
The kernel core API manual
Release 4.13.0-rc4+

The kernel development community

Sep 05, 2017

CONTENTS

1 Core utilities 3

2 Interfaces for kernel debugging 225

Index 237

i

ii

The kernel core API manual, Release 4.13.0-rc4+

This is the beginning of a manual for core kernel APIs. The conversion (and writing!) of documents for
this manual is much appreciated!

CONTENTS 1

The kernel core API manual, Release 4.13.0-rc4+

2 CONTENTS

CHAPTER

ONE

CORE UTILITIES

1.1 The Linux Kernel API

1.1.1 Data Types

Doubly Linked Lists

void list_add(struct list_head * new, struct list_head * head)
add a new entry

Parameters
struct list_head * new new entry to be added
struct list_head * head list head to add it after
Description
Insert a new entry after the specified head. This is good for implementing stacks.
void list_add_tail(struct list_head * new, struct list_head * head)

add a new entry
Parameters
struct list_head * new new entry to be added
struct list_head * head list head to add it before
Description
Insert a new entry before the specified head. This is useful for implementing queues.
void __list_del_entry(struct list_head * entry)

deletes entry from list.
Parameters
struct list_head * entry the element to delete from the list.
Note
list_empty() on entry does not return true after this, the entry is in an undefined state.
void list_replace(struct list_head * old, struct list_head * new)

replace old entry by new one
Parameters
struct list_head * old the element to be replaced
struct list_head * new the new element to insert
Description
If old was empty, it will be overwritten.

3

The kernel core API manual, Release 4.13.0-rc4+

void list_del_init(struct list_head * entry)
deletes entry from list and reinitialize it.

Parameters
struct list_head * entry the element to delete from the list.
void list_move(struct list_head * list, struct list_head * head)

delete from one list and add as another’s head
Parameters
struct list_head * list the entry to move
struct list_head * head the head that will precede our entry
void list_move_tail(struct list_head * list, struct list_head * head)

delete from one list and add as another’s tail
Parameters
struct list_head * list the entry to move
struct list_head * head the head that will follow our entry
int list_is_last(const struct list_head * list, const struct list_head * head)

tests whether list is the last entry in list head
Parameters
const struct list_head * list the entry to test
const struct list_head * head the head of the list
int list_empty(const struct list_head * head)

tests whether a list is empty
Parameters
const struct list_head * head the list to test.
int list_empty_careful(const struct list_head * head)

tests whether a list is empty and not being modified
Parameters
const struct list_head * head the list to test
Description
tests whether a list is empty _and_ checks that no other CPU might be in the process of modifying either
member (next or prev)
NOTE
using list_empty_careful()without synchronization can only be safe if the only activity that can happen
to the list entry is list_del_init(). Eg. it cannot be used if another CPU could re-list_add() it.
void list_rotate_left(struct list_head * head)

rotate the list to the left
Parameters
struct list_head * head the head of the list
int list_is_singular(const struct list_head * head)

tests whether a list has just one entry.
Parameters
const struct list_head * head the list to test.
void list_cut_position(struct list_head * list, struct list_head * head, struct list_head * entry)

cut a list into two

4 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct list_head * list a new list to add all removed entries
struct list_head * head a list with entries
struct list_head * entry an entry within head, could be the head itself and if so we won’t cut the list
Description
This helper moves the initial part of head, up to and including entry, from head to list. You should pass
on entry an element you know is on head. list should be an empty list or a list you do not care about
losing its data.
void list_splice(const struct list_head * list, struct list_head * head)

join two lists, this is designed for stacks
Parameters
const struct list_head * list the new list to add.
struct list_head * head the place to add it in the first list.
void list_splice_tail(struct list_head * list, struct list_head * head)

join two lists, each list being a queue
Parameters
struct list_head * list the new list to add.
struct list_head * head the place to add it in the first list.
void list_splice_init(struct list_head * list, struct list_head * head)

join two lists and reinitialise the emptied list.
Parameters
struct list_head * list the new list to add.
struct list_head * head the place to add it in the first list.
Description
The list at list is reinitialised
void list_splice_tail_init(struct list_head * list, struct list_head * head)

join two lists and reinitialise the emptied list
Parameters
struct list_head * list the new list to add.
struct list_head * head the place to add it in the first list.
Description
Each of the lists is a queue. The list at list is reinitialised
list_entry(ptr, type, member)

get the struct for this entry
Parameters
ptr the struct list_head pointer.
type the type of the struct this is embedded in.
member the name of the list_head within the struct.
list_first_entry(ptr, type, member)

get the first element from a list
Parameters
ptr the list head to take the element from.

1.1. The Linux Kernel API 5

The kernel core API manual, Release 4.13.0-rc4+

type the type of the struct this is embedded in.
member the name of the list_head within the struct.
Description
Note, that list is expected to be not empty.
list_last_entry(ptr, type, member)

get the last element from a list
Parameters
ptr the list head to take the element from.
type the type of the struct this is embedded in.
member the name of the list_head within the struct.
Description
Note, that list is expected to be not empty.
list_first_entry_or_null(ptr, type, member)

get the first element from a list
Parameters
ptr the list head to take the element from.
type the type of the struct this is embedded in.
member the name of the list_head within the struct.
Description
Note that if the list is empty, it returns NULL.
list_next_entry(pos, member)

get the next element in list
Parameters
pos the type * to cursor
member the name of the list_head within the struct.
list_prev_entry(pos, member)

get the prev element in list
Parameters
pos the type * to cursor
member the name of the list_head within the struct.
list_for_each(pos, head)

iterate over a list
Parameters
pos the struct list_head to use as a loop cursor.
head the head for your list.
list_for_each_prev(pos, head)

iterate over a list backwards
Parameters
pos the struct list_head to use as a loop cursor.
head the head for your list.

6 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

list_for_each_safe(pos, n, head)
iterate over a list safe against removal of list entry

Parameters
pos the struct list_head to use as a loop cursor.
n another struct list_head to use as temporary storage
head the head for your list.
list_for_each_prev_safe(pos, n, head)

iterate over a list backwards safe against removal of list entry
Parameters
pos the struct list_head to use as a loop cursor.
n another struct list_head to use as temporary storage
head the head for your list.
list_for_each_entry(pos, head, member)

iterate over list of given type
Parameters
pos the type * to use as a loop cursor.
head the head for your list.
member the name of the list_head within the struct.
list_for_each_entry_reverse(pos, head, member)

iterate backwards over list of given type.
Parameters
pos the type * to use as a loop cursor.
head the head for your list.
member the name of the list_head within the struct.
list_prepare_entry(pos, head, member)

prepare a pos entry for use in list_for_each_entry_continue()
Parameters
pos the type * to use as a start point
head the head of the list
member the name of the list_head within the struct.
Description
Prepares a pos entry for use as a start point in list_for_each_entry_continue().
list_for_each_entry_continue(pos, head, member)

continue iteration over list of given type
Parameters
pos the type * to use as a loop cursor.
head the head for your list.
member the name of the list_head within the struct.
Description
Continue to iterate over list of given type, continuing after the current position.

1.1. The Linux Kernel API 7

The kernel core API manual, Release 4.13.0-rc4+

list_for_each_entry_continue_reverse(pos, head, member)
iterate backwards from the given point

Parameters
pos the type * to use as a loop cursor.
head the head for your list.
member the name of the list_head within the struct.
Description
Start to iterate over list of given type backwards, continuing after the current position.
list_for_each_entry_from(pos, head, member)

iterate over list of given type from the current point
Parameters
pos the type * to use as a loop cursor.
head the head for your list.
member the name of the list_head within the struct.
Description
Iterate over list of given type, continuing from current position.
list_for_each_entry_from_reverse(pos, head, member)

iterate backwards over list of given type from the current point
Parameters
pos the type * to use as a loop cursor.
head the head for your list.
member the name of the list_head within the struct.
Description
Iterate backwards over list of given type, continuing from current position.
list_for_each_entry_safe(pos, n, head, member)

iterate over list of given type safe against removal of list entry
Parameters
pos the type * to use as a loop cursor.
n another type * to use as temporary storage
head the head for your list.
member the name of the list_head within the struct.
list_for_each_entry_safe_continue(pos, n, head, member)

continue list iteration safe against removal
Parameters
pos the type * to use as a loop cursor.
n another type * to use as temporary storage
head the head for your list.
member the name of the list_head within the struct.
Description
Iterate over list of given type, continuing after current point, safe against removal of list entry.

8 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

list_for_each_entry_safe_from(pos, n, head, member)
iterate over list from current point safe against removal

Parameters
pos the type * to use as a loop cursor.
n another type * to use as temporary storage
head the head for your list.
member the name of the list_head within the struct.
Description
Iterate over list of given type from current point, safe against removal of list entry.
list_for_each_entry_safe_reverse(pos, n, head, member)

iterate backwards over list safe against removal
Parameters
pos the type * to use as a loop cursor.
n another type * to use as temporary storage
head the head for your list.
member the name of the list_head within the struct.
Description
Iterate backwards over list of given type, safe against removal of list entry.
list_safe_reset_next(pos, n, member)

reset a stale list_for_each_entry_safe loop
Parameters
pos the loop cursor used in the list_for_each_entry_safe loop
n temporary storage used in list_for_each_entry_safe
member the name of the list_head within the struct.
Description
list_safe_reset_next is not safe to use in general if the list may be modified concurrently (eg. the lock is
dropped in the loop body). An exception to this is if the cursor element (pos) is pinned in the list, and
list_safe_reset_next is called after re-taking the lock and before completing the current iteration of the
loop body.
hlist_for_each_entry(pos, head, member)

iterate over list of given type
Parameters
pos the type * to use as a loop cursor.
head the head for your list.
member the name of the hlist_node within the struct.
hlist_for_each_entry_continue(pos, member)

iterate over a hlist continuing after current point
Parameters
pos the type * to use as a loop cursor.
member the name of the hlist_node within the struct.
hlist_for_each_entry_from(pos, member)

iterate over a hlist continuing from current point

1.1. The Linux Kernel API 9

The kernel core API manual, Release 4.13.0-rc4+

Parameters
pos the type * to use as a loop cursor.
member the name of the hlist_node within the struct.
hlist_for_each_entry_safe(pos, n, head, member)

iterate over list of given type safe against removal of list entry
Parameters
pos the type * to use as a loop cursor.
n another struct hlist_node to use as temporary storage
head the head for your list.
member the name of the hlist_node within the struct.

1.1.2 Basic C Library Functions

When writing drivers, you cannot in general use routines which are from the C Library. Some of the
functions have been found generally useful and they are listed below. The behaviour of these functions
may vary slightly from those defined by ANSI, and these deviations are noted in the text.

String Conversions

unsigned long long simple_strtoull(const char * cp, char ** endp, unsigned int base)
convert a string to an unsigned long long

Parameters
const char * cp The start of the string
char ** endp A pointer to the end of the parsed string will be placed here
unsigned int base The number base to use
Description
This function is obsolete. Please use kstrtoull instead.
unsigned long simple_strtoul(const char * cp, char ** endp, unsigned int base)

convert a string to an unsigned long
Parameters
const char * cp The start of the string
char ** endp A pointer to the end of the parsed string will be placed here
unsigned int base The number base to use
Description
This function is obsolete. Please use kstrtoul instead.
long simple_strtol(const char * cp, char ** endp, unsigned int base)

convert a string to a signed long
Parameters
const char * cp The start of the string
char ** endp A pointer to the end of the parsed string will be placed here
unsigned int base The number base to use
Description
This function is obsolete. Please use kstrtol instead.

10 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

long long simple_strtoll(const char * cp, char ** endp, unsigned int base)
convert a string to a signed long long

Parameters
const char * cp The start of the string
char ** endp A pointer to the end of the parsed string will be placed here
unsigned int base The number base to use
Description
This function is obsolete. Please use kstrtoll instead.
int vsnprintf(char * buf, size_t size, const char * fmt, va_list args)

Format a string and place it in a buffer
Parameters
char * buf The buffer to place the result into
size_t size The size of the buffer, including the trailing null space
const char * fmt The format string to use
va_list args Arguments for the format string
Description
This function generally follows C99 vsnprintf, but has some extensions and a few limitations:
• ``n`` is unsupported
• ``p``* is handled by pointer()

See pointer() or Documentation/printk-formats.txt for more extensive description.
Please update the documentation in both places when making changes
The return value is the number of characters which would be generated for the given input, excluding the
trailing ‘0’, as per ISO C99. If you want to have the exact number of characters written into buf as return
value (not including the trailing ‘0’), use vscnprintf(). If the return is greater than or equal to size, the
resulting string is truncated.
If you’re not already dealing with a va_list consider using snprintf().
int vscnprintf(char * buf, size_t size, const char * fmt, va_list args)

Format a string and place it in a buffer
Parameters
char * buf The buffer to place the result into
size_t size The size of the buffer, including the trailing null space
const char * fmt The format string to use
va_list args Arguments for the format string
Description
The return value is the number of characters which have been written into the buf not including the
trailing ‘0’. If size is == 0 the function returns 0.
If you’re not already dealing with a va_list consider using scnprintf().
See the vsnprintf() documentation for format string extensions over C99.
int snprintf(char * buf, size_t size, const char * fmt, ...)

Format a string and place it in a buffer
Parameters
char * buf The buffer to place the result into

1.1. The Linux Kernel API 11

The kernel core API manual, Release 4.13.0-rc4+

size_t size The size of the buffer, including the trailing null space
const char * fmt The format string to use
... Arguments for the format string
Description
The return value is the number of characters which would be generated for the given input, excluding the
trailing null, as per ISO C99. If the return is greater than or equal to size, the resulting string is truncated.
See the vsnprintf() documentation for format string extensions over C99.
int scnprintf(char * buf, size_t size, const char * fmt, ...)

Format a string and place it in a buffer
Parameters
char * buf The buffer to place the result into
size_t size The size of the buffer, including the trailing null space
const char * fmt The format string to use
... Arguments for the format string
Description
The return value is the number of characters written into buf not including the trailing ‘0’. If size is ==
0 the function returns 0.
int vsprintf(char * buf, const char * fmt, va_list args)

Format a string and place it in a buffer
Parameters
char * buf The buffer to place the result into
const char * fmt The format string to use
va_list args Arguments for the format string
Description
The function returns the number of characters written into buf. Use vsnprintf() or vscnprintf() in
order to avoid buffer overflows.
If you’re not already dealing with a va_list consider using sprintf().
See the vsnprintf() documentation for format string extensions over C99.
int sprintf(char * buf, const char * fmt, ...)

Format a string and place it in a buffer
Parameters
char * buf The buffer to place the result into
const char * fmt The format string to use
... Arguments for the format string
Description
The function returns the number of characters written into buf. Use snprintf() or scnprintf() in order
to avoid buffer overflows.
See the vsnprintf() documentation for format string extensions over C99.
int vbin_printf(u32 * bin_buf, size_t size, const char * fmt, va_list args)

Parse a format string and place args’ binary value in a buffer
Parameters
u32 * bin_buf The buffer to place args’ binary value

12 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

size_t size The size of the buffer(by words(32bits), not characters)
const char * fmt The format string to use
va_list args Arguments for the format string
Description
The format follows C99 vsnprintf, except n is ignored, and its argument is skipped.
The return value is the number of words(32bits) which would be generated for the given input.
NOTE
If the return value is greater than size, the resulting bin_buf is NOT valid for bstr_printf().
int bstr_printf(char * buf, size_t size, const char * fmt, const u32 * bin_buf)

Format a string from binary arguments and place it in a buffer
Parameters
char * buf The buffer to place the result into
size_t size The size of the buffer, including the trailing null space
const char * fmt The format string to use
const u32 * bin_buf Binary arguments for the format string
Description
This function like C99 vsnprintf, but the difference is that vsnprintf gets arguments from stack, and
bstr_printf gets arguments from bin_buf which is a binary buffer that generated by vbin_printf.
The format follows C99 vsnprintf, but has some extensions: see vsnprintf comment for details.
The return value is the number of characters which would be generated for the given input, excluding the
trailing ‘0’, as per ISO C99. If you want to have the exact number of characters written into buf as return
value (not including the trailing ‘0’), use vscnprintf(). If the return is greater than or equal to size, the
resulting string is truncated.
int bprintf(u32 * bin_buf, size_t size, const char * fmt, ...)

Parse a format string and place args’ binary value in a buffer
Parameters
u32 * bin_buf The buffer to place args’ binary value
size_t size The size of the buffer(by words(32bits), not characters)
const char * fmt The format string to use
... Arguments for the format string
Description
The function returns the number of words(u32) written into bin_buf.
int vsscanf(const char * buf, const char * fmt, va_list args)

Unformat a buffer into a list of arguments
Parameters
const char * buf input buffer
const char * fmt format of buffer
va_list args arguments
int sscanf(const char * buf, const char * fmt, ...)

