char * ieee80211_get_radio_led_name(struct ieee80211_hw * hw)

get name of radio LED
Parameters
struct ieee80211_hw * hw the hardware to get the LED trigger name for
Description
mac80211 creates a radio change LED trigger for each wireless hardware that can be used to drive LEDs
if your driver registers a LED device. This function returns the name (or NULL if not configured for LEDs)
of the trigger so you can automatically link the LED device.
Return
The name of the LED trigger. NULL if not configured for LEDs.
struct ieee80211_tpt_blink

throughput blink description
Definition

struct ieee80211_tpt_blink {
int throughput;
int blink_time;

};

Members
throughput throughput in Kbit/sec
blink_time blink time in milliseconds (full cycle, ie. one off + one on period)
enum ieee80211_tpt_led_trigger_flags

throughput trigger flags
Constants

884 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

IEEE80211_TPT_LEDTRIG_FL_RADIO enable blinking with radio
IEEE80211_TPT_LEDTRIG_FL_WORK enable blinking when working
IEEE80211_TPT_LEDTRIG_FL_CONNECTED enable blinking when at least one interface is connected in

some way, including being an AP
const char * ieee80211_create_tpt_led_trigger(struct ieee80211_hw * hw, unsigned int flags,

const struct ieee80211_tpt_blink * blink_table,
unsigned int blink_table_len)

create throughput LED trigger
Parameters
struct ieee80211_hw * hw the hardware to create the trigger for
unsigned int flags trigger flags, see enum ieee80211_tpt_led_trigger_flags

const struct ieee80211_tpt_blink * blink_table the blink table – needs to be ordered by through-
put

unsigned int blink_table_len size of the blink table
Return
NULL (in case of error, or if no LED triggers are configured) or the name of the new trigger.
Note
This function must be called before ieee80211_register_hw().

30.4.2 Hardware crypto acceleration

mac80211 is capable of taking advantage of many hardware acceleration designs for encryption and
decryption operations.
The set_key() callback in the struct ieee80211_ops for a given device is called to enable hardware
acceleration of encryption and decryption. The callback takes a sta parameter that will be NULL for default
keys or keys used for transmission only, or point to the station information for the peer for individual keys.
Multiple transmission keys with the same key index may be used when VLANs are configured for an access
point.
When transmitting, the TX control data will use the hw_key_idx selected by the driver by modifying the
struct ieee80211_key_conf pointed to by the key parameter to the set_key() function.
The set_key() call for the SET_KEY command should return 0 if the key is now in use, -EOPNOTSUPP or
-ENOSPC if it couldn’t be added; if you return 0 then hw_key_idx must be assigned to the hardware key
index, you are free to use the full u8 range.
Note that in the case that the IEEE80211_HW_SW_CRYPTO_CONTROL flag is set, mac80211 will not
automatically fall back to software crypto if enabling hardware crypto failed. The set_key() call may also
return the value 1 to permit this specific key/algorithm to be done in software.
When the cmd is DISABLE_KEY then it must succeed.
Note that it is permissible to not decrypt a frame even if a key for it has been uploaded to hardware, the
stack will not make any decision based on whether a key has been uploaded or not but rather based on
the receive flags.
The struct ieee80211_key_conf structure pointed to by the key parameter is guaranteed to be valid
until another call to set_key() removes it, but it can only be used as a cookie to differentiate keys.
In TKIP some HW need to be provided a phase 1 key, for RX decryption acceleration (i.e. iwlwifi). Those
drivers should provide update_tkip_key handler. The update_tkip_key() call updates the driver with the
new phase 1 key. This happens every time the iv16 wraps around (every 65536 packets). The set_key()
call will happen only once for each key (unless the AP did rekeying), it will not include a valid phase 1 key.

30.4. mac80211 subsystem (advanced) 885

The kernel driver API manual, Release 4.13.0-rc4+

The valid phase 1 key is provided by update_tkip_key only. The trigger that makes mac80211 call this
handler is software decryption with wrap around of iv16.
The set_default_unicast_key() call updates the default WEP key index configured to the hardware
for WEP encryption type. This is required for devices that support offload of data packets (e.g. ARP
responses).
enum set_key_cmd

key command
Constants
SET_KEY a key is set
DISABLE_KEY a key must be disabled
Description
Used with the set_key() callback in struct ieee80211_ops, this indicates whether a key is being re-
moved or added.
struct ieee80211_key_conf

key information
Definition

struct ieee80211_key_conf {
atomic64_t tx_pn;
u32 cipher;
u8 icv_len;
u8 iv_len;
u8 hw_key_idx;
u8 flags;
s8 keyidx;
u8 keylen;
u8 key;

};

Members
tx_pn PN used for TX keys, may be used by the driver as well if it needs to do software PN assignment

by itself (e.g. due to TSO)
cipher The key’s cipher suite selector.
icv_len The ICV length for this key type
iv_len The IV length for this key type
hw_key_idx To be set by the driver, this is the key index the driver wants to be given when a frame is

transmitted and needs to be encrypted in hardware.
flags key flags, see enum ieee80211_key_flags.
keyidx the key index (0-3)
keylen key material length
key keymaterial. For ALG_TKIP the key is encoded as a 256-bit (32 byte) data block: - Temporal Encryption

Key (128 bits) - Temporal Authenticator Tx MIC Key (64 bits) - Temporal Authenticator Rx MIC Key (64
bits)

Description
This key information is given by mac80211 to the driver by the set_key() callback in struct
ieee80211_ops.
enum ieee80211_key_flags

key flags

886 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

Constants
IEEE80211_KEY_FLAG_GENERATE_IV_MGMT This flag should be set by the driver for a CCMP/GCMP key to

indicate that is requires IV generation only for managment frames (MFP).
IEEE80211_KEY_FLAG_GENERATE_IV This flag should be set by the driver to indicate that it requires IV

generation for this particular key. Setting this flag does not necessarily mean that SKBs will have
sufficient tailroom for ICV or MIC.

IEEE80211_KEY_FLAG_GENERATE_MMIC This flag should be set by the driver for a TKIP key if it requires
Michael MIC generation in software.

IEEE80211_KEY_FLAG_PAIRWISE Set by mac80211, this flag indicates that the key is pairwise rather then
a shared key.

IEEE80211_KEY_FLAG_SW_MGMT_TX This flag should be set by the driver for a CCMP/GCMP key if it requires
CCMP/GCMP encryption of management frames (MFP) to be done in software.

IEEE80211_KEY_FLAG_PUT_IV_SPACE This flag should be set by the driver if space should be pre-
pared for the IV, but the IV itself should not be generated. Do not set together with
IEEE80211_KEY_FLAG_GENERATE_IV on the same key. Setting this flag does not necessarily mean
that SKBs will have sufficient tailroom for ICV or MIC.

IEEE80211_KEY_FLAG_RX_MGMT This key will be used to decrypt received management frames. The flag
can help drivers that have a hardware crypto implementation that doesn’t deal with management
frames properly by allowing them to not upload the keys to hardware and fall back to software crypto.
Note that this flag deals only with RX, if your crypto engine can’t deal with TX you can also set the
IEEE80211_KEY_FLAG_SW_MGMT_TX flag to encrypt such frames in SW.

IEEE80211_KEY_FLAG_RESERVE_TAILROOM This flag should be set by the driver for a key to indicate that
sufficient tailroom must always be reserved for ICV or MIC, even when HW encryption is enabled.

Description
These flags are used for communication about keys between the driver and mac80211, with the flags
parameter of struct ieee80211_key_conf.
void ieee80211_get_tkip_p1k(struct ieee80211_key_conf * keyconf, struct sk_buff * skb, u16

* p1k)
get a TKIP phase 1 key

Parameters
struct ieee80211_key_conf * keyconf the parameter passed with the set key
struct sk_buff * skb the packet to take the IV32 value from that will be encrypted with this P1K
u16 * p1k a buffer to which the key will be written, as 5 u16 values
Description
This function returns the TKIP phase 1 key for the IV32 taken from the given packet.
void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf * keyconf, u32 iv32, u16 * p1k)

get a TKIP phase 1 key for IV32
Parameters
struct ieee80211_key_conf * keyconf the parameter passed with the set key
u32 iv32 IV32 to get the P1K for
u16 * p1k a buffer to which the key will be written, as 5 u16 values
Description
This function returns the TKIP phase 1 key for the given IV32.
void ieee80211_get_tkip_p2k(struct ieee80211_key_conf * keyconf, struct sk_buff * skb, u8

* p2k)
get a TKIP phase 2 key

30.4. mac80211 subsystem (advanced) 887

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct ieee80211_key_conf * keyconf the parameter passed with the set key
struct sk_buff * skb the packet to take the IV32/IV16 values from that will be encrypted with this key
u8 * p2k a buffer to which the key will be written, 16 bytes
Description
This function computes the TKIP RC4 key for the IV values in the packet.

30.4.3 Powersave support

mac80211 has support for various powersave implementations.
First, it can support hardware that handles all powersaving by itself, such hardware should simply set the
IEEE80211_HW_SUPPORTS_PS hardware flag. In that case, it will be told about the desired powersave mode
with the IEEE80211_CONF_PS flag depending on the association status. The hardware must take care of
sending nullfunc frames when necessary, i.e. when entering and leaving powersave mode. The hardware
is required to look at the AID in beacons and signal to the AP that it woke up when it finds traffic directed
to it.
IEEE80211_CONF_PS flag enabled means that the powersave mode defined in IEEE 802.11-2007 section
11.2 is enabled. This is not to be confused with hardware wakeup and sleep states. Driver is responsible
for waking up the hardware before issuing commands to the hardware and putting it back to sleep at
appropriate times.
When PS is enabled, hardware needs to wakeup for beacons and receive the buffered multicast/broadcast
frames after the beacon. Also it must be possible to send frames and receive the acknowledment frame.
Other hardware designs cannot send nullfunc frames by themselves and also need software
support for parsing the TIM bitmap. This is also supported by mac80211 by combining the
IEEE80211_HW_SUPPORTS_PS and IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course
still required to pass up beacons. The hardware is still required to handle waking up for multicast traffic;
if it cannot the driver must handle that as best as it can, mac80211 is too slow to do that.
Dynamic powersave is an extension to normal powersave in which the hardware stays awake for a user-
specified period of time after sending a frame so that reply frames need not be buffered and therefore
delayed to the next wakeup. It’s compromise of getting good enough latency when there’s data traffic
and still saving significantly power in idle periods.
Dynamic powersave is simply supported by mac80211 enabling and disabling PS based on traf-
fic. Driver needs to only set IEEE80211_HW_SUPPORTS_PS flag and mac80211 will handle every-
thing automatically. Additionally, hardware having support for the dynamic PS feature may set the
IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support dynamic PS mode itself. The
driver needs to look at the dynamic_ps_timeout hardware configuration value and use it that value
whenever IEEE80211_CONF_PS is set. In this case mac80211 will disable dynamic PS feature in stack and
will just keep IEEE80211_CONF_PS enabled whenever user has enabled powersave.
Driver informs U-APSD client support by enabling IEEE80211_VIF_SUPPORTS_UAPSD flag. The mode is
configured through the uapsd parameter in conf_tx() operation. Hardware needs to send the QoS Null-
func frames and stay awake until the service period has ended. To utilize U-APSD, dynamic powersave is
disabled for voip AC and all frames from that AC are transmitted with powersave enabled.
Note: U-APSD client mode is not yet supported with IEEE80211_HW_PS_NULLFUNC_STACK.

30.4.4 Beacon filter support

Some hardware have beacon filter support to reduce host cpu wakeups which will reduce system power
consumption. It usually works so that the firmware creates a checksum of the beacon but omits all con-
stantly changing elements (TSF, TIM etc). Whenever the checksum changes the beacon is forwarded

888 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

to the host, otherwise it will be just dropped. That way the host will only receive beacons where some
relevant information (for example ERP protection or WMM settings) have changed.
Beacon filter support is advertised with the IEEE80211_VIF_BEACON_FILTER interface capability. The
driver needs to enable beacon filter support whenever power save is enabled, that is IEEE80211_CONF_PS
is set. When power save is enabled, the stack will not check for beacon loss and the driver needs to notify
about loss of beacons with ieee80211_beacon_loss().
The time (or number of beacons missed) until the firmware notifies the driver of a beacon loss event
(which in turn causes the driver to call ieee80211_beacon_loss()) should be configurable and will be
controlled by mac80211 and the roaming algorithm in the future.
Since there may be constantly changing information elements that nothing in the software stack cares
about, we will, in the future, have mac80211 tell the driver which information elements are interesting in
the sense that we want to see changes in them. This will include
• a list of information element IDs
• a list of OUIs for the vendor information element

Ideally, the hardware would filter out any beacons without changes in the requested elements, but if it
cannot support that it may, at the expense of some efficiency, filter out only a subset. For example, if the
device doesn’t support checking for OUIs it should pass up all changes in all vendor information elements.
Note that change, for the sake of simplification, also includes information elements appearing or disap-
pearing from the beacon.
Some hardware supports an “ignore list” instead, just make sure nothing that was requested is on the
ignore list, and include commonly changing information element IDs in the ignore list, for example 11
(BSS load) and the various vendor-assigned IEs with unknown contents (128, 129, 133-136, 149, 150,
155, 156, 173, 176, 178, 179, 219); for forward compatibility it could also include some currently unused
IDs.
In addition to these capabilities, hardware should support notifying the host of changes in the beacon RSSI.
This is relevant to implement roaming when no traffic is flowing (when traffic is flowing we see the RSSI
of the received data packets). This can consist in notifying the host when the RSSI changes significantly
or when it drops below or rises above configurable thresholds. In the future these thresholds will also be
configured by mac80211 (which gets them from userspace) to implement them as the roaming algorithm
requires.
If the hardware cannot implement this, the driver should ask it to periodically pass beacon frames to the
host so that software can do the signal strength threshold checking.
void ieee80211_beacon_loss(struct ieee80211_vif * vif)

inform hardware does not receive beacons
Parameters
struct ieee80211_vif * vif struct ieee80211_vif pointer from the add_interface callback.
Description
When beacon filtering is enabled with IEEE80211_VIF_BEACON_FILTER and IEEE80211_CONF_PS is set,
the driver needs to inform whenever the hardware is not receiving beacons with this function.

30.4.5 Multiple queues and QoS support

TBD
struct ieee80211_tx_queue_params

transmit queue configuration
Definition

30.4. mac80211 subsystem (advanced) 889

The kernel driver API manual, Release 4.13.0-rc4+

struct ieee80211_tx_queue_params {
u16 txop;
u16 cw_min;
u16 cw_max;
u8 aifs;
bool acm;
bool uapsd;

};

Members
txop maximum burst time in units of 32 usecs, 0 meaning disabled
cw_min minimum contention window [a value of the form 2^n-1 in the range 1..32767]
cw_max maximum contention window [like cw_min]
aifs arbitration interframe space [0..255]
acm is mandatory admission control required for the access category
uapsd is U-APSD mode enabled for the queue
Description
The information provided in this structure is required for QoS transmit queue configuration. Cf. IEEE
802.11 7.3.2.29.

30.4.6 Access point mode support

TBD
Some parts of the if_conf should be discussed here instead
Insert notes about VLAN interfaces with hw crypto here or in the hw crypto chapter.

support for powersaving clients

In order to implement AP and P2P GOmodes, mac80211 has support for client powersaving, both “legacy”
PS (PS-Poll/null data) and uAPSD. There currently is no support for sAPSD.
There is one assumption that mac80211 makes, namely that a client will not poll with PS-Poll and trigger
with uAPSD at the same time. Both are supported, and both can be used by the same client, but they
can’t be used concurrently by the same client. This simplifies the driver code.
The first thing to keep in mind is that there is a flag for complete driver implementation:
IEEE80211_HW_AP_LINK_PS. If this flag is set, mac80211 expects the driver to handle most of the
state machine for powersaving clients and will ignore the PM bit in incoming frames. Drivers then use
ieee80211_sta_ps_transition() to inform mac80211 of stations’ powersave transitions. In this mode,
mac80211 also doesn’t handle PS-Poll/uAPSD.
In the mode without IEEE80211_HW_AP_LINK_PS, mac80211 will check the PM bit in incoming frames
for client powersave transitions. When a station goes to sleep, we will stop transmitting to it. There is,
however, a race condition: a station might go to sleep while there is data buffered on hardware queues. If
the device has support for this it will reject frames, and the driver should give the frames back tomac80211
with the IEEE80211_TX_STAT_TX_FILTERED flag set which will cause mac80211 to retry the frame when
the station wakes up. The driver is also notified of powersave transitions by calling its sta_notify callback.
When the station is asleep, it has three choices: it can wake up, it can PS-Poll, or it can possibly start a
uAPSD service period. Waking up is implemented by simply transmitting all buffered (and filtered) frames
to the station. This is the easiest case. When the station sends a PS-Poll or a uAPSD trigger frame,
mac80211 will inform the driver of this with the allow_buffered_frames callback; this callback is op-
tional. mac80211 will then transmit the frames as usual and set the IEEE80211_TX_CTL_NO_PS_BUFFER
on each frame. The last frame in the service period (or the only response to a PS-Poll) also has

890 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

IEEE80211_TX_STATUS_EOSP set to indicate that it ends the service period; as this frame must have TX
status report it also sets IEEE80211_TX_CTL_REQ_TX_STATUS. When TX status is reported for this frame,
the service period is marked has having ended and a new one can be started by the peer.
Additionally, non-bufferable MMPDUs can also be transmitted by mac80211 with the
IEEE80211_TX_CTL_NO_PS_BUFFER set in them.
Another race condition can happen on some devices like iwlwifi when there are frames queued for the
station and it wakes up or polls; the frames that are already queued could end up being transmitted first
instead, causing reordering and/or wrong processing of the EOSP. The cause is that allowing frames to be
transmitted to a certain station is out-of-band communication to the device. To allow this problem to be
solved, the driver can call ieee80211_sta_block_awake() if frames are buffered when it is notified that
the station went to sleep. When all these frames have been filtered (see above), it must call the function
again to indicate that the station is no longer blocked.
If the driver buffers frames in the driver for aggregation in any way, it must use the
ieee80211_sta_set_buffered() call when it is notified of the station going to sleep to inform mac80211
of any TIDs that have frames buffered. Note that when a station wakes up this information is reset (hence
the requirement to call it when informed of the station going to sleep). Then, when a service period starts
for any reason, release_buffered_frames is called with the number of frames to be released and which
TIDs they are to come from. In this case, the driver is responsible for setting the EOSP (for uAPSD) and
MORE_DATA bits in the released frames, to help the more_data parameter is passed to tell the driver if
there is more data on other TIDs – the TIDs to release frames from are ignored since mac80211 doesn’t
know how many frames the buffers for those TIDs contain.
If the driver also implement GO mode, where absence periods may shorten service periods (or abort PS-
Poll responses), it must filter those response frames except in the case of frames that are buffered in the
driver – those must remain buffered to avoid reordering. Because it is possible that no frames are released
in this case, the driver must call ieee80211_sta_eosp() to indicate to mac80211 that the service period
ended anyway.
Finally, if frames frommultiple TIDs are released frommac80211 but the driver might reorder them, it must
clear & set the flags appropriately (only the last frame may have IEEE80211_TX_STATUS_EOSP) and also
take care of the EOSP and MORE_DATA bits in the frame. The driver may also use ieee80211_sta_eosp()
in this case.
Note that if the driver ever buffers frames other than QoS-data frames, it must take care to never send a
non-QoS-data frame as the last frame in a service period, adding a QoS-nulldata frame after a non-QoS-
data frame if needed.
struct sk_buff * ieee80211_get_buffered_bc(struct ieee80211_hw * hw, struct ieee80211_vif

* vif)
accessing buffered broadcast and multicast frames

Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw().
struct ieee80211_vif * vif struct ieee80211_vif pointer from the add_interface callback.
Description
Function for accessing buffered broadcast andmulticast frames. If hardware/firmware does not implement
buffering of broadcast/multicast frames when power saving is used, 802.11 code buffers them in the host
memory. The low-level driver uses this function to fetch next buffered frame. In most cases, this is used
when generating beacon frame.
Return
A pointer to the next buffered skb or NULL if no more buffered frames are available.
Note
buffered frames are returned only after DTIM beacon frame was generated with ieee80211_beacon_get()
and the low-level driver must thus call ieee80211_beacon_get() first. ieee80211_get_buffered_bc()

30.4. mac80211 subsystem (advanced) 891

The kernel driver API manual, Release 4.13.0-rc4+

returns NULL if the previous generated beacon was not DTIM, so the low-level driver does not need to
check for DTIM beacons separately and should be able to use common code for all beacons.
struct sk_buff * ieee80211_beacon_get(struct ieee80211_hw * hw, struct ieee80211_vif * vif)

beacon generation function
Parameters
struct ieee80211_hw * hw pointer obtained from ieee80211_alloc_hw().
struct ieee80211_vif * vif struct ieee80211_vif pointer from the add_interface callback.
Description
See ieee80211_beacon_get_tim().
Return
See ieee80211_beacon_get_tim().
void ieee80211_sta_eosp(struct ieee80211_sta * pubsta)

notify mac80211 about end of SP
Parameters
struct ieee80211_sta * pubsta the station
Description
When a device transmits frames in a way that it can’t tell mac80211 in the TX status about the EOSP, it
must clear the IEEE80211_TX_STATUS_EOSP bit and call this function instead. This applies for PS-Poll as
well as uAPSD.
Note that just like with _tx_status() and _rx() drivers must not mix calls to irqsafe/non-irqsafe versions,
this function must not be mixed with those either. Use the all irqsafe, or all non-irqsafe, don’t mix!
NB: the _irqsafe version of this function doesn’t exist, no driver needs it right now. Don’t call this

function if you’d need the _irqsafe version, look at the git history and restore the _irqsafe version!
enum ieee80211_frame_release_type

frame release reason
Constants
IEEE80211_FRAME_RELEASE_PSPOLL frame released for PS-Poll
IEEE80211_FRAME_RELEASE_UAPSD frame(s) released due to frame received on trigger-enabled AC
int ieee80211_sta_ps_transition(struct ieee80211_sta * sta, bool start)

PS transition for connected sta
Parameters
struct ieee80211_sta * sta currently connected sta
bool start start or stop PS
Description
When operating in AP mode with the IEEE80211_HW_AP_LINK_PS flag set, use this function to inform
mac80211 about a connected station entering/leaving PS mode.
This function may not be called in IRQ context or with softirqs enabled.
Calls to this function for a single hardware must be synchronized against each other.
Return
0 on success. -EINVAL when the requested PS mode is already set.
int ieee80211_sta_ps_transition_ni(struct ieee80211_sta * sta, bool start)

PS transition for connected sta (in process context)
Parameters

892 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct ieee80211_sta * sta currently connected sta
bool start start or stop PS
Description
Like ieee80211_sta_ps_transition() but can be called in process context (internally disables bottom
halves). Concurrent call restriction still applies.
Return
Like ieee80211_sta_ps_transition().
void ieee80211_sta_set_buffered(struct ieee80211_sta * sta, u8 tid, bool buffered)

inform mac80211 about driver-buffered frames
Parameters
struct ieee80211_sta * sta struct ieee80211_sta pointer for the sleeping station
u8 tid the TID that has buffered frames
bool buffered indicates whether or not frames are buffered for this TID
Description
If a driver buffers frames for a powersave station instead of passing them back to mac80211 for retrans-
mission, the station may still need to be told that there are buffered frames via the TIM bit.
This function informs mac80211 whether or not there are frames that are buffered in the driver for a given
TID; mac80211 can then use this data to set the TIM bit (NOTE: This may call back into the driver’s set_tim
call! Beware of the locking!)
If all frames are released to the station (due to PS-poll or uAPSD) then the driver needs to informmac80211
that there no longer are frames buffered. However, when the station wakes upmac80211 assumes that all
buffered frames will be transmitted and clears this data, drivers need to make sure they inform mac80211
about all buffered frames on the sleep transition (sta_notify() with STA_NOTIFY_SLEEP).
Note that technically mac80211 only needs to know this per AC, not per TID, but since driver buffering
will inevitably happen per TID (since it is related to aggregation) it is easier to make mac80211 map the
TID to the AC as required instead of keeping track in all drivers that use this API.
void ieee80211_sta_block_awake(struct ieee80211_hw * hw, struct ieee80211_sta * pubsta,

bool block)
block station from waking up

Parameters
struct ieee80211_hw * hw the hardware
struct ieee80211_sta * pubsta the station
bool block whether to block or unblock
Description
Some devices require that all frames that are on the queues for a specific station that went to sleep are
flushed before a poll response or frames after the station woke up can be delivered to that it. Note that
such frames must be rejected by the driver as filtered, with the appropriate status flag.
This function allows implementing this mode in a race-free manner.
To do this, a driver must keep track of the number of frames still enqueued for a specific station. If this
number is not zero when the station goes to sleep, the driver must call this function to force mac80211 to
consider the station to be asleep regardless of the station’s actual state. Once the number of outstanding
frames reaches zero, the driver must call this function again to unblock the station. That will cause
mac80211 to be able to send ps-poll responses, and if the station queried in the meantime then frames
will also be sent out as a result of this. Additionally, the driver will be notified that the station woke up
some time after it is unblocked, regardless of whether the station actually woke up while blocked or not.

30.4. mac80211 subsystem (advanced) 893

The kernel driver API manual, Release 4.13.0-rc4+

30.4.7 Supporting multiple virtual interfaces

TBD
Note: WDS with identical MAC address should almost always be OK
Insert notes about having multiple virtual interfaces with different MAC addresses here, note which con-
figurations are supported by mac80211, add notes about supporting hw crypto with it.
void ieee80211_iterate_active_interfaces(struct ieee80211_hw * hw, u32 iter_flags,

void (*iterator) (void *data, u8 *mac, struct
ieee80211_vif *vif, void * data)

iterate active interfaces
Parameters
struct ieee80211_hw * hw the hardware struct of which the interfaces should be iterated over
u32 iter_flags iteration flags, see enum ieee80211_interface_iteration_flags

void (*)(void *data,u8 *mac,struct ieee80211_vif *vif) iterator the iterator function to call
void * data first argument of the iterator function
Description
This function iterates over the interfaces associated with a given hardware that are currently active and
calls the callback for them. This function allows the iterator function to sleep, when the iterator function
is atomic ieee80211_iterate_active_interfaces_atomic can be used. Does not iterate over a new
interface during add_interface().
void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw * hw, u32 iter_flags,

void (*iterator) (void *data, u8 *mac, struct
ieee80211_vif *vif, void * data)

iterate active interfaces
Parameters
struct ieee80211_hw * hw the hardware struct of which the interfaces should be iterated over
u32 iter_flags iteration flags, see enum ieee80211_interface_iteration_flags

void (*)(void *data,u8 *mac,struct ieee80211_vif *vif) iterator the iterator function to call,
cannot sleep

void * data first argument of the iterator function
Description
This function iterates over the interfaces associated with a given hardware that are currently active and
calls the callback for them. This function requires the iterator callback function to be atomic, if that is
not desired, use ieee80211_iterate_active_interfaces instead. Does not iterate over a new interface
during add_interface().

30.4.8 Station handling

TODO
struct ieee80211_sta

station table entry
Definition

struct ieee80211_sta {
u32 supp_rates;
u8 addr;
u16 aid;
struct ieee80211_sta_ht_cap ht_cap;

894 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct ieee80211_sta_vht_cap vht_cap;
u8 max_rx_aggregation_subframes;
bool wme;
u8 uapsd_queues;
u8 max_sp;
u8 rx_nss;
enum ieee80211_sta_rx_bandwidth bandwidth;
enum ieee80211_smps_mode smps_mode;
struct ieee80211_sta_rates __rcu * rates;
bool tdls;
bool tdls_initiator;
bool mfp;
u8 max_amsdu_subframes;
u16 max_amsdu_len;
bool support_p2p_ps;
u16 max_rc_amsdu_len;
struct ieee80211_txq * txq;
u8 drv_priv;

};

Members
supp_rates Bitmap of supported rates (per band)
addr MAC address
aid AID we assigned to the station if we’re an AP
ht_cap HT capabilities of this STA; restricted to our own capabilities
vht_cap VHT capabilities of this STA; restricted to our own capabilities
max_rx_aggregation_subframes maximal amount of frames in a single AMPDU that this station is al-

lowed to transmit to us. Can be modified by driver.
wme indicates whether the STA supports QoS/WME (if local devices does, otherwise always false)
uapsd_queues bitmap of queues configured for uapsd. Only valid if wme is supported. The bits order is

like in IEEE80211_WMM_IE_STA_QOSINFO_AC_*.
max_sp max Service Period. Only valid if wme is supported.
rx_nss in HT/VHT, the maximum number of spatial streams the station can receive at the moment,

changed by operating mode notifications and capabilities. The value is only valid after the station
moves to associated state.

bandwidth current bandwidth the station can receive with
smps_mode current SMPS mode (off, static or dynamic)
rates rate control selection table
tdls indicates whether the STA is a TDLS peer
tdls_initiator indicates the STA is an initiator of the TDLS link. Only valid if the STA is a TDLS peer in

the first place.
mfp indicates whether the STA uses management frame protection or not.
max_amsdu_subframes indicates the maximal number of MSDUs in a single A-MSDU. Taken from the Ex-

tended Capabilities element. 0 means unlimited.
max_amsdu_len indicates the maximal length of an A-MSDU in bytes. This field is always valid for packets

with a VHT preamble. For packets with a HT preamble, additional limits apply:
• If the skb is transmitted as part of a BA agreement, the A-MSDU maximal size is
min(max_amsdu_len, 4065) bytes.

30.4. mac80211 subsystem (advanced) 895

The kernel driver API manual, Release 4.13.0-rc4+

• If the skb is not part of a BA aggreement, the A-MSDU maximal size is min(max_amsdu_len,
7935) bytes.

Both additional HT limits must be enforced by the low level driver. This is defined by the spec (IEEE
802.11-2012 section 8.3.2.2 NOTE 2).

support_p2p_ps indicates whether the STA supports P2P PS mechanism or not.
max_rc_amsdu_len Maximum A-MSDU size in bytes recommended by rate control.
txq per-TID data TX queues (if driver uses the TXQ abstraction)
drv_priv data area for driver use, will always be aligned to sizeof(void *), size is determined in hw infor-

mation.
Description
A station table entry represents a station we are possibly communicating with. Since stations are
RCU-managed in mac80211, any ieee80211_sta pointer you get access to must either be protected by
rcu_read_lock() explicitly or implicitly, or you must take good care to not use such a pointer after a call
to your sta_remove callback that removed it.
enum sta_notify_cmd

sta notify command
Constants
STA_NOTIFY_SLEEP a station is now sleeping
STA_NOTIFY_AWAKE a sleeping station woke up
Description
Used with the sta_notify() callback in struct ieee80211_ops, this indicates if an associated station
made a power state transition.
struct ieee80211_sta * ieee80211_find_sta(struct ieee80211_vif * vif, const u8 * addr)

find a station
Parameters
struct ieee80211_vif * vif virtual interface to look for station on
const u8 * addr station’s address
Return
The station, if found. NULL otherwise.
Note
This function must be called under RCU lock and the resulting pointer is only valid under RCU lock as well.

struct ieee80211_sta * ieee80211_find_sta_by_ifaddr(struct ieee80211_hw * hw, const u8
* addr, const u8 * localaddr)

find a station on hardware
Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw()

const u8 * addr remote station’s address
const u8 * localaddr local address (vif->sdata->vif.addr). Use NULL for ‘any’.
Return
The station, if found. NULL otherwise.
Note
This function must be called under RCU lock and the resulting pointer is only valid under RCU lock as well.

896 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

NOTE
You may pass NULL for localaddr, but then you will just get the first STA that matches the remote

address ‘addr’. We can have multiple STA associated with multiple logical stations (e.g. consider a
station connecting to another BSSID on the same AP hardware without disconnecting first). In this
case, the result of this method with localaddr NULL is not reliable.

DO NOT USE THIS FUNCTION with localaddr NULL if at all possible.

30.4.9 Hardware scan offload

TBD
void ieee80211_scan_completed(struct ieee80211_hw * hw, struct cfg80211_scan_info * info)

completed hardware scan
Parameters
struct ieee80211_hw * hw the hardware that finished the scan
struct cfg80211_scan_info * info information about the completed scan
Description
When hardware scan offload is used (i.e. the hw_scan() callback is assigned) this function needs to be
called by the driver to notify mac80211 that the scan finished. This function can be called from any
context, including hardirq context.

