The kernel driver API manual
Release 4.13.0-rc4+

The kernel development community

Sep 05, 2017

CONTENTS

1 Driver Basics

1.1 Driver Entry and Exit points. e
1.2 Driverdevicetable e e e e
1.3 Atomic and pointer manipulation e
1.4 Delaying, scheduling, and timerroutines e
1.5 Wait queues and Wake events e e e
1.6 High-resolution timers
1.7 Workqueues and Kevents e
1.8 Internal FUNCLIONS o e e e e e
1.9 Kernel objects manipulation e e e
1.10 Kernel utility functions e e e e e e
1.11 Device Resource Management i e e
Device drivers infrastructure

2.1 The Basic Device Driver-Model Structures e
2.2 Device Drivers Base i e e e e e e
2.3 Device Drivers DMA Management e e e
2.4 Device drivers PnP support e e e
2.5 Userspace IO deviCes i i i i i i e e e e e
Device Power Management

3.1 Device Power Management BasiCS. o i i e e e e
3.2 Suspend/Hibernation Notifiers e e e e
3.3 Device Power Management Data Types 0 i i i e e e
Bus-Independent Device Accesses

4.1 Introduction e e e e e e e e
4.2 Memory Mapped [0 e
4.3 Port Space ACCESSES o i v i i e e e e e e
4.4 Public Functions Provided e
Buffer Sharing and Synchronization

5.1 Shared DMA Buffers 0 e e
5.2 Reservation Objects e e
5.3 DMA FENCES o e e e e e e e e e e e
Device links

6.1 Usage e e e e e e e e e
6.2 Limitations e e e e e e e
6.3 EXamples e e e e e e e
6.4 Alternatives L e e e e e
6.5 Implementation e e
6.6 Statemachine e e e
6.7 APl . . e e

7 Message-based devices
7.1 FusSion MeSsage devViCeS . . v . v v v v i s e e e e e e e e e e e e e e e e

8 Sound Devices

9 Frame Buffer Library
9.1 Frame Buffer Memory e e
9.2 Frame Buffer Colormap o i e e
9.3 Frame Buffer Video Mode Database e e e e
9.4 Frame Buffer Macintosh Video Mode Database
9.5 Frame Buffer Fonts o e e e e e e e e

10Voltage and current regulator API
10.1 Introduction 0 o e e e e e e e e e e e e
10.2 Consumer driver interface e e e e e e
10.3 Regulator driverinterface e e e e
10.4 Machine interface 0 i e e e e e
10.5 APl referenCe o i e e e e e e e e e e e e

11lindustrial I/O
11.1 IntroducCtion o 0 e e e e e e e e e e e e
11.2 Core elements o e e e e e e e e e e
11,3 BUffers . . . o e e e e e e e e e e e e
11.4 TrQOErS . o o o o ot e e e e e e e e e e e e e
11.5 Triggered Buffers e e e e e e e

12 Input Subsystem
12. 0 INPUL COMe . . . o e e e e e e e e e e e e e
12.2 Multitouch Library e e e e e e e e
12.3 Polled input devices e e e e e
12.4 Matrix keyboards/keypads e e e
12.5 Sparse keymap support e e e e e e

13Linux USB API
13.1 The Linux-USB Host Side APl e e
13.2 USB Gadget API for LinUX o o o e e e e e e e e
13.3 USB ANChoOrs o e e e e e
13.4 USB bulk streams o e e e e e
13.5 USB core callbacks o e e e e
13.6 USB DMA . . . o o e e e e e e e e
13.7 USB Request Block (URB) o i e e e e e e e e
13.8 Power Management for USB e e
13.9 USB hotplugging e e e e e e e
13.1QJSB device persistence during system suspend L L L o e e e
13.1IUSB ErrOr COAES & . v v v v e e e e e e e e e e e e e e e e e
13.12WNriting USB Device Drivers o i e e e e e e e e e e
13.135ynopsys DesignWare Core SuperSpeed USB 3.0 Controller
13.14Writing @ MUSB Glue Layer e e e e e e
13.18JSB Type-C connector Class o i i i it e e e e e e e e e e e e
13.16JSB3 debug port L e e e e

14 PCI Support Library
15PCI Hotplug Support Library
16Serial Peripheral Interface (SPI)

1712C and SMBus Subsystem

165
165

175

211
211
212
213
215
216

217
217
217
218
218
219

239
239
239
253
256
261

263
263
274
277
279
280

283
283
344
369
370
371
373
375
379
388
390
392
395
399
424
434
439

443
473
475
497

ii

18High Speed Synchronous Serial Interface (HSI)

18.1 Introduction e e e e e e e e
18.2 HSI Subsystem in Linux i
18.3 hsi-charDevice i i i i e e
18.4 The kernel HSI APl o o e e e e e

19Error Detection And Correction (EDAC) Devices

19.1 Main Concepts used at the EDAC subsystem
19.2 Memory Controllers e
19.3 PCI Controllers e e
19.4 EDAC BIOCKS . . . v v v o e e e

20SCSI Interfaces Guide

20.1 Introduction e e e
20.2 SCSlupperlayer e
20.3 SCSImid layer. e e
20.4 SCSllower layer. o e e e e e e e e e e

211libATA Developer’s Guide

21.1 Introduction L e e e e e e e
21.2 libata Driver APl e e e e
21.3 Errorhandling e e e e e
21.4 libata Library e e e e e e e
21.5 libata CorelInternals e
21.6 libata SCSI translation/emulation
21.7 ATA errors and exceptions i e
21.8 ata piixInternals e
219 sata silInternals
21.10Thanks o e e e e e

22MTD NAND Driver Programming Interface

22.1 Introduction e e e e
22.2 Known Bugs And Assumptions o0 0.
22.3 Documentation hints e
22.4 Basic board driver e e
22.5 Advanced board driver functions. o o 0.
22.6 Filesystem support e e e e e e
22.7 TOOIS . . e e e e e e
22.8 Constants e e e
22.9 Structures e e e e e
22.1CPublic Functions Provided e
22.1lnternal Functions Provided
22. 1 redits . . . e e e e e e e e

23 Parallel Port Devices
2416x50 UART Driver
25Pulse-Width Modulation (PWM)

26 W1: Dallas’ 1-wire bus

26.1 W1 APl internaltothe kernel

27 RapidlO Subsystem Guide

27.1 Introduction e e e e e
27.2 Known Bugs and Limitations
27.3 RapidlO driverinterface i e
27.4 Internals e e e e e e e e
27.5 Credits e e e

511
511
511
512
512

521
521
522
529
531

533
533
533
534
570

571
571
571
575
578
593
618
633
638
640
640

641
641
641
641
642
645
653
653
653
655
665
670
688

691
699
705

715
715

727
727
727
727
742
759

iii

28 Writing s390 channel device drivers

28.1 Introduction e
282 Theccw bus o e e e
28.3 Theccwgroupbus e
28.4 Generic interfaces e

29VME Device Drivers

29.1 Driverregistration
29.2 Resource management0 e e
29.3 Master windows e e e e e
29.4 Slave wWindowWs e e e e e e
29.5 DMA channels e
29.6 Interrupts . . . L e
29.7 Location monitors. v . 0 e e e
29.8 Slot Detection e
29.9 Bus Detection e e e
29.10/ME APl e e e e e e e

30Linux 802.11 Driver Developer’s Guide

30.1 Introduction e
30.2 c¢fg80211 subsystem
30.3 mac80211 subsystem (basics) 0.
30.4 mac80211 subsystem (advanced), ..

31The Userspace I/O HOWTO

31.1 About thisdocument
31.2 About UIO o e e e e
31.3 Writing your own kernel module
31.4 Writing adriverinuserspace i vt
31.5 Generic PClUIO driver i i i e e e
31.6 Generic Hyper-V UlO driver i v i i i
31.7 Furtherinformation

32Linux Firmware API

32.1 Introduction e
32.2 Firmware APl corefeatures
32.3 request firmware APl
32.4 Other Firmware Interfaces v v v v

33 PINCTRL (PIN CONTROL) subsystem

33.1 Top-levelinterface
33.2 PINQroups . . . o o e e e e e e e e e
33.3 Pin configuration
33.4 Interaction with the GPIO subsystem
33.5 PINMUX interfaces i it e
33.6 What is pinmuxing? e e
33.7 Pinmux conventions
33.8 Pinmux drivers e e e
33.9 Pin control interaction with the GPIO subsystem
33.10GPIO mode pitfalls
33.11Board/machine configuration
33.12Zomplex Mappings o o e e e e e e e
33.1Fin control requests fromdrivers.
33.14rivers needing both pin control and GPIOs
33.1%ystem pin control hogging,
33.1QRuntime pinmuxing e e e

34 Miscellaneous Devices

761
761
761
777
780

783
783
783
784
784
785
786
786
787
787
787

799
799
799
854
883

209
909
910
911
914
915
917
918

919
919
919
924
928

931
931
932
934
935
937
937
938
939
942
942
945
946
948
950
950
951

953

iv

Index 955

The kernel driver API manual, Release 4.13.0-rc4+

The kernel offers a wide variety of interfaces to support the development of device drivers. This document
is an only somewhat organized collection of some of those interfaces — it will hopefully get better over
time! The available subsections can be seen below.

Table of contents

CONTENTS 1

The kernel driver API manual, Release 4.13.0-rc4+

2 CONTENTS

CHAPTER
ONE

DRIVER BASICS

1.1 Driver Entry and Exit points

module_init(x)
driver initialization entry point

Parameters
x function to be run at kernel boot time or module insertion
Description

module init() will either be called during do_initcalls() (if builtin) or at module insertion time (if a
module). There can only be one per module.

module_exit(x)
driver exit entry point

Parameters
x function to be run when driver is removed
Description

module exit() will wrap the driver clean-up code with cleanup _module() when used with rmmod when
the driver is a module. If the driver is statically compiled into the kernel, module exit() has no effect.
There can only be one per module.

1.2 Driver device table

struct usb_device_id
identifies USB devices for probing and hotplugging

Definition

struct usb _device id {
__ul6é match flags;
__ul6 idVendor;
__ule idProduct;
~_ulé bcdDevice lo;
_ul6 bcdDevice hi;
__u8 bDeviceClass;
__u8 bDeviceSubClass;
__u8 bDeviceProtocol;
__u8 bInterfaceClass;
__u8 bInterfaceSubClass;
__u8 bInterfaceProtocol;
__u8 bInterfaceNumber;
kernel ulong t driver _info;

};

The kernel driver API manual, Release 4.13.0-rc4+

Members

match_flags Bit mask controlling which of the other fields are used to match against new devices. Any
field except for driver_info may be used, although some only make sense in conjunction with other
fields. This is usually set by a USB_DEVICE_*() macro, which sets all other fields in this structure
except for driver_info.

idVendor USB vendor ID for a device; numbers are assigned by the USB forum to its members.
idProduct Vendor-assigned product ID.

bcdDevice_lo Low end of range of vendor-assigned product version numbers. This is also used to identify
individual product versions, for a range consisting of a single device.

bcdDevice hi High end of version number range. The range of product versions is inclusive.

bDeviceClass Class of device; numbers are assigned by the USB forum. Products may choose to im-
plement classes, or be vendor-specific. Device classes specify behavior of all the interfaces on a
device.

bDeviceSubClass Subclass of device; associated with bDeviceClass.
bDeviceProtocol Protocol of device; associated with bDeviceClass.

bInterfaceClass Class of interface; numbers are assigned by the USB forum. Products may choose to
implement classes, or be vendor-specific. Interface classes specify behavior only of a given interface;
other interfaces may support other classes.

bInterfaceSubClass Subclass of interface; associated with binterfaceClass.
bInterfaceProtocol Protocol of interface; associated with binterfaceClass.

bInterfaceNumber Number of interface; composite devices may use fixed interface numbers to differen-
tiate between vendor-specific interfaces.

driver_info Holds information used by the driver. Usually it holds a pointer to a descriptor understood
by the driver, or perhaps device flags.

Description

In most cases, drivers will create a table of device IDs by using USB DEVICE(), or similar macros designed
for that purpose. They will then export it to userspace using MODULE DEVICE TABLE(), and provide it to
the USB core through their usb_driver structure.

See the usb match id() function for information about how matches are performed. Briefly, you will
normally use one of several macros to help construct these entries. Each entry you provide will either
identify one or more specific products, or will identify a class of products which have agreed to behave the
same. You should put the more specific matches towards the beginning of your table, so that driver_info
can record quirks of specific products.

struct mdio_device_id
identifies PHY devices on an MDIO/MII bus

Definition

struct mdio device id {
~u32 phy id;
__u32 phy_id mask;

b

Members

phy_id The result of (mdio_read(MII PHYSID1) << 16 | mdio_read(PHYSID2)) & phy_id_mask for this
PHY type

phy_id _mask Defines the significant bits of phy_id. A value of 0 is used to terminate an array of struct
mdio_device_id.

4 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

struct amba_id
identifies a device on an AMBA bus

Definition

struct amba id {
unsigned int id;
unsigned int mask;
void * data;

}I

Members
id The significant bits if the hardware device ID

mask Bitmask specifying which bits of the id field are significant when matching. A driver binds to a device
when ((hardware device ID) & mask) == id.

data Private data used by the driver.

struct mips_cdmm_device_id
identifies devices in MIPS CDMM bus

Definition

struct mips_cdmm device id {
__ud type;
b

Members
type Device type identifier.

struct mei_cl_device id
MEI client device identifier

Definition

struct mei cl device id {
char name;
uuid le uuid;
__u8 version;
kernel ulong t driver info;

};

Members

name helper name

uuid client uuid

version client protocol version

driver_info information used by the driver.
Description

identifies mei client device by uuid and name

struct rio_device_id
RIO device identifier

Definition

struct rio device id {
~ul6 did;
_ulé vid;
~_ul6 asm _did;

1.2. Driver device table 5

The kernel driver API manual, Release 4.13.0-rc4+

__ul6 asm vid;

};

Members

did RapidlO device ID

vid RapidlO vendor ID

asm_did RapidlO assembly device ID
asm_vid RapidlO assembly vendor ID

Description

Identifies a RapidlO device based on both the device/vendor IDs and the assembly device/vendor IDs.

struct fs1_mc_device_id
MC object device identifier

Definition

struct fsl mc device id {
__ulé vendor;
const char obj type;

b

Members
vendor vendor ID
obj_type MC object type

Description

Type of entries in the “device Id” table for MC object devices supported by a MC object device driver. The

last entry of the table has vendor set to 0x0

1.3 Atomic and pointer manipulation

int atomic_read(const atomic_t * v)
read atomic variable

Parameters

const atomic_t * v pointer of type atomic_t
Description

Atomically reads the value of v.

void atomic_set (atomic_t * v, int /)
set atomic variable

Parameters

atomic_t * v pointer of type atomic_t
int i required value

Description

Atomically sets the value of vtoii.

void atomic_add(int /i, atomic_t * v)
add integer to atomic variable

Parameters

Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

int i integer value to add

atomic_t * v pointer of type atomic_t
Description

Atomically adds i to v.

void atomic_sub (int i, atomic_t * v)
subtract integer from atomic variable

Parameters

int 1 integer value to subtract
atomic_t * v pointer of type atomic_t
Description

Atomically subtracts i from v.

bool atomic_sub_and_test(int/, atomic t* v)
subtract value from variable and test result

Parameters

int 1 integer value to subtract

atomic_t * v pointer of type atomic t

Description

Atomically subtracts i from v and returns true if the result is zero, or false for all other cases.

void atomic_inc (atomic_t * v)
increment atomic variable

Parameters

atomic_t * v pointer of type atomic_t
Description

Atomically increments v by 1.

void atomic_dec (atomic_t * v)
decrement atomic variable

Parameters

atomic_t * v pointer of type atomic t
Description

Atomically decrements v by 1.

bool atomic_dec_and_test(atomic_t * v)
decrement and test

Parameters

atomic_t * v pointer of type atomic_t

Description

Atomically decrements v by 1 and returns true if the result is 0, or false for all other cases.

bool atomic_inc_and_test (atomic_t * v)
increment and test

Parameters

atomic_t * v pointer of type atomic_t

1.3. Atomic and pointer manipulation 7

The kernel driver API manual, Release 4.13.0-rc4+

Description
Atomically increments v by 1 and returns true if the result is zero, or false for all other cases.

bool atomic_add_negative(int /i, atomic_t * v)
add and test if negative

Parameters

int i integer value to add

atomic_t * v pointer of type atomic_t
Description

Atomically adds i to v and returns true if the result is negative, or false when result is greater than or
equal to zero.

int atomic_add_return(int i, atomic_t * v)
add integer and return

Parameters

int i integer value to add

atomic_t * v pointer of type atomic_t
Description

Atomically adds i to v and returns i + v

int atomic_sub_return(int i, atomic_t * v)
subtract integer and return

Parameters

int i integer value to subtract

atomic_t * v pointer of type atomic_t
Description

Atomically subtracts i from v and returns v - i

int __atomic_add_unless(atomic_t * v, int a, int u)
add unless the number is already a given value

Parameters

atomic_t * v pointer of type atomic t

int a the amount to add to v...

int u ...unless v is equal to u.

Description

Atomically adds a to v, so long as v was not already u. Returns the old value of v.

1.4 Delaying, scheduling, and timer routines

struct prev_cputime
snapshot of system and user cputime

Definition

struct prev_cputime {

#ifndef CONFIG_VIRT CPU ACCOUNTING NATIVE
u64 utime;
u64 stime;

8 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

raw_spinlock t lock;
#endif
b

Members

utime time spent in user mode

stime time spent in system mode

lock protects the above two fields

Description

Stores previous user/system time values such that we can guarantee monotonicity.

struct task_cputime
collected CPU time counts

Definition

struct task cputime {

ub4 utime;

ub4 stime;

unsigned long long sum_exec_ runtime;

}I

Members

utime time spent in user mode, in nanoseconds

stime time spent in kernel mode, in nanoseconds
sum_exec_runtime total time spent on the CPU, in nanoseconds
Description

This structure groups together three kinds of CPU time that are tracked for threads and thread groups.
Most things considering CPU time want to group these counts together and treat all three of them in
parallel.

int pid_alive(const struct task_struct * p)
check that a task structure is not stale

Parameters
const struct task_struct * p Task structure to be checked.
Description

Test if a process is not yet dead (at most zombie state) If pid_alive fails, then pointers within the task
structure can be stale and must not be dereferenced.

Return
1 if the process is alive. 0 otherwise.

int is_global_init (struct task struct * tsk)
check if a task structure is init. Since init is free to have sub-threads we need to check tgid.

Parameters

struct task_struct * tsk Task structure to be checked.
Description

Check if a task structure is the first user space task the kernel created.
Return

1 if the task structure is init. 0 otherwise.

1.4. Delaying, scheduling, and timer routines 9

The kernel driver API manual, Release 4.13.0-rc4+

int task_nice(const struct task_struct * p)
return the nice value of a given task.

Parameters

const struct task_struct * p the task in question.
Return

The nice value[-20... 0... 19].

bool is_idle_task(const struct task struct * p)
is the specified task an idle task?

Parameters

const struct task_struct * p the task in question.
Return

1 if p is an idle task. 0 otherwise.

int wake_up_process (struct task struct * p)
Wake up a specific process

Parameters

struct task struct * p The process to be woken up.

Description

Attempt to wake up the nominated process and move it to the set of runnable processes.
Return

1 if the process was woken up, 0 if it was already running.

It may be assumed that this function implies a write memory barrier before changing the task state if and
only if any tasks are woken up.

void preempt_notifier_register (struct preempt_notifier * notifier)
tell me when current is being preempted & rescheduled

Parameters
struct preempt_notifier * notifier notifier struct to register

void preempt_notifier_unregister(struct preempt_notifier * notifier)
no longer interested in preemption notifications

Parameters

struct preempt_notifier * notifier notifier struct to unregister
Description

This is not safe to call from within a preemption notifier.

__visible void __sched notrace preempt_schedule_notrace(void)
preempt_schedule called by tracing

Parameters
void no arguments
Description

The tracing infrastructure uses preempt_enable_notrace to prevent recursion and tracing preempt en-
abling caused by the tracing infrastructure itself. But as tracing can happen in areas coming from
userspace or just about to enter userspace, a preempt enable can occur before user exit() is called.
This will cause the scheduler to be called when the system is still in usermode.

To prevent this, the preempt_enable_notrace will use this function instead of preempt schedule() to exit
user context if needed before calling the scheduler.

10 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

int sched_setscheduler (struct task struct * p, int policy, const struct sched _param * param)
change the scheduling policy and/or RT priority of a thread.

Parameters

struct task_struct * p the task in question.

int policy new policy.

const struct sched_param * param structure containing the new RT priority.
Return

0 on success. An error code otherwise.

NOTE that the task may be already dead.

int sched_setscheduler_nocheck(struct task struct * p, intpolicy, const struct sched param
%
param)
change the scheduling policy and/or RT priority of a thread from kernelspace.

Parameters

struct task_struct * p the task in question.

int policy new policy.

const struct sched_param * param structure containing the new RT priority.
Description

Just like sched_setscheduler, only don’t bother checking if the current context has permission. For exam-
ple, this is needed in stop_machine(): we create temporary high priority worker threads, but our caller
might not have that capability.

Return
0 on success. An error code otherwise.

void __sched yield(void)
yield the current processor to other threads.

Parameters

void no arguments

Description

Do not ever use this function, there’'s a 99% chance you’re doing it wrong.

The scheduler is at all times free to pick the calling task as the most eligible task to run, if removing the
yield() call from your code breaks it, its already broken.

Typical broken usage is:
while (levent) yield();

where one assumes that yield() will let ‘the other’ process run that will make event true. If the current
task is a SCHED FIFO task that will never happen. Never use yield() as a progress guarantee!!

If you want to use yield() to wait for something, use wait event(). If you want to use yield() to be
‘nice’ for others, use cond resched(). If you still want to use yield(), do not!

int __sched yield_to(struct task_struct * p, bool preempt)
yield the current processor to another thread in your thread group, or accelerate that thread toward
the processor it’s on.

Parameters
struct task_struct * p target task

bool preempt whether task preemption is allowed or not

1.4. Delaying, scheduling, and timer routines 11

The kernel driver API manual, Release 4.13.0-rc4+

Description
It’s the caller’s job to ensure that the target task struct can’t go away on us before we can do any checks.
Return

true (>0) if we indeed boosted the target task. false (0) if we failed to boost the target. -ESRCH
if there’'s no task to yield to.

int cpupri_find (struct cpupri * cp, struct task_struct * p, struct cpoumask * lowest_mask)
find the best (lowest-pri) CPU in the system

Parameters

struct cpupri * cp The cpupri context

struct task_struct * p The task

struct cpumask * lowest_mask A mask to fill in with selected CPUs (or NULL)
Note

This function returns the recommended CPUs as calculated during the current invocation. By the time the
call returns, the CPUs may have in fact changed priorities any number of times. While not ideal, it is not
an issue of correctness since the normal rebalancer logic will correct any discrepancies created by racing
against the uncertainty of the current priority configuration.

Return
(int)bool - CPUs were found

void cpupri_set (struct cpupri * cp, int cpu, int newpri)
update the cpu priority setting

Parameters

struct cpupri * cp The cpupri context

int cpu The target cpu

int newpri The priority (INVALID-RT99) to assign to this CPU
Note

Assumes cpu_rq(cpu)->lock is locked

Return

(void)

int cpupri_init (struct cpupri * cp)
initialize the cpupri structure

Parameters

struct cpupri * cp The cpupri context
Return

-ENOMEM on memory allocation failure.

void cpupri_cleanup (struct cpupri * cp)
clean up the cpupri structure

Parameters
struct cpupri * cp The cpupri context

void update_tg_load_avg(struct cfs rq * cfs _rq, int force)
update the tg’s load avg

Parameters

struct cfs_rq * cfs_rq the cfs rq whose avg changed

12 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

int force update regardless of how small the difference
Description

This function ‘ensures’: tg->load_avg := Sum tg->cfs_rq[]->avg.load. However, because tg->load_avg is
a global value there are performance considerations.

In order to avoid having to look at the other cfs_rq’s, we use a differential update where we store the last
value we propagated. This in turn allows skipping updates if the differential is ‘small’.

Updating tg’s load_avg is necessary before update cfs share().

int update_cfs_rq_load_avg(u64 now, struct cfs_rq * cfs_rq, bool update freq)
update the cfs_rq’s load/util averages

Parameters

u64 now current time, as per cfs _rq clock task()

struct cfs_rq * cfs_rq cfs _rq to update

bool update_freq should we call cfs rq util change() or will the call do so
Description

The cfs_rq avg is the direct sum of all its entities (blocked and runnable) avg. The immediate corollary is

that all (fair) tasks must be attached, see post _init entity util avg().
cfs_rg->avg is used for task h load() and update cfs share() for example.
Returns true if the load decayed or we removed load.

Since both these conditions indicate a changed cfs_rg->avg.load we should call update tg load avg()
when this function returns true.

void attach_entity load_avg(struct cfs rq * cfs_rq, struct sched_entity * se)
attach this entity to its cfs_rq load avg

Parameters

struct cfs_rq * cfs_rq cfs rq to attach to
struct sched_entity * se sched _entity to attach
Description

Must call update cfs rq load avg() before this, since we rely on cfs_rg->avg.last_update_time being
current.

void detach_entity load_avg(struct cfs rq * cfs_rq, struct sched_entity * se)
detach this entity from its cfs_rq load avg

Parameters

struct cfs_rq * cfs_rq cfs rq to detach from
struct sched_entity * se sched_entity to detach
Description

Must call update cfs rq load avg() before this, since we rely on cfs_rg->avg.last_update_time being
current.

void cpu_Lload_update (struct rq * this_rq, unsigned long this_load, unsighed long pending_updates)
update the rg->cpu_load[] statistics

Parameters
struct rq * this_rq The rq to update statistics for
unsigned long this_load The current load

unsigned long pending_updates The number of missed updates

1.4. Delaying, scheduling, and timer routines 13

The kernel driver API manual, Release 4.13.0-rc4+

Description
Update rg->cpu_load[] statistics. This function is usually called every scheduler tick (TICK_NSEC).
This function computes a decaying average:

load[i]’ = (1 - 1/27i) * load[i] + (1/27i) * load

Because of NOHZ it might not get called on every tick which gives need for the pending_updates argu-
ment.

load[il n = (1 - 1/2"i) * load[i]l_n-1 + (1/27i) * load_n-1 = A * |load[i]_ n-1 + B; A:= (1 -
1/27i), B := (1/27i) * load = A * (A * load[i]_n-2 + B) + B = A* (A * (A * load[i]_n-3 + B) +
B) + B=A"3 *load[il_.n-3 + (A®2 + A+ 1) *B = A”n * |oad[i]_0 + (A™(n-1) + A™(n-2) +
.+ 1)*B=A"n*load[il] 0+ ((1-A™n)/(1-A))*B =(1-1/2"i)"n * (load[i]_O - load)
+ load

In the above we’ve assumed load_n := load, which is true for NOHZ_FULL as any change in load would
have resulted in the tick being turned back on.

For regular NOHZ, this reduces to:
load[il_n = (1-1/2"i)"n *load[i]_O
see decay load misses(). For NOHZ_FULL we get to subtract and add the extra term.

int get_sd_load_idx(struct sched domain * sd, enum cpu_idle_type idle)
Obtain the load index for a given sched domain.

Parameters

struct sched_domain * sd The sched _domain whose load_idx is to be obtained.

enum cpu_idle_type idle The idle status of the CPU for whose sd load_idx is obtained.
Return

The load index.

void update_sg_1lb_stats(struct |b_env *env, struct sched group *group, intload_ idx,
int local _group, struct sg_Ib_stats * sgs, bool * overload)
Update sched_group’s statistics for load balancing.

Parameters

struct 1b_env * env The load balancing environment.

struct sched_group * group sched group whose statistics are to be updated.
int load_idx Load index of sched_domain of this_cpu for load calc.

int local_group Does group contain this cpu.

struct sg_lb_stats * sgs variable to hold the statistics for this group.

bool * overload Indicate more than one runnable task for any CPU.

bool update_sd_pick_busiest (structIb_env* env, structsd_Ib_stats * sds, struct sched _group * sg,

struct sg_Ib_stats * sgs)
return 1 on busiest group

Parameters

struct 1b_env * env The load balancing environment.

struct sd_lb_stats * sds sched_domain statistics

struct sched_group * sg sched group candidate to be checked for being the busiest

struct sg_lb_stats * sgs sched_group statistics

14 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Description

Determine if sg is a busier group than the previously selected busiest group.

Return

true if sg is a busier group than the previously selected busiest group. false otherwise.

void update_sd_1b_stats(struct Ib_env * env, struct sd_Ib_stats * sds)
Update sched_domain’s statistics for load balancing.

Parameters
struct 1b_env * env The load balancing environment.
struct sd_1lb_stats * sds variable to hold the statistics for this sched_domain.

int check_asym_packing(struct Ib_env * env, struct sd_Ib_stats * sds)
Check to see if the group is packed into the sched domain.

Parameters

struct 1b_env * env The load balancing environment.

struct sd_1lb_stats * sds Statistics of the sched _domain which is to be packed
Description

This is primarily intended to used at the sibling level. Some cores like POWER7 prefer to use lower num-
bered SMT threads. In the case of POWER7, it can move to lower SMT modes only when higher threads
are idle. When in lower SMT modes, the threads will perform better since they share less core resources.
Hence when we have idle threads, we want them to be the higher ones.

This packing function is run on idle threads. It checks to see if the busiest CPU in this domain (core in the
P7 case) has a higher CPU number than the packing function is being run on. Here we are assuming lower
CPU number will be equivalent to lower a SMT thread number.

Return

1 when packing is required and a task should be moved to this CPU. The amount of the imbalance is
returned in *imbalance.

void fix_small_imbalance(struct Ib_env * env, struct sd_Ib_stats * sds)
Calculate the minor imbalance that exists amongst the groups of a sched_domain, during load bal-
ancing.

Parameters
struct 1b_env * env The load balancing environment.
struct sd_1lb_stats * sds Statistics of the sched_domain whose imbalance is to be calculated.

void calculate_imbalance(struct Ib_env * env, struct sd_lb_stats * sds)
Calculate the amount of imbalance present within the groups of a given sched _domain during load
balance.

Parameters
struct lb_env * env load balance environment
struct sd_1b_stats * sds statistics of the sched _domain whose imbalance is to be calculated.

struct sched_group * find_busiest_group(struct Ib_env * env)
Returns the busiest group within the sched_domain if there is an imbalance.

Parameters
struct 1b_env * env The load balancing environment.
Description

Also calculates the amount of weighted load which should be moved to restore balance.

1.4. Delaying, scheduling, and timer routines 15

The kernel driver API manual, Release 4.13.0-rc4+

Return
* The busiest group if imbalance exists.

DECLARE_COMPLETION (work)
declare and initialize a completion structure

Parameters
work identifier for the completion structure
Description

This macro declares and initializes a completion structure. Generally used for static declarations. You
should use the ONSTACK variant for automatic variables.

DECLARE_COMPLETION_ONSTACK(work)
declare and initialize a completion structure

Parameters

work identifier for the completion structure

Description

This macro declares and initializes a completion structure on the kernel stack.

void init_completion(struct completion * x)
Initialize a dynamically allocated completion

Parameters

struct completion * x pointer to completion structure that is to be initialized
Description

This inline function will initialize a dynamically created completion structure.

void reinit_completion (struct completion * x)
reinitialize a completion structure

Parameters
struct completion * x pointer to completion structure that is to be reinitialized
Description

This inline function should be used to reinitialize a completion structure so it can be reused. This is
especially important after complete all() is used.

unsigned long __round_jiffies (unsigned long j, int cpu)
function to round jiffies to a full second

Parameters

unsigned long j the time in (absolute) jiffies that should be rounded
int cpu the processor number on which the timeout will happen
Description

~round jiffies() rounds an absolute time in the future (in jiffies) up or down to (approximately) full
seconds. This is useful for timers for which the exact time they fire does not matter too much, as long as
they fire approximately every X seconds.

By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various
times spread out. The goal of this is to have the CPU wake up less, which saves power.

The exact rounding is skewed for each processor to avoid all processors firing at the exact same time,
which could lead to lock contention or spurious cache line bouncing.

The return value is the rounded version of the j parameter.

16 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

unsigned long __round_jiffies_ relative(unsigned longj, int cpu)
function to round jiffies to a full second

Parameters

unsigned long j the time in (relative) jiffies that should be rounded
int cpu the processor number on which the timeout will happen
Description

~_round jiffies relative() rounds a time delta in the future (in jiffies) up or down to (approximately)
full seconds. This is useful for timers for which the exact time they fire does not matter too much, as long
as they fire approximately every X seconds.

By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various
times spread out. The goal of this is to have the CPU wake up less, which saves power.

The exact rounding is skewed for each processor to avoid all processors firing at the exact same time,
which could lead to lock contention or spurious cache line bouncing.

The return value is the rounded version of the j parameter.

unsigned long round_jiffies (unsigned long j)
function to round jiffies to a full second

Parameters
unsigned long j the time in (absolute) jiffies that should be rounded
Description

round jiffies() rounds an absolute time in the future (in jiffies) up or down to (approximately) full
seconds. This is useful for timers for which the exact time they fire does not matter too much, as long as
they fire approximately every X seconds.

By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various
times spread out. The goal of this is to have the CPU wake up less, which saves power.

The return value is the rounded version of the j parameter.

unsigned long round_jiffies_relative(unsigned long j)
function to round jiffies to a full second

Parameters
unsigned long j the time in (relative) jiffies that should be rounded
Description

round jiffies relative() rounds a time delta in the future (in jiffies) up or down to (approximately)
full seconds. This is useful for timers for which the exact time they fire does not matter too much, as long
as they fire approximately every X seconds.

By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various
times spread out. The goal of this is to have the CPU wake up less, which saves power.

The return value is the rounded version of the j parameter.

unsigned long __round_jiffies up(unsigned longj, int cpu)
function to round jiffies up to a full second

Parameters

unsigned long j the time in (absolute) jiffies that should be rounded
int cpu the processor number on which the timeout will happen
Description

This is the same as round jiffies() except that it will never round down. This is useful for timeouts
for which the exact time of firing does not matter too much, as long as they don’t fire too early.

1.4. Delaying, scheduling, and timer routines 17

The kernel driver API manual, Release 4.13.0-rc4+

unsigned long __round_jiffies up_relative(unsigned longj, int cpu)
function to round jiffies up to a full second

Parameters

unsigned long j the time in (relative) jiffies that should be rounded
int cpu the processor number on which the timeout will happen
Description

This isthe sameas round jiffies relative() except that it will never round down. This is useful for
timeouts for which the exact time of firing does not matter too much, as long as they don’t fire too early.

unsigned long round_jiffies_up(unsigned long)
function to round jiffies up to a full second

Parameters
unsigned long j the time in (absolute) jiffies that should be rounded
Description

This is the same as round jiffies() except that it will never round down. This is useful for timeouts for
which the exact time of firing does not matter too much, as long as they don’t fire too early.

unsigned long round_jiffies_up_relative(unsigned long j)
function to round jiffies up to a full second

Parameters
unsigned long j the time in (relative) jiffies that should be rounded
Description

This is the same as round jiffies relative() except that it will never round down. This is useful for
timeouts for which the exact time of firing does not matter too much, as long as they don’t fire too early.

void init_timer_key (struct timer_list * timer, unsigned int flags, const char * name, struct
lock_class_key * key)
initialize a timer

Parameters

struct timer_list * timer the timer to be initialized
unsigned int flags timer flags

const char * name name of the timer

struct lock_class_key * key lockdep class key of the fake lock used for tracking timer sync lock de-
pendencies

Description
init timer key() must be done to a timer prior calling any of the other timer functions.

int mod_timer_pending(struct timer_list * timer, unsigned long expires)
modify a pending timer’s timeout

Parameters

struct timer_list * timer the pending timer to be modified
unsigned long expires new timeout in jiffies

Description

mod timer pending() isthe same for pending timers asmod timer(), but will not re-activate and modify
already deleted timers.

It is useful for unserialized use of timers.

18 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

int mod_timer (struct timer _list * timer, unsigned long expires)
modify a timer’s timeout

Parameters

struct timer_list * timer the timer to be modified
unsigned long expires new timeout in jiffies
Description

mod timer() is a more efficient way to update the expire field of an active timer (if the timer is inactive
it will be activated)

mod_timer(timer, expires) is equivalent to:
del_timer(timer); timer->expires = expires; add_timer(timer);

Note that if there are multiple unserialized concurrent users of the same timer, then mod timer() is the
only safe way to modify the timeout, since add timer() cannot modify an already running timer.

The function returns whether it has modified a pending timer or not. (ie. mod timer() of an inactive timer
returns 0, mod timer() of an active timer returns 1.)

void add_timer (struct timer_list * timer)
start a timer

Parameters
struct timer_list * timer the timer to be added
Description

The kernel will do a ->function(->data) callback from the timer interrupt at the ->expires point in the
future. The current time is ‘jiffies’.

The timer’s ->expires, ->function (and if the handler uses it, ->data) fields must be set prior calling this
function.

Timers with an ->expires field in the past will be executed in the next timer tick.

void add_timer_on(struct timer list * timer, int cpu)
start a timer on a particular CPU

Parameters

struct timer_list * timer the timer to be added

int cpu the CPU to start it on

Description

This is not very scalable on SMP. Double adds are not possible.

int del_timer (struct timer list * timer)
deactivate a timer.

Parameters

struct timer_list * timer the timer to be deactivated

Description

del timer() deactivates a timer - this works on both active and inactive timers.

The function returns whether it has deactivated a pending timer or not. (ie. del timer() of an inactive
timer returns 0, del timer() of an active timer returns 1.)

int try_to_del timer_sync(struct timer_list * timer)
Try to deactivate a timer

Parameters

struct timer_list * timer timer to delete

1.4. Delaying, scheduling, and timer routines 19

The kernel driver API manual, Release 4.13.0-rc4+

Description

This function tries to deactivate a timer. Upon successful (ret >= 0) exit the timer is not queued and the
handler is not running on any CPU.

int del_timer_sync (struct timer_list * timer)
deactivate a timer and wait for the handler to finish.

Parameters
struct timer_list * timer the timer to be deactivated
Description

This function only differs from del timer() on SMP: besides deactivating the timer it also makes sure the
handler has finished executing on other CPUs.

Synchronization rules: Callers must prevent restarting of the timer, otherwise this function is meaningless.
It must not be called from interrupt contexts unless the timer is an irgsafe one. The caller must not
hold locks which would prevent completion of the timer’'s handler. The timer’s handler must not call
add timer on(). Upon exit the timer is not queued and the handler is not running on any CPU.

Note
For lirqsafe timers, you must not hold locks that are held in

interrupt context while calling this function. Even if the lock has nothing to do with the timer
in question. Here's why:

CPUO CPU1 —- —-
<SOFTIRQ> call timer fn();
base->running_timer = mytimer;
spin_lock_irq(somelock);
<IRQ> spin_lock(somelock);
del_timer_sync(mytimer); while (base->running_timer == mytimer);

Now del timer sync() will never return and never release somelock. The interrupt on the other CPU is
waiting to grab somelock but it has interrupted the softirq that CPUO is waiting to finish.

The function returns whether it has deactivated a pending timer or not.

signed long _ sched schedule_timeout (signed long timeout)
sleep until timeout

Parameters
signed long timeout timeout value in jiffies
Description

Make the current task sleep until timeout jiffies have elapsed. The routine will return immediately unless
the current task state has been set (see set _current state()).

You can set the task state as follows -

TASK UNINTERRUPTIBLE - at least timeout jiffies are guaranteed to pass before the routine returns unless
the current task is explicitly woken up, (e.g. by wake up process())”.

TASK INTERRUPTIBLE - the routine may return early if a signal is delivered to the current task or the current
task is explicitly woken up.

The current task state is guaranteed to be TASK_ RUNNING when this routine returns.

Specifying a timeout value of MAX SCHEDULE TIMEOUT will schedule the CPU away without a bound on
the timeout. In this case the return value will be MAX_SCHEDULE_ TIMEOUT.

Returns 0 when the timer has expired otherwise the remaining time in jiffies will be returned. In all cases
the return value is guaranteed to be non-negative.

20 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

void msleep (unsigned int msecs)
sleep safely even with waitqueue interruptions

Parameters
unsigned int msecs Time in milliseconds to sleep for

unsigned long msleep_interruptible(unsigned int msecs)
sleep waiting for signals

Parameters
unsigned int msecs Time in milliseconds to sleep for

void _sched usleep_range(unsigned long min, unsigned long max)
Sleep for an approximate time

Parameters
unsigned long min Minimum time in usecs to sleep
unsigned long max Maximum time in usecs to sleep
Description

In non-atomic context where the exact wakeup time is flexible, use usleep range() instead of udelay().
The sleep improves responsiveness by avoiding the CPU-hogging busy-wait of udelay (), and the range
reduces power usage by allowing hrtimers to take advantage of an already- scheduled interrupt instead
of scheduling a new one just for this sleep.

1.5 Wait queues and Wake events

int waitqueue_active(struct wait_queue_head * wg_head)
elocklessly test for waiters on the queue
Parameters
struct wait_queue_head * wq_head the waitqueue to test for waiters
Description
returns true if the wait list is not empty
NOTE
this function is lockless and requires care, incorrect usage _will_lead to sporadic and non-obvious failure.
Use either while holding wait_queue_head::lock or when used for wakeups with an extra smp mb() like:
CPUO - waker CPU1 - waiter
for (;;) {

cond = true; prepare_to wait(wq head, wait, state); smp mb(); // smp mb() from
set current state() if (waitqueue_active(wq_head)) if (cond)

wake_up(wq_head); break;
schedule();
} finish_wait(wq_head, wait);

Because without the explicit smp mb () it's possible for the waitqueue active() load to get hoisted over
the cond store such that we’ll observe an empty wait list while the waiter might not observe cond.

Also note that this ‘optimization’ trades a spin_lock() for an smp _mb(), which (when the lock is uncon-
tended) are of roughly equal cost.

1.5. Wait queues and Wake events 21

The kernel driver API manual, Release 4.13.0-rc4+

bool wq_has_sleeper(struct wait queue_head * wqg_head)
check if there are any waiting processes

Parameters

struct wait_queue_head * wq_head wait queue head
Description

Returns true if wg_head has waiting processes

Please refer to the comment for waitqueue_active.

wait_event(wqg_head, condition)
sleep until a condition gets true

Parameters

wq_head the waitqueue to wait on

condition a C expression for the event to wait for
Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condi-
tion is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.

wait_event_freezable(wq head, condition)
sleep (or freeze) until a condition gets true

Parameters

wq_head the waitqueue to wait on

condition a C expression for the event to wait for
Description

The process is put to sleep (TASK INTERRUPTIBLE - so as not to contribute to system load) until the
condition evaluates to true. The condition is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.

wait_event_timeout(wq_head, condition, timeout)
sleep until a condition gets true or a timeout elapses

Parameters

wq_head the waitqueue to wait on

condition a C expression for the event to wait for
timeout timeout, in jiffies

Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condi-
tion is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.
Return

0 if the condition evaluated to false after the timeout elapsed, 1 if the condition evaluated to true
after the timeout elapsed, or the remaining jiffies (at least 1) if the condition evaluated to true before
the timeout elapsed.

wait_event_cmd (wq_head, condition, cmdl, cmd2)
sleep until a condition gets true

22 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters

wq_head the waitqueue to wait on

condition a C expression for the event to wait for
cmdl the command will be executed before sleep
cmd2 the command will be executed after sleep
Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condi-
tion is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.

wait_event_interruptible(wq_head, condition)
sleep until a condition gets true

Parameters

wq_head the waitqueue to wait on

condition a C expression for the event to wait for
Description

The process is put to sleep (TASK INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to
true.

wait_event_interruptible_timeout(wq_head, condition, timeout)
sleep until a condition gets true or a timeout elapses

Parameters

wq_head the waitqueue to wait on

condition a C expression for the event to wait for
timeout timeout, in jiffies

Description

The process is put to sleep (TASK INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.
Return

0 if the condition evaluated to false after the timeout elapsed, 1 if the condition evaluated to true
after the timeout elapsed, the remaining jiffies (at least 1) if the condition evaluated to true before the
timeout elapsed, or -ERESTARTSYS if it was interrupted by a signal.

wait_event_hrtimeout (wq head, condition, timeout)
sleep until a condition gets true or a timeout elapses

Parameters

wq_head the waitqueue to wait on

condition a C expression for the event to wait for
timeout timeout, as a ktime_t

1.5. Wait queues and Wake events 23

The kernel driver API manual, Release 4.13.0-rc4+

Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.
The function returns 0 if condition became true, or -ETIME if the timeout elapsed.

wait_event_interruptible_hrtimeout (wq, condition, timeout)
sleep until a condition gets true or a timeout elapses

Parameters

wq the waitqueue to wait on

condition a C expression for the event to wait for
timeout timeout, as a ktime_t

Description

The process is put to sleep (TASK INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.

The function returns 0 if condition became true, -ERESTARTSYS if it was interrupted by a signal, or -ETIME
if the timeout elapsed.

wait_event_interruptible_locked(wq, condition)
sleep until a condition gets true

Parameters

wq the waitqueue to wait on

condition a C expression for the event to wait for
Description

The process is put to sleep (TASK INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq is woken up.

It must be called with wqg.lock being held. This spinlock is unlocked while sleeping but condition testing
is done while lock is held and when this macro exits the lock is held.

The lock is locked/unlocked using spin lock()/spin_unlock() functions which must match the way they
are locked/unlocked outside of this macro.

wake up locked() has to be called after changing any variable that could change the result of the wait
condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to
true.

wait_event_interruptible_locked_irq(wq, condition)
sleep until a condition gets true

Parameters

wq the waitqueue to wait on

condition a C expression for the event to wait for
Description

The process is put to sleep (TASK INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq is woken up.

It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition testing
is done while lock is held and when this macro exits the lock is held.

24 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

The lock is locked/unlocked using spin_lock irq()/spin_unlock irq() functions which must match the
way they are locked/unlocked outside of this macro.

wake up locked() has to be called after changing any variable that could change the result of the wait
condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to
true.

wait_event_interruptible_exclusive_locked(wq, condition)
sleep exclusively until a condition gets true

Parameters

wq the waitqueue to wait on

condition a C expression for the event to wait for
Description

The process is put to sleep (TASK INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq is woken up.

It must be called with wqg.lock being held. This spinlock is unlocked while sleeping but condition testing
is done while lock is held and when this macro exits the lock is held.

The lock is locked/unlocked using spin lock()/spin_unlock() functions which must match the way they
are locked/unlocked outside of this macro.

The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus when other process waits
process on the list if this process is awaken further processes are not considered.

wake up_ locked() has to be called after changing any variable that could change the result of the wait
condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to
true.

wait_event_interruptible_exclusive_locked_irq(wq, condition)
sleep until a condition gets true

Parameters

wq the waitqueue to wait on

condition a C expression for the event to wait for
Description

The process is put to sleep (TASK INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq is woken up.

It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition testing
is done while lock is held and when this macro exits the lock is held.

The lock is locked/unlocked using spin_lock _irq()/spin_unlock irq() functions which must match the
way they are locked/unlocked outside of this macro.

The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus when other process waits
process on the list if this process is awaken further processes are not considered.

wake up_ locked() has to be called after changing any variable that could change the result of the wait
condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to
true.

wait_event_killable(wq_head, condition)
sleep until a condition gets true

Parameters

1.5. Wait queues and Wake events 25

The kernel driver API manual, Release 4.13.0-rc4+

wq_head the waitqueue to wait on
condition a C expression for the event to wait for
Description

The process is put to sleep (TASK_KILLABLE) until the condition evaluates to true or a signal is received.
The condition is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to
true.

wait_event_lock_irq_cmd(wq_head, condition, lock, cmd)
sleep until a condition gets true. The condition is checked under the lock. This is expected to be
called with the lock taken.

Parameters

wq_head the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before cmd and schedule() and reacquired afterwards.
cmd a command which is invoked outside the critical section before sleep

Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condi-
tion is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before invoking the cmd and
going to sleep and is reacquired afterwards.

wait_event_lock_irq(wqg_head, condition, lock)
sleep until a condition gets true. The condition is checked under the lock. This is expected to be
called with the lock taken.

Parameters

wq_head the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before schedule() and reacquired afterwards.
Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condi-
tion is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is
reacquired afterwards.

wait_event_interruptible lock irq_cmd(wqg head, condition, lock, cmd)
sleep until a condition gets true. The condition is checked under the lock. This is expected to be
called with the lock taken.

Parameters

wq_head the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before cmd and schedule() and reacquired afterwards.

cmd a command which is invoked outside the critical section before sleep

26 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Description

The process is put to sleep (TASK INTERRUPTIBLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before invoking the cmd and
going to sleep and is reacquired afterwards.

The macro will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to true.

wait_event_interruptible_lock _irq(wg_head, condition, lock)
sleep until a condition gets true. The condition is checked under the lock. This is expected to be
called with the lock taken.

Parameters

wq_head the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before schedule() and reacquired afterwards.
Description

The process is put to sleep (TASK INTERRUPTIBLE) until the condition evaluates to true or signal is re-
ceived. The condition is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is
reacquired afterwards.

The macro will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to true.

wait_event_interruptible_lock_irq_timeout (wq_head, condition, lock, timeout)
sleep until a condition gets true or a timeout elapses. The condition is checked under the lock. This
is expected to be called with the lock taken.

Parameters

wq_head the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before schedule() and reacquired afterwards.
timeout timeout, in jiffies

Description

The process is put to sleep (TASK INTERRUPTIBLE) until the condition evaluates to true or signal is re-
ceived. The condition is checked each time the waitqueue wq_head is woken up.

wake up() has to be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is
reacquired afterwards.

The function returns 0O if the timeout elapsed, -ERESTARTSYS if it was interrupted by a signal, and the
remaining jiffies otherwise if the condition evaluated to true before the timeout elapsed.

void __wake_up (struct wait_queue_head * wq_head, unsigned int mode, int nr_exclusive, void
* key)
wake up threads blocked on a waitqueue.

Parameters

struct wait_queue_head * wq_head the waitqueue

1.5. Wait queues and Wake events 27

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int mode which threads

int nr_exclusive how many wake-one or wake-many threads to wake up
void * key is directly passed to the wakeup function

Description

It may be assumed that this function implies a write memory barrier before changing the task state if and
only if any tasks are woken up.

void __wake_up_sync_key (struct wait_ queue_head * wg_head, unsigned int mode, int nr_exclusive,
void * key)
wake up threads blocked on a waitqueue.

Parameters

struct wait_queue _head * wq_head the waitqueue

unsigned int mode which threads

int nr_exclusive how many wake-one or wake-many threads to wake up
void * key opaque value to be passed to wakeup targets

Description

The sync wakeup differs that the waker knows that it will schedule away soon, so while the target thread
will be woken up, it will not be migrated to another CPU - ie. the two threads are ‘synchronized’ with each
other. This can prevent needless bouncing between CPUs.

On UP it can prevent extra preemption.

It may be assumed that this function implies a write memory barrier before changing the task state if and
only if any tasks are woken up.

void finish_wait (struct wait_queue_head * wq_head, struct wait_queue_entry * wq_entry)
clean up after waiting in a queue

Parameters

struct wait_queue_head * wq_head waitqueue waited on
struct wait_queue_entry * wq_entry wait descriptor
Description

Sets current thread back to running state and removes the wait descriptor from the given waitqueue if
still queued.

1.6 High-resolution timers

ktime_t ktime_set (const s64 secs, const unsigned long nsecs)
Set a ktime_t variable from a seconds/nanoseconds value

Parameters

const s64 secs seconds to set

const unsigned long nsecs nanoseconds to set
Return

The ktime_t representation of the value.

int ktime_compare(const ktime_t cmpl, const ktime_t cmp2)
Compares two ktime_t variables for less, greater or equal

Parameters

28 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

const ktime_t cmpl comparablel
const ktime_t cmp2 comparable2
Return
. cmpl < cmp2: return <0 cmpl == cmp?2: return 0 cmpl > cmp2: return >0

bool ktime_after(const ktime t cmpl, const ktime_t cmp2)
Compare if a ktime_t value is bigger than another one.

Parameters

const ktime_t cmpl comparablel
const ktime_t cmp2 comparable2
Return

true if cmpl happened after cmp?2.

bool ktime_before(const ktime t cmpl, const ktime_t cmp2)
Compare if a ktime_t value is smaller than another one.

Parameters

const ktime_t cmpl comparablel
const ktime_t cmp2 comparable2
Return

true if cmpl happened before cmp?2.

bool ktime_to_timespec_cond(const ktime_t kt, struct timespec * ts)
convert a ktime_t variable to timespec format only if the variable contains data

Parameters

const ktime_t kt the ktime_t variable to convert

struct timespec * ts the timespec variable to store the result in
Return

true if there was a successful conversion, false if kt was 0.

bool ktime_to_timespec64_cond(const ktime_t kt, struct timespec64 * ts)
convert a ktime_t variable to timespec64 format only if the variable contains data

Parameters

const ktime_t kt the ktime_t variable to convert

struct timespec64 * ts the timespec variable to store the result in
Return

true if there was a successful conversion, false if kt was 0.

struct hrtimer
the basic hrtimer structure

Definition

struct hrtimer {
struct timerqueue node node;
ktime t softexpires;
enum hrtimer restart (* function) (struct hrtimer *);
struct hrtimer clock base * base;
u8 state;
u8 is rel;

}

1.6. High-resolution timers

29

The kernel driver API manual, Release 4.13.0-rc4+

Members

node timerqueue node, which also manages node.expires, the absolute expiry time in the hrtimers inter-
nal representation. The time is related to the clock on which the timer is based. Is setup by adding
slack to the _softexpires value. For non range timers identical to _softexpires.

_softexpires the absolute earliest expiry time of the hrtimer. The time which was given as expiry time
when the timer was armed.

function timer expiry callback function

base pointer to the timer base (per cpu and per clock)
state state information (See bit values above)

is_rel Set if the timer was armed relative

Description

The hrtimer structure must be initialized by hrtimer init()

struct hrtimer_sleeper
simple sleeper structure

Definition

struct hrtimer_sleeper {
struct hrtimer timer;
struct task struct * task;

+

Members

timer embedded timer structure

task task to wake up

Description

task is set to NULL, when the timer expires.

struct hrtimer_clock_base
the timer base for a specific clock

Definition

struct hrtimer clock base {
struct hrtimer _cpu base * cpu_base;
int index;
clockid t clockid;
struct timerqueue head active;
ktime t (* get time) (void);
ktime t offset;

}

Members

cpu_base per cpu clock base

index clock type index for per_cpu support when moving a timer to a base on another cpu.
clockid clock id for per_cpu support

active red black tree root node for the active timers

get_time function to retrieve the current time of the clock

offset offset of this clock to the monotonic base

void hrtimer_start (struct hrtimer * timer, ktime_t tim, const enum hrtimer_mode mode)
(re)start an hrtimer on the current CPU

30 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct hrtimer * timer the timer to be added
ktime_t tim expiry time

const enum hrtimer_mode mode expiry mode: absolute (HRTIMER_MODE_ABS) or relative
(HRTIMER_MODE_REL)

u64 hrtimer_forward_now (struct hrtimer * timer, ktime_t interval)
forward the timer expiry so it expires after now

Parameters

struct hrtimer * timer hrtimer to forward
ktime_t interval the interval to forward
Description

Forward the timer expiry so it will expire after the current time of the hrtimer clock base. Returns the
number of overruns.

Can be safely called from the callback function of timer. If called from other contexts timer must neither
be enqueued nor running the callback and the caller needs to take care of serialization.

Note
This only updates the timer expiry value and does not requeue the timer.

u64 hrtimer_forward (struct hrtimer * timer, ktime_t now, ktime_t interval)
forward the timer expiry

Parameters

struct hrtimer * timer hrtimer to forward

ktime_t now forward past this time

ktime_t interval the interval to forward

Description

Forward the timer expiry so it will expire in the future. Returns the number of overruns.

Can be safely called from the callback function of timer. If called from other contexts timer must neither
be enqueued nor running the callback and the caller needs to take care of serialization.

Note
This only updates the timer expiry value and does not requeue the timer.

void hrtimer_start_range_ns(struct hrtimer * timer, ktime_t tim, u64 delta_ns, const enum
hrtimer_mode mode)
(re)start an hrtimer on the current CPU

Parameters

struct hrtimer * timer the timer to be added
ktime_t tim expiry time

u64 delta_ns “slack” range for the timer

const enum hrtimer_mode mode expiry mode: absolute (HRTIMER_MODE_ABS) or relative
(HRTIMER_MODE_REL)

int hrtimer_try_to_cancel(struct hrtimer * timer)
try to deactivate a timer

Parameters

struct hrtimer * timer hrtimer to stop

1.6. High-resolution timers 31

The kernel driver API manual, Release 4.13.0-rc4+

Return
0 when the timer was not active 1 when the timer was active
-1 when the timer is currently executing the callback function and cannot be stopped

int hrtimer_cancel (struct hrtimer * timer)
cancel a timer and wait for the handler to finish.

Parameters
struct hrtimer * timer the timer to be cancelled
Return
0 when the timer was not active 1 when the timer was active

ktime_t __hrtimer_get_remaining(const struct hrtimer * timer, bool adjust)
get remaining time for the timer

Parameters
const struct hrtimer * timer the timer to read
bool adjust adjust relative timers when CONFIG_TIME_LOW_RES=y

void hrtimer_init (struct hrtimer * timer, clockid_t clock_id, enum hrtimer_mode mode)
initialize a timer to the given clock

Parameters

struct hrtimer * timer the timer to be initialized
clockid_t clock_id the clock to be used

enum hrtimer_mode mode timer mode abs/rel

int __sched schedule_hrtimeout_range (ktime_t * expires, u6b4 delta, const enum
hrtimer_mode mode)
sleep until timeout

Parameters

ktime_t * expires timeout value (ktime_t)

u64 delta slack in expires timeout (ktime_t)

const enum hrtimer_mode mode timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
Description

Make the current task sleep until the given expiry time has elapsed. The routine will return immediately
unless the current task state has been set (see set current state()).

The delta argument gives the kernel the freedom to schedule the actual wakeup to a time that is both
power and performance friendly. The kernel give the normal best effort behavior for “expires**+**delta”,
but may decide to fire the timer earlier, but no earlier than expires.

You can set the task state as follows -

TASK _UNINTERRUPTIBLE - at least timeout time is guaranteed to pass before the routine returns unless
the current task is explicitly woken up, (e.g. by wake up process()).

TASK _INTERRUPTIBLE - the routine may return early if a signal is delivered to the current task or the current
task is explicitly woken up.

The current task state is guaranteed to be TASK_ RUNNING when this routine returns.

Returns 0 when the timer has expired. If the task was woken before the timer expired by a signal (only
possible in state TASK_INTERRUPTIBLE) or by an explicit wakeup, it returns -EINTR.

int __sched schedule_hrtimeout (ktime_t * expires, const enum hrtimer_mode mode)
sleep until timeout

32 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters

ktime_t * expires timeout value (ktime_t)

const enum hrtimer_mode mode timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
Description

Make the current task sleep until the given expiry time has elapsed. The routine will return immediately
unless the current task state has been set (see set _current _state()).

You can set the task state as follows -

TASK UNINTERRUPTIBLE - at least timeout time is guaranteed to pass before the routine returns unless
the current task is explicitly woken up, (e.g. by wake up process()).

TASK INTERRUPTIBLE - the routine may return early if a signal is delivered to the current task or the current
task is explicitly woken up.

The current task state is guaranteed to be TASK_ RUNNING when this routine returns.

Returns 0 when the timer has expired. If the task was woken before the timer expired by a signal (only
possible in state TASK_ INTERRUPTIBLE) or by an explicit wakeup, it returns -EINTR.

1.7 Workqueues and Kevents

struct workqueue_attrs
A struct for workqueue attributes.

Definition

struct workqueue attrs {
int nice;

cpumask var_ t cpumask;
bool no numa;

}I

Members

nice nice level

cpumask allowed CPUs
no_numa disable NUMA affinity

Unlike other fields, no numa isn't a property of a worker pool. It only modifies how ap-
ply workqueue attrs() select pools and thus doesn’t participate in pool hash calculations or equal-
ity comparisons.