Unformat a buffer into a list of arguments
Parameters
const char * buf input buffer

1.1. The Linux Kernel API 13

The kernel core API manual, Release 4.13.0-rc4+

const char * fmt formatting of buffer
... resulting arguments
int kstrtol(const char * s, unsigned int base, long * res)

convert a string to a long
Parameters
const char * s The start of the string. The string must be null-terminated, and may also include a single

newline before its terminating null. The first character may also be a plus sign or a minus sign.
unsigned int base The number base to use. The maximum supported base is 16. If base is given as 0,

then the base of the string is automatically detected with the conventional semantics - If it begins
with 0x the number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0,
it will be parsed as an octal number. Otherwise it will be parsed as a decimal.

long * res Where to write the result of the conversion on success.
Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for the
obsolete simple_strtoull. Return code must be checked.
int kstrtoul(const char * s, unsigned int base, unsigned long * res)

convert a string to an unsigned long
Parameters
const char * s The start of the string. The string must be null-terminated, and may also include a single

newline before its terminating null. The first character may also be a plus sign, but not a minus sign.
unsigned int base The number base to use. The maximum supported base is 16. If base is given as 0,

then the base of the string is automatically detected with the conventional semantics - If it begins
with 0x the number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0,
it will be parsed as an octal number. Otherwise it will be parsed as a decimal.

unsigned long * res Where to write the result of the conversion on success.
Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for the
obsolete simple_strtoull. Return code must be checked.
int kstrtoull(const char * s, unsigned int base, unsigned long long * res)

convert a string to an unsigned long long
Parameters
const char * s The start of the string. The string must be null-terminated, and may also include a single

newline before its terminating null. The first character may also be a plus sign, but not a minus sign.
unsigned int base The number base to use. The maximum supported base is 16. If base is given as 0,

then the base of the string is automatically detected with the conventional semantics - If it begins
with 0x the number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0,
it will be parsed as an octal number. Otherwise it will be parsed as a decimal.

unsigned long long * res Where to write the result of the conversion on success.
Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for the
obsolete simple_strtoull. Return code must be checked.
int kstrtoll(const char * s, unsigned int base, long long * res)

convert a string to a long long
Parameters
const char * s The start of the string. The string must be null-terminated, and may also include a single

newline before its terminating null. The first character may also be a plus sign or a minus sign.

14 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

unsigned int base The number base to use. The maximum supported base is 16. If base is given as 0,
then the base of the string is automatically detected with the conventional semantics - If it begins
with 0x the number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0,
it will be parsed as an octal number. Otherwise it will be parsed as a decimal.

long long * res Where to write the result of the conversion on success.
Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for the
obsolete simple_strtoull. Return code must be checked.
int kstrtouint(const char * s, unsigned int base, unsigned int * res)

convert a string to an unsigned int
Parameters
const char * s The start of the string. The string must be null-terminated, and may also include a single

newline before its terminating null. The first character may also be a plus sign, but not a minus sign.
unsigned int base The number base to use. The maximum supported base is 16. If base is given as 0,

then the base of the string is automatically detected with the conventional semantics - If it begins
with 0x the number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0,
it will be parsed as an octal number. Otherwise it will be parsed as a decimal.

unsigned int * res Where to write the result of the conversion on success.
Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for the
obsolete simple_strtoull. Return code must be checked.
int kstrtoint(const char * s, unsigned int base, int * res)

convert a string to an int
Parameters
const char * s The start of the string. The string must be null-terminated, and may also include a single

newline before its terminating null. The first character may also be a plus sign or a minus sign.
unsigned int base The number base to use. The maximum supported base is 16. If base is given as 0,

then the base of the string is automatically detected with the conventional semantics - If it begins
with 0x the number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0,
it will be parsed as an octal number. Otherwise it will be parsed as a decimal.

int * res Where to write the result of the conversion on success.
Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for the
obsolete simple_strtoull. Return code must be checked.
int kstrtobool(const char * s, bool * res)

convert common user inputs into boolean values
Parameters
const char * s input string
bool * res result
Description
This routine returns 0 iff the first character is one of ‘Yy1Nn0’, or [oO][NnFf] for “on” and “off”. Otherwise
it will return -EINVAL. Value pointed to by res is updated upon finding a match.

1.1. The Linux Kernel API 15

The kernel core API manual, Release 4.13.0-rc4+

String Manipulation

int strncasecmp(const char * s1, const char * s2, size_t len)
Case insensitive, length-limited string comparison

Parameters
const char * s1 One string
const char * s2 The other string
size_t len the maximum number of characters to compare
char * strcpy(char * dest, const char * src)

Copy a NUL terminated string
Parameters
char * dest Where to copy the string to
const char * src Where to copy the string from
char * strncpy(char * dest, const char * src, size_t count)

Copy a length-limited, C-string
Parameters
char * dest Where to copy the string to
const char * src Where to copy the string from
size_t count The maximum number of bytes to copy
Description
The result is not NUL-terminated if the source exceeds count bytes.
In the case where the length of src is less than that of count, the remainder of dest will be padded with
NUL.
size_t strlcpy(char * dest, const char * src, size_t size)

Copy a C-string into a sized buffer
Parameters
char * dest Where to copy the string to
const char * src Where to copy the string from
size_t size size of destination buffer
Description
Compatible with *BSD: the result is always a valid NUL-terminated string that fits in the buffer (unless, of
course, the buffer size is zero). It does not pad out the result like strncpy() does.
ssize_t strscpy(char * dest, const char * src, size_t count)

Copy a C-string into a sized buffer
Parameters
char * dest Where to copy the string to
const char * src Where to copy the string from
size_t count Size of destination buffer
Description
Copy the string, or as much of it as fits, into the dest buffer. The routine returns the number of characters
copied (not including the trailing NUL) or -E2BIG if the destination buffer wasn’t big enough. The behavior
is undefined if the string buffers overlap. The destination buffer is always NUL terminated, unless it’s
zero-sized.

16 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Preferred to strlcpy() since the API doesn’t require reading memory from the src string beyond the
specified “count” bytes, and since the return value is easier to error-check than strlcpy()‘s. In addition,
the implementation is robust to the string changing out from underneath it, unlike the current strlcpy()
implementation.
Preferred to strncpy() since it always returns a valid string, and doesn’t unnecessarily force the tail of
the destination buffer to be zeroed. If the zeroing is desired, it’s likely cleaner to use strscpy() with an
overflow test, then just memset() the tail of the dest buffer.
char * strcat(char * dest, const char * src)

Append one NUL-terminated string to another
Parameters
char * dest The string to be appended to
const char * src The string to append to it
char * strncat(char * dest, const char * src, size_t count)

Append a length-limited, C-string to another
Parameters
char * dest The string to be appended to
const char * src The string to append to it
size_t count The maximum numbers of bytes to copy
Description
Note that in contrast to strncpy(), strncat() ensures the result is terminated.
size_t strlcat(char * dest, const char * src, size_t count)

Append a length-limited, C-string to another
Parameters
char * dest The string to be appended to
const char * src The string to append to it
size_t count The size of the destination buffer.
int strcmp(const char * cs, const char * ct)

Compare two strings
Parameters
const char * cs One string
const char * ct Another string
int strncmp(const char * cs, const char * ct, size_t count)

Compare two length-limited strings
Parameters
const char * cs One string
const char * ct Another string
size_t count The maximum number of bytes to compare
char * strchr(const char * s, int c)

Find the first occurrence of a character in a string
Parameters
const char * s The string to be searched
int c The character to search for

1.1. The Linux Kernel API 17

The kernel core API manual, Release 4.13.0-rc4+

char * strchrnul(const char * s, int c)
Find and return a character in a string, or end of string

Parameters
const char * s The string to be searched
int c The character to search for
Description
Returns pointer to first occurrence of ‘c’ in s. If c is not found, then return a pointer to the null byte at the
end of s.
char * strrchr(const char * s, int c)

Find the last occurrence of a character in a string
Parameters
const char * s The string to be searched
int c The character to search for
char * strnchr(const char * s, size_t count, int c)

Find a character in a length limited string
Parameters
const char * s The string to be searched
size_t count The number of characters to be searched
int c The character to search for
char * skip_spaces(const char * str)

Removes leading whitespace from str.
Parameters
const char * str The string to be stripped.
Description
Returns a pointer to the first non-whitespace character in str.
char * strim(char * s)

Removes leading and trailing whitespace from s.
Parameters
char * s The string to be stripped.
Description
Note that the first trailing whitespace is replaced with a NUL-terminator in the given string s. Returns a
pointer to the first non-whitespace character in s.
size_t strlen(const char * s)

Find the length of a string
Parameters
const char * s The string to be sized
size_t strnlen(const char * s, size_t count)

Find the length of a length-limited string
Parameters
const char * s The string to be sized
size_t count The maximum number of bytes to search

18 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

size_t strspn(const char * s, const char * accept)
Calculate the length of the initial substring of s which only contain letters in accept

Parameters
const char * s The string to be searched
const char * accept The string to search for
size_t strcspn(const char * s, const char * reject)

Calculate the length of the initial substring of s which does not contain letters in reject
Parameters
const char * s The string to be searched
const char * reject The string to avoid
char * strpbrk(const char * cs, const char * ct)

Find the first occurrence of a set of characters
Parameters
const char * cs The string to be searched
const char * ct The characters to search for
char * strsep(char ** s, const char * ct)

Split a string into tokens
Parameters
char ** s The string to be searched
const char * ct The characters to search for
Description
strsep() updates s to point after the token, ready for the next call.
It returns empty tokens, too, behaving exactly like the libc function of that name. In fact, it was stolen
from glibc2 and de-fancy-fied. Same semantics, slimmer shape. ;)
bool sysfs_streq(const char * s1, const char * s2)

return true if strings are equal, modulo trailing newline
Parameters
const char * s1 one string
const char * s2 another string
Description
This routine returns true iff two strings are equal, treating both NUL and newline-then-NUL as equivalent
string terminations. It’s geared for use with sysfs input strings, which generally terminate with newlines
but are compared against values without newlines.
int match_string(const char *const * array, size_t n, const char * string)

matches given string in an array
Parameters
const char *const * array array of strings
size_t n number of strings in the array or -1 for NULL terminated arrays
const char * string string to match with
Return
index of a string in the array if matches, or -EINVAL otherwise.

1.1. The Linux Kernel API 19

The kernel core API manual, Release 4.13.0-rc4+

int __sysfs_match_string(const char *const * array, size_t n, const char * str)
matches given string in an array

Parameters
const char *const * array array of strings
size_t n number of strings in the array or -1 for NULL terminated arrays
const char * str string to match with
Description
Returns index of str in the array or -EINVAL, just like match_string(). Uses sysfs_streq instead of strcmp
for matching.
void * memset(void * s, int c, size_t count)

Fill a region of memory with the given value
Parameters
void * s Pointer to the start of the area.
int c The byte to fill the area with
size_t count The size of the area.
Description
Do not use memset() to access IO space, use memset_io() instead.
void memzero_explicit(void * s, size_t count)

Fill a region of memory (e.g. sensitive keying data) with 0s.
Parameters
void * s Pointer to the start of the area.
size_t count The size of the area.
Note
usually using memset() is just fine (!), but in cases where clearing out _local_ data at the end of a scope is
necessary, memzero_explicit() should be used instead in order to prevent the compiler from optimising
away zeroing.
memzero_explicit() doesn’t need an arch-specific version as it just invokes the one of memset() implic-
itly.
void * memcpy(void * dest, const void * src, size_t count)

Copy one area of memory to another
Parameters
void * dest Where to copy to
const void * src Where to copy from
size_t count The size of the area.
Description
You should not use this function to access IO space, use memcpy_toio() or memcpy_fromio() instead.
void * memmove(void * dest, const void * src, size_t count)

Copy one area of memory to another
Parameters
void * dest Where to copy to
const void * src Where to copy from
size_t count The size of the area.

20 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
Unlike memcpy(), memmove() copes with overlapping areas.
__visible int memcmp(const void * cs, const void * ct, size_t count)

Compare two areas of memory
Parameters
const void * cs One area of memory
const void * ct Another area of memory
size_t count The size of the area.
void * memscan(void * addr, int c, size_t size)

Find a character in an area of memory.
Parameters
void * addr The memory area
int c The byte to search for
size_t size The size of the area.
Description
returns the address of the first occurrence of c, or 1 byte past the area if c is not found
char * strstr(const char * s1, const char * s2)

Find the first substring in a NUL terminated string
Parameters
const char * s1 The string to be searched
const char * s2 The string to search for
char * strnstr(const char * s1, const char * s2, size_t len)

Find the first substring in a length-limited string
Parameters
const char * s1 The string to be searched
const char * s2 The string to search for
size_t len the maximum number of characters to search
void * memchr(const void * s, int c, size_t n)

Find a character in an area of memory.
Parameters
const void * s The memory area
int c The byte to search for
size_t n The size of the area.
Description
returns the address of the first occurrence of c, or NULL if c is not found
void * memchr_inv(const void * start, int c, size_t bytes)

Find an unmatching character in an area of memory.
Parameters
const void * start The memory area
int c Find a character other than c
size_t bytes The size of the area.

1.1. The Linux Kernel API 21

The kernel core API manual, Release 4.13.0-rc4+

Description
returns the address of the first character other than c, or NULL if the whole buffer contains just c.
char * strreplace(char * s, char old, char new)

Replace all occurrences of character in string.
Parameters
char * s The string to operate on.
char old The character being replaced.
char new The character old is replaced with.
Description
Returns pointer to the nul byte at the end of s.

Bit Operations

void set_bit(long nr, volatile unsigned long * addr)
Atomically set a bit in memory

Parameters
long nr the bit to set
volatile unsigned long * addr the address to start counting from
Description
This function is atomic and may not be reordered. See __set_bit() if you do not require the atomic
guarantees.
Note
there are no guarantees that this function will not be reordered on non x86 architectures, so if you are
writing portable code, make sure not to rely on its reordering guarantees.
Note that nr may be almost arbitrarily large; this function is not restricted to acting on a single-word
quantity.
void __set_bit(long nr, volatile unsigned long * addr)

Set a bit in memory
Parameters
long nr the bit to set
volatile unsigned long * addr the address to start counting from
Description
Unlike set_bit(), this function is non-atomic and may be reordered. If it’s called on the same region of
memory simultaneously, the effect may be that only one operation succeeds.
void clear_bit(long nr, volatile unsigned long * addr)

Clears a bit in memory
Parameters
long nr Bit to clear
volatile unsigned long * addr Address to start counting from
Description
clear_bit() is atomic andmay not be reordered. However, it does not contain a memory barrier, so if it is
used for locking purposes, you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
in order to ensure changes are visible on other processors.

22 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

void __change_bit(long nr, volatile unsigned long * addr)
Toggle a bit in memory

Parameters
long nr the bit to change
volatile unsigned long * addr the address to start counting from
Description
Unlike change_bit(), this function is non-atomic and may be reordered. If it’s called on the same region
of memory simultaneously, the effect may be that only one operation succeeds.
void change_bit(long nr, volatile unsigned long * addr)

Toggle a bit in memory
Parameters
long nr Bit to change
volatile unsigned long * addr Address to start counting from
Description
change_bit() is atomic and may not be reordered. Note that nr may be almost arbitrarily large; this
function is not restricted to acting on a single-word quantity.
bool test_and_set_bit(long nr, volatile unsigned long * addr)

Set a bit and return its old value
Parameters
long nr Bit to set
volatile unsigned long * addr Address to count from
Description
This operation is atomic and cannot be reordered. It also implies a memory barrier.
bool test_and_set_bit_lock(long nr, volatile unsigned long * addr)

Set a bit and return its old value for lock
Parameters
long nr Bit to set
volatile unsigned long * addr Address to count from
Description
This is the same as test_and_set_bit on x86.
bool __test_and_set_bit(long nr, volatile unsigned long * addr)

Set a bit and return its old value
Parameters
long nr Bit to set
volatile unsigned long * addr Address to count from
Description
This operation is non-atomic and can be reordered. If two examples of this operation race, one can appear
to succeed but actually fail. You must protect multiple accesses with a lock.
bool test_and_clear_bit(long nr, volatile unsigned long * addr)

Clear a bit and return its old value
Parameters
long nr Bit to clear

1.1. The Linux Kernel API 23

The kernel core API manual, Release 4.13.0-rc4+

volatile unsigned long * addr Address to count from
Description
This operation is atomic and cannot be reordered. It also implies a memory barrier.
bool __test_and_clear_bit(long nr, volatile unsigned long * addr)

Clear a bit and return its old value
Parameters
long nr Bit to clear
volatile unsigned long * addr Address to count from
Description
This operation is non-atomic and can be reordered. If two examples of this operation race, one can appear
to succeed but actually fail. You must protect multiple accesses with a lock.
Note
the operation is performed atomically with respect to the local CPU, but not other CPUs. Portable code
should not rely on this behaviour. KVM relies on this behaviour on x86 for modifying memory that is also
accessed from a hypervisor on the same CPU if running in a VM: don’t change this without also updating
arch/x86/kernel/kvm.c
bool test_and_change_bit(long nr, volatile unsigned long * addr)

Change a bit and return its old value
Parameters
long nr Bit to change
volatile unsigned long * addr Address to count from
Description
This operation is atomic and cannot be reordered. It also implies a memory barrier.
bool test_bit(int nr, const volatile unsigned long * addr)

Determine whether a bit is set
Parameters
int nr bit number to test
const volatile unsigned long * addr Address to start counting from
unsigned long __ffs(unsigned long word)

find first set bit in word
Parameters
unsigned long word The word to search
Description
Undefined if no bit exists, so code should check against 0 first.
unsigned long ffz(unsigned long word)

find first zero bit in word
Parameters
unsigned long word The word to search
Description
Undefined if no zero exists, so code should check against ~0UL first.
int ffs(int x)

find first set bit in word

24 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
int x the word to search
Description
This is defined the same way as the libc and compiler builtin ffs routines, therefore differs in spirit from
the other bitops.
ffs(value) returns 0 if value is 0 or the position of the first set bit if value is nonzero. The first (least
significant) bit is at position 1.
int fls(int x)

find last set bit in word
Parameters
int x the word to search
Description
This is defined in a similar way as the libc and compiler builtin ffs, but returns the position of the most
significant set bit.
fls(value) returns 0 if value is 0 or the position of the last set bit if value is nonzero. The last (most
significant) bit is at position 32.
int fls64(__u64 x)

find last set bit in a 64-bit word
Parameters
__u64 x the word to search
Description
This is defined in a similar way as the libc and compiler builtin ffsll, but returns the position of the most
significant set bit.
fls64(value) returns 0 if value is 0 or the position of the last set bit if value is nonzero. The last (most
significant) bit is at position 64.