30.4.10 Aggregation

TX A-MPDU aggregation

Aggregation on the TX side requires setting the hardware flag IEEE80211_HW_AMPDU_AGGREGATION. The
driver will then be handed packets with a flag indicating A-MPDU aggregation. The driver or device is
responsible for actually aggregating the frames, as well as deciding how many and which to aggregate.
When TX aggregation is started by some subsystem (usually the rate control algorithm would be ap-
propriate) by calling the ieee80211_start_tx_ba_session() function, the driver will be notified via its
ampdu_action function, with the IEEE80211_AMPDU_TX_START action.
In response to that, the driver is later required to call the ieee80211_start_tx_ba_cb_irqsafe() func-
tion, which will really start the aggregation session after the peer has also responded. If the peer responds
negatively, the session will be stopped again right away. Note that it is possible for the aggregation ses-
sion to be stopped before the driver has indicated that it is done setting it up, in which case it must not
indicate the setup completion.
Also note that, since we also need to wait for a response from the peer, the driver is notified of the
completion of the handshake by the IEEE80211_AMPDU_TX_OPERATIONAL action to the ampdu_action
callback.
Similarly, when the aggregation session is stopped by the peer or something calling
ieee80211_stop_tx_ba_session(), the driver’s ampdu_action function will be called with the ac-
tion IEEE80211_AMPDU_TX_STOP. In this case, the call must not fail, and the driver must later call
ieee80211_stop_tx_ba_cb_irqsafe(). Note that the sta can get destroyed before the BA tear down is
complete.

RX A-MPDU aggregation

Aggregation on the RX side requires only implementing the ampdu_action callback that is invoked to
start/stop any block-ack sessions for RX aggregation.

30.4. mac80211 subsystem (advanced) 897

The kernel driver API manual, Release 4.13.0-rc4+

When RX aggregation is started by the peer, the driver is notified via ampdu_action function, with the
IEEE80211_AMPDU_RX_START action, and may reject the request in which case a negative response is sent
to the peer, if it accepts it a positive response is sent.
While the session is active, the device/driver are required to de-aggregate frames and pass them up one
by one to mac80211, which will handle the reorder buffer.
When the aggregation session is stopped again by the peer or ourselves, the driver’s ampdu_action
function will be called with the action IEEE80211_AMPDU_RX_STOP. In this case, the call must not fail.
enum ieee80211_ampdu_mlme_action

A-MPDU actions
Constants
IEEE80211_AMPDU_RX_START start RX aggregation
IEEE80211_AMPDU_RX_STOP stop RX aggregation
IEEE80211_AMPDU_TX_START start TX aggregation
IEEE80211_AMPDU_TX_STOP_CONT stop TX aggregation but continue transmitting queued pack-

ets, now unaggregated. After all packets are transmitted the driver has to call
ieee80211_stop_tx_ba_cb_irqsafe().

IEEE80211_AMPDU_TX_STOP_FLUSH stop TX aggregation and flush all packets, called when the station is
removed. There’s no need or reason to call ieee80211_stop_tx_ba_cb_irqsafe() in this case as
mac80211 assumes the session is gone and removes the station.

IEEE80211_AMPDU_TX_STOP_FLUSH_CONT called when TX aggregation is stopped but the driver hasn’t
called ieee80211_stop_tx_ba_cb_irqsafe() yet and now the connection is dropped and the station
will be removed. Drivers should clean up and drop remaining packets when this is called.

IEEE80211_AMPDU_TX_OPERATIONAL TX aggregation has become operational
Description
These flags are used with the ampdu_action() callback in struct ieee80211_ops to indicate which action
is needed.
Note that drivers MUST be able to deal with a TX aggregation session being stopped even before they
OK’ed starting it by calling ieee80211_start_tx_ba_cb_irqsafe, because the peer might receive the addBA
frame and send a delBA right away!

30.4.11 Spatial Multiplexing Powersave (SMPS)

SMPS (Spatial multiplexing power save) is a mechanism to conserve power in an 802.11n implementation.
For details on the mechanism and rationale, please refer to 802.11 (as amended by 802.11n-2009) “11.2.3
SM power save”.
The mac80211 implementation is capable of sending action frames to update the AP about the station’s
SMPS mode, and will instruct the driver to enter the specific mode. It will also announce the requested
SMPS mode during the association handshake. Hardware support for this feature is required, and can be
indicated by hardware flags.
The default mode will be “automatic”, which nl80211/cfg80211 defines to be dynamic SMPS in (regular)
powersave, and SMPS turned off otherwise.
To support this feature, the driver must set the appropriate hardware support flags, and handle the SMPS
flag to the config() operation. It will then with this mechanism be instructed to enter the requested
SMPS mode while associated to an HT AP.
void ieee80211_request_smps(struct ieee80211_vif * vif, enum ieee80211_smps_mode smps_mode)

request SM PS transition
Parameters

898 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

struct ieee80211_vif * vif struct ieee80211_vif pointer from the add_interface callback.
enum ieee80211_smps_mode smps_mode new SM PS mode
Description
This allows the driver to request an SM PS transition in managed mode. This is useful when the driver has
more information than the stack about possible interference, for example by bluetooth.
enum ieee80211_smps_mode

spatial multiplexing power save mode
Constants
IEEE80211_SMPS_AUTOMATIC automatic
IEEE80211_SMPS_OFF off
IEEE80211_SMPS_STATIC static
IEEE80211_SMPS_DYNAMIC dynamic
IEEE80211_SMPS_NUM_MODES internal, don’t use
TBD
This part of the book describes the rate control algorithm interface and how it relates to mac80211 and
drivers.

30.4.12 Rate Control API

TBD
int ieee80211_start_tx_ba_session(struct ieee80211_sta * sta, u16 tid, u16 timeout)

Start a tx Block Ack session.
Parameters
struct ieee80211_sta * sta the station for which to start a BA session
u16 tid the TID to BA on.
u16 timeout session timeout value (in TUs)
Return
success if addBA request was sent, failure otherwise
Although mac80211/low level driver/user space application can estimate the need to start aggregation
on a certain RA/TID, the session level will be managed by the mac80211.
void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif * vif, const u8 * ra, u16 tid)

low level driver ready to aggregate.
Parameters
struct ieee80211_vif * vif struct ieee80211_vif pointer from the add_interface callback
const u8 * ra receiver address of the BA session recipient.
u16 tid the TID to BA on.
Description
This function must be called by low level driver once it has finished with preparations for the BA session.
It can be called from any context.
int ieee80211_stop_tx_ba_session(struct ieee80211_sta * sta, u16 tid)

Stop a Block Ack session.
Parameters

30.4. mac80211 subsystem (advanced) 899

The kernel driver API manual, Release 4.13.0-rc4+

struct ieee80211_sta * sta the station whose BA session to stop
u16 tid the TID to stop BA.
Return
negative error if the TID is invalid, or no aggregation active
Although mac80211/low level driver/user space application can estimate the need to stop aggregation on
a certain RA/TID, the session level will be managed by the mac80211.
void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif * vif, const u8 * ra, u16 tid)

low level driver ready to stop aggregate.
Parameters
struct ieee80211_vif * vif struct ieee80211_vif pointer from the add_interface callback
const u8 * ra receiver address of the BA session recipient.
u16 tid the desired TID to BA on.
Description
This function must be called by low level driver once it has finished with preparations for the BA session
tear down. It can be called from any context.
enum ieee80211_rate_control_changed

flags to indicate what changed
Constants
IEEE80211_RC_BW_CHANGED The bandwidth that can be used to transmit to this station changed. The ac-

tual bandwidth is in the station information – for HT20/40 the IEEE80211_HT_CAP_SUP_WIDTH_20_40
flag changes, for HT and VHT the bandwidth field changes.

IEEE80211_RC_SMPS_CHANGED The SMPS state of the station changed.
IEEE80211_RC_SUPP_RATES_CHANGED The supported rate set of this peer changed (in IBSS mode) due to

discovering more information about the peer.
IEEE80211_RC_NSS_CHANGED N_SS (number of spatial streams) was changed by the peer
struct ieee80211_tx_rate_control

rate control information for/from RC algo
Definition

struct ieee80211_tx_rate_control {
struct ieee80211_hw * hw;
struct ieee80211_supported_band * sband;
struct ieee80211_bss_conf * bss_conf;
struct sk_buff * skb;
struct ieee80211_tx_rate reported_rate;
bool rts;
bool short_preamble;
u32 rate_idx_mask;
u8 * rate_idx_mcs_mask;
bool bss;

};

Members
hw The hardware the algorithm is invoked for.
sband The band this frame is being transmitted on.
bss_conf the current BSS configuration
skb the skb that will be transmitted, the control information in it needs to be filled in

900 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

reported_rate The rate control algorithm can fill this in to indicate which rate should be reported to
userspace as the current rate and used for rate calculations in the mesh network.

rts whether RTS will be used for this frame because it is longer than the RTS threshold
short_preamble whether mac80211 will request short-preamble transmission if the selected rate sup-

ports it
rate_idx_mask user-requested (legacy) rate mask
rate_idx_mcs_mask user-requested MCS rate mask (NULL if not in use)
bss whether this frame is sent out in AP or IBSS mode
bool rate_control_send_low(struct ieee80211_sta * sta, void * priv_sta, struct

ieee80211_tx_rate_control * txrc)
helper for drivers for management/no-ack frames

Parameters
struct ieee80211_sta * sta struct ieee80211_sta pointer to the target destination. Note that this

may be null.
void * priv_sta private rate control structure. This may be null.
struct ieee80211_tx_rate_control * txrc rate control information we sholud populate for

mac80211.
Description
Rate control algorithms that agree to use the lowest rate to send management frames and NO_ACK data
with the respective hw retries should use this in the beginning of their mac80211 get_rate callback. If
true is returned the rate control can simply return. If false is returned we guarantee that sta and sta and
priv_sta is not null.
Rate control algorithms wishing to do more intelligent selection of rate for multicast/broadcast frames
may choose to not use this.
TBD
This part of the book describes mac80211 internals.

30.4.13 Key handling

Key handling basics

Key handling in mac80211 is done based on per-interface (sub_if_data) keys and per-station keys. Since
each station belongs to an interface, each station key also belongs to that interface.
Hardware acceleration is done on a best-effort basis for algorithms that are implemented in software, for
each key the hardware is asked to enable that key for offloading but if it cannot do that the key is simply
kept for software encryption (unless it is for an algorithm that isn’t implemented in software). There is
currently no way of knowing whether a key is handled in SW or HW except by looking into debugfs.
All key management is internally protected by a mutex. Within all other parts of mac80211, key ref-
erences are, just as STA structure references, protected by RCU. Note, however, that some things are
unprotected, namely the key->sta dereferences within the hardware acceleration functions. This means
that sta_info_destroy() must remove the key which waits for an RCU grace period.

MORE TBD

TBD

30.4. mac80211 subsystem (advanced) 901

The kernel driver API manual, Release 4.13.0-rc4+

30.4.14 Receive processing

TBD

30.4.15 Transmit processing

TBD

30.4.16 Station info handling

Programming information

struct sta_info
STA information

Definition

struct sta_info {
struct list_head list;
struct list_head free_list;
struct rcu_head rcu_head;
struct rhlist_head hash_node;
u8 addr;
struct ieee80211_local * local;
struct ieee80211_sub_if_data * sdata;
struct ieee80211_key __rcu * gtk;
struct ieee80211_key __rcu * ptk;
u8 ptk_idx;
struct rate_control_ref * rate_ctrl;
void * rate_ctrl_priv;
spinlock_t rate_ctrl_lock;
spinlock_t lock;
struct ieee80211_fast_tx __rcu * fast_tx;
struct ieee80211_fast_rx __rcu * fast_rx;
struct ieee80211_sta_rx_stats __percpu * pcpu_rx_stats;

#ifdef CONFIG_MAC80211_MESH
struct mesh_sta * mesh;

#endif
struct work_struct drv_deliver_wk;
u16 listen_interval;
bool dead;
bool removed;
bool uploaded;
enum ieee80211_sta_state sta_state;
unsigned long _flags;
spinlock_t ps_lock;
struct sk_buff_head ps_tx_buf;
struct sk_buff_head tx_filtered;
unsigned long driver_buffered_tids;
unsigned long txq_buffered_tids;
long last_connected;
struct ieee80211_sta_rx_stats rx_stats;
struct tx_stats;
u16 tid_seq;
struct sta_ampdu_mlme ampdu_mlme;
u8 timer_to_tid;

#ifdef CONFIG_MAC80211_DEBUGFS
struct dentry * debugfs_dir;

#endif
enum ieee80211_sta_rx_bandwidth cur_max_bandwidth;

902 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

enum ieee80211_smps_mode known_smps_mode;
const struct ieee80211_cipher_scheme * cipher_scheme;
struct codel_params cparams;
u8 reserved_tid;
struct cfg80211_chan_def tdls_chandef;
struct ieee80211_sta sta;

};

Members
list global linked list entry
free_list list entry for keeping track of stations to free
rcu_head RCU head used for freeing this station struct
hash_node hash node for rhashtable
addr station’s MAC address - duplicated from public part to let the hash table work with just a single

cacheline
local pointer to the global information
sdata virtual interface this station belongs to
gtk group keys negotiated with this station, if any
ptk peer keys negotiated with this station, if any
ptk_idx last installed peer key index
rate_ctrl rate control algorithm reference
rate_ctrl_priv rate control private per-STA pointer
rate_ctrl_lock spinlock used to protect rate control data (data inside the algorithm, so serializes calls

there)
lock used for locking all fields that require locking, see comments in the header file.
fast_tx TX fastpath information
fast_rx RX fastpath information
pcpu_rx_stats per-CPU RX statistics, assigned only if the driver needs this (by advertising the USES_RSS

hw flag)
mesh mesh STA information
drv_deliver_wk used for delivering frames after driver PS unblocking
listen_interval listen interval of this station, when we’re acting as AP
dead set to true when sta is unlinked
removed set to true when sta is being removed from sta_list
uploaded set to true when sta is uploaded to the driver
sta_state duplicates information about station state (for debug)
_flags STA flags, see enum ieee80211_sta_info_flags, do not use directly
ps_lock used for powersave (when mac80211 is the AP) related locking
ps_tx_buf buffers (per AC) of frames to transmit to this station when it leaves power saving state or polls
tx_filtered buffers (per AC) of frames we already tried to transmit but were filtered by hardware due

to STA having entered power saving state, these are also delivered to the station when it leaves
powersave or polls for frames

driver_buffered_tids bitmap of TIDs the driver has data buffered on

30.4. mac80211 subsystem (advanced) 903

The kernel driver API manual, Release 4.13.0-rc4+

txq_buffered_tids bitmap of TIDs that mac80211 has txq data buffered on
last_connected time (in seconds) when a station got connected
rx_stats RX statistics
tx_stats TX statistics
tid_seq per-TID sequence numbers for sending to this STA
ampdu_mlme A-MPDU state machine state
timer_to_tid identity mapping to ID timers
debugfs_dir debug filesystem directory dentry
cur_max_bandwidth maximum bandwidth to use for TX to the station, taken from HT/VHT capabilities or

VHT operating mode notification
known_smps_mode the smps_mode the client thinks we are in. Relevant for AP only.
cipher_scheme optional cipher scheme for this station
cparams CoDel parameters for this station.
reserved_tid reserved TID (if any, otherwise IEEE80211_TID_UNRESERVED)
tdls_chandef a TDLS peer can have a wider chandef that is compatible to the BSS one.
sta station information we share with the driver
Description
This structure collects information about a station that mac80211 is communicating with.
enum ieee80211_sta_info_flags

Stations flags
Constants
WLAN_STA_AUTH Station is authenticated.
WLAN_STA_ASSOC Station is associated.
WLAN_STA_PS_STA Station is in power-save mode
WLAN_STA_AUTHORIZED Station is authorized to send/receive traffic. This bit is always checked so needs

to be enabled for all stations when virtual port control is not in use.
WLAN_STA_SHORT_PREAMBLE Station is capable of receiving short-preamble frames.
WLAN_STA_WDS Station is one of our WDS peers.
WLAN_STA_CLEAR_PS_FILT Clear PS filter in hardware (using the IEEE80211_TX_CTL_CLEAR_PS_FILT con-

trol flag) when the next frame to this station is transmitted.
WLAN_STA_MFP Management frame protection is used with this STA.
WLAN_STA_BLOCK_BA Used to deny ADDBA requests (both TX and RX) during suspend/resume and station

removal.
WLAN_STA_PS_DRIVER driver requires keeping this station in power-save mode logically to flush frames

that might still be in the queues
WLAN_STA_PSPOLL Station sent PS-poll while driver was keeping station in power-save mode, reply when

the driver unblocks.
WLAN_STA_TDLS_PEER Station is a TDLS peer.
WLAN_STA_TDLS_PEER_AUTH This TDLS peer is authorized to send direct packets. This means the link is

enabled.
WLAN_STA_TDLS_INITIATOR We are the initiator of the TDLS link with this station.
WLAN_STA_TDLS_CHAN_SWITCH This TDLS peer supports TDLS channel-switching

904 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

WLAN_STA_TDLS_OFF_CHANNEL The local STA is currently off-channel with this TDLS peer
WLAN_STA_TDLS_WIDER_BW This TDLS peer supports working on a wider bw on the BSS base channel.
WLAN_STA_UAPSD Station requested unscheduled SP while driver was keeping station in power-save mode,

reply when the driver unblocks the station.
WLAN_STA_SP Station is in a service period, so don’t try to reply to other uAPSD trigger frames or PS-Poll.
WLAN_STA_4ADDR_EVENT 4-addr event was already sent for this frame.
WLAN_STA_INSERTED This station is inserted into the hash table.
WLAN_STA_RATE_CONTROL rate control was initialized for this station.
WLAN_STA_TOFFSET_KNOWN toffset calculated for this station is valid.
WLAN_STA_MPSP_OWNER local STA is owner of a mesh Peer Service Period.
WLAN_STA_MPSP_RECIPIENT local STA is recipient of a MPSP.
WLAN_STA_PS_DELIVER station woke up, but we’re still blocking TX until pending frames are delivered
NUM_WLAN_STA_FLAGS number of defined flags
Description
These flags are used with struct sta_info‘s flags member, but only indirectly with set_sta_flag()
and friends.

STA information lifetime rules

STA info structures (struct sta_info) aremanaged in a hash table for faster lookup and a list for iteration.
They are managed using RCU, i.e. access to the list and hash table is protected by RCU.
Upon allocating a STA info structure with sta_info_alloc(), the caller owns that structure. It must then
insert it into the hash table using either sta_info_insert() or sta_info_insert_rcu(); only in the latter
case (which acquires an rcu read section but must not be called from within one) will the pointer still be
valid after the call. Note that the caller may not do much with the STA info before inserting it, in particular,
it may not start any mesh peer link management or add encryption keys.
When the insertion fails (sta_info_insert()) returns non-zero), the structure will have been freed by
sta_info_insert()!
Station entries are added by mac80211 when you establish a link with a peer. This means different things
for the different type of interfaces we support. For a regular station this mean we add the AP sta when we
receive an association response from the AP. For IBSS this occurs when get to know about a peer on the
same IBSS. For WDS we add the sta for the peer immediately upon device open. When using AP mode we
add stations for each respective station upon request from userspace through nl80211.
In order to remove a STA info structure, various sta_info_destroy_*() calls are available.
There is no concept of ownership on a STA entry, each structure is owned by the global hash table/list
until it is removed. All users of the structure need to be RCU protected so that the structure won’t be freed
before they are done using it.

30.4.17 Aggregation

struct sta_ampdu_mlme
STA aggregation information.

Definition

30.4. mac80211 subsystem (advanced) 905

The kernel driver API manual, Release 4.13.0-rc4+

struct sta_ampdu_mlme {
struct mutex mtx;
struct tid_ampdu_rx __rcu * tid_rx;
u8 tid_rx_token;
unsigned long tid_rx_timer_expired;
unsigned long tid_rx_stop_requested;
unsigned long tid_rx_manage_offl;
unsigned long agg_session_valid;
unsigned long unexpected_agg;
struct work_struct work;
struct tid_ampdu_tx __rcu * tid_tx;
struct tid_ampdu_tx * tid_start_tx;
unsigned long last_addba_req_time;
u8 addba_req_num;
u8 dialog_token_allocator;

};

Members
mtx mutex to protect all TX data (except non-NULL assignments to tid_tx[idx], which are protected by the

sta spinlock) tid_start_tx is also protected by sta->lock.
tid_rx aggregation info for Rx per TID – RCU protected
tid_rx_token dialog tokens for valid aggregation sessions
tid_rx_timer_expired bitmap indicating on which TIDs the RX timer expired until the work for it runs
tid_rx_stop_requested bitmap indicating which BA sessions per TID the driver requested to close until

the work for it runs
tid_rx_manage_offl bitmap indicating which BA sessions were requested to be treated as

started/stopped due to offloading
agg_session_valid bitmap indicating which TID has a rx BA session open on
unexpected_agg bitmap indicating which TID already sent a delBA due to unexpected aggregation related

frames outside a session
work work struct for starting/stopping aggregation
tid_tx aggregation info for Tx per TID
tid_start_tx sessions where start was requested
last_addba_req_time timestamp of the last addBA request.
addba_req_num number of times addBA request has been sent.
dialog_token_allocator dialog token enumerator for each new session;
struct tid_ampdu_tx

TID aggregation information (Tx).
Definition

struct tid_ampdu_tx {
struct rcu_head rcu_head;
struct timer_list session_timer;
struct timer_list addba_resp_timer;
struct sk_buff_head pending;
unsigned long state;
unsigned long last_tx;
u16 timeout;
u8 dialog_token;
u8 stop_initiator;
bool tx_stop;
u8 buf_size;

906 Chapter 30. Linux 802.11 Driver Developer’s Guide

The kernel driver API manual, Release 4.13.0-rc4+

u16 failed_bar_ssn;
bool bar_pending;
bool amsdu;

};

Members
rcu_head rcu head for freeing structure
session_timer check if we keep Tx-ing on the TID (by timeout value)
addba_resp_timer timer for peer’s response to addba request
pending pending frames queue – use sta’s spinlock to protect
state session state (see above)
last_tx jiffies of last tx activity
timeout session timeout value to be filled in ADDBA requests
dialog_token dialog token for aggregation session
stop_initiator initiator of a session stop
tx_stop TX DelBA frame when stopping
buf_size reorder buffer size at receiver
failed_bar_ssn ssn of the last failed BAR tx attempt
bar_pending BAR needs to be re-sent
amsdu support A-MSDU withing A-MDPU
Description
This structure’s lifetime is managed by RCU, assignments to the array holding it must hold the aggregation
mutex.
The TX path can access it under RCU lock-free if, and only if, the state has the flag
HT_AGG_STATE_OPERATIONAL set. Otherwise, the TX path must also acquire the spinlock and re-check
the state, see comments in the tx code touching it.
struct tid_ampdu_rx

TID aggregation information (Rx).
Definition

struct tid_ampdu_rx {
struct rcu_head rcu_head;
spinlock_t reorder_lock;
u64 reorder_buf_filtered;
struct sk_buff_head * reorder_buf;
unsigned long * reorder_time;
struct timer_list session_timer;
struct timer_list reorder_timer;
unsigned long last_rx;
u16 head_seq_num;
u16 stored_mpdu_num;
u16 ssn;
u16 buf_size;
u16 timeout;
u8 auto_seq:1;
u8 removed:1;
u8 started:1;

};

Members

30.4. mac80211 subsystem (advanced) 907

The kernel driver API manual, Release 4.13.0-rc4+

rcu_head RCU head used for freeing this struct
reorder_lock serializes access to reorder buffer, see below.
reorder_buf_filtered bitmap indicating where there are filtered frames in the reorder buffer that should

be ignored when releasing frames
reorder_buf buffer to reorder incoming aggregated MPDUs. An MPDU may be an A-MSDU with individu-

ally reported subframes.
reorder_time jiffies when skb was added
session_timer check if peer keeps Tx-ing on the TID (by timeout value)
reorder_timer releases expired frames from the reorder buffer.
last_rx jiffies of last rx activity
head_seq_num head sequence number in reordering buffer.
stored_mpdu_num number of MPDUs in reordering buffer
ssn Starting Sequence Number expected to be aggregated.
buf_size buffer size for incoming A-MPDUs
timeout reset timer value (in TUs).
auto_seq used for offloaded BA sessions to automatically pick head_seq_and and ssn.
removed this session is removed (but might have been found due to RCU)
started this session has started (head ssn or higher was received)
Description
This structure’s lifetime is managed by RCU, assignments to the array holding it must hold the aggregation
mutex.
The reorder_lock is used to protect the members of this struct, except for timeout, buf_size and di-
alog_token, which are constant across the lifetime of the struct (the dialog token being used only for
debugging).

30.4.18 Synchronisation

TBD
Locking, lots of RCU

908 Chapter 30. Linux 802.11 Driver Developer’s Guide

CHAPTER

THIRTYONE

THE USERSPACE I/O HOWTO

Author Hans-Jürgen Koch Linux developer, Linutronix
Date 2006-12-11

31.1 About this document

31.1.1 Translations

If you know of any translations for this document, or you are interested in translating it, please email me
hjk@hansjkoch.de.

31.1.2 Preface

For many types of devices, creating a Linux kernel driver is overkill. All that is really needed is some way
to handle an interrupt and provide access to the memory space of the device. The logic of controlling the
device does not necessarily have to be within the kernel, as the device does not need to take advantage
of any of other resources that the kernel provides. One such common class of devices that are like this
are for industrial I/O cards.
To address this situation, the userspace I/O system (UIO) was designed. For typical industrial I/O cards,
only a very small kernel module is needed. Themain part of the driver will run in user space. This simplifies
development and reduces the risk of serious bugs within a kernel module.
Please note that UIO is not an universal driver interface. Devices that are already handled well by other
kernel subsystems (like networking or serial or USB) are no candidates for an UIO driver. Hardware that
is ideally suited for an UIO driver fulfills all of the following:
• The device has memory that can be mapped. The device can be controlled completely by writing to
this memory.

• The device usually generates interrupts.
• The device does not fit into one of the standard kernel subsystems.

31.1.3 Acknowledgments

I’d like to thank Thomas Gleixner and Benedikt Spranger of Linutronix, who have not only written most of
the UIO code, but also helped greatly writing this HOWTO by givingme all kinds of background information.

31.1.4 Feedback

Find something wrong with this document? (Or perhaps something right?) I would love to hear from you.
Please email me at hjk@hansjkoch.de.

909

mailto:hjk@hansjkoch.de
mailto:hjk@hansjkoch.de

The kernel driver API manual, Release 4.13.0-rc4+

31.2 About UIO

If you use UIO for your card’s driver, here’s what you get:
• only one small kernel module to write and maintain.
• develop the main part of your driver in user space, with all the tools and libraries you’re used to.
• bugs in your driver won’t crash the kernel.
• updates of your driver can take place without recompiling the kernel.

31.2.1 How UIO works

Each UIO device is accessed through a device file and several sysfs attribute files. The device file will be
called /dev/uio0 for the first device, and /dev/uio1, /dev/uio2 and so on for subsequent devices.
/dev/uioX is used to access the address space of the card. Just use mmap() to access registers or RAM
locations of your card.
Interrupts are handled by reading from /dev/uioX. A blocking read() from /dev/uioX will return as soon
as an interrupt occurs. You can also use select() on /dev/uioX to wait for an interrupt. The integer
value read from /dev/uioX represents the total interrupt count. You can use this number to figure out if
you missed some interrupts.
For some hardware that has more than one interrupt source internally, but not separate IRQ mask and
status registers, there might be situations where userspace cannot determine what the interrupt source
was if the kernel handler disables them by writing to the chip’s IRQ register. In such a case, the kernel
has to disable the IRQ completely to leave the chip’s register untouched. Now the userspace part can
determine the cause of the interrupt, but it cannot re-enable interrupts. Another cornercase is chips where
re-enabling interrupts is a read-modify-write operation to a combined IRQ status/acknowledge register.
This would be racy if a new interrupt occurred simultaneously.
To address these problems, UIO also implements a write() function. It is normally not used and can be
ignored for hardware that has only a single interrupt source or has separate IRQmask and status registers.
If you need it, however, a write to /dev/uioX will call the irqcontrol() function implemented by the
driver. You have to write a 32-bit value that is usually either 0 or 1 to disable or enable interrupts. If a
driver does not implement irqcontrol(), write() will return with -ENOSYS.
To handle interrupts properly, your custom kernel module can provide its own interrupt handler. It will
automatically be called by the built-in handler.
For cards that don’t generate interrupts but need to be polled, there is the possibility to set up a timer that
triggers the interrupt handler at configurable time intervals. This interrupt simulation is done by calling
uio_event_notify() from the timer’s event handler.
Each driver provides attributes that are used to read or write variables. These attributes are accessible
through sysfs files. A custom kernel driver module can add its own attributes to the device owned by the
uio driver, but not added to the UIO device itself at this time. This might change in the future if it would
be found to be useful.
The following standard attributes are provided by the UIO framework:
• name: The name of your device. It is recommended to use the name of your kernel module for this.
• version: A version string defined by your driver. This allows the user space part of your driver to
deal with different versions of the kernel module.

• event: The total number of interrupts handled by the driver since the last time the device node was
read.

These attributes appear under the /sys/class/uio/uioX directory. Please note that this directory might
be a symlink, and not a real directory. Any userspace code that accesses it must be able to handle this.

910 Chapter 31. The Userspace I/O HOWTO

The kernel driver API manual, Release 4.13.0-rc4+

Each UIO device can make one or more memory regions available for memory mapping. This is necessary
because some industrial I/O cards require access to more than one PCI memory region in a driver.
Each mapping has its own directory in sysfs, the first mapping appears as
/sys/class/uio/uioX/maps/map0/. Subsequent mappings create directories map1/, map2/, and so
on. These directories will only appear if the size of the mapping is not 0.
Each mapX/ directory contains four read-only files that show attributes of the memory:
• name: A string identifier for this mapping. This is optional, the string can be empty. Drivers can set
this to make it easier for userspace to find the correct mapping.

• addr: The address of memory that can be mapped.
• size: The size, in bytes, of the memory pointed to by addr.
• offset: The offset, in bytes, that has to be added to the pointer returned by mmap() to get to the
actual device memory. This is important if the device’s memory is not page aligned. Remember that
pointers returned by mmap() are always page aligned, so it is good style to always add this offset.

From userspace, the different mappings are distinguished by adjusting the offset parameter of the
mmap() call. To map the memory of mapping N, you have to use N times the page size as your offset:

offset = N * getpagesize();

Sometimes there is hardware with memory-like regions that can not be mapped with the technique de-
scribed here, but there are still ways to access them from userspace. The most common example are x86
ioports. On x86 systems, userspace can access these ioports using ioperm(), iopl(), inb(), outb(),
and similar functions.
Since these ioport regions can not be mapped, they will not appear under /sys/class/uio/uioX/maps/
like the normal memory described above. Without information about the port regions a hardware has to
offer, it becomes difficult for the userspace part of the driver to find out which ports belong to which UIO
device.
To address this situation, the new directory /sys/class/uio/uioX/portio/ was added. It only exists if
the driver wants to pass information about one or more port regions to userspace. If that is the case,
subdirectories named port0, port1, and so on, will appear underneath /sys/class/uio/uioX/portio/.
Each portX/ directory contains four read-only files that show name, start, size, and type of the port region:
• name: A string identifier for this port region. The string is optional and can be empty. Drivers can set
it to make it easier for userspace to find a certain port region.

• start: The first port of this region.
• size: The number of ports in this region.
• porttype: A string describing the type of port.

31.3 Writing your own kernel module

Please have a look at uio_cif.c as an example. The following paragraphs explain the different sections
of this file.

31.3.1 struct uio_info

This structure tells the framework the details of your driver, Some of the members are required, others
are optional.
• const char *name: Required. The name of your driver as it will appear in sysfs. I recommend using
the name of your module for this.

• const char *version: Required. This string appears in /sys/class/uio/uioX/version.

31.3. Writing your own kernel module 911

The kernel driver API manual, Release 4.13.0-rc4+

• struct uio_mem mem[MAX_UIO_MAPS]: Required if you have memory that can be mapped with
mmap(). For each mapping you need to fill one of the uio_mem structures. See the description below
for details.

• struct uio_port port[MAX_UIO_PORTS_REGIONS]: Required if you want to pass information
about ioports to userspace. For each port region you need to fill one of the uio_port structures.
See the description below for details.

• long irq: Required. If your hardware generates an interrupt, it’s your modules task to determine
the irq number during initialization. If you don’t have a hardware generated interrupt but want to
trigger the interrupt handler in some other way, set irq to UIO_IRQ_CUSTOM. If you had no interrupt
at all, you could set irq to UIO_IRQ_NONE, though this rarely makes sense.

• unsigned long irq_flags: Required if you’ve set irq to a hardware interrupt number. The flags
given here will be used in the call to request_irq().

• int (*mmap)(struct uio_info *info,struct vm_area_struct *vma): Optional. If you need a
special mmap() function, you can set it here. If this pointer is not NULL, your mmap() will be called
instead of the built-in one.

• int (*open)(struct uio_info *info,struct inode *inode): Optional. You might want to have
your own open(), e.g. to enable interrupts only when your device is actually used.

• int (*release)(struct uio_info *info,struct inode *inode): Optional. If you define your
own open(), you will probably also want a custom release() function.

• int (*irqcontrol)(struct uio_info *info,s32 irq_on): Optional. If you need to be able to
enable or disable interrupts from userspace by writing to /dev/uioX, you can implement this function.
The parameter irq_on will be 0 to disable interrupts and 1 to enable them.