Description
This can be used to change attributes of an unbound workqueue.

work_pending(work)
Find out whether a work item is currently pending

Parameters
work The work item in question

delayed _work_pending(w)
Find out whether a delayable work item is currently pending

Parameters

w The work item in question

1.7. Workqueues and Kevents 33

The kernel driver API manual, Release 4.13.0-rc4+

alloc_workqueue(fmt, flags, max_active, args...)
allocate a workqueue

Parameters

fmt printf format for the name of the workqueue
flags WQ_* flags

max_active max in-flight work items, 0 for default
args... args for fmt

Description

Allocate a workqueue with the specified parameters. For detailed information on WQ_* flags, please refer
to Documentation/core-api/workqueue.rst.

The _lock_name macro dance is to guarantee that single lock class key doesn’t end up with different
namesm, which isn’t allowed by lockdep.

Return
Pointer to the allocated workqueue on success, NULL on failure.

alloc_ordered_workqueue(fmt, flags, args...)
allocate an ordered workqueue

Parameters

fmt printf format for the name of the workqueue

flags WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
args... args for fmt

Description

Allocate an ordered workqueue. An ordered workqueue executes at most one work item at any given time
in the queued order. They are implemented as unbound workqueues with max_active of one.

Return
Pointer to the allocated workqueue on success, NULL on failure.

bool queue_work (struct workqueue_struct * wq, struct work_struct * work)
queue work on a workqueue

Parameters

struct workqueue_struct * wq workqueue to use

struct work_struct * work work to queue

Description

Returns false if work was already on a queue, true otherwise.

We queue the work to the CPU on which it was submitted, but if the CPU dies it can be processed by
another CPU.

bool queue_delayed work(struct workqueue_struct * wq, struct delayed work * dwork, unsigned

long delay)
queue work on a workqueue after delay

Parameters
struct workqueue_struct * wq workqueue to use
struct delayed work * dwork delayable work to queue

unsigned long delay number of jiffies to wait before queueing

34 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Description
Equivalent to queue delayed work on() but tries to use the local CPU.

bool mod_delayed_work(struct workqueue struct * wqg, struct delayed work * dwork, unsigned
long delay)
modify delay of or queue a delayed work

Parameters

struct workqueue_struct * wq workqueue to use

struct delayed work * dwork work to queue

unsigned long delay number of jiffies to wait before queueing
Description

mod delayed work on() on local CPU.

bool schedule_work_on (int cpu, struct work_struct * work)
put work task on a specific cpu

Parameters

int cpu cpu to put the work task on

struct work_struct * work job to be done
Description

This puts a job on a specific cpu

bool schedule_work(struct work_struct * work)
put work task in global workqueue

Parameters

struct work_struct * work job to be done

Description

Returns false if work was already on the kernel-global workqueue and true otherwise.

This puts a job in the kernel-global workqueue if it was not already queued and leaves it in the same
position on the kernel-global workqueue otherwise.

void flush_scheduled_work(void)
ensure that any scheduled work has run to completion.

Parameters

void no arguments

Description

Forces execution of the kernel-global workqueue and blocks until its completion.

Think twice before calling this function! It's very easy to get into trouble if you don’t take great care.
Either of the following situations will lead to deadlock:

One of the work items currently on the workqueue needs to acquire a lock held by your code or
its caller.

Your code is running in the context of a work routine.

They will be detected by lockdep when they occur, but the first might not occur very often. It depends on
what work items are on the workqueue and what locks they need, which you have no control over.

In most situations flushing the entire workqueue is overkill; you merely need to know that a particular
work item isn't queued and isn’t running. In such cases you should use cancel delayed work sync()
or cancel work sync() instead.

1.7. Workqueues and Kevents 35

The kernel driver API manual, Release 4.13.0-rc4+

bool schedule_delayed work _on(int cpu, struct delayed work * dwork, unsigned long delay)
queue work in global workqueue on CPU after delay

Parameters

int cpu cpu to use

struct delayed work * dwork job to be done

unsigned long delay number of jiffies to wait

Description

After waiting for a given time this puts a job in the kernel-global workqueue on the specified CPU.

bool schedule_delayed_work(struct delayed _work * dwork, unsigned long delay)
put work task in global workqueue after delay

Parameters

struct delayed work * dwork job to be done

unsigned long delay number of jiffies to wait or 0 for immediate execution
Description

After waiting for a given time this puts a job in the kernel-global workqueue.

bool queue_work_on(int cpu, struct workqueue_struct * wq, struct work_struct * work)
queue work on specific cpu

Parameters

int cpu CPU number to execute work on

struct workqueue_struct * wq workqueue to use

struct work_struct * work work to queue

Description

We queue the work to a specific CPU, the caller must ensure it can’t go away.
Return

false if work was already on a queue, true otherwise.

bool queue_delayed_work_on(int cpu, struct workqueue_struct * wq, struct delayed_work * dwork,

unsigned long delay)
queue work on specific CPU after delay

Parameters

int cpu CPU number to execute work on

struct workqueue_struct * wq workqueue to use

struct delayed work * dwork work to queue

unsigned long delay number of jiffies to wait before queueing
Return

false if work was already on a queue, true otherwise. If delay is zero and dwork is idle, it will be
scheduled for immediate execution.

bool mod_delayed_work_on (int cpu, struct workqueue_struct * wq, struct delayed_work * dwork, un-

signed long delay)
modify delay of or queue a delayed work on specific CPU

Parameters
int cpu CPU number to execute work on

struct workqueue_struct * wq workqueue to use

36 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

struct delayed work * dwork work to queue
unsigned long delay number of jiffies to wait before queueing
Description

If dwork is idle, equivalent to queue delayed work on(); otherwise, modify dwork’s timer so that it
expires after delay. If delay is zero, work is guaranteed to be scheduled immediately regardless of its
current state.

Return
false if dwork was idle and queued, true if dwork was pending and its timer was modified.

This function is safe to call from any context including IRQ handler. See try to grab pending() for
details.

void flush_workqueue (struct workqueue_struct * wq)
ensure that any scheduled work has run to completion.

Parameters
struct workqueue_struct * wq workqueue to flush
Description

This function sleeps until all work items which were queued on entry have finished execution, but it is not
livelocked by new incoming ones.

void drain_workqueue (struct workqueue_struct * wq)
drain a workqueue

Parameters
struct workqueue_struct * wq workqueue to drain
Description

Wait until the workqueue becomes empty. While draining is in progress, only chain queueing is allowed.
IOW, only currently pending or running work items on wq can queue further work items on it. wq is
flushed repeatedly until it becomes empty. The number of flushing is determined by the depth of chaining
and should be relatively short. Whine if it takes too long.

bool flush_work(struct work_struct * work)
wait for a work to finish executing the last queueing instance

Parameters
struct work_struct * work the work to flush
Description

Wait until work has finished execution. work is guaranteed to be idle on return if it hasn’t been requeued
since flush started.

Return
true if flush work() waited for the work to finish execution, false if it was already idle.

bool cancel_work_sync(struct work_struct * work)
cancel a work and wait for it to finish

Parameters
struct work_struct * work the work to cancel
Description

Cancel work and wait for its execution to finish. This function can be used even if the work re-queues itself
or migrates to another workqueue. On return from this function, work is guaranteed to be not pending
or executing on any CPU.

1.7. Workqueues and Kevents 37

The kernel driver API manual, Release 4.13.0-rc4+

cancel work sync(delayed work->work) must not be used for delayed work’s. Use can-
cel delayed work sync() instead.

The caller must ensure that the workqueue on which work was last queued can’t be destroyed before
this function returns.

Return
true if work was pending, false otherwise.

bool flush_delayed_work(struct delayed work * dwork)
wait for a dwork to finish executing the last queueing

Parameters
struct delayed_work * dwork the delayed work to flush
Description

Delayed timer is cancelled and the pending work is queued for immediate execution. Like flush work(),
this function only considers the last queueing instance of dwork.

Return
true if flush work() waited for the work to finish execution, false if it was already idle.

bool cancel_delayed_work(struct delayed_work * dwork)
cancel a delayed work

Parameters

struct delayed work * dwork delayed work to cancel
Description

Kill off a pending delayed_work.

Return

true if dwork was pending and canceled; false if it wasn’t pending.
Note

The work callback function may still be running on return, unless it returns true and the work doesn’t
re-arm itself. Explicitly flush or use cancel delayed work sync() to wait on it.

This function is safe to call from any context including IRQ handler.

bool cancel_delayed work_sync (struct delayed work * dwork)
cancel a delayed work and wait for it to finish

Parameters

struct delayed work * dwork the delayed work cancel
Description

This is cancel work sync() for delayed works.

Return

true if dwork was pending, false otherwise.

int execute_in_process_context (work func_t fn, struct execute_work * ew)
reliably execute the routine with user context

Parameters
work _func_t fn the function to execute

struct execute_work * ew guaranteed storage for the execute work structure (must be available when
the work executes)

38 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Description

Executes the function immediately if process context is available, otherwise schedules the function for
delayed execution.

Return
0 - function was executed 1 - function was scheduled for execution

void destroy_workqueue (struct workqueue_struct * wq)
safely terminate a workqueue

Parameters

struct workqueue_struct * wq target workqueue

Description

Safely destroy a workqueue. All work currently pending will be done first.

void workqueue_set_max_active(struct workqueue_struct * wq, int max_active)
adjust max_active of a workqueue

Parameters

struct workqueue_struct * wq target workqueue
int max_active new max_active value.
Description

Set max_active of wq to max_active.

Context

Don’t call from IRQ context.

bool workqueue_congested (int cpu, struct workqueue_struct * wq)
test whether a workqueue is congested

Parameters

int cpu CPU in question

struct workqueue_struct * wq target workqueue
Description

Test whether wq's cpu workqueue for cpu is congested. There is no synchronization around this function
and the test result is unreliable and only useful as advisory hints or for debugging.

If cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. Note that both per-cpu and un-
bound workqueues may be associated with multiple pool workqueues which have separate congested
states. A workqueue being congested on one CPU doesn’'t mean the workqueue is also contested on
other CPUs / NUMA nodes.

Return
true if congested, false otherwise.

unsigned int work_busy (struct work_struct * work)
test whether a work is currently pending or running

Parameters
struct work_struct * work the work to be tested
Description

Test whether work is currently pending or running. There is no synchronization around this function and
the test result is unreliable and only useful as advisory hints or for debugging.

Return

1.7. Workqueues and Kevents 39

The kernel driver API manual, Release 4.13.0-rc4+

OR’d bitmask of WORK_BUSY _* bits.

long work_on_cpu(int cpu, long (*fn) (void *, void * arg)
run a function in thread context on a particular cpu

Parameters

int cpu the cputo runon

long (*)(void *) fn the function to run
void * arg the function arg
Description

It is up to the caller to ensure that the cpu doesn’t go offline. The caller must not hold any locks which
would prevent fn from completing.

Return
The value fn returns.

long work_on_cpu_safe(int cpu, long (*fn) (void *, void * arg)
run a function in thread context on a particular cpu

Parameters

int cpu the cpu to run on

long (*)(void *) fn the function to run
void * arg the function argument
Description

Disables CPU hotplug and calls work on cpu(). The caller must not hold any locks which would prevent
fn from completing.

Return
The value fn returns.

1.8 Internal Functions

int wait_task_stopped (struct wait_opts * wo, int ptrace, struct task struct * p)
Wait for TASK_STOPPED or TASK TRACED

Parameters

struct wait_opts * wo wait options

int ptrace is the wait for ptrace

struct task_struct * p task to wait for

Description

Handle sys wait4() work for p in state TASK STOPPED or TASK_ TRACED.
Context

read_lock(tasklist lock), which is released if return value is non-zero. Also, grabs and releases p-
>sighand->siglock.

Return

0 if wait condition didn’t exist and search for other wait conditions should continue. Non-zero return,
-errno on failure and p‘s pid on success, implies that tasklist_lock is released and wait condition search
should terminate.

40 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

bool task_set_jobctl pending(struct task struct * task, unsigned long mask)
set jobctl pending bits

Parameters
struct task_struct * task target task
unsigned long mask pending bits to set
Description

Clear mask from task->jobctl. mask must be subset of JOBCTL_PENDING MASK | JOBCTL_STOP_ CONSUME
| JOBCTL_STOP_SIGMASK | JOBCTL TRAPPING. If stop signo is being set, the existing signo is cleared. If
task is already being killed or exiting, this function becomes noop.

Context

Must be called with task->sighand->siglock held.

Return

true if mask is set, false if made noop because task was dying.

void task_clear_jobctl_trapping(struct task struct * task)
clear jobctl trapping bit

Parameters
struct task _struct * task target task
Description

If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. Clear it and wake up the ptracer.
Note that we don’t need any further locking. task->siglock guarantees that task->parent points to the
ptracer.

Context
Must be called with task->sighand->siglock held.

void task_clear_jobctl pending(struct task struct * task, unsigned long mask)
clear jobctl pending bits

Parameters

struct task_struct * task target task
unsigned long mask pending bits to clear
Description

Clear mask from task->jobctl. mask must be subset of JOBCTL_PENDING_ MASK. If JOBCTL_STOP_ PENDING
is being cleared, other STOP bits are cleared together.

If clearing of mask leaves no stop or trap pending, this function calls task clear jobctl trapping().
Context
Must be called with task->sighand->siglock held.

bool task_participate_group_stop(struct task_struct * task)
participate in a group stop

Parameters
struct task_struct * task task participating in a group stop
Description

task has JOBCTL STOP PENDING set and is participating in a group stop. Group stop states are cleared
and the group stop count is consumed if JOBCTL_STOP_CONSUME was set. If the consumption completes
the group stop, the appropriate “‘SIGNAL_‘‘* flags are set.

Context

1.8. Internal Functions 41

The kernel driver API manual, Release 4.13.0-rc4+

Must be called with task->sighand->siglock held.
Return
true if group stop completion should be notified to the parent, false otherwise.

void ptrace_trap_notify(struct task struct * t)
schedule trap to notify ptracer

Parameters
struct task_struct * t tracee wanting to notify tracer
Description

This function schedules sticky ptrace trap which is cleared on the next TRAP_STOP to notify ptracer of an
event. t must have been seized by ptracer.

If t is running, STOP trap will be taken. If trapped for STOP and ptracer is listening for events, tracee is
woken up so that it can re-trap for the new event. If trapped otherwise, STOP trap will be eventually taken
without returning to userland after the existing traps are finished by PTRACE_CONT.

Context
Must be called with task->sighand->siglock held.

void do_notify_parent_cldstop (struct task struct * tsk, bool for_ptracer, int why)
notify parent of stopped/continued state change

Parameters

struct task_struct * tsk task reporting the state change
bool for_ptracer the notification is for ptracer

int why CLD {CONTINUED|STOPPED|TRAPPED} to report
Description

Notify tsk’'s parent that the stopped/continued state has changed. If for_ptracer is false, tsk’'s group
leader notifies to its real parent. If true, tsk reports to tsk->parent which should be the ptracer.

Context
Must be called with tasklist lock at least read locked.

bool do_signal_stop (int signr)
handle group stop for SIGSTOP and other stop signals

Parameters
int signr signr causing group stop if initiating
Description

If JOBCTL _STOP PENDING is not set yet, initiate group stop with signr and participate in it. If already set,
participate in the existing group stop. If participated in a group stop (and thus slept), true is returned
with siglock released.

If ptraced, this function doesn’t handle stop itself. Instead, JOBCTL TRAP_STOP is scheduled and false
is returned with siglock untouched. The caller must ensure that INTERRUPT trap handling takes places
afterwards.

Context

Must be called with current->sighand->siglock held, which is released on true return.

Return

false if group stop is already cancelled or ptrace trap is scheduled. true if participated in group stop.

void do_jobctl_trap(void)
take care of ptrace jobctl traps

42 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
void no arguments
Description

When PT_SEIZED, it's used for both group stop and explicit SEIZE/INTERRUPT traps. Both generate
PTRACE_EVENT STOP trap with accompanying siginfo. If stopped, lower eight bits of exit code contain
the stop signal; otherwise, SIGTRAP.

When !PT_SEIZED, it’s used only for group stop trap with stop signal number as exit_code and no siginfo.
Context

Must be called with current->sighand->siglock held, which may be released and re-acquired before re-
turning with intervening sleep.

void signal_delivered (struct ksignal * ksig, int stepping)
Parameters

struct ksignal * ksig kernel signal struct

int stepping nonzero if debugger single-step or block-step in use
Description

This function should be called when a signal has successfully been delivered. It updates the blocked signals
accordingly (ksig->ka.sa.sa_mask is always blocked, and the signal itself is blocked unless SA NODEFER
is set in ksig->ka.sa.sa_flags. Tracing is notified.

long sys_restart_syscall(void)
restart a system call

Parameters
void no arguments

void set_current_blocked(sigset t * newset)
change current->blocked mask

Parameters
sigset_t * newset new mask
Description

It is wrong to change ->blocked directly, this helper should be used to ensure the process can’t miss a
shared signal we are going to block.

long sys_rt_sigprocmask(int how, sigset t user * nset, sigset t _user * oset, size_t sigsetsize)
change the list of currently blocked signals

Parameters

int how whether to add, remove, or set signals

sigset_t _ user * nset stores pending signals

sigset_t _ user * oset previous value of signal mask if non-null
size t sigsetsize size of sigset t type

long sys_rt_sigpending(sigset t user * uset, size_t sigsetsize)
examine a pending signal that has been raised while blocked

Parameters
sigset_t _ user * uset stores pending signals
size_t sigsetsize size of sigset t type or larger

int do_sigtimedwait (const sigset_t * which, siginfo_t * info, const struct timespec * ts)
wait for queued signals specified in which

1.8. Internal Functions 43

The kernel driver API manual, Release 4.13.0-rc4+

Parameters

const sigset_t * which queued signals to wait for

siginfo_t * info if non-null, the signal’s siginfo is returned here
const struct timespec * ts upper bound on process time suspension

long sys_rt_sigtimedwait (constsigset t user* uthese, siginfo t user* uinfo, const struct time-
spec __user * uts, size_t sigsetsize)
synchronously wait for queued signals specified in uthese

Parameters

const sigset_t _ user * uthese queued signals to wait for

siginfo_t __user * uinfo if non-null, the signal’s siginfo is returned here
const struct timespec _ user * uts upper bound on process time suspension
size t sigsetsize size of sigset t type

long sys_kill(pid_t pid, int sig)
send a signal to a process

Parameters
pid_t pid the PID of the process
int sig signal to be sent

long sys_tgkill(pid_t tgid, pid_t pid, int sig)
send signal to one specific thread

Parameters

pid_t tgid the thread group ID of the thread
pid_t pid the PID of the thread

int sig signal to be sent

Description

This syscall also checks the tgid and returns -ESRCH even if the PID exists but it's not belonging
to the target process anymore. This method solves the problem of threads exiting and PIDs
getting reused.

long sys_tkill(pid_t pid, int sig)
send signal to one specific task

Parameters
pid_t pid the PID of the task
int sig signal to be sent
Description
Send a signal to only one task, even if it's a CLONE_THREAD task.

long sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t _user * uinfo)
send signal information to a signal

Parameters

pid_t pid the PID of the thread

int sig signal to be sent

siginfo_t __user * uinfo signal info to be sent

long sys_sigpending(old_sigset t user * set)
examine pending signals

44 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
old_sigset_t _ user * set where mask of pending signal is returned

long sys_sigprocmask(int how, old_sigset t user * nset, old_sigset t _user * oset)
examine and change blocked signals

Parameters

int how whether to add, remove, or set signals

old_sigset_t _ user * nset signals to add or remove (if non-null)

old sigset t user * oset previous value of signal mask if non-null

Description

Some platforms have their own version with special arguments; others support only sys_rt sigprocmask.

long sys_rt_sigaction(int sig, const struct sigaction __user * act, struct sigaction __user * oact,
size_t sigsetsize)
alter an action taken by a process

Parameters

int sig signal to be sent

const struct sigaction _ _user * act new sigaction

struct sigaction __user * oact used to save the previous sigaction
size_t sigsetsize size of sigset_t type

long sys_rt_sigsuspend(sigset t user * unewset, size t sigsetsize)
replace the signal mask for a value with the unewset value until a signal is received

Parameters
sigset_t _ user * unewset new signal mask value
size t sigsetsize size of sigset t type

kthread_create(threadfn, data, namefmt, arg...)
create a kthread on the current node

Parameters

threadfn the function to run in the thread

data data pointer for threadfn()

namefmt printf-style format string for the thread name
arg... arguments for namefmt.

Description

This macro will create a kthread on the current node, leaving it in the stopped state. This is just a helper
for kthread create on node(); see the documentation there for more details.

kthread_run(threadfn, data, namefmt, ...)
create and wake a thread.

Parameters

threadfn the function to run until signal_pending(current).
data data ptr for threadfn.

namefmt printf-style name for the thread.

. variable arguments

1.8. Internal Functions 45

The kernel driver API manual, Release 4.13.0-rc4+

Description

Convenient wrapper for kthread create() followed by wake up process(). Returns the kthread or
ERR_PTR(-ENOMEM).

bool kthread_should_stop(void)
should this kthread return now?

Parameters
void no arguments
Description

When someone calls kthread stop() on your kthread, it will be woken and this will return true. You
should then return, and your return value will be passed through to kthread stop().

bool kthread_should_park(void)
should this kthread park now?

Parameters
void no arguments
Description

When someone calls kthread park() on your kthread, it will be woken and this will return true. You
should then do the necessary cleanup and call kthread parkme()

Similar to kthread should stop(), but this keeps the thread alive and in a park position.
kthread unpark() “restarts” the thread and calls the thread function again.

bool kthread_freezable_should_stop(bool * was_frozen)
should this freezable kthread return now?

Parameters
bool * was_frozen optional out parameter, indicates whether current was frozen
Description

kthread should stop() for freezable kthreads, which will enter refrigerator if necessary. This function
is safe from kthread stop() / freezer deadlock and freezable kthreads should use this function instead
of calling try to freeze() directly.

struct task_struct * kthread_create_on_node(int (*threadfn) (void *data, void * data, int node,

const char namefmt, ...)
create a kthread.

Parameters
int (*)(void *data) threadfn the function to run until signal_pending(current).
void * data data ptr for threadfn.
int node task and thread structures for the thread are allocated on this node
const char namefmt printf-style name for the thread.

. variable arguments
Description

This helper function creates and names a kernel thread. The thread will be stopped: use
wake up process() to start it. See also kthread run(). The new thread has SCHED_NORMAL policy
and is affine to all CPUs.

If thread is going to be bound on a particular cpu, give its node in node, to get NUMA affinity for kthread
stack, or else give NUMA NO_NODE. When woken, the thread will run threadfn() with data as its ar-
gument. threadfn() can either call do _exit () directly if it is a standalone thread for which no one will
call kthread stop(), or return when ‘kthread should stop()* is true (which means kthread stop()

46 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

has been called). The return value should be zero or a negative error number; it will be passed to
kthread stop().

Returns a task struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).

void kthread_bind (struct task_struct * p, unsigned int cpu)
bind a just-created kthread to a cpu.

Parameters

struct task_struct * p thread created by kthread create().

unsigned int cpu cpu (might not be online, must be possible) for k to run on.
Description

This function is equivalent to set _cpus_allowed(), except that cpu doesn’t need to be online, and the
thread must be stopped (i.e., just returned from kthread create()).

void kthread_unpark (struct task_struct * k)
unpark a thread created by kthread create().

Parameters
struct task_struct * k thread created by kthread create().
Description

Sets kthread should park() for k to return false, wakes it, and waits for it to return. If the thread is
marked percpu then its bound to the cpu again.

int kthread_park (struct task_struct * k)
park a thread created by kthread create().

Parameters
struct task_struct * k thread created by kthread create().
Description

Sets kthread should park() for k to return true, wakes it, and waits for it to return. This can also be
called after kthread create() instead of callingwake up process(): the thread will park without calling
threadfn().

Returns 0 if the thread is parked, -ENOSYS if the thread exited. If called by the kthread itself just the park
bit is set.

int kthread_stop (struct task_struct * k)
stop a thread created by kthread create().

Parameters
struct task_struct * k thread created by kthread create().
Description

Sets kthread should stop() for k to return true, wakes it, and waits for it to exit. This can also be
called after kthread create() instead of calling wake up process(): the thread will exit without calling
threadfn().

If threadfn() may call do exit() itself, the caller must ensure task_struct can’t go away.
Returns the result of threadfn(), or -EINTR if wake up process() was never called.

int kthread_worker_fn (void * worker_ptr)
kthread function to process kthread_worker

Parameters

void * worker_ptr pointer to initialized kthread _worker

1.8. Internal Functions 47

The kernel driver API manual, Release 4.13.0-rc4+

Description

This function implements the main cycle of kthread worker. It processes work_list until it is stopped with
kthread stop(). It sleeps when the queue is empty.

The works are not allowed to keep any locks, disable preemption or interrupts when they finish. There is
defined a safe point for freezing when one work finishes and before a new one is started.

Also the works must not be handled by more than one worker at the same time, see also
kthread queue work().

struct kthread_worker * kthread_create_worker (unsigned int flags, const char namefmt, ...)
create a kthread worker

Parameters
unsigned int flags flags modifying the default behavior of the worker
const char namefmt printf-style name for the kthread worker (task).
. variable arguments
Description

Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) when the needed structures
could not get allocated, and ERR_PTR(-EINTR) when the worker was SIGKILLed.

struct kthread_worker * kthread_create_worker_on_cpu(int cou, unsigned intflags, const

char namefmt, ...)
create a kthread worker and bind it it to a given CPU and the associated NUMA node.

Parameters
int cpu CPU number
unsigned int flags flags modifying the default behavior of the worker
const char namefmt printf-style name for the kthread worker (task).
. variable arguments
Description

Use a valid CPU number if you want to bind the kthread worker to the given CPU and the associated NUMA
node.

A good practice is to add the cpu number also into the worker name. For example, use
kthread_create_worker_on_cpu(cpu, “helper/d”, cpu).

Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) when the needed structures
could not get allocated, and ERR_PTR(-EINTR) when the worker was SIGKILLed.

bool kthread_queue_work (struct kthread _worker * worker, struct kthread_work * work)
gueue a kthread_work

Parameters

struct kthread_worker * worker target kthread_worker
struct kthread_work * work kthread work to queue
Description

Queue work to work processor task for async execution. task must have been created with
kthread worker create(). Returns true if work was successfully queued, false if it was already pend-
ing.

Reinitialize the work if it needs to be used by another worker. For example, when the worker was stopped
and started again.

void kthread_delayed work_timer_fn(unsigned long data)
callback that queues the associated kthread delayed work when the timer expires.

48 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
unsigned long __data pointer to the data associated with the timer
Description

The format of the function is defined by struct timer_list. It should have been called from irgsafe timer
with irq already off.

bool kthread_queue_delayed_work(struct kthread worker * worker, struct kthread delayed work
* dwork, unsigned long delay)
queue the associated kthread work after a delay.

Parameters

struct kthread_worker * worker target kthread_worker

struct kthread _delayed work * dwork kthread delayed work to queue
unsigned long delay number of jiffies to wait before queuing
Description

If the work has not been pending it starts a timer that will queue the work after the given delay. If delay
is zero, it queues the work immediately.

Return

false if the work has already been pending. It means that either the timer was running or the work was
queued. It returns true otherwise.

void kthread_flush_work(struct kthread work * work)
flush a kthread_work

Parameters

struct kthread_work * work work to flush

Description

If work is queued or executing, wait for it to finish execution.

bool kthread_mod_delayed_work(struct kthread worker * worker, struct kthread delayed work

* dwork, unsigned long delay)
modify delay of or queue a kthread delayed work

Parameters

struct kthread_worker * worker kthread worker to use

struct kthread_delayed _work * dwork kthread delayed work to queue
unsigned long delay number of jiffies to wait before queuing
Description

If dwork is idle, equivalent to kthread queue delayed work(). Otherwise, modify dwork’s timer so
that it expires after delay. If delay is zero, work is guaranteed to be queued immediately.

Return
true if dwork was pending and its timer was modified, false otherwise.

A special case is when the work is being canceled in parallel. It might be caused either by the real
kthread cancel delayed work sync() or yet another kthread mod delayed work() call. We let the
other command win and return false here. The caller is supposed to synchronize these operations a
reasonable way.

This function is safe to call from any context including IRQ handler. See kthread cancel work() and
kthread delayed work timer fn() for details.

bool kthread_cancel_work_sync(struct kthread_work * work)
cancel a kthread work and wait for it to finish

1.8. Internal Functions 49

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct kthread_work * work the kthread work to cancel
Description

Cancel work and wait for its execution to finish. This function can be used even if the work re-queues
itself. On return from this function, work is guaranteed to be not pending or executing on any CPU.

kthread _cancel work sync(delayed work->work) must not be used for delayed work’s. Use
kthread cancel delayed work sync() instead.

The caller must ensure that the worker on which work was last queued can’t be destroyed before this
function returns.

Return
true if work was pending, false otherwise.

bool kthread_cancel_delayed_work_sync (struct kthread_delayed_work * dwork)
cancel a kthread delayed work and wait for it to finish.

Parameters

struct kthread_delayed work * dwork the kthread delayed work to cancel
Description

This is kthread cancel work sync() for delayed works.

Return

true if dwork was pending, false otherwise.

void kthread_flush_worker (struct kthread worker * worker)
flush all current works on a kthread_worker

Parameters

struct kthread_worker * worker worker to flush

Description

Wait until all currently executing or pending works on worker are finished.

void kthread_destroy_worker (struct kthread_worker * worker)
destroy a kthread worker

Parameters
struct kthread_worker * worker worker to be destroyed
Description

Flush and destroy worker. The simple flush is enough because the kthread worker API is used only in
trivial scenarios. There are no multi-step state machines needed.

1.9 Kernel objects manipulation

char * kobject_get_path (struct kobject * kobj, gfp_t gfp_mask)
generate and return the path associated with a given kobj and kset pair.

Parameters

struct kobject * kobj kobject in question, with which to build the path
gfp_t gfp_mask the allocation type used to allocate the path
Description

The result must be freed by the caller with kfree().

50 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

int kobject_set name (struct kobject * kobj, const char * fmt, ...)
Set the name of a kobject

Parameters
struct kobject * kobj struct kobject to set the name of
const char * fmt format string used to build the name
. variable arguments
Description

This sets the name of the kobject. If you have already added the kobject to the system, you must call
kobject rename() in order to change the name of the kobject.

void kobject_init (struct kobject * kobj, struct kobj_type * ktype)
initialize a kobject structure

Parameters

struct kobject * kobj pointer to the kobject to initialize

struct kobj_type * ktype pointer to the ktype for this kobject.

Description

This function will properly initialize a kobject such that it can then be passed to the kobject add() call.

After this function is called, the kobject MUST be cleaned up by a call to kobject put(), not by a call to
kfree directly to ensure that all of the memory is cleaned up properly.

int kobject_add (struct kobject * kobj, struct kobject * parent, const char * fmt, ...)
the main kobject add function

Parameters
struct kobject * kobj the kobject to add
struct kobject * parent pointer to the parent of the kobject.
const char * fmt format to name the kobject with.
. variable arguments
Description
The kobject name is set and added to the kobject hierarchy in this function.

If parent is set, then the parent of the kobj will be set to it. If parent is NULL, then the parent of the
kobj will be set to the kobject associated with the kset assigned to this kobject. If no kset is assigned to
the kobject, then the kobject will be located in the root of the sysfs tree.

If this function returns an error, kobject put() mustbe called to properly clean up the memory associated
with the object. Under no instance should the kobject that is passed to this function be directly freed with
a call to kfree(), that can leak memory.

Note, no “add” uevent will be created with this call, the caller should set up all of the necessary sysfs files
for the object and then call kobject uevent() with the UEVENT _ADD parameter to ensure that userspace
is properly notified of this kobject’s creation.

int kobject_init_and_add (struct kobject * kobj, struct kobj_type * ktype, struct kobject * parent,

const char * fmt, ...)
initialize a kobject structure and add it to the kobject hierarchy

Parameters
struct kobject * kobj pointer to the kobject to initialize
struct kobj type * ktype pointer to the ktype for this kobject.

struct kobject * parent pointer to the parent of this kobject.

1.9. Kernel objects manipulation 51

The kernel driver API manual, Release 4.13.0-rc4+

const char * fmt the name of the kobject.
. variable arguments
Description

This function combines the call to kobject init() and kobject add(). The same type of error handling
after a call to kobject add() and kobject lifetime rules are the same here.

int kobject_rename (struct kobject * kobj, const char * new_name)
change the name of an object

Parameters
struct kobject * kobj object in question.
const char * new_name object’s new name
Description

It is the responsibility of the caller to provide mutual exclusion between two different calls of kob-
ject_rename on the same kobject and to ensure that new_name is valid and won’t conflict with other
kobjects.

int kobject_move (struct kobject * kobj, struct kobject * new_parent)
move object to another parent

Parameters
struct kobject * kobj object in question.
struct kobject * new_parent object’s new parent (can be NULL)

void kobject_del (struct kobject * kobj)
unlink kobject from hierarchy.

Parameters
struct kobject * kobj object.

struct kobject * kobject_get (struct kobject * kobj)
increment refcount for object.

Parameters
struct kobject * kobj object.

void kobject put(struct kobject * kobj)
decrement refcount for object.

Parameters

struct kobject * kobj object.

Description

Decrement the refcount, and if 0, call kobject cleanup().

struct kobject * kobject_create_and_add(const char * name, struct kobject * parent)
create a struct kobject dynamically and register it with sysfs

Parameters

const char * name the name for the kobject

struct kobject * parent the parent kobject of this kobject, if any.
Description

This function creates a kobject structure dynamically and registers it with sysfs. When you are finished
with this structure, call kobject put() and the structure will be dynamically freed when it is no longer
being used.

If the kobject was not able to be created, NULL will be returned.

52 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

int kset_register (struct kset * k)
initialize and add a kset.

Parameters
struct kset * k kset.

void kset_unregister(struct kset * k)
remove a kset.

Parameters
struct kset * k kset.

struct kobject * kset_find_obj (struct kset * kset, const char * name)
search for object in kset.

Parameters

struct kset * kset kset we're looking in.
const char * name object’'s name.
Description

Lock kset via kset->subsys, and iterate over kset->list, looking for a matching kobject. If matching object
is found take a reference and return the object.

struct kset * kset_create_and_add (const char * name, const struct kset_uevent ops * uevent ops,
struct kobject * parent _kobj)
create a struct kset dynamically and add it to sysfs

Parameters

const char * name the name for the kset

const struct kset_uevent_ops * uevent_ops a struct kset uevent_ops for the kset
struct kobject * parent_kobj the parent kobject of this kset, if any.

Description

This function creates a kset structure dynamically and registers it with sysfs. When you are finished with
this structure, call kset unregister() and the structure will be dynamically freed when it is no longer
being used.

If the kset was not able to be created, NULL will be returned.

1.10 Kernel utility functions

upper_32_bits(n)
return bits 32-63 of a number

Parameters
n the number we’re accessing
Description

A basic shift-right of a 64- or 32-bit quantity. Use this to suppress the “right shift count >= width of type”
warning when that quantity is 32-bits.

lower_32_bits(n)
return bits 0-31 of a number

Parameters

n the number we’'re accessing

1.10. Kernel utility functions 53

The kernel driver API manual, Release 4.13.0-rc4+

might_sleep()
annotation for functions that can sleep

Parameters
Description
this macro will print a stack trace if it is executed in an atomic context (spinlock, irg-handler, ...).

This is a useful debugging help to be able to catch problems early and not be bitten later when the calling
function happens to sleep when it is not supposed to.

abs (x)
return absolute value of an argument

Parameters

x the value. If it is unsigned type, it is converted to signed type first. char is treated as if it was signed
(regardless of whether it really is) but the macro’s return type is preserved as char.

Return
an absolute value of x.

u32 reciprocal_scale(u32 val, u32 ep ro)
“scale” a value into range [0, ep_ro)

Parameters

u32 val value

u32 ep_ro right open interval endpoint
Description

Perform a “reciprocal multiplication” in order to “scale” a value into range [0, ep_ro), where the upper
interval endpoint is right-open. This is useful, e.g. for accessing a index of an array containing ep_ro
elements, for example. Think of it as sort of modulus, only that the result isn’'t that of modulo. ;) Note
that if initial input is a small value, then result will return 0.

Return
a result based on val in interval [0, ep_ro).

int kstrtoul(const char * s, unsigned int base, unsigned long * res)
convert a string to an unsigned long

Parameters

const char * s The start of the string. The string must be null-terminated, and may also include a single
newline before its terminating null. The first character may also be a plus sign, but not a minus sign.

unsigned int base The number base to use. The maximum supported base is 16. If base is given as 0,
then the base of the string is automatically detected with the conventional semantics - If it begins
with Ox the number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0,
it will be parsed as an octal number. Otherwise it will be parsed as a decimal.

unsigned long * res Where to write the result of the conversion on success.
Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for the
obsolete simple_strtoull. Return code must be checked.

int kstrtol(const char * s, unsigned int base, long * res)
convert a string to a long

Parameters

const char * s The start of the string. The string must be null-terminated, and may also include a single
newline before its terminating null. The first character may also be a plus sign or a minus sign.

54 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int base The number base to use. The maximum supported base is 16. If base is given as 0,
then the base of the string is automatically detected with the conventional semantics - If it begins
with Ox the number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0,
it will be parsed as an octal number. Otherwise it will be parsed as a decimal.

long * res Where to write the result of the conversion on success.
Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for the
obsolete simple_strtoull. Return code must be checked.

trace_printk(fmt, ...)
printf formatting in the ftrace buffer

Parameters

fmt the printf format for printing
. variable arguments

Note

__trace_printk is an internal function for trace_printk and the ip is passed in via the trace_printk
macro.

This function allows a kernel developer to debug fast path sections that printk is not appropriate for.
By scattering in various printk like tracing in the code, a developer can quickly see where problems are
occurring.

This is intended as a debugging tool for the developer only. Please refrain from leaving trace_printks
scattered around in your code. (Extra memory is used for special buffers that are allocated when
trace printk() is used)

A little optization trick is done here. If there’s only one argument, there’s no need to scan the string for
printf formats. The trace puts() will suffice. But how can we take advantage of using trace puts()
when trace printk() has only one argument? By stringifying the args and checking the size we can tell
whether or not there are args. __stringify((_ VA_ARGS__)) will turn into “()0” with a size of 3 when there
are no args, anything else will be bigger. All we need to do is define a string to this, and then take its size
and compare to 3. If it’s bigger, use do_trace printk() otherwise, optimize it to trace puts(). Then
just let gcc optimize the rest.

trace_puts(str)
write a string into the ftrace buffer

Parameters
str the string to record
Note

__trace_bputs is an internal function for trace_puts and the ip is passed in via the trace puts
macro.

This is similar to trace printk() butis made for those really fast paths that a developer wants the least
amount of “Heisenbug” affects, where the processing of the print format is still too much.

This function allows a kernel developer to debug fast path sections that printk is not appropriate for.
By scattering in various printk like tracing in the code, a developer can quickly see where problems are
occurring.

This is intended as a debugging tool for the developer only. Please refrain from leaving trace_puts
scattered around in your code. (Extra memory is used for special buffers that are allocated when
trace puts() is used)

Return

0 if nothing was written, positive # if string was. (1 when _ trace bputs is used, strlen(str) when
__trace_puts is used)

1.10. Kernel utility functions 55

The kernel driver API manual, Release 4.13.0-rc4+

min_not_zero(x, y)
return the minimum that is _not_ zero, unless both are zero

Parameters
X valuel
y value2

clamp(val, lo, hi)
return a value clamped to a given range with strict typechecking

Parameters

val current value

lo lowest allowable value
hi highest allowable value
Description

This macro does strict typechecking of lo/hi to make sure they are of the same type as val. See the
unnecessary pointer comparisons.

clamp_t(type, val, lo, hi)
return a value clamped to a given range using a given type

Parameters

type the type of variable to use
val current value

1o minimum allowable value
hi maximum allowable value
Description

This macro does no typechecking and uses temporary variables of type ‘type’ to make all the comparisons.

clamp_val(val, lo, hi)
return a value clamped to a given range using val’s type

Parameters

val current value

Lo minimum allowable value
hi maximum allowable value
Description

This macro does no typechecking and uses temporary variables of whatever type the input argument ‘val’
is. This is useful when val is an unsigned type and min and max are literals that will otherwise be assigned
a signed integer type.

container_of (ptr, type, member)
cast a member of a structure out to the containing structure

Parameters

ptr the pointer to the member.

type the type of the container struct this is embedded in.
member the name of the member within the struct.

__visible int printk(const char * fmt, ...)
print a kernel message

56 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
const char * fmt format string
. variable arguments
Description
This is printk(). It can be called from any context. We want it to work.

We try to grab the console_lock. If we succeed, it’'s easy - we log the output and call the console drivers.
If we fail to get the semaphore, we place the output into the log buffer and return. The current holder of
the console_sem will notice the new output in console unlock(); and will send it to the consoles before
releasing the lock.

One effect of this deferred printing is that code which calls printk() and then changes console_loglevel
may break. This is because console_loglevel is inspected when the actual printing occurs.

See also: printf(3)
See the vsnprintf () documentation for format string extensions over C99.

void console_lock(void)
lock the console system for exclusive use.

Parameters
void no arguments
Description

Acquires a lock which guarantees that the caller has exclusive access to the console system and the
console_drivers list.

Can sleep, returns nothing.

int console_trylock(void)
try to lock the console system for exclusive use.

Parameters
void no arguments
Description

Try to acquire a lock which guarantees that the caller has exclusive access to the console system and the
console_drivers list.

returns 1 on success, and 0 on failure to acquire the lock.

void console_unlock(void)
unlock the console system

Parameters

void no arguments

Description

Releases the console_lock which the caller holds on the console system and the console driver list.

While the console_lock was held, console output may have been buffered by printk(). If this is the case,
console unlock(); emits the output prior to releasing the lock.

If there is output waiting, we wake /dev/kmsg and syslog() users.
console unlock(); may be called from any context.

void _sched console_conditional_schedule(void)
yield the CPU if required

Parameters

void no arguments

1.10. Kernel utility functions 57

The kernel driver API manual, Release 4.13.0-rc4+

Description

If the console code is currently allowed to sleep, and if this CPU should yield the CPU to another task, do
so here.

Must be called within console lock();.

bool printk_timed_ratelimit (unsigned long * caller jiffies, unsigned int interval_msecs)
caller-controlled printk ratelimiting

Parameters

unsigned long * caller_jiffies pointer to caller’s state
unsigned int interval_msecs minimum interval between prints
Description

printk timed ratelimit() returns true if more than interval_msecs milliseconds have elapsed since
the last time printk timed ratelimit() returned true.

int kmsg_dump_register(struct kmsg dumper * dumper)
register a kernel log dumper.

Parameters
struct kmsg_dumper * dumper pointer to the kmsg_dumper structure
Description

Adds a kernel log dumper to the system. The dump callback in the structure will be called when the kernel
oopses or panics and must be set. Returns zero on success and -EINVAL or -EBUSY otherwise.

int kmsg_dump_unregister (struct kmsg_dumper * dumper)
unregister a kmsg dumper.

Parameters

struct kmsg_dumper * dumper pointer to the kmsg_dumper structure

Description

Removes a dump device from the system. Returns zero on success and -EINVAL otherwise.

bool kmsg_dump_get_1line(struct kmsg _dumper* dumper, bool syslog, char * line, size_t size, size_t

*len)
retrieve one kmsg log line

Parameters

struct kmsg_dumper * dumper registered kmsg dumper
bool syslog include the “<4>" prefixes

char * line buffer to copy the line to

size t size maximum size of the buffer

size_t * len length of line placed into buffer
Description

Start at the beginning of the kmsg buffer, with the oldest kmsg record, and copy one record into the
provided buffer.

Consecutive calls will return the next available record moving towards the end of the buffer with the
youngest messages.

A return value of FALSE indicates that there are no more records to read.

bool kmsg_dump_get_buffer(struct kmsg dumper * dumper, bool syslog, char * buf, size t size,
size_t * len)
copy kmsg log lines

58 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters

struct kmsg_dumper * dumper registered kmsg dumper
bool syslog include the “<4>" prefixes

char * buf buffer to copy the line to

size_t size maximum size of the buffer

size_t * len length of line placed into buffer
Description

Start at the end of the kmsg buffer and fill the provided buffer with as many of the the youngest kmsg
records that fit into it. If the buffer is large enough, all available kmsg records will be copied with a single
call.

Consecutive calls will fill the buffer with the next block of available older records, not including the earlier
retrieved ones.

A return value of FALSE indicates that there are no more records to read.

void kmsg_dump_rewind (struct kmsg_dumper * dumper)
reset the interator

Parameters
struct kmsg_dumper * dumper registered kmsg dumper
Description

Reset the dumper’s iterator so that kmsg dump get line() and kmsg dump get buffer() can be called
again and used multiple times within the same dumper.:c:func:dump() callback.

void panic(const char * fmt, ...)
halt the system

Parameters
const char * fmt The text string to print
. variable arguments

Description

Display a message, then perform cleanups.

This function never returns.
void add_taint (unsigned flag, enum lockdep ok lockdep_ok)
Parameters
unsigned flag one of the TAINT * constants.
enum lockdep_ok lockdep_ok whether lock debugging is still OK.
Description

If something bad has gone wrong, you’'ll want lockdebug_ok = false, but for some notewortht-but-not-
corrupting cases, it can be set to true.

void rcu_idle_enter(void)
inform RCU that current CPU is entering idle

Parameters
void no arguments
Description

1.10. Kernel utility functions 59

The kernel driver API manual, Release 4.13.0-rc4+

Enter idle mode, in other words, -leave- the mode in which RCU read-side critical sections can oc-
cur. (Though RCU read-side critical sections can occur in irqg handlers in idle, a possibility handled by
irg enter() and irq exit().)

We crowbar the ->dynticks_nesting field to zero to allow for the possibility of usermode upcalls having
messed up our count of interrupt nesting level during the prior busy period.

void rcu_idle_exit(void)
inform RCU that current CPU is leaving idle

Parameters

void no arguments

Description

Exit idle mode, in other words, -enter- the mode in which RCU read-side critical sections can occur.

We crowbar the ->dynticks_nesting field to DYNTICK TASK _NEST to allow for the possibility of usermode
upcalls messing up our count of interrupt nesting level during the busy period that is just now starting.

bool notrace rcu_is_watching(void)
see if RCU thinks that the current CPU is idle

Parameters
void no arguments
Description

Return true if RCU is watching the running CPU, which means that this CPU can safely enter RCU read-side
critical sections. In other words, if the current CPU is in its idle loop and is neither in an interrupt or NMI
handler, return true.

void call_rcu_sched(struct rcu_head * head, rcu_callback t func)
Queue an RCU for invocation after sched grace period.

Parameters

struct rcu_head * head structure to be used for queueing the RCU updates.
rcu_callback_t func actual callback function to be invoked after the grace period
Description

The callback function will be invoked some time after a full grace period elapses, in other words after
all currently executing RCU read-side critical sections have completed. call rcu sched() assumes that
the read-side critical sections end on enabling of preemption or on voluntary preemption. RCU read-side
critical sections are delimited by :

* rcu_read lock sched() and rcu read unlock sched(), OR
¢ anything that disables preemption.
These may be nested.
See the description of call rcu() for more detailed information on memory ordering guarantees.

void call_rcu_bh (struct rcu_head * head, rcu_callback_t func)
Queue an RCU for invocation after a quicker grace period.

Parameters

struct rcu_head * head structure to be used for queueing the RCU updates.
rcu_callback_t func actual callback function to be invoked after the grace period
Description

The callback function will be invoked some time after a full grace period elapses, in other words after
all currently executing RCU read-side critical sections have completed. call rcu bh() assumes that
the read-side critical sections end on completion of a softirg handler. This means that read-side critical

60 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

sections in process context must not be interrupted by softirgs. This interface is to be used when most of
the read-side critical sections are in softirq context. RCU read-side critical sections are delimited by :

* rcu_read lock() and rcu _read unlock(), if in interrupt context.

OR - rcu_read lock bh() and rcu_read unlock bh(), if in process context. These may be
nested.

See the description of call rcu() for more detailed information on memory ordering guarantees.

void synchronize_sched(void)
wait until an rcu-sched grace period has elapsed.

Parameters
void no arguments
Description

Control will return to the caller some time after a full rcu-sched grace period has elapsed, in other
words after all currently executing rcu-sched read-side critical sections have completed. These read-
side critical sections are delimited by rcu_read lock sched() and rcu_read unlock sched(), and may
be nested. Note that preempt disable(), local irq disable(), and so on may be used in place of
rcu_read lock sched().

This means that all preempt_disable code sequences, including NMI and non-threaded hardware-interrupt
handlers, in progress on entry will have completed before this primitive returns. However, this does not
guarantee that softirg handlers will have completed, since in some kernels, these handlers can run in
process context, and can block.

Note that this guarantee implies further memory-ordering guarantees. On systems with more than one
CPU, when synchronize sched() returns, each CPU is guaranteed to have executed a full memory bar-
rier since the end of its last RCU-sched read-side critical section whose beginning preceded the call to
synchronize sched(). In addition, each CPU having an RCU read-side critical section that extends be-
yond the return from synchronize sched() is guaranteed to have executed a full memory barrier after
the beginning of synchronize sched() and before the beginning of that RCU read-side critical section.
Note that these guarantees include CPUs that are offline, idle, or executing in user mode, as well as CPUs
that are executing in the kernel.

Furthermore, if CPU A invoked synchronize sched(), which returned to its caller on CPU B, then both
CPU A and CPU B are guaranteed to have executed a full memory barrier during the execution of syn-
chronize sched() - even if CPU A and CPU B are the same CPU (but again only if the system has more
than one CPU).

void synchronize_rcu_bh(void)
wait until an rcu_bh grace period has elapsed.

Parameters
void no arguments
Description

Control will return to the caller some time after a full rcu_bh grace period has elapsed, in other words after
all currently executing rcu_bh read-side critical sections have completed. RCU read-side critical sections
are delimited by rcu_read lock bh() and rcu_read unlock bh(), and may be nested.

See the description of synchronize sched() for more detailed information on memory ordering guaran-
tees.

unsigned long get_state_synchronize_rcu(void)
Snapshot current RCU state

Parameters

void no arguments

1.10. Kernel utility functions 61

The kernel driver API manual, Release 4.13.0-rc4+

Description

Returns a cookie that is used by a later call to cond synchronize rcu() to determine whether or not a
full grace period has elapsed in the meantime.

void cond_synchronize_rcu(unsigned long oldstate)
Conditionally wait for an RCU grace period

Parameters
unsigned long oldstate return value from earlier call to get state synchronize rcu()
Description

If a full RCU grace period has elapsed since the earlier call to get state synchronize rcu(), justreturn.
Otherwise, invoke synchronize rcu() to wait for a full grace period.

Yes, this function does not take counter wrap into account. But counter wrap is harmless. If the counter
wraps, we have waited for more than 2 billion grace periods (and way more on a 64-bit system!), so
waiting for one additional grace period should be just fine.

unsigned long get_state_synchronize_sched(void)
Snapshot current RCU-sched state

Parameters
void no arguments
Description

Returns a cookie that is used by a later call to cond synchronize sched() to determine whether or not
a full grace period has elapsed in the meantime.

void cond_synchronize_sched(unsigned long oldstate)
Conditionally wait for an RCU-sched grace period

Parameters
unsigned long oldstate return value from earlier call to get state synchronize sched()
Description

If a full RCU-sched grace period has elapsed since the earlier call to get state synchronize sched(),
just return. Otherwise, invoke synchronize sched() to wait for a full grace period.

Yes, this function does not take counter wrap into account. But counter wrap is harmless. If the counter
wraps, we have waited for more than 2 billion grace periods (and way more on a 64-bit system!), so
waiting for one additional grace period should be just fine.

void rcu_barrier_bh(void)
Wait until all in-flight call rcu bh() callbacks complete.

Parameters
void no arguments

void rcu_barrier_sched(void)
Wait for in-flight call rcu sched() callbacks.

Parameters
void no arguments

void call_rcu(struct rcu_head * head, rcu_callback_t func)
Queue an RCU callback for invocation after a grace period.

Parameters
struct rcu_head * head structure to be used for queueing the RCU updates.

rcu_callback_t func actual callback function to be invoked after the grace period

62 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Description

The callback function will be invoked some time after a full grace period elapses, in other words after
all pre-existing RCU read-side critical sections have completed. However, the callback function might
well execute concurrently with RCU read-side critical sections that started after call rcu() was invoked.
RCU read-side critical sections are delimited by rcu_read lock() and rcu read unlock(), and may be
nested.

Note that all CPUs must agree that the grace period extended beyond all pre-existing RCU read-side
critical section. On systems with more than one CPU, this means that when “func()” is invoked, each
CPU is guaranteed to have executed a full memory barrier since the end of its last RCU read-side critical
section whose beginning preceded the call to call rcu(). It also means that each CPU executing an
RCU read-side critical section that continues beyond the start of “func()” must have executed a memory
barrier after the call rcu() but before the beginning of that RCU read-side critical section. Note that
these guarantees include CPUs that are offline, idle, or executing in user mode, as well as CPUs that are
executing in the kernel.

Furthermore, if CPU A invoked call rcu() and CPU B invoked the resulting RCU callback function
“func()”, then both CPU A and CPU B are guaranteed to execute a full memory barrier during the time
interval between the call to call rcu() and the invocation of “func()” - even if CPU A and CPU B are
the same CPU (but again only if the system has more than one CPU).

void synchronize_rcu(void)
wait until a grace period has elapsed.

Parameters
void no arguments
Description

Control will return to the caller some time after a full grace period has elapsed, in other words after all
currently executing RCU read-side critical sections have completed. Note, however, that upon return
from synchronize rcu(), the caller might well be executing concurrently with new RCU read-side critical
sections that began while synchronize rcu() was waiting. RCU read-side critical sections are delimited
by rcu read lock() and rcu_read unlock(), and may be nested.

See the description of synchronize sched() for more detailed information on memory-ordering guaran-
tees. However, please note that -only- the memory-ordering guarantees apply. For example, synchro-
nize rcu() is -not- guaranteed to wait on things like code protected by preempt disable(), instead,
synchronize rcu() is -only- guaranteed to wait on RCU read-side critical sections, that is, sections of
code protected by rcu_read lock().

void rcu_barrier(void)
Wait until all in-flight call rcu() callbacks complete.

Parameters
void no arguments
Description

Note that this primitive does not necessarily wait for an RCU grace period to complete. For example, if
there are no RCU callbacks queued anywhere in the system, then rcu barrier() is within its rights to
return immediately, without waiting for anything, much less an RCU grace period.

int rcu_read_lock_sched_held(void)
might we be in RCU-sched read-side critical section?

Parameters
void no arguments
Description

If CONFIG_DEBUG _LOCK_ALLOC is selected, returns nonzero iff in an RCU-sched read-side critical section.
In absence of CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side critical section
unless it can prove otherwise. Note that disabling of preemption (including disabling irgs) counts as an

1.10. Kernel utility functions 63

The kernel driver API manual, Release 4.13.0-rc4+

RCU-sched read-side critical section. This is useful for debug checks in functions that required that they
be called within an RCU-sched read-side critical section.

Check debug lockdep rcu enabled() to prevent false positives during boot and while lockdep is dis-
abled.

Note that if the CPU is in the idle loop from an RCU point of view (ie: that we are in the section between
rcu idle enter() and rcu idle exit())then rcu read lock held() returns false even if the CPU did
an rcu_read lock(). The reason for this is that RCU ignores CPUs that are in such a section, considering
these as in extended quiescent state, so such a CPU is effectively never in an RCU read-side critical section
regardless of what RCU primitives it invokes. This state of affairs is required — we need to keep an RCU-
free window in idle where the CPU may possibly enter into low power mode. This way we can notice an
extended quiescent state to other CPUs that started a grace period. Otherwise we would delay any grace
period as long as we run in the idle task.

Similarly, we avoid claiming an SRCU read lock held if the current CPU is offline.

void rcu_expedite_gp(void)
Expedite future RCU grace periods

Parameters
void no arguments
Description

After a call to this function, future calls to synchronize rcu() and friends act as the corresponding syn-
chronize rcu_expedited() function had instead been called.

void rcu_unexpedite_gp(void)
Cancel prior rcu expedite gp() invocation

Parameters
void no arguments
Description

Undo a prior call to rcu expedite gp(). If all prior calls to rcu expedite gp() are undone by a sub-
sequent call to rcu unexpedite gp(), and if the rcu_expedited sysfs/boot parameter is not set, then all
subsequent calls to synchronize rcu() and friends will return to their normal non-expedited behavior.

int rcu_read_lock_held (void)
might we be in RCU read-side critical section?

Parameters
void no arguments
Description

If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU read-side critical section. In
absence of CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU read-side critical section unless
it can prove otherwise. This is useful for debug checks in functions that require that they be called within
an RCU read-side critical section.

Checks debug lockdep rcu enabled() to prevent false positives during boot and while lockdep is dis-
abled.

Note that rcu read lock() and the matching rcu read unlock() must occur in the same context, for
example, it is illegal to invoke rcu_read unlock() in process context if the matching rcu_read lock()
was invoked from within an irg handler.

Note that rcu_read lock() is disallowed if the CPU is either idle or offline from an RCU perspective, so
check for those as well.

int rcu_read_lock_bh_held (void)
might we be in RCU-bh read-side critical section?

Parameters

64 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

void no arguments
Description

Check for bottom half being disabled, which covers both the CONFIG_PROVE_RCU and not cases. Note
that if someone uses rcu_read lock bh(), but then later enables BH, lockdep (if enabled) will show
the situation. This is useful for debug checks in functions that require that they be called within an RCU
read-side critical section.

Check debug lockdep rcu enabled() to prevent false positives during boot.

Note that rcu_read lock() is disallowed if the CPU is either idle or offline from an RCU perspective, so
check for those as well.

void wakeme_after_rcu(struct rcu_head * head)
Callback function to awaken a task after grace period

Parameters

struct rcu_head * head Pointer to rcu_head member within rcu_synchronize structure
Description

Awaken the corresponding task now that a grace period has elapsed.

void init_rcu_head_on_stack(struct rcu_head * head)
initialize on-stack rcu_head for debugobjects

Parameters
struct rcu_head * head pointer to rcu_head structure to be initialized
Description

This function informs debugobjects of a new rcu_head structure that has been allocated as an auto variable
on the stack. This function is not required for rcu_head structures that are statically defined or that are
dynamically allocated on the heap. This function has no effect for |\CONFIG_DEBUG_OBJECTS_RCU_HEAD
kernel builds.

void destroy rcu_head _on_stack(struct rcu_head * head)
destroy on-stack rcu_head for debugobjects

Parameters
struct rcu_head * head pointer to rcu_head structure to be initialized
Description

This function informs debugobjects that an on-stack rcu_head structure is about to go out of scope. As
with init rcu head on stack(), this function is not required for rcu_head structures that are statically
defined or that are dynamically allocated on the heap. Also as with init rcu head on stack(), this
function has no effect for ICONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.

void call_rcu_tasks (struct rcu_head * rhp, rcu_callback_t func)
Queue an RCU for invocation task-based grace period

Parameters

struct rcu_head * rhp structure to be used for queueing the RCU updates.
rcu_callback_t func actual callback function to be invoked after the grace period
Description

The callback function will be invoked some time after a full grace period elapses, in other words after all
currently executing RCU read-side critical sections have completed. call rcu tasks() assumes that the
read-side critical sections end at a voluntary context switch (not a preemption!), entry into idle, or transi-
tion to usermode execution. As such, there are no read-side primitives analogous to rcu_read lock() and
rcu_read _unlock() because this primitive is intended to determine that all tasks have passed through a
safe state, not so much for data-strcuture synchronization.

1.10. Kernel utility functions 65

The kernel driver API manual, Release 4.13.0-rc4+

See the description of call rcu() for more detailed information on memory ordering guarantees.

void synchronize_rcu_tasks (void)
wait until an rcu-tasks grace period has elapsed.

Parameters
void no arguments
Description

Control will return to the caller some time after a full rcu-tasks grace period has elapsed, in other words
after all currently executing rcu-tasks read-side critical sections have elapsed. These read-side critical
sections are delimited by calls to schedule(), cond resched rcu qs(), idle execution, userspace exe-
cution, calls to synchronize rcu tasks(), and (in theory, anyway) cond resched().