1.1.3 Basic Kernel Library Functions

The Linux kernel provides more basic utility functions.

Bitmap Operations

void __bitmap_shift_right(unsigned long * dst, const unsigned long * src, unsigned shift, un-
signed nbits)

logical right shift of the bits in a bitmap
Parameters
unsigned long * dst destination bitmap
const unsigned long * src source bitmap
unsigned shift shift by this many bits
unsigned nbits bitmap size, in bits
Description
Shifting right (dividing) means moving bits in the MS -> LS bit direction. Zeros are fed into the vacated
MS positions and the LS bits shifted off the bottom are lost.

1.1. The Linux Kernel API 25

The kernel core API manual, Release 4.13.0-rc4+

void __bitmap_shift_left(unsigned long * dst, const unsigned long * src, unsigned int shift, un-
signed int nbits)

logical left shift of the bits in a bitmap
Parameters
unsigned long * dst destination bitmap
const unsigned long * src source bitmap
unsigned int shift shift by this many bits
unsigned int nbits bitmap size, in bits
Description
Shifting left (multiplying) means moving bits in the LS -> MS direction. Zeros are fed into the vacated LS
bit positions and those MS bits shifted off the top are lost.
unsigned long bitmap_find_next_zero_area_off(unsigned long * map, unsigned long size, un-

signed long start, unsigned int nr, unsigned
long align_mask, unsigned long align_offset)

find a contiguous aligned zero area
Parameters
unsigned long * map The address to base the search on
unsigned long size The bitmap size in bits
unsigned long start The bitnumber to start searching at
unsigned int nr The number of zeroed bits we’re looking for
unsigned long align_mask Alignment mask for zero area
unsigned long align_offset Alignment offset for zero area.
Description
The align_mask should be one less than a power of 2; the effect is that the bit offset of all zero areas this
function finds plus align_offset is multiple of that power of 2.
int __bitmap_parse(const char * buf, unsigned int buflen, int is_user, unsigned long * maskp,

int nmaskbits)
convert an ASCII hex string into a bitmap.

Parameters
const char * buf pointer to buffer containing string.
unsigned int buflen buffer size in bytes. If string is smaller than this then it must be terminated with

a 0.
int is_user location of buffer, 0 indicates kernel space
unsigned long * maskp pointer to bitmap array that will contain result.
int nmaskbits size of bitmap, in bits.
Description
Commas group hex digits into chunks. Each chunk defines exactly 32 bits of the resultant bitmask. No
chunk may specify a value larger than 32 bits (-EOVERFLOW), and if a chunk specifies a smaller value then
leading 0-bits are prepended. -EINVAL is returned for illegal characters and for grouping errors such as
“1„5”, ”,44”, ”,” and “”. Leading and trailing whitespace accepted, but not embedded whitespace.
int bitmap_parse_user(const char __user * ubuf, unsigned int ulen, unsigned long * maskp,

int nmaskbits)
convert an ASCII hex string in a user buffer into a bitmap

Parameters

26 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

const char __user * ubuf pointer to user buffer containing string.
unsigned int ulen buffer size in bytes. If string is smaller than this then it must be terminated with a

0.
unsigned long * maskp pointer to bitmap array that will contain result.
int nmaskbits size of bitmap, in bits.
Description
Wrapper for __bitmap_parse(), providing it with user buffer.
We cannot have this as an inline function in bitmap.h because it needs linux/uaccess.h to get the ac-
cess_ok() declaration and this causes cyclic dependencies.
int bitmap_print_to_pagebuf(bool list, char * buf, const unsigned long * maskp, int nmaskbits)

convert bitmap to list or hex format ASCII string
Parameters
bool list indicates whether the bitmap must be list
char * buf page aligned buffer into which string is placed
const unsigned long * maskp pointer to bitmap to convert
int nmaskbits size of bitmap, in bits
Description
Output format is a comma-separated list of decimal numbers and ranges if list is specified or hex digits
grouped into comma-separated sets of 8 digits/set. Returns the number of characters written to buf.
It is assumed that buf is a pointer into a PAGE_SIZE area and that sufficient storage remains at buf to
accommodate the bitmap_print_to_pagebuf() output.
int bitmap_parselist_user(const char __user * ubuf, unsigned int ulen, unsigned long * maskp,

int nmaskbits)
Parameters
const char __user * ubuf pointer to user buffer containing string.
unsigned int ulen buffer size in bytes. If string is smaller than this then it must be terminated with a

0.
unsigned long * maskp pointer to bitmap array that will contain result.
int nmaskbits size of bitmap, in bits.
Description
Wrapper for bitmap_parselist(), providing it with user buffer.
We cannot have this as an inline function in bitmap.h because it needs linux/uaccess.h to get the ac-
cess_ok() declaration and this causes cyclic dependencies.
void bitmap_remap(unsigned long * dst, const unsigned long * src, const unsigned long * old, const

unsigned long * new, unsigned int nbits)
Apply map defined by a pair of bitmaps to another bitmap

Parameters
unsigned long * dst remapped result
const unsigned long * src subset to be remapped
const unsigned long * old defines domain of map
const unsigned long * new defines range of map
unsigned int nbits number of bits in each of these bitmaps

1.1. The Linux Kernel API 27

The kernel core API manual, Release 4.13.0-rc4+

Description
Let old and new define a mapping of bit positions, such that whatever position is held by the n-th set bit
in old is mapped to the n-th set bit in new. In the more general case, allowing for the possibility that the
weight ‘w’ of new is less than the weight of old, map the position of the n-th set bit in old to the position
of the m-th set bit in new, where m == n % w.
If either of the old and new bitmaps are empty, or if src and dst point to the same location, then this
routine copies src to dst.
The positions of unset bits in old are mapped to themselves (the identify map).
Apply the above specified mapping to src, placing the result in dst, clearing any bits previously set in
dst.
For example, lets say that old has bits 4 through 7 set, and new has bits 12 through 15 set. This defines
the mapping of bit position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other bit positions unchanged.
So if say src comes into this routine with bits 1, 5 and 7 set, then dst should leave with bits 1, 13 and 15
set.
int bitmap_bitremap(int oldbit, const unsigned long * old, const unsigned long * new, int bits)

Apply map defined by a pair of bitmaps to a single bit
Parameters
int oldbit bit position to be mapped
const unsigned long * old defines domain of map
const unsigned long * new defines range of map
int bits number of bits in each of these bitmaps
Description
Let old and new define a mapping of bit positions, such that whatever position is held by the n-th set bit
in old is mapped to the n-th set bit in new. In the more general case, allowing for the possibility that the
weight ‘w’ of new is less than the weight of old, map the position of the n-th set bit in old to the position
of the m-th set bit in new, where m == n % w.
The positions of unset bits in old are mapped to themselves (the identify map).
Apply the above specified mapping to bit position oldbit, returning the new bit position.
For example, lets say that old has bits 4 through 7 set, and new has bits 12 through 15 set. This defines
the mapping of bit position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other bit positions unchanged.
So if say oldbit is 5, then this routine returns 13.
void bitmap_onto(unsigned long * dst, const unsigned long * orig, const unsigned long * relmap,

unsigned int bits)
translate one bitmap relative to another

Parameters
unsigned long * dst resulting translated bitmap
const unsigned long * orig original untranslated bitmap
const unsigned long * relmap bitmap relative to which translated
unsigned int bits number of bits in each of these bitmaps
Description
Set the n-th bit of dst iff there exists some m such that the n-th bit of relmap is set, the m-th bit of orig
is set, and the n-th bit of relmap is also the m-th _set_ bit of relmap. (If you understood the previous
sentence the first time your read it, you’re overqualified for your current job.)
In other words, orig is mapped onto (surjectively) dst, using the map { <n, m> | the n-th bit of relmap
is the m-th set bit of relmap }.

28 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Any set bits in orig above bit number W, where W is the weight of (number of set bits in) relmap are
mapped nowhere. In particular, if for all bits m set in orig, m >= W, then dst will end up empty. In
situations where the possibility of such an empty result is not desired, one way to avoid it is to use the
bitmap_fold() operator, below, to first fold the orig bitmap over itself so that all its set bits x are in the
range 0 <= x < W. The bitmap_fold() operator does this by setting the bit (m % W) in dst, for each bit
(m) set in orig.
Example [1] for bitmap_onto(): Let’s say relmap has bits 30-39 set, and orig has bits 1, 3, 5, 7, 9 and

11 set. Then on return from this routine, dst will have bits 31, 33, 35, 37 and 39 set.
When bit 0 is set in orig, it means turn on the bit in dst corresponding to whatever is the first bit (if
any) that is turned on in relmap. Since bit 0 was off in the above example, we leave off that bit (bit
30) in dst.
When bit 1 is set in orig (as in the above example), it means turn on the bit in dst corresponding to
whatever is the second bit that is turned on in relmap. The second bit in relmap that was turned
on in the above example was bit 31, so we turned on bit 31 in dst.
Similarly, we turned on bits 33, 35, 37 and 39 in dst, because they were the 4th, 6th, 8th and 10th
set bits set in relmap, and the 4th, 6th, 8th and 10th bits of orig (i.e. bits 3, 5, 7 and 9) were also
set.
When bit 11 is set in orig, it means turn on the bit in dst corresponding to whatever is the twelfth
bit that is turned on in relmap. In the above example, there were only ten bits turned on in relmap
(30..39), so that bit 11 was set in orig had no affect on dst.

Example [2] for bitmap_fold() + bitmap_onto(): Let’s say relmap has these ten bits set:

40 41 42 43 45 48 53 61 74 95

(for the curious, that’s 40 plus the first ten terms of the Fibonacci sequence.)
Further lets say we use the following code, invoking bitmap_fold() then bitmap_onto, as suggested
above to avoid the possibility of an empty dst result:

unsigned long *tmp; // a temporary bitmap's bits

bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
bitmap_onto(dst, tmp, relmap, bits);

Then this table shows what various values of dst would be, for various orig‘s. I list the zero-based
positions of each set bit. The tmp column shows the intermediate result, as computed by using
bitmap_fold() to fold the orig bitmap modulo ten (the weight of relmap):

orig tmp dst
0 0 40
1 1 41
9 9 95
10 0 40 1

1 3 5 7 1 3 5 7 41 43 48 61
0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
0 9 18 27 0 9 8 7 40 61 74 95
0 10 20 30 0 40
0 11 22 33 0 1 2 3 40 41 42 43
0 12 24 36 0 2 4 6 40 42 45 53
78 102 211 1 2 8 41 42 74 1

If either of orig or relmap is empty (no set bits), then dst will be returned empty.
If (as explained above) the only set bits in orig are in positions m where m >= W, (where W is the weight
of relmap) then dst will once again be returned empty.
All bits in dst not set by the above rule are cleared.

1 For these marked lines, if we hadn’t first done bitmap_fold() into tmp, then the dst result would have been empty.

1.1. The Linux Kernel API 29

The kernel core API manual, Release 4.13.0-rc4+

void bitmap_fold(unsigned long * dst, const unsigned long * orig, unsigned int sz, unsigned
int nbits)

fold larger bitmap into smaller, modulo specified size
Parameters
unsigned long * dst resulting smaller bitmap
const unsigned long * orig original larger bitmap
unsigned int sz specified size
unsigned int nbits number of bits in each of these bitmaps
Description
For each bit oldbit in orig, set bit oldbit mod sz in dst. Clear all other bits in dst. See further the comment
and Example [2] for bitmap_onto() for why and how to use this.
int bitmap_find_free_region(unsigned long * bitmap, unsigned int bits, int order)

find a contiguous aligned mem region
Parameters
unsigned long * bitmap array of unsigned longs corresponding to the bitmap
unsigned int bits number of bits in the bitmap
int order region size (log base 2 of number of bits) to find
Description
Find a region of free (zero) bits in a bitmap of bits bits and allocate them (set them to one). Only consider
regions of length a power (order) of two, aligned to that power of two, which makes the search algorithm
much faster.
Return the bit offset in bitmap of the allocated region, or -errno on failure.
void bitmap_release_region(unsigned long * bitmap, unsigned int pos, int order)

release allocated bitmap region
Parameters
unsigned long * bitmap array of unsigned longs corresponding to the bitmap
unsigned int pos beginning of bit region to release
int order region size (log base 2 of number of bits) to release
Description
This is the complement to __bitmap_find_free_region() and releases the found region (by clearing it
in the bitmap).
No return value.
int bitmap_allocate_region(unsigned long * bitmap, unsigned int pos, int order)

allocate bitmap region
Parameters
unsigned long * bitmap array of unsigned longs corresponding to the bitmap
unsigned int pos beginning of bit region to allocate
int order region size (log base 2 of number of bits) to allocate
Description
Allocate (set bits in) a specified region of a bitmap.
Return 0 on success, or -EBUSY if specified region wasn’t free (not all bits were zero).

30 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

unsigned int bitmap_from_u32array(unsigned long * bitmap, unsigned int nbits, const u32 * buf,
unsigned int nwords)

copy the contents of a u32 array of bits to bitmap
Parameters
unsigned long * bitmap array of unsigned longs, the destination bitmap, non NULL
unsigned int nbits number of bits in bitmap
const u32 * buf array of u32 (in host byte order), the source bitmap, non NULL
unsigned int nwords number of u32 words in buf
Description
copy min(nbits, 32*nwords) bits from buf to bitmap, remaining bits between nword and nbits in bitmap
(if any) are cleared. In last word of bitmap, the bits beyond nbits (if any) are kept unchanged.
Return the number of bits effectively copied.
unsigned int bitmap_to_u32array(u32 * buf, unsigned int nwords, const unsigned long * bitmap,

unsigned int nbits)
copy the contents of bitmap to a u32 array of bits

Parameters
u32 * buf array of u32 (in host byte order), the dest bitmap, non NULL
unsigned int nwords number of u32 words in buf
const unsigned long * bitmap array of unsigned longs, the source bitmap, non NULL
unsigned int nbits number of bits in bitmap
Description
copy min(nbits, 32*nwords) bits from bitmap to buf. Remaining bits after nbits in buf (if any) are cleared.
Return the number of bits effectively copied.
void bitmap_copy_le(unsigned long * dst, const unsigned long * src, unsigned int nbits)

copy a bitmap, putting the bits into little-endian order.
Parameters
unsigned long * dst destination buffer
const unsigned long * src bitmap to copy
unsigned int nbits number of bits in the bitmap
Description
Require nbits % BITS_PER_LONG == 0.
int __bitmap_parselist(const char * buf, unsigned int buflen, int is_user, unsigned long * maskp,

int nmaskbits)
convert list format ASCII string to bitmap

Parameters
const char * buf read nul-terminated user string from this buffer
unsigned int buflen buffer size in bytes. If string is smaller than this then it must be terminated with

a 0.
int is_user location of buffer, 0 indicates kernel space
unsigned long * maskp write resulting mask here
int nmaskbits number of bits in mask to be written

1.1. The Linux Kernel API 31

The kernel core API manual, Release 4.13.0-rc4+

Description
Input format is a comma-separated list of decimal numbers and ranges. Consecutively set bits are shown
as two hyphen-separated decimal numbers, the smallest and largest bit numbers set in the range. Op-
tionally each range can be postfixed to denote that only parts of it should be set. The range will di-
vided to groups of specific size. From each group will be used only defined amount of bits. Syntax:
range:used_size/group_size
Example
0-1023:2/256 ==> 0,1,256,257,512,513,768,769
Return
0 on success, -errno on invalid input strings. Error values:
• -EINVAL: second number in range smaller than first
• -EINVAL: invalid character in string
• -ERANGE: bit number specified too large for mask

int bitmap_pos_to_ord(const unsigned long * buf, unsigned int pos, unsigned int nbits)
find ordinal of set bit at given position in bitmap

Parameters
const unsigned long * buf pointer to a bitmap
unsigned int pos a bit position in buf (0 <= pos < nbits)
unsigned int nbits number of valid bit positions in buf
Description
Map the bit at position pos in buf (of length nbits) to the ordinal of which set bit it is. If it is not set or if
pos is not a valid bit position, map to -1.
If for example, just bits 4 through 7 are set in buf, then pos values 4 through 7 will get mapped to 0
through 3, respectively, and other pos values will get mapped to -1. When pos value 7 gets mapped to
(returns) ord value 3 in this example, that means that bit 7 is the 3rd (starting with 0th) set bit in buf.
The bit positions 0 through bits are valid positions in buf.
unsigned int bitmap_ord_to_pos(const unsigned long * buf, unsigned int ord, unsigned int nbits)

find position of n-th set bit in bitmap
Parameters
const unsigned long * buf pointer to bitmap
unsigned int ord ordinal bit position (n-th set bit, n >= 0)
unsigned int nbits number of valid bit positions in buf
Description
Map the ordinal offset of bit ord in buf to its position in buf. Value of ord should be in range 0 <= ord
< weight(buf). If ord >= weight(buf), returns nbits.
If for example, just bits 4 through 7 are set in buf, then ord values 0 through 3 will get mapped to 4 through
7, respectively, and all other ord values returns nbits. When ord value 3 gets mapped to (returns) pos
value 7 in this example, that means that the 3rd set bit (starting with 0th) is at position 7 in buf.
The bit positions 0 through nbits-1 are valid positions in buf.