Usually, your device will have one or more memory regions that can be mapped to user space. For each
region, you have to set up a struct uio_mem in the mem[] array. Here’s a description of the fields of
struct uio_mem:
• const char *name: Optional. Set this to help identify the memory region, it will show up in the
corresponding sysfs node.

• int memtype: Required if the mapping is used. Set this to UIO_MEM_PHYS if you you have physical
memory on your card to be mapped. Use UIO_MEM_LOGICAL for logical memory (e.g. allocated with
kmalloc()). There’s also UIO_MEM_VIRTUAL for virtual memory.

• phys_addr_t addr: Required if the mapping is used. Fill in the address of your memory block. This
address is the one that appears in sysfs.

• resource_size_t size: Fill in the size of the memory block that addr points to. If size is zero, the
mapping is considered unused. Note that youmust initialize size with zero for all unused mappings.

• void *internal_addr: If you have to access this memory region from within your kernel module,
you will want to map it internally by using something like ioremap(). Addresses returned by this
function cannot be mapped to user space, so you must not store it in addr. Use internal_addr
instead to remember such an address.

Please do not touch the map element of struct uio_mem! It is used by the UIO framework to set up sysfs
files for this mapping. Simply leave it alone.
Sometimes, your device can have one or more port regions which can not be mapped to userspace. But
if there are other possibilities for userspace to access these ports, it makes sense to make information
about the ports available in sysfs. For each region, you have to set up a struct uio_port in the port[]
array. Here’s a description of the fields of struct uio_port:
• char *porttype: Required. Set this to one of the predefined constants. Use UIO_PORT_X86 for the
ioports found in x86 architectures.

• unsigned long start: Required if the port region is used. Fill in the number of the first port of this
region.

912 Chapter 31. The Userspace I/O HOWTO

The kernel driver API manual, Release 4.13.0-rc4+

• unsigned long size: Fill in the number of ports in this region. If size is zero, the region is consid-
ered unused. Note that you must initialize size with zero for all unused regions.

Please do not touch the portio element of struct uio_port! It is used internally by the UIO framework
to set up sysfs files for this region. Simply leave it alone.

31.3.2 Adding an interrupt handler

What you need to do in your interrupt handler depends on your hardware and on how you want to handle
it. You should try to keep the amount of code in your kernel interrupt handler low. If your hardware requires
no action that you have to perform after each interrupt, then your handler can be empty.
If, on the other hand, your hardware needs some action to be performed after each interrupt, then you
must do it in your kernel module. Note that you cannot rely on the userspace part of your driver. Your
userspace program can terminate at any time, possibly leaving your hardware in a state where proper
interrupt handling is still required.
There might also be applications where you want to read data from your hardware at each interrupt and
buffer it in a piece of kernel memory you’ve allocated for that purpose. With this technique you could
avoid loss of data if your userspace program misses an interrupt.
A note on shared interrupts: Your driver should support interrupt sharing whenever this is possible. It is
possible if and only if your driver can detect whether your hardware has triggered the interrupt or not.
This is usually done by looking at an interrupt status register. If your driver sees that the IRQ bit is actually
set, it will perform its actions, and the handler returns IRQ_HANDLED. If the driver detects that it was not
your hardware that caused the interrupt, it will do nothing and return IRQ_NONE, allowing the kernel to
call the next possible interrupt handler.
If you decide not to support shared interrupts, your card won’t work in computers with no free interrupts.
As this frequently happens on the PC platform, you can save yourself a lot of trouble by supporting interrupt
sharing.

31.3.3 Using uio_pdrv for platform devices

In many cases, UIO drivers for platform devices can be handled in a generic way. In the same place where
you define your struct platform_device, you simply also implement your interrupt handler and fill your
struct uio_info. A pointer to this struct uio_info is then used as platform_data for your platform
device.
You also need to set up an array of struct resource containing addresses and sizes of your memory
mappings. This information is passed to the driver using the .resource and .num_resources elements
of struct platform_device.
You now have to set the .name element of struct platform_device to "uio_pdrv" to use the generic UIO
platform device driver. This driver will fill the mem[] array according to the resources given, and register
the device.
The advantage of this approach is that you only have to edit a file you need to edit anyway. You do not
have to create an extra driver.

31.3.4 Using uio_pdrv_genirq for platform devices

Especially in embedded devices, you frequently find chips where the irq pin is tied to its own dedicated
interrupt line. In such cases, where you can be really sure the interrupt is not shared, we can take the
concept of uio_pdrv one step further and use a generic interrupt handler. That’s what uio_pdrv_genirq
does.
The setup for this driver is the same as described above for uio_pdrv, except that you do not implement
an interrupt handler. The .handler element of struct uio_info must remain NULL. The .irq_flags
element must not contain IRQF_SHARED.

31.3. Writing your own kernel module 913

The kernel driver API manual, Release 4.13.0-rc4+

You will set the .name element of struct platform_device to "uio_pdrv_genirq" to use this driver.
The generic interrupt handler of uio_pdrv_genirq will simply disable the interrupt line using dis-
able_irq_nosync(). After doing its work, userspace can reenable the interrupt by writing 0x00000001
to the UIO device file. The driver already implements an irq_control() to make this possible, you must
not implement your own.
Using uio_pdrv_genirq not only saves a few lines of interrupt handler code. You also do not need to
know anything about the chip’s internal registers to create the kernel part of the driver. All you need to
know is the irq number of the pin the chip is connected to.

31.3.5 Using uio_dmem_genirq for platform devices

In addition to statically allocated memory ranges, they may also be a desire to use dynamically allocated
regions in a user space driver. In particular, being able to access memory made available through the
dma-mapping API, may be particularly useful. The uio_dmem_genirq driver provides a way to accomplish
this.
This driver is used in a similar manner to the "uio_pdrv_genirq" driver with respect to interrupt config-
uration and handling.
Set the .name element of struct platform_device to "uio_dmem_genirq" to use this driver.
When using this driver, fill in the .platform_data element of struct platform_device, which is of type
struct uio_dmem_genirq_pdata and which contains the following elements:
• struct uio_info uioinfo: The same structure used as the uio_pdrv_genirq platform data
• unsigned int *dynamic_region_sizes: Pointer to list of sizes of dynamic memory regions to be
mapped into user space.

• unsigned int num_dynamic_regions: Number of elements in dynamic_region_sizes array.
The dynamic regions defined in the platform data will be appended to the ‘‘ mem[] ‘‘ array after the
platform device resources, which implies that the total number of static and dynamic memory regions
cannot exceed MAX_UIO_MAPS.
The dynamic memory regions will be allocated when the UIO device file, /dev/uioX is opened. Similar
to static memory resources, the memory region information for dynamic regions is then visible via sysfs
at /sys/class/uio/uioX/maps/mapY/*. The dynamic memory regions will be freed when the UIO device
file is closed. When no processes are holding the device file open, the address returned to userspace is
~0.

31.4 Writing a driver in userspace

Once you have a working kernel module for your hardware, you can write the userspace part of your
driver. You don’t need any special libraries, your driver can be written in any reasonable language, you
can use floating point numbers and so on. In short, you can use all the tools and libraries you’d normally
use for writing a userspace application.

31.4.1 Getting information about your UIO device

Information about all UIO devices is available in sysfs. The first thing you should do in your driver is check
name and version to make sure your talking to the right device and that its kernel driver has the version
you expect.
You should also make sure that the memory mapping you need exists and has the size you expect.
There is a tool called lsuio that lists UIO devices and their attributes. It is available here:
http://www.osadl.org/projects/downloads/UIO/user/

914 Chapter 31. The Userspace I/O HOWTO

http://www.osadl.org/projects/downloads/UIO/user/

The kernel driver API manual, Release 4.13.0-rc4+

With lsuio you can quickly check if your kernel module is loaded and which attributes it exports. Have a
look at the manpage for details.
The source code of lsuio can serve as an example for getting information about an UIO device. The file
uio_helper.c contains a lot of functions you could use in your userspace driver code.

31.4.2 mmap() device memory

After you made sure you’ve got the right device with the memory mappings you need, all you have to do
is to call mmap() to map the device’s memory to userspace.
The parameter offset of the mmap() call has a special meaning for UIO devices: It is used to select which
mapping of your device you want to map. To map the memory of mapping N, you have to use N times the
page size as your offset:

offset = N * getpagesize();

N starts from zero, so if you’ve got only one memory range to map, set offset = 0. A drawback of this
technique is that memory is always mapped beginning with its start address.

31.4.3 Waiting for interrupts

After you successfully mapped your devices memory, you can access it like an ordinary array. Usually, you
will perform some initialization. After that, your hardware starts working and will generate an interrupt as
soon as it’s finished, has some data available, or needs your attention because an error occurred.
/dev/uioX is a read-only file. A read() will always block until an interrupt occurs. There is only one legal
value for the count parameter of read(), and that is the size of a signed 32 bit integer (4). Any other
value for count causes read() to fail. The signed 32 bit integer read is the interrupt count of your device.
If the value is one more than the value you read the last time, everything is OK. If the difference is greater
than one, you missed interrupts.
You can also use select() on /dev/uioX.

31.5 Generic PCI UIO driver

The generic driver is a kernel module named uio_pci_generic. It can work with any device compliant to PCI
2.3 (circa 2002) and any compliant PCI Express device. Using this, you only need to write the userspace
driver, removing the need to write a hardware-specific kernel module.

31.5.1 Making the driver recognize the device

Since the driver does not declare any device ids, it will not get loaded automatically and will not automat-
ically bind to any devices, you must load it and allocate id to the driver yourself. For example:

modprobe uio_pci_generic
echo "8086 10f5" > /sys/bus/pci/drivers/uio_pci_generic/new_id

If there already is a hardware specific kernel driver for your device, the generic driver still won’t bind to
it, in this case if you want to use the generic driver (why would you?) you’ll have to manually unbind the
hardware specific driver and bind the generic driver, like this:

echo -n 0000:00:19.0 > /sys/bus/pci/drivers/e1000e/unbind
echo -n 0000:00:19.0 > /sys/bus/pci/drivers/uio_pci_generic/bind

You can verify that the device has been bound to the driver by looking for it in sysfs, for example like the
following:

31.5. Generic PCI UIO driver 915

The kernel driver API manual, Release 4.13.0-rc4+

ls -l /sys/bus/pci/devices/0000:00:19.0/driver

Which if successful should print:

.../0000:00:19.0/driver -> ../../../bus/pci/drivers/uio_pci_generic

Note that the generic driver will not bind to old PCI 2.2 devices. If binding the device failed, run the
following command:

dmesg

and look in the output for failure reasons.

31.5.2 Things to know about uio_pci_generic

Interrupts are handled using the Interrupt Disable bit in the PCI command register and Interrupt Status
bit in the PCI status register. All devices compliant to PCI 2.3 (circa 2002) and all compliant PCI Express
devices should support these bits. uio_pci_generic detects this support, and won’t bind to devices which
do not support the Interrupt Disable Bit in the command register.
On each interrupt, uio_pci_generic sets the Interrupt Disable bit. This prevents the device from generating
further interrupts until the bit is cleared. The userspace driver should clear this bit before blocking and
waiting for more interrupts.

31.5.3 Writing userspace driver using uio_pci_generic

Userspace driver can use pci sysfs interface, or the libpci library that wraps it, to talk to the device and to
re-enable interrupts by writing to the command register.

31.5.4 Example code using uio_pci_generic

Here is some sample userspace driver code using uio_pci_generic:

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>

int main()
{

int uiofd;
int configfd;
int err;
int i;
unsigned icount;
unsigned char command_high;

uiofd = open("/dev/uio0", O_RDONLY);
if (uiofd < 0) {

perror("uio open:");
return errno;

}
configfd = open("/sys/class/uio/uio0/device/config", O_RDWR);
if (configfd < 0) {

perror("config open:");

916 Chapter 31. The Userspace I/O HOWTO

The kernel driver API manual, Release 4.13.0-rc4+

return errno;
}

/* Read and cache command value */
err = pread(configfd, &command_high, 1, 5);
if (err != 1) {

perror("command config read:");
return errno;

}
command_high &= ~0x4;

for(i = 0;; ++i) {
/* Print out a message, for debugging. */
if (i == 0)

fprintf(stderr, "Started uio test driver.\n");
else

fprintf(stderr, "Interrupts: %d\n", icount);

/**/
/* Here we got an interrupt from the

device. Do something to it. */
/**/

/* Re-enable interrupts. */
err = pwrite(configfd, &command_high, 1, 5);
if (err != 1) {

perror("config write:");
break;

}

/* Wait for next interrupt. */
err = read(uiofd, &icount, 4);
if (err != 4) {

perror("uio read:");
break;

}

}
return errno;

}

31.6 Generic Hyper-V UIO driver

The generic driver is a kernel module named uio_hv_generic. It supports devices on the Hyper-V VMBus
similar to uio_pci_generic on PCI bus.

31.6.1 Making the driver recognize the device

Since the driver does not declare any device GUID’s, it will not get loaded automatically and will not
automatically bind to any devices, you must load it and allocate id to the driver yourself. For example, to
use the network device GUID:

modprobe uio_hv_generic
echo "f8615163-df3e-46c5-913f-f2d2f965ed0e" > /sys/bus/vmbus/drivers/uio_hv_generic/new_id

If there already is a hardware specific kernel driver for the device, the generic driver still won’t bind to it,
in this case if you want to use the generic driver (why would you?) you’ll have to manually unbind the
hardware specific driver and bind the generic driver, like this:

31.6. Generic Hyper-V UIO driver 917

The kernel driver API manual, Release 4.13.0-rc4+

echo -n vmbus-ed963694-e847-4b2a-85af-bc9cfc11d6f3 > /sys/bus/vmbus/drivers/hv_netvsc/unbind
echo -n vmbus-ed963694-e847-4b2a-85af-bc9cfc11d6f3 > /sys/bus/vmbus/drivers/uio_hv_generic/bind

You can verify that the device has been bound to the driver by looking for it in sysfs, for example like the
following:

ls -l /sys/bus/vmbus/devices/vmbus-ed963694-e847-4b2a-85af-bc9cfc11d6f3/driver

Which if successful should print:

.../vmbus-ed963694-e847-4b2a-85af-bc9cfc11d6f3/driver -> ../../../bus/vmbus/drivers/uio_hv_
↪→generic

31.6.2 Things to know about uio_hv_generic

On each interrupt, uio_hv_generic sets the Interrupt Disable bit. This prevents the device from generating
further interrupts until the bit is cleared. The userspace driver should clear this bit before blocking and
waiting for more interrupts.

31.7 Further information

• OSADL homepage.
• Linutronix homepage.

918 Chapter 31. The Userspace I/O HOWTO

http://www.osadl.org
http://www.linutronix.de

CHAPTER

THIRTYTWO

LINUX FIRMWARE API

32.1 Introduction

The firmware API enables kernel code to request files required for functionality from userspace, the uses
vary:
• Microcode for CPU errata
• Device driver firmware, required to be loaded onto device microcontrollers
• Device driver information data (calibration data, EEPROM overrides), some of which can be com-
pletely optional.

32.1.1 Types of firmware requests

There are two types of calls:
• Synchronous
• Asynchronous

Which one you use vary depending on your requirements, the rule of thumb however is you should strive
to use the asynchronous APIs unless you also are already using asynchronous initialization mechanisms
which will not stall or delay boot. Even if loading firmware does not take a lot of time processing firmware
might, and this can still delay boot or initialization, as such mechanisms such as asynchronous probe can
help supplement drivers.

32.2 Firmware API core features

The firmware API has a rich set of core features available. This section documents these features.

32.2.1 Firmware search paths

The following search paths are used to look for firmware on your root filesystem.
• fw_path_para - module parameter - default is empty so this is ignored
• /lib/firmware/updates/UTS_RELEASE/
• /lib/firmware/updates/
• /lib/firmware/UTS_RELEASE/
• /lib/firmware/

The module parameter ‘’path” can be passed to the firmware_class module to activate the first optional
custom fw_path_para. The custom path can only be up to 256 characters long. The kernel parameter
passed would be:

919

The kernel driver API manual, Release 4.13.0-rc4+

• ‘firmware_class.path=$CUSTOMIZED_PATH’
There is an alternative to customize the path at run time after bootup, you can use the file:
• /sys/module/firmware_class/parameters/path

You would echo into it your custom path and firmware requested will be searched for there first.

32.2.2 Built-in firmware

Firmware can be built-in to the kernel, this means building the firmware into vmlinux directly, to enable
avoiding having to look for firmware from the filesystem. Instead, firmware can be looked for inside the
kernel directly. You can enable built-in firmware using the kernel configuration options:
• CONFIG_EXTRA_FIRMWARE
• CONFIG_EXTRA_FIRMWARE_DIR

This should not be confused with CONFIG_FIRMWARE_IN_KERNEL, this is for drivers which enables firmware
to be built as part of the kernel build process. This option, CONFIG_FIRMWARE_IN_KERNEL, will build all
firmware for all drivers enabled which ship its firmware inside the Linux kernel source tree.
There are a few reasons why you might want to consider building your firmware into the kernel with
CONFIG_EXTRA_FIRMWARE though:
• Speed
• Firmware is needed for accessing the boot device, and the user doesn’t want to stuff the firmware
into the boot initramfs.

Even if you have these needs there are a few reasons why you may not be able to make use of built-in
firmware:
• Legalese - firmware is non-GPL compatible
• Some firmware may be optional
• Firmware upgrades are possible, therefore a new firmware would implicate a complete kernel rebuild.
• Some firmware files may be really large in size. The remote-proc subsystem is an example subsystem
which deals with these sorts of firmware

• The firmware may need to be scraped out from some device specific location dynamically, an ex-
ample is calibration data for for some WiFi chipsets. This calibration data can be unique per sold
device.

32.2.3 Firmware cache

When Linux resumes from suspend some device drivers require firmware lookups to re-initialize devices.
During resume there may be a period of time during which firmware lookups are not possible, during this
short period of time firmware requests will fail. Time is of essence though, and delaying drivers to wait
for the root filesystem for firmware delays user experience with device functionality. In order to support
these requirements the firmware infrastructure implements a firmware cache for device drivers for most
API calls, automatically behind the scenes.
The firmware cache makes using certain firmware API calls safe during a device driver’s suspend and
resume callback. Users of these API calls needn’t cache the firmware by themselves for dealing with
firmware loss during system resume.
The firmware cache works by requesting for firmware prior to suspend and caching it in memory. Upon
resume device drivers using the firmware API will have access to the firmware immediately, without having
to wait for the root filesystem to mount or dealing with possible race issues with lookups as the root
filesystem mounts.
Some implementation details about the firmware cache setup:

920 Chapter 32. Linux Firmware API

The kernel driver API manual, Release 4.13.0-rc4+

• The firmware cache is setup by adding a devres entry for each device that uses all synchronous call
except request_firmware_into_buf().

• If an asynchronous call is used the firmware cache is only set up for a device if if the second argu-
ment (uevent) to request_firmware_nowait() is true. When uevent is true it requests that a kobject
uevent be sent to userspace for the firmware request. For details refer to the Fackback mechanism
documented below.

• If the firmware cache is determined to be needed as per the above two criteria the firmware cache
is setup by adding a devres entry for the device making the firmware request.

• The firmware devres entry is maintained throughout the lifetime of the device. This means that even
if you release_firmware() the firmware cache will still be used on resume from suspend.

• The timeout for the fallback mechanism is temporarily reduced to 10 seconds as the firmware cache
is set up during suspend, the timeout is set back to the old value you had configured after the cache
is set up.

• Upon suspend any pending non-uevent firmware requests are killed to avoid stalling the kernel, this
is done with kill_requests_without_uevent(). Kernel calls requiring the non-uevent therefore need to
implement their own firmware cache mechanism but must not use the firmware API on suspend.

32.2.4 Direct filesystem lookup

Direct filesystem lookup is the most common form of firmware lookup performed by the kernel. The kernel
looks for the firmware directly on the root filesystem in the paths documented in the section ‘Firmware
search paths’. The filesystem lookup is implemented in fw_get_filesystem_firmware(), it uses common
core kernel file loader facility kernel_read_file_from_path(). The max path allowed is PATH_MAX – currently
this is 4096 characters.
It is recommended you keep /lib/firmware paths on your root filesystem, avoid having a separate partition
for them in order to avoid possible races with lookups and avoid uses of the custom fallback mechanisms
documented below.

Firmware and initramfs

Drivers which are built-in to the kernel should have the firmware integrated also as part of the initramfs
used to boot the kernel given that otherwise a race is possible with loading the driver and the real rootfs
not yet being available. Stuffing the firmware into initramfs resolves this race issue, however note that
using initrd does not suffice to address the same race.
There are circumstances that justify not wanting to include firmware into initramfs, such as dealing with
large firmware firmware files for the remote-proc subsystem. For such cases using a userspace fallback
mechanism is currently the only viable solution as only userspace can know for sure when the real rootfs
is ready and mounted.

32.2.5 Fallback mechanisms

A fallbackmechanism is supported to allow to overcome failures to do a direct filesystem lookup on the root
filesystem or when the firmware simply cannot be installed for practical reasons on the root filesystem.
The kernel configuration options related to supporting the firmware fallback mechanism are:
• CONFIG_FW_LOADER_USER_HELPER: enables building the firmware fallback mechanism. Most dis-
tributions enable this option today. If enabled but CONFIG_FW_LOADER_USER_HELPER_FALLBACK
is disabled, only the custom fallback mechanism is available and for the request_firmware_nowait()
call.

32.2. Firmware API core features 921

The kernel driver API manual, Release 4.13.0-rc4+

• CONFIG_FW_LOADER_USER_HELPER_FALLBACK: force enables each request to enable the kobject
uevent fallback mechanism on all firmware API calls except request_firmware_direct(). Most dis-
tributions disable this option today. The call request_firmware_nowait() allows for one alterna-
tive fallback mechanism: if this kconfig option is enabled and your second argument to re-
quest_firmware_nowait(), uevent, is set to false you are informing the kernel that you have a custom
fallback mechanism and it will manually load the firmware. Read below for more details.

Note that this means when having this configuration:
CONFIG_FW_LOADER_USER_HELPER=y CONFIG_FW_LOADER_USER_HELPER_FALLBACK=n
the kobject uevent fallback mechanism will never take effect even for request_firmware_nowait() when
uevent is set to true.

Justifying the firmware fallback mechanism

Direct filesystem lookups may fail for a variety of reasons. Known reasons for this are worth itemizing and
documenting as it justifies the need for the fallback mechanism:
• Race against access with the root filesystem upon bootup.
• Races upon resume from suspend. This is resolved by the firmware cache, but the firmware cache is
only supported if you use uevents, and its not supported for request_firmware_into_buf().

• Firmware is not accessible through typical means:
– It cannot be installed into the root filesystem
– The firmware provides very unique device specific data tailored for the unit gathered with
local information. An example is calibration data for WiFi chipsets for mobile devices. This
calibration data is not common to all units, but tailored per unit. Such information may be
installed on a separate flash partition other than where the root filesystem is provided.

Types of fallback mechanisms

There are really two fallback mechanisms available using one shared sysfs interface as a loading facility:
• Kobject uevent fallback mechanism
• Custom fallback mechanism

First lets document the shared sysfs loading facility.

Firmware sysfs loading facility

In order to help device drivers upload firmware using a fallback mechanism the firmware infrastructure
creates a sysfs interface to enable userspace to load and indicate when firmware is ready. The sysfs direc-
tory is created via fw_create_instance(). This call creates a new struct device named after the firmware
requested, and establishes it in the device hierarchy by associating the device used to make the re-
quest as the device’s parent. The sysfs directory’s file attributes are defined and controlled through the
new device’s class (firmare_class) and group (fw_dev_attr_groups). This is actually where the original
firmware_class.c file name comes from, as originally the only firmware loading mechanism available was
the mechanism we now use as a fallback mechanism.
To load firmware using the sysfs interface we expose a loading indicator, and a file upload firmware into:
• /sys/$DEVPATH/loading
• /sys/$DEVPATH/data

To upload firmware you will echo 1 onto the loading file to indicate you are loading firmware. You then
cat the firmware into the data file, and you notify the kernel the firmware is ready by echo’ing 0 onto the
loading file.

922 Chapter 32. Linux Firmware API

The kernel driver API manual, Release 4.13.0-rc4+

The firmware device used to help load firmware using sysfs is only created if direct firmware load-
ing fails and if the fallback mechanism is enabled for your firmware request, this is set up with
fw_load_from_user_helper(). It is important to re-iterate that no device is created if a direct filesystem
lookup succeeded.
Using:

echo 1 > /sys/$DEVPATH/loading

Will clean any previous partial load at once and make the firmware API return an error. When loading
firmware the firmware_class grows a buffer for the firmware in PAGE_SIZE increments to hold the image
as it comes in.
firmware_data_read() and firmware_loading_show() are just provided for the test_firmware driver for test-
ing, they are not called in normal use or expected to be used regularly by userspace.

Firmware kobject uevent fallback mechanism

Since a device is created for the sysfs interface to help load firmware as a fallback mechanism userspace
can be informed of the addition of the device by relying on kobject uevents. The addition of the device into
the device hierarchy means the fallback mechanism for firmware loading has been initiated. For details of
implementation refer to _request_firmware_load(), in particular on the use of dev_set_uevent_suppress()
and kobject_uevent().
The kernel’s kobject uevent mechanism is implemented in lib/kobject_uevent.c, it issues uevents
to userspace. As a supplement to kobject uevents Linux distributions could also enable CON-
FIG_UEVENT_HELPER_PATH, which makes use of core kernel’s usermode helper (UMH) functionality to
call out to a userspace helper for kobject uevents. In practice though no standard distribution has ever
used the CONFIG_UEVENT_HELPER_PATH. If CONFIG_UEVENT_HELPER_PATH is enabled this binary would
be called each time kobject_uevent_env() gets called in the kernel for each kobject uevent triggered.
Different implementations have been supported in userspace to take advantage of this fallback mecha-
nism. When firmware loading was only possible using the sysfs mechanism the userspace component
“hotplug” provided the functionality of monitoring for kobject events. Historically this was superseded
be systemd’s udev, however firmware loading support was removed from udev as of systemd commit
be2ea723b1d0 (“udev: remove userspace firmware loading support”) as of v217 on August, 2014. This
means most Linux distributions today are not using or taking advantage of the firmware fallback mech-
anism provided by kobject uevents. This is specially exacerbated due to the fact that most distributions
today disable CONFIG_FW_LOADER_USER_HELPER_FALLBACK.
Refer to do_firmware_uevent() for details of the kobject event variables setup. Variables passwdd with a
kobject add event:
• FIRMWARE=firmware name
• TIMEOUT=timeout value
• ASYNC=whether or not the API request was asynchronous

By default DEVPATH is set by the internal kernel kobject infrastructure. Below is an example simple kobject
uevent script:

Both $DEVPATH and $FIRMWARE are already provided in the environment.
MY_FW_DIR=/lib/firmware/
echo 1 > /sys/$DEVPATH/loading
cat $MY_FW_DIR/$FIRMWARE > /sys/$DEVPATH/data
echo 0 > /sys/$DEVPATH/loading

Firmware custom fallback mechanism

Users of the request_firmware_nowait() call have yet another option available at their disposal: rely on
the sysfs fallback mechanism but request that no kobject uevents be issued to userspace. The original

32.2. Firmware API core features 923

The kernel driver API manual, Release 4.13.0-rc4+

logic behind this was that utilities other than udev might be required to lookup firmware in non-traditional
paths – paths outside of the listing documented in the section ‘Direct filesystem lookup’. This option is
not available to any of the other API calls as uevents are always forced for them.
Since uevents are only meaningful if the fallback mechanism is enabled in your kernel it would seem odd
to enable uevents with kernels that do not have the fallback mechanism enabled in their kernels. Unfortu-
nately we also rely on the uevent flagwhich can be disabled by request_firmware_nowait() to also setup the
firmware cache for firmware requests. As documented above, the firmware cache is only set up if uevent
is enabled for an API call. Although this can disable the firmware cache for request_firmware_nowait()
calls, users of this API should not use it for the purposes of disabling the cache as that was not the orig-
inal purpose of the flag. Not setting the uevent flag means you want to opt-in for the firmware fallback
mechanism but you want to suppress kobject uevents, as you have a custom solution which will monitor
for your device addition into the device hierarchy somehow and load firmware for you through a custom
path.

Firmware fallback timeout

The firmware fallback mechanism has a timeout. If firmware is not loaded onto the sysfs interface by
the timeout value an error is sent to the driver. By default the timeout is set to 60 seconds if uevents
are desirable, otherwise MAX_JIFFY_OFFSET is used (max timeout possible). The logic behind using
MAX_JIFFY_OFFSET for non-uevents is that a custom solution will have as much time as it needs to load
firmware.
You can customize the firmware timeout by echo’ing your desired timeout into the following file:
• /sys/class/firmware/timeout

If you echo 0 into it means MAX_JIFFY_OFFSET will be used. The data type for the timeout is an int.

32.2.6 Firmware lookup order

Different functionality is available to enable firmware to be found. Below is chronological order of how
firmware will be looked for once a driver issues a firmware API call.
• The ‘’Built-in firmware” is checked first, if the firmware is present we return it immediately
• The ‘’Firmware cache” is looked at next. If the firmware is found we return it immediately
• The ‘’Direct filesystem lookup” is performed next, if found we return it immediately
• If no firmware has been found and the fallback mechanism was enabled the sysfs interface is created.
After this either a kobject uevent is issued or the custom firmware loading is relied upon for firmware
loading up to the timeout value.

32.3 request_firmware API

You would typically load firmware and then load it into your device somehow. The typical firmware work
flow is reflected below:

if(request_firmware(&fw_entry, $FIRMWARE, device) == 0)
copy_fw_to_device(fw_entry->data, fw_entry->size);

release_firmware(fw_entry);

32.3.1 Synchronous firmware requests

Synchronous firmware requests will wait until the firmware is found or until an error is returned.

924 Chapter 32. Linux Firmware API

The kernel driver API manual, Release 4.13.0-rc4+

request_firmware

int request_firmware(const struct firmware ** firmware_p, const char * name, struct device * de-
vice)

send firmware request and wait for it
Parameters
const struct firmware ** firmware_p pointer to firmware image
const char * name name of firmware file
struct device * device device for which firmware is being loaded
Description

firmware_p will be used to return a firmware image by the name of name for device device.
Should be called from user context where sleeping is allowed.
name will be used as $FIRMWARE in the uevent environment and should be distinctive enough
not to be confused with any other firmware image for this or any other device.

Caller must hold the reference count of device.
The function can be called safely inside device’s suspend and resume callback.

request_firmware_direct

int request_firmware_direct(const struct firmware ** firmware_p, const char * name, struct de-
vice * device)

load firmware directly without usermode helper
Parameters
const struct firmware ** firmware_p pointer to firmware image
const char * name name of firmware file
struct device * device device for which firmware is being loaded
Description
This function works pretty much like request_firmware(), but this doesn’t fall back to usermode helper
even if the firmware couldn’t be loaded directly from fs. Hence it’s useful for loading optional firmwares,
which aren’t always present, without extra long timeouts of udev.

request_firmware_into_buf

int request_firmware_into_buf(const struct firmware ** firmware_p, const char * name, struct de-
vice * device, void * buf, size_t size)

load firmware into a previously allocated buffer
Parameters
const struct firmware ** firmware_p pointer to firmware image
const char * name name of firmware file
struct device * device device for which firmware is being loaded and DMA region allocated
void * buf address of buffer to load firmware into
size_t size size of buffer

32.3. request_firmware API 925

The kernel driver API manual, Release 4.13.0-rc4+

Description
This function works pretty much like request_firmware(), but it doesn’t allocate a buffer to hold the
firmware data. Instead, the firmware is loaded directly into the buffer pointed to by buf and the
firmware_p data member is pointed at buf.
This function doesn’t cache firmware either.

32.3.2 Asynchronous firmware requests

Asynchronous firmware requests allow driver code to not have to wait until the firmware or an error is
returned. Function callbacks are provided so that when the firmware or an error is found the driver is
informed through the callback. request_firmware_nowait() cannot be called in atomic contexts.

request_firmware_nowait

int request_firmware_nowait(struct module * module, bool uevent, const char * name, struct de-
vice * device, gfp_t gfp, void * context, void (*cont) (const struct
firmware *fw, void *context)

asynchronous version of request_firmware
Parameters
struct module * module module requesting the firmware
bool uevent sends uevent to copy the firmware image if this flag is non-zero else the firmware copy

must be done manually.
const char * name name of firmware file
struct device * device device for which firmware is being loaded
gfp_t gfp allocation flags
void * context will be passed over to cont, and fw may be NULL if firmware request fails.
void (*)(const struct firmware *fw,void *context) cont function will be called asynchronously

when the firmware request is over.
Description

Caller must hold the reference count of device.
Asynchronous variant of request_firmware() for user contexts:

• sleep for as small periods as possible since it may increase kernel boot time of built-
in device drivers requesting firmware in their ->:c:func:probe() methods, if gfp is
GFP_KERNEL.

• can’t sleep at all if gfp is GFP_ATOMIC.