This is a very specialized primitive, intended only for a few uses in tracing and other situations requiring
manipulation of function preambles and profiling hooks. The synchronize rcu tasks() function is not
(yet) intended for heavy use from multiple CPUs.

Note that this guarantee implies further memory-ordering guarantees. On systems with more than one
CPU, when synchronize rcu tasks() returns, each CPU is guaranteed to have executed a full memory
barrier since the end of its last RCU-tasks read-side critical section whose beginning preceded the call
to synchronize rcu tasks(). In addition, each CPU having an RCU-tasks read-side critical section that
extends beyond the return from synchronize rcu tasks() is guaranteed to have executed a full memory
barrier after the beginning of synchronize rcu tasks() and before the beginning of that RCU-tasks read-
side critical section. Note that these guarantees include CPUs that are offline, idle, or executing in user
mode, as well as CPUs that are executing in the kernel.

Furthermore, if CPU A invoked synchronize rcu tasks(), which returned to its caller on CPU B, then
both CPU A and CPU B are guaranteed to have executed a full memory barrier during the execution of
synchronize rcu tasks() - even if CPU A and CPU B are the same CPU (but again only if the system
has more than one CPU).

void rcu_barrier_tasks (void)
Wait for in-flight call rcu tasks() callbacks.

Parameters
void no arguments
Description

Although the current implementation is guaranteed to wait, it is not obligated to, for example, if there are
no pending callbacks.

1.11 Device Resource Management

void * devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid)
Allocate device resource data

Parameters

dr_release_t release Release function devres will be associated with
size_t size Allocation size

gfp_t gfp Allocation flags

int nid NUMA node

Description

Allocate devres of size bytes. The allocated area is zeroed, then associated with release. The returned
pointer can be passed to other devres *() functions.

Return

66 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Pointer to allocated devres on success, NULL on failure.

void devres_for_each_res(struct device * dev, dr_release trelease, dr_match_t match, void
* match_data, void (*fn) (struct device *, void *, void *, void * data)
Resource iterator

Parameters
struct device * dev Device to iterate resource from
dr_release_t release Look for resources associated with this release function
dr_match_t match Match function (optional)
void * match_data Data for the match function
void (*)(struct device *,void *,void *) fn Function to be called for each matched resource.
void * data Data for fn, the 3rd parameter of fn
Description
Call fn for each devres of dev which is associated with release and for which match returns 1.
Return
void

void devres_free(void * res)
Free device resource data

Parameters
void * res Pointer to devres data to free
Description
Free devres created with devres alloc().

void devres_add (struct device * dev, void * res)
Register device resource

Parameters

struct device * dev Device to add resource to
void * res Resource to register

Description

Register devres res to dev. res should have been allocated using devres _alloc(). On driver detach,
the associated release function will be invoked and devres will be freed automatically.

void * devres_find(struct device *dev, dr release trelease, dr _match t match, void
* match_data)
Find device resource

Parameters

struct device * dev Device to lookup resource from

dr_release_t release Look for resources associated with this release function
dr_match_t match Match function (optional)

void * match_data Data for the match function

Description

Find the latest devres of dev which is associated with release and for which match returns 1. If match
is NULL, it's considered to match all.

Return

Pointer to found devres, NULL if not found.

1.11. Device Resource Management 67

The kernel driver API manual, Release 4.13.0-rc4+

void * devres_get (struct device * dev, void * new_res, dr_match_t match, void * match_data)
Find devres, if non-existent, add one atomically

Parameters

struct device * dev Device to lookup or add devres for

void * new_res Pointer to new initialized devres to add if not found
dr_match_t match Match function (optional)

void * match_data Data for the match function

Description

Find the latest devres of dev which has the same release function as new_res and for which match return
1. If found, new_res is freed; otherwise, new_res is added atomically.

Return
Pointer to found or added devres.

void * devres_remove (struct device *dev, dr_release trelease, dr_match_t match, void
* match_data)
Find a device resource and remove it

Parameters

struct device * dev Device to find resource from

dr_release_t release Look for resources associated with this release function
dr_match_t match Match function (optional)

void * match_data Data for the match function

Description

Find the latest devres of dev associated with release and for which match returns 1. If match is NULL,
it's considered to match all. If found, the resource is removed atomically and returned.

Return
Pointer to removed devres on success, NULL if not found.

int devres_destroy(struct device *dev, dr_release trelease, dr _match tmatch, void
* match_data)
Find a device resource and destroy it

Parameters

struct device * dev Device to find resource from

dr_release_t release Look for resources associated with this release function
dr_match_t match Match function (optional)

void * match_data Data for the match function

Description

Find the latest devres of dev associated with release and for which match returns 1. If match is NULL,
it's considered to match all. If found, the resource is removed atomically and freed.

Note that the release function for the resource will not be called, only the devres-allocated data will be
freed. The caller becomes responsible for freeing any other data.

Return
0 if devres is found and freed, -ENOENT if not found.

int devres_release(struct device *dev, dr_release trelease, dr_match tmatch, void
* match_data)
Find a device resource and destroy it, calling release

68 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

Parameters

struct device * dev Device to find resource from

dr_release_t release Look for resources associated with this release function
dr_match_t match Match function (optional)

void * match_data Data for the match function

Description

Find the latest devres of dev associated with release and for which match returns 1. If match is NULL,
it's considered to match all. If found, the resource is removed atomically, the release function called and
the resource freed.

Return
0 if devres is found and freed, -ENOENT if not found.

void * devres_open_group (struct device * dev, void * id, gfp_t gfp)
Open a new devres group

Parameters

struct device * dev Device to open devres group for
void * id Separator ID

gfp_t gfp Allocation flags

Description

Open a new devres group for dev with id. For id, using a pointer to an object which won't be used for
another group is recommended. If id is NULL, address-wise unique ID is created.

Return
ID of the new group, NULL on failure.

void devres_close_group (struct device * dev, void * id)
Close a devres group

Parameters

struct device * dev Device to close devres group for

void * id ID of target group, can be NULL

Description

Close the group identified by id. If id is NULL, the latest open group is selected.

void devres_remove_group (struct device * dev, void * id)
Remove a devres group

Parameters

struct device * dev Device to remove group for
void * id ID of target group, can be NULL
Description

Remove the group identified by id. If id is NULL, the latest open group is selected. Note that removing a
group doesn’t affect any other resources.

int devres_release_group (struct device * dev, void * id)
Release resources in a devres group

Parameters
struct device * dev Device to release group for
void * id ID of target group, can be NULL

1.11. Device Resource Management 69

The kernel driver API manual, Release 4.13.0-rc4+

Description

Release all resources in the group identified by id. If id is NULL, the latest open group is selected. The
selected group and groups properly nested inside the selected group are removed.

Return
The number of released non-group resources.

int devm_add_action (struct device * dev, void (*action) (void *, void * data)
add a custom action to list of managed resources

Parameters

struct device * dev Device that owns the action

void (*)(void *) action Function that should be called
void * data Pointer to data passed to action implementation
Description

This adds a custom action to the list of managed resources so that it gets executed as part of standard
resource unwinding.

void devm_remove_action (struct device * dev, void (*action) (void *, void * data)
removes previously added custom action

Parameters

struct device * dev Device that owns the action

void (*)(void *) action Function implementing the action
void * data Pointer to data passed to action implementation
Description

Removes instance of action previously added by devm add action(). Both action and data should match
one of the existing entries.

void * devm_kmalloc (struct device * dev, size_t size, gfp_t gfp)
Resource-managed kmalloc

Parameters

struct device * dev Device to allocate memory for
size t size Allocation size

gfp_t gfp Allocation gfp flags

Description

Managed kmalloc. Memory allocated with this function is automatically freed on driver detach. Like all
other devres resources, guaranteed alignment is unsigned long long.

Return
Pointer to allocated memory on success, NULL on failure.

char * devm_kstrdup (struct device * dev, const char * s, gfp_t gfp)
Allocate resource managed space and copy an existing string into that.

Parameters

struct device * dev Device to allocate memory for

const char * s the string to duplicate

gfp_t gfp the GFP mask used in the devm kmalloc() call when allocating memory
Return

Pointer to allocated string on success, NULL on failure.

70 Chapter 1. Driver Basics

The kernel driver API manual, Release 4.13.0-rc4+

char * devm_kvasprintf (struct device * dev, gfp_t gfp, const char * fmt, va_list ap)
Allocate resource managed space and format a string into that.

Parameters

struct device * dev Device to allocate memory for

gfp_t gfp the GFP mask used in the devm kmalloc() call when allocating memory
const char * fmt The printf()-style format string

va_list ap Arguments for the format string

Return

Pointer to allocated string on success, NULL on failure.

char * devm_kasprintf (struct device * dev, gfp_t gfp, const char * fmt, ...)
Allocate resource managed space and format a string into that.

Parameters

struct device * dev Device to allocate memory for

gfp_t gfp the GFP mask used in the devm kmalloc() call when allocating memory
const char * fmt The printf()-style format string

... Arguments for the format string

Return

Pointer to allocated string on success, NULL on failure.

void devm_kfree (struct device * dev, void * p)
Resource-managed kfree

Parameters

struct device * dev Device this memory belongs to
void * p Memory to free

Description

Free memory allocated with devim_kmalloc().

void * devm_kmemdup (struct device * dev, const void * src, size_t len, gfp_t gfp)
Resource-managed kmemdup

Parameters

struct device * dev Device this memory belongs to

const void * src Memory region to duplicate

size t len Memory region length

gfp_t gfp GFP mask to use

Description

Duplicate region of a memory using resource managed kmalloc

unsigned long devm_get_free_pages (struct device * dev, gfp_t gfp_mask, unsigned int order)
Resource-managed _ get free pages

Parameters
struct device * dev Device to allocate memory for
gfp_t gfp_mask Allocation gfp flags

unsigned int order Allocation size is (1 << order) pages

1.11. Device Resource Management 71

The kernel driver API manual, Release 4.13.0-rc4+

Description

Managed get free_pages. Memory allocated with this function is automatically freed on driver detach.
Return

Address of allocated memory on success, 0 on failure.

void devm_free_pages (struct device * dev, unsigned long addr)
Resource-managed free_pages

Parameters

struct device * dev Device this memory belongs to
unsigned long addr Memory to free

Description

Free memory allocated with devim get free pages(). Unlike free_pages, there is no need to supply the
order.

void _ percpu * __devm_alloc_percpu(struct device * dev, size_t size, size_t align)
Resource-managed alloc_percpu

Parameters

struct device * dev Device to allocate per-cpu memory for
size t size Size of per-cpu memory to allocate

size_t align Alignment of per-cpou memory to allocate
Description

Managed alloc_percpu. Per-cou memory allocated with this function is automatically freed on driver de-
tach.

Return
Pointer to allocated memory on success, NULL on failure.

void devm_free_percpu(struct device * dev, void __ percpu * pdata)
Resource-managed free_percpu

Parameters

struct device * dev Device this memory belongs to
void _ percpu * pdata Per-cpou memory to free
Description

Free memory allocated with devm alloc percpu().

72 Chapter 1. Driver Basics

CHAPTER
TWO

DEVICE DRIVERS INFRASTRUCTURE

2.1 The Basic Device Driver-Model Structures

struct bus_type
The bus type of the device

Definition

struct bus type {

const char * name;

const char * dev_name;

struct device * dev_root;

const struct attribute group ** bus groups;

const struct attribute group ** dev_groups;

const struct attribute group ** drv_groups;

int (* match) (struct device *dev, struct device driver *drv);
int (* uevent) (struct device *dev, struct kobj uevent env *env);
int (* probe) (struct device *dev);
int (* remove) (struct device *dev);
void (* shutdown) (struct device *dev);

int (* online) (struct device *dev);
int (* offline) (struct device *dev);
int (* suspend) (struct device *dev, pm message t state);
int (* resume) (struct device *dev);

int (* num vf) (struct device *dev);
const struct dev_pm ops * pm;

const struct iommu ops * iommu_ops;
struct subsys private * p;

struct lock class_key lock key;

};

Members

name The name of the bus.

dev_name Used for subsystems to enumerate devices like (“foo*‘u’’”, dev->id).
dev_root Default device to use as the parent.

bus_groups Default attributes of the bus.

dev_groups Default attributes of the devices on the bus.

drv_groups Default attributes of the device drivers on the bus.

match Called, perhaps multiple times, whenever a new device or driver is added for this bus. It should
return a positive value if the given device can be handled by the given driver and zero otherwise. It
may also return error code if determining that the driver supports the device is not possible. In case
of -EPROBE_DEFER it will queue the device for deferred probing.

uevent Called when a device is added, removed, or a few other things that generate uevents to add the
environment variables.

73

The kernel driver API manual, Release 4.13.0-rc4+

probe Called when a new device or driver add to this bus, and callback the specific driver’s probe to initial
the matched device.

remove Called when a device removed from this bus.

shutdown Called at shut-down time to quiesce the device.

online Called to put the device back online (after offlining it).

offline Called to put the device offline for hot-removal. May fail.

suspend Called when a device on this bus wants to go to sleep mode.

resume Called to bring a device on this bus out of sleep mode.

num_vf Called to find out how many virtual functions a device on this bus supports.

pm Power management operations of this bus, callback the specific device driver’'s pm-ops.

iommu_ops IOMMU specific operations for this bus, used to attach IOMMU driver implementations to a bus
and allow the driver to do bus-specific setup

p The private data of the driver core, only the driver core can touch this.
lock_key Lock class key for use by the lock validator
Description

A bus is a channel between the processor and one or more devices. For the purposes of the device model,
all devices are connected via a bus, even if it is an internal, virtual, “platform” bus. Buses can plug into
each other. A USB controller is usually a PCI device, for example. The device model represents the actual
connections between buses and the devices they control. A bus is represented by the bus_type structure.
It contains the name, the default attributes, the bus’ methods, PM operations, and the driver core’s private
data.

enum probe_type
device driver probe type to try Device drivers may opt in for special handling of their respective probe
routines. This tells the core what to expect and prefer.

Constants

PROBE_DEFAULT_STRATEGY Used by drivers that work equally well whether probed synchronously or asyn-
chronously.

PROBE_PREFER_ASYNCHRONOUS Drivers for “slow” devices which probing order is not essential for booting
the system may opt into executing their probes asynchronously.

PROBE_FORCE_SYNCHRONOUS Use this to annotate drivers that need their probe routines to run syn-
chronously with driver and device registration (with the exception of -EPROBE_DEFER handling -
re-probing always ends up being done asynchronously).

Description

Note that the end goal is to switch the kernel to use asynchronous probing by default, so annotating drivers
with PROBE_PREFER ASYNCHRONOUS is a temporary measure that allows us to speed up boot process while
we are validating the rest of the drivers.

struct device_driver
The basic device driver structure

Definition

struct device driver {
const char * name;
struct bus_type * bus;
struct module * owner;
const char * mod_name;
bool suppress bind attrs;
enum probe type probe type;
const struct of device id * of match table;

74 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

const struct acpi device id * acpi match table;

int (* probe) (struct device *dev);

int (* remove) (struct device *dev);

void (* shutdown) (struct device *dev);

int (* suspend) (struct device *dev, pm message t state);
int (* resume) (struct device *dev);

const struct attribute group ** groups;

const struct dev_pm ops * pm;

struct driver private * p;

};

Members

name Name of the device driver.

bus The bus which the device of this driver belongs to.

owner The module owner.

mod_name Used for built-in modules.

suppress_bind_attrs Disables bind/unbind via sysfs.

probe_type Type of the probe (synchronous or asynchronous) to use.
of_match_table The open firmware table.

acpi_match_table The ACPI match table.

probe Called to query the existence of a specific device, whether this driver can work with it, and bind
the driver to a specific device.

remove Called when the device is removed from the system to unbind a device from this driver.
shutdown Called at shut-down time to quiesce the device.

suspend Called to put the device to sleep mode. Usually to a low power state.

resume Called to bring a device from sleep mode.

groups Default attributes that get created by the driver core automatically.

pm Power management operations of the device which matched this driver.

p Driver core’s private data, no one other than the driver core can touch this.

Description

The device driver-model tracks all of the drivers known to the system. The main reason for this tracking
is to enable the driver core to match up drivers with new devices. Once drivers are known objects within
the system, however, a number of other things become possible. Device drivers can export information
and configuration variables that are independent of any specific device.

struct subsys_interface
interfaces to device functions

Definition

struct subsys interface {
const char * name;
struct bus_type * subsys;
struct list head node;
int (* add dev) (struct device *dev, struct subsys interface *sif);
void (* remove dev) (struct device *dev, struct subsys interface *sif);

+

Members

name name of the device function

2.1. The Basic Device Driver-Model Structures 75

The kernel driver API manual, Release 4.13.0-rc4+

subsys subsytem of the devices to attach to

node the list of functions registered at the subsystem
add_dev device hookup to device function handler
remove_dev device hookup to device function handler
Description

Simple interfaces attached to a subsystem. Multiple interfaces can attach to a subsystem and its devices.
Unlike drivers, they do not exclusively claim or control devices. Interfaces usually represent a specific
functionality of a subsystem/class of devices.

struct class
device classes

Definition

struct class {
const char * name;
struct module * owner;
const struct attribute group ** class _groups;
const struct attribute group ** dev_groups;
struct kobject * dev kobj;
int (* dev_uevent) (struct device *dev, struct kobj uevent env *env);
char *(* devnode) (struct device *dev, umode_ t *mode);
void (* class release) (struct class *class);
void (* dev_release) (struct device *dev);
int (* suspend) (struct device *dev, pm _message t state);
int (* resume) (struct device *dev);
int (* shutdown) (struct device *dev);
const struct kobj ns type operations * ns_type;
const void *(* namespace) (struct device *dev);
const struct dev_pm ops * pm;
struct subsys private * p;

};

Members

name Name of the class.

owner The module owner.

class_groups Default attributes of this class.

dev_groups Default attributes of the devices that belong to the class.
dev_kobj The kobject that represents this class and links it into the hierarchy.

dev_uevent Called when a device is added, removed from this class, or a few other things that generate
uevents to add the environment variables.

devnode Callback to provide the devtmpfs.

class_release Called to release this class.

dev_release Called to release the device.

suspend Used to put the device to sleep mode, usually to a low power state.
resume Used to bring the device from the sleep mode.

shutdown Called at shut-down time to quiesce the device.

ns_type Callbacks so sysfs can detemine namespaces.

namespace Namespace of the device belongs to this class.

pm The default device power management operations of this class.

76 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

p The private data of the driver core, no one other than the driver core can touch this.
Description

A class is a higher-level view of a device that abstracts out low-level implementation details. Drivers may
see a SCSI disk or an ATA disk, but, at the class level, they are all simply disks. Classes allow user space
to work with devices based on what they do, rather than how they are connected or how they work.

devm_alloc_percpu(dev, type)
Resource-managed alloc_percpu

Parameters

dev Device to allocate per-cpu memory for
type Type to allocate per-cpou memory for
Description

Managed alloc_percpu. Per-cpou memory allocated with this function is automatically freed on driver de-
tach.

Return
Pointer to allocated memory on success, NULL on failure.

enum device_link_state
Device link states.

Constants

DL_STATE_NONE The presence of the drivers is not being tracked.
DL_STATE_DORMANT None of the supplier/consumer drivers is present.
DL_STATE_AVAILABLE The supplier driver is present, but the consumer is not.
DL_STATE_CONSUMER_PROBE The consumer is probing (supplier driver present).
DL_STATE_ACTIVE Both the supplier and consumer drivers are present.
DL_STATE_SUPPLIER UNBIND The supplier driver is unbinding.

struct device_link
Device link representation.

Definition

struct device link {
struct device * supplier;
struct list head s node;
struct device * consumer;
struct list head c_node;
enum device link state status;
u32 flags;
bool rpm_active;
#ifdef CONFIG SRCU
struct rcu_head rcu_head;
#endif

}

Members

supplier The device on the supplier end of the link.

s_node Hook to the supplier device’s list of links to consumers.
consumer The device on the consumer end of the link.

c_node Hook to the consumer device’s list of links to suppliers.

status The state of the link (with respect to the presence of drivers).

2.1. The Basic Device Driver-Model Structures 77

The kernel driver API manual, Release 4.13.0-rc4+

flags Link flags.

rpm_active Whether or not the consumer device is runtime-PM-active.

rcu_head An RCU head to use for deferred execution of SRCU callbacks.

enum dl_dev_state
Device driver presence tracking information.

Constants

DL_DEV_NO_DRIVER There is no driver attached to the device.
DL_DEV_PROBING A driver is probing.

DL_DEV_DRIVER_BOUND The driver has been bound to the device.
DL_DEV_UNBINDING The driver is unbinding from the device.

struct dev_links_info
Device data related to device links.

Definition

struct dev_links info {
struct list head suppliers;
struct list head consumers;
enum dl dev _state status;

+

Members

suppliers List of links to supplier devices.
consumers List of links to consumer devices.
status Driver status information.

struct device
The basic device structure

Definition

struct device {
struct device * parent;
struct device private * p;
struct kobject kobj;
const char * init name;
const struct device type * type;
struct mutex mutex;
struct bus type * bus;
struct device driver * driver;
void * platform data;
void * driver data;
struct dev links info links;
struct dev _pm_info power;
struct dev_pm domain * pm _domain;
#ifdef CONFIG_GENERIC MSI IRQ DOMAIN
struct irq _domain * msi domain;
#endif
#ifdef CONFIG _PINCTRL
struct dev pin info * pins;
#endif
#ifdef CONFIG_GENERIC MSI IRQ
struct list head msi list;
#endif
#ifdef CONFIG_NUMA
int numa_node;

78 Chapter 2.

Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

#endif
u64 * dma_mask;
u64 coherent dma_mask;
unsigned long dma pfn offset;
struct device dma parameters * dma_parms;
struct list head dma pools;
struct dma_coherent mem * dma_mem;
#ifdef CONFIG_DMA CMA
struct cma * cma_area;
#endif
struct dev_archdata archdata;
struct device node * of node;
struct fwnode handle * fwnode;
dev_t devt;
u32 id;
spinlock t devres lock;
struct list head devres head;
struct klist node knode class;
struct class * class;
const struct attribute group ** groups;
void (* release) (struct device *dev);
struct iommu group * iommu_group;
struct iommu_fwspec * iommu_fwspec;
bool offline disabled:1;
bool offline:1;
bool of node reused:1;

};

Members

parent The device’s “parent” device, the device to which it is attached. In most cases, a parent device
is some sort of bus or host controller. If parent is NULL, the device, is a top-level device, which is not
usually what you want.

p Holds the private data of the driver core portions of the device. See the comment of the struct de-
vice_private for detail.

kobj A top-level, abstract class from which other classes are derived.

init_name Initial name of the device.

type The type of device. This identifies the device type and carries type-specific information.

mutex Mutex to synchronize calls to its driver.

bus Type of bus device is on.

driver Which driver has allocated this

platform_data Platform data specific to the device.

driver_data Private pointer for driver specific info.

links Links to suppliers and consumers of this device.

power For device power management. See Documentation/power/admin-guide/devices.rst for details.

pm_domain Provide callbacks that are executed during system suspend, hibernation, system resume and
during runtime PM transitions along with subsystem-level and driver-level callbacks.

msi_domain The generic MSI domain this device is using.

pins For device pin management. See Documentation/pinctrl.txt for details.
msi_list Hosts MSI descriptors

numa_node NUMA node this device is close to.

dma_mask Dma mask (if dma’ble device).

2.1. The Basic Device Driver-Model Structures 79

The kernel driver API manual, Release 4.13.0-rc4+

coherent_dma_mask Like dma_mask, but for alloc_coherent mapping as not all hardware supports 64-bit
addresses for consistent allocations such descriptors.

dma_pfn_offset offset of DMA memory range relatively of RAM
dma_parms A low level driver may set these to teach IOMMU code about segment limitations.
dma_pools Dma pools (if dma’ble device).

dma_mem Internal for coherent mem override.

cma_area Contiguous memory area for dma allocations
archdata For arch-specific additions.

of_node Associated device tree node.

fwnode Associated device node supplied by platform firmware.
devt For creating the sysfs “dev”.

id device instance

devres_lock Spinlock to protect the resource of the device.
devres_head The resources list of the device.

knode_class The node used to add the device to the class list.
class The class of the device.

groups Optional attribute groups.

release Callback to free the device after all references have gone away. This should be set by the allo-
cator of the device (i.e. the bus driver that discovered the device).

iommu_group IOMMU group the device belongs to.

iommu_fwspec IOMMU-specific properties supplied by firmware.
offline_disabled If set, the device is permanently online.

offline Set after successful invocation of bus type's .:c:func:offline().
of_node_reused Set if the device-tree node is shared with an ancestor device.
Example

For devices on custom boards, as typical of embedded and SOC based hardware, Linux often uses
platform_data to point to board-specific structures describing devices and how they are wired. That
can include what ports are available, chip variants, which GPIO pins act in what additional roles, and
so on. This shrinks the “Board Support Packages” (BSPs) and minimizes board-specific #ifdefs in
drivers.

Description

At the lowest level, every device in a Linux system is represented by an instance of struct device. The
device structure contains the information that the device model core needs to model the system. Most
subsystems, however, track additional information about the devices they host. As a result, it is rare for
devices to be represented by bare device structures; instead, that structure, like kobject structures, is
usually embedded within a higher-level representation of the device.

module_driver(_driver, _register, _unregister, ...)
Helper macro for drivers that don’'t do anything special in module init/exit. This eliminates a lot of
boilerplate. Each module may only use this macro once, and calling it replaces module init() and
module exit().

Parameters
__driver driver name

__register register function for this driver type

80 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

__unregister unregister function for this driver type

. .. Additional arguments to be passed to _ register and __unregister.

Description

Use this macro to construct bus specific macros for registering drivers, and do not use it on its own.

builtin_driver(__driver, _register, ...)
Helper macro for drivers that don’t do anything special in init and have no exit. This eliminates some
boilerplate. Each driver may only use this macro once, and calling it replaces device_initcall (or in
some cases, the legacy _initcall). This is meant to be a direct parallel of module driver() above
but without the __exit stuff that is not used for builtin cases.

Parameters

__driver driver name

__register register function for this driver type

. .. Additional arguments to be passed to _ register
Description

Use this macro to construct bus specific macros for registering drivers, and do not use it on its own.

2.2 Device Drivers Base

void driver_init(void)
initialize driver model.

Parameters

void no arguments

Description

Call the driver model init functions to initialize their subsystems. Called early from init/main.c.

int driver_for_each_device(struct device driver * drv, struct device * start, void * data, int (*fn)

(struct device *, void *)
Iterator for devices bound to a driver.

Parameters

struct device _driver * drv Driver we're iterating.

struct device * start Device to begin with

void * data Data to pass to the callback.

int (*)(struct device *,void *) fn Function to call for each device.
Description

Iterate over the drv’s list of devices calling fn for each one.

struct device * driver_find_device(struct device driver * drv, struct device * start, void * data, int

(*match) (struct device *dev, void *data)
device iterator for locating a particular device.

Parameters

struct device_driver * drv The device’s driver

struct device * start Device to begin with

void * data Data to pass to match function

int (*)(struct device *dev,void *data) match Callback function to check device

2.2. Device Drivers Base 81

The kernel driver API manual, Release 4.13.0-rc4+

Description

This is similar to the driver for each device() function above, but it returns a reference to a device
that is ‘found’ for later use, as determined by the match callback.

The callback should return 0 if the device doesn’t match and non-zero if it does. If the callback returns
non-zero, this function will return to the caller and not iterate over any more devices.

int driver_create_file(struct device driver * drv, const struct driver_attribute * attr)
create sysfs file for driver.

Parameters
struct device driver * drv driver.
const struct driver_attribute * attr driver attribute descriptor.

void driver_remove_file(struct device driver * drv, const struct driver_attribute * attr)
remove sysfs file for driver.

Parameters
struct device_driver * drv driver.
const struct driver_attribute * attr driver attribute descriptor.

int driver_register (struct device driver * drv)
register driver with bus

Parameters
struct device_driver * drv driver to register
Description

We pass off most of the work to the bus_add_driver() call, since most of the things we have to do deal
with the bus structures.

void driver_unregister (struct device driver * drv)
remove driver from system.

Parameters

struct device_driver * drv driver.

Description

Again, we pass off most of the work to the bus-level call.

struct device _driver * driver_find(const char * name, struct bus_type * bus)
locate driver on a bus by its name.

Parameters

const char * name name of the driver.

struct bus_type * bus bus to scan for the driver.

Description

Call kset find obj() to iterate over list of drivers on a bus to find driver by name. Return driver if found.

This routine provides no locking to prevent the driver it returns from being unregistered or unloaded while
the caller is using it. The caller is responsible for preventing this.

struct device link * device_link_add (struct device * consumer, struct device * supplier, u32 flags)
Create a link between two devices.

Parameters
struct device * consumer Consumer end of the link.

struct device * supplier Supplier end of the link.

82 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

u32 flags Link flags.
Description

The caller is responsible for the proper synchronization of the link creation with runtime PM. First, setting
the DL_FLAG_PM_RUNTIME flag will cause the runtime PM framework to take the link into account. Sec-
ond, if the DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will be forced into the
active metastate and reference-counted upon the creation of the link. If DL_FLAG_PM_RUNTIME is not set,
DL_FLAG_RPM_ACTIVE will be ignored.

If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically when the consumer device
driver unbinds from it. The combination of both DL FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is
invalid and will cause NULL to be returned.

A side effect of the link creation is re-ordering of dpm_list and the devices_kset list by moving the consumer
device and all devices depending on it to the ends of these lists (that does not happen to devices that
have not been registered when this function is called).

The supplier device is required to be registered when this function is called and NULL will be returned if
that is not the case. The consumer device need not be registered, however.

void device_link_del(struct device link * link)
Delete a link between two devices.

Parameters

struct device link * link Device link to delete.

Description

The caller must ensure proper synchronization of this function with runtime PM.

const char * dev_driver_string(const struct device * dev)
Return a device’s driver name, if at all possible

Parameters
const struct device * dev struct device to get the name of
Description

Will return the device’s driver’'s name if it is bound to a device. If the device is not bound to a driver, it
will return the name of the bus it is attached to. If it is not attached to a bus either, an empty string will
be returned.

int device create_file(struct device * dev, const struct device_attribute * attr)
create sysfs attribute file for device.

Parameters
struct device * dev device.
const struct device attribute * attr device attribute descriptor.

void device_remove_file(struct device * dev, const struct device_attribute * attr)
remove sysfs attribute file.

Parameters
struct device * dev device.
const struct device_attribute * attr device attribute descriptor.

bool device_remove_file_self (struct device * dev, const struct device_attribute * attr)
remove sysfs attribute file from its own method.

Parameters
struct device * dev device.

const struct device_attribute * attr device attribute descriptor.

2.2. Device Drivers Base 83

The kernel driver API manual, Release 4.13.0-rc4+

Description
See kernfs_remove self() for details.

int device_create_bin_file(struct device * dev, const struct bin_attribute * attr)
create sysfs binary attribute file for device.

Parameters
struct device * dev device.
const struct bin_attribute * attr device binary attribute descriptor.

void device _remove_bin_ file(struct device * dev, const struct bin_attribute * attr)
remove sysfs binary attribute file

Parameters
struct device * dev device.
const struct bin_attribute * attr device binary attribute descriptor.

void device_initialize(struct device * dev)
init device structure.

Parameters
struct device * dev device.
Description

This prepares the device for use by other layers by initializing its fields. It is the first half of de-
vice register(), if called by that function, though it can also be called separately, so one may use
dev's fields. In particular, get device()/put device() may be used for reference counting of dev after
calling this function.

All fields in dev must be initialized by the caller to 0, except for those explicitly set to some other value.
The simplest approach is to use kzalloc() to allocate the structure containing dev.

NOTE

Use put device() to give up your reference instead of freeing dev directly once you have called this
function.

int dev_set_name (struct device * dev, const char * fmt, ...)
set a device name

Parameters

struct device * dev device

const char * fmt format string for the device’s name
. variable arguments

int device_add (struct device * dev)
add device to device hierarchy.

Parameters
struct device * dev device.
Description

This is part 2 of device register(), though may be called separately iff device initialize() has
been called separately.

This adds dev to the kobject hierarchy via kobject add(), adds it to the global and sibling lists for the
device, then adds it to the other relevant subsystems of the driver model.

Do not call this routine or device register() more than once for any device structure. The driver model
core is not designed to work with devices that get unregistered and then spring back to life. (Among

84 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

other things, it's very hard to guarantee that all references to the previous incarnation of dev have been
dropped.) Allocate and register a fresh new struct device instead.

NOTE

_Never_directly free dev after calling this function, even if it returned an error! Always use put device()
to give up your reference instead.

int device_register (struct device * dev)
register a device with the system.

Parameters
struct device * dev pointer to the device structure
Description

This happens in two clean steps - initialize the device and add it to the system. The two steps can be called
separately, but this is the easiest and most common. l.e. you should only call the two helpers separately
if have a clearly defined need to use and refcount the device before it is added to the hierarchy.

For more information, see the kerneldoc for device initialize() and device add().
NOTE

_Never_directly free dev after calling this function, even if it returned an error! Always use put device()
to give up the reference initialized in this function instead.

struct device * get_device (struct device * dev)
increment reference count for device.

Parameters
struct device * dev device.
Description

This simply forwards the call to kobject get(), though we do take care to provide for the case that we
get a NULL pointer passed in.

void put_device (struct device * dev)
decrement reference count.

Parameters
struct device * dev device in question.

void device_del (struct device * dev)
delete device from system.

Parameters
struct device * dev device.
Description

This is the first part of the device unregistration sequence. This removes the device from the lists we con-
trol from here, has it removed from the other driver model subsystems it was added to in device add(),
and removes it from the kobject hierarchy.

NOTE
this should be called manually _iff device add() was also called manually.

void device_unregister (struct device * dev)
unregister device from system.

Parameters

struct device * dev device going away.

2.2. Device Drivers Base 85

The kernel driver API manual, Release 4.13.0-rc4+

Description

We do this in two parts, like we do device register(). First, we remove it from all the subsystems with
device del(), then we decrement the reference count via put device(). If that is the final reference
count, the device will be cleaned up via device release() above. Otherwise, the structure will stick
around until the final reference to the device is dropped.

int device_for_each_child(struct device * parent, void * data, int (*fn) (struct device *dev,

void *data)
device child iterator.

Parameters

struct device * parent parent struct device.

void * data data for the callback.

int (*)(struct device *dev,void *data) fn function to be called for each device.
Description

Iterate over parent’s child devices, and call fn for each, passing it data.

We check the return of fn each time. If it returns anything other than 0, we break out and return that
value.

int device_for_each_child_reverse(struct device * parent, void * data, int (*fn) (struct de-
vice *dev, void *data)
device child iterator in reversed order.

Parameters

struct device * parent parent struct device.

void * data data for the callback.

int (*)(struct device *dev,void *data) fn function to be called for each device.
Description

Iterate over parent’s child devices, and call fn for each, passing it data.

We check the return of fn each time. If it returns anything other than 0, we break out and return that
value.

struct device * device_find_child(struct device * parent, void * data, int (*match) (struct de-
vice *dev, void *data)
device iterator for locating a particular device.

Parameters

struct device * parent parent struct device

void * data Data to pass to match function

int (*)(struct device *dev,void *data) match Callback function to check device
Description

This is similar to the device for each child() function above, but it returns a reference to a device that
is ‘found’ for later use, as determined by the match callback.

The callback should return O if the device doesn’t match and non-zero if it does. If the callback returns
non-zero and a reference to the current device can be obtained, this function will return to the caller and
not iterate over any more devices.

NOTE
you will need to drop the reference with put device() after use.

struct device * __root_device_register(const char * name, struct module * owner)
allocate and register a root device

86 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

Parameters

const char * name root device name

struct module * owner owner module of the root device, usually THIS_ MODULE
Description

This function allocates a root device and registers it using device register(). In order to free the re-
turned device, use root device unregister().

Root devices are dummy devices which allow other devices to be grouped under /sys/devices. Use this
function to allocate a root device and then use it as the parent of any device which should appear under
/sys/devices/{name}

The /sys/devices/{name} directory will also contain a ‘module’ symlink which points to the owner direc-
tory in sysfs.

Returns struct device pointer on success, or ERR_PTR() on error.
Note
You probably want to use root device register().

void root_device_unregister (struct device * dev)
unregister and free a root device

Parameters

struct device * dev device going away

Description

This function unregisters and cleans up a device that was created by root device register().

struct device * device_create_vargs (struct class * class, struct device * parent, dev_t devt, void
* drvdata, const char * fmt, va_list args)
creates a device and registers it with sysfs

Parameters

struct class * class pointer to the struct class that this device should be registered to
struct device * parent pointer to the parent struct device of this new device, if any
dev_t devt the dev_t for the char device to be added

void * drvdata the data to be added to the device for callbacks

const char * fmt string for the device’'s name

va_list args va_list for the device’'s name

Description

This function can be used by char device classes. A struct device will be created in sysfs, registered to
the specified class.

A “dev” file will be created, showing the dev_t for the device, if the dev_t is not 0,0. If a pointer to a
parent struct device is passed in, the newly created struct device will be a child of that device in sysfs.
The pointer to the struct device will be returned from the call. Any further sysfs files that might be required
can be created using this pointer.

Returns struct device pointer on success, or ERR_PTR() on error.
Note
the struct class passed to this function must have previously been created with a call to class create().

struct device * device_create(struct class * class, struct device * parent, dev_t devt, void * drv-

data, const char * fmt, ...)
creates a device and registers it with sysfs

2.2. Device Drivers Base 87

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct class * class pointer to the struct class that this device should be registered to
struct device * parent pointer to the parent struct device of this new device, if any
dev_t devt the dev_t for the char device to be added
void * drvdata the data to be added to the device for callbacks
const char * fmt string for the device’'s name
. variable arguments
Description

This function can be used by char device classes. A struct device will be created in sysfs, registered to
the specified class.

A “dev” file will be created, showing the dev_t for the device, if the dev_t is not 0,0. If a pointer to a
parent struct device is passed in, the newly created struct device will be a child of that device in sysfs.
The pointer to the struct device will be returned from the call. Any further sysfs files that might be required
can be created using this pointer.

Returns struct device pointer on success, or ERR_PTR() on error.
Note
the struct class passed to this function must have previously been created with a call to class create().

struct device * device_create_with_groups (struct c/ass * class, struct device * parent, dev_t devt,
void * drvdata, const struct attribute_group ** groups,

const char * fmt, ...)
creates a device and registers it with sysfs

Parameters
struct class * class pointer to the struct class that this device should be registered to
struct device * parent pointer to the parent struct device of this new device, if any
dev_t devt the dev_t for the char device to be added
void * drvdata the data to be added to the device for callbacks
const struct attribute_group ** groups NULL-terminated list of attribute groups to be created
const char * fmt string for the device’s name
. variable arguments
Description

This function can be used by char device classes. A struct device will be created in sysfs, registered to the
specified class. Additional attributes specified in the groups parameter will also be created automatically.

A “dev” file will be created, showing the dev_t for the device, if the dev_t is not 0,0. If a pointer to a
parent struct device is passed in, the newly created struct device will be a child of that device in sysfs.
The pointer to the struct device will be returned from the call. Any further sysfs files that might be required
can be created using this pointer.

Returns struct device pointer on success, or ERR PTR() on error.
Note
the struct class passed to this function must have previously been created with a call to class_create().

void device_destroy (struct c/ass * class, dev_t devt)
removes a device that was created with device create()

Parameters

88 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct class * class pointer to the struct class that this device was registered with

dev_t devt the dev_t of the device that was previously registered

Description

This call unregisters and cleans up a device that was created with a call to device create().

int device_rename (struct device * dev, const char * new_name)
renames a device

Parameters

struct device * dev the pointer to the struct device to be renamed
const char * new_name the new name of the device

Description

It is the responsibility of the caller to provide mutual exclusion between two different calls of de-
vice_rename on the same device to ensure that new_name is valid and won't conflict with other devices.

Note

Don’t call this function. Currently, the networking layer calls this function, but that will change. The
following text from Kay Sievers offers some insight:

Renaming devices is racy at many levels, symlinks and other stuff are not replaced atomically, and you
get a “move” uevent, but it’s not easy to connect the event to the old and new device. Device nodes are
not renamed at all, there isn’'t even support for that in the kernel now.

In the meantime, during renaming, your target name might be taken by another driver, creating conflicts.
Or the old name is taken directly after you renamed it - then you get events for the same DEVPATH,
before you even see the “move” event. It's just a mess, and nothing new should ever rely on kernel
device renaming. Besides that, it's not even implemented now for other things than (driver-core wise
very simple) network devices.

We are currently about to change network renaming in udev to completely disallow renaming of devices
in the same namespace as the kernel uses, because we can’t solve the problems properly, that arise with
swapping names of multiple interfaces without races. Means, renaming of eth[0-9]* will only be allowed
to some other name than eth[0-9]*, for the aforementioned reasons.

Make up a “real” name in the driver before you register anything, or add some other attributes for
userspace to find the device, or use udev to add symlinks - but never rename kernel devices later, it's a
complete mess. We don’t even want to get into that and try to implement the missing pieces in the core.
We really have other pieces to fix in the driver core mess. :)

int device_move (struct device * dev, struct device * new_parent, enum dpm_order dpm_order)
moves a device to a new parent

Parameters

struct device * dev the pointer to the struct device to be moved
struct device * new_parent the new parent of the device (can by NULL)
enum dpm_order dpm_order how to reorder the dpm_list

void set_primary_fwnode (struct device * dev, struct fwnode_handle * fwnode)
Change the primary firmware node of a given device.

Parameters

struct device * dev Device to handle.

struct fwnode_handle * fwnode New primary firmware node of the device.
Description

Set the device's firmware node pointer to fwnode, but if a secondary firmware node of the device is
present, preserve it.

2.2. Device Drivers Base 89

The kernel driver API manual, Release 4.13.0-rc4+

void device_set of_node_ from_dev (struct device * dev, const struct device * dev2)
reuse device-tree node of another device

Parameters

struct device * dev device whose device-tree node is being set

const struct device * dev2 device whose device-tree node is being reused
Description

Takes another reference to the new device-tree node after first dropping any reference held to the old
node.

void register_syscore_ops (struct syscore ops * ops)
Register a set of system core operations.

Parameters
struct syscore_ops * ops System core operations to register.

void unregister_syscore_ops (struct syscore ops * ops)
Unregister a set of system core operations.

Parameters
struct syscore_ops * ops System core operations to unregister.

int syscore_suspend (void)
Execute all the registered system core suspend callbacks.

Parameters

void no arguments

Description

This function is executed with one CPU on-line and disabled interrupts.

void syscore_resume (void)
Execute all the registered system core resume callbacks.

Parameters

void no arguments

Description

This function is executed with one CPU on-line and disabled interrupts.

struct class * __class_create(struct module * owner, const char * name, struct lock class key
* key)
create a struct class structure

Parameters

struct module * owner pointer to the module that is to “own” this struct class

const char * name pointer to a string for the name of this class.

struct lock_class_key * key the lock class_key for this class; used by mutex lock debugging
Description

This is used to create a struct class pointer that can then be used in calls to device create().
Returns struct class pointer on success, or ERR PTR() on error.

Note, the pointer created here is to be destroyed when finished by making a call to class destroy().

void class_destroy (struct class * cls)
destroys a struct class structure

Parameters

90 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct class * cls pointer to the struct class that is to be destroyed
Description
Note, the pointer to be destroyed must have been created with a call to class create().

void class_dev_iter_init(struct class_dev_iter *jter, struct class * class, struct device * start,

const struct device_type * type)
initialize class device iterator

Parameters

struct class_dev_iter * iter class iterator to initialize

struct class * class the class we wanna iterate over

struct device * start the device to start iterating from, if any

const struct device type * type device type of the devices to iterate over, NULL for all
Description

Initialize class iterator iter such that it iterates over devices of class. If start is set, the list iteration will
start there, otherwise if it is NULL, the iteration starts at the beginning of the list.

struct device * class_dev_iter next(struct class _dev _iter * iter)
iterate to the next device

Parameters

struct class_dev_iter * iter class iterator to proceed

Description

Proceed iter to the next device and return it. Returns NULL if iteration is complete.

The returned device is referenced and won’t be released till iterator is proceed to the next device or exited.
The caller is free to do whatever it wants to do with the device including calling back into class code.

void class_dev_iter_exit(struct class dev iter * iter)
finish iteration

Parameters
struct class_dev_iter * iter class iterator to finish
Description

Finish an iteration. Always call this function after iteration is complete whether the iteration ran till the
end or not.

int class_for_each_device(struct c/ass * class, struct device * start, void * data, int (*fn) (struct
device *, void *)
device iterator
Parameters
struct class * class the class we're iterating
struct device * start the device to start with in the list, if any.
void * data data for the callback
int (*)(struct device *,void *) fn function to be called for each device
Description

Iterate over class’s list of devices, and call fn for each, passing it data. If start is set, the list iteration
will start there, otherwise if it is NULL, the iteration starts at the beginning of the list.

We check the return of fn each time. If it returns anything other than 0, we break out and return that
value.

fn is allowed to do anything including calling back into class code. There’s no locking restriction.

2.2. Device Drivers Base 91

The kernel driver API manual, Release 4.13.0-rc4+

struct device * class_find_device (struct class * class, struct device * start, const void * data, int

(*match) (struct device *, const void *)
device iterator for locating a particular device

Parameters

struct class * class the class we're iterating

struct device * start Device to begin with

const void * data data for the match function

int (*)(struct device *,const void *) match function to check device
Description

This is similar to the class for each dev() function above, but it returns a reference to a device that is
‘found’ for later use, as determined by the match callback.

The callback should return 0 if the device doesn’t match and non-zero if it does. If the callback returns
non-zero, this function will return to the caller and not iterate over any more devices.

Note, you will need to drop the reference with put device() after use.
match is allowed to do anything including calling back into class code. There’s no locking restriction.

struct class_compat * class_compat_register(const char * name)
register a compatibility class

Parameters
const char * name the name of the class
Description

Compatibility class are meant as a temporary user-space compatibility workaround when converting a
family of class devices to a bus devices.

void class_compat_unregister (struct class compat * cls)
unregister a compatibility class

Parameters
struct class_compat * cls the class to unregister

int class_compat_create_link(struct class_compat * cls, struct device * dev, struct device * de-
vice_link)
create a compatibility class device link to a bus device

Parameters

struct class_compat * cls the compatibility class

struct device * dev the target bus device

struct device * device_link an optional device to which a “device” link should be created

void class_compat_remove_link (struct class_compat * cls, struct device * dev, struct device * de-
vice_link)
remove a compatibility class device link to a bus device

Parameters

struct class_compat * cls the compatibility class

struct device * dev the target bus device

struct device * device_link an optional device to which a “device” link was previously created

void unregister_node (struct node * node)
unregister a node device

Parameters

92 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct node * node node going away
Description

Unregisters a node device node. All the devices on the node must be unregistered before calling this
function.

int request_firmware (const struct firmware ** firmware p, const char * name, struct device * de-
_ vice) . '
send firmware request and wait for it

Parameters

const struct firmware ** firmware_p pointer to firmware image

const char * name name of firmware file

struct device * device device for which firmware is being loaded

Description
firmware_p will be used to return a firmware image by the name of name for device device.
Should be called from user context where sleeping is allowed.

name will be used as $FIRMWARE in the uevent environment and should be distinctive enough
not to be confused with any other firmware image for this or any other device.

Caller must hold the reference count of device.
The function can be called safely inside device’s suspend and resume callback.

int request_firmware_direct(const struct firmware ** firmware p, const char * name, struct de-
vice * device)
load firmware directly without usermode helper

Parameters

const struct firmware ** firmware p pointer to firmware image
const char * name name of firmware file

struct device * device device for which firmware is being loaded
Description

This function works pretty much like request firmware(), but this doesn’t fall back to usermode helper
even if the firmware couldn’t be loaded directly from fs. Hence it's useful for loading optional firmwares,
which aren’t always present, without extra long timeouts of udev.

int request_firmware_into_buf (const struct firmware ** firmware_p, const char * name, struct de-
vice * device, void * buf, size_t size)
load firmware into a previously allocated buffer

Parameters

const struct firmware ** firmware p pointer to firmware image

const char * name name of firmware file

struct device * device device for which firmware is being loaded and DMA region allocated
void * buf address of buffer to load firmware into

size t size size of buffer

Description

This function works pretty much like request firmware(), but it doesn’t allocate a buffer to hold the
firmware data. Instead, the firmware is loaded directly into the buffer pointed to by buf and the
firmware_p data member is pointed at buf.

This function doesn’t cache firmware either.

2.2. Device Drivers Base 93

The kernel driver API manual, Release 4.13.0-rc4+

void release_firmware(const struct firmware * fw)
release the resource associated with a firmware image

Parameters
const struct firmware * fw firmware resource to release

int request_firmware_nowait (struct module * module, bool uevent, const char * name, struct de-
vice * device, gfp_t gfp, void * context, void (*cont) (const struct

_ firmware *fw, void *context)
asynchronous version of request_firmware

Parameters
struct module * module module requesting the firmware

bool uevent sends uevent to copy the firmware image if this flag is non-zero else the firmware copy
must be done manually.

const char * name name of firmware file

struct device * device device for which firmware is being loaded

gfp_t gfp allocation flags

void * context will be passed over to cont, and fw may be NULL if firmware request fails.

void (*)(const struct firmware *fw,void *context) cont function will be called asynchronously
when the firmware request is over.

Description
Caller must hold the reference count of device.
Asynchronous variant of request firmware() for user contexts:

* sleep for as small periods as possible since it may increase kernel boot time of built-
in device drivers requesting firmware in their ->:c:func:probe() methods, if gfp is
GFP_KERNEL.

* can’t sleep at all if gfp is GFP_ATOMIC.

int transport_class_register(struct transport class * tclass)
register an initial transport class

Parameters
struct transport_class * tclass a pointer to the transport class structure to be initialised
Description

The transport class contains an embedded class which is used to identify it. The caller should initialise
this structure with zeros and then generic class must have been initialised with the actual transport class
unique name. There’'s a macro DECLARE_TRANSPORT CLASS() to do this (declared classes still must be
registered).

Returns 0 on success or error on failure.

void transport_class_unregister(struct transport _class * tclass)
unregister a previously registered class

Parameters
struct transport_class * tclass The transport class to unregister
Description
Must be called prior to deallocating the memory for the transport class.

int anon_transport_class_register(struct anon_transport_class * atc)
register an anonymous class

Parameters

91 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct anon_transport_class * atc The anon transport class to register
Description

The anonymous transport class contains both a transport class and a container. The idea of an anony-
mous class is that it never actually has any device attributes associated with it (and thus saves on
container storage). So it can only be used for triggering events. Use prezero and then use DE-
CLARE_ANON TRANSPORT_ CLASS() to initialise the anon transport class storage.

void anon_transport_class_unregister(struct anon_transport_class * atc)
unregister an anon class

Parameters

struct anon_transport_class * atc Pointer to the anon transport class to unregister
Description

Must be called prior to deallocating the memory for the anon transport class.

void transport_setup_device(struct device * dev)
declare a new dev for transport class association but don’t make it visible yet.

Parameters
struct device * dev the generic device representing the entity being added
Description

Usually, dev represents some component in the HBA system (either the HBA itself or a device remote
across the HBA bus). This routine is simply a trigger point to see if any set of transport classes wishes
to associate with the added device. This allocates storage for the class device and initialises it, but does
not yet add it to the system or add attributes to it (you do this with transport_add_device). If you have no
need for a separate setup and add operations, use transport_register_device (see transport _class.h).

void transport_add_device (struct device * dev)
declare a new dev for transport class association

Parameters
struct device * dev the generic device representing the entity being added
Description

Usually, dev represents some component in the HBA system (either the HBA itself or a device remote
across the HBA bus). This routine is simply a trigger point used to add the device to the system and
register attributes for it.

void transport_configure_device (struct device * dev)
configure an already set up device

Parameters
struct device * dev generic device representing device to be configured
Description

The idea of configure is simply to provide a point within the setup process to allow the transport class to
extract information from a device after it has been setup. This is used in SCSI because we have to have a
setup device to begin using the HBA, but after we send the initial inquiry, we use configure to extract the
device parameters. The device need not have been added to be configured.

void transport_remove_device (struct device * dev)
remove the visibility of a device

Parameters

struct device * dev generic device to remove

2.2. Device Drivers Base 95

The kernel driver API manual, Release 4.13.0-rc4+

Description

This call removes the visibility of the device (to the user from sysfs), but does not destroy it. To eliminate
a device entirely you must also call transport_destroy device. If you don’t need to do remove and destroy
as separate operations, use transport unregister device() (see transport _class.h) which will perform
both calls for you.

void transport_destroy device (struct device * dev)
destroy a removed device

Parameters
struct device * dev device to eliminate from the transport class.
Description

This call triggers the elimination of storage associated with the transport classdev. Note: all it really does
is relinquish a reference to the classdev. The memory will not be freed until the last reference goes to
zero. Note also that the classdev retains a reference count on dev, so dev too will remain for as long as
the transport class device remains around.

int device_bind_driver (struct device * dev)
bind a driver to one device.

Parameters

struct device * dev device.

Description

Allow manual attachment of a driver to a device. Caller must have already set dev->driver.

Note that this does not modify the bus reference count nor take the bus’s rwsem. Please verify those are
accounted for before calling this. (It is ok to call with no other effort from a driver’s probe() method.)

This function must be called with the device lock held.
void wait_for_device_probe(void)

Parameters

void no arguments

Description

Wait for device probing to be completed.

int device_attach(struct device * dev)
try to attach device to a driver.

Parameters
struct device * dev device.
Description

Walk the list of drivers that the bus has and call driver probe device() for each pair. If a compatible
pair is found, break out and return.

Returns 1 if the device was bound to a driver; 0 if no matching driver was found; -ENODEYV if the device is
not registered.

When called for a USB interface, dev->parent lock must be held.

int driver_attach (struct device driver * drv)
try to bind driver to devices.

Parameters

struct device_driver * drv driver.

96 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

Description

Walk the list of devices that the bus has on it and try to match the driver with each one. If
driver probe device() returns 0 and the dev->driver is set, we’'ve found a compatible pair.

void device_release_driver (struct device * dev)
manually detach device from driver.

Parameters

struct device * dev device.

Description

Manually detach device from driver. When called for a USB interface, dev->parent lock must be held.

If this function is to be called with dev->parent lock held, ensure that the device’s consumers are unbound
in advance or that their locks can be acquired under the dev->parent lock.

struct platform_device * platform_device_register_resndata(struct device * parent, const char
* name, intid, const struct re-
source *res, unsigned intnum,
const void * data, size_t size)
add a platform-level device with resources and platform-specific data

Parameters

struct device * parent parent device for the device we’'re adding

const char * name base name of the device we're adding

int id instance id

const struct resource * res set of resources that needs to be allocated for the device
unsigned int num number of resources

const void * data platform specific data for this platform device

size t size size of platform specific data

Description

Returns struct platform device pointer on success, or ERR PTR() on error.

struct platform_device * platform_device register simple(const char * name, intid, const
struct resource *res, unsigned

int num)
add a platform-level device and its resources

Parameters

const char * name base name of the device we're adding

int id instanceid

const struct resource * res set of resources that needs to be allocated for the device
unsigned int num number of resources

Description

This function creates a simple platform device that requires minimal resource and memory management.
Canned release function freeing memory allocated for the device allows drivers using such devices to be
unloaded without waiting for the last reference to the device to be dropped.

This interface is primarily intended for use with legacy drivers which probe hardware directly. Because
such drivers create sysfs device nodes themselves, rather than letting system infrastructure handle such
device enumeration tasks, they don’t fully conform to the Linux driver model. In particular, when such
drivers are built as modules, they can’t be “hotplugged”.

Returns struct platform device pointer on success, or ERR_PTR() on error.

2.2. Device Drivers Base 97

The kernel driver API manual, Release 4.13.0-rc4+

struct platform_device * platform_device register _data(struct device * parent, const char
*name, intid, const void * data,
size_t size)
add a platform-level device with platform-specific data

Parameters

struct device * parent parent device for the device we’'re adding
const char * name base name of the device we're adding

int id instance id

const void * data platform specific data for this platform device
size_t size size of platform specific data

Description

This function creates a simple platform device that requires minimal resource and memory management.
Canned release function freeing memory allocated for the device allows drivers using such devices to be
unloaded without waiting for the last reference to the device to be dropped.

Returns struct platform device pointer on success, or ERR _PTR() on error.

struct resource * platform_get_resource(struct platform _device * dev, unsigned int type, un-
signed int num)
get a resource for a device

Parameters

struct platform_device * dev platform device
unsigned int type resource type

unsigned int num resource index

int platform_get_irq(struct platform_device * dev, unsigned int num)
get an IRQ for a device

Parameters
struct platform_device * dev platform device
unsigned int num IRQ number index

int platform_irq_count (struct platform_device * dev)
Count the number of IRQs a platform device uses

Parameters

struct platform_device * dev platform device
Return

Number of IRQs a platform device uses or EPROBE_DEFER

struct resource * platform_get_resource_byname (struct platform_device * dev, unsigned int type,

' const char * name)
get a resource for a device by name

Parameters

struct platform_device * dev platform device
unsigned int type resource type

const char * name resource name

int platform_get_irq_byname (struct platform_device * dev, const char * name)
get an IRQ for a device by name

Parameters

98 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct platform_device * dev platform device
const char * name IRQ name

int platform_add_devices (struct platform_device ** devs, int num)
add a numbers of platform devices

Parameters
struct platform_device ** devs array of platform devices to add
int num number of platform devices in array

void platform_device put(struct platform_device * pdev)
destroy a platform device

Parameters
struct platform_device * pdev platform device to free
Description

Free all memory associated with a platform device. This function must only_be externally called in error
cases. All other usage is a bug.

struct platform_device * platform_device_alloc(const char * name, int id)
create a platform device

Parameters

const char * name base name of the device we’re adding
int id instance id

Description

Create a platform device object which can have other objects attached to it, and which will have attached
objects freed when it is released.

int platform_device_add_resources (struct platform_device * pdev, const struct resource * res, un-

signed int num)
add resources to a platform device

Parameters

struct platform_device * pdev platform device allocated by platform_device_alloc to add resources
to

const struct resource * res set of resources that needs to be allocated for the device
unsigned int num number of resources
Description

Add a copy of the resources to the platform device. The memory associated with the resources will be
freed when the platform device is released.

int platform_device add_data(struct platform_device * pdev, const void * data, size t size)
add platform-specific data to a platform device

Parameters

struct platform_device * pdev platform device allocated by platform_device alloc to add resources
to

const void * data platform specific data for this platform device
size_t size size of platform specific data
Description

Add a copy of platform specific data to the platform device’s platform_data pointer. The memory associ-
ated with the platform data will be freed when the platform device is released.

2.2. Device Drivers Base 99

The kernel driver API manual, Release 4.13.0-rc4+

int platform_device add properties (struct platform_device * pdev, const struct property entry
* properties)
add built-in properties to a platform device

Parameters

struct platform_device * pdev platform device to add properties to

const struct property_entry * properties null terminated array of properties to add
Description

The function will take deep copy of properties and attach the copy to the platform device. The memory
associated with properties will be freed when the platform device is released.

int platform_device_add (struct platform_device * pdev)
add a platform device to device hierarchy

Parameters
struct platform_device * pdev platform device we're adding
Description

Thisis part 2 of platform device register(),though may be called separately _iff pdev was allocated
by platform device alloc().

void platform_device_del (struct platform_device * pdev)
remove a platform-level device

Parameters
struct platform_device * pdev platform device we're removing
Description

Note that this function will also release all memory- and port-based resources owned by the device (dev-
>resource). This function must _only_be externally called in error cases. All other usage is a bug.

int platform_device_register (struct platform_device * pdev)
add a platform-level device

Parameters
struct platform_device * pdev platform device we're adding

void platform_device_unregister(struct platform_device * pdev)
unregister a platform-level device

Parameters
struct platform_device * pdev platform device we're unregistering
Description

Unregistration is done in 2 steps. First we release all resources and remove it from the subsystem, then
we drop reference count by calling platform device put().

struct platform_device * platform_device register_ full(const struct platform_device info
* pdevinfo)
add a platform-level device with resources and platform-specific data

Parameters

const struct platform_device_info * pdevinfo data used to create device
Description

Returns struct platform device pointer on success, or ERR PTR() on error.

int __platform_driver_register (struct platform_driver * drv, struct module * owner)
register a driver for platform-level devices

100 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct platform_driver * drv platform driver structure
struct module * owner owning module/driver

void platform_driver_unregister (struct platform_driver * drv)
unregister a driver for platform-level devices

Parameters
struct platform_driver * drv platform driver structure

int __platform driver_probe (struct platform _driver * drv, int (*probe) (struct platform_device *,

struct module * module)
register driver for non-hotpluggable device

Parameters

struct platform_driver * drv platform driver structure

int (*)(struct platform_device *) probe the driver probe routine, probably from an __init section
struct module * module module which will be the owner of the driver

Description

Use this instead of platform driver register() when you know the device is not hotpluggable and has
already been registered, and you want to remove its run-once probe() infrastructure from memory after
the driver has bound to the device.