Command-line Parsing

int get_option(char ** str, int * pint)
Parse integer from an option string

32 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
char ** str option string
int * pint (output) integer value parsed from str
Description

Read an int from an option string; if available accept a subsequent comma as well.
Return values: 0 - no int in string 1 - int found, no subsequent comma 2 - int found including a
subsequent comma 3 - hyphen found to denote a range

char * get_options(const char * str, int nints, int * ints)
Parse a string into a list of integers

Parameters
const char * str String to be parsed
int nints size of integer array
int * ints integer array
Description

This function parses a string containing a comma-separated list of integers, a hyphen-separated
range of _positive_ integers, or a combination of both. The parse halts when the array is full, or
when no more numbers can be retrieved from the string.
Return value is the character in the string which caused the parse to end (typically a null termi-
nator, if str is completely parseable).

unsigned long long memparse(const char * ptr, char ** retptr)
parse a string with mem suffixes into a number

Parameters
const char * ptr Where parse begins
char ** retptr (output) Optional pointer to next char after parse completes
Description

Parses a string into a number. The number stored at ptr is potentially suffixed with K, M, G, T,
P, E.

CRC Functions

u8 crc7_be(u8 crc, const u8 * buffer, size_t len)
update the CRC7 for the data buffer

Parameters
u8 crc previous CRC7 value
const u8 * buffer data pointer
size_t len number of bytes in the buffer
Context
any
Description
Returns the updated CRC7 value. The CRC7 is left-aligned in the byte (the lsbit is always 0), as that makes
the computation easier, and all callers want it in that form.
u16 crc16(u16 crc, u8 const * buffer, size_t len)

compute the CRC-16 for the data buffer

1.1. The Linux Kernel API 33

The kernel core API manual, Release 4.13.0-rc4+

Parameters
u16 crc previous CRC value
u8 const * buffer data pointer
size_t len number of bytes in the buffer
Description
Returns the updated CRC value.
u16 crc_itu_t(u16 crc, const u8 * buffer, size_t len)

Compute the CRC-ITU-T for the data buffer
Parameters
u16 crc previous CRC value
const u8 * buffer data pointer
size_t len number of bytes in the buffer
Description
Returns the updated CRC value
u32 __pure crc32_le_generic(u32 crc, unsigned char const * p, size_t len, const u32 (* tab,

u32 polynomial)
Calculate bitwise little-endian Ethernet AUTODIN II CRC32/CRC32C

Parameters
u32 crc seed value for computation. ~0 for Ethernet, sometimes 0 for other uses, or the previous

crc32/crc32c value if computing incrementally.
unsigned char const * p pointer to buffer over which CRC32/CRC32C is run
size_t len length of buffer p
const u32 (* tab little-endian Ethernet table
u32 polynomial CRC32/CRC32c LE polynomial
u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len, u32 polynomial)

Append len 0 bytes to crc, in logarithmic time
Parameters
u32 crc The original little-endian CRC (i.e. lsbit is x^31 coefficient)
size_t len The number of bytes. crc is multiplied by x^(8***len**)
u32 polynomial The modulus used to reduce the result to 32 bits.
Description
It’s possible to parallelize CRC computations by computing a CRC over separate ranges of a buffer, then
summing them. This shifts the given CRC by 8*len bits (i.e. produces the same effect as appending len
bytes of zero to the data), in time proportional to log(len).
u32 __pure crc32_be_generic(u32 crc, unsigned char const * p, size_t len, const u32 (* tab,

u32 polynomial)
Calculate bitwise big-endian Ethernet AUTODIN II CRC32

Parameters
u32 crc seed value for computation. ~0 for Ethernet, sometimes 0 for other uses, or the previous crc32

value if computing incrementally.
unsigned char const * p pointer to buffer over which CRC32 is run
size_t len length of buffer p

34 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

const u32 (* tab big-endian Ethernet table
u32 polynomial CRC32 BE polynomial
u16 crc_ccitt(u16 crc, u8 const * buffer, size_t len)

recompute the CRC for the data buffer
Parameters
u16 crc previous CRC value
u8 const * buffer data pointer
size_t len number of bytes in the buffer

idr/ida Functions

idr synchronization (stolen from radix-tree.h)
idr_find() is able to be called locklessly, using RCU. The caller must ensure calls to this function are
made within rcu_read_lock() regions. Other readers (lock-free or otherwise) and modifications may be
running concurrently.
It is still required that the caller manage the synchronization and lifetimes of the items. So if RCU lock-
free lookups are used, typically this would mean that the items have their own locks, or are amenable to
lock-free access; and that the items are freed by RCU (or only freed after having been deleted from the
idr tree and a synchronize_rcu() grace period).
The IDA is an ID allocator which does not provide the ability to associate an ID with a pointer. As such,
it only needs to store one bit per ID, and so is more space efficient than an IDR. To use an IDA, define it
using DEFINE_IDA() (or embed a struct ida in a data structure, then initialise it using ida_init()). To
allocate a new ID, call ida_simple_get(). To free an ID, call ida_simple_remove().
If you have more complex locking requirements, use a loop around ida_pre_get() and ida_get_new()
to allocate a new ID. Then use ida_remove() to free an ID. You must make sure that ida_get_new() and
ida_remove() cannot be called at the same time as each other for the same IDA.
You can also use ida_get_new_above() if you need an ID to be allocated above a particular number.
ida_destroy() can be used to dispose of an IDA without needing to free the individual IDs in it. You can
use ida_is_empty() to find out whether the IDA has any IDs currently allocated.
IDs are currently limited to the range [0-INT_MAX]. If this is an awkward limitation, it should be quite
straightforward to raise the maximum.
int idr_alloc(struct idr * idr, void * ptr, int start, int end, gfp_t gfp)

allocate an id
Parameters
struct idr * idr idr handle
void * ptr pointer to be associated with the new id
int start the minimum id (inclusive)
int end the maximum id (exclusive)
gfp_t gfp memory allocation flags
Description
Allocates an unused ID in the range [start, end). Returns -ENOSPC if there are no unused IDs in that range.
Note that end is treated as max when <= 0. This is to always allow using start + N as end as long as N
is inside integer range.
Simultaneous modifications to the idr are not allowed and should be prevented by the user, usually with
a lock. idr_alloc() may be called concurrently with read-only accesses to the idr, such as idr_find()
and idr_for_each_entry().

1.1. The Linux Kernel API 35

The kernel core API manual, Release 4.13.0-rc4+

int idr_alloc_cyclic(struct idr * idr, void * ptr, int start, int end, gfp_t gfp)
allocate new idr entry in a cyclical fashion

Parameters
struct idr * idr idr handle
void * ptr pointer to be associated with the new id
int start the minimum id (inclusive)
int end the maximum id (exclusive)
gfp_t gfp memory allocation flags
Description
Allocates an ID larger than the last ID allocated if one is available. If not, it will attempt to allocate the
smallest ID that is larger or equal to start.
int idr_for_each(const struct idr * idr, int (*fn) (int id, void *p, void *data, void * data)

iterate through all stored pointers
Parameters
const struct idr * idr idr handle
int (*)(int id,void *p,void *data) fn function to be called for each pointer
void * data data passed to callback function
Description
The callback function will be called for each entry in idr, passing the id, the pointer and the data pointer
passed to this function.
If fn returns anything other than 0, the iteration stops and that value is returned from this function.
idr_for_each() can be called concurrently with idr_alloc() and idr_remove() if protected by RCU.
Newly added entries may not be seen and deleted entries may be seen, but adding and removing entries
will not cause other entries to be skipped, nor spurious ones to be seen.
void * idr_get_next(struct idr * idr, int * nextid)

Find next populated entry
Parameters
struct idr * idr idr handle
int * nextid Pointer to lowest possible ID to return
Description
Returns the next populated entry in the tree with an ID greater than or equal to the value pointed to by
nextid. On exit, nextid is updated to the ID of the found value. To use in a loop, the value pointed to by
nextid must be incremented by the user.
void * idr_replace(struct idr * idr, void * ptr, int id)

replace pointer for given id
Parameters
struct idr * idr idr handle
void * ptr New pointer to associate with the ID
int id Lookup key
Description
Replace the pointer registered with an ID and return the old value. This function can be called under the
RCU read lock concurrently with idr_alloc() and idr_remove() (as long as the ID being removed is not
the one being replaced!).

36 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Return
0 on success. -ENOENT indicates that id was not found. -EINVAL indicates that id or ptr were not valid.
int ida_get_new_above(struct ida * ida, int start, int * id)

allocate new ID above or equal to a start id
Parameters
struct ida * ida ida handle
int start id to start search at
int * id pointer to the allocated handle
Description
Allocate new ID above or equal to start. It should be called with any required locks to ensure that con-
current calls to ida_get_new_above() / ida_get_new() / ida_remove() are not allowed. Consider using
ida_simple_get() if you do not have complex locking requirements.
If memory is required, it will return -EAGAIN, you should unlock and go back to the ida_pre_get() call. If
the ida is full, it will return -ENOSPC. On success, it will return 0.
id returns a value in the range start ... 0x7fffffff.
void ida_remove(struct ida * ida, int id)

Free the given ID
Parameters
struct ida * ida ida handle
int id ID to free
Description
This function should not be called at the same time as ida_get_new_above().
void ida_destroy(struct ida * ida)

Free the contents of an ida
Parameters
struct ida * ida ida handle
Description
Calling this function releases all resources associated with an IDA. When this call returns, the IDA is empty
and can be reused or freed. The caller should not allow ida_remove() or ida_get_new_above() to be
called at the same time.
int ida_simple_get(struct ida * ida, unsigned int start, unsigned int end, gfp_t gfp_mask)

get a new id.
Parameters
struct ida * ida the (initialized) ida.
unsigned int start the minimum id (inclusive, < 0x8000000)
unsigned int end the maximum id (exclusive, < 0x8000000 or 0)
gfp_t gfp_mask memory allocation flags
Description
Allocates an id in the range start <= id < end, or returns -ENOSPC. On memory allocation failure, returns
-ENOMEM.
Compared to ida_get_new_above() this function does its own locking, and should be used unless there
are special requirements.
Use ida_simple_remove() to get rid of an id.

1.1. The Linux Kernel API 37

The kernel core API manual, Release 4.13.0-rc4+

void ida_simple_remove(struct ida * ida, unsigned int id)
remove an allocated id.

Parameters
struct ida * ida the (initialized) ida.
unsigned int id the id returned by ida_simple_get.
Description
Use to release an id allocated with ida_simple_get().
Compared to ida_remove() this function does its own locking, and should be used unless there are special
requirements.

1.1.4 Memory Management in Linux

The Slab Cache

void * kmalloc(size_t size, gfp_t flags)
allocate memory

Parameters
size_t size how many bytes of memory are required.
gfp_t flags the type of memory to allocate.
Description
kmalloc is the normal method of allocating memory for objects smaller than page size in the kernel.
The flags argument may be one of:
GFP_USER - Allocate memory on behalf of user. May sleep.
GFP_KERNEL - Allocate normal kernel ram. May sleep.
GFP_ATOMIC - Allocation will not sleep. May use emergency pools. For example, use this inside in-

terrupt handlers.
GFP_HIGHUSER - Allocate pages from high memory.
GFP_NOIO - Do not do any I/O at all while trying to get memory.
GFP_NOFS - Do not make any fs calls while trying to get memory.
GFP_NOWAIT - Allocation will not sleep.
__GFP_THISNODE - Allocate node-local memory only.
GFP_DMA - Allocation suitable for DMA. Should only be used for kmalloc() caches. Otherwise, use a

slab created with SLAB_DMA.
Also it is possible to set different flags by OR’ing in one or more of the following additional flags:
__GFP_COLD - Request cache-cold pages instead of trying to return cache-warm pages.
__GFP_HIGH - This allocation has high priority and may use emergency pools.
__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail (think twice before us-

ing).
__GFP_NORETRY - If memory is not immediately available, then give up at once.
__GFP_NOWARN - If allocation fails, don’t issue any warnings.
__GFP_RETRY_MAYFAIL - Try really hard to succeed the allocation but fail eventually.
There are other flags available as well, but these are not intended for general use, and so are not docu-
mented here. For a full list of potential flags, always refer to linux/gfp.h.

38 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

void * kmalloc_array(size_t n, size_t size, gfp_t flags)
allocate memory for an array.

Parameters
size_t n number of elements.
size_t size element size.
gfp_t flags the type of memory to allocate (see kmalloc).
void * kcalloc(size_t n, size_t size, gfp_t flags)

allocate memory for an array. The memory is set to zero.
Parameters
size_t n number of elements.
size_t size element size.
gfp_t flags the type of memory to allocate (see kmalloc).
void * kzalloc(size_t size, gfp_t flags)

allocate memory. The memory is set to zero.
Parameters
size_t size how many bytes of memory are required.
gfp_t flags the type of memory to allocate (see kmalloc).
void * kzalloc_node(size_t size, gfp_t flags, int node)

allocate zeroed memory from a particular memory node.
Parameters
size_t size how many bytes of memory are required.
gfp_t flags the type of memory to allocate (see kmalloc).
int node memory node from which to allocate
void * kmem_cache_alloc(struct kmem_cache * cachep, gfp_t flags)

Allocate an object
Parameters
struct kmem_cache * cachep The cache to allocate from.
gfp_t flags See kmalloc().
Description
Allocate an object from this cache. The flags are only relevant if the cache has no available objects.
void * kmem_cache_alloc_node(struct kmem_cache * cachep, gfp_t flags, int nodeid)

Allocate an object on the specified node
Parameters
struct kmem_cache * cachep The cache to allocate from.
gfp_t flags See kmalloc().
int nodeid node number of the target node.
Description
Identical to kmem_cache_alloc but it will allocate memory on the given node, which can improve the
performance for cpu bound structures.
Fallback to other node is possible if __GFP_THISNODE is not set.
void kmem_cache_free(struct kmem_cache * cachep, void * objp)

Deallocate an object

1.1. The Linux Kernel API 39

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct kmem_cache * cachep The cache the allocation was from.
void * objp The previously allocated object.
Description
Free an object which was previously allocated from this cache.
void kfree(const void * objp)

free previously allocated memory
Parameters
const void * objp pointer returned by kmalloc.
Description
If objp is NULL, no operation is performed.
Don’t free memory not originally allocated by kmalloc() or you will run into trouble.
size_t ksize(const void * objp)

get the actual amount of memory allocated for a given object
Parameters
const void * objp Pointer to the object
Description
kmalloc may internally round up allocations and return more memory than requested. ksize() can
be used to determine the actual amount of memory allocated. The caller may use this additional
memory, even though a smaller amount of memory was initially specified with the kmalloc call. The
caller must guarantee that objp points to a valid object previously allocated with either kmalloc() or
kmem_cache_alloc(). The object must not be freed during the duration of the call.
void kfree_const(const void * x)

conditionally free memory
Parameters
const void * x pointer to the memory
Description
Function calls kfree only if x is not in .rodata section.
char * kstrdup(const char * s, gfp_t gfp)

allocate space for and copy an existing string
Parameters
const char * s the string to duplicate
gfp_t gfp the GFP mask used in the kmalloc() call when allocating memory
const char * kstrdup_const(const char * s, gfp_t gfp)

conditionally duplicate an existing const string
Parameters
const char * s the string to duplicate
gfp_t gfp the GFP mask used in the kmalloc() call when allocating memory
Description
Function returns source string if it is in .rodata section otherwise it fallbacks to kstrdup. Strings allocated
by kstrdup_const should be freed by kfree_const.
char * kstrndup(const char * s, size_t max, gfp_t gfp)

allocate space for and copy an existing string

40 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
const char * s the string to duplicate
size_t max read at most max chars from s
gfp_t gfp the GFP mask used in the kmalloc() call when allocating memory
Note
Use kmemdup_nul() instead if the size is known exactly.
void * kmemdup(const void * src, size_t len, gfp_t gfp)

duplicate region of memory
Parameters
const void * src memory region to duplicate
size_t len memory region length
gfp_t gfp GFP mask to use
char * kmemdup_nul(const char * s, size_t len, gfp_t gfp)

Create a NUL-terminated string from unterminated data
Parameters
const char * s The data to stringify
size_t len The size of the data
gfp_t gfp the GFP mask used in the kmalloc() call when allocating memory
void * memdup_user(const void __user * src, size_t len)

duplicate memory region from user space
Parameters
const void __user * src source address in user space
size_t len number of bytes to copy
Description
Returns an ERR_PTR() on failure.
void * memdup_user_nul(const void __user * src, size_t len)

duplicate memory region from user space and NUL-terminate
Parameters
const void __user * src source address in user space
size_t len number of bytes to copy
Description
Returns an ERR_PTR() on failure.
int get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page ** pages)

pin user pages in memory
Parameters
unsigned long start starting user address
int nr_pages number of pages from start to pin
int write whether pages will be written to
struct page ** pages array that receives pointers to the pages pinned. Should be at least nr_pages

long.