32.3.3 Considerations for suspend and resume

During suspend and resume only the built-in firmware and the firmware cache elements of the firmware
API can be used. This is managed by fw_pm_notify().

fw_pm_notify

int fw_pm_notify(struct notifier_block * notify_block, unsigned long mode, void * unused)
notifier for suspend/resume

Parameters
struct notifier_block * notify_block unused

926 Chapter 32. Linux Firmware API

The kernel driver API manual, Release 4.13.0-rc4+

unsigned long mode mode we are switching to
void * unused unused
Description
Used to modify the firmware_class state as we move in between states. The firmware_class implements a
firmware cache to enable device driver to fetch firmware upon resume before the root filesystem is ready.
We disable API calls which do not use the built-in firmware or the firmware cache when we know these
calls will not work.
The inner logic behind all this is a bit complex so it is worth summarizing the kernel’s own suspend/resume
process with context and focus on how this can impact the firmware API.
First a review on how we go to suspend:

:c:func:`pm_suspend()` --> :c:func:`enter_state()` -->
:c:func:`sys_sync()`
:c:func:`suspend_prepare()` -->

__pm_notifier_call_chain(PM_SUSPEND_PREPARE, ...);
:c:func:`suspend_freeze_processes()` -->

:c:func:`freeze_processes()` -->
__usermodehelper_set_disable_depth(UMH_DISABLED);
freeze all tasks ...

:c:func:`freeze_kernel_threads()`
:c:func:`suspend_devices_and_enter()` -->

:c:func:`dpm_suspend_start()` -->
:c:func:`dpm_prepare()`
:c:func:`dpm_suspend()`

:c:func:`suspend_enter()` -->
:c:func:`platform_suspend_prepare()`
:c:func:`dpm_suspend_late()`
:c:func:`freeze_enter()`
:c:func:`syscore_suspend()`

When we resume we bail out of a loop from suspend_devices_and_enter() and unwind back out to the
caller enter_state() where we were before as follows:

:c:func:`enter_state()` -->
:c:func:`suspend_devices_and_enter()` --> (bail from loop)

:c:func:`dpm_resume_end()` -->
:c:func:`dpm_resume()`
:c:func:`dpm_complete()`

:c:func:`suspend_finish()` -->
:c:func:`suspend_thaw_processes()` -->

:c:func:`thaw_processes()` -->
__usermodehelper_set_disable_depth(UMH_FREEZING);
:c:func:`thaw_workqueues()`;
thaw all processes ...
:c:func:`usermodehelper_enable()`;

pm_notifier_call_chain(PM_POST_SUSPEND);

fw_pm_notify() works through pm_notifier_call_chain().

32.3.4 request firmware API expected driver use

Once an API call returns you process the firmware and then release the firmware. For example if you used
request_firmware() and it returns, the driver has the firmware image accessible in fw_entry->{data,size}.
If something went wrong request_firmware() returns non-zero and fw_entry is set to NULL. Once your driver
is done with processing the firmware it can call call release_firmware(fw_entry) to release the firmware
image and any related resource.

32.3. request_firmware API 927

The kernel driver API manual, Release 4.13.0-rc4+

32.4 Other Firmware Interfaces

32.4.1 DMI Interfaces

int dmi_check_system(const struct dmi_system_id * list)
check system DMI data

Parameters
const struct dmi_system_id * list array of dmi_system_id structures to match against All non-null

elements of the list mustmatch their slot’s (field index’s) data (i.e., each list stringmust be a substring
of the specified DMI slot’s string data) to be considered a successful match.

Description
Walk the blacklist table running matching functions until someone returns non zero or we hit
the end. Callback function is called for each successful match. Returns the number of matches.

const struct dmi_system_id * dmi_first_match(const struct dmi_system_id * list)
find dmi_system_id structure matching system DMI data

Parameters
const struct dmi_system_id * list array of dmi_system_id structures to match against All non-null

elements of the list mustmatch their slot’s (field index’s) data (i.e., each list stringmust be a substring
of the specified DMI slot’s string data) to be considered a successful match.

Description
Walk the blacklist table until the first match is found. Return the pointer to the matching entry
or NULL if there’s no match.

const char * dmi_get_system_info(int field)
return DMI data value

Parameters
int field data index (see enum dmi_field)
Description

Returns one DMI data value, can be used to perform complex DMI data checks.
int dmi_name_in_vendors(const char * str)

Check if string is in the DMI system or board vendor name
Parameters
const char * str Case sensitive Name
const struct dmi_device * dmi_find_device(int type, const char * name, const struct dmi_device

* from)
find onboard device by type/name

Parameters
int type device type or DMI_DEV_TYPE_ANY to match all device types
const char * name device name string or NULL to match all
const struct dmi_device * from previous device found in search, or NULL for new search.
Description

Iterates through the list of known onboard devices. If a device is found with amatching type and
name, a pointer to its device structure is returned. Otherwise, NULL is returned. A new search
is initiated by passing NULL as the from argument. If from is not NULL, searches continue from
next device.

928 Chapter 32. Linux Firmware API

The kernel driver API manual, Release 4.13.0-rc4+

bool dmi_get_date(int field, int * yearp, int * monthp, int * dayp)
parse a DMI date

Parameters
int field data index (see enum dmi_field)
int * yearp optional out parameter for the year
int * monthp optional out parameter for the month
int * dayp optional out parameter for the day
Description

The date field is assumed to be in the form resembling [mm[/dd]]/yy[yy] and the result is stored
in the out parameters any or all of which can be omitted.
If the field doesn’t exist, all out parameters are set to zero and false is returned. Otherwise,
true is returned with any invalid part of date set to zero.
On return, year, month and day are guaranteed to be in the range of [0,9999], [0,12] and [0,31]
respectively.

int dmi_walk(void (*decode) (const struct dmi_header *, void *, void * private_data)
Walk the DMI table and get called back for every record

Parameters
void (*)(const struct dmi_header *,void *) decode Callback function
void * private_data Private data to be passed to the callback function
Description

Returns 0 on success, -ENXIO if DMI is not selected or not present, or a different negative error
code if DMI walking fails.

bool dmi_match(enum dmi_field f, const char * str)
compare a string to the dmi field (if exists)

Parameters
enum dmi_field f DMI field identifier
const char * str string to compare the DMI field to
Description
Returns true if the requested field equals to the str (including NULL).

32.4.2 EDD Interfaces

ssize_t edd_show_raw_data(struct edd_device * edev, char * buf)
copies raw data to buffer for userspace to parse

Parameters
struct edd_device * edev target edd_device
char * buf output buffer
Return
number of bytes written, or -EINVAL on failure
void edd_release(struct kobject * kobj)

free edd structure
Parameters
struct kobject * kobj kobject of edd structure

32.4. Other Firmware Interfaces 929

The kernel driver API manual, Release 4.13.0-rc4+

Description
This is called when the refcount of the edd structure reaches 0. This should happen right after
we unregister, but just in case, we use the release callback anyway.

int edd_dev_is_type(struct edd_device * edev, const char * type)
is this EDD device a ‘type’ device?

Parameters
struct edd_device * edev target edd_device
const char * type a host bus or interface identifier string per the EDD spec
Description
Returns 1 (TRUE) if it is a ‘type’ device, 0 otherwise.
struct pci_dev * edd_get_pci_dev(struct edd_device * edev)

finds pci_dev that matches edev
Parameters
struct edd_device * edev edd_device
Description
Returns pci_dev if found, or NULL
int edd_init(void)

creates sysfs tree of EDD data
Parameters
void no arguments

930 Chapter 32. Linux Firmware API

CHAPTER

THIRTYTHREE

PINCTRL (PIN CONTROL) SUBSYSTEM

This document outlines the pin control subsystem in Linux
This subsystem deals with:
• Enumerating and naming controllable pins
• Multiplexing of pins, pads, fingers (etc) see below for details
• Configuration of pins, pads, fingers (etc), such as software-controlled biasing and driving mode spe-
cific pins, such as pull-up/down, open drain, load capacitance etc.

33.1 Top-level interface

Definition of PIN CONTROLLER:
• A pin controller is a piece of hardware, usually a set of registers, that can control PINs. It may be able
to multiplex, bias, set load capacitance, set drive strength, etc. for individual pins or groups of pins.

Definition of PIN:
• PINS are equal to pads, fingers, balls or whatever packaging input or output line you want to control
and these are denoted by unsigned integers in the range 0..maxpin. This numberspace is local to
each PIN CONTROLLER, so there may be several such number spaces in a system. This pin space
may be sparse - i.e. there may be gaps in the space with numbers where no pin exists.

When a PIN CONTROLLER is instantiated, it will register a descriptor to the pin control framework, and this
descriptor contains an array of pin descriptors describing the pins handled by this specific pin controller.
Here is an example of a PGA (Pin Grid Array) chip seen from underneath:

A B C D E F G H

8 o o o o o o o o

7 o o o o o o o o

6 o o o o o o o o

5 o o o o o o o o

4 o o o o o o o o

3 o o o o o o o o

2 o o o o o o o o

1 o o o o o o o o

To register a pin controller and name all the pins on this package we can do this in our driver:

931

The kernel driver API manual, Release 4.13.0-rc4+

#include <linux/pinctrl/pinctrl.h>

const struct pinctrl_pin_desc foo_pins[] = {
PINCTRL_PIN(0, "A8"),
PINCTRL_PIN(1, "B8"),
PINCTRL_PIN(2, "C8"),
...
PINCTRL_PIN(61, "F1"),
PINCTRL_PIN(62, "G1"),
PINCTRL_PIN(63, "H1"),

};

static struct pinctrl_desc foo_desc = {
.name = "foo",
.pins = foo_pins,
.npins = ARRAY_SIZE(foo_pins),
.owner = THIS_MODULE,

};

int __init foo_probe(void)
{

int error;

struct pinctrl_dev *pctl;

error = pinctrl_register_and_init(&foo_desc, <PARENT>,
NULL, &pctl);

if (error)
return error;

return pinctrl_enable(pctl);
}

To enable the pinctrl subsystem and the subgroups for PINMUX and PINCONF and selected drivers, you
need to select them from your machine’s Kconfig entry, since these are so tightly integrated with the
machines they are used on. See for example arch/arm/mach-u300/Kconfig for an example.
Pins usually have fancier names than this. You can find these in the datasheet for your chip. Notice that
the core pinctrl.h file provides a fancy macro called PINCTRL_PIN() to create the struct entries. As you can
see I enumerated the pins from 0 in the upper left corner to 63 in the lower right corner. This enumeration
was arbitrarily chosen, in practice you need to think through your numbering system so that it matches
the layout of registers and such things in your driver, or the code may become complicated. You must
also consider matching of offsets to the GPIO ranges that may be handled by the pin controller.
For a padring with 467 pads, as opposed to actual pins, I used an enumeration like this, walking around
the edge of the chip, which seems to be industry standard too (all these pads had names, too):

0 104
466 105

. .

. .
358 224
357 225

33.2 Pin groups

Many controllers need to deal with groups of pins, so the pin controller subsystem has a mechanism for
enumerating groups of pins and retrieving the actual enumerated pins that are part of a certain group.
For example, say that we have a group of pins dealing with an SPI interface on { 0, 8, 16, 24 }, and a

932 Chapter 33. PINCTRL (PIN CONTROL) subsystem

The kernel driver API manual, Release 4.13.0-rc4+

group of pins dealing with an I2C interface on pins on { 24, 25 }.
These two groups are presented to the pin control subsystem by implementing some generic pinctrl_ops
like this:

#include <linux/pinctrl/pinctrl.h>

struct foo_group {
const char *name;
const unsigned int *pins;
const unsigned num_pins;

};

static const unsigned int spi0_pins[] = { 0, 8, 16, 24 };
static const unsigned int i2c0_pins[] = { 24, 25 };

static const struct foo_group foo_groups[] = {
{

.name = "spi0_grp",

.pins = spi0_pins,

.num_pins = ARRAY_SIZE(spi0_pins),
},
{

.name = "i2c0_grp",

.pins = i2c0_pins,

.num_pins = ARRAY_SIZE(i2c0_pins),
},

};

static int foo_get_groups_count(struct pinctrl_dev *pctldev)
{

return ARRAY_SIZE(foo_groups);
}

static const char *foo_get_group_name(struct pinctrl_dev *pctldev,
unsigned selector)

{
return foo_groups[selector].name;

}

static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector,
const unsigned **pins,
unsigned *num_pins)

{
*pins = (unsigned *) foo_groups[selector].pins;
*num_pins = foo_groups[selector].num_pins;
return 0;

}

static struct pinctrl_ops foo_pctrl_ops = {
.get_groups_count = foo_get_groups_count,
.get_group_name = foo_get_group_name,
.get_group_pins = foo_get_group_pins,

};

static struct pinctrl_desc foo_desc = {
...
.pctlops = &foo_pctrl_ops,
};

The pin control subsystem will call the .get_groups_count() function to determine the total number of legal

33.2. Pin groups 933

The kernel driver API manual, Release 4.13.0-rc4+

selectors, then it will call the other functions to retrieve the name and pins of the group. Maintaining the
data structure of the groups is up to the driver, this is just a simple example - in practice you may need
more entries in your group structure, for example specific register ranges associated with each group and
so on.

33.3 Pin configuration

Pins can sometimes be software-configured in various ways, mostly related to their electronic properties
when used as inputs or outputs. For example you may be able to make an output pin high impedance, or
“tristate” meaning it is effectively disconnected. You may be able to connect an input pin to VDD or GND
using a certain resistor value - pull up and pull down - so that the pin has a stable value when nothing is
driving the rail it is connected to, or when it’s unconnected.
Pin configuration can be programmed by adding configuration entries into the mapping table; see section
“Board/machine configuration” below.
The format and meaning of the configuration parameter, PLATFORM_X_PULL_UP above, is entirely defined
by the pin controller driver.
The pin configuration driver implements callbacks for changing pin configuration in the pin controller ops
like this:

#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/pinconf.h>
#include "platform_x_pindefs.h"

static int foo_pin_config_get(struct pinctrl_dev *pctldev,
unsigned offset,
unsigned long *config)

{
struct my_conftype conf;

... Find setting for pin @ offset ...

*config = (unsigned long) conf;
}

static int foo_pin_config_set(struct pinctrl_dev *pctldev,
unsigned offset,
unsigned long config)

{
struct my_conftype *conf = (struct my_conftype *) config;

switch (conf) {
case PLATFORM_X_PULL_UP:
...
}

}
}

static int foo_pin_config_group_get (struct pinctrl_dev *pctldev,
unsigned selector,
unsigned long *config)

{
...

}

static int foo_pin_config_group_set (struct pinctrl_dev *pctldev,
unsigned selector,
unsigned long config)

{

934 Chapter 33. PINCTRL (PIN CONTROL) subsystem

The kernel driver API manual, Release 4.13.0-rc4+

...
}

static struct pinconf_ops foo_pconf_ops = {
.pin_config_get = foo_pin_config_get,
.pin_config_set = foo_pin_config_set,
.pin_config_group_get = foo_pin_config_group_get,
.pin_config_group_set = foo_pin_config_group_set,

};

/* Pin config operations are handled by some pin controller */
static struct pinctrl_desc foo_desc = {

...

.confops = &foo_pconf_ops,
};

Since some controllers have special logic for handling entire groups of pins they can exploit the special
whole-group pin control function. The pin_config_group_set() callback is allowed to return the error code
-EAGAIN, for groups it does not want to handle, or if it just wants to do some group-level handling and
then fall through to iterate over all pins, in which case each individual pin will be treated by separate
pin_config_set() calls as well.

33.4 Interaction with the GPIO subsystem

The GPIO drivers may want to perform operations of various types on the same physical pins that are also
registered as pin controller pins.
First and foremost, the two subsystems can be used as completely orthogonal, see the section named
“pin control requests from drivers” and “drivers needing both pin control and GPIOs” below for details.
But in some situations a cross-subsystem mapping between pins and GPIOs is needed.
Since the pin controller subsystem has its pinspace local to the pin controller we need a mapping so that
the pin control subsystem can figure out which pin controller handles control of a certain GPIO pin. Since
a single pin controller may be muxing several GPIO ranges (typically SoCs that have one set of pins, but
internally several GPIO silicon blocks, each modelled as a struct gpio_chip) any number of GPIO ranges
can be added to a pin controller instance like this:

struct gpio_chip chip_a;
struct gpio_chip chip_b;

static struct pinctrl_gpio_range gpio_range_a = {
.name = "chip a",
.id = 0,
.base = 32,
.pin_base = 32,
.npins = 16,
.gc = &chip_a;

};

static struct pinctrl_gpio_range gpio_range_b = {
.name = "chip b",
.id = 0,
.base = 48,
.pin_base = 64,
.npins = 8,
.gc = &chip_b;

};

{
struct pinctrl_dev *pctl;

33.4. Interaction with the GPIO subsystem 935

The kernel driver API manual, Release 4.13.0-rc4+

...
pinctrl_add_gpio_range(pctl, &gpio_range_a);
pinctrl_add_gpio_range(pctl, &gpio_range_b);

}

So this complex system has one pin controller handling two different GPIO chips. “chip a” has 16 pins and
“chip b” has 8 pins. The “chip a” and “chip b” have different .pin_base, which means a start pin number
of the GPIO range.
The GPIO range of “chip a” starts from the GPIO base of 32 and actual pin range also starts from 32.
However “chip b” has different starting offset for the GPIO range and pin range. The GPIO range of “chip
b” starts from GPIO number 48, while the pin range of “chip b” starts from 64.
We can convert a gpio number to actual pin number using this “pin_base”. They are mapped in the global
GPIO pin space at:
chip a:

• GPIO range : [32 .. 47]
• pin range : [32 .. 47]

chip b:
• GPIO range : [48 .. 55]
• pin range : [64 .. 71]

The above examples assume the mapping between the GPIOs and pins is linear. If the mapping is sparse
or haphazard, an array of arbitrary pin numbers can be encoded in the range like this:

static const unsigned range_pins[] = { 14, 1, 22, 17, 10, 8, 6, 2 };

static struct pinctrl_gpio_range gpio_range = {
.name = "chip",
.id = 0,
.base = 32,
.pins = &range_pins,
.npins = ARRAY_SIZE(range_pins),
.gc = &chip;

};

In this case the pin_base property will be ignored. If the name of a pin group is known, the pins and npins
elements of the above structure can be initialised using the function pinctrl_get_group_pins(), e.g. for pin
group “foo”:

pinctrl_get_group_pins(pctl, "foo", &gpio_range.pins,
&gpio_range.npins);

When GPIO-specific functions in the pin control subsystem are called, these ranges will be used to look up
the appropriate pin controller by inspecting and matching the pin to the pin ranges across all controllers.
When a pin controller handling the matching range is found, GPIO-specific functions will be called on that
specific pin controller.
For all functionalities dealing with pin biasing, pin muxing etc, the pin controller subsystem will look up
the corresponding pin number from the passed in gpio number, and use the range’s internals to retrieve
a pin number. After that, the subsystem passes it on to the pin control driver, so the driver will get a
pin number into its handled number range. Further it is also passed the range ID value, so that the pin
controller knows which range it should deal with.
Calling pinctrl_add_gpio_range from pinctrl driver is DEPRECATED. Please see section 2.1 of Documenta-
tion/devicetree/bindings/gpio/gpio.txt on how to bind pinctrl and gpio drivers.

936 Chapter 33. PINCTRL (PIN CONTROL) subsystem

The kernel driver API manual, Release 4.13.0-rc4+

33.5 PINMUX interfaces

These calls use the pinmux_* naming prefix. No other calls should use that prefix.

33.6 What is pinmuxing?

PINMUX, also known as padmux, ballmux, alternate functions or mission modes is a way for chip vendors
producing some kind of electrical packages to use a certain physical pin (ball, pad, finger, etc) for multiple
mutually exclusive functions, depending on the application. By “application” in this context we usually
mean a way of soldering or wiring the package into an electronic system, even though the framework
makes it possible to also change the function at runtime.
Here is an example of a PGA (Pin Grid Array) chip seen from underneath:

A B C D E F G H
+---+

8 | o | o o o o o o o
| |

7 | o | o o o o o o o
| |

6 | o | o o o o o o o
+---+---+

5 | o | o | o o o o o o
+---+---+ +---+

4 o o o o o o | o | o
| |

3 o o o o o o | o | o
| |

2 o o o o o o | o | o
+-------+-------+-------+---+---+

1 | o o | o o | o o | o | o |
+-------+-------+-------+---+---+

This is not tetris. The game to think of is chess. Not all PGA/BGA packages are chessboard-like, big ones
have “holes” in some arrangement according to different design patterns, but we’re using this as a simple
example. Of the pins you see some will be taken by things like a few VCC and GND to feed power to the
chip, and quite a few will be taken by large ports like an external memory interface. The remaining pins
will often be subject to pin multiplexing.
The example 8x8 PGA package above will have pin numbers 0 through 63 assigned to its physical pins.
It will name the pins { A1, A2, A3 ... H6, H7, H8 } using pinctrl_register_pins() and a suitable data set as
shown earlier.
In this 8x8 BGA package the pins { A8, A7, A6, A5 } can be used as an SPI port (these are four pins: CLK,
RXD, TXD, FRM). In that case, pin B5 can be used as some general-purpose GPIO pin. However, in another
setting, pins { A5, B5 } can be used as an I2C port (these are just two pins: SCL, SDA). Needless to say,
we cannot use the SPI port and I2C port at the same time. However in the inside of the package the silicon
performing the SPI logic can alternatively be routed out on pins { G4, G3, G2, G1 }.
On the bottom row at { A1, B1, C1, D1, E1, F1, G1, H1 } we have something special - it’s an external MMC
bus that can be 2, 4 or 8 bits wide, and it will consume 2, 4 or 8 pins respectively, so either { A1, B1 } are
taken or { A1, B1, C1, D1 } or all of them. If we use all 8 bits, we cannot use the SPI port on pins { G4,
G3, G2, G1 } of course.
This way the silicon blocks present inside the chip can be multiplexed “muxed” out on different pin ranges.
Often contemporary SoC (systems on chip) will contain several I2C, SPI, SDIO/MMC, etc silicon blocks that
can be routed to different pins by pinmux settings.
Since general-purpose I/O pins (GPIO) are typically always in shortage, it is common to be able to use
almost any pin as a GPIO pin if it is not currently in use by some other I/O port.

33.5. PINMUX interfaces 937

The kernel driver API manual, Release 4.13.0-rc4+

33.7 Pinmux conventions

The purpose of the pinmux functionality in the pin controller subsystem is to abstract and provide pinmux
settings to the devices you choose to instantiate in your machine configuration. It is inspired by the clk,
GPIO and regulator subsystems, so devices will request their mux setting, but it’s also possible to request
a single pin for e.g. GPIO.
Definitions:
• FUNCTIONS can be switched in and out by a driver residing with the pin control subsystem in the
drivers/pinctrl/* directory of the kernel. The pin control driver knows the possible functions. In the
example above you can identify three pinmux functions, one for spi, one for i2c and one for mmc.

• FUNCTIONS are assumed to be enumerable from zero in a one-dimensional array. In this case the
array could be something like: { spi0, i2c0, mmc0 } for the three available functions.

• FUNCTIONS have PIN GROUPS as defined on the generic level - so a certain function is always as-
sociated with a certain set of pin groups, could be just a single one, but could also be many. In the
example above the function i2c is associated with the pins { A5, B5 }, enumerated as { 24, 25 } in
the controller pin space.
The Function spi is associated with pin groups { A8, A7, A6, A5 } and { G4, G3, G2, G1 }, which are
enumerated as { 0, 8, 16, 24 } and { 38, 46, 54, 62 } respectively.
Group names must be unique per pin controller, no two groups on the same controller may have the
same name.

• The combination of a FUNCTION and a PIN GROUP determine a certain function for a certain set of
pins. The knowledge of the functions and pin groups and their machine-specific particulars are kept
inside the pinmux driver, from the outside only the enumerators are known, and the driver core can
request:
– The name of a function with a certain selector (>= 0)
– A list of groups associated with a certain function
– That a certain group in that list to be activated for a certain function

As already described above, pin groups are in turn self-descriptive, so the core will retrieve the actual
pin range in a certain group from the driver.

• FUNCTIONS and GROUPS on a certain PIN CONTROLLER are MAPPED to a certain device by the board
file, device tree or similar machine setup configuration mechanism, similar to how regulators are
connected to devices, usually by name. Defining a pin controller, function and group thus uniquely
identify the set of pins to be used by a certain device. (If only one possible group of pins is available
for the function, no group name need to be supplied - the core will simply select the first and only
group available.)
In the example case we can define that this particular machine shall use device spi0 with pinmux
function fspi0 group gspi0 and i2c0 on function fi2c0 group gi2c0, on the primary pin controller, we
get mappings like these:

{
{"map-spi0", spi0, pinctrl0, fspi0, gspi0},
{"map-i2c0", i2c0, pinctrl0, fi2c0, gi2c0}

}

Every map must be assigned a state name, pin controller, device and function. The group is not
compulsory - if it is omitted the first group presented by the driver as applicable for the function will
be selected, which is useful for simple cases.
It is possible to map several groups to the same combination of device, pin controller and function.
This is for cases where a certain function on a certain pin controller may use different sets of pins in
different configurations.

938 Chapter 33. PINCTRL (PIN CONTROL) subsystem

The kernel driver API manual, Release 4.13.0-rc4+

• PINS for a certain FUNCTION using a certain PIN GROUP on a certain PIN CONTROLLER are provided
on a first-come first-serve basis, so if some other device mux setting or GPIO pin request has already
taken your physical pin, you will be denied the use of it. To get (activate) a new setting, the old one
has to be put (deactivated) first.

Sometimes the documentation and hardware registers will be oriented around pads (or “fingers”) rather
than pins - these are the soldering surfaces on the silicon inside the package, and may or may not match
the actual number of pins/balls underneath the capsule. Pick some enumeration that makes sense to you.
Define enumerators only for the pins you can control if that makes sense.
Assumptions:
We assume that the number of possible function maps to pin groups is limited by the hardware. I.e. we
assume that there is no system where any function can be mapped to any pin, like in a phone exchange.
So the available pin groups for a certain function will be limited to a few choices (say up to eight or so),
not hundreds or any amount of choices. This is the characteristic we have found by inspecting available
pinmux hardware, and a necessary assumption since we expect pinmux drivers to present all possible
function vs pin group mappings to the subsystem.

33.8 Pinmux drivers

The pinmux core takes care of preventing conflicts on pins and calling the pin controller driver to execute
different settings.
It is the responsibility of the pinmux driver to impose further restrictions (say for example infer electronic
limitations due to load, etc.) to determine whether or not the requested function can actually be allowed,
and in case it is possible to perform the requested mux setting, poke the hardware so that this happens.
Pinmux drivers are required to supply a few callback functions, some are optional. Usually the set_mux()
function is implemented, writing values into some certain registers to activate a certain mux setting for
a certain pin.
A simple driver for the above example will work by setting bits 0, 1, 2, 3 or 4 into some register named
MUX to select a certain function with a certain group of pins would work something like this:

#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/pinmux.h>

struct foo_group {
const char *name;
const unsigned int *pins;
const unsigned num_pins;

};

static const unsigned spi0_0_pins[] = { 0, 8, 16, 24 };
static const unsigned spi0_1_pins[] = { 38, 46, 54, 62 };
static const unsigned i2c0_pins[] = { 24, 25 };
static const unsigned mmc0_1_pins[] = { 56, 57 };
static const unsigned mmc0_2_pins[] = { 58, 59 };
static const unsigned mmc0_3_pins[] = { 60, 61, 62, 63 };

static const struct foo_group foo_groups[] = {
{

.name = "spi0_0_grp",

.pins = spi0_0_pins,

.num_pins = ARRAY_SIZE(spi0_0_pins),
},
{

.name = "spi0_1_grp",

.pins = spi0_1_pins,

.num_pins = ARRAY_SIZE(spi0_1_pins),
},

33.8. Pinmux drivers 939

The kernel driver API manual, Release 4.13.0-rc4+

{
.name = "i2c0_grp",
.pins = i2c0_pins,
.num_pins = ARRAY_SIZE(i2c0_pins),

},
{

.name = "mmc0_1_grp",

.pins = mmc0_1_pins,

.num_pins = ARRAY_SIZE(mmc0_1_pins),
},
{

.name = "mmc0_2_grp",

.pins = mmc0_2_pins,

.num_pins = ARRAY_SIZE(mmc0_2_pins),
},
{

.name = "mmc0_3_grp",

.pins = mmc0_3_pins,

.num_pins = ARRAY_SIZE(mmc0_3_pins),
},

};

static int foo_get_groups_count(struct pinctrl_dev *pctldev)
{

return ARRAY_SIZE(foo_groups);
}

static const char *foo_get_group_name(struct pinctrl_dev *pctldev,
unsigned selector)

{
return foo_groups[selector].name;

}

static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector,
unsigned ** const pins,
unsigned * const num_pins)

{
*pins = (unsigned *) foo_groups[selector].pins;
*num_pins = foo_groups[selector].num_pins;
return 0;

}

static struct pinctrl_ops foo_pctrl_ops = {
.get_groups_count = foo_get_groups_count,
.get_group_name = foo_get_group_name,
.get_group_pins = foo_get_group_pins,

};

struct foo_pmx_func {
const char *name;
const char * const *groups;
const unsigned num_groups;

};

static const char * const spi0_groups[] = { "spi0_0_grp", "spi0_1_grp" };
static const char * const i2c0_groups[] = { "i2c0_grp" };
static const char * const mmc0_groups[] = { "mmc0_1_grp", "mmc0_2_grp",

"mmc0_3_grp" };

static const struct foo_pmx_func foo_functions[] = {
{

.name = "spi0",

940 Chapter 33. PINCTRL (PIN CONTROL) subsystem

The kernel driver API manual, Release 4.13.0-rc4+

.groups = spi0_groups,

.num_groups = ARRAY_SIZE(spi0_groups),
},
{

.name = "i2c0",

.groups = i2c0_groups,

.num_groups = ARRAY_SIZE(i2c0_groups),
},
{

.name = "mmc0",

.groups = mmc0_groups,

.num_groups = ARRAY_SIZE(mmc0_groups),
},

};

static int foo_get_functions_count(struct pinctrl_dev *pctldev)
{

return ARRAY_SIZE(foo_functions);
}

static const char *foo_get_fname(struct pinctrl_dev *pctldev, unsigned selector)
{

return foo_functions[selector].name;
}

static int foo_get_groups(struct pinctrl_dev *pctldev, unsigned selector,
const char * const **groups,
unsigned * const num_groups)

{
*groups = foo_functions[selector].groups;
*num_groups = foo_functions[selector].num_groups;
return 0;

}

static int foo_set_mux(struct pinctrl_dev *pctldev, unsigned selector,
unsigned group)

{
u8 regbit = (1 << selector + group);

writeb((readb(MUX)|regbit), MUX)
return 0;

}

static struct pinmux_ops foo_pmxops = {
.get_functions_count = foo_get_functions_count,
.get_function_name = foo_get_fname,
.get_function_groups = foo_get_groups,
.set_mux = foo_set_mux,
.strict = true,

};

/* Pinmux operations are handled by some pin controller */
static struct pinctrl_desc foo_desc = {

...

.pctlops = &foo_pctrl_ops,

.pmxops = &foo_pmxops,
};

In the example activating muxing 0 and 1 at the same time setting bits 0 and 1, uses one pin in common
so they would collide.
The beauty of the pinmux subsystem is that since it keeps track of all pins and who is using them, it will
already have denied an impossible request like that, so the driver does not need to worry about such

33.8. Pinmux drivers 941

The kernel driver API manual, Release 4.13.0-rc4+

things - when it gets a selector passed in, the pinmux subsystem makes sure no other device or GPIO
assignment is already using the selected pins. Thus bits 0 and 1 in the control register will never be set
at the same time.
All the above functions are mandatory to implement for a pinmux driver.

33.9 Pin control interaction with the GPIO subsystem

Note that the following implies that the use case is to use a certain pin from the Linux kernel using the
API in <linux/gpio.h> with gpio_request() and similar functions. There are cases where you may be using
something that your datasheet calls “GPIO mode”, but actually is just an electrical configuration for a
certain device. See the section below named “GPIO mode pitfalls” for more details on this scenario.
The public pinmux API contains two functions named pinctrl_request_gpio() and pinctrl_free_gpio(). These
two functions shallONLY be called from gpiolib-based drivers as part of their gpio_request() and gpio_free()
semantics. Likewise the pinctrl_gpio_direction_[input|output] shall only be called from within respective
gpio_direction_[input|output] gpiolib implementation.
NOTE that platforms and individual drivers shall NOT request GPIO pins to be controlled e.g. muxed in.
Instead, implement a proper gpiolib driver and have that driver request proper muxing and other control
for its pins.
The function list could become long, especially if you can convert every individual pin into a GPIO pin
independent of any other pins, and then try the approach to define every pin as a function.
In this case, the function array would become 64 entries for each GPIO setting and then the device func-
tions.
For this reason there are two functions a pin control driver can implement to enable only GPIO on an
individual pin: .gpio_request_enable() and .gpio_disable_free().
This function will pass in the affected GPIO range identified by the pin controller core, so you know which
GPIO pins are being affected by the request operation.
If your driver needs to have an indication from the framework of whether the GPIO pin shall be used for
input or output you can implement the .gpio_set_direction() function. As described this shall be called
from the gpiolib driver and the affected GPIO range, pin offset and desired direction will be passed along
to this function.
Alternatively to using these special functions, it is fully allowed to use named functions for each GPIO pin,
the pinctrl_request_gpio() will attempt to obtain the function “gpioN” where “N” is the global GPIO pin
number if no special GPIO-handler is registered.