One typical use for this would be with drivers for controllers integrated into system-on-chip processors,
where the controller devices have been configured as part of board setup.

Note that this is incompatible with deferred probing.

Returns zero if the driver registered and bound to a device, else returns a negative error code and with
the driver not registered.

struct platform_device * __platform_create_bundle(struct platform_driver * driver, int (*probe)
(struct platform_device *, struct resource
* res, unsigned int n_res, const void * data,
size_t size, struct module * module)
register driver and create corresponding device

Parameters

struct platform_driver * driver platform driver structure

int (*)(struct platform_device *) probe the driver probe routine, probably from an __init section
struct resource * res set of resources that needs to be allocated for the device

unsigned int n_res number of resources

const void * data platform specific data for this platform device

size_t size size of platform specific data

struct module * module module which will be the owner of the driver

Description

Use this in legacy-style modules that probe hardware directly and register a single platform device and
corresponding platform driver.

Returns struct platform device pointer on success, or ERR PTR() on error.

int __platform_register_drivers(struct platform _driver *const * drivers, unsigned int count,

struct module * owner)
register an array of platform drivers

Parameters

2.2. Device Drivers Base 101

The kernel driver API manual, Release 4.13.0-rc4+

struct platform_driver *const * drivers an array of drivers to register
unsigned int count the number of drivers to register

struct module * owner module owning the drivers

Description

Registers platform drivers specified by an array. On failure to register a driver, all previously registered
drivers will be unregistered. Callers of this API should use platform unregister drivers() tounregister
drivers in the reverse order.

Return
0 on success or a negative error code on failure.

void platform_unregister_drivers (struct platform_driver *const * drivers, unsigned int count)
unregister an array of platform drivers

Parameters

struct platform_driver *const * drivers an array of drivers to unregister
unsigned int count the number of drivers to unregister

Description

Unegisters platform drivers specified by an array. This is typically used to complement an earlier call
to platform register drivers(). Drivers are unregistered in the reverse order in which they were
registered.

int bus_for_each_dev (struct bus type * bus, struct device * start, void * data, int (*fn) (struct de-
vice *, void *)
device iterator.
Parameters
struct bus_type * bus bus type.
struct device * start device to start iterating from.
void * data data for the callback.
int (*)(struct device *,void *) fn function to be called for each device.
Description

Iterate over bus's list of devices, and call fn for each, passing it data. If start is not NULL, we use that
device to begin iterating from.

We check the return of fn each time. If it returns anything other than 0, we break out and return that
value.

NOTE

The device that returns a non-zero value is not retained in any way, nor is its refcount incremented. If
the caller needs to retain this data, it should do so, and increment the reference count in the supplied
callback.

struct device * bus_find_device(struct bus type * bus, struct device * start, void * data, int

o _ (*match) (struct device *dev, void *data)
device iterator for locating a particular device.

Parameters

struct bus_type * bus bus type

struct device * start Device to begin with
void * data Data to pass to match function

int (*)(struct device *dev,void *data) match Callback function to check device

102 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

Description

This is similar to the bus for each dev() function above, but it returns a reference to a device that is
‘found’ for later use, as determined by the match callback.

The callback should return 0 if the device doesn’t match and non-zero if it does. If the callback returns
non-zero, this function will return to the caller and not iterate over any more devices.

struct device * bus_find_device_by name(struct bus type * bus, struct device * start, const char

* name)
device iterator for locating a particular device of a specific name

Parameters

struct bus_type * bus bus type

struct device * start Device to begin with
const char * name name of the device to match
Description

This is similar to the bus find device() function above, but it handles searching by a name automati-
cally, no need to write another strcmp matching function.

struct device * subsys_find_device_by_id(struct bus type * subsys, unsigned int id, struct device
* hint)
find a device with a specific enumeration number

Parameters

struct bus_type * subsys subsystem
unsigned int id index ‘id’ in struct device
struct device * hint device to check first
Description

Check the hint’s next object and if it is a match return it directly, otherwise, fall back to a full list search.
Either way a reference for the returned object is taken.

int bus_for_each_drv (struct bus_type * bus, struct device_driver * start, void * data, int (*fn) (struct
device driver *, void *)
driver iterator

Parameters

struct bus_type * bus bus we’re dealing with.

struct device driver * start driver to start iterating on.

void * data data to pass to the callback.

int (*)(struct device_driver *,void *) fn function to call for each driver.
Description

This is nearly identical to the device iterator above. We iterate over each driver that belongs to bus, and
call fn for each. If fn returns anything but 0, we break out and return it. If start is not NULL, we use it as
the head of the list.

NOTE

we don’t return the driver that returns a non-zero value, nor do we leave the reference count incremented
for that driver. If the caller needs to know that info, it must set it in the callback. It must also be sure to
increment the refcount so it doesn’t disappear before returning to the caller.

int bus_rescan_devices (struct bus type * bus)
rescan devices on the bus for possible drivers

Parameters

2.2. Device Drivers Base 103

The kernel driver API manual, Release 4.13.0-rc4+

struct bus_type * bus the bus to scan.
Description

This function will look for devices on the bus with no driver attached and rescan it against existing drivers
to see if it matches any by calling device attach() for the unbound devices.

int device_reprobe (struct device * dev)
remove driver for a device and probe for a new driver

Parameters
struct device * dev the device to reprobe
Description

This function detaches the attached driver (if any) for the given device and restarts the driver probing
process. It is intended to use if probing criteria changed during a devices lifetime and driver attachment
should change accordingly.

int bus_register (struct bus type * bus)
register a driver-core subsystem

Parameters
struct bus_type * bus bus to register
Description

Once we have that, we register the bus with the kobject infrastructure, then register the children subsys-
tems it has: the devices and drivers that belong to the subsystem.

void bus_unregister(struct bus type * bus)
remove a bus from the system

Parameters

struct bus_type * bus bus.

Description

Unregister the child subsystems and the bus itself. Finally, we call bus_put() to release the refcount

void subsys_dev_iter_init(struct subsys dev_iter *iter, struct bus type * subsys, struct device
* start, const struct device_type * type)
initialize subsys device iterator

Parameters

struct subsys_dev_iter * iter subsys iterator to initialize

struct bus_type * subsys the subsys we wanna iterate over

struct device * start the device to start iterating from, if any

const struct device_type * type device type of the devices to iterate over, NULL for all
Description

Initialize subsys iterator iter such that it iterates over devices of subsys. If start is set, the list iteration
will start there, otherwise if it is NULL, the iteration starts at the beginning of the list.

struct device * subsys_dev_iter_next (struct subsys dev _iter * iter)
iterate to the next device

Parameters
struct subsys _dev_iter * iter subsys iterator to proceed
Description

Proceed iter to the next device and return it. Returns NULL if iteration is complete.

104 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

The returned device is referenced and won't be released till iterator is proceed to the next device or exited.
The caller is free to do whatever it wants to do with the device including calling back into subsys code.

void subsys_dev_iter_exit(struct subsys dev iter * jter)
finish iteration

Parameters
struct subsys _dev_iter * iter subsys iterator to finish
Description

Finish an iteration. Always call this function after iteration is complete whether the iteration ran till the
end or not.

int subsys_system_register (struct bus type * subsys, const struct attribute_group ** groups)
register a subsystem at /sys/devices/system/

Parameters

struct bus_type * subsys system subsystem

const struct attribute_group ** groups default attributes for the root device
Description

All ‘system’ subsystems have a /sys/devices/system/<name> root device with the name of the subsystem.
The root device can carry subsystem- wide attributes. All registered devices are below this single root
device and are named after the subsystem with a simple enumeration number appended. The registered
devices are not explicitly named; only ‘id’" in the device needs to be set.

Do not use this interface for anything new, it exists for compatibility with bad ideas only. New subsystems
should use plain subsystems; and add the subsystem-wide attributes should be added to the subsystem
directory itself and not some create fake root-device placed in /sys/devices/system/<name>.

int subsys_virtual_register (struct bus type * subsys, const struct attribute_group ** groups)
register a subsystem at /sys/devices/virtual/

Parameters

struct bus_type * subsys virtual subsystem

const struct attribute_group ** groups default attributes for the root device
Description

All ‘virtual’ subsystems have a /sys/devices/system/<name> root device with the name of the subystem.
The root device can carry subsystem-wide attributes. All registered devices are below this single root
device. There’s no restriction on device naming. This is for kernel software constructs which need sysfs
interface.

2.3 Device Drivers DMA Management

int dma_alloc_from_dev_coherent (struct device * dev, ssize_t size, dma_addr_t * dma_handle,

_ void ** ret)
allocate memory from device coherent pool

Parameters

struct device * dev device from which we allocate memory

ssize t size size of requested memory area

dma_addr_t * dma_handle This will be filled with the correct dma handle

void ** ret This pointer will be filled with the virtual address to allocated area.

2.3. Device Drivers DMA Management 105

The kernel driver API manual, Release 4.13.0-rc4+

Description

This function should be only called from per-arch dma_alloc coherent() to support allocation from per-
device coherent memory pools.

Returns O if dma_alloc_coherent should continue with allocating from generic memory areas, or !0 if
dma_alloc_coherent should return ret.

int dma_release_from_dev_coherent (struct device * dev, int order, void * vaddr)
free memory to device coherent memory pool

Parameters

struct device * dev device from which the memory was allocated
int order the order of pages allocated

void * vaddr virtual address of allocated pages

Description

This checks whether the memory was allocated from the per-device coherent memory pool and if so,
releases that memory.

Returns 1 if we correctly released the memory, or 0 if the caller should proceed with releasing memory
from generic pools.

int dma_mmap_from_dev_coherent (struct device * dev, struct vm_area_struct * vma, void * vaddr,
size_t size, int * ret)
mmap memory from the device coherent pool

Parameters

struct device * dev device from which the memory was allocated
struct vm_area_struct * vma vm_area for the userspace memory
void * vaddr cpu address returned by dma_alloc_from_dev_coherent
size_t size size of the memory buffer allocated

int * ret result from remap pfn range()

Description

This checks whether the memory was allocated from the per-device coherent memory pool and if so, maps
that memory to the provided vma.

Returns 1 if we correctly mapped the memory, or 0 if the caller should proceed with mapping memory
from generic pools.

void * dmam_alloc_coherent (struct device * dev, size t size, dma_addr_t * dma_handle, gfp_t gfp)
Managed dma alloc coherent()

Parameters

struct device * dev Device to allocate coherent memory for
size t size Size of allocation

dma_addr_t * dma_handle Out argument for allocated DMA handle
gfp_t gfp Allocation flags

Description

Managed dma_alloc coherent(). Memory allocated using this function will be automatically released on
driver detach.

Return

Pointer to allocated memory on success, NULL on failure.

106 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

void dmam_free_coherent (struct device * dev, size_t size, void * vaddr, dma_addr_t dma_handle)
Managed dma_free coherent()

Parameters

struct device * dev Device to free coherent memory for
size t size Size of allocation

void * vaddr Virtual address of the memory to free
dma_addr_t dma_handle DMA handle of the memory to free
Description

Managed dma_ free coherent().

void * dmam_alloc_attrs (struct device * dev, size_t size, dma_addr_t * dma_handle, gfp_t gfp, un-
signed long attrs)
Managed dma alloc attrs()

Parameters

struct device * dev Device to allocate non_coherent memory for
size t size Size of allocation

dma_addr_t * dma_handle Out argument for allocated DMA handle
gfp_t gfp Allocation flags

unsigned long attrs Flags in the DMA_ATTR_* namespace.
Description

Managed dma_alloc_attrs(). Memory allocated using this function will be automatically released on
driver detach.

Return
Pointer to allocated memory on success, NULL on failure.

int dmam_declare_coherent_memory (struct device * dev, phys _addr_t phys addr,
dma_addr_t device_addr, size_t size, int flags)
Managed dma_declare coherent memory()

Parameters

struct device * dev Device to declare coherent memory for

phys_addr_t phys_addr Physical address of coherent memory to be declared
dma_addr_t device_addr Device address of coherent memory to be declared
size_t size Size of coherent memory to be declared

int flags Flags

Description

Managed dma declare coherent memory().

Return

0 on success, -errno on failure.

void dmam_release_declared_memory (struct device * dev)
Managed dma release declared memory().

Parameters

struct device * dev Device to release declared coherent memory for

2.3. Device Drivers DMA Management 107

The kernel driver API manual, Release 4.13.0-rc4+

Description

Managed dmam release declared memory().

2.4 Device drivers PnP support

int pnp_register_protocol (struct pnp_protocol * protocol)
adds a pnp protocol to the pnp layer

Parameters
struct pnp_protocol * protocol pointer to the corresponding pnp_protocol structure
Description

Ex protocols: ISAPNP, PNPBIOS, etc

void pnp_unregister_protocol(struct pnp_protocol * protocol)
removes a pnp protocol from the pnp layer

Parameters
struct pnp_protocol * protocol pointer to the corresponding pnp_protocol structure

struct pnp_dev * pnp_request_card_device(struct pnp_card_link * clink, const char *id, struct
pnp_dev * from)
Searches for a PnP device under the specified card

Parameters

struct pnp_card_link * clink pointer to the card link, cannot be NULL

const char * id pointer to a PnP ID structure that explains the rules for finding the device
struct pnp_dev * from Starting place to search from. If NULL it will start from the beginning.

void pnp_release_card_device(struct pnp_dev * dev)
call this when the driver no longer needs the device

Parameters
struct pnp_dev * dev pointer to the PnP device structure

int pnp_register_card_driver (struct pnp_card_driver * drv)
registers a PnP card driver with the PnP Layer

Parameters
struct pnp_card_driver * drv pointer to the driver to register

void pnp_unregister_card_driver (struct pnp_card_driver * drv)
unregisters a PnP card driver from the PnP Layer

Parameters
struct pnp_card_driver * drv pointer to the driver to unregister

struct pnp_id * pnp_add_id (struct pnp_dev * dev, const char * id)
adds an EISA id to the specified device

Parameters
struct pnp_dev * dev pointer to the desired device
const char * id pointer to an EISA id string

int pnp_start_dev (struct pnp_dev * dev)
low-level start of the PnP device

Parameters

108 Chapter 2. Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct pnp_dev * dev pointer to the desired device
Description
assumes that resources have already been allocated

int pnp_stop_dev (struct pnp_dev * dev)
low-level disable of the PnP device

Parameters

struct pnp_dev * dev pointer to the desired device
Description

does not free resources

int pnp_activate_dev (struct pnp_dev * dev)
activates a PnP device for use

Parameters

struct pnp_dev * dev pointer to the desired device
Description

does not validate or set resources so be careful.

int pnp_disable_dev (struct pnp_dev * dev)
disables device

Parameters

struct pnp_dev * dev pointer to the desired device

Description

inform the correct pnp protocol so that resources can be used by other devices

int pnp_is_active(struct pnp_dev * dev)
Determines if a device is active based on its current resources

Parameters

struct pnp_dev * dev pointer to the desired PnP device

2.5 Userspace 10 devices

void uio_event _notify(struct uio info * info)
trigger an interrupt event

Parameters
struct uio_info * info UIO device capabilities

int __uio_register_device(struct module * owner, struct device * parent, struct uio_info * info)
register a new userspace |0 device

Parameters

struct module * owner module that creates the new device
struct device * parent parent device

struct uio_info * info UIO device capabilities
Description

returns zero on success or a negative error code.

2.5. Userspace 10 devices 109

The kernel driver API manual, Release 4.13.0-rc4+

void uio_unregister_device(struct uio_info * info)
unregister a industrial 10 device

Parameters
struct uio_info * info UIO device capabilities

struct uio_mem
description of a UIO memory region

Definition

struct uio _mem {
const char * name;
phys addr_t addr;
unsigned long offs;
resource _size t size;
int memtype;
void ~ iomem * internal addr;
struct uio_map * map;

};

Members

name name of the memory region for identification

addr address of the device’s memory rounded to page size (phys_addr is used since addr can be logical,
virtual, or physical & phys_addr_t should always be large enough to handle any of the address types)

offs offset of device memory within the page

size size of 10 (multiple of page size)

memtype type of memory addr points to

internal_addr ioremap-ped version of addr, for driver internal use
map for use by the UIO core only.

struct uio_port
description of a UIO port region

Definition

struct uio port {
const char * name;
unsigned long start;
unsigned long size;
int porttype;
struct uio _portio * portio;

};

Members

name name of the port region for identification
start start of port region

size size of port region

porttype type of port (see UIO_PORT_* below)
portio for use by the UIO core only.

struct uio_info
UIO device capabilities

Definition

110 Chapter 2.

Device drivers infrastructure

The kernel driver API manual, Release 4.13.0-rc4+

struct uio info {
struct uio device * uio dev;
const char * name;
const char * version;
struct uio mem mem;
struct uio_port port;
long irgq;
unsigned long irq_flags;
void * priv;
irgreturn_t (* handler) (int irq, struct uio info *dev_info);
int (* mmap) (struct uio _info *info, struct vm area struct *vma);
int (* open) (struct uio info *info, struct inode *inode);
int (* release) (struct uio info *info, struct inode *inode);
int (* irqgcontrol) (struct uio_info *info, s32 irq_on);

1

Members

uio_dev the UIO device this info belongs to
name device nhame

version device driver version

mem list of mappable memory regions, size==0 for end of list
port list of port regions, size==0 for end of list
irqg interrupt number or UIO_IRQ_CUSTOM
irq_flags flags for request irq()

priv optional private data

handler the device’s irq handler

mmap mmap operation for this uio device

open open operation for this uio device
release release operation for this uio device

irqcontrol disable/enable irgs when 0/1 is written to /dev/uioX

2.5. Userspace 10 devices

111

The kernel driver API manual, Release 4.13.0-rc4+

112 Chapter 2. Device drivers infrastructure

CHAPTER
THREE

DEVICE POWER MANAGEMENT

3.1 Device Power Management Basics

Copyright (c) 2010-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
Copyright (c) 2010 Alan Stern <stern@rowland.harvard.edu>
Copyright (c) 2016 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

Most of the code in Linux is device drivers, so most of the Linux power management (PM) code is also
driver-specific. Most drivers will do very little; others, especially for platforms with small batteries (like

cell phones), will do a lot.

This writeup gives an overview of how drivers interact with system-wide power management goals, em-
phasizing the models and interfaces that are shared by everything that hooks up to the driver model core.

Read it as background for the domain-specific work you'd do with any specific driver.

3.1.1 Two Models for Device Power Management

Drivers will use one or both of these models to put devices into low-power states:

System Sleep model:

Drivers can enter low-power states as part of entering system-wide low-power states
like “suspend” (also known as “suspend-to-RAM”), or (mostly for systems with disks)
“hibernation” (also known as “suspend-to-disk”).

This is something that device, bus, and class drivers collaborate on by implementing
various role-specific suspend and resume methods to cleanly power down hardware
and software subsystems, then reactivate them without loss of data.

Some drivers can manage hardware wakeup events, which make the system leave
the low-power state. This feature may be enabled or disabled using the relevant
/sys/devices/.../power/wakeup file (for Ethernet drivers the ioctl interface used by
ethtool may also be used for this purpose); enabling it may cost some power usage,
but let the whole system enter low-power states more often.

Runtime Power Management model:

Devices may also be put into low-power states while the system is running, indepen-
dently of other power management activity in principle. However, devices are not gen-
erally independent of each other (for example, a parent device cannot be suspended
unless all of its child devices have been suspended). Moreover, depending on the bus
type the device is on, it may be necessary to carry out some bus-specific operations on
the device for this purpose. Devices put into low power states at run time may require
special handling during system-wide power transitions (suspend or hibernation).

For these reasons not only the device driver itself, but also the appropriate subsystem
(bus type, device type or device class) driver and the PM core are involved in runtime
power management. As in the system sleep power management case, they need to

113

The kernel driver API manual, Release 4.13.0-rc4+

collaborate by implementing various role-specific suspend and resume methods, so
that the hardware is cleanly powered down and reactivated without data or service
loss.

There’s not a lot to be said about those low-power states except that they are very system-specific, and
often device-specific. Also, that if enough devices have been put into low-power states (at runtime), the
effect may be very similar to entering some system-wide low-power state (system sleep) ... and that
synergies exist, so that several drivers using runtime PM might put the system into a state where even
deeper power saving options are available.

Most suspended devices will have quiesced all I/0: no more DMA or IRQs (except for wakeup events), no
more data read or written, and requests from upstream drivers are no longer accepted. A given bus or
platform may have different requirements though.

Examples of hardware wakeup events include an alarm from a real time clock, network wake-on-LAN
packets, keyboard or mouse activity, and media insertion or removal (for PCMCIA, MMC/SD, USB, and so
on).

3.1.2 Interfaces for Entering System Sleep States

There are programming interfaces provided for subsystems (bus type, device type, device class) and
device drivers to allow them to participate in the power management of devices they are concerned with.
These interfaces cover both system sleep and runtime power management.

Device Power Management Operations

Device power management operations, at the subsystem level as well as at the device driver level,
are implemented by defining and populating objects of type struct dev pm ops defined in in-
clude/1linux/pm.h. The roles of the methods included in it will be explained in what follows. For now, it
should be sufficient to remember that the last three methods are specific to runtime power management
while the remaining ones are used during system-wide power transitions.

There also is a deprecated “old” or “legacy” interface for power management operations available at least
for some subsystems. This approach does not use struct dev pm ops objects and it is suitable only for
implementing system sleep power management methods in a limited way. Therefore it is not described
in this document, so please refer directly to the source code for more information about it.

Subsystem-Level Methods

The core methods to suspend and resume devices reside in struct dev pm ops pointed to by the ops
member of struct dev pm domain, or by the pmmember of struct bus type, struct device typeand
struct class. They are mostly of interest to the people writing infrastructure for platforms and buses,
like PCI or USB, or device type and device class drivers. They also are relevant to the writers of device
drivers whose subsystems (PM domains, device types, device classes and bus types) don’t provide all
power management methods.

Bus drivers implement these methods as appropriate for the hardware and the drivers using it; PCI works
differently from USB, and so on. Not many people write subsystem-level drivers; most driver code is a
“device driver” that builds on top of bus-specific framework code.

For more information on these driver calls, see the description later; they are called in phases for every
device, respecting the parent-child sequencing in the driver model tree.

/sys/devices/.../power/wakeup files

All device objects in the driver model contain fields that control the handling of system wakeup events
(hardware signals that can force the system out of a sleep state). These fields are initialized by bus or

114 Chapter 3. Device Power Management

The kernel driver API manual, Release 4.13.0-rc4+

device driver code using device set wakeup capable() and device set wakeup enable(), defined in
include/1linux/pm_wakeup.h.

The power.can_wakeup flag just records whether the device (and its driver) can physically support wakeup
events. The device set wakeup capable() routine affects this flag. The power.wakeup field is a pointer
to an object of type struct wakeup source used for controlling whether or not the device should use
its system wakeup mechanism and for notifying the PM core of system wakeup events signaled by the
device. This object is only present for wakeup-capable devices (i.e. devices whose can_wakeup flags are
set) and is created (or removed) by device set wakeup capable().

Whether or not a device is capable of issuing wakeup events is a hardware matter, and the kernel is
responsible for keeping track of it. By contrast, whether or not a wakeup-capable device should issue
wakeup events is a policy decision, and it is managed by user space through a sysfs attribute: the
power/wakeup file. User space can write the “enabled” or “disabled” strings to it to indicate whether
or not, respectively, the device is supposed to signal system wakeup. This file is only present if the
power.wakeup object exists for the given device and is created (or removed) along with that object, by
device set wakeup capable(). Reads from the file will return the corresponding string.

The initial value in the power/wakeup file is “disabled” for the majority of devices; the major exceptions
are power buttons, keyboards, and Ethernet adapters whose WoL (wake-on-LAN) feature has been set up
with ethtool. It should also default to “enabled” for devices that don’t generate wakeup requests on their
own but merely forward wakeup requests from one bus to another (like PCI Express ports).

The device may wakeup() routine returns true only if the power.wakeup object exists and the corre-
sponding power/wakeup file contains the “enabled” string. This information is used by subsystems, like
the PCI bus type code, to see whether or not to enable the devices’ wakeup mechanisms. If device wakeup
mechanisms are enabled or disabled directly by drivers, they also should use device may wakeup() to
decide what to do during a system sleep transition. Device drivers, however, are not expected to call
device set wakeup enable() directly in any case.

It ought to be noted that system wakeup is conceptually different from “remote wakeup” used by runtime
power management, although it may be supported by the same physical mechanism. Remote wakeup is a
feature allowing devices in low-power states to trigger specific interrupts to signal conditions in which they
should be put into the full-power state. Those interrupts may or may not be used to signal system wakeup
events, depending on the hardware design. On some systems it is impossible to trigger them from system
sleep states. In any case, remote wakeup should always be enabled for runtime power management for
all devices and drivers that support it.

/sys/devices/.../power/control files

Each device in the driver model has a flag to control whether it is subject to runtime power man-
agement. This flag, runtime auto, is initialized by the bus type (or generally subsystem) code using
pm runtime allow() or pm _runtime forbid(); the default is to allow runtime power management.

The setting can be adjusted by user space by writing either “on” or “auto” to the device’s power/control
sysfs file. Writing “auto” calls pm_runtime allow(), setting the flag and allowing the device to be runtime
power-managed by its driver. Writing “on” calls pm_runtime forbid(), clearing the flag, returning the
device to full power if it was in a low-power state, and preventing the device from being runtime power-
managed. User space can check the current value of the runtime auto flag by reading that file.

The device’s runtime auto flag has no effect on the handling of system-wide power transitions. In par-
ticular, the device can (and in the majority of cases should and will) be put into a low-power state during
a system-wide transition to a sleep state even though its runtime_ auto flag is clear.

For more information about the runtime power management framework, refer to Documenta-
tion/power/runtime pm.txt.

3.1.3 Calling Drivers to Enter and Leave System Sleep States

When the system goes into a sleep state, each device’s driver is asked to suspend the device by putting it
into a state compatible with the target system state. That’s usually some version of “off”, but the details

3.1. Device Power Management Basics 115

The kernel driver API manual, Release 4.13.0-rc4+

are system-specific. Also, wakeup-enabled devices will usually stay partly functional in order to wake the
system.

When the system leaves that low-power state, the device’s driver is asked to resume it by returning it to
full power. The suspend and resume operations always go together, and both are multi-phase operations.

For simple drivers, suspend might quiesce the device using class code and then turn its hardware as
“off” as possible during suspend_noirq. The matching resume calls would then completely reinitialize the
hardware before reactivating its class I/O queues.

More power-aware drivers might prepare the devices for triggering system wakeup events.

Call Sequence Guarantees

To ensure that bridges and similar links needing to talk to a device are available when the device is
suspended or resumed, the device hierarchy is walked in a bottom-up order to suspend devices. A top-
down order is used to resume those devices.

The ordering of the device hierarchy is defined by the order in which devices get registered: a child can
never be registered, probed or resumed before its parent; and can’t be removed or suspended after that
parent.

The policy is that the device hierarchy should match hardware bus topology. [Or at least the control bus,
for devices which use multiple busses.] In particular, this means that a device registration may fail if the
parent of the device is suspending (i.e. has been chosen by the PM core as the next device to suspend)
or has already suspended, as well as after all of the other devices have been suspended. Device drivers
must be prepared to cope with such situations.

System Power Management Phases

Suspending or resuming the system is done in several phases. Different phases are used for suspend-to-
idle, shallow (standby), and deep (“suspend-to-RAM”) sleep states and the hibernation state (“suspend-
to-disk”). Each phase involves executing callbacks for every device before the next phase begins. Not all
buses or classes support all these callbacks and not all drivers use all the callbacks. The various phases
always run after tasks have been frozen and before they are unfrozen. Furthermore, the * noirq phases
run at a time when IRQ handlers have been disabled (except for those marked with the IRQF_NO_SUSPEND
flag).

All phases use PM domain, bus, type, class or driver callbacks (that is, methods defined in dev-
>pm_domain->ops, dev->bus->pm, dev->type->pm, dev->class->pm or dev->driver->pm). These call-
backs are regarded by the PM core as mutually exclusive. Moreover, PM domain callbacks always take
precedence over all of the other callbacks and, for example, type callbacks take precedence over bus,
class and driver callbacks. To be precise, the following rules are used to determine which callback to
execute in the given phase:

1. If dev->pm _domain is present, the PM core will choose the callback provided by dev->pm domain-
>ops for execution.

2. Otherwise, if both dev->type and dev->type->pm are present, the callback provided by dev->type-
>pm will be chosen for execution.

3. Otherwise, if both dev->class and dev->class->pm are present, the callback provided by dev-
>class->pm will be chosen for execution.

4. Otherwise, if both dev->bus and dev->bus->pm are present, the callback provided by dev->bus->pm
will be chosen for execution.

This allows PM domains and device types to override callbacks provided by bus types or device classes if
necessary.

The PM domain, type, class and bus callbacks may in turn invoke device- or driver-specific methods stored
in dev->driver->pm, but they don’t have to do that.

116 Chapter 3. Device Power Management

The kernel driver API manual, Release 4.13.0-rc4+

If the subsystem callback chosen for execution is not present, the PM core will execute the corresponding
method from the dev->driver->pm set instead if there is one.

Entering System Suspend

When the system goes into the freeze, standby or memory sleep state, the phases are: prepare, suspend,
suspend late, suspend noirgq.

1. The prepare phase is meant to prevent races by preventing new devices from being registered; the
PM core would never know that all the children of a device had been suspended if new children could
be registered at will. [By contrast, from the PM core’s perspective, devices may be unregistered at
any time.] Unlike the other suspend-related phases, during the prepare phase the device hierarchy
is traversed top-down.

After the ->prepare callback method returns, no new children may be registered below the device.
The method may also prepare the device or driver in some way for the upcoming system power
transition, but it should not put the device into a low-power state.

For devices supporting runtime power management, the return value of the prepare callback can be
used to indicate to the PM core that it may safely leave the device in runtime suspend (if runtime-
suspended already), provided that all of the device’s descendants are also left in runtime suspend.
Namely, if the prepare callback returns a positive number and that happens for all of the descendants
of the device too, and all of them (including the device itself) are runtime-suspended, the PM core
will skip the suspend, suspend late and suspend noirqg phases as well as all of the corresponding
phases of the subsequent device resume for all of these devices. In that case, the ->complete
callback will be invoked directly after the ->prepare callback and is entirely responsible for putting
the device into a consistent state as appropriate.

Note that this direct-complete procedure applies even if the device is disabled for runtime PM; only
the runtime-PM status matters. It follows that if a device has system-sleep callbacks but does not
support runtime PM, then its prepare callback must never return a positive value. This is because all
such devices are initially set to runtime-suspended with runtime PM disabled.

2. The ->suspend methods should quiesce the device to stop it from performing 1/0O. They also may
save the device registers and put it into the appropriate low-power state, depending on the bus type
the device is on, and they may enable wakeup events.

3. For a number of devices it is convenient to split suspend into the “quiesce device” and “save device
state” phases, in which cases suspend late is meant to do the latter. It is always executed after
runtime power management has been disabled for the device in question.

4. The suspend noirqg phase occurs after IRQ handlers have been disabled, which means that
the driver’'s interrupt handler will not be called while the callback method is running. The -
>suspend _noirq methods should save the values of the device’s registers that weren’t saved previ-
ously and finally put the device into the appropriate low-power state.

The majority of subsystems and device drivers need not implement this callback. However, bus
types allowing devices to share interrupt vectors, like PCl, generally need it; otherwise a driver might
encounter an error during the suspend phase by fielding a shared interrupt generated by some other
device after its own device had been set to low power.

At the end of these phases, drivers should have stopped all 1/0 transactions (DMA, IRQs), saved enough
state that they can re-initialize or restore previous state (as needed by the hardware), and placed the
device into a low-power state. On many platforms they will gate off one or more clock sources; sometimes
they will also switch off power supplies or reduce voltages. [Drivers supporting runtime PM may already
have performed some or all of these steps.]

If device may wakeup(dev) () returns true, the device should be prepared for generating hardware
wakeup signals to trigger a system wakeup event when the system is in the sleep state. For example,
enable irg wake() might identify GPIO signals hooked up to a switch or other external hardware, and
pci enable wake() does something similar for the PCI PME signal.

3.1. Device Power Management Basics 117

The kernel driver API manual, Release 4.13.0-rc4+

If any of these callbacks returns an error, the system won’t enter the desired low-power state. Instead,
the PM core will unwind its actions by resuming all the devices that were suspended.

Leaving System Suspend

When resuming from freeze, standby or memory sleep, the phases are: resume noirq, resume early,
resume, complete.

1. The ->resume_noirq callback methods should perform any actions needed before the driver’s inter-
rupt handlers are invoked. This generally means undoing the actions of the suspend noirq phase. If
the bus type permits devices to share interrupt vectors, like PCl, the method should bring the device
and its driver into a state in which the driver can recognize if the device is the source of incoming
interrupts, if any, and handle them correctly.

For example, the PCI bus type’s ->pm. resume _noirq() puts the device into the full-power state (DO
in the PCI terminology) and restores the standard configuration registers of the device. Then it calls
the device driver’s ->pm.resume_noirq() method to perform device-specific actions.

2. The ->resume_early methods should prepare devices for the execution of the resume methods. This
generally involves undoing the actions of the preceding suspend late phase.

3. The ->resume methods should bring the device back to its operating state, so that it can perform
normal I/O. This generally involves undoing the actions of the suspend phase.

4. The complete phase should undo the actions of the prepare phase. For this reason, unlike the other
resume-related phases, during the complete phase the device hierarchy is traversed bottom-up.

Note, however, that new children may be registered below the device as soon as the ->resume
callbacks occur; it's not necessary to wait until the complete phase with that.

Moreover, if the preceding ->prepare callback returned a positive number, the device may have
been left in runtime suspend throughout the whole system suspend and resume (the suspend, sus-
pend late, suspend noirq phases of system suspend and the resume noirq, resume early, re-
sume phases of system resume may have been skipped for it). In that case, the ->complete callback
is entirely responsible for putting the device into a consistent state after system suspend if necessary.
[For example, it may need to queue up a runtime resume request for the device for this purpose.] To
check if that is the case, the ->complete callback can consult the device’s power.direct complete
flag. Namely, if that flag is set when the ->complete callback is being run, it has been called di-
rectly after the preceding ->prepare and special actions may be required to make the device work
correctly afterward.

At the end of these phases, drivers should be as functional as they were before suspending: 1/O can be
performed using DMA and IRQs, and the relevant clocks are gated on.

However, the details here may again be platform-specific. For example, some systems support multiple
“run” states, and the mode in effect at the end of resume might not be the one which preceded suspension.
That means availability of certain clocks or power supplies changed, which could easily affect how a driver
works.

Drivers need to be able to handle hardware which has been reset since all of the suspend methods were
called, for example by complete reinitialization. This may be the hardest part, and the one most protected
by NDA'd documents and chip errata. It's simplest if the hardware state hasn’t changed since the suspend
was carried out, but that can only be guaranteed if the target system sleep entered was suspend-to-idle.
For the other system sleep states that may not be the case (and usually isn’t for ACPIl-defined system
sleep states, like S3).

Drivers must also be prepared to notice that the device has been removed while the system was powered
down, whenever that's physically possible. PCMCIA, MMC, USB, Firewire, SCSI, and even IDE are common
examples of busses where common Linux platforms will see such removal. Details of how drivers will
notice and handle such removals are currently bus-specific, and often involve a separate thread.

These callbacks may return an error value, but the PM core will ignore such errors since there’s nothing it
can do about them other than printing them in the system log.

118 Chapter 3. Device Power Management

The kernel driver API manual, Release 4.13.0-rc4+

Entering Hibernation

Hibernating the system is more complicated than putting it into sleep states, because it involves creating
and saving a system image. Therefore there are more phases for hibernation, with a different set of
callbacks. These phases always run after tasks have been frozen and enough memory has been freed.

The general procedure for hibernation is to quiesce all devices (“freeze”), create an image of the system
memory while everything is stable, reactivate all devices (“thaw”), write the image to permanent stor-
age, and finally shut down the system (“power off”). The phases used to accomplish this are: prepare,
freeze, freeze late, freeze noirq, thaw noirq, thaw early, thaw, complete, prepare, poweroff,
poweroff late, poweroff noirq.

1. The prepare phase is discussed in the “Entering System Suspend” section above.

2. The ->freeze methods should quiesce the device so that it doesn’t generate IRQs or DMA, and they
may need to save the values of device registers. However the device does not have to be putin a
low-power state, and to save time it's best not to do so. Also, the device should not be prepared to
generate wakeup events.

3. The freeze late phase is analogous to the suspend late phase described earlier, except that the
device should not be put into a low-power state and should not be allowed to generate wakeup
events.

4. The freeze noirq phase is analogous to the suspend noirq phase discussed earlier, except again
that the device should not be put into a low-power state and should not be allowed to generate
wakeup events.

At this point the system image is created. All devices should be inactive and the contents of memory
should remain undisturbed while this happens, so that the image forms an atomic snapshot of the system
state.

5. The thaw _noirqg phase is analogous to the resume noirq phase discussed earlier. The main differ-
ence is that its methods can assume the device is in the same state as at the end of the freeze noirq
phase.

6. The thaw early phaseis analogous to the resume early phase described above. Its methods should
undo the actions of the preceding freeze late, if necessary.

7. The thaw phase is analogous to the resume phase discussed earlier. Its methods should bring the
device back to an operating state, so that it can be used for saving the image if necessary.

8. The complete phase is discussed in the “Leaving System Suspend” section above.

At this point the system image is saved, and the devices then need to be prepared for the upcoming
system shutdown. This is much like suspending them before putting the system into the suspend-to-idle,
shallow or deep sleep state, and the phases are similar.

9. The prepare phase is discussed above.
10. The poweroff phase is analogous to the suspend phase.
11. The poweroff late phase is analogous to the suspend late phase.
12. The poweroff noirq phase is analogous to the suspend noirq phase.

The ->poweroff, ->poweroff late and ->poweroff noirq callbacks should do essentially the same
things as the ->suspend, ->suspend late and ->suspend noirq callbacks, respectively. The only no-
table difference is that they need not store the device register values, because the registers should already
have been stored during the freeze, freeze late or freeze noirq phases.

Leaving Hibernation

Resuming from hibernation is, again, more complicated than resuming from a sleep state in which the
contents of main memory are preserved, because it requires a system image to be loaded into memory

3.1. Device Power Management Basics 119

The kernel driver API manual, Release 4.13.0-rc4+

and the pre-hibernation memory contents to be restored before control can be passed back to the image
kernel.

Although in principle the image might be loaded into memory and the pre-hibernation memory contents
restored by the boot loader, in practice this can’'t be done because boot loaders aren’t smart enough and
there is no established protocol for passing the necessary information. So instead, the boot loader loads a
fresh instance of the kernel, called “the restore kernel”, into memory and passes control to it in the usual
way. Then the restore kernel reads the system image, restores the pre-hibernation memory contents, and
passes control to the image kernel. Thus two different kernel instances are involved in resuming from
hibernation. In fact, the restore kernel may be completely different from the image kernel: a different
configuration and even a different version. This has important consequences for device drivers and their
subsystems.

To be able to load the system image into memory, the restore kernel needs to include at least a subset of
device drivers allowing it to access the storage medium containing the image, although it doesn’t need
to include all of the drivers present in the image kernel. After the image has been loaded, the devices
managed by the boot kernel need to be prepared for passing control back to the image kernel. This is
very similar to the initial steps involved in creating a system image, and it is accomplished in the same
way, using prepare, freeze, and freeze noirq phases. However, the devices affected by these phases
are only those having drivers in the restore kernel; other devices will still be in whatever state the boot
loader left them.

Should the restoration of the pre-hibernation memory contents fail, the restore kernel would go through the
“thawing” procedure described above, using the thaw noirqg, thaw early, thaw, and complete phases,
and then continue running normally. This happens only rarely. Most often the pre-hibernation mem-
ory contents are restored successfully and control is passed to the image kernel, which then becomes
responsible for bringing the system back to the working state.

To achieve this, the image kernel must restore the devices’ pre-hibernation functionality. The operation
is much like waking up from a sleep state (with the memory contents preserved), although it involves
different phases: restore noirq, restore early, restore, complete.

1. The restore noirq phase is analogous to the resume _noirq phase.
2. The restore _early phase is analogous to the resume_early phase.
3. The restore phase is analogous to the resume phase.

4. The complete phase is discussed above.

The main difference from resume[early| noirq] is that restore[early| noirq] must assume the
device has been accessed and reconfigured by the boot loader or the restore kernel. Consequently, the
state of the device may be different from the state remembered from the freeze, freeze late and
freeze noirqg phases. The device may even need to be reset and completely re-initialized. In many
cases this difference doesn’t matter, so the ->resume[early| noirq] and ->restore[early| norql
method pointers can be set to the same routines. Nevertheless, different callback pointers are used in
case there is a situation where it actually does matter.

3.1.4 Power Management Notifiers

There are some operations that cannot be carried out by the power management callbacks discussed
above, because the callbacks occur too late or too early. To handle these cases, subsystems and device
drivers may register power management notifiers that are called before tasks are frozen and after they
have been thawed. Generally speaking, the PM notifiers are suitable for performing actions that either
require user space to be available, or at least won't interfere with user space.

For details refer to Suspend/Hibernation Notifiers .

120 Chapter 3. Device Power Management

The kernel driver API manual, Release 4.13.0-rc4+

3.1.5 Device Low-Power (suspend) States

Device low-power states aren’t standard. One device might only handle “on” and “off”, while another
might support a dozen different versions of “on” (how many engines are active?), plus a state that gets
back to “on” faster than from a full “off”.

Some buses define rules about what different suspend states mean. PCIl gives one example: after the
suspend sequence completes, a non-legacy PCl device may not perform DMA or issue IRQs, and any
wakeup events it issues would be issued through the PME# bus signal. Plus, there are several PCl-standard
device states, some of which are optional.

In contrast, integrated system-on-chip processors often use IRQs as the wakeup event sources (so drivers
would call enable irq wake())and might be able to treat DMA completion as a wakeup event (sometimes
DMA can stay active too, it'd only be the CPU and some peripherals that sleep).

Some details here may be platform-specific. Systems may have devices that can be fully active in certain
sleep states, such as an LCD display that's refreshed using DMA while most of the system is sleeping
lightly ... and its frame buffer might even be updated by a DSP or other non-Linux CPU while the Linux
control processor stays idle.

Moreover, the specific actions taken may depend on the target system state. One target system state
might allow a given device to be very operational; another might require a hard shut down with re-
initialization on resume. And two different target systems might use the same device in different ways;
the aforementioned LCD might be active in one product’s “standby”, but a different product using the
same SOC might work differently.

3.1.6 Device Power Management Domains

Sometimes devices share reference clocks or other power resources. In those cases it generally is not
possible to put devices into low-power states individually. Instead, a set of devices sharing a power
resource can be put into a low-power state together at the same time by turning off the shared power
resource. Of course, they also need to be put into the full-power state together, by turning the shared
power resource on. A set of devices with this property is often referred to as a power domain. A power
domain may also be nested inside another power domain. The nested domain is referred to as the sub-
domain of the parent domain.

Support for power domains is provided through the pm domain field of struct device. This field is a
pointer to an object of type struct dev pm domain, defined in include/linux/pm.h", providing a set
of power management callbacks analogous to the subsystem-level and device driver callbacks that are
executed for the given device during all power transitions, instead of the respective subsystem-level call-
backs. Specifically, if a device’s pm_domain pointer is not NULL, the ->suspend () callback from the object
pointed to by it will be executed instead of its subsystem’s (e.g. bus type’s) ->suspend() callback and
analogously for all of the remaining callbacks. In other words, power management domain callbacks, if de-
fined for the given device, always take precedence over the callbacks provided by the device’s subsystem
(e.g. bus type).

The support for device power management domains is only relevant to platforms needing to use the same
device driver power management callbacks in many different power domain configurations and wanting
to avoid incorporating the support for power domains into subsystem-level callbacks, for example by
modifying the platform bus type. Other platforms need not implement it or take it into account in any
way.

Devices may be defined as IRQ-safe which indicates to the PM core that their runtime PM callbacks may
be invoked with disabled interrupts (see Documentation/power/runtime pm.txt for more information).
If an IRQ-safe device belongs to a PM domain, the runtime PM of the domain will be disallowed, unless the
domain itself is defined as IRQ-safe. However, it makes sense to define a PM domain as IRQ-safe only if
all the devices in it are IRQ-safe. Moreover, if an IRQ-safe domain has a parent domain, the runtime PM
of the parent is only allowed if the parent itself is IRQ-safe too with the additional restriction that all child
domains of an IRQ-safe parent must also be IRQ-safe.

3.1. Device Power Management Basics 121

The kernel driver API manual, Release 4.13.0-rc4+

3.1.7 Runtime Power Management

Many devices are able to dynamically power down while the system is still running. This feature is useful
for devices that are not being used, and can offer significant power savings on a running system. These
devices often support a range of runtime power states, which might use names such as “off”, “sleep”,
“idle”, “active”, and so on. Those states will in some cases (like PCl) be partially constrained by the bus
the device uses, and will usually include hardware states that are also used in system sleep states.

A system-wide power transition can be started while some devices are in low power states due to runtime
power management. The system sleep PM callbacks should recognize such situations and react to them
appropriately, but the necessary actions are subsystem-specific.

In some cases the decision may be made at the subsystem level while in other cases the device driver
may be left to decide. In some cases it may be desirable to leave a suspended device in that state during
a system-wide power transition, but in other cases the device must be put back into the full-power state
temporarily, for example so that its system wakeup capability can be disabled. This all depends on the
hardware and the design of the subsystem and device driver in question.

During system-wide resume from a sleep state it’s easiest to put devices into the full-power state, as ex-
plained in Documentation/power/runtime pm.txt. Refer to that document for more information regard-
ing this particular issue as well as for information on the device runtime power management framework
in general.

3.2 Suspend/Hibernation Notifiers

’Copyright (c) 2016 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

There are some operations that subsystems or drivers may want to carry out before hibernation/suspend
or after restore/resume, but they require the system to be fully functional, so the drivers’ and subsystems’
->suspend() and ->resume() or even ->prepare() and ->complete() callbacks are not suitable for this
purpose.

For example, device drivers may want to upload firmware to their devices after resume/restore, but they
cannot do it by calling request firmware() from their ->resume() or ->complete() callback routines
(user land processes are frozen at these points). The solution may be to load the firmware into memory
before processes are frozen and upload it from there in the ->resume() routine. A suspend/hibernation
notifier may be used for that.

Subsystems or drivers having such needs can register suspend notifiers that will be called upon the fol-
lowing events by the PM core:

PM_HIBERNATION_PREPARE The system is going to hibernate, tasks will be frozen immediately. This is
different from PM_SUSPEND PREPARE below, because in this case additional work is done between the
notifiers and the invocation of PM callbacks for the “freeze” transition.

PM_POST_HIBERNATION The system memory state has been restored from a hibernation image or an error
occurred during hibernation. Device restore callbacks have been executed and tasks have been
thawed.

PM_RESTORE_PREPARE The system is going to restore a hibernation image. If all goes well, the restored
image kernel will issue a PM_POST_HIBERNATION notification.

PM_POST_RESTORE An error occurred during restore from hibernation. Device restore callbacks have been
executed and tasks have been thawed.

PM_SUSPEND_PREPARE The system is preparing for suspend.

PM_POST_SUSPEND The system has just resumed or an error occurred during suspend. Device resume
callbacks have been executed and tasks have been thawed.

122 Chapter 3. Device Power Management

The kernel driver API manual, Release 4.13.0-rc4+

It is generally assumed that whatever the notifiers do for PM HIBERNATION PREPARE, should be undone for
PM POST HIBERNATION. Analogously, operations carried out for PM_SUSPEND PREPARE should be reversed
for PM_POST SUSPEND.

Moreover, if one of the notifiers fails for the PM_HIBERNATION PREPARE or PM SUSPEND PREPARE event,
the notifiers that have already succeeded for that event will be called for PM_POST HIBERNATION or
PM POST SUSPEND, respectively.

The hibernation and suspend notifiers are called with pm_mutex held. They are defined in the usual way,
but their last argument is meaningless (it is always NULL).

To register and/or unregister a suspend notifier use register pm notifier() and unregis-
ter pm notifier(), respectively (both defined in include/linux/suspend.h). If you don’t need to un-
register the notifier, you can also use the pm notifier() macro defined in include/linux/suspend.h.

3.3 Device Power Management Data Types

struct dev_pm_ops
device PM callbacks.

Definition

struct dev_pm ops {
int (* prepare) (struct device *dev);
void (* complete) (struct device *dev);

int (* suspend) (struct device *dev);
int (* resume) (struct device *dev);
int (* freeze) (struct device *dev);
int (* thaw) (struct device *dev);
int (* poweroff) (struct device *dev);
int (* restore) (struct device *dev);
int (* suspend late) (struct device *dev);
int (* resume_early) (struct device *dev);
int (* freeze late) (struct device *dev);
int (* thaw early) (struct device *dev);
int (* poweroff late) (struct device *dev);
int (* restore early) (struct device *dev);
int (* suspend noirq) (struct device *dev);
int (* resume_noirq) (struct device *dev);
int (* freeze noirq) (struct device *dev);
int (* thaw noirqg) (struct device *dev);
int (* poweroff noirq) (struct device *dev);
int (* restore noirq) (struct device *dev);
int (* runtime_ suspend) (struct device *dev);
int (* runtime_resume) (struct device *dev);
int (* runtime idle) (struct device *dev);
b
Members

prepare The principal role of this callback is to prevent new children of the device from being registered af-
ter it has returned (the driver’s subsystem and generally the rest of the kernel is supposed to prevent
new calls to the probe method from being made too once prepare() has succeeded). If prepare()
detects a situation it cannot handle (e.g. registration of a child already in progress), it may return
-EAGAIN, so that the PM core can execute it once again (e.g. after a new child has been registered)
to recover from the race condition. This method is executed for all kinds of suspend transitions and
is followed by one of the suspend callbacks: suspend(), freeze(), or poweroff(). If the transition is
a suspend to memory or standby (that is, not related to hibernation), the return value of prepare()
may be used to indicate to the PM core to leave the device in runtime suspend if applicable. Namely,
if prepare() returns a positive number, the PM core will understand that as a declaration that the
device appears to be runtime-suspended and it may be left in that state during the entire transition

3.3. Device Power Management Data Types 123

The kernel driver API manual, Release 4.13.0-rc4+

and during the subsequent resume if all of its descendants are left in runtime suspend too. If that
happens, complete() will be executed directly after prepare() and it must ensure the proper func-
tioning of the device after the system resume. The PM core executes subsystem-level prepare() for
all devices before starting to invoke suspend callbacks for any of them, so generally devices may
be assumed to be functional or to respond to runtime resume requests while prepare() is being
executed. However, device drivers may NOT assume anything about the availability of user space
at that time and it is NOT valid to request firmware from within prepare() (it's too late to do that).
It also is NOT valid to allocate substantial amounts of memory from prepare() in the GFP_KERNEL
mode. [To work around these limitations, drivers may register suspend and hibernation notifiers to
be executed before the freezing of tasks.]

complete Undo the changes made by prepare(). This method is executed for all kinds of resume transi-
tions, following one of the resume callbacks: resume(), thaw(), restore(). Also called if the state
transition fails before the driver’s suspend callback: suspend(), freeze() or poweroff(), can be
executed (e.qg. if the suspend callback fails for one of the other devices that the PM core has unsuc-
cessfully attempted to suspend earlier). The PM core executes subsystem-level complete() after it
has executed the appropriate resume callbacks for all devices. If the corresponding prepare() at
the beginning of the suspend transition returned a positive number and the device was left in run-
time suspend (without executing any suspend and resume callbacks for it), complete() will be the
only callback executed for the device during resume. In that case, complete() must be prepared to
do whatever is necessary to ensure the proper functioning of the device after the system resume.
To this end, complete() can check the power.direct complete flag of the device to learn whether
(unset) or not (set) the previous suspend and resume callbacks have been executed for it.

suspend Executed before putting the system into a sleep state in which the contents of main memory are
preserved. The exact action to perform depends on the device’s subsystem (PM domain, device type,
class or bus type), but generally the device must be quiescent after subsystem-level suspend() has
returned, so that it doesn’t do any I/O or DMA. Subsystem-level suspend() is executed for all devices
after invoking subsystem-level prepare() for all of them.

resume Executed after waking the system up from a sleep state in which the contents of main memory
were preserved. The exact action to perform depends on the device’s subsystem, but generally the
driver is expected to start working again, responding to hardware events and software requests (the
device itself may be left in a low-power state, waiting for a runtime resume to occur). The state of the
device at the time its driver’'s resume() callback is run depends on the platform and subsystem the
device belongs to. On most platforms, there are no restrictions on availability of resources like clocks
during resume(). Subsystem-level resume() is executed for all devices after invoking subsystem-
level resume_noirq() for all of them.

freeze Hibernation-specific, executed before creating a hibernation image. Analogous to suspend(),
but it should not enable the device to signal wakeup events or change its power state. The majority
of subsystems (with the notable exception of the PCI bus type) expect the driver-level freeze() to
save the device settings in memory to be used by restore() during the subsequent resume from
hibernation. Subsystem-level freeze() is executed for all devices after invoking subsystem-level
prepare() for all of them.

thaw Hibernation-specific, executed after creating a hibernation image OR if the creation of an image
has failed. Also executed after a failing attempt to restore the contents of main memory from such
an image. Undo the changes made by the preceding freeze(), so the device can be operated in
the same way as immediately before the call to freeze(). Subsystem-level thaw() is executed for
all devices after invoking subsystem-level thaw_noirq() for all of them. It also may be executed
directly after freeze() in case of a transition error.

poweroff Hibernation-specific, executed after saving a hibernation image. Analogous to suspend(), but
it need not save the device’s settings in memory. Subsystem-level poweroff() is executed for all
devices after invoking subsystem-level prepare() for all of them.

restore Hibernation-specific, executed after restoring the contents of main memory from a hibernation
image, analogous to resume().

suspend_late Continue operations started by suspend(). For a number of devices suspend_late() may
point to the same callback routine as the runtime suspend callback.

124 Chapter 3. Device Power Management

The kernel driver API manual, Release 4.13.0-rc4+

resume_early Prepare to execute resume(). For a number of devices resume_early() may point to the
same callback routine as the runtime resume callback.

freeze_late Continue operations started by freeze(). Analogous to suspend_late(), but it should not
enable the device to signal wakeup events or change its power state.

thaw_early Prepare to execute thaw(). Undo the changes made by the preceding freeze_late().

poweroff_late Continue operations started by poweroff(). Analogous to suspend_late(), but it need
not save the device’s settings in memory.

restore_early Prepare to execute restore(), analogous to resume_early().

suspend_noirq Complete the actions started by suspend(). Carry out any additional operations required
for suspending the device that might be racing with its driver’s interrupt handler, which is guaran-
teed not to run while suspend_noirq() is being executed. It generally is expected that the device
will be in a low-power state (appropriate for the target system sleep state) after subsystem-level
suspend_noirq() has returned successfully. If the device can generate system wakeup signals and
is enabled to wake up the system, it should be configured to do so at that time. However, depend-
ing on the platform and device’s subsystem, suspend() or suspend_late() may be allowed to put
the device into the low-power state and configure it to generate wakeup signals, in which case it
generally is not necessary to define suspend_noirq().

resume_noirq Prepare for the execution of resume() by carrying out any operations required for resum-
ing the device that might be racing with its driver’s interrupt handler, which is guaranteed not to run
while resume_noirq() is being executed.

freeze_noirq Complete the actions started by freeze(). Carry out any additional operations required
for freezing the device that might be racing with its driver’s interrupt handler, which is guaranteed
not to run while freeze_noirq() is being executed. The power state of the device should not be
changed by either freeze(), or freeze_late(), or freeze_noirq() and it should not be configured to
signal system wakeup by any of these callbacks.

thaw_noirq Prepare for the execution of thaw() by carrying out any operations required for thawing the
device that might be racing with its driver’s interrupt handler, which is guaranteed not to run while
thaw_noirq() is being executed.

poweroff noirq Complete the actions started by poweroff(). Analogous to suspend_noirq(), but it
need not save the device’s settings in memory.

restore_noirq Prepare for the execution of restore() by carrying out any operations required for thawing
the device that might be racing with its driver’s interrupt handler, which is guaranteed not to run
while restore_noirq() is being executed. Analogous to resume_noirq().

runtime_suspend Prepare the device for a condition in which it won't be able to communicate with the
CPU(s) and RAM due to power management. This need not mean that the device should be put into
a low-power state. For example, if the device is behind a link which is about to be turned off, the
device may remain at full power. If the device does go to low power and is capable of generating
runtime wakeup events, remote wakeup (i.e., a hardware mechanism allowing the device to request
a change of its power state via an interrupt) should be enabled for it.

runtime_resume Put the device into the fully active state in response to a wakeup event generated by
hardware or at the request of software. If necessary, put the device into the full-power state and
restore its registers, so that it is fully operational.

runtime_idle Device appears to be inactive and it might be put into a low-power state if all of the nec-
essary conditions are satisfied. Check these conditions, and return 0 if it's appropriate to let the PM
core queue a suspend request for the device.

Description

Several device power state transitions are externally visible, affecting the state of pending I/O queues and
(for drivers that touch hardware) interrupts, wakeups, DMA, and other hardware state. There may also
be internal transitions to various low-power modes which are transparent to the rest of the driver stack
(such as a driver that's ON gating off clocks which are not in active use).

3.3. Device Power Management Data Types 125

The kernel driver API manual, Release 4.13.0-rc4+

The externally visible transitions are handled with the help of callbacks included in this structure in such
a way that, typically, two levels of callbacks are involved. First, the PM core executes callbacks provided
by PM domains, device types, classes and bus types. They are the subsystem-level callbacks expected
to execute callbacks provided by device drivers, although they may choose not to do that. If the driver
callbacks are executed, they have to collaborate with the subsystem-level callbacks to achieve the goals
appropriate for the given system transition, given transition phase and the subsystem the device belongs
to.

All of the above callbacks, except for complete(), return error codes. However, the error codes returned
by resume(), thaw(), restore(), resume_noirq(), thaw_noirq(), and restore_noirq(), do not cause
the PM core to abort the resume transition during which they are returned. The error codes returned in
those cases are only printed to the system logs for debugging purposes. Still, it is recommended that
drivers only return error codes from their resume methods in case of an unrecoverable failure (i.e. when
the device being handled refuses to resume and becomes unusable) to allow the PM core to be modified
in the future, so that it can avoid attempting to handle devices that failed to resume and their children.

It is allowed to unregister devices while the above callbacks are being executed. However, a callback
routine MUST NOT try to unregister the device it was called for, although it may unregister children of that
device (for example, if it detects that a child was unplugged while the system was asleep).

There also are callbacks related to runtime power management of devices. Again, as a rule these callbacks
are executed by the PM core for subsystems (PM domains, device types, classes and bus types) and the
subsystem-level callbacks are expected to invoke the driver callbacks. Moreover, the exact actions to
be performed by a device driver’s callbacks generally depend on the platform and subsystem the device
belongs to.

Refer to Documentation/power/runtime_pm.txt for more information about the role of the run-
time_suspend(), runtime_resume() and runtime_idle() callbacks in device runtime power manage-
ment.

struct dev_pm_domain
power management domain representation.