1.1. The Linux Kernel API 41

The kernel core API manual, Release 4.13.0-rc4+

Description
Returns number of pages pinned. This may be fewer than the number requested. If nr_pages is 0 or
negative, returns 0. If no pages were pinned, returns -errno.
get_user_pages_fast provides equivalent functionality to get_user_pages, operating on current and
current->mm, with force=0 and vma=NULL. However unlike get_user_pages, it must be called without
mmap_sem held.
get_user_pages_fast may take mmap_sem and page table locks, so no assumptions can be made
about lack of locking. get_user_pages_fast is to be implemented in a way that is advantageous (vs
get_user_pages()) when the user memory area is already faulted in and present in ptes. However if
the pages have to be faulted in, it may turn out to be slightly slower so callers need to carefully consider
what to use. On many architectures, get_user_pages_fast simply falls back to get_user_pages.
void * kvmalloc_node(size_t size, gfp_t flags, int node)

attempt to allocate physically contiguous memory, but upon failure, fall back to non-contiguous
(vmalloc) allocation.

Parameters
size_t size size of the request.
gfp_t flags gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
int node numa node to allocate from
Description
Uses kmalloc to get the memory but if the allocation fails then falls back to the vmalloc allocator. Use
kvfree for freeing the memory.
Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. __GFP_RETRY_MAYFAIL is sup-
ported, and it should be used only if kmalloc is preferable to the vmalloc fallback, due to visible perfor-
mance drawbacks.
Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.

User Space Memory Access

access_ok(type, addr, size)
Checks if a user space pointer is valid

Parameters
type Type of access: VERIFY_READ or VERIFY_WRITE. Note that VERIFY_WRITE is a superset of VER-

IFY_READ - if it is safe to write to a block, it is always safe to read from it.
addr User space pointer to start of block to check
size Size of block to check
Context
User context only. This function may sleep if pagefaults are enabled.
Description
Checks if a pointer to a block of memory in user space is valid.
Returns true (nonzero) if the memory block may be valid, false (zero) if it is definitely invalid.
Note that, depending on architecture, this function probably just checks that the pointer is in the user
space range - after calling this function, memory access functions may still return -EFAULT.
get_user(x, ptr)

Get a simple variable from user space.
Parameters

42 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

x Variable to store result.
ptr Source address, in user space.
Context
User context only. This function may sleep if pagefaults are enabled.
Description
This macro copies a single simple variable from user space to kernel space. It supports simple types like
char and int, but not larger data types like structures or arrays.
ptr must have pointer-to-simple-variable type, and the result of dereferencing ptr must be assignable to
x without a cast.
Returns zero on success, or -EFAULT on error. On error, the variable x is set to zero.
put_user(x, ptr)

Write a simple value into user space.
Parameters
x Value to copy to user space.
ptr Destination address, in user space.
Context
User context only. This function may sleep if pagefaults are enabled.
Description
This macro copies a single simple value from kernel space to user space. It supports simple types like
char and int, but not larger data types like structures or arrays.
ptr must have pointer-to-simple-variable type, and x must be assignable to the result of dereferencing
ptr.
Returns zero on success, or -EFAULT on error.
__get_user(x, ptr)

Get a simple variable from user space, with less checking.
Parameters
x Variable to store result.
ptr Source address, in user space.
Context
User context only. This function may sleep if pagefaults are enabled.
Description
This macro copies a single simple variable from user space to kernel space. It supports simple types like
char and int, but not larger data types like structures or arrays.
ptr must have pointer-to-simple-variable type, and the result of dereferencing ptr must be assignable to
x without a cast.
Caller must check the pointer with access_ok() before calling this function.
Returns zero on success, or -EFAULT on error. On error, the variable x is set to zero.
__put_user(x, ptr)

Write a simple value into user space, with less checking.
Parameters
x Value to copy to user space.
ptr Destination address, in user space.

1.1. The Linux Kernel API 43

The kernel core API manual, Release 4.13.0-rc4+

Context
User context only. This function may sleep if pagefaults are enabled.
Description
This macro copies a single simple value from kernel space to user space. It supports simple types like
char and int, but not larger data types like structures or arrays.
ptr must have pointer-to-simple-variable type, and x must be assignable to the result of dereferencing
ptr.
Caller must check the pointer with access_ok() before calling this function.
Returns zero on success, or -EFAULT on error.
unsigned long clear_user(void __user * to, unsigned long n)

Zero a block of memory in user space.
Parameters
void __user * to Destination address, in user space.
unsigned long n Number of bytes to zero.
Description
Zero a block of memory in user space.
Returns number of bytes that could not be cleared. On success, this will be zero.
unsigned long __clear_user(void __user * to, unsigned long n)

Zero a block of memory in user space, with less checking.
Parameters
void __user * to Destination address, in user space.
unsigned long n Number of bytes to zero.
Description
Zero a block of memory in user space. Caller must check the specified block with access_ok() before
calling this function.
Returns number of bytes that could not be cleared. On success, this will be zero.

More Memory Management Functions

int read_cache_pages(struct address_space * mapping, struct list_head * pages, int (*filler) (void *,
struct page *, void * data)

populate an address space with some pages & start reads against them
Parameters
struct address_space * mapping the address_space
struct list_head * pages The address of a list_head which contains the target pages. These pages

have their ->index populated and are otherwise uninitialised.
int (*)(void *,struct page *) filler callback routine for filling a single page.
void * data private data for the callback routine.
Description
Hides the details of the LRU cache etc from the filesystems.
void page_cache_sync_readahead(struct address_space * mapping, struct file_ra_state * ra, struct

file * filp, pgoff_t offset, unsigned long req_size)
generic file readahead

44 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct address_space * mapping address_space which holds the pagecache and I/O vectors
struct file_ra_state * ra file_ra_state which holds the readahead state
struct file * filp passed on to ->:c:func:readpage() and ->:c:func:readpages()
pgoff_t offset start offset into mapping, in pagecache page-sized units
unsigned long req_size hint: total size of the read which the caller is performing in pagecache pages
Description
page_cache_sync_readahead() should be called when a cache miss happened: it will submit the read.
The readahead logic may decide to piggybackmore pages onto the read request if access patterns suggest
it will improve performance.
void page_cache_async_readahead(struct address_space * mapping, struct file_ra_state * ra,

struct file * filp, struct page * page, pgoff_t offset, unsigned
long req_size)

file readahead for marked pages
Parameters
struct address_space * mapping address_space which holds the pagecache and I/O vectors
struct file_ra_state * ra file_ra_state which holds the readahead state
struct file * filp passed on to ->:c:func:readpage() and ->:c:func:readpages()
struct page * page the page at offset which has the PG_readahead flag set
pgoff_t offset start offset into mapping, in pagecache page-sized units
unsigned long req_size hint: total size of the read which the caller is performing in pagecache pages
Description
page_cache_async_readahead() should be called when a page is used which has the PG_readahead flag;
this is a marker to suggest that the application has used up enough of the readahead window that we
should start pulling in more pages.
void delete_from_page_cache(struct page * page)

delete page from page cache
Parameters
struct page * page the page which the kernel is trying to remove from page cache
Description
This must be called only on pages that have been verified to be in the page cache and locked. It will never
put the page into the free list, the caller has a reference on the page.
int filemap_flush(struct address_space * mapping)

mostly a non-blocking flush
Parameters
struct address_space * mapping target address_space
Description
This is a mostly non-blocking flush. Not suitable for data-integrity purposes - I/O may not be started
against all dirty pages.
bool filemap_range_has_page(struct address_space * mapping, loff_t start_byte, loff_t end_byte)

check if a page exists in range.
Parameters
struct address_space * mapping address space within which to check

1.1. The Linux Kernel API 45

The kernel core API manual, Release 4.13.0-rc4+

loff_t start_byte offset in bytes where the range starts
loff_t end_byte offset in bytes where the range ends (inclusive)
Description
Find at least one page in the range supplied, usually used to check if direct writing in this range will trigger
a writeback.
int filemap_fdatawait_range(struct address_space * mapping, loff_t start_byte, loff_t end_byte)

wait for writeback to complete
Parameters
struct address_space * mapping address space structure to wait for
loff_t start_byte offset in bytes where the range starts
loff_t end_byte offset in bytes where the range ends (inclusive)
Description
Walk the list of under-writeback pages of the given address space in the given range and wait for all of
them. Check error status of the address space and return it.
Since the error status of the address space is cleared by this function, callers are responsible for checking
the return value and handling and/or reporting the error.
int filemap_fdatawait_keep_errors(struct address_space * mapping)

wait for writeback without clearing errors
Parameters
struct address_space * mapping address space structure to wait for
Description
Walk the list of under-writeback pages of the given address space and wait for all of them. Unlike
filemap_fdatawait(), this function does not clear error status of the address space.
Use this function if callers don’t handle errors themselves. Expected call sites are system-wide /
filesystem-wide data flushers: e.g. sync(2), fsfreeze(8)
int filemap_fdatawait(struct address_space * mapping)

wait for all under-writeback pages to complete
Parameters
struct address_space * mapping address space structure to wait for
Description
Walk the list of under-writeback pages of the given address space and wait for all of them. Check error
status of the address space and return it.
Since the error status of the address space is cleared by this function, callers are responsible for checking
the return value and handling and/or reporting the error.
int filemap_write_and_wait_range(struct address_space * mapping, loff_t lstart, loff_t lend)

write out & wait on a file range
Parameters
struct address_space * mapping the address_space for the pages
loff_t lstart offset in bytes where the range starts
loff_t lend offset in bytes where the range ends (inclusive)
Description
Write out and wait upon file offsets lstart->lend, inclusive.

46 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Note that lend is inclusive (describes the last byte to be written) so that this function can be used to write
to the very end-of-file (end = -1).
int file_check_and_advance_wb_err(struct file * file)

report wb error (if any) that was previously and advance wb_err to current one
Parameters
struct file * file struct file on which the error is being reported
Description
When userland calls fsync (or something like nfsd does the equivalent), we want to report any writeback
errors that occurred since the last fsync (or since the file was opened if there haven’t been any).
Grab the wb_err from the mapping. If it matches what we have in the file, then just quickly return 0. The
file is all caught up.
If it doesn’t match, then take the mapping value, set the “seen” flag in it and try to swap it into place. If
it works, or another task beat us to it with the new value, then update the f_wb_err and return the error
portion. The error at this point must be reported via proper channels (a’la fsync, or NFS COMMIT operation,
etc.).
While we handle mapping->wb_err with atomic operations, the f_wb_err value is protected by the f_lock
since we must ensure that it reflects the latest value swapped in for this file descriptor.
int file_write_and_wait_range(struct file * file, loff_t lstart, loff_t lend)

write out & wait on a file range
Parameters
struct file * file file pointing to address_space with pages
loff_t lstart offset in bytes where the range starts
loff_t lend offset in bytes where the range ends (inclusive)
Description
Write out and wait upon file offsets lstart->lend, inclusive.
Note that lend is inclusive (describes the last byte to be written) so that this function can be used to write
to the very end-of-file (end = -1).
After writing out and waiting on the data, we check and advance the f_wb_err cursor to the latest value,
and return any errors detected there.
int replace_page_cache_page(struct page * old, struct page * new, gfp_t gfp_mask)

replace a pagecache page with a new one
Parameters
struct page * old page to be replaced
struct page * new page to replace with
gfp_t gfp_mask allocation mode
Description
This function replaces a page in the pagecache with a new one. On success it acquires the pagecache
reference for the new page and drops it for the old page. Both the old and new pages must be locked.
This function does not add the new page to the LRU, the caller must do that.
The remove + add is atomic. The only way this function can fail is memory allocation failure.
int add_to_page_cache_locked(struct page * page, struct address_space * mapping, pgoff_t offset,

gfp_t gfp_mask)
add a locked page to the pagecache

Parameters

1.1. The Linux Kernel API 47

The kernel core API manual, Release 4.13.0-rc4+

struct page * page page to add
struct address_space * mapping the page’s address_space
pgoff_t offset page index
gfp_t gfp_mask page allocation mode
Description
This function is used to add a page to the pagecache. It must be locked. This function does not add the
page to the LRU. The caller must do that.
void add_page_wait_queue(struct page * page, wait_queue_entry_t * waiter)

Add an arbitrary waiter to a page’s wait queue
Parameters
struct page * page Page defining the wait queue of interest
wait_queue_entry_t * waiter Waiter to add to the queue
Description
Add an arbitrary waiter to the wait queue for the nominated page.
void unlock_page(struct page * page)

unlock a locked page
Parameters
struct page * page the page
Description
Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). Also wakes sleepers in
wait_on_page_writeback() because the wakeupmechanism between PageLocked pages and PageWrite-
back pages is shared. But that’s OK - sleepers in wait_on_page_writeback() just go back to sleep.
Note that this depends on PG_waiters being the sign bit in the byte that contains PG_locked - thus the
BUILD_BUG_ON(). That allows us to clear the PG_locked bit and test PG_waiters at the same time fairly
portably (architectures that do LL/SC can test any bit, while x86 can test the sign bit).
void end_page_writeback(struct page * page)

end writeback against a page
Parameters
struct page * page the page
void __lock_page(struct page * __page)

get a lock on the page, assuming we need to sleep to get it
Parameters
struct page * __page the page to lock
pgoff_t page_cache_next_hole(struct address_space * mapping, pgoff_t index, unsigned

long max_scan)
find the next hole (not-present entry)

Parameters
struct address_space * mapping mapping
pgoff_t index index
unsigned long max_scan maximum range to search
Description
Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest indexed hole.
Return

48 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

the index of the hole if found, otherwise returns an index outside of the set specified (in which case ‘return
- index >= max_scan’ will be true). In rare cases of index wrap-around, 0 will be returned.
page_cache_next_hole may be called under rcu_read_lock. However, like radix_tree_gang_lookup, this
will not atomically search a snapshot of the tree at a single point in time. For example, if a hole is created
at index 5, then subsequently a hole is created at index 10, page_cache_next_hole covering both indexes
may return 10 if called under rcu_read_lock.
pgoff_t page_cache_prev_hole(struct address_space * mapping, pgoff_t index, unsigned

long max_scan)
find the prev hole (not-present entry)

Parameters
struct address_space * mapping mapping
pgoff_t index index
unsigned long max_scan maximum range to search
Description
Search backwards in the range [max(index-max_scan+1, 0), index] for the first hole.
Return
the index of the hole if found, otherwise returns an index outside of the set specified (in which case ‘index
- return >= max_scan’ will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
page_cache_prev_hole may be called under rcu_read_lock. However, like radix_tree_gang_lookup, this
will not atomically search a snapshot of the tree at a single point in time. For example, if a hole is created
at index 10, then subsequently a hole is created at index 5, page_cache_prev_hole covering both indexes
may return 5 if called under rcu_read_lock.
struct page * find_get_entry(struct address_space * mapping, pgoff_t offset)

find and get a page cache entry
Parameters
struct address_space * mapping the address_space to search
pgoff_t offset the page cache index
Description
Looks up the page cache slot at mapping & offset. If there is a page cache page, it is returned with an
increased refcount.
If the slot holds a shadow entry of a previously evicted page, or a swap entry from shmem/tmpfs, it is
returned.
Otherwise, NULL is returned.
struct page * find_lock_entry(struct address_space * mapping, pgoff_t offset)

locate, pin and lock a page cache entry
Parameters
struct address_space * mapping the address_space to search
pgoff_t offset the page cache index
Description
Looks up the page cache slot at mapping & offset. If there is a page cache page, it is returned locked
and with an increased refcount.
If the slot holds a shadow entry of a previously evicted page, or a swap entry from shmem/tmpfs, it is
returned.
Otherwise, NULL is returned.