33.10 GPIO mode pitfalls

Due to the naming conventions used by hardware engineers, where “GPIO” is taken to mean different
things than what the kernel does, the developer may be confused by a datasheet talking about a pin
being possible to set into “GPIO mode”. It appears that what hardware engineers mean with “GPIO mode”
is not necessarily the use case that is implied in the kernel interface <linux/gpio.h>: a pin that you grab
from kernel code and then either listen for input or drive high/low to assert/deassert some external line.
Rather hardware engineers think that “GPIO mode” means that you can software-control a few electrical
properties of the pin that you would not be able to control if the pin was in some other mode, such as
muxed in for a device.
The GPIO portions of a pin and its relation to a certain pin controller configuration and muxing logic can
be constructed in several ways. Here are two examples:

942 Chapter 33. PINCTRL (PIN CONTROL) subsystem

The kernel driver API manual, Release 4.13.0-rc4+

(A)
pin config
logic regs
| +- SPI

Physical pins --- pad --- pinmux -+- I2C
| +- mmc
| +- GPIO
pin
multiplex
logic regs

Here some electrical properties of the pin can be configured no matter whether the pin is used for GPIO or
not. If you multiplex a GPIO onto a pin, you can also drive it high/low from “GPIO” registers. Alternatively,
the pin can be controlled by a certain peripheral, while still applying desired pin config properties. GPIO
functionality is thus orthogonal to any other device using the pin.
In this arrangement the registers for the GPIO portions of the pin controller, or the registers for the GPIO
hardware module are likely to reside in a separate memory range only intended for GPIO driving, and the
register range dealing with pin config and pin multiplexing get placed into a different memory range and
a separate section of the data sheet.
A flag “strict” in struct pinmux_ops is available to check and deny simultaneous access to the same pin
from GPIO and pin multiplexing consumers on hardware of this type. The pinctrl driver should set this flag
accordingly.

(B)

pin config
logic regs
| +- SPI

Physical pins --- pad --- pinmux -+- I2C
| | +- mmc
| |
GPIO pin

multiplex
logic regs

In this arrangement, the GPIO functionality can always be enabled, such that e.g. a GPIO input can be
used to “spy” on the SPI/I2C/MMC signal while it is pulsed out. It is likely possible to disrupt the traffic
on the pin by doing wrong things on the GPIO block, as it is never really disconnected. It is possible that
the GPIO, pin config and pin multiplex registers are placed into the same memory range and the same
section of the data sheet, although that need not be the case.
In some pin controllers, although the physical pins are designed in the same way as (B), the GPIO function
still can’t be enabled at the same time as the peripheral functions. So again the “strict” flag should be
set, denying simultaneous activation by GPIO and other muxed in devices.
From a kernel point of view, however, these are different aspects of the hardware and shall be put into
different subsystems:
• Registers (or fields within registers) that control electrical properties of the pin such as biasing and
drive strength should be exposed through the pinctrl subsystem, as “pin configuration” settings.

• Registers (or fields within registers) that control muxing of signals from various other HW blocks (e.g.
I2C, MMC, or GPIO) onto pins should be exposed through the pinctrl subsystem, as mux functions.

• Registers (or fields within registers) that control GPIO functionality such as setting a GPIO’s output
value, reading a GPIO’s input value, or setting GPIO pin direction should be exposed through the
GPIO subsystem, and if they also support interrupt capabilities, through the irqchip abstraction.

Depending on the exact HW register design, some functions exposed by the GPIO subsystem may call
into the pinctrl subsystem in order to co-ordinate register settings across HW modules. In particular, this

33.10. GPIO mode pitfalls 943

The kernel driver API manual, Release 4.13.0-rc4+

may be needed for HW with separate GPIO and pin controller HW modules, where e.g. GPIO direction is
determined by a register in the pin controller HW module rather than the GPIO HW module.
Electrical properties of the pin such as biasing and drive strength may be placed at some pin-specific
register in all cases or as part of the GPIO register in case (B) especially. This doesn’t mean that such
properties necessarily pertain to what the Linux kernel calls “GPIO”.
Example: a pin is usually muxed in to be used as a UART TX line. But during system sleep, we need to
put this pin into “GPIO mode” and ground it.
If you make a 1-to-1 map to the GPIO subsystem for this pin, you may start to think that you need to come
up with something really complex, that the pin shall be used for UART TX and GPIO at the same time, that
you will grab a pin control handle and set it to a certain state to enable UART TX to be muxed in, then
twist it over to GPIO mode and use gpio_direction_output() to drive it low during sleep, then mux it over
to UART TX again when you wake up and maybe even gpio_request/gpio_free as part of this cycle. This
all gets very complicated.
The solution is to not think that what the datasheet calls “GPIO mode” has to be handled by
the <linux/gpio.h> interface. Instead view this as a certain pin config setting. Look in e.g.
<linux/pinctrl/pinconf-generic.h> and you find this in the documentation:

PIN_CONFIG_OUTPUT: this will configure the pin in output, use argument 1 to indicate high
level, argument 0 to indicate low level.

So it is perfectly possible to push a pin into “GPIO mode” and drive the line low as part of the usual pin
control map. So for example your UART driver may look like this:

#include <linux/pinctrl/consumer.h>

struct pinctrl *pinctrl;
struct pinctrl_state *pins_default;
struct pinctrl_state *pins_sleep;

pins_default = pinctrl_lookup_state(uap->pinctrl, PINCTRL_STATE_DEFAULT);
pins_sleep = pinctrl_lookup_state(uap->pinctrl, PINCTRL_STATE_SLEEP);

/* Normal mode */
retval = pinctrl_select_state(pinctrl, pins_default);
/* Sleep mode */
retval = pinctrl_select_state(pinctrl, pins_sleep);

33.10.1 And your machine configuration may look like this:

static unsigned long uart_default_mode[] = {
PIN_CONF_PACKED(PIN_CONFIG_DRIVE_PUSH_PULL, 0),

};

static unsigned long uart_sleep_mode[] = {
PIN_CONF_PACKED(PIN_CONFIG_OUTPUT, 0),

};

static struct pinctrl_map pinmap[] __initdata = {
PIN_MAP_MUX_GROUP("uart", PINCTRL_STATE_DEFAULT, "pinctrl-foo",

"u0_group", "u0"),
PIN_MAP_CONFIGS_PIN("uart", PINCTRL_STATE_DEFAULT, "pinctrl-foo",

"UART_TX_PIN", uart_default_mode),
PIN_MAP_MUX_GROUP("uart", PINCTRL_STATE_SLEEP, "pinctrl-foo",

"u0_group", "gpio-mode"),
PIN_MAP_CONFIGS_PIN("uart", PINCTRL_STATE_SLEEP, "pinctrl-foo",

"UART_TX_PIN", uart_sleep_mode),
};

944 Chapter 33. PINCTRL (PIN CONTROL) subsystem

The kernel driver API manual, Release 4.13.0-rc4+

foo_init(void) {
pinctrl_register_mappings(pinmap, ARRAY_SIZE(pinmap));

}

Here the pins we want to control are in the “u0_group” and there is some function called “u0” that can
be enabled on this group of pins, and then everything is UART business as usual. But there is also some
function named “gpio-mode” that can be mapped onto the same pins to move them into GPIO mode.
This will give the desired effect without any bogus interaction with the GPIO subsystem. It is just an
electrical configuration used by that device when going to sleep, it might imply that the pin is set into
something the datasheet calls “GPIO mode”, but that is not the point: it is still used by that UART device
to control the pins that pertain to that very UART driver, putting them into modes needed by the UART.
GPIO in the Linux kernel sense are just some 1-bit line, and is a different use case.
How the registers are poked to attain the push or pull, and output low configuration and the muxing of
the “u0” or “gpio-mode” group onto these pins is a question for the driver.
Some datasheets will be more helpful and refer to the “GPIO mode” as “low power mode” rather than
anything to do with GPIO. This often means the same thing electrically speaking, but in this latter case
the software engineers will usually quickly identify that this is some specific muxing or configuration rather
than anything related to the GPIO API.

33.11 Board/machine configuration

Boards and machines define how a certain complete running system is put together, including how GPIOs
and devices are muxed, how regulators are constrained and how the clock tree looks. Of course pinmux
settings are also part of this.
A pin controller configuration for a machine looks pretty much like a simple regulator configuration, so for
the example array above we want to enable i2c and spi on the second function mapping:

#include <linux/pinctrl/machine.h>

static const struct pinctrl_map mapping[] __initconst = {
{

.dev_name = "foo-spi.0",

.name = PINCTRL_STATE_DEFAULT,

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.data.mux.function = "spi0",
},
{

.dev_name = "foo-i2c.0",

.name = PINCTRL_STATE_DEFAULT,

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.data.mux.function = "i2c0",
},
{

.dev_name = "foo-mmc.0",

.name = PINCTRL_STATE_DEFAULT,

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.data.mux.function = "mmc0",
},

};

The dev_name here matches to the unique device name that can be used to look up the device struct
(just like with clockdev or regulators). The function name must match a function provided by the pinmux
driver handling this pin range.

33.11. Board/machine configuration 945

The kernel driver API manual, Release 4.13.0-rc4+

As you can see we may have several pin controllers on the system and thus we need to specify which one
of them contains the functions we wish to map.
You register this pinmux mapping to the pinmux subsystem by simply:

ret = pinctrl_register_mappings(mapping, ARRAY_SIZE(mapping));

Since the above construct is pretty common there is a helper macro to make it even more compact which
assumes you want to use pinctrl-foo and position 0 for mapping, for example:

static struct pinctrl_map mapping[] __initdata = {
PIN_MAP_MUX_GROUP("foo-i2c.o", PINCTRL_STATE_DEFAULT,

"pinctrl-foo", NULL, "i2c0"),
};

The mapping table may also contain pin configuration entries. It’s common for each pin/group to have a
number of configuration entries that affect it, so the table entries for configuration reference an array of
config parameters and values. An example using the convenience macros is shown below:

static unsigned long i2c_grp_configs[] = {
FOO_PIN_DRIVEN,
FOO_PIN_PULLUP,

};

static unsigned long i2c_pin_configs[] = {
FOO_OPEN_COLLECTOR,
FOO_SLEW_RATE_SLOW,

};

static struct pinctrl_map mapping[] __initdata = {
PIN_MAP_MUX_GROUP("foo-i2c.0", PINCTRL_STATE_DEFAULT,

"pinctrl-foo", "i2c0", "i2c0"),
PIN_MAP_CONFIGS_GROUP("foo-i2c.0", PINCTRL_STATE_DEFAULT,

"pinctrl-foo", "i2c0", i2c_grp_configs),
PIN_MAP_CONFIGS_PIN("foo-i2c.0", PINCTRL_STATE_DEFAULT,

"pinctrl-foo", "i2c0scl", i2c_pin_configs),
PIN_MAP_CONFIGS_PIN("foo-i2c.0", PINCTRL_STATE_DEFAULT,

"pinctrl-foo", "i2c0sda", i2c_pin_configs),
};

Finally, some devices expect the mapping table to contain certain specific named states. When running
on hardware that doesn’t need any pin controller configuration, the mapping table must still contain those
named states, in order to explicitly indicate that the states were provided and intended to be empty. Table
entry macro PIN_MAP_DUMMY_STATE serves the purpose of defining a named state without causing any
pin controller to be programmed:

static struct pinctrl_map mapping[] __initdata = {
PIN_MAP_DUMMY_STATE("foo-i2c.0", PINCTRL_STATE_DEFAULT),

};

33.12 Complex mappings

As it is possible to map a function to different groups of pins an optional .group can be specified like this:

...
{

.dev_name = "foo-spi.0",

.name = "spi0-pos-A",

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

946 Chapter 33. PINCTRL (PIN CONTROL) subsystem

The kernel driver API manual, Release 4.13.0-rc4+

.function = "spi0",

.group = "spi0_0_grp",
},
{

.dev_name = "foo-spi.0",

.name = "spi0-pos-B",

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "spi0",

.group = "spi0_1_grp",
},
...

This example mapping is used to switch between two positions for spi0 at runtime, as described further
below under the heading “Runtime pinmuxing”.
Further it is possible for one named state to affect the muxing of several groups of pins, say for example
in the mmc0 example above, where you can additively expand the mmc0 bus from 2 to 4 to 8 pins. If we
want to use all three groups for a total of 2+2+4 = 8 pins (for an 8-bit MMC bus as is the case), we define
a mapping like this:

...
{

.dev_name = "foo-mmc.0",

.name = "2bit"

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "mmc0",

.group = "mmc0_1_grp",
},
{

.dev_name = "foo-mmc.0",

.name = "4bit"

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "mmc0",

.group = "mmc0_1_grp",
},
{

.dev_name = "foo-mmc.0",

.name = "4bit"

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "mmc0",

.group = "mmc0_2_grp",
},
{

.dev_name = "foo-mmc.0",

.name = "8bit"

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "mmc0",

.group = "mmc0_1_grp",
},
{

.dev_name = "foo-mmc.0",

.name = "8bit"

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "mmc0",

.group = "mmc0_2_grp",
},
{

33.12. Complex mappings 947

The kernel driver API manual, Release 4.13.0-rc4+

.dev_name = "foo-mmc.0",

.name = "8bit"

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "mmc0",

.group = "mmc0_3_grp",
},
...

The result of grabbing this mapping from the device with something like this (see next paragraph):

p = devm_pinctrl_get(dev);
s = pinctrl_lookup_state(p, "8bit");
ret = pinctrl_select_state(p, s);

or more simply:

p = devm_pinctrl_get_select(dev, "8bit");

Will be that you activate all the three bottom records in the mapping at once. Since they share the same
name, pin controller device, function and device, and since we allow multiple groups to match to a single
device, they all get selected, and they all get enabled and disable simultaneously by the pinmux core.

33.13 Pin control requests from drivers

When a device driver is about to probe the device core will automatically attempt to issue pinc-
trl_get_select_default() on these devices. This way driver writers do not need to add any of the boil-
erplate code of the type found below. However when doing fine-grained state selection and not using the
“default” state, you may have to do some device driver handling of the pinctrl handles and states.
So if you just want to put the pins for a certain device into the default state and be done with it, there is
nothing you need to do besides providing the proper mapping table. The device core will take care of the
rest.
Generally it is discouraged to let individual drivers get and enable pin control. So if possible, handle the
pin control in platform code or some other place where you have access to all the affected struct device *
pointers. In some cases where a driver needs to e.g. switch between different mux mappings at runtime
this is not possible.
A typical case is if a driver needs to switch bias of pins from normal operation and going to sleep, moving
from the PINCTRL_STATE_DEFAULT to PINCTRL_STATE_SLEEP at runtime, re-biasing or even re-muxing pins
to save current in sleep mode.
A driver may request a certain control state to be activated, usually just the default state like this:

#include <linux/pinctrl/consumer.h>

struct foo_state {
struct pinctrl *p;
struct pinctrl_state *s;
...
};

foo_probe()
{

/* Allocate a state holder named "foo" etc */
struct foo_state *foo = ...;

foo->p = devm_pinctrl_get(&device);
if (IS_ERR(foo->p)) {

948 Chapter 33. PINCTRL (PIN CONTROL) subsystem

The kernel driver API manual, Release 4.13.0-rc4+

/* FIXME: clean up "foo" here */
return PTR_ERR(foo->p);

}

foo->s = pinctrl_lookup_state(foo->p, PINCTRL_STATE_DEFAULT);
if (IS_ERR(foo->s)) {

/* FIXME: clean up "foo" here */
return PTR_ERR(s);

}

ret = pinctrl_select_state(foo->s);
if (ret < 0) {

/* FIXME: clean up "foo" here */
return ret;

}
}

This get/lookup/select/put sequence can just as well be handled by bus drivers if you don’t want each and
every driver to handle it and you know the arrangement on your bus.
The semantics of the pinctrl APIs are:
• pinctrl_get() is called in process context to obtain a handle to all pinctrl information for a given client
device. It will allocate a struct from the kernel memory to hold the pinmux state. All mapping table
parsing or similar slow operations take place within this API.

• devm_pinctrl_get() is a variant of pinctrl_get() that causes pinctrl_put() to be called automatically on
the retrieved pointer when the associated device is removed. It is recommended to use this function
over plain pinctrl_get().

• pinctrl_lookup_state() is called in process context to obtain a handle to a specific state for a client
device. This operation may be slow, too.

• pinctrl_select_state() programs pin controller hardware according to the definition of the state as
given by the mapping table. In theory, this is a fast-path operation, since it only involved blasting
some register settings into hardware. However, note that some pin controllers may have their regis-
ters on a slow/IRQ-based bus, so client devices should not assume they can call pinctrl_select_state()
from non-blocking contexts.

• pinctrl_put() frees all information associated with a pinctrl handle.
• devm_pinctrl_put() is a variant of pinctrl_put() that may be used to explicitly destroy a pinctrl object
returned by devm_pinctrl_get(). However, use of this function will be rare, due to the automatic
cleanup that will occur even without calling it.
pinctrl_get() must be paired with a plain pinctrl_put(). pinctrl_get() may not be paired
with devm_pinctrl_put(). devm_pinctrl_get() can optionally be paired with devm_pinctrl_put().
devm_pinctrl_get() may not be paired with plain pinctrl_put().

Usually the pin control core handled the get/put pair and call out to the device drivers bookkeeping op-
erations, like checking available functions and the associated pins, whereas select_state pass on to the
pin controller driver which takes care of activating and/or deactivating the mux setting by quickly poking
some registers.
The pins are allocated for your device when you issue the devm_pinctrl_get() call, after this you should
be able to see this in the debugfs listing of all pins.
NOTE: the pinctrl system will return -EPROBE_DEFER if it cannot find the requested pinctrl handles, for
example if the pinctrl driver has not yet registered. Thus make sure that the error path in your driver
gracefully cleans up and is ready to retry the probing later in the startup process.

33.13. Pin control requests from drivers 949

The kernel driver API manual, Release 4.13.0-rc4+

33.14 Drivers needing both pin control and GPIOs

Again, it is discouraged to let drivers lookup and select pin control states themselves, but again sometimes
this is unavoidable.
So say that your driver is fetching its resources like this:

#include <linux/pinctrl/consumer.h>
#include <linux/gpio.h>

struct pinctrl *pinctrl;
int gpio;

pinctrl = devm_pinctrl_get_select_default(&dev);
gpio = devm_gpio_request(&dev, 14, "foo");

Here we first request a certain pin state and then request GPIO 14 to be used. If you’re using the subsys-
tems orthogonally like this, you should nominally always get your pinctrl handle and select the desired
pinctrl state BEFORE requesting the GPIO. This is a semantic convention to avoid situations that can be
electrically unpleasant, you will certainly want to mux in and bias pins in a certain way before the GPIO
subsystems starts to deal with them.
The above can be hidden: using the device core, the pinctrl core may be setting up the config and muxing
for the pins right before the device is probing, nevertheless orthogonal to the GPIO subsystem.
But there are also situations where it makes sense for the GPIO subsystem to communicate directly with
the pinctrl subsystem, using the latter as a back-end. This is when the GPIO driver may call out to the
functions described in the section “Pin control interaction with the GPIO subsystem” above. This only
involves per-pin multiplexing, and will be completely hidden behind the gpio_*() function namespace. In
this case, the driver need not interact with the pin control subsystem at all.
If a pin control driver and a GPIO driver is dealing with the same pins and the use cases involve multiplex-
ing, you MUST implement the pin controller as a back-end for the GPIO driver like this, unless your hard-
ware design is such that the GPIO controller can override the pin controller’s multiplexing state through
hardware without the need to interact with the pin control system.

33.15 System pin control hogging

Pin control map entries can be hogged by the core when the pin controller is registered. This means that
the core will attempt to call pinctrl_get(), lookup_state() and select_state() on it immediately after the pin
control device has been registered.
This occurs for mapping table entries where the client device name is equal to the pin controller device
name, and the state name is PINCTRL_STATE_DEFAULT:

{
.dev_name = "pinctrl-foo",
.name = PINCTRL_STATE_DEFAULT,
.type = PIN_MAP_TYPE_MUX_GROUP,
.ctrl_dev_name = "pinctrl-foo",
.function = "power_func",

},

Since it may be common to request the core to hog a few always-applicable mux settings on the primary
pin controller, there is a convenience macro for this:

PIN_MAP_MUX_GROUP_HOG_DEFAULT("pinctrl-foo", NULL /* group */,
"power_func")

This gives the exact same result as the above construction.

950 Chapter 33. PINCTRL (PIN CONTROL) subsystem

The kernel driver API manual, Release 4.13.0-rc4+

33.16 Runtime pinmuxing

It is possible to mux a certain function in and out at runtime, say to move an SPI port from one set of pins
to another set of pins. Say for example for spi0 in the example above, we expose two different groups
of pins for the same function, but with different named in the mapping as described under “Advanced
mapping” above. So that for an SPI device, we have two states named “pos-A” and “pos-B”.
This snippet first initializes a state object for both groups (in foo_probe()), then muxes the function in the
pins defined by group A, and finally muxes it in on the pins defined by group B:

#include <linux/pinctrl/consumer.h>

struct pinctrl *p;
struct pinctrl_state *s1, *s2;

foo_probe()
{

/* Setup */
p = devm_pinctrl_get(&device);
if (IS_ERR(p))

...

s1 = pinctrl_lookup_state(foo->p, "pos-A");
if (IS_ERR(s1))

...

s2 = pinctrl_lookup_state(foo->p, "pos-B");
if (IS_ERR(s2))

...
}

foo_switch()
{

/* Enable on position A */
ret = pinctrl_select_state(s1);
if (ret < 0)
...

...

/* Enable on position B */
ret = pinctrl_select_state(s2);
if (ret < 0)
...

...
}

The above has to be done from process context. The reservation of the pins will be done when the state
is activated, so in effect one specific pin can be used by different functions at different times on a running
system.

33.16. Runtime pinmuxing 951

The kernel driver API manual, Release 4.13.0-rc4+

952 Chapter 33. PINCTRL (PIN CONTROL) subsystem

CHAPTER

THIRTYFOUR

MISCELLANEOUS DEVICES

int misc_register(struct miscdevice * misc)
register a miscellaneous device

Parameters
struct miscdevice * misc device structure
Description

Register a miscellaneous device with the kernel. If the minor number is set to
MISC_DYNAMIC_MINOR a minor number is assigned and placed in the minor field of the struc-
ture. For other cases the minor number requested is used.
The structure passed is linked into the kernel and may not be destroyed until it has been un-
registered. By default, an open() syscall to the device sets file->private_data to point to the
structure. Drivers don’t need open in fops for this.
A zero is returned on success and a negative errno code for failure.

void misc_deregister(struct miscdevice * misc)
unregister a miscellaneous device

Parameters
struct miscdevice * misc device to unregister
Description

Unregister a miscellaneous device that was previously successfully registered with
misc_register().

953

The kernel driver API manual, Release 4.13.0-rc4+

954 Chapter 34. Miscellaneous Devices

INDEX

Symbols
__ata_change_queue_depth (C function), 623
__ata_ehi_push_desc (C function), 605
__ata_port_freeze (C function), 609
__atomic_add_unless (C function), 8
__class_create (C function), 90
__devm_alloc_percpu (C function), 72
__dwc3_gadget_ep_disable (C function), 421
__dwc3_gadget_ep_enable (C function), 421
__hrtimer_get_remaining (C function), 32
__ht_create_irq (C function), 466
__i2c_transfer (C function), 507
__nand_calculate_ecc (C function), 669
__nand_correct_data (C function), 669
__nand_unlock (C function), 675
__parport_register_driver (C function), 693
__pci_complete_power_transition (C function), 445
__pci_hp_register (C function), 473
__pci_register_driver (C function), 458
__pci_reset_function (C function), 454
__pci_reset_function_locked (C function), 454
__platform_create_bundle (C function), 101
__platform_driver_probe (C function), 101
__platform_driver_register (C function), 100
__platform_register_drivers (C function), 101
__root_device_register (C function), 86
__round_jiffies (C function), 16
__round_jiffies_relative (C function), 16
__round_jiffies_up (C function), 17
__round_jiffies_up_relative (C function), 17
__scsi_device_lookup (C function), 537
__scsi_device_lookup_by_target (C function), 537
__shost_for_each_device (C function), 534
__snd_rawmidi_transmit_ack (C function), 188
__snd_rawmidi_transmit_peek (C function), 188
__spi_alloc_controller (C function), 490
__spi_register_driver (C function), 488
__starget_for_each_device (C function), 537
__uio_register_device (C function), 109
__wake_up (C function), 27
__wake_up_sync_key (C function), 28

A
abs (C function), 54
add_marker_len (C function), 684
add_taint (C function), 59

add_timer (C function), 19
add_timer_on (C function), 19
airq_iv_alloc (C function), 780
airq_iv_create (C function), 780
airq_iv_free (C function), 781
airq_iv_release (C function), 780
airq_iv_scan (C function), 781
alloc_ordered_workqueue (C function), 34
alloc_workqueue (C function), 33
amba_id (C type), 4
anon_transport_class_register (C function), 94
anon_transport_class_unregister (C function), 95
ata_build_rw_tf (C function), 595
ata_bus_probe (C function), 598
ata_cable_40wire (C function), 582
ata_cable_80wire (C function), 582
ata_cable_ignore (C function), 583
ata_cable_sata (C function), 583
ata_cable_unknown (C function), 582
ata_cmd_ioctl (C function), 620
ata_dev_classify (C function), 581
ata_dev_configure (C function), 598
ata_dev_disable (C function), 611
ata_dev_init (C function), 604
ata_dev_init_params (C function), 601
ata_dev_next (C function), 578
ata_dev_pair (C function), 583
ata_dev_phys_link (C function), 593
ata_dev_read_id (C function), 597
ata_dev_reread_id (C function), 600
ata_dev_revalidate (C function), 600
ata_dev_same_device (C function), 600
ata_dev_set_feature (C function), 586
ata_dev_set_xfermode (C function), 601
ata_dev_xfermask (C function), 601
ata_do_dev_read_id (C function), 582
ata_do_eh (C function), 617
ata_do_set_mode (C function), 584
ata_down_xfermask_limit (C function), 599
ata_dump_id (C function), 596
ata_dump_status (C function), 621
ata_eh_about_to_do (C function), 611
ata_eh_acquire (C function), 606
ata_eh_analyze_ncq_error (C function), 613
ata_eh_analyze_serror (C function), 613
ata_eh_analyze_tf (C function), 613
ata_eh_autopsy (C function), 615

955

The kernel driver API manual, Release 4.13.0-rc4+

ata_eh_detach_dev (C function), 611
ata_eh_done (C function), 611
ata_eh_finish (C function), 617
ata_eh_freeze_port (C function), 610
ata_eh_handle_port_resume (C function), 618
ata_eh_handle_port_suspend (C function), 618
ata_eh_link_autopsy (C function), 615
ata_eh_link_report (C function), 615
ata_eh_maybe_retry_flush (C function), 616
ata_eh_qc_complete (C function), 610
ata_eh_qc_retry (C function), 611
ata_eh_read_log_10h (C function), 612
ata_eh_recover (C function), 617
ata_eh_release (C function), 607
ata_eh_report (C function), 615
ata_eh_request_sense (C function), 612
ata_eh_set_lpm (C function), 616
ata_eh_set_pending (C function), 608
ata_eh_speed_down (C function), 614
ata_eh_speed_down_verdict (C function), 613
ata_eh_thaw_port (C function), 610
ata_eh_worth_retry (C function), 615
ata_ehi_clear_desc (C function), 605
ata_ehi_push_desc (C function), 605
ata_err_string (C function), 612
ata_exec_internal (C function), 597
ata_exec_internal_sg (C function), 596
ata_finalize_port_ops (C function), 604
ata_force_cbl (C function), 594
ata_force_horkage (C function), 594
ata_force_link_limits (C function), 594
ata_force_xfermask (C function), 594
ata_format_dsm_trim_descr (C function), 629
ata_gen_ata_sense (C function), 622
ata_get_cmd_descript (C function), 615
ata_get_identity (C function), 620
ata_get_xlat_func (C function), 631
ata_host_activate (C function), 591
ata_host_alloc (C function), 589
ata_host_alloc_pinfo (C function), 590
ata_host_detach (C function), 592
ata_host_init (C function), 591
ata_host_register (C function), 591
ata_host_resume (C function), 589
ata_host_start (C function), 591
ata_host_suspend (C function), 589
ata_hpa_resize (C function), 596
ata_id_c_string (C function), 581
ata_id_string (C function), 581
ata_id_xfermask (C function), 581
ata_internal_cmd_timed_out (C function), 606
ata_internal_cmd_timeout (C function), 606
ata_is_40wire (C function), 601
ata_link_abort (C function), 609
ata_link_init (C function), 604
ata_link_next (C function), 578
ata_link_offline (C function), 589
ata_link_online (C function), 589

ata_mode_string (C function), 580
ata_mselect_caching (C function), 630
ata_mselect_control (C function), 630
ata_msense_caching (C function), 627
ata_msense_control (C function), 627
ata_msense_rw_recovery (C function), 628
ata_msleep (C function), 592
ata_pack_xfermask (C function), 579
ata_pci_remove_one (C function), 592
ata_phys_link_offline (C function), 603
ata_phys_link_online (C function), 603
ata_pio_mask_no_iordy (C function), 597
ata_pio_need_iordy (C function), 582
ata_platform_remove_one (C function), 592
ata_port_abort (C function), 609
ata_port_alloc (C function), 604
ata_port_desc (C function), 605
ata_port_detach (C function), 605
ata_port_freeze (C function), 610
ata_port_pbar_desc (C function), 606
ata_port_schedule_eh (C function), 609
ata_port_wait_eh (C function), 608
ata_qc_complete (C function), 587
ata_qc_complete_multiple (C function), 587
ata_qc_free (C function), 603
ata_qc_issue (C function), 603
ata_qc_new_init (C function), 602
ata_qc_schedule_eh (C function), 608
ata_read_log_page (C function), 598
ata_read_native_max_address (C function), 595
ata_rwcmd_protocol (C function), 594
ata_sas_async_probe (C function), 619
ata_sas_port_alloc (C function), 618
ata_sas_port_destroy (C function), 619
ata_sas_port_init (C function), 619
ata_sas_port_start (C function), 618
ata_sas_port_stop (C function), 619
ata_sas_queuecmd (C function), 619
ata_sas_slave_configure (C function), 619
ata_scsi_change_queue_depth (C function), 623
ata_scsi_cmd_error_handler (C function), 607
ata_scsi_dev_rescan (C function), 633
ata_scsi_dump_cdb (C function), 631
ata_scsi_error (C function), 607
ata_scsi_find_dev (C function), 629
ata_scsi_flush_xlat (C function), 623
ata_scsi_hotplug (C function), 633
ata_scsi_media_change_notify (C function), 632
ata_scsi_mode_select_xlat (C function), 631
ata_scsi_offline_dev (C function), 632
ata_scsi_pass_thru (C function), 629
ata_scsi_port_error_handler (C function), 608
ata_scsi_qc_new (C function), 621
ata_scsi_queuecmd (C function), 631
ata_scsi_rbuf_fill (C function), 626
ata_scsi_rbuf_get (C function), 625
ata_scsi_rbuf_put (C function), 625
ata_scsi_remove_dev (C function), 632