Definition

struct dev_pm domain {
struct dev_pm ops ops;
void (* detach) (struct device *dev, bool power off);
int (* activate) (struct device *dev);
void (* sync) (struct device *dev);
void (* dismiss) (struct device *dev);

};

Members

ops Power management operations associated with this domain.

detach Called when removing a device from the domain.

activate Called before executing probe routines for bus types and drivers.
sync Called after successful driver probe.

dismiss Called after unsuccessful driver probe and after driver removal.
Description

Power domains provide callbacks that are executed during system suspend, hibernation, system resume
and during runtime PM transitions instead of subsystem-level and driver-level callbacks.

126 Chapter 3. Device Power Management

CHAPTER
FOUR

BUS-INDEPENDENT DEVICE ACCESSES

Author Matthew Wilcox
Author Alan Cox

4.1 Introduction

Linux provides an APl which abstracts performing IO across all busses and devices, allowing device drivers
to be written independently of bus type.

4.2 Memory Mapped 10

4.2.1 Getting Access to the Device

The most widely supported form of IO is memory mapped IO. That is, a part of the CPU’s address space is
interpreted not as accesses to memory, but as accesses to a device. Some architectures define devices
to be at a fixed address, but most have some method of discovering devices. The PCl bus walk is a good
example of such a scheme. This document does not cover how to receive such an address, but assumes
you are starting with one. Physical addresses are of type unsigned long.

This address should not be used directly. Instead, to get an address suitable for passing to the accessor
functions described below, you should call ioremap(). An address suitable for accessing the device will
be returned to you.

After you've finished using the device (say, in your module’s exit routine), call iounmap() in order to
return the address space to the kernel. Most architectures allocate new address space each time you call
ioremap(), and they can run out unless you call iounmap().

4.2.2 Accessing the device

The part of the interface most used by drivers is reading and writing memory-mapped registers on the
device. Linux provides interfaces to read and write 8-bit, 16-bit, 32-bit and 64-bit quantities. Due to a
historical accident, these are named byte, word, long and quad accesses. Both read and write accesses
are supported; there is no prefetch support at this time.

The functions are named readb(), readw(), readl(), readq(), readb relaxed(), readw_relaxed(),
readl_relaxed(), readq_relaxed(), writeb(), writew(), writel() and writeq().

Some devices (such as framebuffers) would like to use larger transfers than 8 bytes at a time. For these
devices, the memcpy toio(), memcpy fromio() and memset io() functions are provided. Do not use
memset or memcpy on 10 addresses; they are not guaranteed to copy data in order.

The read and write functions are defined to be ordered. That is the compiler is not permitted to reorder
the I/O sequence. When the ordering can be compiler optimised, you can use _ readb() and friends to
indicate the relaxed ordering. Use this with care.

127

The kernel driver API manual, Release 4.13.0-rc4+

While the basic functions are defined to be synchronous with respect to each other and ordered with
respect to each other the busses the devices sit on may themselves have asynchronicity. In particular
many authors are burned by the fact that PCI bus writes are posted asynchronously. A driver author must
issue a read from the same device to ensure that writes have occurred in the specific cases the author
cares. This kind of property cannot be hidden from driver writers in the API. In some cases, the read used
to flush the device may be expected to fail (if the card is resetting, for example). In that case, the read
should be done from config space, which is guaranteed to soft-fail if the card doesn’t respond.

The following is an example of flushing a write to a device when the driver would like to ensure the write’s
effects are visible prior to continuing execution:

static inline void
qlal280 disable intrs(struct scsi_qla _host *ha)
{

struct device reg *reg;

reg = ha->iobase;

/* disable risc and host interrupts */

WRT REG WORD(®->ictrl, 0);

/*
* The following read will ensure that the above write
* has been received by the device before we return from this
* function.
*/

RD REG WORD(®->ictrl);

ha->flags.ints enabled = 0;

}

In addition to write posting, on some large multiprocessing systems (e.g. SGI Challenge, Origin and Altix
machines) posted writes won’'t be strongly ordered coming from different CPUs. Thus it’s important to
properly protect parts of your driver that do memory-mapped writes with locks and use the mmiowb () to
make sure they arrive in the order intended. Issuing a regular readX() will also ensure write ordering,
but should only be used when the driver has to be sure that the write has actually arrived at the device
(not that it's simply ordered with respect to other writes), since a full readX() is a relatively expensive
operation.

Generally, one should use mmiowb () prior to releasing a spinlock that protects regions using writeb()
or similar functions that aren’t surrounded by readb() calls, which will ensure ordering and flushing. The
following pseudocode illustrates what might occur if write ordering isn’t guaranteed via mmiowb () or one
of the readX() functions:

CPU A: spin_lock irgsave(&dev_lock, flags)

CPU A: ...

CPU A: writel(newval, ring ptr);

CPU A: spin_unlock irqgrestore(&dev_lock, flags)
CPU B: spin_lock irgsave(&dev_lock, flags)

CPU B: writel(newval2, ring ptr);

CPU B: ...

CPU B: spin unlock irqrestore(&dev_lock, flags)

In the case above, newval2 could be written to ring_ptr before newval. Fixing it is easy though:

CPU A: spin lock irgsave(&dev_lock, flags)

CPU A: ...

CPU A: writel(newval, ring_ ptr);

CPU A: mmiowb(); /* ensure no other writes beat us to the device */
CPU A: spin_unlock irqgrestore(&dev_lock, flags)

CPU B: spin lock irgsave(&dev_lock, flags)

CPU B: writel(newval2, ring ptr);

CPU B:

128 Chapter 4. Bus-Independent Device Accesses

The kernel driver API manual, Release 4.13.0-rc4+

CPU B: mmiowb();
CPU B: spin_unlock irqrestore(&dev _lock, flags)

See tg3.c for a real world example of how to use mmiowb ()

PCIl ordering rules also guarantee that PIO read responses arrive after any outstanding DMA writes from
that bus, since for some devices the result of a readb() call may signal to the driver that a DMA transaction
is complete. In many cases, however, the driver may want to indicate that the next readb() call has no
relation to any previous DMA writes performed by the device. The driver can use readb_relaxed() for these
cases, although only some platforms will honor the relaxed semantics. Using the relaxed read functions
will provide significant performance benefits on platforms that support it. The gla2xxx driver provides
examples of how to use readX relaxed(). In many cases, a majority of the driver’s readX() calls can safely
be converted to readX _relaxed() calls, since only a few will indicate or depend on DMA completion.

4.3 Port Space Accesses

4.3.1 Port Space Explained

Another form of I0 commonly supported is Port Space. This is a range of addresses separate to the normal
memory address space. Access to these addresses is generally not as fast as accesses to the memory
mapped addresses, and it also has a potentially smaller address space.

Unlike memory mapped IO, no preparation is required to access port space.

4.3.2 Accessing Port Space
Accesses to this space are provided through a set of functions which allow 8-bit, 16-bit and 32-bit accesses;
also known as byte, word and long. These functions are inb (), inw(), inl(), outb(), outw() and outl().

Some variants are provided for these functions. Some devices require that accesses to their ports are
slowed down. This functionality is provided by appending a p to the end of the function. There are also
equivalents to memcpy. The ins() and outs() functions copy bytes, words or longs to the given port.

4.4 Public Functions Provided

phys addr t virt_to_phys (volatile void * address)
map virtual addresses to physical

Parameters
volatile void * address address to remap
Description

The returned physical address is the physical (CPU) mapping for the memory address given. It
is only valid to use this function on addresses directly mapped or allocated via kmalloc.

This function does not give bus mappings for DMA transfers. In almost all conceivable cases a
device driver should not be using this function

void * phys_to_virt(phys addr t address)
map physical address to virtual

Parameters
phys_addr_t address address to remap

Description

4.3. Port Space Accesses 129

The kernel driver API manual, Release 4.13.0-rc4+

The returned virtual address is a current CPU mapping for the memory address given. It is only
valid to use this function on addresses that have a kernel mapping

This function does not handle bus mappings for DMA transfers. In almost all conceivable cases
a device driver should not be using this function

void __iomem * ioremap (resource_size_t offset, unsigned long size)
map bus memory into CPU space

Parameters

resource_size_t offset bus address of the memory
unsigned long size size of the resource to map
Description

ioremap performs a platform specific sequence of operations to make bus memory CPU accessible via the
readb/readw/readl/writeb/ writew/writel functions and the other mmio helpers. The returned address is
not guaranteed to be usable directly as a virtual address.

If the area you are trying to map is a PCI BAR you should have a look at pci iomap().
void memset_io(volatile void __iomem * addr, unsigned char val, size_t count)
Parameters

volatile void _ iomem * addr The beginning of the I/0O-memory range to set
unsigned char val The value to set the memory to

size_t count The number of bytes to set

Description

Set a range of I/O memory to a given value.

void memcpy_fromio (void * dst, const volatile void __iomem * src, size_t count)
Parameters

void * dst The (RAM) destination for the copy

const volatile void _ _iomem * src The (I/O memory) source for the data
size_t count The number of bytes to copy

Description

Copy a block of data from I/O memory.

void memcpy_toio(volatile void _iomem * dst, const void * src, size_t count)
Parameters

volatile void _ iomem * dst The (I/O memory) destination for the copy
const void * src The (RAM) source for the data

size_t count The number of bytes to copy

Description

Copy a block of data to I/O memory.

void __iomem * pci_iomap_range(struct pci_dev * dev, int bar, unsigned long offset, unsigned
long maxlen)
create a virtual mapping cookie for a PClI BAR

Parameters
struct pci_dev * dev PCl device that owns the BAR

int bar BAR number

130 Chapter 4. Bus-Independent Device Accesses

The kernel driver API manual, Release 4.13.0-rc4+

unsigned long offset map memory at the given offset in BAR
unsigned long maxlen max length of the memory to map
Description

Using this function you will get a _iomem address to your device BAR. You can access it using ioread*()
and iowrite*(). These functions hide the details if this is a MMIO or PIO address space and will just do what
you expect from them in the correct way.

maxlen specifies the maximum length to map. If you want to get access to the complete BAR from offset
to the end, pass 0 here.

void __iomem * pci_iomap_wc_range (struct pci_dev * dev, int bar, unsigned long offset, unsigned
long maxlen)
create a virtual WC mapping cookie for a PCl BAR

Parameters

struct pci_dev * dev PCl device that owns the BAR

int bar BAR number

unsigned long offset map memory at the given offset in BAR
unsigned long maxlen max length of the memory to map
Description

Using this function you will get a __iomem address to your device BAR. You can access it using ioread*()
and iowrite*(). These functions hide the details if this is a MMIO or PIO address space and will just do what
you expect from them in the correct way. When possible write combining is used.

maxlen specifies the maximum length to map. If you want to get access to the complete BAR from offset
to the end, pass 0 here.

void __iomem * pci_iomap (struct pci_dev * dev, int bar, unsigned long maxlen)
create a virtual mapping cookie for a PCI BAR

Parameters

struct pci_dev * dev PCl device that owns the BAR
int bar BAR number

unsigned long maxlen length of the memory to map
Description

Using this function you will get a _iomem address to your device BAR. You can access it using ioread*()
and iowrite*(). These functions hide the details if this is a MMIO or PIO address space and will just do what
you expect from them in the correct way.

maxlen specifies the maximum length to map. If you want to get access to the complete BAR without
checking for its length first, pass 0 here.

void __iomem * pci_iomap_wc (struct pci_dev * dev, int bar, unsigned long maxlen)
create a virtual WC mapping cookie for a PCI BAR

Parameters

struct pci_dev * dev PCl device that owns the BAR
int bar BAR number

unsigned long maxlen length of the memory to map
Description

Using this function you will get a __iomem address to your device BAR. You can access it using ioread*()
and iowrite*(). These functions hide the details if this is a MMIO or PIO address space and will just do what
you expect from them in the correct way. When possible write combining is used.

4.4. Public Functions Provided 131

The kernel driver API manual, Release 4.13.0-rc4+

maxlen specifies the maximum length to map. If you want to get access to the complete BAR without
checking for its length first, pass 0 here.

132 Chapter 4. Bus-Independent Device Accesses

CHAPTER
FIVE

BUFFER SHARING AND SYNCHRONIZATION

The dma-buf subsystem provides the framework for sharing buffers for hardware (DMA) access across
multiple device drivers and subsystems, and for synchronizing asynchronous hardware access.

This is used, for example, by drm “prime” multi-GPU support, but is of course not limited to GPU use cases.

The three main components of this are: (1) dma-buf, representing a sg_table and exposed to userspace
as a file descriptor to allow passing between devices, (2) fence, which provides a mechanism to signal
when one device as finished access, and (3) reservation, which manages the shared or exclusive fence(s)
associated with the buffer.

5.1 Shared DMA Buffers

This document serves as a guide to device-driver writers on what is the dma-buf buffer sharing API, how
to use it for exporting and using shared buffers.

Any device driver which wishes to be a part of DMA buffer sharing, can do so as either the ‘exporter’ of
buffers, or the ‘user’ or ‘importer’ of buffers.

Say a driver A wants to use buffers created by driver B, then we call B as the exporter, and A as buffer-
user/importer.

The exporter

* implements and manages operations in struct dma buf ops for the buffer,

* allows other users to share the buffer by using dma_buf sharing APIs,

* manages the details of buffer allocation, wrapped int a struct dma buf,

» decides about the actual backing storage where this allocation happens,

* and takes care of any migration of scatterlist - for all (shared) users of this buffer.
The buffer-user

* is one of (many) sharing users of the buffer.

* doesn’t need to worry about how the buffer is allocated, or where.

* and needs a mechanism to get access to the scatterlist that makes up this buffer in memory, mapped
into its own address space, so it can access the same area of memory. This interface is provided by
struct dma buf attachment.

Any exporters or users of the dma-buf buffer sharing framework must have a ‘select
DMA_SHARED_BUFFER' in their respective Kconfigs.

5.1.1 Userspace Interface Notes

Mostly a DMA buffer file descriptor is simply an opaque object for userspace, and hence the generic
interface exposed is very minimal. There’s a few things to consider though:

133

The kernel driver API manual, Release 4.13.0-rc4+

* Since kernel 3.12 the dma-buf FD supports the llseek system call, but only with offset=0 and
whence=SEEK END|SEEK SET. SEEK SET is supported to allow the usual size discover pattern size
= SEEK _END(0); SEEK SET(0). Every other llseek operation will report -EINVAL.

If llseek on dma-buf FDs isn’t support the kernel will report -ESPIPE for all cases. Userspace can use
this to detect support for discovering the dma-buf size using llseek.

* In order to avoid fd leaks on exec, the FD_CLOEXEC flag must be set on the file descriptor. This is not
just a resource leak, but a potential security hole. It could give the newly exec’d application access
to buffers, via the leaked fd, to which it should otherwise not be permitted access.

The problem with doing this via a separate fcntl() call, versus doing it atomically when the fd is
created, is that this is inherently racy in a multi-threaded app[3]. The issue is made worse when it
is library code opening/creating the file descriptor, as the application may not even be aware of the
fd’s.

To avoid this problem, userspace must have a way to request O_CLOEXEC flag be set when the dma-
buf fd is created. So any API provided by the exporting driver to create a dmabuf fd must provide a
way to let userspace control setting of O_CLOEXEC flag passed in to dma_buf fd().

* Memory mapping the contents of the DMA buffer is also supported. See the discussion below on CPU
Access to DMA Buffer Objects for the full details.

* The DMA buffer FD is also pollable, see Fence Poll Support below for details.

5.1.2 Basic Operation and Device DMA Access

For device DMA access to a shared DMA buffer the usual sequence of operations is fairly simple:

1. The exporter defines his exporter instance using DEFINE DMA BUF EXPORT INFO() and calls
dma buf export() to wrap a private buffer object into a dma buf. It then exports that dma buf
to userspace as a file descriptor by calling dma buf fd().

2. Userspace passes this file-descriptors to all drivers it wants this buffer to share with: First the
filedescriptor is converted to a dma buf using dma buf get(). The the buffer is attached to the
device using dma buf attach().

Up to this stage the exporter is still free to migrate or reallocate the backing storage.

3. Once the buffer is attached to all devices userspace can inniate DMA access to the shared buffer. In
the kernel this is done by calling dma buf map attachment() and dma buf unmap attachment().

4. Once a driver is done with a shared buffer it needs to call dna buf detach() (after cleaning up any
mappings) and then release the reference acquired with dma_buf_get by calling dma buf put().

For the detailed semantics exporters are expected to implement see dma buf ops.

5.1.3 CPU Access to DMA Buffer Objects

There are mutliple reasons for supporting CPU access to a dma buffer object:

* Fallback operations in the kernel, for example when a device is connected over USB and the kernel
needs to shuffle the data around first before sending it away. Cache coherency is handled by braket-
ing any transactions with calls to dma buf begin cpu access() and dma buf end cpu access()
access.

To support dma_buf objects residing in highmem cpu access is page-based using an api similar to
kmap. Accessing a dma_buf is done in aligned chunks of PAGE_SIZE size. Before accessing a chunk
it needs to be mapped, which returns a pointer in kernel virtual address space. Afterwards the chunk
needs to be unmapped again. There is no limit on how often a given chunk can be mapped and
unmapped, i.e. the importer does not need to call begin_cpu_access again before mapping the
same chunk again.

134 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Interfaces:: void *dma_buf kmap(struct dma_buf *, unsigned long); void dma_buf kunmap(struct
dma_buf *, unsigned long, void *);

There are also atomic variants of these interfaces. Like for kmap they facilitate non-blocking fast-
paths. Neither the importer nor the exporter (in the callback) is allowed to block when using these.

Interfaces:: void *dma_buf kmap_atomic(struct dma_buf *, unsigned long); void
dma_buf kunmap_atomic(struct dma_buf *, unsigned long, void *);

For importers all the restrictions of using kmap apply, like the limited supply of kmap_atomic slots.
Hence an importer shall only hold onto at max 2 atomic dma_buf kmaps at the same time (in any
given process context).

dma_buf kmap calls outside of the range specified in begin_cpu_access are undefined. If the range
is not PAGE_SIZE aligned, kmap needs to succeed on the partial chunks at the beginning and end
but may return stale or bogus data outside of the range (in these partial chunks).

Note that these calls need to always succeed. The exporter needs to complete any preparations that
might fail in begin_cpu_access.

For some cases the overhead of kmap can be too high, a vmap interface is introduced. This interface
should be used very carefully, as vmalloc space is a limited resources on many architectures.

Interfaces:: void *dma_buf vmap(struct dma_buf *dmabuf) void dma_buf_vunmap(struct dma_buf
*dmabuf, void *vaddr)

The vmap call can fail if there is no vmap support in the exporter, or if it runs out of vmalloc space.
Fallback to kmap should be implemented. Note that the dma-buf layer keeps a reference count for
all vmap access and calls down into the exporter’'s vmap function only when no vmapping exists,
and only unmaps it once. Protection against concurrent vmap/vunmap calls is provided by taking
the dma_buf->lock mutex.

* For full compatibility on the importer side with existing userspace interfaces, which might already
support mmap’ing buffers. This is needed in many processing pipelines (e.g. feeding a software
rendered image into a hardware pipeline, thumbnail creation, snapshots, ...). Also, Android’s ION
framework already supported this and for DMA buffer file descriptors to replace ION buffers mmap
support was needed.

There is no special interfaces, userspace simply calls mmap on the dma-buf fd. But like for CPU access
there’s a need to braket the actual access, which is handled by the ioctl (DMA_BUF_IOCTL_SYNC).
Note that DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must be restarted.

Some systems might need some sort of cache coherency management e.g. when CPU and GPU
domains are being accessed through dma-buf at the same time. To circumvent this problem there
are begin/end coherency markers, that forward directly to existing dma-buf device drivers vfunc
hooks. Userspace can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
sequence would be used like following:

- mmap dma-buf fd

- for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write to mmap area
3. SYNC_END ioctl. This can be repeated as often as you want (with the new data being
consumed by say the GPU or the scanout device)

- munmap once you don’t need the buffer any more

For correctness and optimal performance, it is always required to use SYNC_START and
SYNC_END before and after, respectively, when accessing the mapped address. Userspace
cannot rely on coherent access, even when there are systems where it just works without
calling these ioctls.

* And as a CPU fallback in userspace processing pipelines.

Similar to the motivation for kernel cpu access it is again important that the userspace code of a given
importing subsystem can use the same interfaces with a imported dma-buf buffer object as with a
native buffer object. This is especially important for drm where the userspace part of contemporary

5.1. Shared DMA Buffers 135

The kernel driver API manual, Release 4.13.0-rc4+

OpenGL, X, and other drivers is huge, and reworking them to use a different way to mmap a buffer
rather invasive.

The assumption in the current dma-buf interfaces is that redirecting the initial mmap is all that's
needed. A survey of some of the existing subsystems shows that no driver seems to do any ne-
farious thing like syncing up with outstanding asynchronous processing on the device or allocating
special resources at fault time. So hopefully this is good enough, since adding interfaces to intercept
pagefaults and allow pte shootdowns would increase the complexity quite a bit.

Interface::
int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *, unsigned long);

If the importing subsystem simply provides a special-purpose mmap call to set up a mapping in
userspace, calling do_mmap with dma_buf->file will equally achieve that for a dma-buf object.

5.1.4 Fence Poll Support

To support cross-device and cross-driver synchronization of buffer access implicit fences (represented
internally in the kernel with struct fence) can be attached to a dma buf. The glue for that and a few
related things are provided in the reservation object structure.

Userspace can query the state of these implicitly tracked fences using poll() and related system calls:

* Checking for POLLIN, i.e. read access, can be use to query the state of the most recent write or
exclusive fence.

* Checking for POLLOUT, i.e. write access, can be used to query the state of all attached fences, shared
and exclusive ones.

Note that this only signals the completion of the respective fences, i.e. the DMA transfers are complete.
Cache flushing and any other necessary preparations before CPU access can begin still need to happen.

5.1.5 Kernel Functions and Structures Reference

struct dma_buf * dma_buf_export (const struct dma_buf export_info * exp_info)
Creates a new dma_buf, and associates an anon file with this buffer, so it can be exported. Also
connect the allocator specific data and ops to the buffer. Additionally, provide a name string for
exporter; useful in debugging.

Parameters

const struct dma_buf_export_info * exp_info [in] holds all the export related information provided
by the exporter. see struct dma buf export info for further details.

Description

Returns, on success, a newly created dma_buf object, which wraps the supplied private data and opera-
tions for dma_buf _ops. On either missing ops, or error in allocating struct dma_buf, will return negative
error.

For most cases the easiest way to create exp_info is through the DEFINE_DMA BUF _EXPORT_INFO macro.

int dma_buf_fd(struct dma_buf * dmabuf, int flags)
returns a file descriptor for the given dma_buf

Parameters

struct dma_buf * dmabuf [in] pointer to dma_buf for which fd is required.
int flags [in] flags to give to fd

Description

On success, returns an associated ‘fd’. Else, returns error.

136 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

struct dma_buf * dma_buf_get (int fd)
returns the dma_buf structure related to an fd

Parameters
int fd [in] fd associated with the dma_buf to be returned
Description

On success, returns the dma_buf structure associated with an fd; uses file’s refcounting done by fget to
increase refcount. returns ERR_PTR otherwise.

void dma_buf_put (struct dma_buf * dmabuf)
decreases refcount of the buffer

Parameters

struct dma_buf * dmabuf [in] buffer to reduce refcount of
Description

Uses file's refcounting done implicitly by fput().

If, as a result of this call, the refcount becomes 0, the ‘release’ file operation related to this fd is called. It
calls dma buf ops.release vfunc in turn, and frees the memory allocated for dmabuf when exported.

struct dma_buf attachment * dma_buf_attach(struct dma _buf * dmabuf, struct device * dev)
Add the device to dma_buf’'s attachments list; optionally, calls attach() of dma_buf ops to allow
device-specific attach functionality

Parameters

struct dma_buf * dmabuf [in] buffer to attach device to.
struct device * dev [in] device to be attached.
Description

Returns struct dma_buf_attachment pointer for this attachment. Attachments must be cleaned up by
calling dma buf detach().

Return

A pointer to newly created dma buf attachment on success, or a negative error code wrapped into a
pointer on failure.

Note that this can fail if the backing storage of dmabuf is in a place not accessible to dev, and cannot
be moved to a more suitable place. This is indicated with the error code -EBUSY.

void dma_buf_detach (struct dma_buf * dmabuf, struct dma buf attachment * attach)
Remove the given attachment from dmabuf's attachments list; optionally calls detach() of
dma_buf_ops for device-specific detach

Parameters

struct dma_buf * dmabuf [in] buffer to detach from.

struct dma_buf_attachment * attach [in] attachment to be detached; is free’d after this call.
Description

Clean up a device attachment obtained by calling dma buf attach().

struct sg_table * dma_buf_map_attachment (struct dma_buf attachment * attach, enum
dma_data_direction direction)
Returns the scatterlist table of the attachment; mapped into _device_address space. Is a wrapper
for map_dma_ buf () of the dma_buf ops.

Parameters
struct dma_buf_attachment * attach [in] attachment whose scatterlist is to be returned

enum dma_data_direction direction [in] direction of DMA transfer

5.1. Shared DMA Buffers 137

The kernel driver API manual, Release 4.13.0-rc4+

Description

Returns sg_table containing the scatterlist to be returned; returns ERR_PTR on error. May return -EINTR if
it is interrupted by a signal.

A mapping must be unmapped again using dma buf map attachment(). Note that the underlying back-
ing storage is pinned for as long as a mapping exists, therefore users/importers should not hold onto a
mapping for undue amounts of time.

void dma_buf_unmap_attachment (struct dma_buf attachment * attach, struct sg_table * sg _table,
enum dma_data_direction direction)
unmaps and decreases usecount of the buffer;might deallocate the scatterlist associated. Is a wrap-
per for unmap_dma buf () of dma_buf ops.

Parameters

struct dma_buf_attachment * attach [in] attachment to unmap buffer from
struct sg_table * sg_table [in] scatterlist info of the buffer to unmap

enum dma_data_direction direction [in] direction of DMA transfer

Description

This unmaps a DMA mapping for attached obtained by dma buf map attachment().

int dma_buf_begin_cpu_access (struct dma_buf * dmabuf, enum dma_data_direction direction)
Must be called before accessing a dma_buf from the cpu in the kernel context. Calls begin_cpu_access
to allow exporter-specific preparations. Coherency is only guaranteed in the specified range for the
specified access direction.

Parameters

struct dma_buf * dmabuf [in] buffer to prepare cpu access for.

enum dma_data_direction direction [in] length of range for cpu access.
Description

After the cpu access is complete the caller should call dma buf end cpu access(). Only when cpu access
is braketed by both calls is it guaranteed to be coherent with other DMA access.

Can return negative error values, returns 0 on success.

int dma_buf_end_cpu_access (struct dma buf * dmabuf, enum dma_data_direction direction)
Must be called after accessing a dma_buf from the cpu in the kernel context. Calls end_cpu_access to
allow exporter-specific actions. Coherency is only guaranteed in the specified range for the specified
access direction.

Parameters

struct dma_buf * dmabuf [in] buffer to complete cpu access for.

enum dma_data_direction direction [in] length of range for cpu access.
Description

This terminates CPU access started with dma buf begin cpu access().
Can return negative error values, returns 0 on success.

void * dma_buf_kmap_atomic (struct dma_buf * dmabuf, unsigned long page_num)
Map a page of the buffer object into kernel address space. The same restrictions as for kmap_atomic
and friends apply.

Parameters
struct dma_buf * dmabuf [in] buffer to map page from.

unsigned long page_num [in] page in PAGE_SIZE units to map.

138 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Description

This call must always succeed, any necessary preparations that might fail need to be done in be-
gin_cpu_access.

void dma_buf_kunmap_atomic (struct dma_buf * dmabuf, unsigned long page_num, void * vaddr)
Unmap a page obtained by dma_buf kmap_atomic.

Parameters

struct dma_buf * dmabuf [in] buffer to unmap page from.

unsigned long page_num [in] page in PAGE_SIZE units to unmap.

void * vaddr [in] kernel space pointer obtained from dma_buf kmap_atomic.
Description

This call must always succeed.

void * dma_buf_kmap (struct dma buf * dmabuf, unsigned long page_num)
Map a page of the buffer object into kernel address space. The same restrictions as for kmap and
friends apply.

Parameters

struct dma_buf * dmabuf [in] buffer to map page from.
unsigned long page_num [in] page in PAGE_SIZE units to map.
Description

This call must always succeed, any necessary preparations that might fail need to be done in be-
gin_cpu_access.

void dma_buf_kunmap (struct dma_buf * dmabuf, unsigned long page_num, void * vaddr)
Unmap a page obtained by dma_buf_kmap.

Parameters

struct dma_buf * dmabuf [in] buffer to unmap page from.

unsigned long page_num [in] page in PAGE_SIZE units to unmap.
void * vaddr [in] kernel space pointer obtained from dma_buf_kmap.
Description

This call must always succeed.

int dma_buf_mmap (struct dma_buf * dmabuf, struct vm_area_struct * vma, unsigned long pgoff)
Setup up a userspace mmap with the given vma

Parameters

struct dma_buf * dmabuf [in] buffer that should back the vma

struct vm_area_struct * vma [in] vma for the mmap

unsigned long pgoff [in] offset in pages where this mmap should start within the dma-buf buffer.
Description

This function adjusts the passed in vma so that it points at the file of the dma_buf operation. It also adjusts
the starting pgoff and does bounds checking on the size of the vma. Then it calls the exporters mmap
function to set up the mapping.

Can return negative error values, returns 0 on success.

void * dma_buf_vmap (struct dma buf * dmabuf)
Create virtual mapping for the buffer object into kernel address space. Same restrictions as for vmap
and friends apply.

Parameters

5.1. Shared DMA Buffers 139

The kernel driver API manual, Release 4.13.0-rc4+

struct dma_buf * dmabuf [in] buffer to vmap

Description

This call may fail due to lack of virtual mapping address space. These calls are optional in drivers. The
intended use for them is for mapping objects linear in kernel space for high use objects. Please attempt

to use kmap/kunmap before thinking about these interfaces.
Returns NULL on error.

void dma_buf_vunmap (struct dma_buf * dmabuf, void * vaddr)
Unmap a vmap obtained by dma_buf vmap.

Parameters
struct dma_buf * dmabuf [in] buffer to vunmap
void * vaddr [in] vmap to vunmap

struct dma_buf_ops
operations possible on struct dma_buf

Definition

struct dma_buf ops {
int (* attach) (struct dma buf *, struct device *, struct dma buf attachment *);
void (* detach) (struct dma buf *, struct dma buf attachment *);
struct sg table * (* map dma buf) (struct dma buf attachment *, enum dma data direction);
void (* unmap dma buf) (struct dma buf attachment *,struct sg table *, enum dma data
—direction);
void (* release) (struct dma buf *);
int (* begin cpu_access) (struct dma buf *, enum dma data direction);
int (* end cpu_access) (struct dma buf *, enum dma data direction);
void *(* map_atomic) (struct dma buf *, unsigned long);
void (* unmap atomic) (struct dma buf *, unsigned long, void *);
void *(* map) (struct dma buf *, unsigned long);

};

void (* unmap)

int (* mmap) (struct dma buf *, struct vm area struct *vma);
void *(* vmap)

void (* vunmap) (struct dma buf *, void *vaddr);

(struct dma buf *, unsigned long, void *);

(struct dma_buf *);

Members

attach This is called from dma buf attach() to make sure that a given device can access the provided

dma buf. Exporters which support buffer objects in special locations like VRAM or device-specific
carveout areas should check whether the buffer could be move to system memory (or directly ac-
cessed by the provided device), and otherwise need to fail the attach operation.

The exporter should also in general check whether the current allocation fullfills the DMA constraints
of the new device. If this is not the case, and the allocation cannot be moved, it should also fail the
attach operation.

Any exporter-private housekeeping data can be stored in the dma buf attachment.priv pointer.
This callback is optional.
Returns:

0 on success, negative error code on failure. It might return -EBUSY to signal that backing storage is
already allocated and incompatible with the requirements of requesting device.

detach Thisis called by dma buf detach() toreleaseadma buf attachment. Provided so that exporters

can clean up any housekeeping for an dma buf attachment.

This callback is optional.

140

Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

map_dma_buf This is called by dma buf map attachment() and is used to map a shared dma buf into
device address space, and it is mandatory. It can only be called if attach has been called successfully.
This essentially pins the DMA buffer into place, and it cannot be moved any more

This call may sleep, e.g. when the backing storage first needs to be allocated, or moved to a location
suitable for all currently attached devices.

Note that any specific buffer attributes required for this function should get added to de-
vice_dma_parameters accessible via device.dma params from the dma buf attachment. The at-
tach callback should also check these constraints.

If this is being called for the first time, the exporter can now choose to scan through the list of attach-
ments for this buffer, collate the requirements of the attached devices, and choose an appropriate
backing storage for the buffer.

Based on enum dma_data_direction, it might be possible to have multiple users accessing at the
same time (for reading, maybe), or any other kind of sharing that the exporter might wish to make
available to buffer-users.

Returns:

A sg_table scatter list of or the backing storage of the DMA buffer, already mapped into the device
address space of the device attached with the provided dma buf attachment.

On failure, returns a negative error value wrapped into a pointer. May also return -EINTR when a
signal was received while being blocked.

unmap_dma_buf This is called by dma buf unmap attachment() and should unmap and release the
sg_table allocated in map_dma_buf, and it is mandatory. It should also unpin the backing storage
if this is the last mapping of the DMA buffer, it the exporter supports backing storage migration.

release Called after the last dma_buf put to release the dma buf, and mandatory.

begin_cpu_access This is called from dma buf begin cpu access() and allows the exporter to ensure
that the memory is actually available for cpu access - the exporter might need to allocate or swap-
in and pin the backing storage. The exporter also needs to ensure that cpu access is coherent for
the access direction. The direction can be used by the exporter to optimize the cache flushing, i.e.
access with a different direction (read instead of write) might return stale or even bogus data (e.q.
when the exporter needs to copy the data to temporary storage).

This callback is optional.

FIXME: This is both called through the DMA_BUF_IOCTL_SYNC command from userspace (where stor-
age shouldn’t be pinned to avoid handing de-factor mlock rights to userspace) and for the kernel-
internal users of the various kmap interfaces, where the backing storage must be pinned to guarantee
that the atomic kmap calls can succeed. Since there’s no in-kernel users of the kmap interfaces yet
this isn't a real problem.

Returns:

0 on success or a negative error code on failure. This can for example fail when the backing storage
can’t be allocated. Can also return -ERESTARTSYS or -EINTR when the call has been interrupted and
needs to be restarted.

end_cpu_access Thisis called fromdma buf end cpu access() whenthe importeris done accessing the
CPU. The exporter can use this to flush caches and unpin any resources pinned in begin_cpu_access.
The result of any dma_buf kmap calls after end_cpu_access is undefined.

This callback is optional.
Returns:

0 on success or a negative error code on failure. Can return -ERESTARTSYS or -EINTR when the call
has been interrupted and needs to be restarted.

map_atomic maps a page from the buffer into kernel address space, users may not block until the subse-
quent unmap call. This callback must not sleep.

5.1. Shared DMA Buffers 141

The kernel driver API manual, Release 4.13.0-rc4+

unmap_atomic [optional] unmaps a atomically mapped page from the buffer. This Callback must not

sleep.

map maps a page from the buffer into kernel address space.

unmap [optional] unmaps a page from the buffer.

mmap This callback is used by the dma buf mmap() function

Note that the mapping needs to be incoherent, userspace is expected to braket CPU access using
the DMA_BUF_IOCTL_SYNC interface.

Because dma-buf buffers have invariant size over their lifetime, the dma-buf core checks whether
a vma is too large and rejects such mappings. The exporter hence does not need to duplicate this
check. Drivers do not need to check this themselves.

If an exporter needs to manually flush caches and hence needs to fake coherency for mmap support,
it needs to be able to zap all the ptes pointing at the backing storage. Now linux mm needs a struct
address_space associated with the struct file stored in vma->vm_file to do that with the function
unmap_mapping_range. But the dma_buf framework only backs every dma_buf fd with the anon_file
struct file, i.e. all dma_bufs share the same file.

Hence exporters need to setup their own file (and address space) association by setting vma-
>vm_file and adjusting vma->vm_pgoff in the dma_buf mmap callback. In the specific case of a
gem driver the exporter could use the shmem file already provided by gem (and set vm_pgoff =
0). Exporters can then zap ptes by unmapping the corresponding range of the struct address_space

associated with their own file.
This callback is optional.

Returns:

0 on success or a negative error code on failure.

vmap [optional] creates a virtual mapping for the buffer into kernel address space. Same restrictions as

vunmap [optional] unmaps a vmap from the buffer

for vmap and friends apply.

struct dma_buf

shared buffer object

Definition

struct dma buf {

+

size t size;

struct file * file;

struct list head attachments;
const struct dma_buf ops * ops;
struct mutex lock;

unsigned vmapping_ counter;

void * vmap ptr;

const char * exp name;

struct module * owner;

struct list head list node;

void * priv;

struct reservation object * resv;
wait queue head t poll;

struct dma_buf poll cb t cb excl;
struct dma buf poll cb t cb shared;

Members

size size of the buffer

file file pointer used for sharing buffers across, and for refcounting.

142

Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

attachments list of dma_buf attachment that denotes all devices attached.

ops dma_buf _ops associated with this buffer object.

lock used internally to serialize list manipulation, attach/detach and vmap/unmap
vmapping_counter used internally to refcnt the vmaps

vmap_ptr the current vmap ptr if vmapping_counter > 0

exp_name name of the exporter; useful for debugging.

owner pointer to exporter module; used for refcounting when exporter is a kernel module.
list_node node for dma_buf accounting and debugging.

priv exporter specific private data for this buffer object.

resv reservation object linked to this dma-buf

poll for userspace poll support

cb_excl for userspace poll support

cb_shared for userspace poll support

Description

This represents a shared buffer, created by calling dma buf export(). The userspace representation is
a normal file descriptor, which can be created by calling dma buf fd().

Shared dma buffers are reference counted using dma buf put() and get dma buf().
Device DMA access is handled by the separate struct dma buf attachment.

struct dma_buf_attachment
holds device-buffer attachment data

Definition

struct dma buf attachment {
struct dma_buf * dmabuf;
struct device * dev;
struct list head node;
void * priv;

};

Members

dmabuf buffer for this attachment.

dev device attached to the buffer.

node list of dma_buf attachment.

priv exporter specific attachment data.
Description

This structure holds the attachment information between the dma_buf buffer and its user device(s). The
list contains one attachment struct per device attached to the buffer.

An attachment is created by calling dma buf attach(), and released again by calling dma buf detach().
The DMA mapping itself needed to initiate a transfer is created by dma buf map attachment() and freed
again by calling dma buf unmap attachment().

struct dma_buf_export_info
holds information needed to export a dma_buf

Definition

5.1. Shared DMA Buffers 143

The kernel driver API manual, Release 4.13.0-rc4+

struct dma_buf export info {
const char * exp_name;
struct module * owner;
const struct dma _buf ops * ops;
size t size;
int flags;
struct reservation object * resv;
void * priv;

+

Members

exp_name name of the exporter - useful for debugging.

owner pointer to exporter module - used for refcounting kernel module

ops Attach allocator-defined dma buf ops to the new buffer

size Size of the buffer

flags mode flags for the file

resv reservation-object, NULL to allocate default one

priv Attach private data of allocator to this buffer

Description

This structure holds the information required to export the buffer. Used with dma buf export() only.

DEFINE_DMA_BUF_EXPORT_INFO(name)
helper macro for exporters

Parameters
name export-info name
Description

DEFINE_DMA_BUF_EXPORT_INFO macro defines the struct dma buf export info, zeroes it out and pre-
populates exp_name in it.

void get_dma_buf (struct dma_buf * dmabuf)
convenience wrapper for get file.

Parameters
struct dma_buf * dmabuf [in] pointer to dma_buf
Description

Increments the reference count on the dma-buf, needed in case of drivers that either need to create
additional references to the dmabuf on the kernel side. For example, an exporter that needs to keep a
dmabuf ptr so that subsequent exports don’t create a new dmabuf.

5.2 Reservation Objects

The reservation object provides a mechanism to manage shared and exclusive fences associated with
a buffer. A reservation object can have attached one exclusive fence (normally associated with write
operations) or N shared fences (read operations). The RCU mechanism is used to protect read access to
fences from locked write-side updates.

int reservation_object_reserve_shared(struct reservation _object * obj)
Reserve space to add a shared fence to a reservation_object.

Parameters

struct reservation_object * obj reservation object

144 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Description
Should be called before reservation object add shared fence(). Must be called with obj->lock held.
RETURNS Zero for success, or -errno

void reservation_object_add_shared_fence(struct reservation _object * obj, struct dma fence

* fence)
Add a fence to a shared slot

Parameters

struct reservation_object * obj the reservation object
struct dma_fence * fence the shared fence to add
Description

Add a fence to a shared slot, obj->lock must be held, and reservation object reserve shared() has
been called.

void reservation_object_add_excl_fence(struct reservation object * obj, struct dma fence

_ * fence)
Add an exclusive fence.

Parameters

struct reservation_object * obj the reservation object
struct dma_fence * fence the shared fence to add
Description

Add a fence to the exclusive slot. The obj->lock must be held.

int reservation_object_get_fences_rcu(struct reservation object *obj, struct dma fence
** pfence_excl, unsigned * pshared count, struct
dma_fence *** pshared)
Get an object’s shared and exclusive fences without update side lock held

Parameters

struct reservation object * obj the reservation object

struct dma_fence ** pfence_excl the returned exclusive fence (or NULL)
unsigned * pshared_count the number of shared fences returned

struct dma_fence *** pshared the array of shared fence ptrs returned (array is krealloc’d to the re-
quired size, and must be freed by caller)

Description
RETURNS Zero or -errno

long reservation_object_wait_timeout_rcu(struct reservation object *obj, bool wait all,
bool intr, unsigned long timeout)
Wait on reservation’s objects shared and/or exclusive fences.

Parameters

struct reservation_object * obj the reservation object

bool wait_all if true, wait on all fences, else wait on just exclusive fence

bool intr if true, do interruptible wait

unsigned long timeout timeout value in jiffies or zero to return immediately

Description

RETURNS Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or greater than zer on success.

5.2. Reservation Objects 145

The kernel driver API manual, Release 4.13.0-rc4+

bool reservation_object test signaled_rcu(struct reservation object * obj, bool test_all)
Test if a reservation object’s fences have been signaled.

Parameters

struct reservation_object * obj the reservation object

bool test_all if true, test all fences, otherwise only test the exclusive fence
Description

RETURNS true if all fences signaled, else false

struct reservation_object list
a list of shared fences

Definition

struct reservation object list {
struct rcu_head rcu;
u32 shared count;
u32 shared max;
struct dma_fence _ rcu * shared;

};

Members

rcu for internal use

shared_count table of shared fences
shared_max for growing shared fence table
shared shared fence table

struct reservation_object
a reservation object manages fences for a buffer

Definition

struct reservation object {
struct ww _mutex lock;
seqcount t seq;
struct dma_fence _ rcu * fence_excl;
struct reservation object list rcu * fence;
struct reservation object list * staged;
}

Members

lock update side lock

seq sequence count for managing RCU read-side synchronization
fence_excl the exclusive fence, if there is one currently

fence list of current shared fences

staged staged copy of shared fences for RCU updates

void reservation_object_init (struct reservation object * obj)
initialize a reservation object

Parameters
struct reservation_object * obj the reservation object

void reservation_object_fini(struct reservation object * obj)
destroys a reservation object

Parameters

146 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

struct reservation object * obj the reservation object

struct reservation object list * reservation_object_get_list(struct reservation object * obj)
get the reservation object’s shared fence list, with update-side lock held

Parameters

struct reservation_object * obj the reservation object

Description

Returns the shared fence list. Does NOT take references to the fence. The obj->lock must be held.

int reservation_object lock(struct reservation _object * obj, struct ww_acquire_ctx * ctx)
lock the reservation object

Parameters

struct reservation_object * obj the reservation object
struct ww_acquire ctx * ctx the locking context
Description

Locks the reservation object for exclusive access and modification. Note, that the lock is only against
other writers, readers will run concurrently with a writer under RCU. The seqlock is used to notify readers
if they overlap with a writer.

As the reservation object may be locked by multiple parties in an undefined order, a #ww_acquire_ctx is
passed to unwind if a cycle is detected. See ww_mutex lock() and ww_acquire init(). A reservation
object may be locked by itself by passing NULL as ctx.

bool reservation_object_trylock(struct reservation object * obj)
trylock the reservation object

Parameters
struct reservation_object * obj the reservation object
Description

Tries to lock the reservation object for exclusive access and modification. Note, that the lock is only against
other writers, readers will run concurrently with a writer under RCU. The seqlock is used to notify readers
if they overlap with a writer.

Also note that since no context is provided, no deadlock protection is possible.
Returns true if the lock was acquired, false otherwise.

void reservation_object_unlock(struct reservation_object * obj)
unlock the reservation object

Parameters

struct reservation_object * obj the reservation object
Description

Unlocks the reservation object following exclusive access.

struct dma fence * reservation_object get_excl(struct reservation object * obj)
get the reservation object’s exclusive fence, with update-side lock held

Parameters

struct reservation_object * obj the reservation object

Description

Returns the exclusive fence (if any). Does NOT take a reference. The obj->lock must be held.
RETURNS The exclusive fence or NULL

5.2. Reservation Objects 147

The kernel driver API manual, Release 4.13.0-rc4+

struct dma fence * reservation_object get_excl rcu(struct reservation _object * obj)
get the reservation object’s exclusive fence, without lock held.

Parameters

struct reservation_object * obj the reservation object

Description

If there is an exclusive fence, this atomically increments it’'s reference count and returns it.
RETURNS The exclusive fence or NULL if none

5.3 DMA Fences

u64 dma_fence_context_alloc(unsigned num)
allocate an array of fence contexts

Parameters
unsigned num [in] amount of contexts to allocate
Description

This function will return the first index of the number of fences allocated. The fence context is used for
setting fence->context to a unique number.

int dma_fence_signal_locked (struct dma_fence * fence)
signal completion of a fence

Parameters
struct dma_fence * fence the fence to signal
Description

Signal completion for software callbacks on a fence, this will unblock dma fence wait() calls and run all
the callbacks added with dma fence add callback(). Can be called multiple times, but since a fence
can only go from unsignaled to signaled state, it will only be effective the first time.

Unlike dma_fence_signal, this function must be called with fence->lock held.

int dma_fence_signal(struct dma fence * fence)
signal completion of a fence

Parameters
struct dma_fence * fence the fence to signal
Description

Signal completion for software callbacks on a fence, this will unblock dma fence wait() calls and run all
the callbacks added with dma fence add callback(). Can be called multiple times, but since a fence
can only go from unsignaled to signaled state, it will only be effective the first time.

signed long dma_fence_wait_timeout (struct dma_fence * fence, bool intr, signed long timeout)
sleep until the fence gets signaled or until timeout elapses

Parameters

struct dma_fence * fence [in] the fence to wait on

bool intr [in]if true, do an interruptible wait

signed long timeout [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
Description

Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the remaining timeout in jiffies on success.
Other error values may be returned on custom implementations.

148 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Performs a synchronous wait on this fence. It is assumed the caller directly or indirectly (buf-mgr between
reservation and committing) holds a reference to the fence, otherwise the fence might be freed before
return, resulting in undefined behavior.

void dma_fence_enable_sw_signaling(struct dma fence * fence)
enable signaling on fence

Parameters

struct dma_fence * fence [in] the fence to enable

Description

this will request for sw signaling to be enabled, to make the fence complete as soon as possible

int dma_fence_add_callback(struct = dma_fence * fence, struct dma_fence cb *cb,
dma_fence_func_t func)
add a callback to be called when the fence is signaled

Parameters

struct dma_fence * fence [in] the fence to wait on
struct dma_fence_cb * cb [in] the callback to register
dma_fence_func_t func [in] the function to call
Description

cb will be initialized by dma_fence_add_callback, no initialization by the caller is required. Any number of
callbacks can be registered to a fence, but a callback can only be registered to one fence at a time.

Note that the callback can be called from an atomic context. If fence is already signhaled, this function will
return -ENOENT (and not call the callback)

Add a software callback to the fence. Same restrictions apply to refcount as it does to dma_fence_wait,
however the caller doesn’t need to keep a refcount to fence afterwards: when software access is enabled,
the creator of the fence is required to keep the fence alive until after it signals with dma_fence_signal.
The callback itself can be called from irq context.

Returns 0 in case of success, -ENOENT if the fence is already signaled and -EINVAL in case of error.

int dna_fence_get_status (struct dma_fence * fence)
returns the status upon completion

Parameters
struct dma_fence * fence [in] the dma_fence to query
Description

This wraps dma fence get status locked() to return the error status condition on a signaled fence.
See dma fence get status locked() for more details.

Returns 0 if the fence has not yet been signaled, 1 if the fence has been signaled without an error condition,
or a negative error code if the fence has been completed in err.

bool dma_fence_remove_callback(struct dma fence * fence, struct dma _fence cb * cb)
remove a callback from the signaling list

Parameters

struct dma_fence * fence [in] the fence to wait on
struct dma_fence_cb * cb [in] the callback to remove
Description

Remove a previously queued callback from the fence. This function returns true if the callback is success-
fully removed, or false if the fence has already been signaled.

5.3. DMA Fences 149

The kernel driver API manual, Release 4.13.0-rc4+

WARNING: Cancelling a callback should only be done if you really know what you’re doing, since deadlocks
and race conditions could occur all too easily. For this reason, it should only ever be done on hardware
lockup recovery, with a reference held to the fence.

signed long dma_fence_default_wait (struct dma fence * fence, bool intr, signed long timeout)
default sleep until the fence gets signaled or until timeout elapses

Parameters

struct dma_fence * fence [in] the fence to wait on

bool intr [in] if true, do an interruptible wait

signed long timeout [in] timeout value in jiffies, or MAX_ SCHEDULE TIMEOUT
Description

Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the remaining timeout in jiffies on success.
If timeout is zero the value one is returned if the fence is already signaled for consistency with other
functions taking a jiffies timeout.

signed long dma_fence_wait_any_timeout (struct dma fence ** fences, uint32_t count, bool intr,
signed long timeout, uint32_t * idx)
sleep until any fence gets signaled or until timeout elapses

Parameters

struct dma_fence ** fences [in] array of fences to wait on

uint32_t count [in] number of fences to wait on

bool intr [in]if true, do an interruptible wait

signed long timeout [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
uint32_t * idx [out] the first signaled fence index, meaningful only on positive return
Description

Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if interrupted, 0 if the wait timed
out, or the remaining timeout in jiffies on success.

Synchronous waits for the first fence in the array to be signaled. The caller needs to hold a reference to
all fences in the array, otherwise a fence might be freed before return, resulting in undefined behavior.

void dma_fence_init (struct dma_fence * fence, const struct dma fence ops * ops, spinlock_t* Jock,
u64 context, unsigned seqno)
Initialize a custom fence.

Parameters

struct dma_fence * fence [in] the fence to initialize

const struct dma_fence_ops * ops [in] the dma_fence_ops for operations on this fence
spinlock_t * lock [in] the irgsafe spinlock to use for locking this fence

u64 context [in] the execution context this fence is run on

unsigned seqno [in] a linear increasing sequence number for this context

Description

Initializes an allocated fence, the caller doesn’t have to keep its refcount after committing with this fence,
but it will need to hold a refcount again if dma_fence_ops.enable_signaling gets called. This can be used
for other implementing other types of fence.

context and segno are used for easy comparison between fences, allowing to check which fence is later
by simply using dma_fence_later.

struct dma_fence
software synchronization primitive

150 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Definition

struct dma_fence {
struct kref refcount;
const struct dma_fence ops * ops;
struct rcu_head rcu;
struct list head cb list;
spinlock t * lock;
u64 context;
unsigned seqno;
unsigned long flags;
ktime t timestamp;
int error;

};

Members

refcount refcount for this fence

ops dma_fence_ops associated with this fence

rcu used for releasing fence with kfree_rcu

cb_list list of all callbacks to call

lock spin_lock irgsave used for locking

context execution context this fence belongs to, returned by dma fence context alloc()

seqno the sequence number of this fence inside the execution context, can be compared to decide which
fence would be signaled later.

flags A mask of DMA_FENCE_FLAG_* defined below
timestamp Timestamp when the fence was signaled.

error Optional, only valid if < 0, must be set before calling dma_fence_signal, indicates that the fence
has completed with an error.

Description

the flags member must be manipulated and read using the appropriate atomic ops (bit_*), so taking the
spinlock will not be needed most of the time.

DMA _FENCE_FLAG_SIGNALED BIT - fence is already signaled DMA_FENCE_FLAG_TIMESTAMP_BIT - times-
tamp recorded for fence signaling DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT - enable_signaling might have
been called DMA_FENCE_FLAG_USER BITS - start of the unused bits, can be used by the implementer of
the fence for its own purposes. Can be used in different ways by different fence implementers, so do not
rely on this.

Since atomic bitops are used, this is not guaranteed to be the case. Particularly, if the bit was
set, but dma_fence_signal was called right before this bit was set, it would have been able to
set the DMA_FENCE_FLAG_SIGNALED_BIT, before enable_signaling was called. Adding a check for
DMA _FENCE_FLAG SIGNALED BIT after setting DMA FENCE_FLAG_ENABLE_SIGNAL BIT closes this race,
and makes sure that after dma_fence_signal was called, any enable_signaling call will have either been
completed, or never called at all.

struct dma_fence_cb
callback for dma_fence_add_callback

Definition

struct dma_fence cb {
struct list head node;
dma_fence func t func;

};

Members

5.3. DMA Fences 151

The kernel driver API manual, Release 4.13.0-rc4+

node used by dma_fence_add_callback to append this struct to fence::cb_list
func dma_fence_func_t to call
Description

This struct will be initialized by dma_fence_add_callback, additional data can be passed along by embed-
ding dma_fence_cb in another struct.

struct dma_fence_ops
operations implemented for fence

Definition

struct dma_fence ops {
const char * (* get driver name) (struct dma fence *fence);
const char * (* get timeline name) (struct dma fence *fence);
bool (* enable signaling) (struct dma_fence *fence);
bool (* signaled) (struct dma_ fence *fence);
signed long (* wait) (struct dma fence *fence, bool intr, signed long timeout);
void (* release) (struct dma_fence *fence);
int (* fill driver data) (struct dma_fence *fence, void *data, int size);
void (* fence value str) (struct dma fence *fence, char *str, int size);
void (* timeline value str) (struct dma fence *fence, char *str, int size);

};

Members

get_driver_name returns the driver name.

get_timeline_name return the name of the context this fence belongs to.
enable_signaling enable software signaling of fence.

signaled [optional] peek whether the fence is signaled, can be null.

wait custom wait implementation, or dma_fence_default_wait.

release [optional] called on destruction of fence, can be null

fill_driver_data [optional] callback to fill in free-form debug info Returns amount of bytes filled, or
-errno.

fence_value_str [optional] fills in the value of the fence as a string
timeline_value_str [optional] fills in the current value of the timeline as a string
Description

Notes on enable_signaling: For fence implementations that have the capability for hw->hw signaling,
they can implement this op to enable the necessary irgs, or insert commands into cmdstream, etc. This
is called in the first wait() or add callback() path to let the fence implementation know that there is
another driver waiting on the signal (ie. hw->sw case).

This function can be called called from atomic context, but not from irq context, so normal spinlocks can
be used.

A return value of false indicates the fence already passed, or some failure occurred that made it impossible
to enable signaling. True indicates successful enabling.

fence->error may be set in enable_signaling, but only when false is returned.

Calling dma_fence_signal before enable_signaling is called allows for a tiny race window in which en-
able_signaling is called during, before, or after dma_fence_signal. To fight this, it is recommended that
before enable_signaling returns true an extra reference is taken on the fence, to be released when the
fence is signaled. This will mean dma_fence_signal will still be called twice, but the second time will be a
noop since it was already signaled.

Notes on signaled: May set fence->error if returning true.

152 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Notes on wait: Must not be NULL, set to dma_fence default wait for default implementation. the
dma_fence_default_wait implementation should work for any fence, as long as enable_signaling works
correctly.

Must return -ERESTARTSYS if the wait is intr = true and the wait was interrupted, and remaining jiffies if
fence has signaled, or 0 if wait timed out. Can also return other error values on custom implementations,
which should be treated as if the fence is signaled. For example a hardware lockup could be reported like
that.

Notes on release: Can be NULL, this function allows additional commands to run on destruction of the
fence. Can be called from irq context. If pointer is set to NULL, kfree will get called instead.

void dma_fence_put (struct dma fence * fence)
decreases refcount of the fence

Parameters
struct dma_fence * fence [in] fence to reduce refcount of

struct dma fence * dma_fence_get (struct dma fence * fence)
increases refcount of the fence

Parameters

struct dma_fence * fence [in] fence to increase refcount of
Description

Returns the same fence, with refcount increased by 1.

struct dma_fence * dma_fence_get_rcu(struct dma fence * fence)
get a fence from a reservation_object_list with rcu read lock

Parameters

struct dma_fence * fence [in] fence to increase refcount of
Description

Function returns NULL if no refcount could be obtained, or the fence.

struct dma fence * dma_fence_get_rcu_safe(struct dma fence * rcu * fencep)
acquire a reference to an RCU tracked fence

Parameters
struct dma_fence * _rcu * fencep [in] pointer to fence to increase refcount of
Description

Function returns NULL if no refcount could be obtained, or the fence. This function handles ac-
quiring a reference to a fence that may be reallocated within the RCU grace period (such as with
SLAB_TYPESAFE_BY_RCU), so long as the caller is using RCU on the pointer to the fence.

An alternative mechanism is to employ a seglock to protect a bunch of fences, such as used by struct
reservation_object. When using a seqlock, the seglock must be taken before and checked after a reference
to the fence is acquired (as shown here).

The caller is required to hold the RCU read lock.

bool dma_fence_is_signaled_locked (struct dma fence * fence)
Return an indication if the fence is signaled yet.

Parameters
struct dma_fence * fence [in] the fence to check
Description

Returns true if the fence was already signaled, false if not. Since this function doesn’t enable
signaling, it is not guaranteed to ever return true if dma_fence add callback, dma_fence wait or
dma_fence_enable_sw_signaling haven’t been called before.

5.3. DMA Fences 153

The kernel driver API manual, Release 4.13.0-rc4+

This function requires fence->lock to be held.

bool dma_fence_is_signaled(struct dma fence * fence)
Return an indication if the fence is signaled yet.

Parameters
struct dma_fence * fence [in] the fence to check
Description

Returns true if the fence was already signaled, false if not. Since this function doesn’t enable
signaling, it is not guaranteed to ever return true if dma_fence_add callback, dma_fence wait or
dma_fence_enable sw _signaling haven’t been called before.

It's recommended for seqno fences to call dma_fence_signal when the operation is complete, it makes it
possible to prevent issues from wraparound between time of issue and time of use by checking the return
value of this function before calling hardware-specific wait instructions.

bool dma_fence_is_later(struct dma fence * f1, struct dma fence * f2)
return if f1 is chronologically later than f2

Parameters

struct dma_fence * fl [in] the first fence from the same context
struct dma_fence * f2 [in] the second fence from the same context
Description

Returns true if f1 is chronologically later than f2. Both fences must be from the same context, since a
seqgno is not re-used across contexts.

struct dma fence * dma_fence_later (struct dma fence * f1, struct dma_fence * f2)
return the chronologically later fence

Parameters

struct dma_fence * fl [in] the first fence from the same context
struct dma_fence * f2 [in] the second fence from the same context
Description

Returns NULL if both fences are signaled, otherwise the fence that would be signaled last. Both fences
must be from the same context, since a seqno is not re-used across contexts.

int dma_fence_get_status_locked(struct dma fence * fence)
returns the status upon completion

Parameters
struct dma_fence * fence [in] the dma_fence to query
Description

Drivers can supply an optional error status condition before they signal the fence (to indicate whether
the fence was completed due to an error rather than success). The value of the status condition is only
valid if the fence has been signaled, dma fence get status locked() first checks the signal state before
reporting the error status.