1.1. The Linux Kernel API 49

The kernel core API manual, Release 4.13.0-rc4+

find_lock_entry() may sleep.
struct page * pagecache_get_page(struct address_space * mapping, pgoff_t offset, int fgp_flags,

gfp_t gfp_mask)
find and get a page reference

Parameters
struct address_space * mapping the address_space to search
pgoff_t offset the page index
int fgp_flags PCG flags
gfp_t gfp_mask gfp mask to use for the page cache data page allocation
Description
Looks up the page cache slot at mapping & offset.
PCG flags modify how the page is returned.
fgp_flags can be:
• FGP_ACCESSED: the page will be marked accessed
• FGP_LOCK: Page is return locked
• FGP_CREAT: If page is not present then a new page is allocated using gfp_mask and added to the
page cache and the VM’s LRU list. The page is returned locked and with an increased refcount.
Otherwise, NULL is returned.

If FGP_LOCK or FGP_CREAT are specified then the function may sleep even if the GFP flags specified for
FGP_CREAT are atomic.
If there is a page cache page, it is returned with an increased refcount.
unsigned find_get_pages_contig(struct address_space * mapping, pgoff_t index, unsigned

int nr_pages, struct page ** pages)
gang contiguous pagecache lookup

Parameters
struct address_space * mapping The address_space to search
pgoff_t index The starting page index
unsigned int nr_pages The maximum number of pages
struct page ** pages Where the resulting pages are placed
Description
find_get_pages_contig() works exactly like find_get_pages(), except that the returned number of
pages are guaranteed to be contiguous.
find_get_pages_contig() returns the number of pages which were found.
unsigned find_get_pages_tag(struct address_space * mapping, pgoff_t * index, int tag, unsigned

int nr_pages, struct page ** pages)
find and return pages that match tag

Parameters
struct address_space * mapping the address_space to search
pgoff_t * index the starting page index
int tag the tag index
unsigned int nr_pages the maximum number of pages
struct page ** pages where the resulting pages are placed

50 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
Like find_get_pages, except we only return pages which are tagged with tag. We update index to index
the next page for the traversal.
unsigned find_get_entries_tag(struct address_space * mapping, pgoff_t start, int tag, unsigned

int nr_entries, struct page ** entries, pgoff_t * indices)
find and return entries that match tag

Parameters
struct address_space * mapping the address_space to search
pgoff_t start the starting page cache index
int tag the tag index
unsigned int nr_entries the maximum number of entries
struct page ** entries where the resulting entries are placed
pgoff_t * indices the cache indices corresponding to the entries in entries
Description
Like find_get_entries, except we only return entries which are tagged with tag.
ssize_t generic_file_read_iter(struct kiocb * iocb, struct iov_iter * iter)

generic filesystem read routine
Parameters
struct kiocb * iocb kernel I/O control block
struct iov_iter * iter destination for the data read
Description
This is the “read_iter()” routine for all filesystems that can use the page cache directly.
int filemap_fault(struct vm_fault * vmf)

read in file data for page fault handling
Parameters
struct vm_fault * vmf struct vm_fault containing details of the fault
Description
filemap_fault() is invoked via the vma operations vector for a mapped memory region to read in file
data during a page fault.
The goto’s are kind of ugly, but this streamlines the normal case of having it in the page cache, and
handles the special cases reasonably without having a lot of duplicated code.
vma->vm_mm->mmap_sem must be held on entry.
If our return value has VM_FAULT_RETRY set, it’s because lock_page_or_retry() returned 0. The
mmap_sem has usually been released in this case. See __lock_page_or_retry() for the exception.
If our return value does not have VM_FAULT_RETRY set, the mmap_sem has not been released.
We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
struct page * read_cache_page(struct address_space * mapping, pgoff_t index, int (*filler) (void *,

struct page *, void * data)
read into page cache, fill it if needed

Parameters
struct address_space * mapping the page’s address_space
pgoff_t index the page index

1.1. The Linux Kernel API 51

The kernel core API manual, Release 4.13.0-rc4+

int (*)(void *,struct page *) filler function to perform the read
void * data first arg to filler(data, page) function, often left as NULL
Description
Read into the page cache. If a page already exists, and PageUptodate() is not set, try to fill the page and
wait for it to become unlocked.
If the page does not get brought uptodate, return -EIO.
struct page * read_cache_page_gfp(struct address_space * mapping, pgoff_t index, gfp_t gfp)

read into page cache, using specified page allocation flags.
Parameters
struct address_space * mapping the page’s address_space
pgoff_t index the page index
gfp_t gfp the page allocator flags to use if allocating
Description
This is the same as “read_mapping_page(mapping, index, NULL)”, but with any new page allocations done
using the specified allocation flags.
If the page does not get brought uptodate, return -EIO.
ssize_t __generic_file_write_iter(struct kiocb * iocb, struct iov_iter * from)

write data to a file
Parameters
struct kiocb * iocb IO state structure (file, offset, etc.)
struct iov_iter * from iov_iter with data to write
Description
This function does all the work needed for actually writing data to a file. It does all basic checks, removes
SUID from the file, updates modification times and calls proper subroutines depending on whether we do
direct IO or a standard buffered write.
It expects i_mutex to be grabbed unless we work on a block device or similar object which does not need
locking at all.
This function does not take care of syncing data in case of O_SYNC write. A caller has to handle it. This is
mainly due to the fact that we want to avoid syncing under i_mutex.
ssize_t generic_file_write_iter(struct kiocb * iocb, struct iov_iter * from)

write data to a file
Parameters
struct kiocb * iocb IO state structure
struct iov_iter * from iov_iter with data to write
Description
This is a wrapper around __generic_file_write_iter() to be used by most filesystems. It takes care
of syncing the file in case of O_SYNC file and acquires i_mutex as needed.
int try_to_release_page(struct page * page, gfp_t gfp_mask)

release old fs-specific metadata on a page
Parameters
struct page * page the page which the kernel is trying to free
gfp_t gfp_mask memory allocation flags (and I/O mode)

52 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
The address_space is to try to release any data against the page (presumably at page->private). If the
release was successful, return ‘1’. Otherwise return zero.
This may also be called if PG_fscache is set on a page, indicating that the page is known to the local
caching routines.
The gfp_mask argument specifies whether I/O may be performed to release this page (__GFP_IO), and
whether the call may block (__GFP_RECLAIM & __GFP_FS).
int zap_vma_ptes(struct vm_area_struct * vma, unsigned long address, unsigned long size)

remove ptes mapping the vma
Parameters
struct vm_area_struct * vma vm_area_struct holding ptes to be zapped
unsigned long address starting address of pages to zap
unsigned long size number of bytes to zap
Description
This function only unmaps ptes assigned to VM_PFNMAP vmas.
The entire address range must be fully contained within the vma.
Returns 0 if successful.
int vm_insert_page(struct vm_area_struct * vma, unsigned long addr, struct page * page)

insert single page into user vma
Parameters
struct vm_area_struct * vma user vma to map to
unsigned long addr target user address of this page
struct page * page source kernel page
Description
This allows drivers to insert individual pages they’ve allocated into a user vma.
The page has to be a nice clean _individual_ kernel allocation. If you allocate a compound page, you need
to have marked it as such (__GFP_COMP), or manually just split the page up yourself (see split_page()).
NOTE! Traditionally this was done with “remap_pfn_range()” which took an arbitrary page protection
parameter. This doesn’t allow that. Your vma protection will have to be set up correctly, which means
that if you want a shared writable mapping, you’d better ask for a shared writable mapping!
The page does not need to be reserved.
Usually this function is called from f_op->:c:func:mmap() handler under mm->mmap_sem write-lock, so
it can change vma->vm_flags. Caller must set VM_MIXEDMAP on vma if it wants to call this function from
other places, for example from page-fault handler.
int vm_insert_pfn(struct vm_area_struct * vma, unsigned long addr, unsigned long pfn)

insert single pfn into user vma
Parameters
struct vm_area_struct * vma user vma to map to
unsigned long addr target user address of this page
unsigned long pfn source kernel pfn
Description
Similar to vm_insert_page, this allows drivers to insert individual pages they’ve allocated into a user vma.
Same comments apply.

1.1. The Linux Kernel API 53

The kernel core API manual, Release 4.13.0-rc4+

This function should only be called from a vm_ops->fault handler, and in that case the handler should
return NULL.
vma cannot be a COW mapping.
As this is called only for pages that do not currently exist, we do not need to flush old virtual caches or
the TLB.
int vm_insert_pfn_prot(struct vm_area_struct * vma, unsigned long addr, unsigned long pfn, pg-

prot_t pgprot)
insert single pfn into user vma with specified pgprot

Parameters
struct vm_area_struct * vma user vma to map to
unsigned long addr target user address of this page
unsigned long pfn source kernel pfn
pgprot_t pgprot pgprot flags for the inserted page
Description
This is exactly like vm_insert_pfn, except that it allows drivers to to override pgprot on a per-page basis.
This only makes sense for IO mappings, and it makes no sense for cow mappings. In general, using
multiple vmas is preferable; vm_insert_pfn_prot should only be used if using multiple VMAs is impractical.

int remap_pfn_range(struct vm_area_struct * vma, unsigned long addr, unsigned long pfn, unsigned
long size, pgprot_t prot)

remap kernel memory to userspace
Parameters
struct vm_area_struct * vma user vma to map to
unsigned long addr target user address to start at
unsigned long pfn physical address of kernel memory
unsigned long size size of map area
pgprot_t prot page protection flags for this mapping
Note
this is only safe if the mm semaphore is held when called.
int vm_iomap_memory(struct vm_area_struct * vma, phys_addr_t start, unsigned long len)

remap memory to userspace
Parameters
struct vm_area_struct * vma user vma to map to
phys_addr_t start start of area
unsigned long len size of area
Description
This is a simplified io_remap_pfn_range() for common driver use. The driver just needs to give us the
physical memory range to be mapped, we’ll figure out the rest from the vma information.
NOTE! Some drivers might want to tweak vma->vm_page_prot first to get whatever write-combining de-
tails or similar.
void unmap_mapping_range(struct address_space * mapping, loff_t const holebegin, loff_t

const holelen, int even_cows)
unmap the portion of all mmaps in the specified address_space corresponding to the specified page
range in the underlying file.

54 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct address_space * mapping the address space containing mmaps to be unmapped.
loff_t const holebegin byte in first page to unmap, relative to the start of the underlying file. This will

be rounded down to a PAGE_SIZE boundary. Note that this is different from truncate_pagecache(),
which must keep the partial page. In contrast, we must get rid of partial pages.

loff_t const holelen size of prospective hole in bytes. This will be rounded up to a PAGE_SIZE bound-
ary. A holelen of zero truncates to the end of the file.

int even_cows 1 when truncating a file, unmap even private COWed pages; but 0 when invalidating
pagecache, don’t throw away private data.

int follow_pfn(struct vm_area_struct * vma, unsigned long address, unsigned long * pfn)
look up PFN at a user virtual address

Parameters
struct vm_area_struct * vma memory mapping
unsigned long address user virtual address
unsigned long * pfn location to store found PFN
Description
Only IO mappings and raw PFN mappings are allowed.
Returns zero and the pfn at pfn on success, -ve otherwise.
void vm_unmap_aliases(void)

unmap outstanding lazy aliases in the vmap layer
Parameters
void no arguments
Description
The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily to amortize TLB flushing over-
heads. What this means is that any page you have now, may, in a former life, have been mapped into
kernel virtual address by the vmap layer and so theremight be some CPUs with TLB entries still referencing
that page (additional to the regular 1:1 kernel mapping).
vm_unmap_aliases flushes all such lazy mappings. After it returns, we can be sure that none of the pages
we have control over will have any aliases from the vmap layer.
void vm_unmap_ram(const void * mem, unsigned int count)

unmap linear kernel address space set up by vm_map_ram
Parameters
const void * mem the pointer returned by vm_map_ram
unsigned int count the count passed to that vm_map_ram call (cannot unmap partial)
void * vm_map_ram(struct page ** pages, unsigned int count, int node, pgprot_t prot)

map pages linearly into kernel virtual address (vmalloc space)
Parameters
struct page ** pages an array of pointers to the pages to be mapped
unsigned int count number of pages
int node prefer to allocate data structures on this node
pgprot_t prot memory protection to use. PAGE_KERNEL for regular RAM

1.1. The Linux Kernel API 55

The kernel core API manual, Release 4.13.0-rc4+

Description
If you use this function for less than VMAP_MAX_ALLOC pages, it could be faster than vmap so it’s good.
But if you mix long-life and short-life objects with vm_map_ram(), it could consume lots of address space
through fragmentation (especially on a 32bit machine). You could see failures in the end. Please use this
function for short-lived objects.
Return
a pointer to the address that has been mapped, or NULL on failure
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)

unmap kernel VM area
Parameters
unsigned long addr start of the VM area to unmap
unsigned long size size of the VM area to unmap
Description
Unmap PFN_UP(size) pages at addr. The VM area addr and size specify should have been allocated
using get_vm_area() and its friends.
NOTE
This function does NOT do any cache flushing. The caller is responsible for calling flush_cache_vunmap()
on to-be-mapped areas before calling this function and flush_tlb_kernel_range() after.
void unmap_kernel_range(unsigned long addr, unsigned long size)

unmap kernel VM area and flush cache and TLB
Parameters
unsigned long addr start of the VM area to unmap
unsigned long size size of the VM area to unmap
Description
Similar to unmap_kernel_range_noflush() but flushes vcache before the unmapping and tlb after.
void vfree(const void * addr)

release memory allocated by vmalloc()
Parameters
const void * addr memory base address
Description

Free the virtually continuous memory area starting at addr, as obtained from vmalloc(), vmal-
loc_32() or __vmalloc(). If addr is NULL, no operation is performed.
Must not be called in NMI context (strictly speaking, only if we don’t have CON-
FIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling conventions for vfree() arch-
depenedent would be a really bad idea)

NOTE
assumes that the object at addr has a size >= sizeof(llist_node)
void vunmap(const void * addr)

release virtual mapping obtained by vmap()
Parameters
const void * addr memory base address
Description

56 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Free the virtually contiguous memory area starting at addr, which was created from the page
array passed to vmap().
Must not be called in interrupt context.

void * vmap(struct page ** pages, unsigned int count, unsigned long flags, pgprot_t prot)
map an array of pages into virtually contiguous space

Parameters
struct page ** pages array of page pointers
unsigned int count number of pages to map
unsigned long flags vm_area->flags
pgprot_t prot page protection for the mapping
Description

Maps count pages from pages into contiguous kernel virtual space.
void * vmalloc(unsigned long size)

allocate virtually contiguous memory
Parameters
unsigned long size allocation size Allocate enough pages to cover size from the page level allocator

and map them into contiguous kernel virtual space.
Description

For tight control over page level allocator and protection flags use __vmalloc() instead.
void * vzalloc(unsigned long size)

allocate virtually contiguous memory with zero fill
Parameters
unsigned long size allocation size Allocate enough pages to cover size from the page level allocator

and map them into contiguous kernel virtual space. The memory allocated is set to zero.
Description

For tight control over page level allocator and protection flags use __vmalloc() instead.
void * vmalloc_user(unsigned long size)

allocate zeroed virtually contiguous memory for userspace
Parameters
unsigned long size allocation size
Description
The resulting memory area is zeroed so it can be mapped to userspace without leaking data.
void * vmalloc_node(unsigned long size, int node)

allocate memory on a specific node
Parameters
unsigned long size allocation size
int node numa node
Description

Allocate enough pages to cover size from the page level allocator andmap them into contiguous
kernel virtual space.
For tight control over page level allocator and protection flags use __vmalloc() instead.

1.1. The Linux Kernel API 57

The kernel core API manual, Release 4.13.0-rc4+

void * vzalloc_node(unsigned long size, int node)
allocate memory on a specific node with zero fill

Parameters
unsigned long size allocation size
int node numa node
Description
Allocate enough pages to cover size from the page level allocator and map them into contiguous kernel
virtual space. The memory allocated is set to zero.
For tight control over page level allocator and protection flags use __vmalloc_node() instead.
void * vmalloc_32(unsigned long size)

allocate virtually contiguous memory (32bit addressable)
Parameters
unsigned long size allocation size
Description

Allocate enough 32bit PA addressable pages to cover size from the page level allocator and
map them into contiguous kernel virtual space.

void * vmalloc_32_user(unsigned long size)
allocate zeroed virtually contiguous 32bit memory

Parameters
unsigned long size allocation size
Description
The resulting memory area is 32bit addressable and zeroed so it can be mapped to userspace without
leaking data.
int remap_vmalloc_range_partial(struct vm_area_struct * vma, unsigned long uaddr, void

* kaddr, unsigned long size)
map vmalloc pages to userspace

Parameters
struct vm_area_struct * vma vma to cover
unsigned long uaddr target user address to start at
void * kaddr virtual address of vmalloc kernel memory
unsigned long size size of map area
Return
0 for success, -Exxx on failure

This function checks that kaddr is a valid vmalloc’ed area, and that it is big enough to cover
the range starting at uaddr in vma. Will return failure if that criteria isn’t met.
Similar to remap_pfn_range() (see mm/memory.c)

int remap_vmalloc_range(struct vm_area_struct * vma, void * addr, unsigned long pgoff)
map vmalloc pages to userspace

Parameters
struct vm_area_struct * vma vma to cover (map full range of vma)
void * addr vmalloc memory
unsigned long pgoff number of pages into addr before first page to map

58 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Return
0 for success, -Exxx on failure

This function checks that addr is a valid vmalloc’ed area, and that it is big enough to cover the
vma. Will return failure if that criteria isn’t met.
Similar to remap_pfn_range() (see mm/memory.c)

struct vm_struct * alloc_vm_area(size_t size, pte_t ** ptes)
allocate a range of kernel address space

Parameters
size_t size size of the area
pte_t ** ptes returns the PTEs for the address space
Return
NULL on failure, vm_struct on success

This function reserves a range of kernel address space, and allocates pagetables to map that
range. No actual mappings are created.
If ptes is non-NULL, pointers to the PTEs (in init_mm) allocated for the VM area are returned.

unsigned long __get_pfnblock_flags_mask(struct page * page, unsigned long pfn, unsigned
long end_bitidx, unsigned long mask)

Return the requested group of flags for the pageblock_nr_pages block of pages
Parameters
struct page * page The page within the block of interest
unsigned long pfn The target page frame number
unsigned long end_bitidx The last bit of interest to retrieve
unsigned long mask mask of bits that the caller is interested in
Return
pageblock_bits flags
void set_pfnblock_flags_mask(struct page * page, unsigned long flags, unsigned long pfn, un-

signed long end_bitidx, unsigned long mask)
Set the requested group of flags for a pageblock_nr_pages block of pages

Parameters
struct page * page The page within the block of interest
unsigned long flags The flags to set
unsigned long pfn The target page frame number
unsigned long end_bitidx The last bit of interest
unsigned long mask mask of bits that the caller is interested in
void * alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)

allocate an exact number of physically-contiguous pages on a node.
Parameters
int nid the preferred node ID where memory should be allocated
size_t size the number of bytes to allocate
gfp_t gfp_mask GFP flags for the allocation
Description
Like alloc_pages_exact(), but try to allocate on node nid first before falling back.