956 Index

The kernel driver API manual, Release 4.13.0-rc4+

ata_scsi_report_zones_complete (C function), 630
ata_scsi_rw_xlat (C function), 624
ata_scsi_simulate (C function), 632
ata_scsi_slave_config (C function), 622
ata_scsi_slave_destroy (C function), 622
ata_scsi_start_stop_xlat (C function), 623
ata_scsi_timed_out (C function), 607
ata_scsi_translate (C function), 625
ata_scsi_unlock_native_capacity (C function), 620
ata_scsi_user_scan (C function), 633
ata_scsi_var_len_cdb_xlat (C function), 631
ata_scsi_verify_xlat (C function), 624
ata_scsi_write_same_xlat (C function), 629
ata_scsiop_inq_00 (C function), 626
ata_scsiop_inq_80 (C function), 626
ata_scsiop_inq_83 (C function), 626
ata_scsiop_inq_89 (C function), 627
ata_scsiop_inq_std (C function), 626
ata_scsiop_maint_in (C function), 630
ata_scsiop_mode_sense (C function), 628
ata_scsiop_read_cap (C function), 628
ata_scsiop_report_luns (C function), 628
ata_set_max_sectors (C function), 596
ata_set_mode (C function), 616
ata_sg_clean (C function), 602
ata_sg_init (C function), 587
ata_sg_setup (C function), 602
ata_slave_link_init (C function), 590
ata_std_bios_param (C function), 620
ata_std_end_eh (C function), 608
ata_std_error_handler (C function), 618
ata_std_postreset (C function), 586
ata_std_prereset (C function), 585
ata_std_qc_defer (C function), 586
ata_std_sched_eh (C function), 608
ata_task_ioctl (C function), 621
ata_tf_from_fis (C function), 579
ata_tf_read_block (C function), 595
ata_tf_to_fis (C function), 579
ata_timing_cycle2mode (C function), 583
ata_to_sense_error (C function), 621
ata_unpack_xfermask (C function), 580
ata_wait_after_reset (C function), 584
ata_wait_ready (C function), 599
ata_wait_register (C function), 593
ata_xfer_mask2mode (C function), 580
ata_xfer_mode2mask (C function), 580
ata_xfer_mode2shift (C function), 580
atapi_check_dma (C function), 602
atapi_cmd_type (C function), 579
atapi_drain_needed (C function), 622
atapi_eh_clear_ua (C function), 616
atapi_eh_request_sense (C function), 613
atapi_eh_tur (C function), 612
atapi_xlat (C function), 628
atomic_add (C function), 6
atomic_add_negative (C function), 8
atomic_add_return (C function), 8

atomic_dec (C function), 7
atomic_dec_and_test (C function), 7
atomic_inc (C function), 7
atomic_inc_and_test (C function), 7
atomic_read (C function), 6
atomic_set (C function), 6
atomic_sub (C function), 7
atomic_sub_and_test (C function), 7
atomic_sub_return (C function), 8
attach_entity_load_avg (C function), 13

B
bss_parameters (C type), 829
builtin_driver (C function), 81
builtin_i2c_driver (C function), 503
bus_find_device (C function), 102
bus_find_device_by_name (C function), 103
bus_for_each_dev (C function), 102
bus_for_each_drv (C function), 103
bus_register (C function), 104
bus_rescan_devices (C function), 103
bus_type (C type), 73
bus_unregister (C function), 104
bytes_to_frames (C function), 178
bytes_to_samples (C function), 178

C
cable_is_40wire (C function), 601
calculate_imbalance (C function), 15
call_rcu (C function), 62
call_rcu_bh (C function), 60
call_rcu_sched (C function), 60
call_rcu_tasks (C function), 65
cancel_delayed_work (C function), 38
cancel_delayed_work_sync (C function), 38
cancel_work_sync (C function), 37
ccw0 (C type), 762
ccw1 (C type), 761
ccw_dev_id (C type), 766
ccw_dev_id_is_equal (C function), 766
ccw_device (C type), 767
ccw_device_clear (C function), 770
ccw_device_clear_options (C function), 770
ccw_device_get_chp_desc (C function), 774
ccw_device_get_ciw (C function), 773
ccw_device_get_id (C function), 774
ccw_device_get_mdc (C function), 775
ccw_device_get_path_mask (C function), 773
ccw_device_get_schid (C function), 775
ccw_device_halt (C function), 773
ccw_device_is_multipath (C function), 770
ccw_device_is_pathgroup (C function), 770
ccw_device_resume (C function), 773
ccw_device_set_offline (C function), 768
ccw_device_set_online (C function), 768
ccw_device_set_options (C function), 770
ccw_device_set_options_mask (C function), 769
ccw_device_siosl (C function), 769

Index 957

The kernel driver API manual, Release 4.13.0-rc4+

ccw_device_start (C function), 772
ccw_device_start_key (C function), 771
ccw_device_start_timeout (C function), 772
ccw_device_start_timeout_key (C function), 771
ccw_device_tm_intrg (C function), 775
ccw_device_tm_start (C function), 774
ccw_device_tm_start_key (C function), 774
ccw_device_tm_start_timeout (C function), 775
ccw_device_tm_start_timeout_key (C function), 774
ccw_driver (C type), 767
ccw_driver_register (C function), 769
ccw_driver_unregister (C function), 769
ccwgroup_create_dev (C function), 779
ccwgroup_device (C type), 777
ccwgroup_driver (C type), 778
ccwgroup_driver_register (C function), 779
ccwgroup_driver_unregister (C function), 779
ccwgroup_probe_ccwdev (C function), 779
ccwgroup_remove_ccwdev (C function), 780
ccwgroup_set_offline (C function), 779
ccwgroup_set_online (C function), 778
cdc_parse_cdc_header (C function), 314
cfg80211_ap_settings (C type), 823
cfg80211_assoc_request (C type), 831
cfg80211_assoc_timeout (C function), 837
cfg80211_auth_request (C type), 831
cfg80211_auth_timeout (C function), 837
cfg80211_beacon_data (C type), 822
cfg80211_bss (C type), 845
cfg80211_check_combinations (C function), 813
cfg80211_classify8021d (C function), 851
cfg80211_connect_bss (C function), 839
cfg80211_connect_done (C function), 839
cfg80211_connect_params (C type), 834
cfg80211_connect_resp_params (C type), 838
cfg80211_connect_result (C function), 839
cfg80211_connect_timeout (C function), 840
cfg80211_cqm_pktloss_notify (C function), 843
cfg80211_cqm_rssi_notify (C function), 842
cfg80211_crypto_settings (C type), 830
cfg80211_deauth_request (C type), 832
cfg80211_disassoc_request (C type), 833
cfg80211_disconnected (C function), 841
cfg80211_find_ie (C function), 847
cfg80211_ibss_joined (C function), 837
cfg80211_ibss_params (C type), 833
cfg80211_inform_bss (C type), 846
cfg80211_inform_bss_data (C function), 846
cfg80211_inform_bss_frame_data (C function), 846
cfg80211_mgmt_tx_status (C function), 842
cfg80211_michael_mic_failure (C function), 843
cfg80211_new_sta (C function), 842
cfg80211_ops (C type), 813
cfg80211_pmksa (C type), 836
cfg80211_ready_on_channel (C function), 841
cfg80211_remain_on_channel_expired (C function),

841
cfg80211_roamed (C function), 841

cfg80211_rx_assoc_resp (C function), 837
cfg80211_rx_mgmt (C function), 842
cfg80211_rx_mlme_mgmt (C function), 836
cfg80211_scan_done (C function), 845
cfg80211_scan_request (C type), 844
cfg80211_signal_type (C type), 802
cfg80211_ssid (C type), 843
cfg80211_testmode_alloc_event_skb (C function),

853
cfg80211_testmode_alloc_reply_skb (C function),

853
cfg80211_testmode_event (C function), 854
cfg80211_testmode_reply (C function), 853
cfg80211_tx_mlme_mgmt (C function), 837
cfg80211_unlink_bss (C function), 847
check_asym_packing (C function), 15
check_create (C function), 687
check_pattern (C function), 683
check_short_pattern (C function), 683
ciw (C type), 765
clamp (C function), 56
clamp_t (C function), 56
clamp_val (C function), 56
class (C type), 76
class_compat_create_link (C function), 92
class_compat_register (C function), 92
class_compat_remove_link (C function), 92
class_compat_unregister (C function), 92
class_destroy (C function), 90
class_dev_iter_exit (C function), 91
class_dev_iter_init (C function), 91
class_dev_iter_next (C function), 91
class_find_device (C function), 91
class_for_each_device (C function), 91
cmbdata (C type), 776
cmf_read (C function), 777
cmf_readall (C function), 777
cond_synchronize_rcu (C function), 62
cond_synchronize_sched (C function), 62
config_ep_by_speed (C function), 363
console_conditional_schedule (C function), 57
console_lock (C function), 57
console_trylock (C function), 57
console_unlock (C function), 57
container_of (C function), 56
copy_from_user_toio (C function), 191
copy_to_user_fromio (C function), 190
cpu_load_update (C function), 13
cpupri_cleanup (C function), 12
cpupri_find (C function), 12
cpupri_init (C function), 12
cpupri_set (C function), 12
create_bbt (C function), 685

D
DECLARE_COMPLETION (C function), 16
DECLARE_COMPLETION_ONSTACK (C function), 16
DEFINE_DMA_BUF_EXPORT_INFO (C function), 144

958 Index

The kernel driver API manual, Release 4.13.0-rc4+

del_timer (C function), 19
del_timer_sync (C function), 20
delayed_work_pending (C function), 33
destroy_rcu_head_on_stack (C function), 65
destroy_workqueue (C function), 39
detach_entity_load_avg (C function), 13
dev_driver_string (C function), 83
dev_links_info (C type), 78
dev_pm_domain (C type), 126
dev_pm_ops (C type), 123
dev_set_name (C function), 84
dev_to_iio_dev (C function), 249
dev_type (C type), 522
device (C type), 78
device_add (C function), 84
device_attach (C function), 96
device_bind_driver (C function), 96
device_create (C function), 87
device_create_bin_file (C function), 84
device_create_file (C function), 83
device_create_vargs (C function), 87
device_create_with_groups (C function), 88
device_del (C function), 85
device_destroy (C function), 88
device_driver (C type), 74
device_find_child (C function), 86
device_for_each_child (C function), 86
device_for_each_child_reverse (C function), 86
device_initialize (C function), 84
device_link (C type), 77
device_link_add (C function), 82, 162
device_link_del (C function), 83, 163
device_link_state (C type), 77, 161
device_move (C function), 89
device_register (C function), 85
device_release_driver (C function), 97
device_remove_bin_file (C function), 84
device_remove_file (C function), 83
device_remove_file_self (C function), 83
device_rename (C function), 89
device_reprobe (C function), 104
device_set_of_node_from_dev (C function), 89
device_unregister (C function), 85
devm_add_action (C function), 70
devm_alloc_percpu (C function), 77
devm_free_pages (C function), 72
devm_free_percpu (C function), 72
devm_get_free_pages (C function), 71
devm_iio_device_alloc (C function), 252
devm_iio_device_free (C function), 252
devm_iio_device_register (C function), 252
devm_iio_device_unregister (C function), 253
devm_iio_trigger_alloc (C function), 259
devm_iio_trigger_free (C function), 260
devm_iio_trigger_register (C function), 260
devm_iio_trigger_unregister (C function), 260
devm_input_allocate_device (C function), 270

devm_input_allocate_polled_device (C function),
278

devm_kasprintf (C function), 71
devm_kfree (C function), 71
devm_kmalloc (C function), 70
devm_kmemdup (C function), 71
devm_kstrdup (C function), 70
devm_kvasprintf (C function), 70
devm_of_pwm_get (C function), 712
devm_pci_remap_cfg_resource (C function), 452
devm_pci_remap_cfgspace (C function), 451
devm_pwm_get (C function), 712
devm_pwm_put (C function), 712
devm_remove_action (C function), 70
devm_spi_register_controller (C function), 491
devres_add (C function), 67
devres_alloc_node (C function), 66
devres_close_group (C function), 69
devres_destroy (C function), 68
devres_find (C function), 67
devres_for_each_res (C function), 67
devres_free (C function), 67
devres_get (C function), 67
devres_open_group (C function), 69
devres_release (C function), 68
devres_release_group (C function), 69
devres_remove (C function), 68
devres_remove_group (C function), 69
disable_cmf (C function), 777
dl_dev_state (C type), 78
dma_alloc_from_dev_coherent (C function), 105
dma_buf (C type), 142
dma_buf_attach (C function), 137
dma_buf_attachment (C type), 143
dma_buf_begin_cpu_access (C function), 138
dma_buf_detach (C function), 137
dma_buf_end_cpu_access (C function), 138
dma_buf_export (C function), 136
dma_buf_export_info (C type), 143
dma_buf_fd (C function), 136
dma_buf_get (C function), 136
dma_buf_kmap (C function), 139
dma_buf_kmap_atomic (C function), 138
dma_buf_kunmap (C function), 139
dma_buf_kunmap_atomic (C function), 139
dma_buf_map_attachment (C function), 137
dma_buf_mmap (C function), 139
dma_buf_ops (C type), 140
dma_buf_put (C function), 137
dma_buf_unmap_attachment (C function), 138
dma_buf_vmap (C function), 139
dma_buf_vunmap (C function), 140
dma_fence (C type), 150
dma_fence_add_callback (C function), 149
dma_fence_array (C type), 157
dma_fence_array_cb (C type), 156
dma_fence_array_create (C function), 156
dma_fence_cb (C type), 151

Index 959

The kernel driver API manual, Release 4.13.0-rc4+

dma_fence_context_alloc (C function), 148
dma_fence_default_wait (C function), 150
dma_fence_enable_sw_signaling (C function), 149
dma_fence_get (C function), 153
dma_fence_get_rcu (C function), 153
dma_fence_get_rcu_safe (C function), 153
dma_fence_get_status (C function), 149
dma_fence_get_status_locked (C function), 154
dma_fence_init (C function), 150
dma_fence_is_array (C function), 157
dma_fence_is_later (C function), 154
dma_fence_is_signaled (C function), 154
dma_fence_is_signaled_locked (C function), 153
dma_fence_later (C function), 154
dma_fence_match_context (C function), 156
dma_fence_ops (C type), 152
dma_fence_put (C function), 153
dma_fence_remove_callback (C function), 149
dma_fence_set_error (C function), 154
dma_fence_signal (C function), 148
dma_fence_signal_locked (C function), 148
dma_fence_wait (C function), 155
dma_fence_wait_any_timeout (C function), 150
dma_fence_wait_timeout (C function), 148
dma_mmap_from_dev_coherent (C function), 106
dma_release_from_dev_coherent (C function), 106
dmam_alloc_attrs (C function), 107
dmam_alloc_coherent (C function), 106
dmam_declare_coherent_memory (C function), 107
dmam_free_coherent (C function), 106
dmam_release_declared_memory (C function), 107
dmi_check_system (C function), 928
dmi_find_device (C function), 928
dmi_first_match (C function), 928
dmi_get_date (C function), 928
dmi_get_system_info (C function), 928
dmi_match (C function), 929
dmi_name_in_vendors (C function), 928
dmi_walk (C function), 929
do_jobctl_trap (C function), 42
do_notify_parent_cldstop (C function), 42
do_pata_set_dmamode (C function), 638
do_signal_stop (C function), 42
do_sigtimedwait (C function), 43
drain_workqueue (C function), 37
driver_attach (C function), 96
driver_create_file (C function), 82
driver_find (C function), 82
driver_find_device (C function), 81
driver_for_each_device (C function), 81
driver_init (C function), 81
driver_register (C function), 82
driver_remove_file (C function), 82
driver_unregister (C function), 82
dwc3 (C type), 412
dwc3_alloc_event_buffers (C function), 423
dwc3_alloc_one_event_buffer (C function), 423
dwc3_core_init (C function), 424

dwc3_core_soft_reset (C function), 423
DWC3_DEFAULT_AUTOSUSPEND_DELAY (C func-

tion), 422
dwc3_ep (C type), 410
dwc3_ep_inc_deq (C function), 420
dwc3_ep_inc_enq (C function), 420
dwc3_ep_inc_trb (C function), 420
dwc3_ep_prev_trb (C function), 422
dwc3_event (C type), 418
dwc3_event_buffer (C type), 409
dwc3_event_buffers_setup (C function), 423
dwc3_event_depevt (C type), 417
dwc3_event_devt (C type), 417
dwc3_event_gevt (C type), 418
dwc3_free_event_buffers (C function), 423
dwc3_free_one_event_buffer (C function), 423
dwc3_gadget_ep_cmd_params (C type), 418
dwc3_gadget_ep_get_transfer_index (C function),

419
dwc3_gadget_get_link_state (C function), 419
dwc3_gadget_giveback (C function), 420
dwc3_gadget_init (C function), 422
dwc3_gadget_move_started_request (C function),

419
dwc3_gadget_set_link_state (C function), 420
dwc3_gadget_set_test_mode (C function), 419
dwc3_gadget_setup_nump (C function), 422
dwc3_gadget_start_config (C function), 421
dwc3_get_dr_mode (C function), 423
dwc3_hwparams (C type), 411
dwc3_phy_setup (C function), 424
dwc3_prepare_one_trb (C function), 422
dwc3_request (C type), 412
dwc3_send_gadget_ep_cmd (C function), 420
dwc3_send_gadget_generic_command (C function),

420
dwc3_trb (C type), 411

E
edac_device_add_device (C function), 531
edac_device_alloc_index (C function), 532
edac_device_del_device (C function), 532
edac_device_handle_ce (C function), 532
edac_device_handle_ue (C function), 532
EDAC_DIMM_OFF (C function), 525
EDAC_DIMM_PTR (C function), 525
edac_has_mcs (C function), 527
edac_mc_add_mc_with_groups (C function), 527
edac_mc_alloc (C function), 527
edac_mc_del_mc (C function), 528
edac_mc_find (C function), 528
edac_mc_find_csrow_by_page (C function), 528
edac_mc_free (C function), 527
edac_mc_handle_error (C function), 528
edac_mc_layer (C type), 524
edac_mc_layer_type (C type), 524
edac_pci_add_device (C function), 530
edac_pci_alloc_ctl_info (C function), 529

960 Index

The kernel driver API manual, Release 4.13.0-rc4+

edac_pci_alloc_index (C function), 529
edac_pci_create_generic_ctl (C function), 530
edac_pci_create_sysfs (C function), 530
edac_pci_del_device (C function), 530
edac_pci_free_ctl_info (C function), 529
edac_pci_release_generic_ctl (C function), 530
edac_pci_remove_sysfs (C function), 531
edac_raw_error_desc (C type), 526
edac_raw_mc_handle_error (C function), 528
edac_type (C type), 524
edd_dev_is_type (C function), 930
edd_get_pci_dev (C function), 930
edd_init (C function), 930
edd_release (C function), 929
edd_show_raw_data (C function), 929
enable_cmf (C function), 776
erw (C type), 762
erw_eadm (C type), 763
esw0 (C type), 763
esw1 (C type), 764
esw2 (C type), 764
esw3 (C type), 765
esw_eadm (C type), 765
execute_in_process_context (C function), 38

F
fb_add_videomode (C function), 215
fb_copy_cmap (C function), 212
fb_dealloc_cmap (C function), 212
fb_default_cmap (C function), 212
fb_delete_videomode (C function), 213
fb_destroy_modelist (C function), 215
fb_find_best_mode (C function), 214
fb_find_mode (C function), 213
fb_find_nearest_mode (C function), 215
fb_invert_cmaps (C function), 213
fb_match_mode (C function), 215
fb_mode_is_equal (C function), 214
fb_set_cmap (C function), 212
fb_set_suspend (C function), 212
fb_try_mode (C function), 213
fb_var_to_videomode (C function), 214
fb_videomode_to_modelist (C function), 215
fb_videomode_to_var (C function), 214
fc_block_scsi_eh (C function), 558
fc_eh_timed_out (C function), 556
fc_get_event_number (C function), 556
fc_host_post_event (C function), 556
fc_host_post_vendor_event (C function), 556
fc_remote_port_add (C function), 557
fc_remote_port_delete (C function), 557
fc_remote_port_rolechg (C function), 558
fc_remove_host (C function), 557
fc_vport_create (C function), 559
fc_vport_terminate (C function), 559
ff_device (C type), 267
find_busiest_group (C function), 15
find_mci_by_dev (C function), 528

finish_wait (C function), 28
fix_small_imbalance (C function), 15
flush_delayed_work (C function), 38
flush_scheduled_work (C function), 35
flush_work (C function), 37
flush_workqueue (C function), 37
frame_aligned (C function), 178
frames_to_bytes (C function), 178
freq_reg_info (C function), 852
fsl_local_config_read (C function), 758
fsl_local_config_write (C function), 758
fsl_mc_device_id (C type), 6
fsl_rio_config_read (C function), 759
fsl_rio_config_write (C function), 759
fsl_rio_setup (C function), 759
fw_pm_notify (C function), 926

G
gadget_avoids_skb_reserve (C function), 352
gadget_is_altset_supported (C function), 352
gadget_is_dualspeed (C function), 353
gadget_is_otg (C function), 353
gadget_is_stall_supported (C function), 352
gadget_is_superspeed (C function), 353
gadget_is_superspeed_plus (C function), 353
gadget_is_zlp_supported (C function), 352
get_bbt_block (C function), 686
get_ccwdev_by_busid (C function), 769
get_ccwdev_by_dev_id (C function), 768
get_device (C function), 85
get_dma_buf (C function), 144
get_sd_load_idx (C function), 14
get_state_synchronize_rcu (C function), 61
get_state_synchronize_sched (C function), 62

H
hcd_buffer_create (C function), 332
hcd_buffer_destroy (C function), 332
hrtimer (C type), 29
hrtimer_cancel (C function), 32
hrtimer_clock_base (C type), 30
hrtimer_forward (C function), 31
hrtimer_forward_now (C function), 31
hrtimer_init (C function), 32
hrtimer_sleeper (C type), 30
hrtimer_start (C function), 30
hrtimer_start_range_ns (C function), 31
hrtimer_try_to_cancel (C function), 31
hsi_alloc_controller (C function), 517
hsi_alloc_msg (C function), 517
hsi_async (C function), 518
hsi_async_read (C function), 516
hsi_async_write (C function), 516
hsi_board_info (C type), 512
hsi_channel (C type), 512
hsi_claim_port (C function), 518
hsi_client (C type), 513
hsi_client_driver (C type), 513

Index 961

The kernel driver API manual, Release 4.13.0-rc4+

hsi_config (C type), 512
hsi_controller (C type), 515
hsi_event (C function), 519
hsi_flush (C function), 516
hsi_free_msg (C function), 517
hsi_get_channel_id_by_name (C function), 519
hsi_id (C function), 515
hsi_msg (C type), 513
hsi_port (C type), 514
hsi_port_id (C function), 515
hsi_port_unregister_clients (C function), 516
hsi_put_controller (C function), 517
hsi_register_client_driver (C function), 517
hsi_register_controller (C function), 517
hsi_register_port_event (C function), 518
hsi_release_port (C function), 518
hsi_setup (C function), 515
hsi_start_tx (C function), 516
hsi_stop_tx (C function), 516
hsi_unregister_controller (C function), 517
hsi_unregister_port_event (C function), 518
ht_create_irq (C function), 466
ht_destroy_irq (C function), 466
hw_event_mc_err_type (C type), 523

I
i2c_adapter_quirks (C type), 502
i2c_add_adapter (C function), 505
i2c_add_numbered_adapter (C function), 506
i2c_algorithm (C type), 500
I2C_BOARD_INFO (C function), 500
i2c_board_info (C type), 499
i2c_bus_recovery_info (C type), 501
i2c_check_quirks (C function), 503
i2c_client (C type), 498
i2c_del_adapter (C function), 506
i2c_del_driver (C function), 507
i2c_driver (C type), 497
i2c_handle_smbus_host_notify (C function), 505
i2c_lock_bus (C function), 502
i2c_lock_operations (C type), 500
i2c_master_recv (C function), 508
i2c_master_send (C function), 508
i2c_new_device (C function), 504
i2c_new_dummy (C function), 504
i2c_new_secondary_device (C function), 504
i2c_parse_fw_timings (C function), 506
i2c_register_board_info (C function), 503
i2c_release_client (C function), 507
i2c_smbus_read_block_data (C function), 509
i2c_smbus_read_byte (C function), 508
i2c_smbus_read_byte_data (C function), 508
i2c_smbus_read_i2c_block_data_or_emulated (C

function), 510
i2c_smbus_read_word_data (C function), 509
i2c_smbus_write_block_data (C function), 509
i2c_smbus_write_byte (C function), 508
i2c_smbus_write_byte_data (C function), 508

i2c_smbus_write_word_data (C function), 509
i2c_smbus_xfer (C function), 510
i2c_timings (C type), 501
i2c_transfer (C function), 507
i2c_trylock_bus (C function), 502
i2c_unlock_bus (C function), 502
i2c_unregister_device (C function), 504
i2c_use_client (C function), 507
i2c_verify_adapter (C function), 505
i2c_verify_client (C function), 503
ich_pata_cable_detect (C function), 638
ich_set_dmamode (C function), 639
ieee80211_alloc_hw (C function), 867
ieee80211_ampdu_mlme_action (C type), 898
ieee80211_amsdu_to_8023s (C function), 850
ieee80211_beacon_get (C function), 892
ieee80211_beacon_loss (C function), 889
ieee80211_bss_get_ie (C function), 847
ieee80211_channel (C type), 800
ieee80211_channel_flags (C type), 799
ieee80211_channel_to_frequency (C function), 848
ieee80211_conf (C type), 868
ieee80211_conf_flags (C type), 869
ieee80211_create_tpt_led_trigger (C function), 885
ieee80211_ctstoself_duration (C function), 880
ieee80211_ctstoself_get (C function), 880
ieee80211_data_from_8023 (C function), 850
ieee80211_data_to_8023 (C function), 850
ieee80211_filter_flags (C type), 882
ieee80211_find_sta (C function), 896
ieee80211_find_sta_by_ifaddr (C function), 896
ieee80211_frame_release_type (C type), 892
ieee80211_free_hw (C function), 868
ieee80211_frequency_to_channel (C function), 848
ieee80211_generic_frame_duration (C function),

880
ieee80211_get_assoc_led_name (C function), 884
ieee80211_get_buffered_bc (C function), 891
ieee80211_get_channel (C function), 848
ieee80211_get_hdrlen_from_skb (C function), 849
ieee80211_get_radio_led_name (C function), 884
ieee80211_get_response_rate (C function), 848
ieee80211_get_rx_led_name (C function), 883
ieee80211_get_tkip_p1k (C function), 887
ieee80211_get_tkip_p1k_iv (C function), 887
ieee80211_get_tkip_p2k (C function), 887
ieee80211_get_tx_led_name (C function), 883
ieee80211_hdrlen (C function), 849
ieee80211_hw (C type), 854
ieee80211_hw_flags (C type), 856
ieee80211_iface_combination (C type), 811
ieee80211_iface_limit (C type), 811
ieee80211_iterate_active_interfaces (C function),

894
ieee80211_iterate_active_interfaces_atomic (C

function), 894
ieee80211_key_conf (C type), 886
ieee80211_key_flags (C type), 886

962 Index

The kernel driver API manual, Release 4.13.0-rc4+

ieee80211_ops (C type), 858
ieee80211_queue_delayed_work (C function), 883
ieee80211_queue_stopped (C function), 881
ieee80211_queue_work (C function), 883
ieee80211_radiotap_iterator (C type), 849
ieee80211_rate (C type), 801
ieee80211_rate_control_changed (C type), 900
ieee80211_rate_flags (C type), 801
ieee80211_register_hw (C function), 868
ieee80211_request_smps (C function), 898
ieee80211_rts_duration (C function), 879
ieee80211_rts_get (C function), 879
ieee80211_rx (C function), 877
ieee80211_rx_irqsafe (C function), 878
ieee80211_rx_ni (C function), 878
ieee80211_rx_status (C type), 872
ieee80211_scan_completed (C function), 897
ieee80211_smps_mode (C type), 899
ieee80211_sta (C type), 894
ieee80211_sta_block_awake (C function), 893
ieee80211_sta_eosp (C function), 892
ieee80211_sta_ht_cap (C type), 801
ieee80211_sta_info_flags (C type), 904
ieee80211_sta_ps_transition (C function), 892
ieee80211_sta_ps_transition_ni (C function), 892
ieee80211_sta_set_buffered (C function), 893
ieee80211_start_tx_ba_cb_irqsafe (C function), 899
ieee80211_start_tx_ba_session (C function), 899
ieee80211_stop_queue (C function), 881
ieee80211_stop_queues (C function), 881
ieee80211_stop_tx_ba_cb_irqsafe (C function), 900
ieee80211_stop_tx_ba_session (C function), 899
ieee80211_supported_band (C type), 802
ieee80211_tpt_blink (C type), 884
ieee80211_tpt_led_trigger_flags (C type), 884
ieee80211_tx_info (C type), 877
ieee80211_tx_info_clear_status (C function), 877
ieee80211_tx_queue_params (C type), 889
ieee80211_tx_rate (C type), 876
ieee80211_tx_rate_control (C type), 900
ieee80211_tx_status (C function), 878
ieee80211_tx_status (C type), 878
ieee80211_tx_status_irqsafe (C function), 879
ieee80211_tx_status_ni (C function), 879
ieee80211_txq_params (C type), 830
ieee80211_unregister_hw (C function), 868
ieee80211_vif (C type), 870
ieee80211_wake_queue (C function), 881
ieee80211_wake_queues (C function), 881
iio_buffer_enabled (C function), 250
iio_buffer_get (C function), 256
iio_buffer_put (C function), 256
iio_buffer_set_attrs (C function), 255
iio_buffer_setup_ops (C type), 247
iio_chan_spec (C type), 244
iio_chan_spec_ext_info (C type), 242
iio_channel_has_available (C function), 246
iio_channel_has_info (C function), 245

IIO_DEGREE_TO_RAD (C function), 250
iio_dev (C type), 247
iio_device_alloc (C function), 252
iio_device_attach_buffer (C function), 256
iio_device_claim_direct_mode (C function), 253
iio_device_free (C function), 252
iio_device_get (C function), 249
iio_device_get_clock (C function), 249
iio_device_get_drvdata (C function), 250
iio_device_put (C function), 249
iio_device_register (C function), 252
iio_device_release_direct_mode (C function), 253
iio_device_set_drvdata (C function), 249
iio_device_unregister (C function), 252
IIO_ENUM (C function), 243
iio_enum (C type), 242
IIO_ENUM_AVAILABLE (C function), 243
iio_event_spec (C type), 243
iio_format_value (C function), 251
IIO_G_TO_M_S_2 (C function), 250
iio_get_debugfs_dentry (C function), 250
iio_get_time_ns (C function), 251
iio_get_time_res (C function), 251
iio_info (C type), 246
IIO_M_S_2_TO_G (C function), 250
IIO_MOUNT_MATRIX (C function), 243
iio_mount_matrix (C type), 243
iio_push_to_buffers (C function), 256
iio_push_to_buffers_with_timestamp (C function),

255
IIO_RAD_TO_DEGREE (C function), 250
iio_str_to_fixpoint (C function), 251
iio_trigger (C type), 258
iio_trigger_get_drvdata (C function), 259
iio_trigger_ops (C type), 257
iio_trigger_poll (C function), 259
iio_trigger_register (C function), 259
iio_trigger_set_drvdata (C function), 258
iio_trigger_set_immutable (C function), 259
iio_trigger_unregister (C function), 259
iio_trigger_using_own (C function), 259
iio_trigger_validate_own_device (C function), 260
iio_triggered_buffer_cleanup (C function), 262
iio_triggered_buffer_setup (C function), 262
iio_validate_scan_mask_onehot (C function), 255
init_completion (C function), 16
init_rcu_head_on_stack (C function), 65
init_timer_key (C function), 18
input_alloc_absinfo (C function), 269
input_allocate_device (C function), 270
input_allocate_polled_device (C function), 278
input_close_device (C function), 269
input_dev (C type), 263
input_enable_softrepeat (C function), 271
input_event (C function), 268
input_ff_create (C function), 274
input_ff_create_memless (C function), 274
input_ff_destroy (C function), 274

Index 963

The kernel driver API manual, Release 4.13.0-rc4+

input_ff_erase (C function), 273
input_ff_event (C function), 273
input_ff_upload (C function), 273
input_free_device (C function), 271
input_free_minor (C function), 273
input_free_polled_device (C function), 278
input_get_keycode (C function), 270
input_get_new_minor (C function), 273
input_grab_device (C function), 269
input_handle (C type), 266
input_handler (C type), 265
input_handler_for_each_handle (C function), 272
input_inject_event (C function), 268
input_mt (C type), 275
input_mt_assign_slots (C function), 277
input_mt_destroy_slots (C function), 275
input_mt_drop_unused (C function), 276
input_mt_get_slot_by_key (C function), 277
input_mt_init_slots (C function), 275
input_mt_pos (C type), 275
input_mt_report_finger_count (C function), 276
input_mt_report_pointer_emulation (C function),

276
input_mt_report_slot_state (C function), 276
input_mt_slot (C type), 274
input_mt_sync_frame (C function), 276
input_open_device (C function), 269
input_polled_dev (C type), 277
input_register_device (C function), 271
input_register_handle (C function), 272
input_register_handler (C function), 272
input_register_polled_device (C function), 279
input_release_device (C function), 269
input_reset_device (C function), 270
input_scancode_to_scalar (C function), 269
input_set_capability (C function), 271
input_set_events_per_packet (C function), 267
input_set_keycode (C function), 270
input_unregister_device (C function), 272
input_unregister_handle (C function), 273
input_unregister_handler (C function), 272
input_unregister_polled_device (C function), 279
input_value (C type), 263
ioremap (C function), 130
irb (C type), 765
is_global_init (C function), 9
is_idle_task (C function), 10
iscsi_block_scsi_eh (C function), 561
iscsi_create_conn (C function), 562
iscsi_create_flashnode_conn (C function), 559
iscsi_create_flashnode_sess (C function), 559
iscsi_create_session (C function), 561
iscsi_destroy_all_flashnode (C function), 560
iscsi_destroy_conn (C function), 562
iscsi_destroy_flashnode_sess (C function), 560
iscsi_destroy_session (C function), 561
iscsi_find_flashnode_conn (C function), 560
iscsi_find_flashnode_sess (C function), 560

iscsi_scan_finished (C function), 561
iscsi_session_event (C function), 562
iscsi_unblock_session (C function), 561