Returns 0 if the fence has not yet been signaled, 1 if the fence has been signaled without an error condition,
or a negative error code if the fence has been completed in err.

void dma_fence_set_error(struct dma fence * fence, int error)
flag an error condition on the fence

Parameters
struct dma_fence * fence [in] the dma_fence

int error [in] the error to store

154 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

Description

Drivers can supply an optional error status condition before they signal the fence, to indicate that the
fence was completed due to an error rather than success. This must be set before signaling (so that the
value is visible before any waiters on the signal callback are woken). This helper exists to help catching
erroneous setting of #dma_fence.error.

signed long dma_fence_wait (struct dma fence * fence, bool intr)
sleep until the fence gets signhaled

Parameters

struct dma_fence * fence [in] the fence to wait on
bool intr [in] if true, do an interruptible wait
Description

This function will return -ERESTARTSYS if interrupted by a signal, or 0 if the fence was signaled. Other
error values may be returned on custom implementations.

Performs a synchronous wait on this fence. It is assumed the caller directly or indirectly holds a reference
to the fence, otherwise the fence might be freed before return, resulting in undefined behavior.

5.3.1 Seqno Hardware Fences
struct seqno_fence * to_seqno_fence(struct dma fence * fence)
cast a fence to a seqno_fence
Parameters
struct dma_fence * fence fence to cast to a seqgno_fence
Description
Returns NULL if the fence is not a seqno_fence, or the seqno_fence otherwise.

void seqno_fence_init (struct seqno_fence * fence, spinlock t * lock, struct dma buf * sync_buf,
uint32_t context, uint32_t segno_ofs, uint32_t segno, @ enum se-
gno_fence_condition cond, const struct dma_fence ops * ops)
initialize a seqno fence

Parameters

struct seqno_fence * fence segno_fence to initialize

spinlock_t * lock pointer to spinlock to use for fence

struct dma_buf * sync_buf buffer containing the memory location to signal on
uint32_t context the execution context this fence is a part of

uint32_t seqno_ofs the offset within sync_buf

uint32_t seqno the sequence # to signal on

enum seqno_fence_condition cond fence wait condition

const struct dma_fence_ops * ops the fence_ops for operations on this seqgno fence
Description

This function initializes a struct seqno_fence with passed parameters, and takes a reference on sync_buf
which is released on fence destruction.

A segno_fence is a dma_fence which can complete in software when enable_signaling is called, but it also
completes when (s32)((sync_buf)[seqno_ofs] - seqno) >= 0 is true

The seqgno_fence will take a refcount on the sync_buf until it's destroyed, but actual lifetime of sync_buf
may be longer if one of the callers take a reference to it.

5.3. DMA Fences 155

The kernel driver API manual, Release 4.13.0-rc4+

Certain hardware have instructions to insert this type of wait condition in the command stream, so no
intervention from software would be needed. This type of fence can be destroyed before completed,
however a reference on the sync_buf dma-buf can be taken. It is encouraged to re-use the same dma-buf
for sync_buf, since mapping or unmapping the sync_buf to the device’'s vm can be expensive.

It is recommended for creators of seqno_fence to call dna fence signal() before destruction. This
will prevent possible issues from wraparound at time of issue vs time of check, since users can check
dma fence 1is signaled() before submitting instructions for the hardware to wait on the fence. How-
ever, when ops.enable_signaling is not called, it doesn’t have to be done as soon as possible, just before
there’s any real danger of seqno wraparound.

5.3.2 DMA Fence Array

struct dma fence array * dma_fence_array_create(int num fences, struct dma_fence
** fences, u64 context, unsigned seqno,
bool signal_on_any)
Create a custom fence array

Parameters

int num_fences [in] number of fences to add in the array
struct dma_fence ** fences [in] array containing the fences
u64 context [in] fence context to use

unsigned seqno [in] sequence number to use

bool signal_on_any [in] signal on any fence in the array
Description

Allocate a dma_fence_array object and initialize the base fence with dma fence init(). In case of error
it returns NULL.

The caller should allocate the fences array with num_fences size and fill it with the fences it wants to add
to the object. Ownership of this array is taken and dma fence put() is used on each fence on release.

If signal_on_any is true the fence array signals if any fence in the array signals, otherwise it signals when
all fences in the array signal.

bool dma_fence_match_context (struct dma fence * fence, u64 context)
Check if all fences are from the given context

Parameters

struct dma_fence * fence [in] fence or fence array

u64 context [in] fence context to check all fences against
Description

Checks the provided fence or, for a fence array, all fences in the array against the given context. Returns
false if any fence is from a different context.

struct dma_fence_array_cb
callback helper for fence array

Definition

struct dma_fence array cb {
struct dma fence cb cb;
struct dma_fence array * array;

};

Members

cb fence callback structure for signaling

156 Chapter 5. Buffer Sharing and Synchronization

The kernel driver API manual, Release 4.13.0-rc4+

array reference to the parent fence array object

struct dma_fence_array
fence to represent an array of fences

Definition

struct dma_fence array {
struct dma_fence base;
spinlock t lock;
unsigned num_fences;
atomic_t num_pending;
struct dma fence ** fences;

+

Members

base fence base class

lock spinlock for fence handling

num_fences number of fences in the array
num_pending fences in the array still pending
fences array of the fences

bool dma_fence_is_array (struct dma_fence * fence)
check if a fence is from the array subsclass

Parameters

struct dma_fence * fence fence to test

Description

Return true if it is a dma_fence_array and false otherwise.

struct dma fence_array * to_dma_fence_array (struct dma_fence * fence)
cast a fence to a dma_fence_array

Parameters
struct dma_fence * fence fence to cast to a dma_fence_array
Description

Returns NULL if the fence is not a dma_fence_array, or the dma_fence_array otherwise.

5.3.3 DMA Fence uABI/Sync File

struct sync file * sync_file_create(struct dma fence * fence)
creates a sync file

Parameters
struct dma_fence * fence fence to add to the sync_fence
Description

Creates a sync_file containg fence. This function acquires and additional reference of fence for the newly-
created sync file, if it succeeds. The sync_file can be released with fput(sync_file->file). Returns the
sync_file or NULL in case of error.

struct dma fence * sync_file_get_fence(int fd)
get the fence related to the sync _file fd

Parameters

int fd sync file fd to get the fence from

5.3. DMA Fences 157

The kernel driver API manual, Release 4.13.0-rc4+

Description

Ensures fd references a valid sync_file and returns a fence that represents all fence in the sync_file. On
error NULL is returned.

struct sync_file
sync file to export to the userspace

Definition

struct sync file {

struct file * file;

char user_name;
#ifdef CONFIG DEBUG FS

struct list head sync file list;
#endif

wait queue head t wq;

struct dma_fence * fence;

struct dma_fence cb cb;

};

Members
file file representing this fence

user_name Name of the sync file provided by userspace, for merged fences. Otherwise generated through
driver callbacks (in which case the entire array is 0).

sync_file_list membership in global file list
wq wait queue for fence signaling
fence fence with the fences in the sync file

cb fence callback information

158 Chapter 5. Buffer Sharing and Synchronization

CHAPTER
SIX

DEVICE LINKS

By default, the driver core only enforces dependencies between devices that are borne out of a par-
ent/child relationship within the device hierarchy: When suspending, resuming or shutting down the sys-
tem, devices are ordered based on this relationship, i.e. children are always suspended before their
parent, and the parent is always resumed before its children.

Sometimes there is a need to represent device dependencies beyond the mere parent/child relationship,
e.g. between siblings, and have the driver core automatically take care of them.

Secondly, the driver core by default does not enforce any driver presence dependencies, i.e. that one
device must be bound to a driver before another one can probe or function correctly.

Often these two dependency types come together, so a device depends on another one both with regards
to driver presence and with regards to suspend/resume and shutdown ordering.

Device links allow representation of such dependencies in the driver core.

Inits standard form, a device link combines both dependency types: It guarantees correct suspend/resume
and shutdown ordering between a “supplier” device and its “consumer” devices, and it guarantees driver
presence on the supplier. The consumer devices are not probed before the supplier is bound to a driver,
and they’re unbound before the supplier is unbound.

When driver presence on the supplier is irrelevant and only correct suspend/resume and shutdown order-
ing is needed, the device link may simply be set up with the DL _FLAG STATELESS flag. In other words,
enforcing driver presence on the supplier is optional.

Another optional feature is runtime PM integration: By setting the DL_FLAG PM RUNTIME flag on addition
of the device link, the PM core is instructed to runtime resume the supplier and keep it active whenever
and for as long as the consumer is runtime resumed.

6.1 Usage

The earliest point in time when device links can be added is after device add() has been called for the
supplier and device initialize() has been called for the consumer.

It is legal to add them later, but care must be taken that the system remains in a consistent state: E.g.
a device link cannot be added in the midst of a suspend/resume transition, so either commencement of
such a transition needs to be prevented with lock system sleep(), or the device link needs to be added
from a function which is guaranteed not to run in parallel to a suspend/resume transition, such as from a
device ->probe callback or a boot-time PCI quirk.

Another example for an inconsistent state would be a device link that represents a driver presence de-
pendency, yet is added from the consumer’s ->probe callback while the supplier hasn’t probed yet: Had
the driver core known about the device link earlier, it wouldn’t have probed the consumer in the first
place. The onus is thus on the consumer to check presence of the supplier after adding the link, and defer
probing on non-presence.

If a device link is added in the ->probe callback of the supplier or consumer driver, it is typically deleted
in its ->remove callback for symmetry. That way, if the driver is compiled as a module, the device link

159

The kernel driver API manual, Release 4.13.0-rc4+

is added on module load and orderly deleted on unload. The same restrictions that apply to device link
addition (e.g. exclusion of a parallel suspend/resume transition) apply equally to deletion.

Several flags may be specified on device link addition, two of which have already been mentioned above:
DL FLAG STATELESS to express that no driver presence dependency is needed (but only correct sus-
pend/resume and shutdown ordering) and DL_FLAG_PM RUNTIME to express that runtime PM integration
is desired.

Two other flags are specifically targeted at use cases where the device link is added from the consumer’s
->probe callback: DL _FLAG RPM ACTIVE can be specified to runtime resume the supplier upon addition
of the device link. DL FLAG AUTOREMOVE causes the device link to be automatically purged when the
consumer fails to probe or later unbinds. This obviates the need to explicitly delete the link in the -
>remove callback or in the error path of the ->probe callback.

6.2 Limitations

Driver authors should be aware that a driver presence dependency (i.e. when DL _FLAG STATELESS is
not specified on link addition) may cause probing of the consumer to be deferred indefinitely. This can
become a problem if the consumer is required to probe before a certain initcall level is reached. Worse, if
the supplier driver is blacklisted or missing, the consumer will never be probed.

Sometimes drivers depend on optional resources. They are able to operate in a degraded mode (reduced
feature set or performance) when those resources are not present. An example is an SPI controller that can
use a DMA engine or work in PIO mode. The controller can determine presence of the optional resources
at probe time but on non-presence there is no way to know whether they will become available in the
near future (due to a supplier driver probing) or never. Consequently it cannot be determined whether to
defer probing or not. It would be possible to notify drivers when optional resources become available after
probing, but it would come at a high cost for drivers as switching between modes of operation at runtime
based on the availability of such resources would be much more complex than a mechanism based on
probe deferral. In any case optional resources are beyond the scope of device links.

6.3 Examples

* An MMU device exists alongside a busmaster device, both are in the same power domain. The MMU
implements DMA address translation for the busmaster device and shall be runtime resumed and
kept active whenever and as long as the busmaster device is active. The busmaster device’s driver
shall not bind before the MMU is bound. To achieve this, a device link with runtime PM integration is
added from the busmaster device (consumer) to the MMU device (supplier). The effect with regards
to runtime PM is the same as if the MMU was the parent of the master device.

The fact that both devices share the same power domain would normally suggest usage of a struct
dev_pm domain or struct generic_pm domain, however these are not independent devices that
happen to share a power switch, but rather the MMU device serves the busmaster device and is
useless without it. A device link creates a synthetic hierarchical relationship between the devices
and is thus more apt.

* AThunderbolt host controller comprises a number of PCle hotplug ports and an NHI device to manage
the PCle switch. On resume from system sleep, the NHI device needs to re-establish PCI tunnels to
attached devices before the hotplug ports can resume. If the hotplug ports were children of the NHI,
this resume order would automatically be enforced by the PM core, but unfortunately they’re aunts.
The solution is to add device links from the hotplug ports (consumers) to the NHI device (supplier).
A driver presence dependency is not necessary for this use case.

* Discrete GPUs in hybrid graphics laptops often feature an HDA controller for HDMI/DP audio. In the
device hierarchy the HDA controller is a sibling of the VGA device, yet both share the same power
domain and the HDA controller is only ever needed when an HDMI/DP display is attached to the
VGA device. A device link from the HDA controller (consumer) to the VGA device (supplier) aptly
represents this relationship.

160 Chapter 6. Device links

The kernel driver API manual, Release 4.13.0-rc4+

* ACPI allows definition of a device start order by way of DEP objects. A classical example is when ACPI
power management methods on one device are implemented in terms of I°C accesses and require
a specific 12C controller to be present and functional for the power management of the device in
question to work.

* In some SoCs a functional dependency exists from display, video codec and video processing IP cores
on transparent memory access IP cores that handle burst access and compression/decompression.

6.4 Alternatives

* A struct dev pm domain can be used to override the bus, class or device type callbacks. It is
intended for devices sharing a single on/off switch, however it does not guarantee a specific sus-
pend/resume ordering, this needs to be implemented separately. It also does not by itself track the
runtime PM status of the involved devices and turn off the power switch only when all of them are
runtime suspended. Furthermore it cannot be used to enforce a specific shutdown ordering or a
driver presence dependency.

* Astruct generic pm domain is a lot more heavyweight than a device link and does not allow for
shutdown ordering or driver presence dependencies. It also cannot be used on ACPI systems.

6.5 Implementation

The device hierarchy, which - as the name implies - is a tree, becomes a directed acyclic graph once
device links are added.

Ordering of these devices during suspend/resume is determined by the dpm_list. During shutdown it is de-
termined by the devices _kset. With no device links present, the two lists are a flattened, one-dimensional
representations of the device tree such that a device is placed behind all its ancestors. That is achieved
by traversing the ACPl namespace or OpenFirmware device tree top-down and appending devices to the
lists as they are discovered.

Once device links are added, the lists need to satisfy the additional constraint that a device is placed
behind all its suppliers, recursively. To ensure this, upon addition of the device link the consumer and the
entire sub-graph below it (all children and consumers of the consumer) are moved to the end of the list.
(Call to device reorder to tail() from device link add().)

To prevent introduction of dependency loops into the graph, it is verified upon device link addition that
the supplier is not dependent on the consumer or any children or consumers of the consumer. (Call to
device is dependent() from device link add().) If that constraint is violated, device link add()
will return NULL and a WARNING will be logged.

Notably this also prevents the addition of a device link from a parent device to a child. However the
converse is allowed, i.e. a device link from a child to a parent. Since the driver core already guarantees
correct suspend/resume and shutdown ordering between parent and child, such a device link only makes
sense if a driver presence dependency is needed on top of that. In this case driver authors should weigh
carefully if a device link is at all the right tool for the purpose. A more suitable approach might be to
simply use deferred probing or add a device flag causing the parent driver to be probed before the child
one.

6.6 State machine

enum device_link_state
Device link states.

Constants
DL_STATE_NONE The presence of the drivers is not being tracked.

6.4. Alternatives 161

The kernel driver API manual, Release 4.13.0-rc4+

DL_STATE_DORMANT None of the supplier/consumer drivers is present.

DL_STATE_AVAILABLE The supplier driver is present, but the consumer is not.
DL_STATE_CONSUMER_PROBE The consumer is probing (supplier driver present).
DL_STATE_ACTIVE Both the supplier and consumer drivers are present.
DL_STATE_SUPPLIER_UNBIND The supplier driver is unbinding.

v I

DORMANT <=> AVAILABLE <=> CONSUMER PROBE => ACTIVE

The initial state of a device link is automatically determined by device link add() based on the
driver presence on the supplier and consumer. If the link is created before any devices are probed,
it is set to DL_STATE_DORMANT.

When a supplier device is bound to a driver, links to its consumers progress to DL_STATE _AVAILABLE.
(Call to device links driver bound() from driver bound().)

Before a consumer device is probed, presence of supplier drivers is verified by checking that
links to suppliers are in DL_STATE_AVAILABLE state. The state of the links is updated to
DL STATE CONSUMER PROBE. (Call to device links check suppliers() from really probe().)
This prevents the supplier from unbinding. (Call to wait for device probe() from de-
vice links unbind consumers().)

If the probe fails, links to suppliers revert back to DL STATE AVAILABLE. (Call to de-
vice links no driver() from really probe().)

If the probe succeeds, links to suppliers progress to DL STATE ACTIVE. (Call to de-
vice links driver bound() from driver bound().)

When the consumer’'s driver is later on removed, links to suppliers revert
back to DL _STATE AVAILABLE. (Call to _ device links no driver() from de-
vice links driver cleanup(), which in turnis called from device release driver().)

Before a supplier’s driver is removed, links to consumers that are not bound to a driver are updated
toDL_STATE SUPPLIER UNBIND. (Call todevice links busy() from device release driver().)
This prevents the consumers from binding. (Call to device links check suppliers() from re-
ally probe().) Consumers that are bound are freed from their driver; consumers that are
probing are waited for until they are done. (Call to device links unbind consumers() from
__device release driver().) Once all links to consumers are in DL_STATE SUPPLIER UNBIND
state, the supplier driver is released and the links revert to DL STATE DORMANT. (Call to de-
vice links driver cleanup() from device release driver().)

6.7 API

struct device link * device_link_add (struct device * consumer, struct device * supplier, u32 flags)

Create a link between two devices.

Parameters

struct device * consumer Consumer end of the link.

struct device * supplier Supplier end of the link.

u32

flags Link flags.

162

Chapter 6. Device links

The kernel driver API manual, Release 4.13.0-rc4+

Description

The caller is responsible for the proper synchronization of the link creation with runtime PM. First, setting
the DL_FLAG_PM_RUNTIME flag will cause the runtime PM framework to take the link into account. Sec-
ond, if the DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will be forced into the
active metastate and reference-counted upon the creation of the link. If DL_FLAG_PM_RUNTIME is not set,
DL FLAG_RPM_ACTIVE will be ignored.

If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically when the consumer device
driver unbinds from it. The combination of both DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is
invalid and will cause NULL to be returned.

A side effect of the link creation is re-ordering of dpm_list and the devices_kset list by moving the consumer
device and all devices depending on it to the ends of these lists (that does not happen to devices that
have not been registered when this function is called).

The supplier device is required to be registered when this function is called and NULL will be returned if
that is not the case. The consumer device need not be registered, however.

void device link_del (struct device link * link)
Delete a link between two devices.

Parameters

struct device_link * 1link Device link to delete.

Description

The caller must ensure proper synchronization of this function with runtime PM.

6.7. API 163

The kernel driver API manual, Release 4.13.0-rc4+

164 Chapter 6. Device links

CHAPTER
SEVEN

MESSAGE-BASED DEVICES

7.1 Fusion message devices

u8 mpt_register (MPT_CALLBACK cbfunc, MPT_DRIVER_CLASS dclass, char * func_name)
Register protocol-specific main callback handler.

Parameters

MPT_CALLBACK cbfunc callback function pointer

MPT_DRIVER_CLASS dclass Protocol driver’s class (MPT_DRIVER CLASS enum value)
char * func_name call function’s name

Description

This routine is called by a protocol-specific driver (SCSI host, LAN, SCSI target) to register its
reply callback routine. Each protocol-specific driver must do this before it will be able to use
any IOC resources, such as obtaining request frames.

NOTES

The SCSI protocol driver currently calls this routine thrice in order to register separate callbacks;
one for “normal” SCSI 10; one for MptScsiTaskMgmt requests; one for Scan/DV requests.

Returns u8 valued “handle” in the range (and S.0.D. order) {N,...,7,6,5,...,1} if successful. A return
value of MPT_MAX_PROTOCOL_DRIVERS (including zero!) should be considered an error by the caller.

void mpt_deregister(u8 cb_idx)
Deregister a protocol drivers resources.

Parameters
u8 ch_idx previously registered callback handle
Description
Each protocol-specific driver should call this routine when its module is unloaded.

int mpt_event_register(u8 cb_idx, MPT_EVHANDLER ev_cbfunc)
Register protocol-specific event callback handler.

Parameters

u8 cb_idx previously registered (via mpt_register) callback handle
MPT_EVHANDLER ev_cbfunc callback function

Description

This routine can be called by one or more protocol-specific drivers if/when they choose to be
notified of MPT events.

Returns O for success.

165

The kernel driver API manual, Release 4.13.0-rc4+

void mpt_event_deregister(u8 cb_idx)
Deregister protocol-specific event callback handler

Parameters
u8 ch_idx previously registered callback handle
Description

Each protocol-specific driver should call this routine when it does not (or can no longer) handle
events, or when its module is unloaded.

int mpt_reset_register(u8 cb_idx, MPT_RESETHANDLER reset_func)
Register protocol-specific I0C reset handler.

Parameters

u8 cb_idx previously registered (via mpt_register) callback handle
MPT_RESETHANDLER reset_func reset function

Description

This routine can be called by one or more protocol-specific drivers if/when they choose to be
notified of IOC resets.

Returns O for success.

void mpt_reset_deregister(u8 cb_idx)
Deregister protocol-specific I0C reset handler.

Parameters
u8 ch_idx previously registered callback handle
Description

Each protocol-specific driver should call this routine when it does not (or can no longer) handle
IOC reset handling, or when its module is unloaded.

int mpt_device driver_register(struct mpt pci_driver * dd_cbfunc, u8 cb_idx)
Register device driver hooks

Parameters
struct mpt_pci_driver * dd_cbfunc driver callbacks struct
u8 cb_idx MPT protocol driver index

void mpt_device_driver_deregister(u8 cb_idx)
DeRegister device driver hooks

Parameters
u8 cb_idx MPT protocol driver index

MPT_FRAME_HDR* mpt_get_msg_frame(u8 cb_idx, MPT_ADAPTER * joc)
Obtain an MPT request frame from the pool

Parameters

u8 cb_idx Handle of registered MPT protocol driver

MPT_ADAPTER * ioc Pointer to MPT adapter structure

Description
Obtain an MPT request frame from the pool (of 1024) that are allocated per MPT adapter.
Returns pointer to a MPT request frame or NULL if none are available or IOC is not active.

void mpt_put_msg_frame(u8 cb _idx, MPT_ADAPTER * joc, MPT_FRAME_HDR * mf)
Send a protocol-specific MPT request frame to an 10C

166 Chapter 7. Message-based devices

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
u8 cb_idx Handle of registered MPT protocol driver
MPT_ADAPTER * ioc Pointer to MPT adapter structure
MPT_FRAME_HDR * mf Pointer to MPT request frame
Description
This routine posts an MPT request frame to the request post FIFO of a specific MPT adapter.

void mpt_put_msg_frame_hi_pri(u8 cb_idx, MPT_ADAPTER * joc, MPT_FRAME_HDR * mf)
Send a hi-pri protocol-specific MPT request frame

Parameters
u8 cb_idx Handle of registered MPT protocol driver
MPT_ADAPTER * ioc Pointer to MPT adapter structure
MPT_FRAME_HDR * mf Pointer to MPT request frame
Description
Send a protocol-specific MPT request frame to an I0C using hi-priority request queue.
This routine posts an MPT request frame to the request post FIFO of a specific MPT adapter.

void mpt_free_msg_frame(MPT_ADAPTER * ioc, MPT_FRAME_HDR * mf)
Place MPT request frame back on FreeQ.

Parameters
MPT_ADAPTER * ioc Pointer to MPT adapter structure
MPT_FRAME_HDR * mf Pointer to MPT request frame
Description
This routine places a MPT request frame back on the MPT adapter’s FreeQ.

int mpt_send_handshake_request(u8 cb_idx, MPT _ADAPTER *ijoc, intreqBytes, u32 *req,
int sleepFlag)
Send MPT request via doorbell handshake method.

Parameters

u8 cb_idx Handle of registered MPT protocol driver
MPT_ADAPTER * ioc Pointer to MPT adapter structure

int reqBytes Size of the request in bytes

u32 * req Pointer to MPT request frame

int sleepFlag Use schedule if CAN_SLEEP else use udelay.
Description

This routine is used exclusively to send MptScsiTaskMgmt requests since they are required to
be sent via doorbell handshake.

NOTE

It is the callers responsibility to byte-swap fields in the request which are greater than 1 byte in
size.

Returns O for success, non-zero for failure.

int mpt_verify_adapter (int iocid, MPT_ADAPTER ** jocpp)
Given |IOC identifier, set pointer to its adapter structure.

Parameters

7.1. Fusion message devices 167

The kernel driver API manual, Release 4.13.0-rc4+

int iocid IOC unique identifier (integer)

MPT_ADAPTER ** iocpp Pointer to pointer to IOC adapter

Description
Given a unique 10C identifier, set pointer to the associated MPT adapter structure.
Returns iocid and sets iocpp if iocid is found. Returns -1 if iocid is not found.

int mpt_attach (struct pci_dev * pdev, const struct pci_device_id * id)
Install a PCl intelligent MPT adapter.

Parameters

struct pci_dev * pdev Pointer to pci_dev structure

const struct pci_device_id * id PCI device ID information
Description

This routine performs all the steps necessary to bring the I0C of a MPT adapter to a OPERATIONAL
state. This includes registering memory regions, registering the interrupt, and allocating request
and reply memory pools.

This routine also pre-fetches the LAN MAC address of a Fibre Channel MPT adapter.
Returns 0 for success, non-zero for failure.
TODO: Add support for polled controllers

void mpt_detach (struct pci_dev * pdev)
Remove a PCl intelligent MPT adapter.

Parameters
struct pci_dev * pdev Pointer to pci_dev structure

int mpt_suspend (struct pci_dev * pdev, pm_message_t state)
Fusion MPT base driver suspend routine.

Parameters
struct pci_dev * pdev Pointer to pci_dev structure
pm_message_t state new state to enter

int mpt_resume (struct pci_dev * pdev)
Fusion MPT base driver resume routine.

Parameters
struct pci_dev * pdev Pointer to pci_dev structure

u32 mpt_GetIocState(MPT_ADAPTER * joc, int cooked)
Get the current state of a MPT adapter.

Parameters

MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
int cooked Request raw or cooked IOC state
Description

Returns all 10C Doorbell register bits if cooked==0, else just the Doorbell bits in
MPI_IOC_STATE_MASK.

int mpt_alloc_fw_memory (MPT_ADAPTER * joc, int size)
allocate firmware memory

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

168 Chapter 7. Message-based devices

The kernel driver API manual, Release 4.13.0-rc4+

int size total FW bytes

Description
If memory has already been allocated, the same (cached) value is returned.
Return O if successful, or non-zero for failure

void mpt_free_fw_memory(MPT_ADAPTER * joc)
free firmware memory

Parameters
MPT_ADAPTER * ioc Pointer to MPT ADAPTER structure
Description
If alt_img is NULL, delete from ioc structure. Else, delete a secondary image in same format.

int mptbase_sas_persist_operation(MPT_ADAPTER * joc, u8 persist opcode)
Perform operation on SAS Persistent Table

Parameters

MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
u8 persist_opcode see below

Description

MPI_SAS_OP_CLEAR_NOT_PRESENT - Free all persist TargetID mappings for devices
not currently present.

MPI_SAS_OP_CLEAR_ALL PERSISTENT - Clear al persist TargetID mappings
NOTE
Don’t use not this function during interrupt time.

Returns 0 for success, non-zero error

int mpt_raid_phys disk pg0 (MPT ADAPTER *ioc, u8 phys disk num, RaidPhysDiskPageO t
* phys _disk)
returns phys disk page zero

Parameters

MPT_ADAPTER * ioc Pointer to a Adapter Structure

u8 phys_disk_num io unit unique phys disk num generated by the ioc
RaidPhysDiskPage®_t * phys_disk requested payload data returned
Return

0 on success -EFAULT if read of config page header fails or data pointer not NULL -ENOMEM if
pci_alloc failed

int mpt_raid_phys_disk_get_num_paths (MPT_ADAPTER * joc, u8 phys_disk_num)
returns number paths associated to this phys num

Parameters
MPT_ADAPTER * ioc Pointer to a Adapter Structure
u8 phys_disk_num io unit unique phys disk num generated by the ioc
Return
returns number paths

int mpt_raid_phys_disk_pgl(MPT _ADAPTER *joc, u8 phys disk num, RaidPhysDiskPagel t
* phys_disk)
returns phys disk page 1

7.1. Fusion message devices 169

The kernel driver API manual, Release 4.13.0-rc4+

Parameters

MPT_ADAPTER * ioc Pointer to a Adapter Structure

u8 phys_disk_num io unit unique phys disk num generated by the ioc
RaidPhysDiskPagel_t * phys_disk requested payload data returned
Return

0 on success -EFAULT if read of config page header fails or data pointer not NULL -ENOMEM if
pci_alloc failed

int mpt_findImVolumes (MPT_ADAPTER * joc)
Identify IDs of hidden disks and RAID Volumes

Parameters
MPT_ADAPTER * ioc Pointer to a Adapter Strucutre
Return

0 on success -EFAULT if read of config page header fails or data pointer not NULL -ENOMEM if
pci_alloc failed

int mpt_config (MPT_ADAPTER * joc, CONFIGPARMS * pCfg)
Generic function to issue config message

Parameters
MPT_ADAPTER * ioc Pointer to an adapter structure

CONFIGPARMS * pCfg Pointerto a configuration structure. Struct contains action, page address, direction,
physical address and pointer to a configuration page header Page header is updated.

Description

Returns 0 for success -EPERM if not allowed due to ISR context -EAGAIN if no msg frames cur-
rently available -EFAULT for non-successful reply or no reply (timeout)

void mpt_print_ioc_summary(MPT_ADAPTER * joc, char * buffer, int * size, int len, int showlan)
Write ASCIl summary of 10C to a buffer.

Parameters

MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

char * buffer Pointer to buffer where IOC summary info should be written
int * size Pointer to number of bytes we wrote (set by this routine)

int len Offset at which to start writing in buffer

int showlan Display LAN stuff?

Description

This routine writes (english readable) ASCII text, which represents a summary of IOC information,
to a buffer.

int mpt_set_taskmgmt_in_progress_flag(MPT ADAPTER * joc)
set flags associated with task management

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
Description

Returns 0 for SUCCESS or -1 if FAILED.

If -1 is return, then it was not possible to set the flags

170 Chapter 7. Message-based devices

The kernel driver API manual, Release 4.13.0-rc4+

void mpt_clear_taskmgmt_in_progress_flag(MPT ADAPTER *joc)
clear flags associated with task management

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

void mpt_halt_firmware(MPT ADAPTER *joc)
Halts the firmware if it is operational and panic the kernel

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

int mpt_Soft_Hard_ResetHandler (MPT_ADAPTER * joc, int sleepFlag)
Try less expensive reset

Parameters

MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

int sleepFlag Indicates if sleep or schedule must be called.
Description

Returns 0 for SUCCESS or -1 if FAILED. Try for softreset first, only if it fails go for expensive
HardReset.

int mpt_HardResetHandler (MPT_ADAPTER * joc, int sleepFlag)
Generic reset handler

Parameters

MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

int sleepFlag Indicates if sleep or schedule must be called.
Description

Issues SCSI Task Management call based on input arg values. If TaskMgmt fails, returns associ-
ated SCSI request.

Remark: HardResetHandler can be invoked from an interrupt thread (timer) or a non-interrupt
thread. In the former, must not call schedule().

Note
A return of -1 is a FATAL error case, as it means a FW reload/initialization failed.
Returns 0 for SUCCESS or -1 if FAILED.

const char * mptscsih_info (struct Scsi_Host * SChost)
Return information about MPT adapter

Parameters
struct Scsi_Host * SChost Pointer to Scsi_Host structure
Description

(linux scsi_host_template.info routine)

Returns pointer to buffer where information was written.

int mptscsih_qemd (struct scsi_cmnd * SCpnt)
Primary Fusion MPT SCSI initiator 10 start routine.

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure

Description

7.1. Fusion message devices 171

The kernel driver API manual, Release 4.13.0-rc4+

(linux scsi_host_template.queuecommand routine) This is the primary SCSI 10 start routine. Cre-
ate a MPI SCSIIORequest from a linux scsi_cmnd request and send it to the 10C.

Returns 0. (rtn value discarded by linux scsi mid-layer)

int mptscsih_IssueTaskMgmt (MPT _SCSI HOST * hd, u8type, u8channel, u8id, u64 lun,

int ctx2abort, ulong timeout)
Generic send Task Management function.

Parameters

MPT_SCSI_HOST * hd Pointer to MPT_SCSI_HOST structure

u8 type Task Management type

u8 channel channel number for task management

u8 id Logical Target ID for reset (if appropriate)

u64 lun Logical Unit for reset (if appropriate)

int ctx2abort Context for the task to be aborted (if appropriate)
ulong timeout timeout for task management control
Description

Remark: HardResetHandler can be invoked from an interrupt thread (timer) or a non-interrupt
thread. In the former, must not call schedule().

Not all fields are meaningfull for all task types.
Returns 0 for SUCCESS, or FAILED.

int mptscsih_abort (struct scsi_cmnd * SCpnt)
Abort linux scsi_cmnd routine, new_eh variant

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure, 10 to be aborted
Description

(linux scsi_host_template.eh_abort_handler routine)

Returns SUCCESS or FAILED.

int mptscsih_dev_reset (struct scsi_cmnd * SCpnt)
Perform a SCSI TARGET_RESET! new_eh variant

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure, 10 which reset is due to
Description

(linux scsi_host_template.eh_dev_reset_handler routine)

Returns SUCCESS or FAILED.

int mptscsih_bus_reset(struct scsi_ cmnd * SCpnt)
Perform a SCSI BUS_RESET! new_eh variant

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure, 10 which reset is due to
Description

(linux scsi_host template.eh_bus _reset_handler routine)

Returns SUCCESS or FAILED.

int mptscsih_host_reset(struct scsi_ cmnd * SCpnt)
Perform a SCSI host adapter RESET (new_eh variant)

172 Chapter 7. Message-based devices

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure, 10 which reset is due to
Description

(linux scsi_host_template.eh_host_reset_handler routine)

Returns SUCCESS or FAILED.

int mptscsih_taskmgmt_complete (MPT_ADAPTER *joc, MPT_FRAME_HDR * mf, MPT_FRAME_HDR
*mr)
Registered with Fusion MPT base driver

Parameters

MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
MPT_FRAME_HDR * mf Pointer to SCSI task mgmt request frame
MPT_FRAME_HDR * mr Pointer to SCSI task mgmt reply frame
Description

This routine is called from mptbase.c::mpt interrupt() at the completion of any SCSI task
management request. This routine is registered with the MPT (base) driver at driver load/init
time via the mpt register() API call.

Returns 1 indicating alloc’d request frame ptr should be freed.

struct scsi_ cmnd * mptscsih_get_scsi_lookup (MPT _ADAPTER *joc, int i)
retrieves scmd entry

Parameters

MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure
int i index into the array

Description

Returns the scsi_cmd pointer

7.1. Fusion message devices

173

The kernel driver API manual, Release 4.13.0-rc4+

174 Chapter 7. Message-based devices

CHAPTER
EIGHT

SOUND DEVICES

snd_printk(fmt, ...)
printk wrapper

Parameters
fmt format string

. variable arguments
Description

Works like printk() but prints the file and the line of the caller when configured with CON-
FIG_ SND_VERBOSE_PRINTK.

snd_printd(fmt, ...)
debug printk

Parameters
fmt format string
. variable arguments
Description
Works like snd_printk() for debugging purposes. Ignored when CONFIG_SND DEBUG is not set.

snd_BUG()
give a BUG warning message and stack trace

Parameters

Description

Calls WARN () if CONFIG_SND_DEBUG is set. Ignored when CONFIG_SND_DEBUG is not set.
snd_printd_ratelimit()

Parameters

snd_BUG_ON(cond)
debugging check macro

Parameters
cond condition to evaluate
Description

Has the same behavior as WARN_ON when CONFIG_SND_DEBUG is set, otherwise just evaluates the con-
ditional and returns the value.

snd_printdd(format, ...)
debug printk

Parameters

format format string

175

The kernel driver API manual, Release 4.13.0-rc4+

. variable arguments
Description

Works like snd _printk() for debugging purposes. Ignored when CONFIG_SND DEBUG VERBOSE is not
set.

int register_sound_special _device(const struct file operations * fops, int unit, struct device
* dev)
register a special sound node

Parameters
const struct file_operations * fops File operations for the driver
int unit Unit number to allocate
struct device * dev device pointer
Description
Allocate a special sound device by minor number from the sound subsystem.
Return
The allocated number is returned on success. On failure, a negative error code is returned.

int register_sound_mixer (const struct file_operations * fops, int dev)
register a mixer device

Parameters

const struct file_operations * fops File operations for the driver
int dev Unit number to allocate

Description

Allocate a mixer device. Unit is the number of the mixer requested. Pass -1 to request the next
free mixer unit.

Return
On success, the allocated number is returned. On failure, a negative error code is returned.

int register_sound_midi (const struct file_operations * fops, int dev)
register a midi device

Parameters

const struct file operations * fops File operations for the driver
int dev Unit number to allocate

Description

Allocate a midi device. Unit is the number of the midi device requested. Pass -1 to request the
next free midi unit.

Return
On success, the allocated number is returned. On failure, a negative error code is returned.

int register_sound_dsp (const struct file_operations * fops, int dev)
register a DSP device

Parameters
const struct file_operations * fops File operations for the driver
int dev Unit number to allocate

Description

176 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Allocate a DSP device. Unit is the number of the DSP requested. Pass -1 to request the next
free DSP unit.

This function allocates both the audio and dsp device entries together and will always allocate
them as a matching pair - eg dsp3/audio3

Return
On success, the allocated number is returned. On failure, a negative error code is returned.

void unregister_sound_special (int unit)
unregister a special sound device

Parameters
int unit unit number to allocate
Description

Release a sound device that was allocated with register sound special(). The unit passed
is the return value from the register function.

void unregister_sound_mixer (int unit)
unregister a mixer

Parameters
int unit unit number to allocate
Description

Release a sound device that was allocated with register sound mixer(). The unit passed is
the return value from the register function.

void unregister_sound_midi (int unit)
unregister a midi device

Parameters
int unit unit number to allocate
Description

Release a sound device that was allocated with register sound midi(). The unit passed is
the return value from the register function.

void unregister_sound_dsp (int unit)
unregister a DSP device

Parameters
int unit unit number to allocate
Description

Release a sound device that was allocated with register sound dsp(). The unit passed is the
return value from the register function.

Both of the allocated units are released together automatically.

int snd_pcm_stream_linked (struct snd_pcm_substream * substream)
Check whether the substream is linked with others

Parameters
struct snd_pcm_substream * substream substream to check
Description
Returns true if the given substream is being linked with others.

snd_pcm_stream_lock_irqgsave(substream, flags)
Lock the PCM stream

177

The kernel driver API manual, Release 4.13.0-rc4+

Parameters

substream PCM substream
flags irq flags
Description

This locks the PCM stream like snd_pcm_stream lock() but with the local IRQ (only when nonatomic is
false). In nonatomic case, this is identical as snd_pcm_stream lock().

snd_pcm_group_for_each_entry (s, substream)
iterate over the linked substreams

Parameters
s the iterator
substream the substream
Description

Iterate over the all linked substreams to the given substream. When substream isn’t linked with any
others, this gives returns substream itself once.

int snd_pcm_running (struct snd_pcm_substream * substream)
Check whether the substream is in a running state

Parameters

struct snd_pcm_substream * substream substream to check

Description

Returns true if the given substream is in the state RUNNING, or in the state DRAINING for playback.

ssize_t bytes_to_samples (struct snd_pcm_runtime * runtime, ssize_t size)
Unit conversion of the size from bytes to samples

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
ssize_t size size in bytes

snd_pcm_sframes_t bytes_to_frames (struct snd_pcm_runtime * runtime, ssize_t size)
Unit conversion of the size from bytes to frames

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
ssize_t size size in bytes

ssize_t samples_to_bytes (struct snd_pcm_runtime * runtime, ssize_t size)
Unit conversion of the size from samples to bytes

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
ssize t size size in samples

ssize_t frames_to_bytes (struct snd_pcm_runtime * runtime, snd_pcm_sframes_t size)
Unit conversion of the size from frames to bytes

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
snd_pcm_sframes_t size size in frames

int frame_aligned (struct snd_pcm_runtime * runtime, ssize_t bytes)
Check whether the byte size is aligned to frames

178 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
ssize_t bytes size in bytes

size_t snd_pcm_lib_buffer_bytes (struct snd_pcm_substream * substream)
Get the buffer size of the current PCM in bytes

Parameters
struct snd_pcm_substream * substream PCM substream

size t snd_pcm_1lib_period_bytes(struct snd_pcm_substream * substream)
Get the period size of the current PCM in bytes

Parameters
struct snd_pcm_substream * substream PCM substream

snd_pcm_uframes_t snd_pcm_playback_avail(struct snd_pcm_runtime * runtime)
Get the available (writable) space for playback

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance
Description

Result is between 0 ... (boundary - 1)

snd_pcm_uframes_t snd_pcm_capture_avail(struct snd_pcm_runtime * runtime)
Get the available (readable) space for capture

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance
Description

Result is between 0 ... (boundary - 1)

snd_pcm_sframes_t snd_pcm_playback_hw_avail(struct snd_pcm_runtime * runtime)
Get the queued space for playback

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_sframes_t snd_pcm_capture_hw_avail(struct snd_pcm_runtime * runtime)
Get the free space for capture

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

int snd_pcm_playback_ready (struct snd_pcm_substream * substream)
check whether the playback buffer is available

Parameters

struct snd_pcm_substream * substream the pcm substream instance
Description

Checks whether enough free space is available on the playback buffer.
Return

Non-zero if available, or zero if not.

int snd_pcm_capture_ready (struct snd_pcm_substream * substream)
check whether the capture buffer is available

Parameters

179

The kernel driver API manual, Release 4.13.0-rc4+

struct snd_pcm_substream * substream the pcm substream instance
Description

Checks whether enough capture data is available on the capture buffer.
Return

Non-zero if available, or zero if not.

int snd_pcm_playback_data(struct snd_pcm_substream * substream)
check whether any data exists on the playback buffer

Parameters

struct snd_pcm_substream * substream the pcm substream instance
Description

Checks whether any data exists on the playback buffer.

Return

Non-zero if any data exists, or zero if not. If stop_threshold is bigger or equal to boundary, then this
function returns always non-zero.

int snd_pcm_playback_empty (struct snd_pcm_substream * substream)
check whether the playback buffer is empty

Parameters

struct snd_pcm_substream * substream the pcm substream instance
Description

Checks whether the playback buffer is empty.

Return

Non-zero if empty, or zero if not.

int snd_pcm_capture_empty (struct snd_pcm_substream * substream)
check whether the capture buffer is empty

Parameters

struct snd_pcm_substream * substream the pcm substream instance
Description

Checks whether the capture buffer is empty.

Return

Non-zero if empty, or zero if not.

void snd_pcm_trigger done(struct snd_pcm_substream * substream, struct snd_pcm_substream

* master)
Mark the master substream

Parameters

struct snd_pcm_substream * substream the pcm substream instance
struct snd_pcm_substream * master the linked master substream
Description

When multiple substreams of the same card are linked and the hardware supports the single-shot opera-
tion, the driver calls this in the loop in snd_pcm group for each entry() for marking the substream as
“done”. Then most of trigger operations are performed only to the given master substream.

The trigger_master mark is cleared at timestamp updates at the end of trigger operations.

180 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int params_channels (const struct snd_pcm_hw_params * p)
Get the number of channels from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_rate (const struct snd_pcm_hw _params * p)
Get the sample rate from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_period_size(const struct snd_pcm_hw_params * p)
Get the period size (in frames) from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_periods (const struct snd_pcm_hw_params * p)
Get the number of periods from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_buffer_size(const struct snd_pcm_hw_params * p)
Get the buffer size (in frames) from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_buffer_bytes (const struct snd_pcm_hw_params * p)
Get the buffer size (in bytes) from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

int snd_pcm_hw_constraint_single(struct snd_pcm_runtime * runtime, snd_pcm_hw_param_t var,
unsigned int val)
Constrain parameter to a single value

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance
snd_pcm_hw_param_t var The hw_params variable to constrain

unsigned int val The value to constrain to

Return

Positive if the value is changed, zero if it’'s not changed, or a negative error code.

int snd_pcm_format_cpu_endian(snd _pcm format t format)
Check the PCM format is CPU-endian

Parameters

snd_pcm_format_t format the format to check

Return

1 if the given PCM format is CPU-endian, O if opposite, or a negative error code if endian not specified.

void snd_pcm_set_runtime_buffer (struct snd_pcm_substream * substream, struct
snd_dma_buffer * bufp)
Set the PCM runtime buffer

Parameters

181

The kernel driver API manual, Release 4.13.0-rc4+

struct snd_pcm_substream * substream PCM substream to set
struct snd_dma_buffer * bufp the buffer information, NULL to clear
Description

Copy the buffer information to runtime->dma_buffer when bufp is non-NULL. Otherwise it clears the
current buffer information.

void snd_pcm_gettime (struct snd_pcm_runtime * runtime, struct timespec * tv)
Fill the timespec depending on the timestamp mode

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
struct timespec * tv timespec to fill

int snd_pcm_1lib_alloc_vmalloc_buffer (struct snd_pcm_substream * substream, size_t size)
allocate virtual DMA buffer

Parameters

struct snd_pcm_substream * substream the substream to allocate the buffer to
size_t size the requested buffer size, in bytes

Description

Allocates the PCM substream buffer using vmalloc(), i.e., the memory is contiguous in kernel virtual
space, but not in physical memory. Use this if the buffer is accessed by kernel code but not by device
DMA.

Return
1 if the buffer was changed, 0 if not changed, or a negative error code.

int snd_pcm_lib_alloc_vmalloc_32_buffer (struct snd_pcm_substream * substream, size_t size)
allocate 32-bit-addressable buffer

Parameters

struct snd_pcm_substream * substream the substream to allocate the buffer to
size_t size the requested buffer size, in bytes

Description

This function works like snd _pcm lib alloc vmalloc buffer(), but uses vmalloc 32(), i.e., the pages
are allocated from 32-bit-addressable memory.

Return
1 if the buffer was changed, 0 if not changed, or a negative error code.

dma_addr_t snd_pcm_sgbuf_get_addr (struct snd_pcm_substream * substream, unsigned int ofs)
Get the DMA address at the corresponding offset

Parameters
struct snd_pcm_substream * substream PCM substream
unsigned int ofs byte offset

void * snd_pcm_sgbuf_get_ptr(struct snd_pcm_substream * substream, unsigned int ofs)
Get the virtual address at the corresponding offset

Parameters
struct snd_pcm_substream * substream PCM substream

unsigned int ofs byte offset

182 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

unsigned int snd_pcm_sgbuf get_chunk_size(struct snd pcm_substream * substream, unsigned
int ofs, unsigned int size)
Compute the max size that fits within the contig. page from the given size

Parameters

struct snd_pcm_substream * substream PCM substream
unsigned int ofs byte offset

unsigned int size byte size to examine

void snd_pcm_mmap_data_open (struct vm_area_struct * area)
increase the mmap counter

Parameters

struct vm_area_struct * area VMA

Description

PCM mmap callback should handle this counter properly

void snd_pcm_mmap_data_close (struct vm_area_struct * area)
decrease the mmap counter

Parameters

struct vm_area_struct * area VMA

Description

PCM mmap callback should handle this counter properly

void snd_pcm_limit_isa_dma_size(int dma, size_t * max)
Get the max size fitting with ISA DMA transfer

Parameters
int dma DMA number
size_t * max pointer to store the max size

const char * snd_pcm_stream_str(struct snd_pcm_substream * substream)
Get a string naming the direction of a stream

Parameters

struct snd_pcm_substream * substream the pcm substream instance

Return

A string naming the direction of the stream.

struct snd_pcm_substream * snd_pcm_chmap_substream(§trqct snd_pcm_chmap * info, unsigned
get the PCM substream assigned to the given chmaplinntfiadX)

Parameters

struct snd_pcm _chmap * info chmap information

unsigned int idx the substream number index

u64 pcm_format_to_bits(snd_pcm_format t pcm format)
Strong-typed conversion of pcm_format to bitwise

Parameters
snd_pcm_format_t pcm_format PCM format

const char * snd_pcm_format_name(snd_pcm_format_t format)
Return a name string for the given PCM format

183

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
snd_pcm_format_t format PCM format

int snd_pcm_new_stream(struct snd_pcm * pcm, int stream, int substream_count)
create a new PCM stream

Parameters

struct snd_pcm * pcm the pcm instance

int stream the stream direction, SNDRV_PCM_STREAM_XXX
int substream count the number of substreams
Description

Creates a new stream for the pcm. The corresponding stream on the pcm must have been empty before
calling this, i.e. zero must be given to the argument of snd_pcm_new().

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_new (struct snd card *card, const char *id, intdevice, intplayback count,
int capture_count, struct snd_pcm ** rpcm)
create a new PCM instance

Parameters

struct snd_card * card the card instance

const char * id the id string

int device the device index (zero based)

int playback_count the number of substreams for playback

int capture_count the number of substreams for capture

struct snd_pcm ** rpcm the pointer to store the new pcm instance
Description

Creates a new PCM instance.

The pcm operators have to be set afterwards to the new instance via snd _pcm set ops().
Return

Zero if successful, or a negative error code on failure.

int snd_pcm_new_internal(struct snd_card * card, const char *id, int device, int playback count,

int capture_count, struct snd_pcm ** rpcm)
create a new internal PCM instance

Parameters

struct snd_card * card the card instance

const char * id the id string

int device the device index (zero based - shared with normal PCMs)
int playback_count the number of substreams for playback

int capture_count the number of substreams for capture

struct snd_pcm ** rpcm the pointer to store the new pcm instance
Description

Creates a new internal PCM instance with no userspace device or procfs entries. This is used by ASoC
Back End PCMs in order to create a PCM that will only be used internally by kernel drivers. i.e. it cannot

184 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

be opened by userspace. It provides existing ASoC components drivers with a substream and access to
any private data.

The pcm operators have to be set afterwards to the new instance via snd_pcm_set ops().
Return
Zero if successful, or a negative error code on failure.

int snd_pcm_notify (struct snd_pcm_notify * notify, int nfree)
Add/remove the notify list

Parameters

struct snd_pcm_notify * notify PCM notify list
int nfree 0 = register, 1 = unregister
Description

This adds the given notifier to the global list so that the callback is called for each registered PCM devices.
This exists only for PCM OSS emulation, so far.

int snd_device_new(struct snd_card * card, enum snd_device_type type, void * device data, struct
snd_device_ops * ops)
create an ALSA device component

Parameters

struct snd_card * card the card instance

enum snd_device type type the device type, SNDRV_DEV_XXX
void * device_data the data pointer of this device

struct snd_device_ops * ops the operator table
Description

Creates a new device component for the given data pointer. The device will be assigned to the card and
managed together by the card.

The data pointer plays a role as the identifier, too, so the pointer address must be unique and unchanged.
Return
Zero if successful, or a negative error code on failure.

void snd_device_disconnect (struct snd_card * card, void * device_data)
disconnect the device

Parameters

struct snd_card * card the card instance

void * device_data the data pointer to disconnect
Description

Turns the device into the disconnection state, invoking dev_disconnect callback, if the device was already
registered.

Usually called from snd_card _disconnect().
Return
Zero if successful, or a negative error code on failure or if the device not found.

void snd_device_free(struct snd_card * card, void * device data)
release the device from the card

Parameters

struct snd_card * card the card instance

185

The kernel driver API manual, Release 4.13.0-rc4+

void * device_data the data pointer to release
Description

Removes the device from the list on the card and invokes the callbacks, dev_disconnect and dev free,
corresponding to the state. Then release the device.

int snd_device_register(struct snd card * card, void * device _data)
register the device

Parameters

struct snd_card * card the card instance
void * device_data the data pointer to register
Description

Registers the device which was already created via snd device new(). Usually this is called from
snd_card register(), but it can be called later if any new devices are created after invocation of
snd card register().

Return
Zero if successful, or a negative error code on failure or if the device not found.

int snd_info_get_line(struct snd_info_buffer * buffer, char * line, int len)
read one line from the procfs buffer

Parameters

struct snd_info_buffer * buffer the procfs buffer
char * line the buffer to store

int len the max. buffer size

Description

Reads one line from the buffer and stores the string.
Return

Zero if successful, or 1 if error or EOF.

const char * snd_info_get_str(char * dest, const char * src, int len)
parse a string token

Parameters

char * dest the buffer to store the string token

const char * src the original string

int len the max. length of token - 1

Description

Parses the original string and copy a token to the given string buffer.

Return

The updated pointer of the original string so that it can be used for the next call.

struct snd_info_entry * snd_info_create_module_entry(struct module * module, const char

* name, struct snd_info_entry * parent)
create an info entry for the given module

Parameters
struct module * module the module pointer
const char * name the file name

struct snd_info_entry * parent the parent directory

186 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description

Creates a new info entry and assigns it to the given module.
Return

The pointer of the new instance, or NULL on failure.

struct snd_info_entry * snd_info_create_card_entry(struct snd_card * card, const char * name,
struct snd_info_entry * parent)
create an info entry for the given card

Parameters

struct snd_card * card the card instance

const char * name the file name

struct snd_info_entry * parent the parent directory
Description

Creates a new info entry and assigns it to the given card.
Return

The pointer of the new instance, or NULL on failure.

void snd_info_free_entry(struct snd_info_entry * entry)
release the info entry

Parameters

struct snd_info_entry * entry the info entry
Description

Releases the info entry.

int snd_info_register(struct snd_info_entry * entry)
register the info entry

Parameters

struct snd_info_entry * entry the info entry
Description

Registers the proc info entry.

Return

Zero if successful, or a negative error code on failure.

int snd_rawmidi_receive(struct snd_rawmidi_substream * substream, const unsigned char

* buffer, int count)
receive the input data from the device

Parameters

struct snd_rawmidi_substream * substream the rawmidi substream
const unsigned char * buffer the buffer pointer

int count the data size to read

Description

Reads the data from the internal buffer.

Return

The size of read data, or a negative error code on failure.

187

The kernel driver API manual, Release 4.13.0-rc4+

int snd_rawmidi_ transmit_empty (struct snd_rawmidi_substream * substream)
check whether the output buffer is empty

Parameters

struct snd_rawmidi_substream * substream the rawmidi substream
Return

1 if the internal output buffer is empty, 0 if not.

int __snd_rawmidi_transmit_peek(struct snd_rawmidi_substream * substream, unsigned char

* puffer, int count)
copy data from the internal buffer

Parameters

struct snd_rawmidi_substream * substream the rawmidi substream
unsigned char * buffer the buffer pointer

int count data size to transfer

Description

This is a variant of snd_rawmidi transmit peek() without spinlock.

int snd_rawmidi_transmit_peek(struct snd_rawmidi_substream * substream, unsigned char

* puffer, int count)
copy data from the internal buffer

Parameters

struct snd_rawmidi_substream * substream the rawmidi substream
unsigned char * buffer the buffer pointer

int count data size to transfer

Description

Copies data from the internal output buffer to the given buffer.

Call this in the interrupt handler when the midi output is ready, and call snd_rawmidi transmit_ack()
after the transmission is finished.

Return
The size of copied data, or a negative error code on failure.

int __snd_rawmidi_transmit_ack(struct snd_rawmidi_substream * substream, int count)
acknowledge the transmission

Parameters

struct snd_rawmidi_substream * substream the rawmidi substream
int count the transferred count

Description

This is a variant of __ snd_rawmidi transmit ack() without spinlock.

int snd_rawmidi_transmit_ack(struct snd_rawmidi_substream * substream, int count)
acknowledge the transmission

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

int count the transferred count

188 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description

Advances the hardware pointer for the internal output buffer with the given size and updates the condition.
Call after the transmission is finished.

Return
The advanced size if successful, or a negative error code on failure.

int snd_rawmidi_transmit (struct snd_rawmidi_substream * substream, unsigned char * buffer,

int count)
copy from the buffer to the device

Parameters

struct snd_rawmidi_substream * substream the rawmidi substream
unsigned char * buffer the buffer pointer

int count the data size to transfer

Description

Copies data from the buffer to the device and advances the pointer.
Return

The copied size if successful, or a negative error code on failure.

int snd_rawmidi_new (struct snd_card * card, char * id, int device, int output_count, int input_count,
struct snd_rawmidi ** rrawmidi)
create a rawmidi instance

Parameters

struct snd_card * card the card instance

char * id the id string

int device the device index

int output_count the number of output streams

int input_count the number of input streams

struct snd_rawmidi ** rrawmidi the pointer to store the new rawmidi instance
Description

Creates a new rawmidi instance. Use snd _rawmidi set ops() to set the operators to the new instance.
Return

Zero if successful, or a negative error code on failure.

void snd_rawmidi_set_ops(struct snd_rawmidi * rmidi, int stream, const struct snd_rawmidi_ops
* ops)
set the rawmidi operators

Parameters

struct snd_rawmidi * rmidi the rawmidi instance

int stream the stream direction, SNDRV_RAWMIDI_STREAM_XXX
const struct snd_rawmidi ops * ops the operator table
Description

Sets the rawmidi operators for the given stream direction.

void snd_request_card (int card)
try to load the card module

Parameters

189

The kernel driver API manual, Release 4.13.0-rc4+

int card the card number
Description

Tries to load the module “snd-card-X" for the given card number via request_module. Returns immediately
if already loaded.

void * snd_lookup_minor_data(unsigned int minor, int type)
get user data of a registered device

Parameters

unsigned int minor the minor number

int type device type (SNDRV_DEVICE TYPE_XXX)

Description

Checks that a minor device with the specified type is registered, and returns its user data pointer.

This function increments the reference counter of the card instance if an associated instance with the
given minor number and type is found. The caller must call snd _card unref() appropriately later.

Return
The user data pointer if the specified device is found. NULL otherwise.

int snd_register_device(int type, struct snd card * card, intdev, const struct file operations
* f ops, void * private_data, struct device * device)
Register the ALSA device file for the card

Parameters

int type the device type, SNDRV_DEVICE _TYPE_ XXX

struct snd_card * card the card instance

int dev the device index

const struct file operations * f_ops the file operations
void * private_data user pointer for f ops->:c:func:open()
struct device * device the device to register
Description

Registers an ALSA device file for the given card. The operators have to be set in reg parameter.
Return

Zero if successful, or a negative error code on failure.

int snd_unregister_device(struct device * dev)
unregister the device on the given card

Parameters

struct device * dev the device instance

Description

Unregisters the device file already registered via snd_register device().
Return

Zero if successful, or a negative error code on failure.

int copy_to_user_fromio(void user * dst, const volatile void __iomem * src, size_t count)
copy data from mmio-space to user-space

Parameters

void _ user * dst the destination pointer on user-space

190 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

const volatile void _ iomem * src the source pointer on mmio
size_t count the data size to copy in bytes

Description

Copies the data from mmio-space to user-space.

Return

Zero if successful, or non-zero on failure.

int copy_from_user_toio(volatile void __iomem * dst, const void __user * src, size_t count)
copy data from user-space to mmio-space

Parameters

volatile void __iomem * dst the destination pointer on mmio-space
const void __user * src the source pointer on user-space

size t count the data size to copy in bytes

Description

Copies the data from user-space to mmio-space.

Return

Zero if successful, or non-zero on failure.

int snd_pcm_lib_preallocate_free_for_all(struct snd_pcm * pcm)
release all pre-allocated buffers on the pcm

Parameters

struct snd_pcm * pcm the pcm instance
Description

Releases all the pre-allocated buffers on the given pcm.
Return

Zero if successful, or a negative error code on failure.

int snd_pcm_lib_preallocate_pages (struct snd_pcm_substream * substream, int type, struct de-
vice * data, size_t size, size_t max)
pre-allocation for the given DMA type

Parameters

struct snd_pcm_substream * substream the pcm substream instance
int type DMA type (SNDRV_DMA TYPE_*)

struct device * data DMA type dependent data

size_t size the requested pre-allocation size in bytes

size t max the max. allowed pre-allocation size

Description

Do pre-allocation for the given DMA buffer type.