1.1. The Linux Kernel API 59

The kernel core API manual, Release 4.13.0-rc4+

unsigned long nr_free_zone_pages(int offset)
count number of pages beyond high watermark

Parameters
int offset The zone index of the highest zone
Description
nr_free_zone_pages() counts the number of counts pages which are beyond the high watermark within
all zones at or below a given zone index. For each zone, the number of pages is calculated as:

nr_free_zone_pages = managed_pages - high_pages
unsigned long nr_free_pagecache_pages(void)

count number of pages beyond high watermark
Parameters
void no arguments
Description
nr_free_pagecache_pages() counts the number of pages which are beyond the high watermark within
all zones.
int find_next_best_node(int node, nodemask_t * used_node_mask)

find the next node that should appear in a given node’s fallback list
Parameters
int node node whose fallback list we’re appending
nodemask_t * used_node_mask nodemask_t of already used nodes
Description
We use a number of factors to determine which is the next node that should appear on a given node’s
fallback list. The node should not have appeared already in node‘s fallback list, and it should be the next
closest node according to the distance array (which contains arbitrary distance values from each node to
each node in the system), and should also prefer nodes with no CPUs, since presumably they’ll have very
little allocation pressure on them otherwise. It returns -1 if no node is found.
void free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)

Call memblock_free_early_nid for each active range
Parameters
int nid The node to free memory on. If MAX_NUMNODES, all nodes are freed.
unsigned long max_low_pfn The highest PFN that will be passed to memblock_free_early_nid
Description
If an architecture guarantees that all ranges registered contain no holes and may be freed, this this func-
tion may be used instead of calling memblock_free_early_nid() manually.
void sparse_memory_present_with_active_regions(int nid)

Call memory_present for each active range
Parameters
int nid The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
Description
If an architecture guarantees that all ranges registered contain no holes and may be freed, this function
may be used instead of calling memory_present() manually.
void get_pfn_range_for_nid(unsigned int nid, unsigned long * start_pfn, unsigned long * end_pfn)

Return the start and end page frames for a node
Parameters

60 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

unsigned int nid The nid to return the range for. If MAX_NUMNODES, themin andmax PFN are returned.
unsigned long * start_pfn Passed by reference. On return, it will have the node start_pfn.
unsigned long * end_pfn Passed by reference. On return, it will have the node end_pfn.
Description
It returns the start and end page frame of a node based on information provided by memblock_set_node().
If called for a node with no available memory, a warning is printed and the start and end PFNs will be 0.
unsigned long absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn)

Return number of page frames in holes within a range
Parameters
unsigned long start_pfn The start PFN to start searching for holes
unsigned long end_pfn The end PFN to stop searching for holes
Description
It returns the number of pages frames in memory holes within a range.
unsigned long node_map_pfn_alignment(void)

determine the maximum internode alignment
Parameters
void no arguments
Description
This function should be called after node map is populated and sorted. It calculates the maximum power
of two alignment which can distinguish all the nodes.
For example, if all nodes are 1GiB and aligned to 1GiB, the return value would indicate 1GiB alignment
with (1 << (30 - PAGE_SHIFT)). If the nodes are shifted by 256MiB, 256MiB. Note that if only the last node
is shifted, 1GiB is enough and this function will indicate so.
This is used to test whether pfn -> nid mapping of the chosen memory model has fine enough granularity
to avoid incorrect mapping for the populated node map.
Returns the determined alignment in pfn’s. 0 if there is no alignment requirement (single node).
unsigned long find_min_pfn_with_active_regions(void)

Find the minimum PFN registered
Parameters
void no arguments
Description
It returns the minimum PFN based on information provided via memblock_set_node().
void free_area_init_nodes(unsigned long * max_zone_pfn)

Initialise all pg_data_t and zone data
Parameters
unsigned long * max_zone_pfn an array of max PFNs for each zone
Description
This will call free_area_init_node() for each active node in the system. Using the page ranges pro-
vided by memblock_set_node(), the size of each zone in each node and their holes is calculated. If the
maximum PFN between two adjacent zones match, it is assumed that the zone is empty. For example, if
arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed that arch_max_dma32_pfn has no pages. It
is also assumed that a zone starts where the previous one ended. For example, ZONE_DMA32 starts at
arch_max_dma_pfn.

1.1. The Linux Kernel API 61

The kernel core API manual, Release 4.13.0-rc4+

void set_dma_reserve(unsigned long new_dma_reserve)
set the specified number of pages reserved in the first zone

Parameters
unsigned long new_dma_reserve The number of pages to mark reserved
Description
The per-cpu batchsize and zone watermarks are determined by managed_pages. In the DMA zone, a
significant percentage may be consumed by kernel image and other unfreeable allocations which can
skew the watermarks badly. This function may optionally be used to account for unfreeable pages in the
first zone (e.g., ZONE_DMA). The effect will be lower watermarks and smaller per-cpu batchsize.
void setup_per_zone_wmarks(void)

called when min_free_kbytes changes or when memory is hot-{added|removed}
Parameters
void no arguments
Description
Ensures that the watermark[min,low,high] values for each zone are set correctly with respect to
min_free_kbytes.
int alloc_contig_range(unsigned long start, unsigned long end, unsigned migratetype,

gfp_t gfp_mask)
•tries to allocate given range of pages

Parameters
unsigned long start start PFN to allocate
unsigned long end one-past-the-last PFN to allocate
unsigned migratetype migratetype of the underlaying pageblocks (either #MIGRATE_MOVABLE or #MI-

GRATE_CMA). All pageblocks in range must have the same migratetype and it must be either of the
two.

gfp_t gfp_mask GFP mask to use during compaction
Description
The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES aligned, however it’s the caller’s
responsibility to guarantee that we are the only thread that changes migrate type of pageblocks the pages
fall in.
The PFN range must belong to a single zone.
Returns zero on success or negative error code. On success all pages which PFN is in [start, end) are
allocated for the caller and need to be freed with free_contig_range().
void mempool_destroy(mempool_t * pool)

deallocate a memory pool
Parameters
mempool_t * pool pointer to the memory pool which was allocated via mempool_create().
Description
Free all reserved elements in pool and pool itself. This function only sleeps if the free_fn() function
sleeps.
mempool_t * mempool_create(int min_nr, mempool_alloc_t * alloc_fn, mempool_free_t * free_fn,

void * pool_data)
create a memory pool

Parameters

62 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

int min_nr the minimum number of elements guaranteed to be allocated for this pool.
mempool_alloc_t * alloc_fn user-defined element-allocation function.
mempool_free_t * free_fn user-defined element-freeing function.
void * pool_data optional private data available to the user-defined functions.
Description
this function creates and allocates a guaranteed size, preallocated memory pool. The pool can be used
from the mempool_alloc() and mempool_free() functions. This function might sleep. Both the al-
loc_fn() and the free_fn() functions might sleep - as long as the mempool_alloc() function is not
called from IRQ contexts.
int mempool_resize(mempool_t * pool, int new_min_nr)

resize an existing memory pool
Parameters
mempool_t * pool pointer to the memory pool which was allocated via mempool_create().
int new_min_nr the new minimum number of elements guaranteed to be allocated for this pool.
Description
This function shrinks/grows the pool. In the case of growing, it cannot be guaranteed that the pool will be
grown to the new size immediately, but new mempool_free() calls will refill it. This function may sleep.
Note, the caller must guarantee that no mempool_destroy is called while this function is running. mem-
pool_alloc() & mempool_free() might be called (eg. from IRQ contexts) while this function executes.

void * mempool_alloc(mempool_t * pool, gfp_t gfp_mask)
allocate an element from a specific memory pool

Parameters
mempool_t * pool pointer to the memory pool which was allocated via mempool_create().
gfp_t gfp_mask the usual allocation bitmask.
Description
this function only sleeps if the alloc_fn() function sleeps or returns NULL. Note that due to preallocation,
this function never fails when called from process contexts. (it might fail if called from an IRQ context.)
Note
using __GFP_ZERO is not supported.
void mempool_free(void * element, mempool_t * pool)

return an element to the pool.
Parameters
void * element pool element pointer.
mempool_t * pool pointer to the memory pool which was allocated via mempool_create().
Description
this function only sleeps if the free_fn() function sleeps.
struct dma_pool * dma_pool_create(const char * name, struct device * dev, size_t size, size_t align,

size_t boundary)
Creates a pool of consistent memory blocks, for dma.

Parameters
const char * name name of pool, for diagnostics
struct device * dev device that will be doing the DMA

1.1. The Linux Kernel API 63

The kernel core API manual, Release 4.13.0-rc4+

size_t size size of the blocks in this pool.
size_t align alignment requirement for blocks; must be a power of two
size_t boundary returned blocks won’t cross this power of two boundary
Context
!:c:func:in_interrupt()
Description
Returns a dma allocation pool with the requested characteristics, or null if one can’t be created. Given
one of these pools, dma_pool_alloc()may be used to allocate memory. Such memory will all have “con-
sistent” DMA mappings, accessible by the device and its driver without using cache flushing primitives.
The actual size of blocks allocated may be larger than requested because of alignment.
If boundary is nonzero, objects returned from dma_pool_alloc() won’t cross that size boundary. This
is useful for devices which have addressing restrictions on individual DMA transfers, such as not crossing
boundaries of 4KBytes.
void dma_pool_destroy(struct dma_pool * pool)

destroys a pool of dma memory blocks.
Parameters
struct dma_pool * pool dma pool that will be destroyed
Context
!:c:func:in_interrupt()
Description
Caller guarantees that no more memory from the pool is in use, and that nothing will try to use the pool
after this call.
void * dma_pool_alloc(struct dma_pool * pool, gfp_t mem_flags, dma_addr_t * handle)

get a block of consistent memory
Parameters
struct dma_pool * pool dma pool that will produce the block
gfp_t mem_flags GFP_* bitmask
dma_addr_t * handle pointer to dma address of block
Description
This returns the kernel virtual address of a currently unused block, and reports its dma address through
the handle. If such a memory block can’t be allocated, NULL is returned.
void dma_pool_free(struct dma_pool * pool, void * vaddr, dma_addr_t dma)

put block back into dma pool
Parameters
struct dma_pool * pool the dma pool holding the block
void * vaddr virtual address of block
dma_addr_t dma dma address of block
Description
Caller promises neither device nor driver will again touch this block unless it is first re-allocated.
struct dma_pool * dmam_pool_create(const char * name, struct device * dev, size_t size,

size_t align, size_t allocation)
Managed dma_pool_create()

Parameters

64 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

const char * name name of pool, for diagnostics
struct device * dev device that will be doing the DMA
size_t size size of the blocks in this pool.
size_t align alignment requirement for blocks; must be a power of two
size_t allocation returned blocks won’t cross this boundary (or zero)
Description
Managed dma_pool_create(). DMA pool created with this function is automatically destroyed on driver
detach.
void dmam_pool_destroy(struct dma_pool * pool)

Managed dma_pool_destroy()
Parameters
struct dma_pool * pool dma pool that will be destroyed
Description
Managed dma_pool_destroy().
void balance_dirty_pages_ratelimited(struct address_space * mapping)

balance dirty memory state
Parameters
struct address_space * mapping address_space which was dirtied
Description
Processes which are dirtying memory should call in here once for each page which was newly dirtied. The
function will periodically check the system’s dirty state and will initiate writeback if needed.
On really big machines, get_writeback_state is expensive, so try to avoid calling it too often (ratelimiting).
But once we’re over the dirty memory limit we decrease the ratelimiting by a lot, to prevent individual
processes from overshooting the limit by (ratelimit_pages) each.
void tag_pages_for_writeback(struct address_space * mapping, pgoff_t start, pgoff_t end)

tag pages to be written by write_cache_pages
Parameters
struct address_space * mapping address space structure to write
pgoff_t start starting page index
pgoff_t end ending page index (inclusive)
Description
This function scans the page range from start to end (inclusive) and tags all pages that have DIRTY tag
set with a special TOWRITE tag. The idea is that write_cache_pages (or whoever calls this function) will
then use TOWRITE tag to identify pages eligible for writeback. This mechanism is used to avoid livelocking
of writeback by a process steadily creating new dirty pages in the file (thus it is important for this function
to be quick so that it can tag pages faster than a dirtying process can create them).
int write_cache_pages(struct address_space * mapping, struct writeback_control * wbc,

writepage_t writepage, void * data)
walk the list of dirty pages of the given address space and write all of them.

Parameters
struct address_space * mapping address space structure to write
struct writeback_control * wbc subtract the number of written pages from *wbc->nr_to_write
writepage_t writepage function called for each page

1.1. The Linux Kernel API 65

The kernel core API manual, Release 4.13.0-rc4+

void * data data passed to writepage function
Description
If a page is already under I/O, write_cache_pages() skips it, even if it’s dirty. This is desirable behaviour
for memory-cleaning writeback, but it is INCORRECT for data-integrity system calls such as fsync().
fsync() and msync() need to guarantee that all the data which was dirty at the time the call was made
get new I/O started against them. If wbc->sync_mode is WB_SYNC_ALL then we were called for data
integrity and we must wait for existing IO to complete.
To avoid livelocks (when other process dirties new pages), we first tag pages which should be written back
with TOWRITE tag and only then start writing them. For data-integrity sync we have to be careful so that
we do not miss some pages (e.g., because some other process has cleared TOWRITE tag we set). The rule
we follow is that TOWRITE tag can be cleared only by the process clearing the DIRTY tag (and submitting
the page for IO).
int generic_writepages(struct address_space * mapping, struct writeback_control * wbc)

walk the list of dirty pages of the given address space and writepage() all of them.
Parameters
struct address_space * mapping address space structure to write
struct writeback_control * wbc subtract the number of written pages from *wbc->nr_to_write
Description
This is a library function, which implements the writepages() address_space_operation.
int write_one_page(struct page * page)

write out a single page and wait on I/O
Parameters
struct page * page the page to write
Description
The page must be locked by the caller and will be unlocked upon return.
Note that the mapping’s AS_EIO/AS_ENOSPC flags will be cleared when this function returns.
void wait_for_stable_page(struct page * page)

wait for writeback to finish, if necessary.
Parameters
struct page * page The page to wait on.
Description
This function determines if the given page is related to a backing device that requires page contents to
be held stable during writeback. If so, then it will wait for any pending writeback to complete.
void truncate_inode_pages_range(struct address_space * mapping, loff_t lstart, loff_t lend)

truncate range of pages specified by start & end byte offsets
Parameters
struct address_space * mapping mapping to truncate
loff_t lstart offset from which to truncate
loff_t lend offset to which to truncate (inclusive)
Description
Truncate the page cache, removing the pages that are between specified offsets (and zeroing out partial
pages if lstart or lend + 1 is not page aligned).