K
key_entry (C type), 280
key_params (C type), 821
kmsg_dump_get_buffer (C function), 58
kmsg_dump_get_line (C function), 58
kmsg_dump_register (C function), 58
kmsg_dump_rewind (C function), 59
kmsg_dump_unregister (C function), 58
kobject_add (C function), 51
kobject_create_and_add (C function), 52
kobject_del (C function), 52
kobject_get (C function), 52
kobject_get_path (C function), 50
kobject_init (C function), 51
kobject_init_and_add (C function), 51
kobject_move (C function), 52
kobject_put (C function), 52
kobject_rename (C function), 52
kobject_set_name (C function), 50
kset_create_and_add (C function), 53
kset_find_obj (C function), 53
kset_register (C function), 52
kset_unregister (C function), 53
kstrtol (C function), 54
kstrtoul (C function), 54
kthread_bind (C function), 47
kthread_cancel_delayed_work_sync (C function), 50
kthread_cancel_work_sync (C function), 49
kthread_create (C function), 45
kthread_create_on_node (C function), 46
kthread_create_worker (C function), 48
kthread_create_worker_on_cpu (C function), 48
kthread_delayed_work_timer_fn (C function), 48
kthread_destroy_worker (C function), 50
kthread_flush_work (C function), 49
kthread_flush_worker (C function), 50
kthread_freezable_should_stop (C function), 46
kthread_mod_delayed_work (C function), 49
kthread_park (C function), 47
kthread_queue_delayed_work (C function), 49
kthread_queue_work (C function), 48
kthread_run (C function), 45
kthread_should_park (C function), 46
kthread_should_stop (C function), 46
kthread_stop (C function), 47
kthread_unpark (C function), 47
kthread_worker_fn (C function), 47
ktime_after (C function), 29
ktime_before (C function), 29
ktime_compare (C function), 28
ktime_set (C function), 28
ktime_to_timespec64_cond (C function), 29
ktime_to_timespec_cond (C function), 29

964 Index

The kernel driver API manual, Release 4.13.0-rc4+

L
lower_32_bits (C function), 53

M
mac80211_rate_control_flags (C type), 876
mac80211_rx_flags (C type), 873
mac80211_tx_control_flags (C type), 875
mac80211_tx_info_flags (C type), 874
mac_find_mode (C function), 216
mac_map_monitor_sense (C function), 216
mac_vmode_to_var (C function), 215
mark_bbt_block_bad (C function), 686
mark_bbt_region (C function), 687
matrix_keymap_data (C type), 279
matrix_keypad_platform_data (C type), 279
mdio_device_id (C type), 4
mei_cl_device_id (C type), 5
mem_type (C type), 523
memcpy_fromio (C function), 130
memcpy_toio (C function), 130
memset_io (C function), 130
might_sleep (C function), 53
min_not_zero (C function), 55
mips_cdmm_device_id (C type), 5
misc_deregister (C function), 953
misc_register (C function), 953
mod_delayed_work (C function), 35
mod_delayed_work_on (C function), 36
mod_timer (C function), 18
mod_timer_pending (C function), 18
modecpy (C function), 627
module_driver (C function), 80
module_exit (C function), 3
module_i2c_driver (C function), 503
module_init (C function), 3
module_spi_driver (C function), 478
module_usb_composite_driver (C function), 362
module_usb_driver (C function), 296
module_w1_family (C function), 719
monitor_flags (C type), 828
mpath_info (C type), 828
mpath_info_flags (C type), 828
mpt_alloc_fw_memory (C function), 168
mpt_attach (C function), 168
mpt_clear_taskmgmt_in_progress_flag (C function),

170
mpt_config (C function), 170
mpt_deregister (C function), 165
mpt_detach (C function), 168
mpt_device_driver_deregister (C function), 166
mpt_device_driver_register (C function), 166
mpt_event_deregister (C function), 165
mpt_event_register (C function), 165
mpt_findImVolumes (C function), 170
mpt_free_fw_memory (C function), 169
mpt_free_msg_frame (C function), 167
mpt_get_msg_frame (C function), 166
mpt_GetIocState (C function), 168

mpt_halt_firmware (C function), 171
mpt_HardResetHandler (C function), 171
mpt_print_ioc_summary (C function), 170
mpt_put_msg_frame (C function), 166
mpt_put_msg_frame_hi_pri (C function), 167
mpt_raid_phys_disk_get_num_paths (C function),

169
mpt_raid_phys_disk_pg0 (C function), 169
mpt_raid_phys_disk_pg1 (C function), 169
mpt_register (C function), 165
mpt_reset_deregister (C function), 166
mpt_reset_register (C function), 166
mpt_resume (C function), 168
mpt_send_handshake_request (C function), 167
mpt_set_taskmgmt_in_progress_flag (C function),

170
mpt_Soft_Hard_ResetHandler (C function), 171
mpt_suspend (C function), 168
mpt_verify_adapter (C function), 167
mptbase_sas_persist_operation (C function), 169
mptscsih_abort (C function), 172
mptscsih_bus_reset (C function), 172
mptscsih_dev_reset (C function), 172
mptscsih_get_scsi_lookup (C function), 173
mptscsih_host_reset (C function), 172
mptscsih_info (C function), 171
mptscsih_IssueTaskMgmt (C function), 172
mptscsih_qcmd (C function), 171
mptscsih_taskmgmt_complete (C function), 173
msleep (C function), 20
msleep_interruptible (C function), 21

N
nand_block_bad (C function), 671
nand_block_checkbad (C function), 673
nand_block_isbad (C function), 682
nand_block_isreserved (C function), 672
nand_block_markbad (C function), 682
nand_block_markbad_lowlevel (C function), 672
nand_buffers (C type), 657
nand_calculate_ecc (C function), 669
nand_check_ecc_caps (C function), 667
nand_check_erased_buf (C function), 675
nand_check_erased_ecc_chunk (C function), 665
nand_check_wp (C function), 672
nand_chip (C type), 660
nand_cleanup (C function), 668
nand_command (C function), 673
nand_command_lp (C function), 673
nand_correct_data (C function), 669
nand_create_badblock_pattern (C function), 688
nand_data_interface (C type), 660
nand_data_interface_type (C type), 660
nand_default_bbt (C function), 688
nand_default_block_markbad (C function), 672
nand_do_read_oob (C function), 678
nand_do_read_ops (C function), 678
nand_do_write_oob (C function), 681

Index 965

The kernel driver API manual, Release 4.13.0-rc4+

nand_do_write_ops (C function), 680
nand_ecc_caps (C type), 656
nand_ecc_ctrl (C type), 656
nand_ecc_step_info (C type), 655
nand_erase (C function), 682
nand_erase_nand (C function), 682
nand_fill_oob (C function), 680
nand_flash_dev (C type), 663
nand_get_device (C function), 674
nand_get_sdr_timings (C function), 660
nand_hw_control (C type), 655
nand_id (C type), 655
nand_init_data_interface (C function), 675
nand_isbad_bbt (C function), 688
nand_isreserved_bbt (C function), 688
nand_lock (C function), 665
nand_manufacturer (C type), 663
nand_manufacturer_ops (C type), 660
nand_markbad_bbt (C function), 688
nand_match_ecc_req (C function), 668
nand_max_bad_blocks (C function), 682
nand_maximize_ecc (C function), 668
nand_memory_bbt (C function), 686
nand_onfi_get_features (C function), 683
nand_onfi_get_set_features_notsupp (C function),

667
nand_onfi_set_features (C function), 682
nand_opcode_8bits (C function), 664
nand_read (C function), 678
nand_read_buf (C function), 671
nand_read_buf16 (C function), 671
nand_read_byte (C function), 670
nand_read_byte16 (C function), 670
nand_read_oob (C function), 678
nand_read_oob_std (C function), 666
nand_read_oob_syndrome (C function), 666
nand_read_page_hwecc (C function), 677
nand_read_page_hwecc_oob_first (C function), 677
nand_read_page_raw (C function), 666
nand_read_page_raw_syndrome (C function), 676
nand_read_page_swecc (C function), 676
nand_read_page_syndrome (C function), 677
nand_read_subpage (C function), 676
nand_read_word (C function), 670
nand_release (C function), 669
nand_release_device (C function), 670
nand_reset (C function), 675
nand_reset_data_interface (C function), 674
nand_resume (C function), 683
nand_scan (C function), 668
nand_scan_bbt (C function), 687
nand_scan_ident (C function), 667
nand_scan_tail (C function), 668
nand_sdr_timings (C type), 658
nand_select_chip (C function), 670
nand_setup_data_interface (C function), 675
nand_setup_read_retry (C function), 678
nand_shutdown (C function), 683

nand_suspend (C function), 683
nand_sync (C function), 682
nand_transfer_oob (C function), 677
nand_unlock (C function), 665
nand_update_bbt (C function), 687
nand_wait (C function), 674
nand_wait_ready (C function), 665
nand_wait_status_ready (C function), 673
nand_write (C function), 681
nand_write_buf (C function), 671
nand_write_buf16 (C function), 671
nand_write_byte (C function), 670
nand_write_byte16 (C function), 671
nand_write_oob (C function), 681
nand_write_oob_std (C function), 666
nand_write_oob_syndrome (C function), 667
nand_write_page (C function), 680
nand_write_page_hwecc (C function), 679
nand_write_page_raw (C function), 667
nand_write_page_raw_syndrome (C function), 679
nand_write_page_swecc (C function), 679
nand_write_page_syndrome (C function), 680
nand_write_subpage_hwecc (C function), 679
next_request (C function), 419

O
of_iio_read_mount_matrix (C function), 251
of_pwm_get (C function), 711

P
panic (C function), 59
panic_nand_get_device (C function), 674
panic_nand_wait (C function), 674
panic_nand_wait_ready (C function), 673
panic_nand_write (C function), 681
params_buffer_bytes (C function), 181
params_buffer_size (C function), 181
params_channels (C function), 180
params_period_size (C function), 181
params_periods (C function), 181
params_rate (C function), 181
parport_announce_port (C function), 694
parport_claim (C function), 696
parport_claim_or_block (C function), 697
parport_close (C function), 697
parport_find_base (C function), 696
parport_find_number (C function), 696
parport_get_port (C function), 694
parport_negotiate (C function), 692
parport_open (C function), 697
parport_put_port (C function), 694
parport_read (C function), 692
parport_register_device (C function), 695
parport_register_port (C function), 694
parport_release (C function), 697
parport_remove_port (C function), 695
parport_set_timeout (C function), 693
parport_unregister_device (C function), 696

966 Index

The kernel driver API manual, Release 4.13.0-rc4+

parport_unregister_driver (C function), 693
parport_wait_event (C function), 691
parport_wait_peripheral (C function), 691
parport_write (C function), 692
parport_yield (C function), 691
parport_yield_blocking (C function), 691
pathmask_to_pos (C function), 766
pci_add_dynid (C function), 457
pci_adjust_legacy_attr (C function), 471
pci_alloc_irq_vectors_affinity (C function), 462
pci_back_from_sleep (C function), 448
pci_bus_add_device (C function), 464
pci_bus_add_devices (C function), 464
pci_bus_alloc_resource (C function), 463
pci_bus_find_capability (C function), 443
pci_bus_max_busnr (C function), 443
pci_bus_set_ops (C function), 464
pci_cfg_access_lock (C function), 465
pci_cfg_access_trylock (C function), 465
pci_cfg_access_unlock (C function), 465
pci_check_and_mask_intx (C function), 453
pci_check_and_unmask_intx (C function), 453
pci_choose_state (C function), 445
pci_clear_master (C function), 452
pci_clear_mwi (C function), 453
pci_common_swizzle (C function), 449
pci_create_legacy_files (C function), 471
pci_create_resource_files (C function), 472
pci_create_slot (C function), 467
pci_d3cold_disable (C function), 449
pci_d3cold_enable (C function), 449
pci_destroy_slot (C function), 467
pci_dev_driver (C function), 458
pci_dev_get (C function), 459
pci_dev_present (C function), 461
pci_dev_put (C function), 459
pci_dev_run_wake (C function), 449
pci_disable_device (C function), 447
pci_disable_rom (C function), 468
pci_disable_sriov (C function), 469
pci_enable_device (C function), 447
pci_enable_device_io (C function), 446
pci_enable_device_mem (C function), 446
pci_enable_msix_range (C function), 462
pci_enable_rom (C function), 468
pci_enable_sriov (C function), 469
pci_enable_wake (C function), 448
pci_find_bus (C function), 459
pci_find_capability (C function), 443
pci_find_ext_capability (C function), 444
pci_find_ht_capability (C function), 444
pci_find_next_bus (C function), 459
pci_find_next_ext_capability (C function), 443
pci_find_next_ht_capability (C function), 444
pci_find_parent_resource (C function), 444
pci_find_pcie_root_port (C function), 445
pci_find_resource (C function), 444
pci_free_irq (C function), 466

pci_free_irq_vectors (C function), 462
pci_get_class (C function), 461
pci_get_device (C function), 460
pci_get_domain_bus_and_slot (C function), 460
pci_get_slot (C function), 460
pci_get_subsys (C function), 460
pci_hp_change_slot_info (C function), 473
pci_hp_create_module_link (C function), 468
pci_hp_deregister (C function), 473
pci_hp_remove_module_link (C function), 468
pci_intx (C function), 453
pci_iomap (C function), 131
pci_iomap_range (C function), 130
pci_iomap_wc (C function), 131
pci_iomap_wc_range (C function), 131
pci_irq_get_affinity (C function), 463
pci_irq_get_node (C function), 463
pci_irq_vector (C function), 463
pci_load_and_free_saved_state (C function), 446
pci_load_saved_state (C function), 446
pci_lost_interrupt (C function), 465
pci_map_rom (C function), 468
pci_match_id (C function), 458
pci_mmap_legacy_io (C function), 471
pci_mmap_legacy_mem (C function), 470
pci_mmap_resource (C function), 471
pci_msi_create_irq_domain (C function), 463
pci_msi_enabled (C function), 462
pci_msi_mask_irq (C function), 461
pci_msi_unmask_irq (C function), 461
pci_msi_vec_count (C function), 461
pci_msix_vec_count (C function), 461
pci_num_vf (C function), 469
pci_platform_rom (C function), 469
pci_pme_active (C function), 448
pci_pme_capable (C function), 447
pci_prepare_to_sleep (C function), 448
pci_probe_reset_bus (C function), 455
pci_probe_reset_slot (C function), 455
pci_read_legacy_io (C function), 470
pci_read_rom (C function), 472
pci_read_vpd (C function), 464
pci_reenable_device (C function), 446
pci_release_region (C function), 449
pci_release_regions (C function), 450
pci_release_selected_regions (C function), 450
pci_remap_iospace (C function), 451
pci_remove_resource_files (C function), 471
pci_remove_sysfs_dev_files (C function), 472
pci_request_irq (C function), 465
pci_request_region (C function), 449
pci_request_region_exclusive (C function), 450
pci_request_regions (C function), 451
pci_request_regions_exclusive (C function), 451
pci_request_selected_regions (C function), 450
pci_rescan_bus (C function), 467
pci_reset_bridge_secondary_bus (C function), 454
pci_reset_bus (C function), 456

Index 967

The kernel driver API manual, Release 4.13.0-rc4+

pci_reset_function (C function), 454
pci_reset_slot (C function), 455
pci_restore_state (C function), 446
pci_save_state (C function), 445
pci_scan_slot (C function), 466
pci_select_bars (C function), 457
pci_set_cacheline_size (C function), 452
pci_set_master (C function), 452
pci_set_mwi (C function), 452
pci_set_pcie_reset_state (C function), 447
pci_set_power_state (C function), 445
pci_set_vpd_size (C function), 464
pci_sriov_get_totalvfs (C function), 470
pci_sriov_set_totalvfs (C function), 469
pci_stop_and_remove_bus_device (C function), 459
pci_store_saved_state (C function), 446
pci_try_reset_bus (C function), 456
pci_try_reset_function (C function), 455
pci_try_reset_slot (C function), 455
pci_try_set_mwi (C function), 453
pci_unmap_iospace (C function), 451
pci_unmap_rom (C function), 468
pci_unregister_driver (C function), 458
pci_vfs_assigned (C function), 469
pci_wait_for_pending_transaction (C function), 453
pci_wake_from_d3 (C function), 448
pci_write_legacy_io (C function), 470
pci_write_rom (C function), 472
pci_write_vpd (C function), 464
pcie_flr (C function), 454
pcie_get_minimum_link (C function), 457
pcie_get_mps (C function), 457
pcie_get_readrq (C function), 456
pcie_set_mps (C function), 457
pcie_set_readrq (C function), 457
pcim_enable_device (C function), 447
pcim_pin_device (C function), 447
pcix_get_max_mmrbc (C function), 456
pcix_get_mmrbc (C function), 456
pcix_set_mmrbc (C function), 456
pcm_format_to_bits (C function), 183
phys_to_virt (C function), 129
pid_alive (C function), 9
piix_check_450nx_errata (C function), 639
piix_init_one (C function), 639
piix_pata_prereset (C function), 638
piix_set_dmamode (C function), 639
piix_set_piomode (C function), 638
platform_add_devices (C function), 99
platform_device_add (C function), 100
platform_device_add_data (C function), 99
platform_device_add_properties (C function), 99
platform_device_add_resources (C function), 99
platform_device_alloc (C function), 99
platform_device_del (C function), 100
platform_device_put (C function), 99
platform_device_register (C function), 100
platform_device_register_data (C function), 97

platform_device_register_full (C function), 100
platform_device_register_resndata (C function), 97
platform_device_register_simple (C function), 97
platform_device_unregister (C function), 100
platform_driver_unregister (C function), 101
platform_get_irq (C function), 98
platform_get_irq_byname (C function), 98
platform_get_resource (C function), 98
platform_get_resource_byname (C function), 98
platform_irq_count (C function), 98
platform_nand_chip (C type), 663
platform_nand_ctrl (C type), 664
platform_nand_data (C type), 664
platform_unregister_drivers (C function), 102
pnp_activate_dev (C function), 109
pnp_add_id (C function), 108
pnp_disable_dev (C function), 109
pnp_is_active (C function), 109
pnp_register_card_driver (C function), 108
pnp_register_protocol (C function), 108
pnp_release_card_device (C function), 108
pnp_request_card_device (C function), 108
pnp_start_dev (C function), 108
pnp_stop_dev (C function), 109
pnp_unregister_card_driver (C function), 108
pnp_unregister_protocol (C function), 108
pre_voltage_change_data (C type), 219
preempt_notifier_register (C function), 10
preempt_notifier_unregister (C function), 10
preempt_schedule_notrace (C function), 10
prev_cputime (C type), 8
printk (C function), 56
printk_timed_ratelimit (C function), 58
priv_to_wiphy (C function), 811
probe_type (C type), 74
proc_print_scsidevice (C function), 548
proc_scsi_open (C function), 549
proc_scsi_write (C function), 549
ptrace_trap_notify (C function), 42
put_device (C function), 85
pwm_adjust_config (C function), 711
pwm_apply_state (C function), 711
pwm_args (C type), 705
pwm_capture (C function), 711
pwm_capture (C type), 708
pwm_chip (C type), 708
pwm_config (C function), 708
pwm_device (C type), 705
pwm_disable (C function), 709
pwm_enable (C function), 709
pwm_free (C function), 710
pwm_get (C function), 711
pwm_get_chip_data (C function), 709
pwm_get_relative_duty_cycle (C function), 706
pwm_get_state (C function), 706
pwm_init_state (C function), 706
pwm_ops (C type), 707
pwm_polarity (C type), 705

968 Index

The kernel driver API manual, Release 4.13.0-rc4+

pwm_put (C function), 712
pwm_request (C function), 710
pwm_request_from_chip (C function), 710
pwm_set_chip_data (C function), 709
pwm_set_polarity (C function), 709
pwm_set_relative_duty_cycle (C function), 707
pwmchip_add (C function), 710
pwmchip_add_with_polarity (C function), 709
pwmchip_remove (C function), 710

Q
queue_delayed_work (C function), 34
queue_delayed_work_on (C function), 36
queue_work (C function), 34
queue_work_on (C function), 36

R
rank_info (C type), 526
rate_control_send_low (C function), 901
rate_info (C type), 826
rate_info_flags (C type), 825
rcu_barrier (C function), 63
rcu_barrier_bh (C function), 62
rcu_barrier_sched (C function), 62
rcu_barrier_tasks (C function), 66
rcu_expedite_gp (C function), 64
rcu_idle_enter (C function), 59
rcu_idle_exit (C function), 60
rcu_is_watching (C function), 60
rcu_read_lock_bh_held (C function), 64
rcu_read_lock_held (C function), 64
rcu_read_lock_sched_held (C function), 63
rcu_unexpedite_gp (C function), 64
rdev_get_drvdata (C function), 237
rdev_get_id (C function), 238
read_abs_bbt (C function), 684
read_abs_bbts (C function), 685
read_bbt (C function), 684
reciprocal_scale (C function), 54
register_adapter_interrupt (C function), 780
register_framebuffer (C function), 211
register_sound_dsp (C function), 176
register_sound_midi (C function), 176
register_sound_mixer (C function), 176
register_sound_special_device (C function), 176
register_syscore_ops (C function), 90
regulation_constraints (C type), 220
regulator_allow_bypass (C function), 234
regulator_bulk_data (C type), 219
regulator_bulk_disable (C function), 235
regulator_bulk_enable (C function), 235
regulator_bulk_force_disable (C function), 236
regulator_bulk_free (C function), 236
regulator_bulk_get (C function), 235
regulator_bulk_register_supply_alias (C function),

229
regulator_bulk_unregister_supply_alias (C function),

229

regulator_config (C type), 227
regulator_consumer_supply (C type), 221
regulator_count_voltages (C function), 230
regulator_desc (C type), 224
regulator_disable (C function), 229
regulator_disable_deferred (C function), 230
regulator_enable (C function), 229
regulator_force_disable (C function), 230
regulator_get (C function), 227
regulator_get_current_limit (C function), 233
regulator_get_drvdata (C function), 238
regulator_get_error_flags (C function), 234
regulator_get_exclusive (C function), 227
regulator_get_hardware_vsel_register (C function),

231
regulator_get_linear_step (C function), 231
regulator_get_mode (C function), 234
regulator_get_optional (C function), 228
regulator_get_voltage (C function), 233
regulator_has_full_constraints (C function), 237
regulator_init_data (C type), 222
regulator_is_enabled (C function), 230
regulator_is_supported_voltage (C function), 231
regulator_linear_range (C type), 222
regulator_list_hardware_vsel (C function), 231
regulator_list_voltage (C function), 231
regulator_mode_to_status (C function), 236
regulator_notifier_call_chain (C function), 236
regulator_ops (C type), 222
regulator_put (C function), 228
regulator_register (C function), 236
regulator_register_notifier (C function), 235
regulator_register_supply_alias (C function), 228
regulator_set_current_limit (C function), 233
regulator_set_drvdata (C function), 238
regulator_set_load (C function), 234
regulator_set_mode (C function), 233
regulator_set_voltage (C function), 232
regulator_set_voltage_time (C function), 232
regulator_set_voltage_time_sel (C function), 232
regulator_state (C type), 219
regulator_suspend_finish (C function), 237
regulator_suspend_prepare (C function), 237
regulator_sync_voltage (C function), 233
regulator_unregister (C function), 237
regulator_unregister_notifier (C function), 235
regulator_unregister_supply_alias (C function), 229
regulatory_hint (C function), 851
reinit_completion (C function), 16
release_firmware (C function), 93
request_firmware (C function), 93, 925
request_firmware_direct (C function), 93, 925
request_firmware_into_buf (C function), 93, 925
request_firmware_nowait (C function), 94, 926
reservation_object (C type), 146
reservation_object_add_excl_fence (C function),

145

Index 969

The kernel driver API manual, Release 4.13.0-rc4+

reservation_object_add_shared_fence (C function),
145

reservation_object_fini (C function), 146
reservation_object_get_excl (C function), 147
reservation_object_get_excl_rcu (C function), 147
reservation_object_get_fences_rcu (C function), 145
reservation_object_get_list (C function), 147
reservation_object_init (C function), 146
reservation_object_list (C type), 146
reservation_object_lock (C function), 147
reservation_object_reserve_shared (C function),

144
reservation_object_test_signaled_rcu (C function),

145
reservation_object_trylock (C function), 147
reservation_object_unlock (C function), 147
reservation_object_wait_timeout_rcu (C function),

145
rio_add_device (C function), 733
rio_add_inb_buffer (C function), 731
rio_add_mport_pw_handler (C function), 735
rio_add_outb_message (C function), 731
rio_alloc_net (C function), 733
rio_basic_attach (C function), 754
rio_build_route_tables (C function), 754
rio_bus_init (C function), 758
rio_chk_dev_access (C function), 755
rio_chk_dev_route (C function), 754
rio_clear_locks (C function), 751
rio_clr_err_stopped (C function), 755
rio_dbell (C type), 745
rio_del_mport_pw_handler (C function), 735
rio_destid_alloc (C function), 749
rio_destid_first (C function), 750
rio_destid_free (C function), 750
rio_destid_next (C function), 750
rio_destid_reserve (C function), 750
rio_dev (C type), 743
rio_dev_get (C function), 732
rio_dev_put (C function), 732
RIO_DEVICE (C function), 730
rio_device_has_destid (C function), 751
rio_device_id (C type), 5
rio_device_probe (C function), 757
rio_device_remove (C function), 757
rio_disc_mport (C function), 754
rio_disc_peer (C function), 753
rio_dma_prep_slave_sg (C function), 741
rio_dma_prep_xfer (C function), 741
rio_driver (C type), 748
rio_enable_rx_tx_port (C function), 738
rio_enum_complete (C function), 752
rio_enum_host (C function), 751
rio_enum_mport (C function), 753
rio_enum_peer (C function), 752
rio_find_mport (C function), 756
rio_get_asm (C function), 739
rio_get_comptag (C function), 737

rio_get_device (C function), 739
rio_get_device_id (C function), 750
rio_get_drvdata (C function), 731
rio_get_host_deviceid_lock (C function), 752
rio_get_inb_message (C function), 731
rio_get_input_status (C function), 755
rio_inb_pwrite_handler (C function), 738
rio_init_dbell_res (C function), 730
rio_init_em (C function), 753
rio_init_mbox_res (C function), 730
rio_is_switch (C function), 751
rio_local_get_device_id (C function), 732
rio_local_read_config_16 (C function), 728
rio_local_read_config_32 (C function), 727
rio_local_read_config_8 (C function), 728
rio_local_set_device_id (C function), 733
rio_local_write_config_16 (C function), 728
rio_local_write_config_32 (C function), 728
rio_local_write_config_8 (C function), 728
rio_lock_device (C function), 739
RIO_LOP_READ (C function), 756
RIO_LOP_WRITE (C function), 756
rio_map_inb_region (C function), 736
rio_map_outb_region (C function), 736
rio_match_bus (C function), 758
rio_match_device (C function), 757
rio_mport (C type), 745
rio_mport_attr (C type), 747
rio_mport_chk_dev_access (C function), 738
rio_mport_get_efb (C function), 738
rio_mport_get_feature (C function), 738
rio_mport_get_physefb (C function), 737
rio_mport_is_active (C function), 753
rio_mport_scan (C function), 756
rio_msg (C type), 745
rio_name (C function), 731
rio_net (C type), 746
RIO_OP_READ (C function), 757
RIO_OP_WRITE (C function), 757
rio_ops (C type), 747
rio_pw_enable (C function), 736
rio_query_mport (C function), 733
rio_read_config_16 (C function), 729
rio_read_config_32 (C function), 729
rio_read_config_8 (C function), 729
rio_register_driver (C function), 732
rio_register_scan (C function), 742
rio_release_dev (C function), 751
rio_release_dma (C function), 741
rio_release_inb_dbell (C function), 734
rio_release_inb_mbox (C function), 734
rio_release_inb_pwrite (C function), 736
rio_release_outb_dbell (C function), 735
rio_release_outb_mbox (C function), 734
rio_request_dma (C function), 741
rio_request_inb_dbell (C function), 734
rio_request_inb_mbox (C function), 733
rio_request_inb_pwrite (C function), 736

970 Index

The kernel driver API manual, Release 4.13.0-rc4+

rio_request_mport_dma (C function), 741
rio_request_outb_dbell (C function), 735
rio_request_outb_mbox (C function), 734
rio_route_add_entry (C function), 740
rio_route_clr_table (C function), 740
rio_route_get_entry (C function), 740
rio_scan (C type), 749
rio_scan_node (C type), 749
rio_send_doorbell (C function), 730
rio_set_device_id (C function), 750
rio_set_drvdata (C function), 731
rio_set_port_lockout (C function), 737
rio_setup_device (C function), 751
rio_setup_inb_dbell (C function), 754
rio_sport_is_active (C function), 752
rio_std_route_add_entry (C function), 755
rio_std_route_clr_table (C function), 756
rio_std_route_get_entry (C function), 755
rio_switch (C type), 742
rio_switch_ops (C type), 743
rio_unlock_device (C function), 739
rio_unmap_inb_region (C function), 736
rio_unmap_outb_region (C function), 737
rio_unregister_driver (C function), 732
rio_unregister_scan (C function), 742
rio_update_route_tables (C function), 753
rio_write_config_16 (C function), 729
rio_write_config_32 (C function), 729
rio_write_config_8 (C function), 730
root_device_unregister (C function), 87
round_jiffies (C function), 17
round_jiffies_relative (C function), 17
round_jiffies_up (C function), 18
round_jiffies_up_relative (C function), 18

S
samples_to_bytes (C function), 178
sas_attach_transport (C function), 567
sas_disable_tlr (C function), 563
sas_enable_tlr (C function), 563
sas_end_device_alloc (C function), 565
sas_expander_alloc (C function), 566
sas_get_address (C function), 563
sas_phy_add (C function), 564
sas_phy_alloc (C function), 563
sas_phy_delete (C function), 564
sas_phy_free (C function), 564
sas_port_add (C function), 564
sas_port_add_phy (C function), 565
sas_port_delete (C function), 565
sas_port_delete_phy (C function), 565
sas_port_free (C function), 564
sas_port_get_phy (C function), 565
sas_release_transport (C function), 567
sas_remove_children (C function), 562
sas_remove_host (C function), 563
sas_rphy_add (C function), 566
sas_rphy_delete (C function), 566

sas_rphy_free (C function), 566
sas_rphy_remove (C function), 566
sas_rphy_unlink (C function), 566
sas_tlr_supported (C function), 563
sata_async_notification (C function), 610
sata_down_spd_limit (C function), 599
sata_link_debounce (C function), 584
sata_link_hardreset (C function), 585
sata_link_init_spd (C function), 604
sata_link_resume (C function), 584
sata_link_scr_lpm (C function), 585
sata_lpm_ignore_phy_events (C function), 593
sata_print_link_status (C function), 598
sata_scr_read (C function), 588
sata_scr_valid (C function), 588
sata_scr_write (C function), 588
sata_scr_write_flush (C function), 588
sata_set_spd (C function), 583
sata_set_spd_needed (C function), 599
sata_std_hardreset (C function), 586
scan_read_oob (C function), 684
sched_setscheduler (C function), 10
sched_setscheduler_nocheck (C function), 11
schedule_delayed_work (C function), 36
schedule_delayed_work_on (C function), 35
schedule_hrtimeout (C function), 32
schedule_hrtimeout_range (C function), 32
schedule_timeout (C function), 20
schedule_work (C function), 35
schedule_work_on (C function), 35
scrub_type (C type), 524
scsi_10_lba_len (C function), 624
scsi_16_lba_len (C function), 624
scsi_6_lba_len (C function), 624
scsi_add_host_with_dma (C function), 554
scsi_add_lun (C function), 552
scsi_add_single_device (C function), 548
scsi_alloc_sdev (C function), 550
scsi_alloc_target (C function), 551
scsi_bios_ptable (C function), 538
scsi_block_when_processing_errors (C function),

539
scsi_change_queue_depth (C function), 535
scsi_check_sense (C function), 539
scsi_cmd_get_serial (C function), 535
scsi_complete_async_scans (C function), 550
scsi_dev_info_list_add (C function), 541
scsi_dev_info_list_add_str (C function), 542
scsi_dev_info_list_find (C function), 541
scsi_device_from_queue (C function), 543
scsi_device_get (C function), 536
scsi_device_lookup (C function), 538
scsi_device_lookup_by_target (C function), 537
scsi_device_put (C function), 536
scsi_device_quiesce (C function), 545
scsi_device_resume (C function), 546
scsi_device_set_state (C function), 545
scsi_device_supports_vpd (C function), 534