Return

Zero if successful, or a negative error code on failure.

int snd_pcm_lib_preallocate_pages_for_all(struct snd pcm *pcm, inttype, void * data,
size t size, size_t max)
pre-allocation for continuous memory type (all substreams)

Parameters

191

The kernel driver API manual, Release 4.13.0-rc4+

struct snd_pcm * pcm the pcm instance

int type DMA type (SNDRV_DMA TYPE_*)

void * data DMA type dependent data

size_t size the requested pre-allocation size in bytes

size_t max the max. allowed pre-allocation size

Description

Do pre-allocation to all substreams of the given pcm for the specified DMA type.
Return

Zero if successful, or a negative error code on failure.

struct page * snd_pcm_sgbuf_ops_page(struct snd _pcm_substream * substream, unsigned
long offset)
get the page struct at the given offset

Parameters

struct snd_pcm_substream * substream the pcm substream instance
unsigned long offset the buffer offset

Description

Used as the page callback of PCM ops.

Return

The page struct at the given buffer offset. NULL on failure.

int snd_pcm_lib_malloc_pages (struct snd_pcm_substream * substream, size_t size)
allocate the DMA buffer

Parameters

struct snd_pcm_substream * substream the substream to allocate the DMA buffer to

size_t size the requested buffer size in bytes

Description

Allocates the DMA buffer on the BUS type given earlier to snd_pcm 1ib preallocate xxx pages().
Return

1 if the buffer is changed, 0 if not changed, or a negative code on failure.

int snd_pcm_1lib_free_pages (struct snd_pcm_substream * substream)
release the allocated DMA buffer.

Parameters

struct snd_pcm_substream * substream the substream to release the DMA buffer
Description

Releases the DMA buffer allocated via snd_pcm_1ib malloc pages().

Return

Zero if successful, or a negative error code on failure.

int snd_pcm_1lib_free_vmalloc_buffer(struct snd_pcm_substream * substream)
free vmalloc buffer

Parameters

struct snd_pcm_substream * substream the substream with a buffer allocated by
snd _pcm _lib alloc vmalloc buffer()

192 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Return
Zero if successful, or a negative error code on failure.

struct page * snd_pcm_1lib_get_vmalloc_page (struct snd_pcm_substream * substream, unsigned
long offset)
map vmalloc buffer offset to page struct

Parameters

struct snd_pcm_substream * substream the substream with a buffer allocated by
snd _pcm _lib alloc vmalloc buffer()

unsigned long offset offset in the buffer

Description

This function is to be used as the page callback in the PCM ops.
Return

The page struct, or NULL on failure.

void snd_device_initialize (struct device * dev, struct snd_card * card)
Initialize struct device for sound devices

Parameters
struct device * dev device to initialize
struct snd_card * card card to assign, optional

int snd_card_new(struct device * parent, intidx, const char * xid, struct module * module,
int extra_size, struct snd_card ** card _ret)
create and initialize a soundcard structure

Parameters
struct device * parent the parent device object
int idx card index (address) [0 ... (SNDRV_CARDS-1)]
const char * xid card identification (ASCII string)
struct module * module top level module for locking
int extra_size allocate this extra size after the main soundcard structure
struct snd_card ** card_ret the pointer to store the created card instance
Description
Creates and initializes a soundcard structure.

The function allocates snd_card instance via kzalloc with the given space for the driver to use
freely. The allocated struct is stored in the given card_ret pointer.

Return
Zero if successful or a negative error code.

int snd_card_disconnect (struct snd_card * card)
disconnect all APIs from the file-operations (user space)

Parameters
struct snd_card * card soundcard structure
Description
Disconnects all APIs from the file-operations (user space).

193

The kernel driver API manual, Release 4.13.0-rc4+

Return
Zero, otherwise a negative error code.
Note

The current implementation replaces all active file->f_op with special dummy file operations
(they do nothing except release).

int snd_card_free_when_closed(struct snd_card * card)
Disconnect the card, free it later eventually

Parameters
struct snd_card * card soundcard structure
Description

Unlike snd_card free(), this function doesn’t try to release the card resource immediately, but tries to
disconnect at first. When the card is still in use, the function returns before freeing the resources. The
card resources will be freed when the refcount gets to zero.

int snd_card_free(struct snd_card * card)
frees given soundcard structure

Parameters
struct snd_card * card soundcard structure
Description

This function releases the soundcard structure and the all assigned devices automatically. That is, you
don’t have to release the devices by yourself.

This function waits until the all resources are properly released.
Return
Zero. Frees all associated devices and frees the control interface associated to given soundcard.

void snd_card_set_id(struct snd card * card, const char * nid)
set card identification name

Parameters
struct snd_card * card soundcard structure
const char * nid new identification string
Description
This function sets the card identification and checks for name collisions.

int snd_card_add_dev_attr (struct snd_card * card, const struct attribute_group * group)
Append a new sysfs attribute group to card

Parameters
struct snd_card * card card instance
const struct attribute_group * group attribute group to append

int snd_card_register(struct snd _card * card)
register the soundcard

Parameters
struct snd_card * card soundcard structure
Description

This function registers all the devices assigned to the soundcard. Until calling this, the ALSA
control interface is blocked from the external accesses. Thus, you should call this function at
the end of the initialization of the card.

194 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Return
Zero otherwise a negative error code if the registration failed.

int snd_component_add (struct snd_card * card, const char * component)
add a component string

Parameters

struct snd_card * card soundcard structure
const char * component the component id string
Description

This function adds the component id string to the supported list. The component can be referred
from the alsa-lib.

Return
Zero otherwise a negative error code.

int snd_card_file_add (struct snd_card * card, struct file * file)
add the file to the file list of the card

Parameters

struct snd_card * card soundcard structure
struct file * file file pointer
Description

This function adds the file to the file linked-list of the card. This linked-list is used to keep tracking
the connection state, and to avoid the release of busy resources by hotplug.

Return
zero or a negative error code.

int snd_card_file_remove (struct snd_card * card, struct file * file)
remove the file from the file list

Parameters

struct snd_card * card soundcard structure
struct file * file file pointer
Description

This function removes the file formerly added to the card via snd _card file add() function. If
all files are removed and snd _card free when closed() was called beforehand, it processes
the pending release of resources.

Return
Zero or a negative error code.

int snd_power_wait (struct snd_card * card, unsigned int power_state)
wait until the power-state is changed.

Parameters

struct snd_card * card soundcard structure
unsigned int power_state expected power state
Description

Waits until the power-state is changed.

195

The kernel driver API manual, Release 4.13.0-rc4+

Return

Zero if successful, or a negative error code.
Note

the power lock must be active before call.

void snd_dma_program(unsigned long dma, unsigned long addr, unsigned intsize, unsigned

short mode)
program an ISA DMA transfer

Parameters

unsigned long dma the dma number

unsigned long addr the physical address of the buffer
unsigned int size the DMA transfer size

unsigned short mode the DMA transfer mode, DMA_MODE_XXX
Description

Programs an ISA DMA transfer for the given buffer.

void snd_dma_disable(unsigned long dma)
stop the ISA DMA transfer

Parameters

unsigned long dma the dma number
Description

Stops the ISA DMA transfer.

unsigned int snd_dma_pointer (unsigned long dma, unsigned int size)
return the current pointer to DMA transfer buffer in bytes

Parameters

unsigned long dma the dma number

unsigned int size the dma transfer size

Return

The current pointer in DMA transfer buffer in bytes.

void snd_ctl_notify(struct snd_card * card, unsigned int mask, struct snd_ctl_elem_id * id)
Send notification to user-space for a control change

Parameters

struct snd_card * card the card to send notification

unsigned int mask the event mask, SNDRV CTL EVENT *

struct snd_ctl _elem_id * id the ctl element id to send notification
Description

This function adds an event record with the given id and mask, appends to the list and wakes up the
user-space for notification. This can be called in the atomic context.

struct snd_kcontrol * snd_ctl_newl (const struct snd_kcontrol_new * ncontrol, void * private_data)
create a control instance from the template

Parameters
const struct snd_kcontrol _new * ncontrol the initialization record

void * private_data the private data to set

196 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description

Allocates a new struct snd_kcontrol instance and initialize from the given template. When the access field
of ncontrol is 0, it’'s assumed as READWRITE access. When the count field is 0, it's assumes as one.

Return
The pointer of the newly generated instance, or NULL on failure.

void snd_ctl_free_one(struct snd_kcontrol * kcontrol)
release the control instance

Parameters
struct snd_kcontrol * kcontrol the control instance
Description

Releases the control instance created via snd_ctl new() or snd _ctl newl(). Don't call this after the
control was added to the card.

int snd_ctl_add (struct snd_card * card, struct snd_kcontrol * kcontrol)
add the control instance to the card

Parameters

struct snd_card * card the card instance

struct snd_kcontrol * kcontrol the control instance to add
Description

Adds the control instance created via snd_ctl new() or snd ctl newl() to the given card. Assigns also
an unique numid used for fast search.

It frees automatically the control which cannot be added.
Return
Zero if successful, or a negative error code on failure.

int snd_ctl_replace(struct snd_card * card, struct snd_kcontrol * kcontrol, bool add on_replace)
replace the control instance of the card

Parameters

struct snd_card * card the card instance

struct snd_kcontrol * kcontrol the control instance to replace
bool add_on_replace add the control if not already added
Description

Replaces the given control. If the given control does not exist and the add_on_replace flag is set, the
control is added. If the control exists, it is destroyed first.

It frees automatically the control which cannot be added or replaced.
Return
Zero if successful, or a negative error code on failure.

int snd_ctl_remove (struct snd_card * card, struct snd_kcontrol * kcontrol)
remove the control from the card and release it

Parameters
struct snd_card * card the card instance

struct snd_kcontrol * kcontrol the control instance to remove

197

The kernel driver API manual, Release 4.13.0-rc4+

Description

Removes the control from the card and then releases the instance. You don’'t need to call
snd _ctl free one(). You must be in the write lock - down_write(card->controls rwsem).

Return
0 if successful, or a negative error code on failure.

int snd_ctl_remove_id(struct snd card * card, struct snd_ctl elem_id * id)
remove the control of the given id and release it

Parameters

struct snd_card * card the card instance

struct snd_ctl_elem_id * id the control id to remove

Description

Finds the control instance with the given id, removes it from the card list and releases it.
Return

0 if successful, or a negative error code on failure.

int snd_ctl_activate_id(struct snd_card * card, struct snd_ctl_elem_id * id, int active)
activate/inactivate the control of the given id

Parameters

struct snd_card * card the card instance

struct snd_ctl_elem_id * id the control id to activate/inactivate
int active non-zero to activate

Description

Finds the control instance with the given id, and activate or inactivate the control together with notification,
if changed. The given ID data is filled with full information.

Return
0 if unchanged, 1 if changed, or a negative error code on failure.

int snd_ctl_rename_id(struct snd _card *card, struct snd_ctl elem_id *src id, struct
snd_ctl_elem_id * dst_id)
replace the id of a control on the card

Parameters

struct snd_card * card the card instance

struct snd_ctl_elem_id * src_id the old id

struct snd_ctl _elem_id * dst_id the new id

Description

Finds the control with the old id from the card, and replaces the id with the new one.
Return

Zero if successful, or a negative error code on failure.

struct snd_kcontrol * snd_ctl_find_numid (struct snd_card * card, unsigned int numid)
find the control instance with the given number-id

Parameters
struct snd_card * card the card instance
unsigned int numid the number-id to search

198 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description

Finds the control instance with the given number-id from the card.

The caller must down card->controls_rwsem before calling this function (if the race condition can happen).

Return
The pointer of the instance if found, or NULL if not.

struct snd_kcontrol * snd_ctl_find_id(struct snd_card * card, struct snd_ctl elem_id * id)
find the control instance with the given id

Parameters

struct snd_card * card the card instance
struct snd_ctl_elem_id * id the id to search
Description

Finds the control instance with the given id from the card.

The caller must down card->controls_rwsem before calling this function (if the race condition can happen).

Return
The pointer of the instance if found, or NULL if not.

int snd_ctl_register_ioctl(snd_kctl_ioctl func_t fcn)
register the device-specific control-ioctls

Parameters

snd_kctl_ioctl_func_t fcn ioctl callback function
Description

called from each device manager like pcm.c, hwdep.c, etc.

int snd_ctl_register_ioctl_compat(snd_kctl ioctl func_t fcn)
register the device-specific 32bit compat control-ioctls

Parameters
snd_kctl _ioctl_func_t fcn ioctl callback function

int snd_ctl_unregister_ioctl(snd_kctl_ioctl_func_t fcn)
de-register the device-specific control-ioctls

Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function to unregister

int snd_ctl_unregister_ioctl_compat (snd_kctl ioctl func_t fcn)
de-register the device-specific compat 32bit control-ioctls

Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function to unregister

int snd_ctl_boolean_mono_info (struct snd_kcontrol * kcontrol, struct snd_ctl_elem_info * uinfo)
Helper function for a standard boolean info callback with a mono channel

Parameters
struct snd_kcontrol * kcontrol the kcontrol instance
struct snd_ctl_elem_info * uinfo info to store

Description

This is a function that can be used as info callback for a standard boolean control with a single mono

channel.

199

The kernel driver API manual, Release 4.13.0-rc4+

int snd_ctl _boolean_stereo_info(struct snd_kcontrol * kcontrol, struct snd_ctl _elem_info * uinfo)
Helper function for a standard boolean info callback with stereo two channels

Parameters

struct snd_kcontrol * kcontrol the kcontrol instance

struct snd_ctl _elem_info * uinfo info to store

Description

This is a function that can be used as info callback for a standard boolean control with stereo two channels.

int snd_ctl_enum_info(struct snd ctl elem_info * info, unsigned int channels, unsigned int items,

_ _ const char *const names)
fills the info structure for an enumerated control

Parameters

struct snd_ctl_elem_info * info the structure to be filled

unsigned int channels the number of the control’s channels; often one
unsigned int items the number of control values; also the size of names
const char *const names an array containing the names of all control values
Description

Sets all required fields in info to their appropriate values. If the control’s accessibility is not the default
(readable and writable), the caller has to fill info->access.

Return
Zero.

void snd_pcm_set_ops (struct snd_pcm * pcm, int direction, const struct snd_pcm_ops * ops)
set the PCM operators

Parameters

struct snd_pcm * pcm the pcm instance

int direction stream direction, SNDRV_PCM_STREAM_XXX
const struct snd_pcm_ops * ops the operator table
Description

Sets the given PCM operators to the pcm instance.

void snd_pcm_set_sync(struct snd_pcm_substream * substream)
set the PCM sync id

Parameters

struct snd_pcm_substream * substream the pcm substream
Description

Sets the PCM sync identifier for the card.

int snd_interval_refine (struct snd_interval * i, const struct snd_interval * v)
refine the interval value of configurator

Parameters
struct snd_interval * i the interval value to refine

const struct snd_interval * v the interval value to refer to

200 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description

Refines the interval value with the reference value. The interval is changed to the range satisfying both
intervals. The interval status (min, max, integer, etc.) are evaluated.

Return
Positive if the value is changed, zero if it’'s not changed, or a negative error code.

int snd_interval_ratnum(struct snd_interval * i, unsigned int rats_count, const struct snd_ratnum
* rats, unsigned int * nump, unsigned int * denp)
refine the interval value

Parameters

struct snd_interval * i interval to refine

unsigned int rats_count number of rathum_t

const struct snd_ratnum * rats ratnum_t array

unsigned int * nump pointer to store the resultant numerator

unsigned int * denp pointer to store the resultant denominator

Return

Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_interval_list (structsnd_interval * i, unsigned int count, const unsigned int * /ist, unsigned

int mask)
refine the interval value from the list

Parameters

struct snd_interval * i the interval value to refine
unsigned int count the number of elements in the list
const unsigned int * 1list the value list

unsigned int mask the bit-mask to evaluate
Description

Refines the interval value from the list. When mask is non-zero, only the elements corresponding to bit 1
are evaluated.

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_interval_ranges (struct snd_interval */, unsigned int count, const struct snd_interval

* ranges, unsigned int mask)
refine the interval value from the list of ranges

Parameters

struct snd_interval * i the interval value to refine

unsigned int count the number of elements in the list of ranges
const struct snd_interval * ranges the ranges list

unsigned int mask the bit-mask to evaluate

Description

Refines the interval value from the list of ranges. When mask is non-zero, only the elements corresponding
to bit 1 are evaluated.

Return

Positive if the value is changed, zero if it’'s not changed, or a negative error code.

201

The kernel driver API manual, Release 4.13.0-rc4+

int snd_pcm_hw_rule_add(struct snd _pcm_runtime * runtime, unsigned intcond, intvar,
snd_pcm_hw_rule func_t func, void * private, int dep, ...)
add the hw-constraint rule

Parameters
struct snd_pcm_runtime * runtime the pcm runtime instance
unsigned int cond condition bits
int var the variable to evaluate
snd_pcm_hw_rule_func_t func the evaluation function
void * private the private data pointer passed to function
int dep the dependent variables
. variable arguments
Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_mask64 (struct snd_pcm_runtime * runtime, snd_pcm_hw_param_t var,
u_int64 t mask)
apply the given bitmap mask constraint

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance
snd_pcm_hw_param_t var hw_params variable to apply the mask
u_int64_t mask the 64bit bitmap mask

Description

Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
Return

Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_integer (struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var)
apply an integer constraint to an interval

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance
snd_pcm_hw_param_t var hw_params variable to apply the integer constraint
Description

Apply the constraint of integer to an interval parameter.

Return

Positive if the value is changed, zero if it's not changed, or a negative error code.

int snd_pcm_hw_constraint_minmax (struct snd_pcm_runtime * runtime, snd_pcm_hw_param _t var,
unsigned int min, unsigned int max)
apply a min/max range constraint to an interval

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance
snd_pcm_hw_param_t var hw_params variable to apply the range
unsigned int min the minimal value

unsigned int max the maximal value

202 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Description

Apply the min/max range constraint to an interval parameter.

Return

Positive if the value is changed, zero if it’'s not changed, or a negative error code.

int snd_pcm_hw_constraint_list (struct snd_pcm_runtime * runtime, unsigned
int cond, snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_list * /)
apply a list of constraints to a parameter

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the list constraint
const struct snd_pcm_hw_constraint_list * 1 list

Description

Apply the list of constraints to an interval parameter.

Return

Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_ranges (struct snd_pcm_runtime * runtime, unsigned
int cond, snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_ranges * r)
apply list of range constraints to a parameter

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the list of range constraints
const struct snd_pcm_hw_constraint_ranges * r ranges

Description

Apply the list of range constraints to an interval parameter.

Return

Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_ratnums (struct snd_pcm_runtime * runtime, unsigned
int cond, snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_ratnums * r)
apply rathums constraint to a parameter

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the rathums constraint

const struct snd_pcm_hw_constraint_ratnums * r struct snd_ratnums constriants
Return

Zero if successful, or a negative error code on failure.

203

The kernel driver API manual, Release 4.13.0-rc4+

int snd_pcm_hw_constraint_ratdens (struct snd_pcm_runtime * runtime, unsigned
int cond, snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_ratdens * r)
apply ratdens constraint to a parameter

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the ratdens constraint

const struct snd_pcm_hw_constraint_ratdens * r struct snd ratdens constriants
Return

Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_msbits (struct snd_pcm_runtime * runtime, unsigned int cond, un-
signed int width, unsigned int msbits)
add a hw constraint msbits rule

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance
unsigned int cond condition bits

unsigned int width sample bits width

unsigned int mshits msbits width

Description

This constraint will set the number of most significant bits (msbits) if a sample format with the specified
width has been select. If width is set to 0 the msbits will be set for any sample format with a width larger
than the specified msbits.

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_step(struct snd_pcm_runtime * runtime, unsigned int cond,
snd_pcm_hw_param_t var, unsigned long step)
add a hw constraint step rule

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the step constraint
unsigned long step step size

Return

Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime * runtime, unsigned int cond,
snd_pcm_hw_param_t var)
add a hw constraint power-of-2 rule

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance
unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the power-of-2 constraint

204 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_rule_noresample (struct snd_pcm_runtime * runtime, unsigned int base_rate)
add a rule to allow disabling hw resampling

Parameters

struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int base_rate the rate at which the hardware does not resample
Return

Zero if successful, or a negative error code on failure.

int snd_pcm_hw_param_value (const struct snd_pcm_hw_params * params,
snd_pcm_hw_param_t var, int * dir)
return params field var value

Parameters

const struct snd_pcm_hw_params * params the hw_params instance

snd_pcm_hw_param_t var parameter to retrieve

int * dir pointer to the direction (-1,0,1) or NULL

Return

The value for field var if it’s fixed in configuration space defined by params. -EINVAL otherwise.

int snd_pcm_hw_param_first(struct snd _pcm_substream * pcm, struct snd _pcm_hw_params
* params, snd_pcm_hw_param_t var, int * dir)
refine config space and return minimum value

Parameters

struct snd_pcm_substream * pcm PCM instance

struct snd_pcm_hw_params * params the hw_params instance
snd_pcm_hw_param_t var parameter to retrieve

int * dir pointer to the direction (-1,0,1) or NULL

Description

Inside configuration space defined by params remove from var all values > minimum. Reduce configu-
ration space accordingly.

Return
The minimum, or a negative error code on failure.

int snd_pcm_hw_param_last (struct snd_pcm_substream * pcm, struct snd_pcm_hw_params
* params, snd_pcm_hw _param_t var, int * dir)
refine config space and return maximum value

Parameters

struct snd_pcm_substream * pcm PCM instance

struct snd_pcm_hw_params * params the hw_params instance
snd_pcm_hw_param_t var parameter to retrieve

int * dir pointer to the direction (-1,0,1) or NULL

Description

Inside configuration space defined by params remove from var all values < maximum. Reduce configu-
ration space accordingly.

205

The kernel driver API manual, Release 4.13.0-rc4+

Return
The maximum, or a negative error code on failure.

int snd_pcm_1lib_ioctl(struct snd_pcm_substream * substream, unsigned int cmd, void * arg)
a generic PCM ioctl callback

Parameters

struct snd_pcm_substream * substream the pcm substream instance

unsigned int cmd ioctl command

void * arg ioctl argument

Description

Processes the generic ioctl commands for PCM. Can be passed as the ioctl callback for PCM ops.
Return

Zero if successful, or a negative error code on failure.

void snd_pcm_period_elapsed(struct snd_pcm_substream * substream)
update the pcm status for the next period

Parameters
struct snd_pcm_substream * substream the pcm substream instance
Description

This function is called from the interrupt handler when the PCM has processed the period size. It will
update the current pointer, wake up sleepers, etc.

Even if more than one periods have elapsed since the last call, you have to call this only once.

int snd_pcm_add_chmap_ctls (struct snd_pcm * pcm, int stream, const struct snd_pcm_chmap_elem
* chmap, int max _channels, unsigned long private value, struct
snd_pcm_chmap ** info_ret)
create channel-mapping control elements

Parameters

struct snd_pcm * pcm the assigned PCM instance

int stream stream direction

const struct snd_pcm_chmap_elem * chmap channel map elements (for query)

int max_channels the max number of channels for the stream

unsigned long private_value the value passed to each kcontrol’s private value field
struct snd_pcm_chmap ** info_ret store struct snd_pcm_chmap instance if non-NULL
Description

Create channel-mapping control elements assigned to the given PCM stream(s).
Return

Zero if successful, or a negative error value.

int snd_hwdep_new (struct snd_card * card, char * id, int device, struct snd_hwdep ** rhwdep)
create a new hwdep instance

Parameters

struct snd_card * card the card instance
char * id the id string

int device the device index (zero-based)

206 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

struct snd_hwdep ** rhwdep the pointer to store the new hwdep instance
Description

Creates a new hwdep instance with the given index on the card. The callbacks (hwdep->ops) must be set
on the returned instance after this call manually by the caller.

Return
Zero if successful, or a negative error code on failure.

void snd_pcm_stream_lock(struct snd_pcm_substream * substream)
Lock the PCM stream

Parameters
struct snd_pcm_substream * substream PCM substream
Description

This locks the PCM stream’s spinlock or mutex depending on the nonatomic flag of the given substream.
This also takes the global link rw lock (or rw sem), too, for avoiding the race with linked streams.

void snd_pcm_stream_unlock(struct snd_pcm_substream * substream)
Unlock the PCM stream

Parameters

struct snd_pcm_substream * substream PCM substream

Description

This unlocks the PCM stream that has been locked via snd_pcm_stream lock().

void snd_pcm_stream_lock_irq(struct snd pcm_substream * substream)
Lock the PCM stream

Parameters
struct snd_pcm_substream * substream PCM substream
Description

This locks the PCM stream like snd_pcm_stream lock() and disables the local IRQ (only when nonatomic
is false). In nonatomic case, this is identical as snd_pcm_stream lock().

void snd_pcm_stream_unlock_irq(struct snd_pcm_substream * substream)
Unlock the PCM stream

Parameters

struct snd_pcm_substream * substream PCM substream
Description

This is a counter-part of snd _pcm stream lock irq().

void snd_pcm_stream_unlock_irqrestore(struct snd pcm_substream * substream, unsigned
long flags)
Unlock the PCM stream

Parameters

struct snd_pcm_substream * substream PCM substream
unsigned long flags irq flags

Description

This is a counter-part of snd_pcm _stream lock irgsave().

int snd_pecm_stop (struct snd_pcm_substream * substream, snd_pcm_state_t state)
try to stop all running streams in the substream group

207

The kernel driver API manual, Release 4.13.0-rc4+

Parameters

struct snd_pcm_substream * substream the PCM substream instance
snd_pcm_state_t state PCM state after stopping the stream

Description

The state of each stream is then changed to the given state unconditionally.
Return

Zero if successful, or a negative error code.

int snd_pcm_stop_xrun(struct snd_pcm_substream * substream)
stop the running streams as XRUN

Parameters
struct snd_pcm_substream * substream the PCM substream instance
Description

This stops the given running substream (and all linked substreams) as XRUN. Unlike snd_pcm_stop(), this
function takes the substream lock by itself.

Return
Zero if successful, or a negative error code.

int snd_pcm_suspend (struct snd_pcm_substream * substream)
trigger SUSPEND to all linked streams

Parameters

struct snd_pcm_substream * substream the PCM substream
Description

After this call, all streams are changed to SUSPENDED state.
Return

Zero if successful (or substream is NULL), or a negative error code.

int snd_pcm_suspend_all(struct snd_pcm * pcm)
trigger SUSPEND to all substreams in the given pcm

Parameters

struct snd_pcm * pcm the PCM instance

Description

After this call, all streams are changed to SUSPENDED state.
Return

Zero if successful (or pem is NULL), or a negative error code.

int snd_pcm_kernel_ioctl(struct snd_pcm_substream * substream, unsigned int cmd, void * arg)
Execute PCM ioctl in the kernel-space

Parameters

struct snd_pcm_substream * substream PCM substream
unsigned int cmd IOCTL cmd

void * arg IOCTL argument

Description

The function is provided primarily for OSS layer and USB gadget drivers, and it allows only the limited set
of ioctls (hw_params, sw_params, prepare, start, drain, drop, forward).

208 Chapter 8. Sound Devices

The kernel driver API manual, Release 4.13.0-rc4+

int snd_pcm_1lib_default_mmap (struct snd _pcm substream * substream, struct vm_area struct

* area)
Default PCM data mmap function

Parameters

struct snd_pcm_substream * substream PCM substream
struct vm_area_struct * area VMA

Description

This is the default mmap handler for PCM data. When mmap pcm_ops is NULL, this function is invoked
implicitly.

int snd_pcm_1lib_mmap_iomem(struct snd _pcm _substream * substream, struct vm_area struct

* area)
Default PCM data mmap function for I/O mem

Parameters

struct snd_pcm_substream * substream PCM substream
struct vm_area_struct * area VMA

Description

When your hardware uses the iomapped pages as the hardware buffer and wants to mmap it, pass this
function as mmap pcm_ops. Note that this is supposed to work only on limited architectures.

void * snd_malloc_pages (size_t size, gfp_t gfp_flags)
allocate pages with the given size

Parameters

size_t size the size to allocate in bytes

gfp_t gfp_flags the allocation conditions, GFP_XXX
Description

Allocates the physically contiguous pages with the given size.
Return

The pointer of the buffer, or NULL if no enough memory.

void snd_free_pages (void * ptr, size_t size)
release the pages

Parameters

void * ptr the buffer pointer to release

size_t size the allocated buffer size

Description

Releases the buffer allocated via snd_malloc pages().

int snd_dma_alloc_pages (int type, struct device * device, size tsize, struct snd _dma_buffer

* dmab)
allocate the buffer area according to the given type

Parameters

int type the DMA buffer type

struct device * device the device pointer
size_t size the buffer size to allocate

struct snd_dma_buffer * dmab buffer allocation record to store the allocated data

209

The kernel driver API manual, Release 4.13.0-rc4+

Description

Calls the memory-allocator function for the corresponding buffer type.

Return

Zero if the buffer with the given size is allocated successfully, otherwise a negative value on error.

int snd_dma_alloc_pages_fallback(int type, struct device * device, size_tsize, struct
snd_dma_buffer * dmab)
allocate the buffer area according to the given type with fallback

Parameters

int type the DMA buffer type

struct device * device the device pointer

size t size the buffer size to allocate

struct snd_dma_buffer * dmab buffer allocation record to store the allocated data
Description

Calls the memory-allocator function for the corresponding buffer type. When no space is left, this function
reduces the size and tries to allocate again. The size actually allocated is stored in res_size argument.

Return
Zero if the buffer with the given size is allocated successfully, otherwise a negative value on error.

void snd_dma_free_pages (struct snd_dma_buffer * dmab)
release the allocated buffer

Parameters

struct snd_dma_buffer * dmab the buffer allocation record to release
Description

Releases the allocated buffer via snd_dma_alloc pages().

210 Chapter 8. Sound Devices

CHAPTER
NINE

FRAME BUFFER LIBRARY

The frame buffer drivers depend heavily on four data structures. These structures are declared in in-
clude/linux/fb.h. They are fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs. The last three
can be made available to and from userland.

fb_info defines the current state of a particular video card. Inside fb_info, there exists a fb_ops structure
which is a collection of needed functions to make fbdev and fbcon work. fb_info is only visible to the
kernel.

fb_var_screeninfo is used to describe the features of a video card that are user defined. With
fb_var_screeninfo, things such as depth and the resolution may be defined.

The next structure is fb_fix_screeninfo. This defines the properties of a card that are created when a mode
is set and can’t be changed otherwise. A good example of this is the start of the frame buffer memory.
This “locks” the address of the frame buffer memory, so that it cannot be changed or moved.

The last structure is fb_monospecs. In the old API, there was little importance for fbo_monospecs. This
allowed for forbidden things such as setting a mode of 800x600 on a fix frequency monitor. With the new
API, fb_monospecs prevents such things, and if used correctly, can prevent a monitor from being cooked.
fb_monospecs will not be useful until kernels 2.5.x.

9.1 Frame Buffer Memory

int register_framebuffer (struct fb_info * fb_info)
registers a frame buffer device

Parameters
struct fb_info * fb_info frame buffer info structure
Description

Registers a frame buffer device fb_info.

Returns negative errno on error, or zero for success.

int unregister_framebuffer (struct fb_info * fb_info)
releases a frame buffer device

Parameters
struct fb_info * fb_info frame buffer info structure
Description

Unregisters a frame buffer device fb_info.

Returns negative errno on error, or zero for success.

This function will also notify the framebuffer console to release the driver.

211

The kernel driver API manual, Release 4.13.0-rc4+

This is meant to be called within a driver’'s module exit() function. If this is called outside
module exit(), ensure that the driver implements fb_open() and fb_release() to check that

no processes are using the device.

void fb_set_suspend (struct fb_info * info, int state)
low level driver signals suspend

Parameters
struct fb_info * info framebuffer affected
int state 0 = resuming, !=0 = suspending

Description

This is meant to be used by low level drivers to signal suspend/resume to the core & clients. It

must be called with the console semaphore held

9.2 Frame Buffer Colormap

void fb_dealloc_cmap (struct fb_cmap * cmap)
deallocate a colormap

Parameters
struct fb_cmap * cmap frame buffer colormap structure
Description

Deallocates a colormap that was previously allocated with fb_alloc_cmap().

int fb_copy_cmap (const struct fb_cmap * from, struct fb_cmap * to)
copy a colormap

Parameters
const struct fb_cmap * from frame buffer colormap structure
struct fb_cmap * to frame buffer colormap structure
Description

Copy contents of colormap from from to to.

int fb_set_cmap (struct fb_cmap * cmap, struct fb_info * info)
set the colormap

Parameters
struct fb_cmap * cmap frame buffer colormap structure
struct fb_info * info frame buffer info structure
Description
Sets the colormap ecmap for a screen of device info.
Returns negative errno on error, or zero on success.

const struct fb_cmap * fb_default_cmap(int /en)
get default colormap

Parameters
int 1len size of palette for a depth
Description

212 Chapter 9.

Frame Buffer Library

The kernel driver API manual, Release 4.13.0-rc4+

Gets the default colormap for a specific screen depth. len is the size of the palette for a particular
screen depth.

Returns pointer to a frame buffer colormap structure.

void fb_invert_cmaps (void)
invert all defaults colormaps

Parameters
void no arguments
Description

Invert all default colormaps.

9.3 Frame Buffer Video Mode Database

int fb_try_mode (struct fb_var_screeninfo * var, struct fb_info * info, const struct fb_videomode

* mode, unsigned int bpp)
test a video mode

Parameters
struct fb_var_screeninfo * var frame buffer user defined part of display
struct fb_info * info frame buffer info structure
const struct fb_videomode * mode frame buffer video mode structure
unsigned int bpp color depth in bits per pixel
Description

Tries a video mode to test it's validity for device info.

Returns 1 on success.

void fb_delete_videomode (const struct fb_videomode * mode, struct list_head * head)
removed videomode entry from modelist

Parameters

const struct fb_videomode * mode videomode to remove
struct list_head * head struct list_ head of modelist
NOTES

Will remove all matching mode entries

int fb_find_mode (struct fb_var screeninfo * var, struct fb_info * info, const char * mode option,
const struct fb_videomode * db, unsigned int dbsize, const struct fb_videomode
* default_mode, unsigned int default_bpp)
finds a valid video mode

Parameters

struct fb_var_screeninfo * var frame buffer user defined part of display
struct fb_info * info frame buffer info structure

const char * mode_option string video mode to find

const struct fb_videomode * db video mode database

unsigned int dbsize size of db

const struct fb_videomode * default_mode default video mode to fall back to

unsigned int default_bpp default color depth in bits per pixel

9.3. Frame Buffer Video Mode Database 213

The kernel driver API manual, Release 4.13.0-rc4+

Description

Finds a suitable video mode, starting with the specified mode in mode_option with fallback to
default_mode. If default_mode fails, all modes in the video mode database will be tried.

Valid mode specifiers for mode_option:
<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m] or <name>[-<bpp>][@<refresh>]
with <xres>, <yres>, <bpp> and <refresh> decimal numbers and <name> a string.

If ‘M’ is present after yres (and before refresh/bpp if present), the function will compute
the timings using VESA(tm) Coordinated Video Timings (CVT). If ‘R’ is present after ‘M’,
will compute with reduced blanking (for flatpanels). If ‘i’ is present, compute interlaced
mode. If ‘m’ is present, add margins equal to 1.8% of xres rounded down to 8 pixels,
and 1.8% of yres. The char ‘i’ and ‘m’ must be after ‘M’ and ‘R’. Example:

1024x768MR-8**60m** - Reduced blank with margins at 60Hz.
NOTE

The passed struct var is _not_ cleared! This allows you to supply values for e.g. the grayscale and
accel_flags fields.

Returns zero for failure, 1 if using specified mode_option, 2 if using specified mode_option with
an ignored refresh rate, 3 if default mode is used, 4 if fall back to any valid mode.

void fb_var_to_videomode (struct fb_videomode * mode, const struct fb_var_screeninfo * var)
convert fb_var_screeninfo to fb_videomode

Parameters
struct fb_videomode * mode pointer to struct fb_videomode
const struct fb_var_screeninfo * var pointer to struct fb_var screeninfo

void fb_videomode_to_var(struct fb_var_screeninfo * var, const struct fb_videomode * mode)
convert fb_videomode to fb_var_screeninfo

Parameters
struct fb_var_screeninfo * var pointer to struct fb_var_screeninfo
const struct fb_videomode * mode pointer to struct fb_videomode

int fb_mode_is_equal(const struct fb_videomode * model, const struct fb_videomode * mode2)
compare 2 videomodes

Parameters

const struct fb_videomode * model first videomode
const struct fb_videomode * mode2 second videomode
Return

1 if equal, O if not

const struct fb_videomode * fb_find_best_mode(const struct fb_var screeninfo *var, struct
list head * head)
find best matching videomode

Parameters

const struct fb_var_screeninfo * var pointer to struct fb_var_screeninfo
struct list_head * head pointer to struct list_head of modelist

Return

struct fb_videomode, NULL if none found

IMPORTANT: This function assumes that all modelist entries in info->modelist are valid.

214 Chapter 9. Frame Buffer Library

The kernel driver API manual, Release 4.13.0-rc4+

NOTES

Finds best matching videomode which has an equal or greater dimension than var->xres and var->yres.
If more than 1 videomode is found, will return the videomode with the highest refresh rate

const struct fb_videomode * fb_find_nearest_mode(const struct fb_videomode * mode, struct
list head * head)
find closest videomode

Parameters

const struct fb_videomode * mode pointer to struct fb_videomode
struct list_head * head pointer to modelist

Description

Finds best matching videomode, smaller or greater in dimension. If more than 1 videomode is found, will
return the videomode with the closest refresh rate.

const struct fb_videomode * fb_match_mode (const struct fb_var_screeninfo * var, struct list head

* head)
find a videomode which exactly matches the timings in var

Parameters

const struct fb_var_screeninfo * var pointer to struct fb_var screeninfo
struct list_head * head pointer to struct list_head of modelist

Return

struct fb_videomode, NULL if none found

int fb_add_videomode (const struct fb_videomode * mode, struct list_head * head)
adds videomode entry to modelist

Parameters

const struct fb_videomode * mode videomode to add
struct list_head * head struct list_ head of modelist
NOTES

Will only add unmatched mode entries

void fb_destroy modelist (struct list head * head)
destroy modelist

Parameters
struct list_head * head struct list_head of modelist

void fb_videomode_to modelist (const struct fb_videomode * modedb, int num, struct list head

* head)
convert mode array to mode list

Parameters
const struct fb_videomode * modedb array of struct fb_videomode
int num number of entries in array

struct list_head * head struct list_ head of modelist

9.4 Frame Buffer Macintosh Video Mode Database

int mac_vmode_to_var (int vmode, int cmode, struct fb_var_screeninfo * var)
converts vmode/cmode pair to var structure

9.4. Frame Buffer Macintosh Video Mode Database 215

The kernel driver API manual, Release 4.13.0-rc4+

Parameters
int vmode MacOS video mode
int cmode MacOS color mode
struct fb_var_screeninfo * var frame buffer video mode structure
Description
Converts a MacOS vmode/cmode pair to a frame buffer video mode structure.
Returns negative errno on error, or zero for success.

int mac_map_monitor_sense(int sense)
Convert monitor sense to vmode

Parameters

int sense Macintosh monitor sense number

Description
Converts a Macintosh monitor sense number to a MacOS vmode number.
Returns MacOS vmode video mode number.

int mac_find_mode (struct fb_var_screeninfo * var, struct fb_info * info, const char * mode_option,
unsigned int default _bpp)
find a video mode

Parameters

struct fb_var_screeninfo * var frame buffer user defined part of display
struct fb_info * info frame buffer info structure

const char * mode_option video mode name (see mac_modedb[])
unsigned int default_bpp default color depth in bits per pixel
Description

Finds a suitable video mode. Tries to set mode specified by mode_option. If the name of the
wanted mode begins with ‘mac’, the Mac video mode database will be used, otherwise it will
fall back to the standard video mode database.

Note
Function marked as __init and can only be used during system boot.

Returns error code from fb_find_mode (see fb_find_mode function).

9.5 Frame Buffer Fonts

Refer to the file lib/fonts/fonts.c for more information.

216 Chapter 9. Frame Buffer Library

CHAPTER
TEN

VOLTAGE AND CURRENT REGULATOR API

Author Liam Girdwood
Author Mark Brown

10.1 Introduction

This framework is designed to provide a standard kernel interface to control voltage and current regulators.

The intention is to allow systems to dynamically control regulator power output in order to save power
and prolong battery life. This applies to both voltage regulators (where voltage output is controllable) and
current sinks (where current limit is controllable).

Note that additional (and currently more complete) documentation is available in the Linux kernel source
under Documentation/power/regulator.

10.1.1 Glossary

The regulator API uses a number of terms which may not be familiar:
Regulator

Electronic device that supplies power to other devices. Most regulators can enable and disable
their output and some can also control their output voltage or current.

Consumer

Electronic device which consumes power provided by a regulator. These may either be static,
requiring only a fixed supply, or dynamic, requiring active management of the regulator at
runtime.

Power Domain

The electronic circuit supplied by a given regulator, including the regulator and all consumer
devices. The configuration of the regulator is shared between all the components in the circuit.

Power Management Integrated Circuit (PMIC)

An IC which contains numerous regulators and often also other subsystems. In an embedded
system the primary PMIC is often equivalent to a combination of the PSU and southbridge in a
desktop system.

10.2 Consumer driver interface

This offers a similar API to the kernel clock framework. Consumer drivers use get and put operations to
acquire and release regulators. Functions are provided to enable and disable the regulator and to get and
set the runtime parameters of the regulator.

217

The kernel driver API manual, Release 4.13.0-rc4+

When requesting regulators consumers use symbolic names for their supplies, such as “Vcc”, which are
mapped into actual regulator devices by the machine interface.

A stub version of this APl is provided when the regulator framework is not in use in order to minimise the
need to use ifdefs.

10.2.1 Enabling and disabling

The regulator API provides reference counted enabling and disabling of regulators. Consumer devices use
the regulator enable() and regulator disable() functions to enable and disable regulators. Calls to
the two functions must be balanced.

Note that since multiple consumers may be using a regulator and machine constraints may not allow the
regulator to be disabled there is no guarantee that calling regulator disable() will actually cause the
supply provided by the regulator to be disabled. Consumer drivers should assume that the regulator may
be enabled at all times.

10.2.2 Configuration

Some consumer devices may need to be able to dynamically configure their supplies. For example, MMC
drivers may need to select the correct operating voltage for their cards. This may be done while the
regulator is enabled or disabled.

The regulator set voltage() and regulator set current limit() functions provide the primary in-
terface for this. Both take ranges of voltages and currents, supporting drivers that do not require a specific
value (eg, CPU frequency scaling normally permits the CPU to use a wider range of supply voltages at lower
frequencies but does not require that the supply voltage be lowered). Where an exact value is required
both minimum and maximum values should be identical.

10.2.3 Callbacks

Callbacks may also be registered for events such as regulation failures.

10.3 Regulator driver interface

Drivers for regulator chips register the regulators with the regulator core, providing operations structures
to the core. A notifier interface allows error conditions to be reported to the core.

Registration should be triggered by explicit setup done by the platform, supplying a struct regula-
tor init data for the regulator containing constraint and supply information.

10.4 Machine interface

This interface provides a way to define how regulators are connected to consumers on a given system
and what the valid operating parameters are for the system.

10.4.1 Supplies

Reqgulator supplies are specified using struct regulator consumer supply. This is done at driver regis-
tration time as part of the machine constraints.

218 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

10.4.2 Constraints

As well as defining the connections the machine interface also provides constraints defining the operations
that clients are allowed to perform and the parameters that may be set. This is required since generally
regulator devices will offer more flexibility than it is safe to use on a given system, for example supporting
higher supply voltages than the consumers are rated for.

This is done at driver registration time’ by providing a struct regulation constraints.

The constraints may also specify an initial configuration for the regulator in the constraints, which is
particularly useful for use with static consumers.

10.5 API reference

Due to limitations of the kernel documentation framework and the existing layout of the source code the
entire regulator APl is documented here.

struct pre_voltage_change_data
Data sent with PRE_VOLTAGE_CHANGE event

Definition

struct pre voltage change data {
unsigned long old uV;
unsigned long min_uV;
unsigned long max_ uV;

}I

Members

old_uV Current voltage before change.
min_uV Min voltage we’ll change to.
max_uV Max voltage we’ll change to.

struct regulator_bulk_data
Data used for bulk regulator operations.

Definition

struct regulator bulk data {
const char * supply;
struct regulator * consumer;

}

Members

supply The name of the supply. Initialised by the user before using the bulk regulator APIs.
consumer The regulator consumer for the supply. This will be managed by the bulk API.
Description

The regulator APIs provide a series of regulator bulk () API calls as a convenience to consumers which
require multiple supplies. This structure is used to manage data for these calls.

struct regulator_state
regulator state during low power system states

Definition

struct regulator_state {
int uV;
unsigned int mode;

10.5. API reference 219

The kernel driver API manual, Release 4.13.0-rc4+

int enabled;
int disabled;
+

Members

uV Operating voltage during suspend.
mode Operating mode during suspend.
enabled Enabled during suspend.
disabled Disabled during suspend.
Description

This describes a regulators state during a system wide low power state. One of enabled or disabled must
be set for the configuration to be applied.

struct regulation_constraints
regulator operating constraints.

Definition

struct regulation constraints {
const char * name;
int min_uV;
int max_ uV;
int uV_offset;
int min_uA;
int max_uA;
int ilim_uA;
int system load;
unsigned int valid modes mask;
unsigned int valid ops mask;
int input_uv;
struct regulator state state disk;
struct regulator state state mem;
struct regulator state state standby;
suspend state t initial state;
unsigned int initial mode;
unsigned int ramp_delay;
unsigned int settling_ time;
unsigned int settling time up;
unsigned int settling time down;
unsigned int enable time;
unsigned int active discharge;
unsigned always on:1;
unsigned boot on:1;
unsigned apply uV:1;
unsigned ramp disable:1;
unsigned soft start:1;
unsigned pull down:1;
unsigned over current protection:1;

};

Members

name Descriptive name for the constraints, used for display purposes.

min_uV Smallest voltage consumers may set.

max_uV Largest voltage consumers may set.

uV_offset Offset applied to voltages from consumer to compensate for voltage drops.

min_uA Smallest current consumers may set.

220 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

max_uA Largest current consumers may set.

ilim_uA Maximum input current.

system_load Load that isn’t captured by any consumer requests.
valid_modes_mask Mask of modes which may be configured by consumers.
valid_ops_mask Operations which may be performed by consumers.
input_uV Input voltage for regulator when supplied by another regulator.
state_disk State for regulator when system is suspended in disk mode.
state_mem State for reqgulator when system is suspended in mem mode.
state_standby State for regulator when system is suspended in standby mode.
initial_state Suspend state to set by default.

initial_mode Mode to set at startup.

ramp_delay Time to settle down after voltage change (unit: uV/us)

settling_time Time to settle down after voltage change when voltage change is non-linear (unit: mi-
croseconds).

settling_time_up Time to settle down after voltage increase when voltage change is non-linear (unit:
microseconds).

settling_time_down Time to settle down after voltage decrease when voltage change is non-linear (unit:
microseconds).

enable_time Turn-on time of the rails (unit: microseconds)

active_discharge Enable/disable active discharge. The enum regulator active discharge values are
used for initialisation.

always_on Set if the regulator should never be disabled.

boot_on Set if the regulator is enabled when the system is initially started. If the regulator is not enabled
by the hardware or bootloader then it will be enabled when the constraints are applied.

apply_uV Apply the voltage constraint when initialising.

ramp_disable Disable ramp delay when initialising or when setting voltage.
soft_start Enable soft start so that voltage ramps slowly.

pull_down Enable pull down when regulator is disabled.
over_current_protection Auto disable on over current event.
Description

This struct describes regulator and board/machine specific constraints.

struct regulator_consumer_supply
supply -> device mapping

Definition

struct regulator_consumer_supply {
const char * dev_name;
const char * supply;

};

Members
dev_name Result of dev_name() for the consumer.

supply Name for the supply.

10.5. API reference 221

The kernel driver API manual, Release 4.13.0-rc4+

Description

This maps a supply name to a device. Use of dev_name allows support for buses which make struct device
available late such as 12C.

struct regulator_init_data
regulator platform initialisation data.

Definition

struct regulator init data {
const char * supply regulator;
struct regulation constraints constraints;
int num_consumer supplies;
struct regulator consumer_ supply * consumer_supplies;
int (* regulator_init) (void *driver data);
void * driver data;

+

Members

supply_regulator Parent regulator. Specified using the regulator name as it appears in the name field
in sysfs, which can be explicitly set using the constraints field ‘name’.

constraints Constraints. These must be specified for the regulator to be usable.
num_consumer_supplies Number of consumer device supplies.
consumer_supplies Consumer device supply configuration.

regulator_init Callback invoked when the regulator has been registered.
driver_data Data passed to regulator _init.

Description

Initialisation constraints, our supply and consumers supplies.

struct regulator_linear_range
specify linear voltage ranges

Definition

struct regulator linear range {
unsigned int min_uV;
unsigned int min_sel;
unsigned int max_sel;
unsigned int uV_step;

+

Members

min_uV Lowest voltage in range

min_sel Lowest selector for range

max_sel Highest selector for range

uV_step Step size

Description

Specify a range of voltages for regulator map linar_range() and regulator list linear range().

struct regulator_ops
regulator operations.

Definition

222 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

struct regulator ops {

int (* list voltage) (struct regulator dev *, unsigned selector);

int (* set voltage) (struct regulator dev *, int min_uV, int max _uV, unsigned *selector);
int (* map_voltage) (struct regulator dev *, int min_uV, int max uV);

int (* set voltage sel) (struct regulator dev *, unsigned selector);

int (* get voltage) (struct regulator dev *);

int (* get voltage sel) (struct regulator dev *);

int (* set current limit) (struct regulator dev *, int min uA, int max_ uA);
int (* get current limit) (struct regulator dev *);

int (* set input current limit) (struct regulator dev *, int lim uA);

int (* set over current protection) (struct regulator_dev *);

int (* set active discharge) (struct regulator dev *, bool enable);

int (* enable) (struct regulator dev *);

int (* disable) (struct regulator_dev *);

int (* is_enabled) (struct regulator dev *);

int (* set mode) (struct regulator dev *, unsigned int mode);
unsigned int (* get mode) (struct regulator_dev *);
int (* get _error flags) (struct regulator dev *, unsigned int *flags);

int (* enable time) (struct regulator dev *);

int (* set ramp _delay) (struct regulator dev *, int ramp_delay);

int (* set voltage time) (struct regulator dev *, int old uV, int new uV);

int (* set voltage time sel) (struct regulator dev *,unsigned int old selector, unsigned int

—new_selector);

int (* set soft start) (struct regulator_dev *);

int (* get status) (struct regulator dev *);

unsigned int (* get optimum mode) (struct regulator_dev *, int input uV, int output uVv, int

(™)

—load uA);
int (* set load) (struct regulator dev *, int load uA);
int (* set bypass) (struct regulator _dev *dev, bool enable);
int (* get bypass) (struct regulator dev *dev, bool *enable);
int (* set suspend voltage) (struct regulator dev *, int uV);
int (* set suspend enable) (struct regulator_dev *);
int (* set suspend disable) (struct regulator dev *);
int (* set suspend mode) (struct regulator dev *, unsigned int mode);
int (* set pull down) (struct regulator_dev *);

b

Members

list_voltage Return one of the supported voltages, in microvolts; zero if the selector indicates a volt-
age that is unusable on this system; or negative errno. Selectors range from zero to one less than
requlator_desc.n_voltages. Voltages may be reported in any order.

set_voltage Set the voltage for the regulator within the range specified. The driver should select the
voltage closest to min_uV.

map_voltage Convert a voltage into a selector

set_voltage_sel Set the voltage for the regulator using the specified selector.
get_voltage Return the currently configured voltage for the regulator.
get_voltage_sel Return the currently configured voltage selector for the regulator.

set_current_limit Configure a limit for a current-limited regulator. The driver should select the current
closest to max_uA.

get_current_limit Get the configured limit for a current-limited regulator.
set_input_current_limit Configure an input limit.

set_over_current_protection Support capability of automatically shutting down when detecting an
over current event.

set_active_discharge Set active discharge enable/disable of regulators.

10.5. API reference 223

The kernel driver API manual, Release 4.13.0-rc4+

enable Configure the regulator as enabled.

disable Configure the regulator as disabled.

is_enabled Return 1 if the regulator is enabled, 0 if not. May also return negative errno.
set_mode Set the configured operating mode for the regulator.

get_mode Get the configured operating mode for the regulator.

get_error_flags Get the current error(s) for the regulator.

enable_time Time taken for the regulator voltage output voltage to stabilise after being enabled, in
microseconds.

set_ramp_delay Set the ramp delay for the regulator. The driver should select ramp delay equal to or
less than(closest) ramp_delay.

set_voltage_time Time taken for the regulator voltage output voltage to stabilise after being set to a
new value, in microseconds. The function receives the from and to voltage as input, it should return
the worst case.

set_voltage_ time_sel Time taken for the regulator voltage output voltage to stabilise after being set
to a new value, in microseconds. The function receives the from and to voltage selector as input, it
should return the worst case.

set_soft_start Enable soft start for the regulator.

get_status Return actual (not as-configured) status of regulator, as a REGULATOR_STATUS value (or
negative errno)

get_optimum_mode Get the most efficient operating mode for the regulator when running with the spec-
ified parameters.

set_load Set the load for the regulator.

set_bypass Set the regulator in bypass mode.

get_bypass Get the regulator bypass mode state.

set_suspend_voltage Set the voltage for the regulator when the system is suspended.
set_suspend_enable Mark the regulator as enabled when the system is suspended.
set_suspend_disable Mark the regulator as disabled when the system is suspended.
set_suspend_mode Set the operating mode for the regulator when the system is suspended.
set_pull_down Configure the regulator to pull down when the regulator is disabled.
Description

This struct describes regulator operations which can be implemented by regulator chip drivers.

struct regulator_desc
Static regulator descriptor

Definition

struct regulator desc {
const char * name;
const char * supply name;
const char * of match;
const char * regulators_node;
int (* of parse cb) (struct device node *,const struct regulator desc *, struct regulator_
—config *);
int id;
unsigned int continuous voltage range:1;
unsigned n_voltages;
const struct regulator_ops * ops;
int irq;

224 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

enum regulator type type;

struct module * owner;

unsigned int min_uV;

unsigned int uV_step;

unsigned int linear min_sel;

int fixed uV;

unsigned int ramp_delay;

int min _dropout uV;

const struct regulator linear range * linear ranges;
int n_linear_ranges;

const unsigned int * volt table;
unsigned int vsel reg;

unsigned int vsel mask;

unsigned int csel reg;

unsigned int csel mask;

unsigned int apply reg;

unsigned int apply bit;

unsigned int enable reg;

unsigned int enable mask;

unsigned int enable val;

unsigned int disable val;

bool enable is inverted;

unsigned int bypass_reg;

unsigned int bypass_mask;

unsigned int bypass val on;
unsigned int bypass val off;
unsigned int active discharge on;
unsigned int active discharge off;
unsigned int active discharge mask;
unsigned int active discharge reg;
unsigned int soft start reg;
unsigned int soft start mask;
unsigned int soft start val on;
unsigned int pull down reg;
unsigned int pull down mask;
unsigned int pull down val on;
unsigned int enable time;

unsigned int off_on_delay;
unsigned int (* of map _mode) (unsigned int mode);

}

Members

name ldentifying name for the regulator.

supply_name ldentifying the regulator supply

of_match Name used to identify regulator in DT.

regulators_node Name of node containing regulator definitions in DT.

of _parse_cb Optional callback called only if of match is present. Will be called for each regulator parsed
from DT, during init_data parsing. The regulator_config passed as argument to the callback will be
a copy of config passed to regulator_register, valid only for this particular call. Callback may freely
change the config but it cannot store it for later usage. Callback should return 0 on success or
negative ERRNO indicating failure.

id Numerical identifier for the regulator.

continuous_voltage_range Indicates if the regulator can set any voltage within constrains range.
n_voltages Number of selectors available for ops.:c:func:list_voltage().

ops Regulator operations table.

irq Interrupt number for the regulator.

10.5. API reference 225

The kernel driver API manual, Release 4.13.0-rc4+

type Indicates if the regulator is a voltage or current regulator.

owner Module providing the regulator, used for refcounting.

min_uV Voltage given by the lowest selector (if linear mapping)

uV_step Voltage increase with each selector (if linear mapping)
linear_min_sel Minimal selector for starting linear mapping

fixed_uV Fixed voltage of rails.

ramp_delay Time to settle down after voltage change (unit: uV/us)
min_dropout_uV The minimum dropout voltage this regulator can handle
linear_ranges A constant table of possible voltage ranges.
n_linear_ranges Number of entries in the linear_ranges table.
volt_table Voltage mapping table (if table based mapping)

vsel_reg Register for selector when using regulator_regmap_X voltage_
vsel_mask Mask for register bitfield used for selector

csel_reg Register for TPS65218 LS3 current regulator

csel_mask Mask for TPS65218 LS3 current regulator

apply_reg Register for initiate voltage change on the output when wusing regula-
tor_set voltage sel regmap

apply_bit Register bitfield used for initiate voltage change on the output when using regula-
tor_set_voltage_sel regmap

enable_reg Register for control when using regmap enable/disable ops
enable_mask Mask for control when using regmap enable/disable ops
enable_val Enabling value for control when using regmap enable/disable ops
disable_val Disabling value for control when using regmap enable/disable ops

enable_is_inverted A flag to indicate set enable_mask bits to disable when using regula-
tor_enable_regmap and friends APIs.

bypass_reg Register for control when using regmap set_bypass

bypass_mask Mask for control when using regmap set_bypass

bypass_val_on Enabling value for control when using regmap set_bypass

bypass_val_off Disabling value for control when using regmap set_bypass
active_discharge_on Disabling value for control when using regmap set_active_discharge
active_discharge_off Enabling value for control when using regmap set_active_discharge
active_discharge_mask Mask for control when using regmap set_active_discharge
active_discharge_reg Register for control when using regmap set_active_discharge
soft_start_reg Register for control when using regmap set_soft_start

soft_start_mask Mask for control when using regmap set_soft start

soft_start_val_on Enabling value for control when using regmap set soft_start
pull_down_reg Register for control when using regmap set_pull_down

pull_down_mask Mask for control when using regmap set pull_down

pull_down_val_on Enabling value for control when using regmap set pull down

enable_time Time taken for initial enable of regulator (in uS).

226 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

off_on_delay guard time (in uS), before re-enabling a regulator
of_map_mode Maps a hardware mode defined in a DeviceTree to a standard mode
Description

Each regulator registered with the core is described with a structure of this type and a struct regula-
tor_config. This structure contains the non-varying parts of the regulator description.

struct regulator_config
Dynamic regulator descriptor

Definition

struct regulator_config {
struct device * dev;
const struct regulator init data * init data;
void * driver data;
struct device node * of node;
struct regmap * regmap;
bool ena gpio initialized;
int ena gpio;
unsigned int ena gpio _invert:1;
unsigned int ena gpio_flags;

};

Members

dev struct device for the regulator

init_data platform provided init data, passed through by driver

driver_data private regulator data

of_node OpenFirmware node to parse for device tree bindings (may be NULL).
regmap regmap to use for core regmap helpers if dev_get regmap() is insufficient.

ena_gpio_initialized GPIO controlling regulator enable was properly initialized, meaning that >= 0 is
a valid gpio identifier and < 0 is a non existent gpio.

ena_gpio GPIO controlling regulator enable.

ena_gpio_invert Sense for GPIO enable control.
ena_gpio_flags Flags to use when calling gpio request one()
Description

Each regulator registered with the core is described with a structure of this type and a struct regula-
tor_desc. This structure contains the runtime variable parts of the regulator description.

struct regulator * regulator_get (struct device * dev, const char * id)
lookup and obtain a reference to a regulator.

Parameters

struct device * dev device for regulator “consumer”
const char * id Supply name or regulator ID.
Description

Returns a struct regulator corresponding to the regulator producer, or IS ERR() condition containing
errno.

Use of supply names configured via regulator set device supply() is strongly encouraged. It is rec-
ommended that the supply name used should match the name used for the supply and/or the relevant
device pins in the datasheet.

10.5. API reference 227

The kernel driver API manual, Release 4.13.0-rc4+

struct regulator * regulator_get_exclusive(struct device * dev, const char * id)
obtain exclusive access to a regulator.

Parameters

struct device * dev device for regulator “consumer”
const char * id Supply name or regulator ID.
Description

Returns a struct regulator corresponding to the regulator producer, or IS ERR() condition containing
errno. Other consumers will be unable to obtain this regulator while this reference is held and the use
count for the regulator will be initialised to reflect the current state of the regulator.

This is intended for use by consumers which cannot tolerate shared use of the regulator such as those
which need to force the regulator off for correct operation of the hardware they are controlling.

Use of supply names configured via regulator set device supply() is strongly encouraged. It is rec-
ommended that the supply name used should match the name used for the supply and/or the relevant
device pins in the datasheet.

struct regulator * regulator_get_optional(struct device * dev, const char * id)
obtain optional access to a regulator.

Parameters

struct device * dev device for regulator “consumer”
const char * id Supply name or regulator ID.
Description

Returns a struct regulator corresponding to the regulator producer, or IS ERR() condition containing
errno.

This is intended for use by consumers for devices which can have some supplies unconnected in normal
use, such as some MMC devices. It can allow the regulator core to provide stub supplies for other supplies
requested using normal regulator get() calls without disrupting the operation of drivers that can handle
absent supplies.

Use of supply names configured via regulator set device supply() is strongly encouraged. It is rec-
ommended that the supply name used should match the name used for the supply and/or the relevant
device pins in the datasheet.

void regulator_put (struct regulator * regulator)
“free” the regulator source

Parameters
struct regulator * regulator regulator source
Note

drivers must ensure that all requlator_enable calls made on this regulator source are balanced by regula-
tor_disable calls prior to calling this function.

int regulator_register_supply_alias(struct device *dev, const char *id, struct device
* alias_dev, const char * alias_id)
Provide device alias for supply lookup

Parameters

struct device * dev device that will be given as the regulator “consumer”

const char * id Supply name or regulator ID

struct device * alias_dev device that should be used to lookup the supply

const char * alias_id Supply name or regulator ID that should be used to lookup the supply

228 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

Description
All lookups for id on dev will instead be conducted for alias_id on alias_dev.

void regulator_unregister_supply_alias (struct device * dev, const char * id)
Remove device alias

Parameters

struct device * dev device that will be given as the regulator “consumer”
const char * id Supply name or regulator ID

Description

Remove a lookup alias if one exists for id on dev.

int regulator_bulk_register_supply_alias (struct device * dev, const char *const *id, struct
device * alias_dev, const char *const * alias_id,
int num_id)
register multiple aliases

Parameters

struct device * dev device that will be given as the regulator “consumer”
const char *const * id List of supply names or regulator IDs

struct device * alias_dev device that should be used to lookup the supply

const char *const * alias_id List of supply names or regulator IDs that should be used to lookup the
supply

int num_id Number of aliases to register

Description

return 0 on success, an errno on failure.

This helper function allows drivers to register several supply aliases in one operation. If any of the aliases
cannot be registered any aliases that were registered will be removed before returning to the caller.

void regulator_bulk_unregister_supply_alias(struct device *dev, const char *const *id,
int num_id)
unregister multiple aliases

Parameters

struct device * dev device that will be given as the regulator “consumer”

const char *const * id List of supply names or regulator IDs

int num_id Number of aliases to unregister

Description

This helper function allows drivers to unregister several supply aliases in one operation.

int regulator_enable(struct regulator * regulator)
enable regulator output

Parameters
struct regulator * regulator regulator source
Description

Request that the regulator be enabled with the regulator output at the predefined voltage or current value.
Calls to regulator enable() must be balanced with calls to regulator disable().

NOTE

the output value can be set by other drivers, boot loader or may be hardwired in the regulator.

10.5. API reference 229

The kernel driver API manual, Release 4.13.0-rc4+

int regulator_disable(struct regulator * regulator)
disable regulator output

Parameters
struct regulator * regulator regulator source
Description

Disable the regulator output voltage or current. Calls to regulator enable() must be balanced with calls
to regulator disable().

NOTE

this will only disable the regulator output if no other consumer devices have it enabled, the regulator
device supports disabling and machine constraints permit this operation.

int regulator_force_disable (struct regulator * regulator)
force disable regulator output

Parameters

struct regulator * regulator regulator source
Description

Forcibly disable the regulator output voltage or current.
NOTE

this will disable the regulator output even if other consumer devices have it enabled. This should be used
for situations when device damage will likely occur if the regulator is not disabled (e.g. over temp).

int regulator_disable_deferred(struct regulator * regulator, int ms)
disable regulator output with delay

Parameters
struct regulator * regulator regulator source
int ms miliseconds until the regulator is disabled
Description

Execute regulator disable() on the regulator after a delay. This is intended for use with devices that
require some time to quiesce.

NOTE

this will only disable the regulator output if no other consumer devices have it enabled, the regulator
device supports disabling and machine constraints permit this operation.

int regulator_is_enabled (struct regulator * regulator)
is the regulator output enabled

Parameters
struct regulator * regulator regulator source
Description

Returns positive if the regulator driver backing the source/client has requested that the device be enabled,
zero if it hasn’t, else a negative errno code.

Note that the device backing this regulator handle can have multiple users, so it might be enabled even
if requlator enable() was never called for this particular source.

int regulator_count_voltages (struct regulator * regulator)
count regulator list voltage() selectors

Parameters

struct regulator * regulator regulator source

230 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

Description

Returns number of selectors, or negative errno. Selectors are numbered starting at zero, and typically
correspond to bitfields in hardware registers.

int regulator_list_voltage (struct regulator * regulator, unsigned selector)
enumerate supported voltages

Parameters

struct regulator * regulator regulator source
unsigned selector identify voltage to list
Context

can sleep

Description

Returns a voltage that can be passed to regulator_set_voltage(), zero if this selector code can’'t be used
on this system, or a negative errno.

int regulator_get_hardware_vsel_register (struct regulator * regulator, unsigned * vsel reg, un-
signed * vsel_mask)
get the HW voltage selector register

Parameters

struct regulator * regulator regulator source

unsigned * vsel reg voltage selector register, output parameter
unsigned * vsel_mask mask for voltage selector bitfield, output parameter
Description

Returns the hardware register offset and bitmask used for setting the regulator voltage. This might be
useful when configuring voltage-scaling hardware or firmware that can make 12C requests behind the
kernel’s back, for example.

On success, the output parameters vsel_reg and vsel_mask are filled in and 0 is returned, otherwise a
negative errno is returned.

int regulator_list hardware_vsel(struct regulator * regulator, unsigned selector)
get the HW-specific register value for a selector

Parameters

struct regulator * regulator regulator source
unsigned selector identify voltage to list
Description

Converts the selector to a hardware-specific voltage selector that can be directly written to the
requlator registers. The address of the voltage register can be determined by calling regula-
tor_get_hardware_vsel_register.

On error a negative errno is returned.

unsigned int regulator_get_linear_step(struct regulator * regulator)
return the voltage step size between VSEL values

Parameters
struct regulator * regulator regulator source
Description

Returns the voltage step size between VSEL values for linear regulators, or return 0 if the regulator isn’t
a linear regulator.

10.5. API reference 231

The kernel driver API manual, Release 4.13.0-rc4+

int regulator_is supported_voltage (struct regulator * regulator, int min_uV, int max _uV)
check if a voltage range can be supported

Parameters

struct regulator * regulator Regulator to check.
int min_uV Minimum required voltage in uV.

int max_uV Maximum required voltage in uV.
Description

Returns a boolean or a negative error code.

int regulator_set_voltage (struct requlator * regulator, int min_uV, int max_uV)
set regulator output voltage

Parameters

struct regulator * regulator regulator source
int min_uV Minimum required voltage in uVv

int max_uV Maximum acceptable voltage in uVv
Description

Sets a voltage regulator to the desired output voltage. This can be set during any regulator state. IOW,
regulator can be disabled or enabled.

If the requlator is enabled then the voltage will change to the new value immediately otherwise if the
regulator is disabled the regulator will output at the new voltage when enabled.

NOTE

If the regulator is shared between several devices then the lowest request voltage that meets the system
constraints will be used. Regulator system constraints must be set for this regulator before calling this
function otherwise this call will fail.

int regulator_set voltage time(struct regulator * regulator, int old uV, int new_uV)
get raise/fall time

Parameters

struct regulator * regulator regulator source
int old_uV starting voltage in microvolts

int new_uV target voltage in microvolts
Description

Provided with the starting and ending voltage, this function attempts to calculate the time in microseconds
required to rise or fall to this new voltage.

int requlator_set_voltage_time_sel(struct regulator_dev * rdev, unsigned int old_selector, un-
signed int new_selector)
get raise/fall time

Parameters

struct regulator_dev * rdev regulator source device
unsigned int old_selector selector for starting voltage
unsigned int new_selector selector for target voltage
Description

Provided with the starting and target voltage selectors, this function returns time in microseconds required
to rise or fall to this new voltage

232 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

Drivers providing ramp_delay in regulation_constraints can use this as their set voltage time sel()
operation.

int regulator_sync_voltage (struct regulator * regulator)
re-apply last regulator output voltage

Parameters
struct regulator * regulator regulator source
Description

Re-apply the last configured voltage. This is intended to be used where some external control source the
consumer is cooperating with has caused the configured voltage to change.

int regulator_get_voltage (struct requlator * regulator)
get regulator output voltage

Parameters

struct regulator * regulator regulator source
Description

This returns the current regulator voltage in uV.
NOTE

If the regulator is disabled it will return the voltage value. This function should not be used to determine
regulator state.

int requlator_set_current_limit (struct regulator * regulator, int min_uA, int max_uA)
set regulator output current limit

Parameters

struct regulator * regulator regulator source
int min_uA Minimum supported current in uA
int max_uA Maximum supported current in uA
Description

Sets current sink to the desired output current. This can be set during any regulator state. IOW, regulator
can be disabled or enabled.

If the regulator is enabled then the current will change to the new value immediately otherwise if the
regulator is disabled the regulator will output at the new current when enabled.

NOTE

Regulator system constraints must be set for this regulator before calling this function otherwise this call
will fail.

int regulator_get current_limit (struct regulator * regulator)
get regulator output current

Parameters

struct regulator * regulator regulator source

Description

This returns the current supplied by the specified current sink in uA.
NOTE

If the regulator is disabled it will return the current value. This function should not be used to determine
regulator state.

int regulator_set_mode (struct regulator * regulator, unsigned int mode)
set regulator operating mode

10.5. API reference 233

The kernel driver API manual, Release 4.13.0-rc4+

Parameters

struct regulator * regulator regulator source

unsigned int mode operating mode - one of the REGULATOR_MODE constants

Description

Set regulator operating mode to increase regulator efficiency or improve regulation performance.
NOTE

Regulator system constraints must be set for this regulator before calling this function otherwise this call
will fail.

unsigned int regulator_get_mode (struct regulator * regulator)
get regulator operating mode

Parameters

struct regulator * regulator regulator source
Description

Get the current regulator operating mode.

int regulator_get_error_flags (struct regulator * regulator, unsigned int * flags)
get regulator error information

Parameters

struct regulator * regulator regulator source
unsigned int * flags pointer to store error flags
Description

Get the current regulator error information.

int regulator_set_load (struct regulator * regulator, int uA_load)
set regulator load

Parameters

struct regulator * regulator regulator source
int uA_load load current

Description

Notifies the regulator core of a new device load. This is then used by DRMS (if enabled by constraints) to
set the most efficient regulator operating mode for the new regulator loading.

Consumer devices notify their supply regulator of the maximum power they will require (can be taken
from device datasheet in the power consumption tables) when they change operational status and hence
power state. Examples of operational state changes that can affect power consumption are :-

o Device is opened / closed. o Device I/O is about to begin or has just finished. o Device is idling
in between work.

This information is also exported via sysfs to userspace.

DRMS will sum the total requested load on the regulator and change to the most efficient operating mode
if platform constraints allow.

On error a negative errno is returned.

int regulator_allow_bypass (struct requlator * regulator, bool enable)
allow the regulator to go into bypass mode

Parameters

struct regulator * regulator Regulator to configure

234 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

bool enable enable or disable bypass mode
Description

Allow the regulator to go into bypass mode if all other consumers for the regulator also enable bypass
mode and the machine constraints allow this. Bypass mode means that the regulator is simply passing
the input directly to the output with no regulation.

int regulator_register_notifier (struct regulator * regulator, struct notifier_block * nb)
register regulator event notifier

Parameters

struct regulator * regulator regulator source
struct notifier_block * nb notifier block
Description

Register notifier block to receive regulator events.

int regulator_unregister notifier (struct regulator * regulator, struct notifier_block * nb)
unregister regulator event notifier

Parameters

struct regulator * regulator regulator source
struct notifier_block * nb notifier block
Description

Unregister regulator event notifier block.

int regulator_bulk _get (struct device * dev, int num_consumers, struct regulator bulk _data * con-

. sumers)
get multiple regulator consumers

Parameters

struct device * dev Device to supply

int num_consumers Number of consumers to register

struct regulator_bulk_data * consumers Configuration of consumers; clients are stored here.
Description

return 0 on success, an errno on failure.

This helper function allows drivers to get several regulator consumers in one operation. If any of the
regulators cannot be acquired then any regulators that were allocated will be freed before returning to
the caller.

int regulator_bulk_enable(int num_consumers, struct requlator_bulk _data * consumers)
enable multiple regulator consumers

Parameters
int num_consumers Number of consumers

struct regulator_bulk_data * consumers Consumer data; clients are stored here. return 0 on suc-
cess, an errno on failure

Description

This convenience API allows consumers to enable multiple regulator clients in a single API call. If any
consumers cannot be enabled then any others that were enabled will be disabled again prior to return.

int regulator_bulk_disable(int num_consumers, struct requlator bulk data * consumers)
disable multiple regulator consumers

Parameters

10.5. API reference 235

The kernel driver API manual, Release 4.13.0-rc4+

int num_consumers Number of consumers

struct regulator_bulk_data * consumers Consumer data; clients are stored here. return 0 on suc-
cess, an errno on failure

Description

This convenience API allows consumers to disable multiple regulator clients in a single API call. If any
consumers cannot be disabled then any others that were disabled will be enabled again prior to return.

int regulator_bulk_force_disable(int num_consumers, struct regulator bulk data * consumers)
force disable multiple regulator consumers

Parameters
int num_consumers Number of consumers

struct regulator_bulk_data * consumers Consumer data; clients are stored here. return 0 on suc-
cess, an errno on failure

Description
This convenience API allows consumers to forcibly disable multiple regulator clients in a single API call.
NOTE

This should be used for situations when device damage will likely occur if the regulators are not disabled
(e.g. over temp). Although regulator force disable function call for some consumers can return error
numbers, the function is called for all consumers.

void regulator_bulk_free(int num_consumers, struct regulator_bulk_data * consumers)
free multiple regulator consumers

Parameters

int num_consumers Number of consumers

struct regulator_bulk_data * consumers Consumer data; clients are stored here.
Description

This convenience API allows consumers to free multiple regulator clients in a single API call.

int requlator_notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void

* data)
call regulator event notifier

Parameters

struct regulator_dev * rdev regulator source
unsigned long event notifier block

void * data callback-specific data.
Description

Called by regulator drivers to notify clients a regulator event has occurred. We also notify regulator clients
downstream. Note lock must be held by caller.

int regulator_mode_to_status (unsigned int mode)
convert a regulator mode into a status

Parameters
unsigned int mode Mode to convert
Description

Convert a regulator mode into a status.

236 Chapter 10. Voltage and current regulator API

The kernel driver API manual, Release 4.13.0-rc4+

struct regulator_dev * regulator_register(const struct regulator desc * regulator desc, const
struct regulator_config * cfg)
register regulator

Parameters

const struct regulator_desc * regulator_desc regulator to register
const struct regulator_config * cfg runtime configuration for regulator
Description

Called by regulator drivers to register a regulator. Returns a valid pointer to struct regulator_dev on
success or an ERR_PTR() on error.

void regulator_unregister (struct regulator_dev * rdev)
unregister regulator

Parameters

struct regulator_dev * rdev regulator to unregister
Description

Called by regulator drivers to unregister a regulator.

int regulator_suspend_prepare(suspend_state_t state)
prepare regulators for system wide suspend

Parameters
suspend_state_t state system suspend state
Description

Configure each regulator with it’s suspend operating parameters for state. This will usually be called by
machine suspend code prior to supending.

int regulator_suspend_finish(void)
resume regulators from system wide suspend

Parameters
void no arguments
Description

Turn on regulators that might be turned off by regulator_suspend_prepare and that should be turned on
according to the regulators properties.

void regulator_has_full_constraints(void)
the system has fully specified constraints

Parameters
void no arguments
Description

Calling this function will cause the regulator API to disable all regulators which have a zero use count and
don’t have an always_on constraint in a late_initcall.

The intention is that this will become the default behaviour in a future kernel release so users are encour-
aged to use this facility now.

void * rdev_get_drvdata (struct regulator_dev * rdev)
get rdev regulator driver data

Parameters

struct regulator_dev * rdev regulator

10.5. API reference 237

The kernel driver API manual, Release 4.13.0-rc4+

Description
Get rdev regulator driver private data. This call can be used in the regulator driver context.

void * regulator_get_drvdata (struct regulator * regulator)
get regulator driver data

Parameters
struct regulator * regulator regulator
Description

Get regulator driver private data. This call can be used in the consumer driver context when non API
regulator specific functions need to be called.

void regulator_set_drvdata(struct requlator * regulator, void * data)
set regulator driver data

Parameters
struct regulator * regulator regulator
void * data data

int rdev_get_id (struct regulator_dev * rdev)
get regulator ID

Parameters

struct regulator_dev * rdev regulator

238 Chapter 10. Voltage and current regulator API

CHAPTER
ELEVEN

INDUSTRIAL 1/0

Copyright © 2015 Intel Corporation
Contents:

11.1 Introduction

The main purpose of the Industrial I/O subsystem (110) is to provide support for devices that in some sense
perform either analog-to-digital conversion (ADC) or digital-to-analog conversion (DAC) or both. The aim
is to fill the gap between the somewhat similar hwmon and input subsystems. Hwmon is directed at low
sample rate sensors used to monitor and control the system itself, like fan speed control or temperature
measurement. Input is, as its name suggests, focused on human interaction input devices (keyboard,
mouse, touchscreen). In some cases there is considerable overlap between these and IIO.

Devices that fall into this category include:
* analog to digital converters (ADCs)
* accelerometers
» capacitance to digital converters (CDCs)
 digital to analog converters (DACs)
* gyroscopes
* inertial measurement units (IMUs)
e color and light sensors
* magnetometers
* pressure sensors
* proximity sensors
* temperature sensors

Usually these sensors are connected via SPI or [12C . A common use case of the sensors devices is to
have combined functionality (e.g. light plus proximity sensor).

11.2 Core elements

The Industrial I/O core offers a unified framework for writing drivers for many different types of embedded
sensors. a standard interface to user space applications manipulating sensors. The implementation can
be found under drivers/iio/industrialio-*

239

The kernel driver API manual, Release 4.13.0-rc4+

11.2.1 Industrial I/O Devices

» struct iio dev - industrial 1/O device

* 1i0 device alloc() - alocate an iio dev from a driver

*» 110 device free() -freean iio dev from a driver

* iio device register() - register a device with the IO subsystem

* iio device unregister() - unregister a device from the 110 subsystem

An |IO device usually corresponds to a single hardware sensor and it provides all the information needed
by a driver handling a device. Let's first have a look at the functionality embedded in an 110 device then
we will show how a device driver makes use of an 110 device.

There are two ways for a user space application to interact with an 11O driver.

1. /sys/bus/iio/iio:deviceX/, this represents a hardware sensor and groups together the data chan-
nels of the same chip.

2. /dev/iio:deviceX, character device node interface used for buffered data transfer and for events
information retrieval.

A typical llO driver will register itself as an /12C or SPI driver and will create two routines, probe and
remove.

At probe:
1. Call iio device alloc(), which allocates memory for an l1O device.
2. Initialize 110 device fields with driver specific information (e.g. device name, device channels).

3. Calliio device register(), this registers the device with the 11O core. After this call the device is
ready to accept requests from user space applications.

At remove, we free the resources allocated in probe in reverse order:
1. iio device unregister(), unregister the device from the IlO core.
2. iio device free(), free the memory allocated for the 110 device.

I1O device sysfs interface

Attributes are sysfs files used to expose chip info and also allowing applications to set various configuration
parameters. For device with index X, attributes can be found under /sys/bus/iio/iio:deviceX/ directory.
Common attributes are:

* name, description of the physical chip.
» dev, shows the major:minor pair associated with /dev/iio:deviceX node.
* sampling frequency available, available discrete set of sampling frequency values for device.

e Available standard attributes for [IO devices are described in the Documenta-
tion/ABI/testing/sysfs-bus-iio file in the Linux kernel sources.

IIO device channels

struct iio chan spec - specification of a single channel

An 110 device channel is a representation of a data channel. An IIO device can have one or multiple
channels. For example:

* a thermometer sensor has one channel representing the temperature measurement.
* a light sensor with two channels indicating the measurements in the visible and infrared spectrum.

* an accelerometer can have up to 3 channels representing acceleration on X, Y and Z axes.

240 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

An 11O channel is described by the struct iio chan spec. A thermometer driver for the temperature
sensor in the example above would have to describe its channel as follows:

static const struct iio chan spec temp channel[] = {
{
.type = II0 TEMP,
.info _mask separate = BIT(IIO CHAN INFO PROCESSED),
I
b

Channel sysfs attributes exposed to userspace are specified in the form of bitmasks. Depending on their
shared info, attributes can be set in one of the following masks:

* info_mask_separate, attributes will be specific to this channel
* info_mask_shared_by_type, attributes are shared by all channels of the same type
* info_mask_shared_by dir, attributes are shared by all channels of the same direction
* info_mask_shared_by_all, attributes are shared by all channels
When there are multiple data channels per channel type we have two ways to distinguish between them:

* set .modified field of iio chan spec to 1. Modifiers are specified using .channel?2 field of the same
1io chan spec structure and are used to indicate a physically unique characteristic of the channel
such as its direction or spectral response. For example, a light sensor can have two channels, one
for infrared light and one for both infrared and visible light.

* set .indexed field of iio chan spec to 1. In this case the channel is simply another instance with
an index specified by the .channel field.

Here is how we can make use of the channel’s modifiers:

static const struct iio chan spec light channels[] = {

{
.type = II0O INTENSITY,
.modified = 1,
.channel2 = II0 MOD LIGHT IR,
.info_mask separate = BIT(IIO CHAN INFO RAW),
.info_mask shared = BIT(IIO CHAN INFO_ SAMP FREQ),
}I
{
.type = IIO INTENSITY,
.modified = 1,
.channel2 = II0 MOD LIGHT BOTH,
.info_mask separate = BIT(IIO CHAN INFO RAW),
.info mask shared = BIT(IIO CHAN INFO SAMP FREQ),
I
{
.type = IIO_LIGHT,
.info_mask separate = BIT(IIO CHAN INFO PROCESSED),
.info_mask shared = BIT(IIO CHAN_ INFO_ SAMP_FREQ),
}I

}

This channel’s definition will generate two separate sysfs files for raw data retrieval:
* /sys/bus/iio/iio:deviceX/in intensity ir raw
* /sys/bus/iio/iio:deviceX/in_intensity both raw

one file for processed data:
* /sys/bus/iio/iio:deviceX/in illuminance input

and one shared sysfs file for sampling frequency:

* /sys/bus/iio/iio:deviceX/sampling frequency.

11.2. Core elements 241

The kernel driver API manual, Release 4.13.0-rc4+

Here is how we can make use of the channel’s indexing:

static const struct iio_chan_spec light channels[] = {

{

.type = II0O VOLTAGE,

.indexed =1,

.channel = 0,

.info_mask separate = BIT(IIO CHAN INFO RAW),
}I
{

.type = II0O VOLTAGE,

.indexed = 1,

.channel =1,

.info_mask separate = BIT(IIO CHAN INFO RAW),
}I

}

This will generate two separate attributes files for raw data retrieval:

* /sys/bus/iio/devices/iio:deviceX/in voltageO raw, representing voltage measurement for
channel 0.

* /sys/bus/iio/devices/iio:deviceX/in voltagel raw, representing voltage measurement for
channel 1.

More details

struct iio_chan_spec_ext_info
Extended channel info attribute

Definition

struct iio chan spec ext info {
const char * name;
enum iio shared by shared;
ssize t (* read) (struct iio dev *, uintptr t private, struct iio chan spec const *, char,
< >*buf) B
ssize t (* write) (struct iio dev *, uintptr_t private,struct iio chan spec const *, const,
—cChar *buf, size t len);
uintptr_t private;

};

Members

name Info attribute name

shared Whether this attribute is shared between all channels.
read Read callback for this info attribute, may be NULL.
write Write callback for this info attribute, may be NULL.
private Data private to the driver.

struct iio_enum
Enum channel info attribute

Definition

struct iio _enum {
const char *const * items;
unsigned int num_items;
int (* set) (struct iio dev *, const struct iio chan spec *, unsigned int);
int (* get) (struct iio _dev *, const struct iio_chan_spec *);

};

242 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

Members

items An array of strings.

num_items Length of the item array.

set Set callback function, may be NULL.
get Get callback function, may be NULL.
Description

The iio_enum struct can be used to implement enum style channel attributes. Enum style attributes are
those which have a set of strings which map to unsigned integer values. The 11O enum helper code takes
care of mapping between value and string as well as generating a “_available” file which contains a list
of all available items. The set callback will be called when the attribute is updated. The last parameter
is the index to the newly activated item. The get callback will be used to query the currently active item
and is supposed to return the index for it.

II0 _ENUM(name, shared, e)
Initialize enum extended channel attribute

Parameters

_hame Attribute name

_shared Whether the attribute is shared between all channels

_e Pointer to an iio_enum struct

Description

This should usually be used together with I10 ENUM AVAILABLE()

II0O_ENUM_AVAILABLE(name, e)
Initialize enum available extended channel attribute

Parameters

_name Attribute name (“_available” will be appended to the name)
_e Pointer to an iio_enum struct

Description

Creates a read only attribute which lists all the available enum items in a space separated list. This should
usually be used together with I10 ENUM()

struct iio_mount_matrix
iio mounting matrix

Definition

struct iio mount matrix {
const char * rotation;

};

Members
rotation 3 dimensional space rotation matrix defining sensor alignment with main hardware

II0O_MOUNT_MATRIX(shared, get)
Initialize mount matrix extended channel attribute

Parameters
_shared Whether the attribute is shared between all channels
_get Pointer to an iio_get_mount_matrix_t accessor

struct iio_event_spec
specification for a channel event

11.2. Core elements 243

The kernel driver API manual, Release 4.13.0-rc4+

Definition

struct iio_event spec {
enum iio event type type;
enum iio event direction dir;
unsigned long mask separate;
unsigned long mask shared by type;
unsigned long mask shared by dir;
unsigned long mask shared by all;

}

Members
type Type of the event
dir Direction of the event

mask_separate Bit mask of enum iio_event_info values. Attributes set in this mask will be registered per
channel.

mask_shared_by type Bit mask of enum iio_event_info values. Attributes set in this mask will be shared
by channel type.

mask_shared_by_dir Bit mask of enum iio_event_info values. Attributes set in this mask will be shared
by channel type and direction.

mask_shared_by_all Bit mask of enum iio_event_info values. Attributes set in this mask will be shared
by all channels.

struct iio_chan_spec
specification of a single channel

Definition

struct iio _chan_spec {
enum iio chan_type type;
int channel;
int channel?2;
unsigned long address;
int scan_index;
struct scan type;
long info_mask separate;
long info_mask separate available;
long info_mask shared by type;
long info_mask shared by type available;
long info_mask shared by dir;
long info_mask shared by dir available;
long info_mask shared by all;
long info_mask shared by all available;
const struct iio_event spec * event spec;
unsigned int num_event specs;
const struct iio chan spec ext info * ext info;
const char * extend name;
const char * datasheet name;
unsigned modified:1;
unsigned indexed:1;
unsigned output:1;
unsigned differential:1;

};

Members
type What type of measurement is the channel making.

channel What number do we wish to assign the channel.

244 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

channel2 If there is a second number for a differential channel then this is it. If modified is set then the
value here specifies the modifier.

address Driver specific identifier.
scan_index Monotonic index to give ordering in scans when read from a buffer.

scan_type sign: ‘s’ or ‘U’ to specify signed or unsigned realbits: Number of valid bits of data storagebits:
Realbits + padding shift: Shift right by this before masking out

realbits.

repeat: Number of times real/storage bits repeats. When the repeat element is more than 1,
then the type element in sysfs will show a repeat value. Otherwise, the number of repetitions is
omitted.

endianness: little or big endian
info_mask_separate What information is to be exported that is specific to this channel.

info_mask_separate_available What availability information is to be exported that is specific to this
channel.

info_mask_shared_by_ type Whatinformation is to be exported that is shared by all channels of the same
type.

info_mask_shared by type available What availability information is to be exported that is shared by
all channels of the same type.

info_mask_shared_by_dir What information is to be exported that is shared by all channels of the same
direction.

info_mask_shared_by_dir_available What availability information is to be exported that is shared by
all channels of the same direction.

info_mask_shared_by_all What information is to be exported that is shared by all channels.

info_mask_shared_by_all_available What availability information is to be exported that is shared by
all channels.

event_spec Array of events which should be registered for this channel.
num_event_specs Size of the event_spec array.

ext_info Array of extended info attributes for this channel. The array is NULL terminated, the last ele-
ment should have its name field set to NULL.

extend_name Allows labeling of channel attributes with an informative name. Note this has no effect
codes etc, unlike modifiers.

datasheet_name A name used in in-kernel mapping of channels. It should correspond to the first name
that the channel is referred to by in the datasheet (e.g. IND), or the nearest possible compound name
(e.g. IND-INC).

modified Does a modifier apply to this channel. What these are depends on the channel type. Modifier
is set in channel2. Examples are I10_MOD_X for axial sensors about the ‘x’ axis.

indexed Specify the channel has a numerical index. If not, the channel index number will be suppressed
for sysfs attributes but not for event codes.

output Channel is output.
differential Channel is differential.

bool iio_channel_has_info(const struct iio chan spec * chan, enum iio_chan_info_enum type)
Checks whether a channel supports a info attribute

Parameters
const struct iio_chan_spec * chan The channel to be queried
enum iio_chan_info_enum type Type of the info attribute to be checked

11.2. Core elements 245

The kernel driver API manual, Release 4.13.0-rc4+

Description
Returns true if the channels supports reporting values for the given info attribute type, false otherwise.

bool iio_channel_has_available(const struct iio_chan_spec * chan, enum
iio_chan_info_enum type)
Checks if a channel has an available attribute

Parameters

const struct iio_chan_spec * chan The channel to be queried

enum iio_chan_info_enum type Type of the available attribute to be checked
Description

Returns true if the channel supports reporting available values for the given attribute type, false otherwise.

struct iio_info
constant information about device

Definition

struct iio info {
struct module * driver module;
const struct attribute group * event attrs;
const struct attribute group * attrs;
int (* read raw) (struct iio dev *indio dev,struct iio_chan_spec const *chan,int *val,int
—*val2, long mask);
int (* read raw multi) (struct iio dev *indio dev,struct iio chan spec const *chan,int max_
—len,int *vals,int *val len, long mask);
int (* read avail) (struct iio dev *indio dev,struct iio chan spec const *chan,const int
—**vals,int *type,int *length, long mask);
int (* write raw) (struct iio dev *indio_dev,struct iio_chan _spec const *chan,int val,int
—val2, long mask);
int (* write raw get fmt) (struct iio dev *indio dev,struct iio chan spec const *chan, long,
—mask) ;
int (* read event config) (struct iio dev *indio dev,const struct iio chan spec *chan,enum
—1iio event type type, enum iio event direction dir);
int (* write event config) (struct iio dev *indio dev,const struct iio chan spec *chan,enum
—,1io _event type type,enum iio event direction dir, int state);
int (* read event value) (struct iio dev *indio_dev,const struct iio_chan_spec *chan,enum iio_
—event _type type,enum iio event direction dir, enum iio _event info info, int *val, int *val2);
int (* write event value) (struct iio dev *indio dev,const struct iio chan spec *chan,enum
—~iio event type type,enum iio event direction dir, enum iio event info info, int val, int,
—val2);
int (* validate trigger) (struct iio dev *indio dev, struct iio trigger *trig);
int (* update_scan mode) (struct iio dev *indio_dev, const unsigned long *scan_mask);
int (* debugfs reg access) (struct iio dev *indio_dev,unsigned reg, unsigned writeval, |,
—unsigned *readval);
int (* of xlate) (struct iio dev *indio_dev, const struct of phandle args *iiospec);
int (* hwfifo set watermark) (struct iio _dev *indio dev, unsigned val);
int (* hwfifo flush to buffer) (struct iio dev *indio dev, unsigned count);

};

Members

driver_module module structure used to ensure correct ownership of chrdevs etc
event_attrs event control attributes

attrs general purpose device attributes

read_raw function to request a value from the device. mask specifies which value. Note 0 means a
reading of the channel in question. Return value will specify the type of value returned by the device.
val and val2 will contain the elements making up the returned value.

246 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

read_raw_multi function to return values from the device. mask specifies which value. Note 0 means a
reading of the channel in question. Return value will specify the type of value returned by the device.
vals pointer contain the elements making up the returned value. max_len specifies maximum number
of elements vals pointer can contain. val_len is used to return length of valid elements in vals.

read_avail function to return the available values from the device. mask specifies which value. Note 0
means the available values for the channel in question. Return value specifies if a 10_AVAIL _LIST or
a IIO_AVAIL_RANGE is returned in vals. The type of the vals are returned in type and the number of
vals is returned in length. For ranges, there are always three vals returned; min, step and max. For
lists, all possible values are enumerated.

write raw function to write a value to the device. Parameters are the same as for read_raw.

write_raw_get_fmt callback function to query the expected format/precision. If not set by the driver,
write_raw returns [IO_VAL_INT_PLUS_MICRO.

read_event_config find out if the event is enabled.

write event_ config set if the event is enabled.

read_event_value read a configuration value associated with the event.

write_event_value write a configuration value for the event.

validate_trigger function to validate the trigger when the current trigger gets changed.
update_scan_mode function to configure device and scan buffer when channels have changed
debugfs_reg_access function to read or write register value of device

of_xlate function pointer to obtain channel specifier index. When #iio-cells is greater than ‘0’, the driver
could provide a custom of xlate function that reads the args and returns the appropriate index in
registered IO channels array.

hwfifo_set_watermark function pointer to set the current hardware fifo watermark level; see hwfifo_*
entries in Documentation/ABI/testing/sysfs-bus-iio for details on how the hardware fifo operates

hwfifo_flush_to_buffer function pointer to flush the samples stored in the hardware fifo to the device
buffer. The driver should not flush more than count samples. The function must return the number
of samples flushed, 0 if no samples were flushed or a negative integer if no samples were flushed
and there was an error.

struct iio_buffer_setup_ops
buffer setup related callbacks

Definition

struct iio buffer_setup ops {
int (* preenable) (struct iio dev *);
int (* postenable) (struct iio dev *);
int (* predisable) (struct iio _dev *);
int (* postdisable) (struct iio dev *);
bool (* validate scan mask) (struct iio dev *indio_dev, const unsigned long *scan_mask);

}

Members

preenable [DRIVER] function to run prior to marking buffer enabled
postenable [DRIVER] function to run after marking buffer enabled
predisable [DRIVER] function to run prior to marking buffer disabled
postdisable [DRIVER] function to run after marking buffer disabled

validate_scan_mask [DRIVER] function callback to check whether a given scan mask is valid for the
device.

11.2. Core elements 247

The kernel driver API manual, Release 4.13.0-rc4+

struct iio_dev
industrial I/O device

Definition

struct iio dev {
int id;
int modes;
int currentmode;
struct device dev;
struct iio event interface * event interface;
struct iio buffer * buffer;
struct list head buffer list;
int scan_bytes;
struct mutex mlock;
const unsigned long * available_scan _masks;
unsigned masklength;
const unsigned long * active scan mask;
bool scan timestamp;
unsigned scan_index timestamp;
struct iio trigger * trig;
struct iio poll func * pollfunc;
struct iio poll func * pollfunc event;
struct iio chan spec const * channels;
int num_channels;
struct list head channel attr list;
struct attribute group chan_attr group;
const char * name;
const struct iio info * info;
clockid t clock id;
struct mutex info exist lock;
const struct iio buffer setup ops * setup ops;
struct cdev chrdev;

#define II0O MAX GROUPS 6
const struct attribute group * groups;
int groupcounter;
unsigned long flags;

#if defined (CONFIG DEBUG FS
struct dentry * debugfs dentry;
unsigned cached reg_addr;

#endif

b

Members

id [INTERN] used to identify device internally

modes [DRIVER] operating modes supported by device

currentmode [DRIVER] current operating mode

dev [DRIVER] device structure, should be assigned a parent and owner
event_interface [INTERN] event chrdevs associated with interrupt lines
buffer [DRIVER] any buffer present

buffer_list [INTERN] list of all buffers currently attached

scan_bytes [INTERN] num bytes captured to be fed to buffer demux
mlock [DRIVER] lock used to prevent simultaneous device state changes
available_scan_masks [DRIVER] optional array of allowed bitmasks
masklength [INTERN] the length of the mask established from channels

active_scan_mask [INTERN] union of all scan masks requested by buffers

248 Chapter 11.

Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

scan_timestamp [INTERN] set if any buffers have requested timestamp
scan_index_timestamp [INTERN] cache of the index to the timestamp

trig [INTERN] current device trigger (buffer modes) trig_readonly [INTERN] mark the current trigger
immutable

pollfunc [DRIVER] function run on trigger being received

pollfunc_event [DRIVER] function run on events trigger being received
channels [DRIVER] channel specification structure table

num_channels [DRIVER] number of channels specified in channels.
channel_attr_list [INTERN] keep track of automatically created channel attributes
chan_attr_group [INTERN] group for all attrs in base directory

name [DRIVER] name of the device.

info [DRIVER] callbacks and constant info from driver

clock_id [INTERN] timestamping clock posix identifier

info_exist_lock [INTERN] lock to prevent use during removal

setup_ops [DRIVER] callbacks to call before and after buffer enable/disable
chrdev [INTERN] associated character device

groups [INTERN] attribute groups

groupcounter [INTERN] index of next attribute group

flags [INTERN] file ops related flags including busy flag.

debugfs_dentry [INTERN] device specific debugfs dentry.
cached_reg_addr [INTERN] cached register address for debugfs reads.

void iio_device_put (struct iio dev * indio_dev)
reference counted deallocation of struct device

Parameters
struct iio_dev * indio_dev IO device structure containing the device

clockid_t iio_device_get_clock(const struct iio dev * indio_dev)
Retrieve current timestamping clock for the device

Parameters
const struct iio_dev * indio_dev IO device structure containing the device

struct iio_dev * dev_to_iio_dev (struct device * dev)
Get 110 device struct from a device struct

Parameters

struct device * dev The device embedded in the IIO device
Note

The device must be a IIO device, otherwise the result is undefined.

struct iio_dev * iio_device_get (struct iio_dev * indio_dev)
increment reference count for the device

Parameters

struct iio_dev * indio_dev IO device structure
Return

The passed IIO device

11.2. Core elements 249

The kernel driver API manual, Release 4.13.0-rc4+

void iio_device set_drvdata(structiio dev * indio_dev, void * data)
Set device driver data

Parameters

struct iio_dev * indio_dev IO device structure
void * data Driver specific data

Description

Allows to attach an arbitrary pointer to an 1lO device, which can later be retrieved by
1io device get drvdata().

void * iio_device get_drvdata(structiio dev * indio_dev)
Get device driver data

Parameters

struct iio_dev * indio_dev IO device structure
Description

Returns the data previously set with 1i0 device set drvdata()

bool iio_buffer_enabled (struct iio_dev * indio_dev)
helper function to test if the buffer is enabled

Parameters
struct iio_dev * indio_dev IO device structure for device

struct dentry * iio_get_debugfs_dentry(structiio dev * indio_dev)
helper function to get the debugfs_dentry

Parameters
struct iio_dev * indio_dev IO device structure for device

II0_DEGREE_TO_RAD(deg)
Convert degree to rad

Parameters

deg A value in degree

Description

Returns the given value converted from degree to rad

II0_RAD_TO DEGREE (rad)
Convert rad to degree

Parameters

rad A valuein rad

Description

Returns the given value converted from rad to degree

II0 G TO M S 2(g)
Convert g to meter / second**2

Parameters

g Avalueing

Description

Returns the given value converted from g to meter / second**2

IIO M S 2 TO_G(ms2)
Convert meter / second**2 to g

250 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

Parameters

ms2 A value in meter / second**2

Description

Returns the given value converted from meter / second**2 to g

s64 iio_get_time_ns(const structiio dev * indio_dev)
utility function to get a time stamp for events etc

Parameters
const struct iio dev * indio_dev device

unsigned int iio_get_time_res(const struct iio dev * indio_dev)
utility function to get time stamp clock resolution in nano seconds.

Parameters
const struct iio dev * indio_dev device

int of_iio_read_mount_matrix(const struct device *dev, const char *propname, struct
iflo_mount_matrix * matrix)
retrieve iio device mounting matrix from device-tree “mount-matrix” property

Parameters

const struct device * dev device the mounting matrix property is assigned to

const char * propname device specific mounting matrix property name

struct iio_mount_matrix * matrix where to store retrieved matrix

Description

If device is assigned no mounting matrix property, a default 3x3 identity matrix will be filled in.
Return

0 if success, or a negative error code on failure.

ssize_t iio_format_value(char * buf, unsigned int type, int size, int * vals)
Formats a 11O value into its string representation

Parameters

char * buf The buffer to which the formatted value gets written which is assumed to be big enough (i.e.
PAGE_SIZE).

unsigned int type One of the IIO_VAL ... constants. This decides how the val and val2 parameters are
formatted.

int size Number of 1O value entries contained in vals
int * vals Pointer to the values, exact meaning depends on the type parameter.
Return

0 by default, a negative number on failure or the total number of characters written for a type that
belongs to the IIO_VAL_... constant.

int iio_str_to_fixpoint (const char * str, int fract_mult, int * integer, int * fract)
Parse a fixed-point number from a string

Parameters

const char * str The string to parse

int fract_mult Multiplier for the first decimal place, should be a power of 10
int * integer The integer part of the number

int * fract The fractional part of the number

11.2. Core elements 251

The kernel driver API manual, Release 4.13.0-rc4+

Description
Returns 0 on success, or a negative error code if the string could not be parsed.

struct iio_dev * iio_device_alloc (int sizeof priv)
allocate an iio_dev from a driver

Parameters
int sizeof_priv Space to allocate for private structure.

void iio_device_free(structiio_dev * dev)
free an iio_dev from a driver

Parameters
struct iio_dev * dev the iio_dev associated with the device

struct iio_dev * devm_iio_device_alloc (struct device * dev, int sizeof priv)
Resource-managed iio device alloc()

Parameters
struct device * dev Device to allocate iio_dev for
int sizeof_priv Space to allocate for private structure.

Description

Managed iio_device_alloc. iio_dev allocated with this function is automatically freed on driver detach.

If an iio_dev allocated with this function needs to be freed separately, devm iio device free() mustbe

used.
Return
Pointer to allocated iio_dev on success, NULL on failure.

void devm_iio_device_free(struct device * dev, struct iio_dev * iio_dev)
Resource-managed iio device free()

Parameters

struct device * dev Device this iio_dev belongs to

struct iio_dev * iio_dev the iio_dev associated with the device
Description

Free iio_dev allocated with devm iio device alloc().

int iio_device_register(structiio dev * indio_dev)
register a device with the 110 subsystem

Parameters
struct iio_dev * indio_dev Device structure filled by the device driver

void iio_device_unregister (struct iio_dev * indio_dev)
unregister a device from the 110 subsystem

Parameters
struct iio_dev * indio_dev Device structure representing the device.

int devm_iio_device_register (struct device * dev, struct iio_dev * indio_dev)
Resource-managed iio device register()

Parameters
struct device * dev Device to allocate iio_dev for

struct iio_dev * indio_dev Device structure filled by the device driver

252 Chapter 11.

Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

Description

Managed iio_device _register. The IIO device registered with this function is automatically unregistered
on driver detach. This function calls iio device register() internally. Refer to that function for more
information.

If an iio_dev registered with this function needs to be unregistered separately,
devm iio device unregister() must be used.

Return
0 on success, negative error number on failure.

void devm_iio device unregister(struct device * dev, struct iio_dev * indio_dev)
Resource-managed iio device unregister()

Parameters

struct device * dev Device this iio_dev belongs to

struct iio_dev * indio_dev the iio_dev associated with the device
Description

Unregister iio_dev registered with devm iio device register().

int iio_device_claim_direct_mode (struct iio dev * indio_dev)
Keep device in direct mode

Parameters
struct iio_dev * indio_dev the iio_dev associated with the device
Description

If the device is in direct mode it is guaranteed to stay that way until iio device release direct mode()
is called.

Use with iio device release direct mode()
Return
0 on success, -EBUSY on failure

void iio_device_release_direct_mode (struct iio_dev * indio_dev)
releases claim on direct mode

Parameters

struct iio_dev * indio_dev the iio_dev associated with the device
Description

Release the claim. Device is no longer guaranteed to stay in direct mode.

Use with iio device claim direct mode()

11.3 Buffers

» struct iio buffer — general buffer structure

* iio validate scan mask onehot() — Validates that exactly one channel is selected
» 110 buffer get() — Grab a reference to the buffer

* iio buffer put() — Release the reference to the buffer

The Industrial I/O core offers a way for continuous data capture based on a trigger source. Multiple data
channels can be read at once from /dev/iio:deviceX character device node, thus reducing the CPU load.

11.3. Buffers 253

The kernel driver API manual, Release 4.13.0-rc4+

11.3.1 I1IO buffer sysfs interface

An 110 buffer has an associated attributes directory under /sys/bus/iio/iio:deviceX/buffer/*. Here
are some of the existing attributes:

* length, the total number of data samples (capacity) that can be stored by the buffer.

* enable, activate buffer capture.

11.3.2 I1IO buffer setup

The meta information associated with a channel reading placed in a buffer is called a scan ele-
ment . The important bits configuring scan elements are exposed to userspace applications via the
/sys/bus/iio/iio:deviceX/scan elements/* directory. This file contains attributes of the following
form:

* enable, used for enabling a channel. If and only if its attribute is non zero, then a triggered capture
will contain data samples for this channel.

* type, description of the scan element data storage within the buffer and hence the form in which it
is read from user space. Format is [be|le]:[s|ulbits/storagebitsXrepeat[>>shift] . * be or le, specifies
big or little endian. * s or u, specifies if signed (2's complement) or unsigned. * bits, is the number
of valid data bits. * storagebits, is the number of bits (after padding) that it occupies in the buffer.
* shift, if specified, is the shift that needs to be applied prior to masking out unused bits. * repeat,
specifies the number of bits/storagebits repetitions. When the repeat element is 0 or 1, then the
repeat value is omitted.

For example, a driver for a 3-axis accelerometer with 12 bit resolution where data is stored in two 8-bits
registers as follows:

7 6 5 4 3 2 1 0
D e S e ek st -
[D3 |D2 |D1 |DO | X | X | X | X | (LOW byte, address 0x06)

e e &

7 6 5 4 3 2 1 0
i
|[D11|D10|D9 |D8 |D7 |D6 |D5 |D4 | (HIGH byte, address 0x07)
T STt R SR S R

will have the following scan element type for each axis:

$ cat /sys/bus/iio/devices/iio:device@/scan_elements/in _accel y type
le:sl2/16>>4

A user space application will interpret data samples read from the buffer as two byte little endian signed
data, that needs a 4 bits right shift before masking out the 12 valid bits of data.

For implementing buffer support a driver should initialize the following fields in iio_chan_spec definition:

struct iio chan_spec {
/* other members */
int scan_index
struct {
char sign;
u8 realbits;
u8 storagebits;
u8 shift;
u8 repeat;
enum iio endian endianness;
} scan_type;

254 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

The driver implementing the accelerometer described above will have the following channel definition:

struct struct iio chan_spec accel channels[] = {
{

.type = II0 ACCEL,

.modified = 1,

.channel2 = II0 MOD X,

/* other stuff here */

.scan_index = 0,

.scan_type = {
.sign = 's',
.realbits = 12,
.storagebits = 16,
.shift = 4,
.endianness = II0 LE,

}’
}

/* similar for Y (with channel2 = II0O MOD Y, scan_index = 1)
* and Z (with channel2 = II0O MOD Z, scan_index = 2) axis
*/
}

Here scan_index defines the order in which the enabled channels are placed inside the buffer. Channels
with a lower scan_index will be placed before channels with a higher index. Each channel needs to have
a unique scan_index.

Setting scan_index to -1 can be used to indicate that the specific channel does not support buffered
capture. In this case no entries will be created for the channel in the scan_elements directory.

11.3.3 More details

int iio_push_to_buffers_with_timestamp (struct iio_dev * indio_dev, void * data,
int64_t timestamp)
push data and timestamp to buffers

Parameters

struct iio_dev * indio_dev iio_dev structure for device.
void * data sample data

int64_t timestamp timestamp for the sample data
Description

Pushes data to the IO device’s buffers. If timestamps are enabled for the device the function will store the
supplied timestamp as the last element in the sample data buffer before pushing it to the device buffers.
The sample data buffer needs to be large enough to hold the additional timestamp (usually the buffer
should be indio->scan_bytes bytes large).

Returns 0 on success, a negative error code otherwise.

void iio_buffer_set_attrs(structiio_buffer * buffer, const struct attribute ** attrs)
Set buffer specific attributes

Parameters
struct iio_buffer * buffer The buffer for which we are setting attributes
const struct attribute ** attrs Pointer to a null terminated list of pointers to attributes

bool iio_validate_scan_mask_onehot (struct iio dev * indio_dev, const unsigned long * mask)
Validates that exactly one channel is selected

Parameters

11.3. Buffers 255

The kernel driver API manual, Release 4.13.0-rc4+

struct iio_dev * indio_dev the iio device
const unsigned long * mask scan mask to be checked
Description

Return true if exactly one bit is set in the scan mask, false otherwise. It can be used for devices where
only one channel can be active for sampling at a time.

int iio_push_to_buffers(structiio dev * indio_dev, const void * data)
push to a registered buffer.

Parameters
struct iio_dev * indio_dev iio_dev structure for device.
const void * data Full scan.

struct iio_buffer * iio_buffer_get (struct iio_buffer * buffer)
Grab a reference to the buffer

Parameters

struct iio_buffer * buffer The buffer to grab a reference for, may be NULL
Description

Returns the pointer to the buffer that was passed into the function.

void iio_buffer_put (struct iio_buffer * buffer)
Release the reference to the buffer

Parameters
struct iio_buffer * buffer The buffer to release the reference for, may be NULL

void iio_device_attach_buffer (struct iio_dev * indio_dev, struct iio_buffer * buffer)
Attach a buffer to a IO device

Parameters

struct iio_dev * indio_dev The device the buffer should be attached to
struct iio_buffer * buffer The buffer to attach to the device
Description

This function attaches a buffer to a 110 device. The buffer stays attached to the device until the device is
freed. The function should only be called at most once per device.

11.4 Triggers

e struct iio trigger — industrial I/O trigger device

* devm iio trigger alloc() — Resource-managed iio_trigger_alloc

* devm iio trigger free() — Resource-managed iio_trigger free

* devm iio trigger register() — Resource-managed iio_trigger register

* devm iio trigger unregister() — Resource-managed iio_trigger_unregister

* iio trigger validate own device() — Checkifatriggerand IlO device belong to the same device

In many situations it is useful for a driver to be able to capture data based on some external event (trigger)
as opposed to periodically polling for data. An IlO trigger can be provided by a device driver that also has
an IO device based on hardware generated events (e.g. data ready or threshold exceeded) or provided
by a separate driver from an independent interrupt source (e.g. GPIO line connected to some external
system, timer interrupt or user space writing a specific file in sysfs). A trigger may initiate data capture
for a number of sensors and also it may be completely unrelated to the sensor itself.

256 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

11.4.1 IIO trigger sysfs interface

There are two locations in sysfs related to triggers:

* /sys/bus/iio/devices/triggerY/*, this file is created once an IO trigger is registered with the IO
core and corresponds to trigger with index Y. Because triggers can be very different depending on
type there are few standard attributes that we can describe here:

- name, trigger name that can be later used for association with a device.

- sampling frequency, some timer based triggers use this attribute to specify the frequency for
trigger calls.

* /sys/bus/iio/devices/iio:deviceX/trigger/*, this directory is created once the device supports
a triggered buffer. We can associate a trigger with our device by writing the trigger’'s name in the
current_trigger file.

11.4.2 IIO trigger setup

Let’'s see a simple example of how to setup a trigger to be used by a driver:

struct iio_trigger_ops trigger ops = {
.set trigger state = sample trigger state,
.validate device = sample validate device,

}
struct iio trigger *trig;

/* first, allocate memory for our trigger */
trig = iio trigger alloc(dev, "trig-%s-%d", name, idx);

/* setup trigger operations field */
trig->ops = &trigger ops;

/* now register the trigger with the IIO core */
iio_trigger register(trig);

11.4.3 11O trigger ops

» struct iio trigger ops — operations structure for an iio_trigger.
Notice that a trigger has a set of operations attached:
* set trigger_ state, switch the trigger on/off on demand.

* validate device, function to validate the device when the current trigger gets changed.

11.4.4 More details

struct iio_trigger_ops
operations structure for an iio_trigger.

Definition

struct iio_trigger_ops {
struct module * owner;
int (* set trigger state) (struct iio trigger *trig, bool state);
int (* try _reenable) (struct iio_trigger *trig);
int (* validate device) (struct iio trigger *trig, struct iio dev *indio dev);

};

11.4. Triggers 257

The kernel driver API manual, Release 4.13.0-rc4+

Members

owner used to monitor usage count of the trigger.

set_trigger_state switch on/off the trigger on demand

try_reenable function to reenable the trigger when the use count is zero (may be NULL)
validate_device function to validate the device when the current trigger gets changed.
Description

This is typically static const within a driver and shared by instances of a given device.

struct iio_trigger
industrial I/0O trigger device

Definition

struct iio trigger {
const struct iio_trigger _ops * ops;
int id;
const char * name;
struct device dev;
struct list head list;
struct list head alloc list;
atomic_t use count;
struct irq_chip subirq chip;
int subirqg base;
struct iio_subirq subirgs;
unsigned long pool;
struct mutex pool lock;
bool attached own device;

};

Members

ops [DRIVER] operations structure

id [INTERN] unique id number

name [DRIVER] unique name

dev [DRIVER] associated device (if relevant)

list [INTERN] used in maintenance of global trigger list
alloc_list [DRIVER] used for driver specific trigger list
use_count use count for the trigger

subirq_chip [INTERN] associate ‘virtual’ irq chip.
subirq_base [INTERN] base number for irgs provided by trigger.
subirqs [INTERN] information about the ‘child’ irgs.
pool [INTERN] bitmap of irgs currently in use.
pool_lock [INTERN] protection of the irq pool.

attached_own_device [INTERN] if we are using our own device as trigger, i.e. if we registered a poll
function to the same device as the one providing the trigger.

void iio_trigger_set_drvdata(struct iio trigger * trig, void * data)
Set trigger driver data

Parameters
struct iio_trigger * trig IO trigger structure

void * data Driver specific data

258 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

Description

Allows to attach an arbitrary pointer to an I1IO trigger, which can later be retrieved by
1io trigger get drvdata().

void * iio_trigger_get_drvdata(structiio trigger * trig)
Get trigger driver data

Parameters

struct iio_trigger * trig IO trigger structure

Description

Returns the data previously set with iio trigger set drvdata()

int iio_trigger_register(structiio trigger * trig_info)
register a trigger with the 110 core

Parameters
struct iio_trigger * trig_info trigger to be registered

void iio_trigger_unregister(structiio trigger * trig_info)
unregister a trigger from the core

Parameters
struct iio_trigger * trig_info trigger to be unregistered

int iio_trigger_set_immutable(struct iio _dev * indio_dev, struct iio_trigger * trig)
set an immutable trigger on destination

Parameters

struct iio_dev * indio_dev undescribed

struct iio_trigger * trig undescribed

Description

indio_dev - [IO device structure containing the device trig - trigger to assign to device

void iio_trigger_poll(struct jio_trigger * trig)
called on a trigger occurring

Parameters
struct iio_trigger * trig trigger which occurred
Description
Typically called in relevant hardware interrupt handler.

bool iio_trigger_using_own(struct iio dev * indio_dev)
tells us if we use our own HW trigger ourselves

Parameters
struct iio_dev * indio_dev device to check

struct iio_trigger * devm_iio_trigger_alloc (struct device * dev, const char * fmt, ...)
Resource-managed iio trigger alloc()

Parameters
struct device * dev Device to allocate iio_trigger for

const char * fmt trigger name format. If it includes format specifiers, the additional arguments follow-
ing format are formatted and inserted in the resulting string replacing their respective specifiers.

. variable arguments

11.4. Triggers 259

The kernel driver API manual, Release 4.13.0-rc4+

Description
Managed iio_trigger_alloc. iio_trigger allocated with this function is automatically freed on driver detach.

If aniio_trigger allocated with this function needs to be freed separately, devm iio trigger free() must
be used.

Return
Pointer to allocated iio_trigger on success, NULL on failure.

void devm_iio_trigger_free(struct device * dev, struct iio_trigger * iio_trig)
Resource-managed iio trigger free()

Parameters

struct device * dev Device this iio_dev belongs to

struct iio_trigger * iio_trig the iio_trigger associated with the device
Description

Free iio_trigger allocated with devm iio trigger alloc().

int devm_iio_trigger_register(struct device * dev, struct iio_trigger * trig_info)
Resource-managed iio trigger register()

Parameters

struct device * dev device this trigger was allocated for
struct iio_trigger * trig_info trigger to register
Description

Managed iio trigger register(). The IlO trigger registered with this function is automatically unreg-
istered on driver detach. This function calls 1io0 trigger register() internally. Refer to that function
for more information.

If an iio_trigger registered with this function needs to be unregistered separately,
devm iio trigger unregister() must be used.

Return
0 on success, negative error number on failure.

void devm_iio_trigger_unregister(struct device * dev, struct iio_trigger * trig_info)
Resource-managed iio trigger unregister()

Parameters

struct device * dev device this iio_trigger belongs to

struct iio_trigger * trig_info the trigger associated with the device
Description

Unregister trigger registered with devm iio trigger register().

int iio_trigger_validate_own_device(structiio _trigger * trig, struct iio_dev * indio_dev)
Check if a trigger and 110 device belong to the same device

Parameters
struct iio_trigger * trig The IIO trigger to check
struct iio_dev * indio_dev the IIO device to check
Description

This function can be used as the validate_device callback for triggers that can only be attached to their
own device.

Return

260 Chapter 11. Industrial I/O

The kernel driver API manual, Release 4.13.0-rc4+

0 if both the trigger and the IO device belong to the same device, -EINVAL otherwise.

11.5 Triggered Buffers

Now that we know what buffers and triggers are let's see how they work together.

11.5.1 IIO triggered buffer setup

» iio triggered buffer setup() — Setup triggered buffer and pollfunc
» 110 triggered buffer cleanup() — Freeresourcesallocatedby iio triggered buffer setup()
» struct iio buffer setup ops — buffer setup related callbacks

A typical triggered buffer setup looks like this:

const struct iio buffer_setup ops sensor buffer setup ops = {

.preenable = sensor _buffer preenable,
.postenable = sensor buffer postenable,
.postdisable = sensor_buffer postdisable,
.predisable = sensor buffer predisable,
b
irgreturn_t sensor _iio pollfunc(int irq, void *p)
{
pf->timestamp = iio_get time ns((struct indio_dev *)p);
return IRQ WAKE THREAD;
}
irgreturn_t sensor trigger handler(int irqg, void *p)
{
ulé buf[8];
int i = 0;
/* read data for each active channel */