Index 971

The kernel driver API manual, Release 4.13.0-rc4+

scsi_dma_map (C function), 547
scsi_dma_unmap (C function), 547
scsi_eh_finish_cmd (C function), 540
scsi_eh_flush_done_q (C function), 541
scsi_eh_get_sense (C function), 540
scsi_eh_prep_cmnd (C function), 539
scsi_eh_ready_devs (C function), 540
scsi_eh_restore_cmnd (C function), 540
scsi_execute (C function), 543
scsi_exit_devinfo (C function), 542
scsi_exit_procfs (C function), 549
scsi_finish_async_scan (C function), 553
scsi_flush_work (C function), 555
scsi_get_device_flags (C function), 542
scsi_get_sense_info_fld (C function), 541
scsi_get_vpd_page (C function), 535
scsi_host_alloc (C function), 555
scsi_host_get (C function), 555
scsi_host_lookup (C function), 555
scsi_host_put (C function), 555
scsi_host_set_state (C function), 554
scsi_init_devinfo (C function), 542
scsi_init_procfs (C function), 549
scsi_initialize_rq (C function), 543
scsi_inq_str (C function), 552
scsi_internal_device_block_nowait (C function), 546
scsi_internal_device_unblock_nowait (C function),

546
scsi_ioctl (C function), 543
scsi_ioctl_reset (C function), 541
scsi_is_sas_phy (C function), 564
scsi_is_sas_port (C function), 565
scsi_is_sas_rphy (C function), 567
scsi_kmap_atomic_sg (C function), 546
scsi_kunmap_atomic_sg (C function), 547
scsi_mode_select (C function), 544
scsi_mode_sense (C function), 544
scsi_netlink_exit (C function), 550
scsi_netlink_init (C function), 550
scsi_nl_rcv_msg (C function), 550
scsi_partsize (C function), 538
scsi_prep_async_scan (C function), 553
scsi_probe_and_add_lun (C function), 552
scsi_probe_lun (C function), 551
scsi_proc_host_add (C function), 548
scsi_proc_host_rm (C function), 548
scsi_proc_hostdir_add (C function), 548
scsi_proc_hostdir_rm (C function), 548
scsi_queue_work (C function), 555
scsi_remove_device (C function), 554
scsi_remove_host (C function), 554
scsi_remove_single_device (C function), 548
scsi_remove_target (C function), 554
scsi_report_lun_scan (C function), 553
scsi_report_opcode (C function), 536
scsi_schedule_eh (C function), 539
scsi_sequential_lun_scan (C function), 552
scsi_target_reap (C function), 551

scsi_target_reap_ref_release (C function), 551
scsi_test_unit_ready (C function), 544
scsi_track_queue_full (C function), 535
scsi_unlock_floptical (C function), 550
scsi_vpd_lun_id (C function), 547
scsicam_bios_param (C function), 538
sdev_evt_alloc (C function), 545
sdev_evt_send (C function), 545
sdev_evt_send_simple (C function), 545
search_bbt (C function), 685
search_read_bbts (C function), 685
seqno_fence_init (C function), 155
serial8250_get_port (C function), 702
serial8250_register_8250_port (C function), 702
serial8250_resume_port (C function), 702
serial8250_suspend_port (C function), 702
serial8250_unregister_port (C function), 703
set_current_blocked (C function), 43
SET_IEEE80211_DEV (C function), 858
SET_IEEE80211_PERM_ADDR (C function), 858
set_key_cmd (C type), 886
set_primary_fwnode (C function), 89
set_wiphy_dev (C function), 811
shost_for_each_device (C function), 534
signal_delivered (C function), 43
sil_dev_config (C function), 640
sil_set_mode (C function), 640
single_erase (C function), 681
snd_BUG (C function), 175
snd_BUG_ON (C function), 175
snd_card_add_dev_attr (C function), 194
snd_card_disconnect (C function), 193
snd_card_file_add (C function), 195
snd_card_file_remove (C function), 195
snd_card_free (C function), 194
snd_card_free_when_closed (C function), 194
snd_card_new (C function), 193
snd_card_register (C function), 194
snd_card_set_id (C function), 194
snd_component_add (C function), 195
snd_ctl_activate_id (C function), 198
snd_ctl_add (C function), 197
snd_ctl_boolean_mono_info (C function), 199
snd_ctl_boolean_stereo_info (C function), 199
snd_ctl_enum_info (C function), 200
snd_ctl_find_id (C function), 199
snd_ctl_find_numid (C function), 198
snd_ctl_free_one (C function), 197
snd_ctl_new1 (C function), 196
snd_ctl_notify (C function), 196
snd_ctl_register_ioctl (C function), 199
snd_ctl_register_ioctl_compat (C function), 199
snd_ctl_remove (C function), 197
snd_ctl_remove_id (C function), 198
snd_ctl_rename_id (C function), 198
snd_ctl_replace (C function), 197
snd_ctl_unregister_ioctl (C function), 199
snd_ctl_unregister_ioctl_compat (C function), 199

972 Index

The kernel driver API manual, Release 4.13.0-rc4+

snd_device_disconnect (C function), 185
snd_device_free (C function), 185
snd_device_initialize (C function), 193
snd_device_new (C function), 185
snd_device_register (C function), 186
snd_dma_alloc_pages (C function), 209
snd_dma_alloc_pages_fallback (C function), 210
snd_dma_disable (C function), 196
snd_dma_free_pages (C function), 210
snd_dma_pointer (C function), 196
snd_dma_program (C function), 196
snd_free_pages (C function), 209
snd_hwdep_new (C function), 206
snd_info_create_card_entry (C function), 187
snd_info_create_module_entry (C function), 186
snd_info_free_entry (C function), 187
snd_info_get_line (C function), 186
snd_info_get_str (C function), 186
snd_info_register (C function), 187
snd_interval_list (C function), 201
snd_interval_ranges (C function), 201
snd_interval_ratnum (C function), 201
snd_interval_refine (C function), 200
snd_lookup_minor_data (C function), 190
snd_malloc_pages (C function), 209
snd_pcm_add_chmap_ctls (C function), 206
snd_pcm_capture_avail (C function), 179
snd_pcm_capture_empty (C function), 180
snd_pcm_capture_hw_avail (C function), 179
snd_pcm_capture_ready (C function), 179
snd_pcm_chmap_substream (C function), 183
snd_pcm_format_cpu_endian (C function), 181
snd_pcm_format_name (C function), 183
snd_pcm_gettime (C function), 182
snd_pcm_group_for_each_entry (C function), 178
snd_pcm_hw_constraint_integer (C function), 202
snd_pcm_hw_constraint_list (C function), 203
snd_pcm_hw_constraint_mask64 (C function), 202
snd_pcm_hw_constraint_minmax (C function), 202
snd_pcm_hw_constraint_msbits (C function), 204
snd_pcm_hw_constraint_pow2 (C function), 204
snd_pcm_hw_constraint_ranges (C function), 203
snd_pcm_hw_constraint_ratdens (C function), 203
snd_pcm_hw_constraint_ratnums (C function), 203
snd_pcm_hw_constraint_single (C function), 181
snd_pcm_hw_constraint_step (C function), 204
snd_pcm_hw_param_first (C function), 205
snd_pcm_hw_param_last (C function), 205
snd_pcm_hw_param_value (C function), 205
snd_pcm_hw_rule_add (C function), 201
snd_pcm_hw_rule_noresample (C function), 205
snd_pcm_kernel_ioctl (C function), 208
snd_pcm_lib_alloc_vmalloc_32_buffer (C function),

182
snd_pcm_lib_alloc_vmalloc_buffer (C function), 182
snd_pcm_lib_buffer_bytes (C function), 179
snd_pcm_lib_default_mmap (C function), 208
snd_pcm_lib_free_pages (C function), 192

snd_pcm_lib_free_vmalloc_buffer (C function), 192
snd_pcm_lib_get_vmalloc_page (C function), 193
snd_pcm_lib_ioctl (C function), 206
snd_pcm_lib_malloc_pages (C function), 192
snd_pcm_lib_mmap_iomem (C function), 209
snd_pcm_lib_period_bytes (C function), 179
snd_pcm_lib_preallocate_free_for_all (C function),

191
snd_pcm_lib_preallocate_pages (C function), 191
snd_pcm_lib_preallocate_pages_for_all (C function),

191
snd_pcm_limit_isa_dma_size (C function), 183
snd_pcm_mmap_data_close (C function), 183
snd_pcm_mmap_data_open (C function), 183
snd_pcm_new (C function), 184
snd_pcm_new_internal (C function), 184
snd_pcm_new_stream (C function), 184
snd_pcm_notify (C function), 185
snd_pcm_period_elapsed (C function), 206
snd_pcm_playback_avail (C function), 179
snd_pcm_playback_data (C function), 180
snd_pcm_playback_empty (C function), 180
snd_pcm_playback_hw_avail (C function), 179
snd_pcm_playback_ready (C function), 179
snd_pcm_running (C function), 178
snd_pcm_set_ops (C function), 200
snd_pcm_set_runtime_buffer (C function), 181
snd_pcm_set_sync (C function), 200
snd_pcm_sgbuf_get_addr (C function), 182
snd_pcm_sgbuf_get_chunk_size (C function), 182
snd_pcm_sgbuf_get_ptr (C function), 182
snd_pcm_sgbuf_ops_page (C function), 192
snd_pcm_stop (C function), 207
snd_pcm_stop_xrun (C function), 208
snd_pcm_stream_linked (C function), 177
snd_pcm_stream_lock (C function), 207
snd_pcm_stream_lock_irq (C function), 207
snd_pcm_stream_lock_irqsave (C function), 177
snd_pcm_stream_str (C function), 183
snd_pcm_stream_unlock (C function), 207
snd_pcm_stream_unlock_irq (C function), 207
snd_pcm_stream_unlock_irqrestore (C function),

207
snd_pcm_suspend (C function), 208
snd_pcm_suspend_all (C function), 208
snd_pcm_trigger_done (C function), 180
snd_power_wait (C function), 195
snd_printd (C function), 175
snd_printd_ratelimit (C function), 175
snd_printdd (C function), 175
snd_printk (C function), 175
snd_rawmidi_new (C function), 189
snd_rawmidi_receive (C function), 187
snd_rawmidi_set_ops (C function), 189
snd_rawmidi_transmit (C function), 189
snd_rawmidi_transmit_ack (C function), 188
snd_rawmidi_transmit_empty (C function), 187
snd_rawmidi_transmit_peek (C function), 188

Index 973

The kernel driver API manual, Release 4.13.0-rc4+

snd_register_device (C function), 190
snd_request_card (C function), 189
snd_unregister_device (C function), 190
sparse_keymap_entry_from_keycode (C function),

281
sparse_keymap_entry_from_scancode (C function),

280
sparse_keymap_report_entry (C function), 281
sparse_keymap_report_event (C function), 281
sparse_keymap_setup (C function), 281
spi_add_device (C function), 489
spi_alloc_device (C function), 488
spi_async (C function), 493
spi_async_locked (C function), 494
spi_board_info (C type), 487
spi_bus_lock (C function), 495
spi_bus_unlock (C function), 496
spi_busnum_to_master (C function), 492
spi_controller (C type), 478
spi_device (C type), 476
spi_display_xfer_agreement (C function), 567
spi_driver (C type), 477
spi_finalize_current_message (C function), 490
spi_finalize_current_transfer (C function), 490
spi_flash_read_message (C type), 486
spi_get_next_queued_message (C function), 490
spi_message (C type), 483
spi_message_init_with_transfers (C function), 484
spi_new_device (C function), 489
spi_populate_tag_msg (C function), 567
spi_read (C function), 485
spi_register_board_info (C function), 488
spi_register_controller (C function), 491
spi_replace_transfers (C function), 492
spi_replaced_transfers (C type), 484
spi_res (C type), 481
spi_res_add (C function), 492
spi_res_alloc (C function), 492
spi_res_free (C function), 492
spi_res_release (C function), 492
spi_schedule_dv_device (C function), 567
spi_setup (C function), 493
spi_slave_abort (C function), 490
spi_split_transfers_maxsize (C function), 493
spi_statistics (C type), 475
spi_sync (C function), 495
spi_sync_locked (C function), 495
spi_sync_transfer (C function), 485
spi_transfer (C type), 482
spi_unregister_controller (C function), 491
spi_unregister_device (C function), 489
spi_unregister_driver (C function), 478
spi_w8r16 (C function), 486
spi_w8r16be (C function), 486
spi_w8r8 (C function), 485
spi_write (C function), 485
spi_write_then_read (C function), 496
srp_attach_transport (C function), 570

srp_reconnect_rport (C function), 568
srp_release_transport (C function), 570
srp_remove_host (C function), 569
srp_rport_add (C function), 569
srp_rport_del (C function), 569
srp_rport_get (C function), 569
srp_rport_put (C function), 569
srp_start_tl_fail_timers (C function), 568
srp_stop_rport_timers (C function), 569
srp_timed_out (C function), 569
srp_tmo_valid (C function), 568
sta_ampdu_mlme (C type), 905
sta_info (C type), 902
sta_notify_cmd (C type), 896
starget_for_each_device (C function), 536
station_info (C type), 826
station_parameters (C type), 824
sublog (C type), 763
subsys_dev_iter_exit (C function), 105
subsys_dev_iter_init (C function), 104
subsys_dev_iter_next (C function), 104
subsys_find_device_by_id (C function), 103
subsys_interface (C type), 75
subsys_system_register (C function), 105
subsys_virtual_register (C function), 105
survey_info (C type), 822
survey_info_flags (C type), 821
swap_buf_le16 (C function), 602
sync_file (C type), 158
sync_file_create (C function), 157
sync_file_get_fence (C function), 157
synchronize_rcu (C function), 63
synchronize_rcu_bh (C function), 61
synchronize_rcu_tasks (C function), 66
synchronize_sched (C function), 61
sys_kill (C function), 44
sys_restart_syscall (C function), 43
sys_rt_sigaction (C function), 45
sys_rt_sigpending (C function), 43
sys_rt_sigprocmask (C function), 43
sys_rt_sigqueueinfo (C function), 44
sys_rt_sigsuspend (C function), 45
sys_rt_sigtimedwait (C function), 44
sys_sigpending (C function), 44
sys_sigprocmask (C function), 45
sys_tgkill (C function), 44
sys_tkill (C function), 44
syscore_resume (C function), 90
syscore_suspend (C function), 90

T
task_clear_jobctl_pending (C function), 41
task_clear_jobctl_trapping (C function), 41
task_cputime (C type), 9
task_nice (C function), 9
task_participate_group_stop (C function), 41
task_set_jobctl_pending (C function), 40
tid_ampdu_rx (C type), 907

974 Index

The kernel driver API manual, Release 4.13.0-rc4+

tid_ampdu_tx (C type), 906
to_dma_fence_array (C function), 157
to_seqno_fence (C function), 155
trace_printk (C function), 55
trace_puts (C function), 55
transport_add_device (C function), 95
transport_class_register (C function), 94
transport_class_unregister (C function), 94
transport_configure_device (C function), 95
transport_destroy_device (C function), 96
transport_remove_device (C function), 95
transport_setup_device (C function), 95
try_to_del_timer_sync (C function), 19
typec_altmode_update_active (C function), 439
typec_cable_set_identity (C function), 437
typec_partner_register_altmode (C function), 438
typec_partner_set_identity (C function), 435
typec_plug_register_altmode (C function), 438
typec_port_register_altmode (C function), 438
typec_register_cable (C function), 436
typec_register_partner (C function), 435
typec_register_plug (C function), 436
typec_register_port (C function), 434
typec_set_data_role (C function), 437
typec_set_pwr_opmode (C function), 438
typec_set_pwr_role (C function), 437
typec_set_vconn_role (C function), 437
typec_unregister_altmode (C function), 439
typec_unregister_cable (C function), 437
typec_unregister_partner (C function), 435
typec_unregister_plug (C function), 436
typec_unregister_port (C function), 435

U
uart_add_one_port (C function), 701
uart_console_write (C function), 699
uart_get_baud_rate (C function), 699
uart_get_divisor (C function), 699
uart_handle_cts_change (C function), 701
uart_handle_dcd_change (C function), 701
uart_insert_char (C function), 702
uart_parse_earlycon (C function), 700
uart_parse_options (C function), 700
uart_register_driver (C function), 700
uart_remove_one_port (C function), 701
uart_set_options (C function), 700
uart_unregister_driver (C function), 701
uart_update_timeout (C function), 699
uio_event_notify (C function), 109
uio_info (C type), 110
uio_mem (C type), 110
uio_port (C type), 110
uio_unregister_device (C function), 109
unregister_adapter_interrupt (C function), 780
unregister_framebuffer (C function), 211
unregister_node (C function), 92
unregister_sound_dsp (C function), 177
unregister_sound_midi (C function), 177

unregister_sound_mixer (C function), 177
unregister_sound_special (C function), 177
unregister_syscore_ops (C function), 90
update_cfs_rq_load_avg (C function), 13
update_sd_lb_stats (C function), 15
update_sd_pick_busiest (C function), 14
update_sg_lb_stats (C function), 14
update_tg_load_avg (C function), 12
upper_32_bits (C function), 53
urb (C type), 296
usb_add_config (C function), 364
usb_add_function (C function), 363
usb_add_hcd (C function), 331
usb_alloc_coherent (C function), 323
usb_alloc_dev (C function), 321
usb_alloc_streams (C function), 329
usb_alloc_urb (C function), 301
usb_altnum_to_altsetting (C function), 321
usb_anchor_empty (C function), 307
usb_anchor_resume_wakeups (C function), 307
usb_anchor_suspend_wakeups (C function), 306
usb_anchor_urb (C function), 302
usb_autopm_get_interface (C function), 318
usb_autopm_get_interface_async (C function), 319
usb_autopm_get_interface_no_resume (C function),

319
usb_autopm_put_interface (C function), 318
usb_autopm_put_interface_async (C function), 318
usb_autopm_put_interface_no_suspend (C func-

tion), 318
usb_block_urb (C function), 306
usb_buffer_dmasync (C function), 324
usb_buffer_dmasync_sg (C function), 325
usb_buffer_map (C function), 324
usb_buffer_map_sg (C function), 324
usb_buffer_unmap (C function), 324
usb_buffer_unmap_sg (C function), 325
usb_bulk_msg (C function), 309
usb_bus_start_enum (C function), 330
usb_calc_bus_time (C function), 327
usb_class_driver (C type), 295
usb_clear_halt (C function), 312
usb_composite_dev (C type), 362
usb_composite_driver (C type), 361
usb_composite_probe (C function), 366
usb_composite_setup_continue (C function), 366
usb_composite_unregister (C function), 366
usb_configuration (C type), 360
usb_control_msg (C function), 308
usb_copy_descriptors (C function), 357
usb_create_hcd (C function), 331
usb_create_shared_hcd (C function), 330
usb_deregister (C function), 317
usb_deregister_dev (C function), 314
usb_deregister_device_driver (C function), 316
usb_descriptor_fillbuf (C function), 356
USB_DEVICE (C function), 291
usb_device (C type), 288

Index 975

The kernel driver API manual, Release 4.13.0-rc4+

USB_DEVICE_AND_INTERFACE_INFO (C function),
293

usb_device_driver (C type), 295
usb_device_id (C type), 3
USB_DEVICE_INFO (C function), 292
USB_DEVICE_INTERFACE_CLASS (C function), 292
USB_DEVICE_INTERFACE_NUMBER (C function), 292
USB_DEVICE_INTERFACE_PROTOCOL (C function),

292
USB_DEVICE_VER (C function), 291
usb_disable_autosuspend (C function), 317
usb_driver (C type), 293
usb_driver_claim_interface (C function), 315
usb_driver_release_interface (C function), 315
usb_driver_set_configuration (C function), 313
usb_enable_autosuspend (C function), 317
usb_ep (C type), 349
usb_ep_align (C function), 352
usb_ep_align_maybe (C function), 352
usb_ep_caps (C type), 349
usb_fill_bulk_urb (C function), 299
usb_fill_control_urb (C function), 299
usb_fill_int_urb (C function), 300
usb_find_alt_setting (C function), 320
usb_find_common_endpoints (C function), 319
usb_find_common_endpoints_reverse (C function),

319
usb_find_interface (C function), 321
usb_for_each_dev (C function), 321
usb_free_coherent (C function), 323
usb_free_descriptors (C function), 355
usb_free_streams (C function), 329
usb_free_urb (C function), 301
usb_function (C type), 358
usb_function_activate (C function), 364
usb_function_deactivate (C function), 363
usb_gadget (C type), 350
usb_gadget_config_buf (C function), 356
usb_gadget_driver (C type), 353
usb_gadget_get_string (C function), 356
usb_gadget_probe_driver (C function), 354
usb_gadget_strings (C type), 355
usb_gadget_unregister_driver (C function), 355
usb_get_current_frame_number (C function), 323
usb_get_descriptor (C function), 311
usb_get_dev (C function), 322
usb_get_from_anchor (C function), 307
usb_get_intf (C function), 322
usb_get_maximum_speed (C function), 284
usb_get_status (C function), 311
usb_get_urb (C function), 302
usb_gstrings_attach (C function), 365
usb_hc_died (C function), 330
usb_hcd_check_unlink_urb (C function), 328
usb_hcd_giveback_urb (C function), 328
usb_hcd_irq (C function), 330
usb_hcd_link_urb_to_ep (C function), 328
usb_hcd_pci_probe (C function), 331

usb_hcd_pci_remove (C function), 332
usb_hcd_pci_shutdown (C function), 332
usb_hcd_resume_root_hub (C function), 329
usb_hcd_unlink_urb_from_ep (C function), 328
usb_host_config (C type), 287
usb_host_endpoint (C type), 285
usb_hub_clear_tt_buffer (C function), 325
usb_hub_find_child (C function), 327
usb_hub_for_each_child (C function), 290
usb_ifnum_to_if (C function), 320
usb_init_urb (C function), 301
usb_interface (C type), 285
usb_interface_cache (C type), 287
usb_interface_claimed (C function), 291
usb_interface_id (C function), 364
USB_INTERFACE_INFO (C function), 292
usb_interrupt_msg (C function), 308
usb_kill_anchored_urbs (C function), 306
usb_kill_urb (C function), 305
usb_lock_device_for_reset (C function), 322
usb_make_path (C function), 291
usb_match_id (C function), 315
usb_os_desc (C type), 357
usb_os_desc_ext_prop (C type), 357
usb_os_desc_table (C type), 358
usb_poison_anchored_urbs (C function), 306
usb_poison_urb (C function), 305
usb_put_dev (C function), 322
usb_put_intf (C function), 322
usb_queue_reset_device (C function), 326
usb_register_dev (C function), 314
usb_register_device_driver (C function), 316
usb_register_driver (C function), 317
usb_remove_hcd (C function), 331
usb_request (C type), 348
usb_reset_configuration (C function), 313
usb_reset_device (C function), 326
usb_reset_endpoint (C function), 312
usb_root_hub_lost_power (C function), 326
usb_scuttle_anchored_urbs (C function), 307
usb_set_device_state (C function), 325
usb_set_interface (C function), 312
usb_sg_cancel (C function), 310
usb_sg_init (C function), 309
usb_sg_request (C type), 300
usb_sg_wait (C function), 310
usb_speed_string (C function), 284
usb_state_string (C function), 284
usb_string (C function), 311
usb_string (C type), 355
usb_string_id (C function), 365
usb_string_ids_n (C function), 365
usb_string_ids_tab (C function), 365
usb_submit_urb (C function), 302
usb_unanchor_urb (C function), 302
usb_unlink_anchored_urbs (C function), 306
usb_unlink_urb (C function), 304
usb_unpoison_anchored_urbs (C function), 306

976 Index

The kernel driver API manual, Release 4.13.0-rc4+

usb_urb_dir_in (C function), 300
usb_urb_dir_out (C function), 300
USB_VENDOR_AND_INTERFACE_INFO (C function),

293
usb_wait_anchor_empty_timeout (C function), 307
usbdrv_wrap (C type), 293
usleep_range (C function), 21

V
verify_bbt_descr (C function), 687
vif_params (C type), 820
virt_to_phys (C function), 129
vme_alloc_consistent (C function), 787
vme_bus_num (C function), 797
vme_dev (C type), 787
vme_dma_free (C function), 794
vme_dma_free_attribute (C function), 793
vme_dma_list_add (C function), 793
vme_dma_list_exec (C function), 794
vme_dma_list_free (C function), 794
vme_dma_pattern_attribute (C function), 792
vme_dma_pci_attribute (C function), 793
vme_dma_request (C function), 792
vme_dma_vme_attribute (C function), 793
vme_driver (C type), 787
vme_free_consistent (C function), 788
vme_get_size (C function), 788
vme_irq_free (C function), 795
vme_irq_generate (C function), 795
vme_irq_request (C function), 794
vme_lm_attach (C function), 796
vme_lm_count (C function), 795
vme_lm_detach (C function), 796
vme_lm_free (C function), 797
vme_lm_get (C function), 796
vme_lm_request (C function), 795
vme_lm_set (C function), 796
vme_master_free (C function), 792
vme_master_get (C function), 790
vme_master_mmap (C function), 792
vme_master_read (C function), 790
vme_master_request (C function), 789
vme_master_rmw (C function), 791
vme_master_set (C function), 790
vme_master_write (C function), 791
vme_new_dma_list (C function), 792
vme_register_driver (C function), 797
vme_slave_free (C function), 789
vme_slave_get (C function), 789
vme_slave_request (C function), 788
vme_slave_set (C function), 788
vme_slot_num (C function), 797
vme_unregister_driver (C function), 798

W
w1_add_master_device (C function), 720
w1_async_cmd (C type), 720
w1_bus_master (C type), 716

w1_cn_msg_flags (C type), 721
w1_commands (C type), 721
w1_family (C type), 718
w1_family_ops (C type), 718
w1_master (C type), 717
w1_master_flags (C type), 717
w1_netlink_cmd (C type), 722
w1_netlink_message_types (C type), 721
w1_netlink_msg (C type), 721
w1_next_pullup (C function), 724
w1_post_write (C function), 724
w1_pre_write (C function), 724
w1_process_callbacks (C function), 719
w1_read_8 (C function), 722
w1_read_bit (C function), 725
w1_read_block (C function), 723
w1_reg_num (C type), 715
w1_register_family (C function), 720
w1_remove_master_device (C function), 720
w1_reset_bus (C function), 723
w1_reset_resume_command (C function), 723
w1_reset_select_slave (C function), 723
w1_search (C function), 719
w1_slave (C type), 715
w1_touch_bit (C function), 724
w1_touch_block (C function), 723
w1_triplet (C function), 722
w1_unregister_family (C function), 720
w1_write_8 (C function), 722
w1_write_bit (C function), 724
w1_write_block (C function), 723
wait_event (C function), 22
wait_event_cmd (C function), 22
wait_event_freezable (C function), 22
wait_event_hrtimeout (C function), 23
wait_event_interruptible (C function), 23
wait_event_interruptible_exclusive_locked (C func-

tion), 25
wait_event_interruptible_exclusive_locked_irq (C

function), 25
wait_event_interruptible_hrtimeout (C function), 24
wait_event_interruptible_lock_irq (C function), 27
wait_event_interruptible_lock_irq_cmd (C function),

26
wait_event_interruptible_lock_irq_timeout (C func-

tion), 27
wait_event_interruptible_locked (C function), 24
wait_event_interruptible_locked_irq (C function), 24
wait_event_interruptible_timeout (C function), 23
wait_event_killable (C function), 25
wait_event_lock_irq (C function), 26
wait_event_lock_irq_cmd (C function), 26
wait_event_timeout (C function), 22
wait_for_device_probe (C function), 96
wait_task_stopped (C function), 40
waitqueue_active (C function), 21
wake_up_process (C function), 10
wakeme_after_rcu (C function), 65

Index 977

The kernel driver API manual, Release 4.13.0-rc4+

wdev_priv (C function), 811
wiphy (C type), 803
wiphy_apply_custom_regulatory (C function), 851
wiphy_dev (C function), 810
wiphy_flags (C type), 803
wiphy_free (C function), 810
wiphy_name (C function), 810
wiphy_new (C function), 809
wiphy_params_flags (C type), 803
wiphy_priv (C function), 811
wiphy_read_of_freq_limits (C function), 810
wiphy_register (C function), 810
wiphy_rfkill_set_hw_state (C function), 852
wiphy_rfkill_start_polling (C function), 852
wiphy_rfkill_stop_polling (C function), 852
wiphy_unregister (C function), 810
wireless_dev (C type), 807
work_busy (C function), 39
work_on_cpu (C function), 40
work_on_cpu_safe (C function), 40
work_pending (C function), 33
workqueue_attrs (C type), 33
workqueue_congested (C function), 39
workqueue_set_max_active (C function), 39
wq_has_sleeper (C function), 21
write_bbt (C function), 686

Y
yield (C function), 11
yield_to (C function), 11

978 Index

	Driver Basics
	Driver Entry and Exit points
	Driver device table
	Atomic and pointer manipulation
	Delaying, scheduling, and timer routines
	Wait queues and Wake events
	High-resolution timers
	Workqueues and Kevents
	Internal Functions
	Kernel objects manipulation
	Kernel utility functions
	Device Resource Management

	Device drivers infrastructure
	The Basic Device Driver-Model Structures
	Device Drivers Base
	Device Drivers DMA Management
	Device drivers PnP support
	Userspace IO devices

	Device Power Management
	Device Power Management Basics
	Suspend/Hibernation Notifiers
	Device Power Management Data Types

	Bus-Independent Device Accesses
	Introduction
	Memory Mapped IO
	Port Space Accesses
	Public Functions Provided

	Buffer Sharing and Synchronization
	Shared DMA Buffers
	Reservation Objects
	DMA Fences

	Device links
	Usage
	Limitations
	Examples
	Alternatives
	Implementation
	State machine
	API

	Message-based devices
	Fusion message devices

	Sound Devices
	Frame Buffer Library
	Frame Buffer Memory
	Frame Buffer Colormap
	Frame Buffer Video Mode Database
	Frame Buffer Macintosh Video Mode Database
	Frame Buffer Fonts

	Voltage and current regulator API
	Introduction
	Consumer driver interface
	Regulator driver interface
	Machine interface
	API reference

	Industrial I/O
	Introduction
	Core elements
	Buffers
	Triggers
	Triggered Buffers

	Input Subsystem
	Input core
	Multitouch Library
	Polled input devices
	Matrix keyboards/keypads
	Sparse keymap support

	Linux USB API
	The Linux-USB Host Side API
	USB Gadget API for Linux
	USB Anchors
	USB bulk streams
	USB core callbacks
	USB DMA
	USB Request Block (URB)
	Power Management for USB
	USB hotplugging
	USB device persistence during system suspend
	USB Error codes
	Writing USB Device Drivers
	Synopsys DesignWare Core SuperSpeed USB 3.0 Controller
	Writing a MUSB Glue Layer
	USB Type-C connector class
	USB3 debug port

	PCI Support Library
	PCI Hotplug Support Library
	Serial Peripheral Interface (SPI)
	I2C and SMBus Subsystem
	High Speed Synchronous Serial Interface (HSI)
	Introduction
	HSI Subsystem in Linux
	hsi-char Device
	The kernel HSI API

	Error Detection And Correction (EDAC) Devices
	Main Concepts used at the EDAC subsystem
	Memory Controllers
	PCI Controllers
	EDAC Blocks

	SCSI Interfaces Guide
	Introduction
	SCSI upper layer
	SCSI mid layer
	SCSI lower layer

	libATA Developer's Guide
	Introduction
	libata Driver API
	Error handling
	libata Library
	libata Core Internals
	libata SCSI translation/emulation
	ATA errors and exceptions
	ata_piix Internals
	sata_sil Internals
	Thanks

	MTD NAND Driver Programming Interface
	Introduction
	Known Bugs And Assumptions
	Documentation hints
	Basic board driver
	Advanced board driver functions
	Filesystem support
	Tools
	Constants
	Structures
	Public Functions Provided
	Internal Functions Provided
	Credits

	Parallel Port Devices
	16x50 UART Driver
	Pulse-Width Modulation (PWM)
	W1: Dallas' 1-wire bus
	W1 API internal to the kernel

	RapidIO Subsystem Guide
	Introduction
	Known Bugs and Limitations
	RapidIO driver interface
	Internals
	Credits

	Writing s390 channel device drivers
	Introduction
	The ccw bus
	The ccwgroup bus
	Generic interfaces

	VME Device Drivers
	Driver registration
	Resource management
	Master windows
	Slave windows
	DMA channels
	Interrupts
	Location monitors
	Slot Detection
	Bus Detection
	VME API

	Linux 802.11 Driver Developer's Guide
	Introduction
	cfg80211 subsystem
	mac80211 subsystem (basics)
	mac80211 subsystem (advanced)

	The Userspace I/O HOWTO
	About this document
	About UIO
	Writing your own kernel module
	Writing a driver in userspace
	Generic PCI UIO driver
	Generic Hyper-V UIO driver
	Further information

	Linux Firmware API
	Introduction
	Firmware API core features
	request_firmware API
	Other Firmware Interfaces

	PINCTRL (PIN CONTROL) subsystem
	Top-level interface
	Pin groups
	Pin configuration
	Interaction with the GPIO subsystem
	PINMUX interfaces
	What is pinmuxing?
	Pinmux conventions
	Pinmux drivers
	Pin control interaction with the GPIO subsystem
	GPIO mode pitfalls
	Board/machine configuration
	Complex mappings
	Pin control requests from drivers
	Drivers needing both pin control and GPIOs
	System pin control hogging
	Runtime pinmuxing

	Miscellaneous Devices
	Index