66 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Truncate takes two passes - the first pass is nonblocking. It will not block on page locks and it will not
block on writeback. The second pass will wait. This is to prevent as much IO as possible in the affected
region. The first pass will remove most pages, so the search cost of the second pass is low.
We pass down the cache-hot hint to the page freeing code. Even if the mapping is large, it is probably
the case that the final pages are the most recently touched, and freeing happens in ascending file offset
order.
Note that since ->:c:func:invalidatepage() accepts range to invalidate truncate_inode_pages_range is able
to handle cases where lend + 1 is not page aligned properly.
void truncate_inode_pages(struct address_space * mapping, loff_t lstart)

truncate all the pages from an offset
Parameters
struct address_space * mapping mapping to truncate
loff_t lstart offset from which to truncate
Description
Called under (and serialised by) inode->i_mutex.
Note
When this function returns, there can be a page in the process of deletion (inside
__delete_from_page_cache()) in the specified range. Thus mapping->nrpages can be non-zero
when this function returns even after truncation of the whole mapping.
void truncate_inode_pages_final(struct address_space * mapping)

truncate all pages before inode dies
Parameters
struct address_space * mapping mapping to truncate
Description
Called under (and serialized by) inode->i_mutex.
Filesystems have to use this in the .evict_inode path to inform the VM that this is the final truncate and
the inode is going away.
unsigned long invalidate_mapping_pages(struct address_space * mapping, pgoff_t start,

pgoff_t end)
Invalidate all the unlocked pages of one inode

Parameters
struct address_space * mapping the address_space which holds the pages to invalidate
pgoff_t start the offset ‘from’ which to invalidate
pgoff_t end the offset ‘to’ which to invalidate (inclusive)
Description
This function only removes the unlocked pages, if you want to remove all the pages of one inode, you
must call truncate_inode_pages.
invalidate_mapping_pages() will not block on IO activity. It will not invalidate pages which are dirty,
locked, under writeback or mapped into pagetables.
int invalidate_inode_pages2_range(struct address_space * mapping, pgoff_t start, pgoff_t end)

remove range of pages from an address_space
Parameters
struct address_space * mapping the address_space
pgoff_t start the page offset ‘from’ which to invalidate

1.1. The Linux Kernel API 67

The kernel core API manual, Release 4.13.0-rc4+

pgoff_t end the page offset ‘to’ which to invalidate (inclusive)
Description
Any pages which are found to be mapped into pagetables are unmapped prior to invalidation.
Returns -EBUSY if any pages could not be invalidated.
int invalidate_inode_pages2(struct address_space * mapping)

remove all pages from an address_space
Parameters
struct address_space * mapping the address_space
Description
Any pages which are found to be mapped into pagetables are unmapped prior to invalidation.
Returns -EBUSY if any pages could not be invalidated.
void truncate_pagecache(struct inode * inode, loff_t newsize)

unmap and remove pagecache that has been truncated
Parameters
struct inode * inode inode
loff_t newsize new file size
Description
inode’s new i_size must already be written before truncate_pagecache is called.
This function should typically be called before the filesystem releases resources associated with the freed
range (eg. deallocates blocks). This way, pagecache will always stay logically coherent with on-disk
format, and the filesystem would not have to deal with situations such as writepage being called for a
page that has already had its underlying blocks deallocated.
void truncate_setsize(struct inode * inode, loff_t newsize)

update inode and pagecache for a new file size
Parameters
struct inode * inode inode
loff_t newsize new file size
Description
truncate_setsize updates i_size and performs pagecache truncation (if necessary) to newsize. It will be
typically be called from the filesystem’s setattr function when ATTR_SIZE is passed in.
Must be called with a lock serializing truncates and writes (generally i_mutex but e.g. xfs uses a different
lock) and before all filesystem specific block truncation has been performed.
void pagecache_isize_extended(struct inode * inode, loff_t from, loff_t to)

update pagecache after extension of i_size
Parameters
struct inode * inode inode for which i_size was extended
loff_t from original inode size
loff_t to new inode size
Description
Handle extension of inode size either caused by extending truncate or by write starting after current
i_size. We mark the page straddling current i_size RO so that page_mkwrite() is called on the nearest
write access to the page. This way filesystem can be sure that page_mkwrite() is called on the page
before user writes to the page via mmap after the i_size has been changed.

68 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

The function must be called after i_size is updated so that page fault coming after we unlock the page will
already see the new i_size. The function must be called while we still hold i_mutex - this not only makes
sure i_size is stable but also that userspace cannot observe new i_size value before we are prepared to
store mmap writes at new inode size.
void truncate_pagecache_range(struct inode * inode, loff_t lstart, loff_t lend)

unmap and remove pagecache that is hole-punched
Parameters
struct inode * inode inode
loff_t lstart offset of beginning of hole
loff_t lend offset of last byte of hole
Description
This function should typically be called before the filesystem releases resources associated with the freed
range (eg. deallocates blocks). This way, pagecache will always stay logically coherent with on-disk
format, and the filesystem would not have to deal with situations such as writepage being called for a
page that has already had its underlying blocks deallocated.

1.1.5 Kernel IPC facilities

IPC utilities

int ipc_init(void)
initialise ipc subsystem

Parameters
void no arguments
Description
The various sysv ipc resources (semaphores, messages and shared memory) are initialised.
A callback routine is registered into the memory hotplug notifier chain: since msgmni scales to lowmem
this callback routine will be called upon successful memory add / remove to recompute msmgni.
void ipc_init_ids(struct ipc_ids * ids)

initialise ipc identifiers
Parameters
struct ipc_ids * ids ipc identifier set
Description
Set up the sequence range to use for the ipc identifier range (limited below IPCMNI) then initialise the ids
idr.
void ipc_init_proc_interface(const char * path, const char * header, int ids, int (*show) (struct

seq_file *, void *)
create a proc interface for sysipc types using a seq_file interface.

Parameters
const char * path Path in procfs
const char * header Banner to be printed at the beginning of the file.
int ids ipc id table to iterate.
int (*)(struct seq_file *,void *) show show routine.
struct kern_ipc_perm * ipc_findkey(struct ipc_ids * ids, key_t key)

find a key in an ipc identifier set

1.1. The Linux Kernel API 69

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct ipc_ids * ids ipc identifier set
key_t key key to find
Description
Returns the locked pointer to the ipc structure if found or NULL otherwise. If key is found ipc points to the
owning ipc structure
Called with ipc_ids.rwsem held.
int ipc_get_maxid(struct ipc_ids * ids)

get the last assigned id
Parameters
struct ipc_ids * ids ipc identifier set
Description
Called with ipc_ids.rwsem held.
int ipc_addid(struct ipc_ids * ids, struct kern_ipc_perm * new, int size)

add an ipc identifier
Parameters
struct ipc_ids * ids ipc identifier set
struct kern_ipc_perm * new new ipc permission set
int size limit for the number of used ids
Description
Add an entry ‘new’ to the ipc ids idr. The permissions object is initialised and the first free entry is set up
and the id assigned is returned. The ‘new’ entry is returned in a locked state on success. On failure the
entry is not locked and a negative err-code is returned.
Called with writer ipc_ids.rwsem held.
int ipcget_new(struct ipc_namespace * ns, struct ipc_ids * ids, const struct ipc_ops * ops, struct

ipc_params * params)
create a new ipc object

Parameters
struct ipc_namespace * ns ipc namespace
struct ipc_ids * ids ipc identifier set
const struct ipc_ops * ops the actual creation routine to call
struct ipc_params * params its parameters
Description
This routine is called by sys_msgget, sys_semget() and sys_shmget() when the key is IPC_PRIVATE.
int ipc_check_perms(struct ipc_namespace * ns, struct kern_ipc_perm * ipcp, const struct ipc_ops

* ops, struct ipc_params * params)
check security and permissions for an ipc object

Parameters
struct ipc_namespace * ns ipc namespace
struct kern_ipc_perm * ipcp ipc permission set
const struct ipc_ops * ops the actual security routine to call
struct ipc_params * params its parameters

70 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
This routine is called by sys_msgget(), sys_semget() and sys_shmget()when the key is not IPC_PRIVATE
and that key already exists in the ds IDR.
On success, the ipc id is returned.
It is called with ipc_ids.rwsem and ipcp->lock held.
int ipcget_public(struct ipc_namespace * ns, struct ipc_ids * ids, const struct ipc_ops * ops, struct

ipc_params * params)
get an ipc object or create a new one

Parameters
struct ipc_namespace * ns ipc namespace
struct ipc_ids * ids ipc identifier set
const struct ipc_ops * ops the actual creation routine to call
struct ipc_params * params its parameters
Description
This routine is called by sys_msgget, sys_semget() and sys_shmget() when the key is not IPC_PRIVATE.
It adds a new entry if the key is not found and does some permission / security checkings if the key is
found.
On success, the ipc id is returned.
void ipc_rmid(struct ipc_ids * ids, struct kern_ipc_perm * ipcp)

remove an ipc identifier
Parameters
struct ipc_ids * ids ipc identifier set
struct kern_ipc_perm * ipcp ipc perm structure containing the identifier to remove
Description
ipc_ids.rwsem (as a writer) and the spinlock for this ID are held before this function is called, and remain
locked on the exit.
int ipcperms(struct ipc_namespace * ns, struct kern_ipc_perm * ipcp, short flag)

check ipc permissions
Parameters
struct ipc_namespace * ns ipc namespace
struct kern_ipc_perm * ipcp ipc permission set
short flag desired permission set
Description
Check user, group, other permissions for access to ipc resources. return 0 if allowed
flag will most probably be 0 or S_...UGO from <linux/stat.h>
void kernel_to_ipc64_perm(struct kern_ipc_perm * in, struct ipc64_perm * out)

convert kernel ipc permissions to user
Parameters
struct kern_ipc_perm * in kernel permissions
struct ipc64_perm * out new style ipc permissions
Description
Turn the kernel object in into a set of permissions descriptions for returning to userspace (out).

1.1. The Linux Kernel API 71

The kernel core API manual, Release 4.13.0-rc4+

void ipc64_perm_to_ipc_perm(struct ipc64_perm * in, struct ipc_perm * out)
convert new ipc permissions to old

Parameters
struct ipc64_perm * in new style ipc permissions
struct ipc_perm * out old style ipc permissions
Description
Turn the new style permissions object in into a compatibility object and store it into the out pointer.
struct kern_ipc_perm * ipc_obtain_object_idr(struct ipc_ids * ids, int id)
Parameters
struct ipc_ids * ids ipc identifier set
int id ipc id to look for
Description
Look for an id in the ipc ids idr and return associated ipc object.
Call inside the RCU critical section. The ipc object is not locked on exit.
struct kern_ipc_perm * ipc_lock(struct ipc_ids * ids, int id)

lock an ipc structure without rwsem held
Parameters
struct ipc_ids * ids ipc identifier set
int id ipc id to look for
Description
Look for an id in the ipc ids idr and lock the associated ipc object.
The ipc object is locked on successful exit.
struct kern_ipc_perm * ipc_obtain_object_check(struct ipc_ids * ids, int id)
Parameters
struct ipc_ids * ids ipc identifier set
int id ipc id to look for
Description
Similar to ipc_obtain_object_idr() but also checks the ipc object reference counter.
Call inside the RCU critical section. The ipc object is not locked on exit.
int ipcget(struct ipc_namespace * ns, struct ipc_ids * ids, const struct ipc_ops * ops, struct

ipc_params * params)
Common sys_*:c:func:get() code

Parameters
struct ipc_namespace * ns namespace
struct ipc_ids * ids ipc identifier set
const struct ipc_ops * ops operations to be called on ipc object creation, permission checks and fur-

ther checks
struct ipc_params * params the parameters needed by the previous operations.
Description
Common routine called by sys_msgget(), sys_semget() and sys_shmget().

72 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

int ipc_update_perm(struct ipc64_perm * in, struct kern_ipc_perm * out)
update the permissions of an ipc object

Parameters
struct ipc64_perm * in the permission given as input.
struct kern_ipc_perm * out the permission of the ipc to set.
struct kern_ipc_perm * ipcctl_pre_down_nolock(struct ipc_namespace * ns, struct ipc_ids * ids,

int id, int cmd, struct ipc64_perm * perm,
int extra_perm)

retrieve an ipc and check permissions for some IPC_XXX cmd
Parameters
struct ipc_namespace * ns ipc namespace
struct ipc_ids * ids the table of ids where to look for the ipc
int id the id of the ipc to retrieve
int cmd the cmd to check
struct ipc64_perm * perm the permission to set
int extra_perm one extra permission parameter used by msq
Description
This function does some common audit and permissions check for some IPC_XXX cmd and is called from
semctl_down, shmctl_down and msgctl_down. It must be called without any lock held and:
• retrieves the ipc with the given id in the given table.
• performs some audit and permission check, depending on the given cmd
• returns a pointer to the ipc object or otherwise, the corresponding error.

Call holding the both the rwsem and the rcu read lock.
int ipc_parse_version(int * cmd)

ipc call version
Parameters
int * cmd pointer to command
Description
Return IPC_64 for new style IPC and IPC_OLD for old style IPC. The cmd value is turned from an encoding
command and version into just the command code.

1.1.6 FIFO Buffer

kfifo interface

DECLARE_KFIFO_PTR(fifo, type)
macro to declare a fifo pointer object

Parameters
fifo name of the declared fifo
type type of the fifo elements
DECLARE_KFIFO(fifo, type, size)

macro to declare a fifo object
Parameters

1.1. The Linux Kernel API 73

The kernel core API manual, Release 4.13.0-rc4+

fifo name of the declared fifo
type type of the fifo elements
size the number of elements in the fifo, this must be a power of 2
INIT_KFIFO(fifo)

Initialize a fifo declared by DECLARE_KFIFO
Parameters
fifo name of the declared fifo datatype
DEFINE_KFIFO(fifo, type, size)

macro to define and initialize a fifo
Parameters
fifo name of the declared fifo datatype
type type of the fifo elements
size the number of elements in the fifo, this must be a power of 2
Note
the macro can be used for global and local fifo data type variables.
kfifo_initialized(fifo)

Check if the fifo is initialized
Parameters
fifo address of the fifo to check
Description
Return true if fifo is initialized, otherwise false. Assumes the fifo was 0 before.
kfifo_esize(fifo)

returns the size of the element managed by the fifo
Parameters
fifo address of the fifo to be used
kfifo_recsize(fifo)

returns the size of the record length field
Parameters
fifo address of the fifo to be used
kfifo_size(fifo)

returns the size of the fifo in elements
Parameters
fifo address of the fifo to be used
kfifo_reset(fifo)

removes the entire fifo content
Parameters
fifo address of the fifo to be used
Note
usage of kfifo_reset() is dangerous. It should be only called when the fifo is exclusived locked or when
it is secured that no other thread is accessing the fifo.
kfifo_reset_out(fifo)

skip fifo content

74 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
fifo address of the fifo to be used
Note
The usage of kfifo_reset_out() is safe until it will be only called from the reader thread and there is only
one concurrent reader. Otherwise it is dangerous andmust be handled in the sameway as kfifo_reset().

kfifo_len(fifo)
returns the number of used elements in the fifo

Parameters
fifo address of the fifo to be used
kfifo_is_empty(fifo)

returns true if the fifo is empty
Parameters
fifo address of the fifo to be used
kfifo_is_full(fifo)

returns true if the fifo is full
Parameters
fifo address of the fifo to be used
kfifo_avail(fifo)

returns the number of unused elements in the fifo
Parameters
fifo address of the fifo to be used
kfifo_skip(fifo)

skip output data
Parameters
fifo address of the fifo to be used
kfifo_peek_len(fifo)

gets the size of the next fifo record
Parameters
fifo address of the fifo to be used
Description
This function returns the size of the next fifo record in number of bytes.
kfifo_alloc(fifo, size, gfp_mask)

dynamically allocates a new fifo buffer
Parameters
fifo pointer to the fifo
size the number of elements in the fifo, this must be a power of 2
gfp_mask get_free_pages mask, passed to kmalloc()
Description
This macro dynamically allocates a new fifo buffer.
The numer of elements will be rounded-up to a power of 2. The fifo will be release with kfifo_free().
Return 0 if no error, otherwise an error code.

1.1. The Linux Kernel API 75

The kernel core API manual, Release 4.13.0-rc4+

kfifo_free(fifo)
frees the fifo

Parameters
fifo the fifo to be freed
kfifo_init(fifo, buffer, size)

initialize a fifo using a preallocated buffer
Parameters
fifo the fifo to assign the buffer
buffer the preallocated buffer to be used
size the size of the internal buffer, this have to be a power of 2
Description
This macro initialize a fifo using a preallocated buffer.
The numer of elements will be rounded-up to a power of 2. Return 0 if no error, otherwise an error code.
kfifo_put(fifo, val)

put data into the fifo
Parameters
fifo address of the fifo to be used
val the data to be added
Description
This macro copies the given value into the fifo. It returns 0 if the fifo was full. Otherwise it returns the
number processed elements.
Note that with only one concurrent reader and one concurrent writer, you don’t need extra locking to use
these macro.
kfifo_get(fifo, val)

get data from the fifo
Parameters
fifo address of the fifo to be used
val address where to store the data
Description
This macro reads the data from the fifo. It returns 0 if the fifo was empty. Otherwise it returns the number
processed elements.
Note that with only one concurrent reader and one concurrent writer, you don’t need extra locking to use
these macro.
kfifo_peek(fifo, val)

get data from the fifo without removing
Parameters
fifo address of the fifo to be used
val address where to store the data
Description
This reads the data from the fifo without removing it from the fifo. It returns 0 if the fifo was empty.
Otherwise it returns the number processed elements.
Note that with only one concurrent reader and one concurrent writer, you don’t need extra locking to use
these macro.

76 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

kfifo_in(fifo, buf, n)
put data into the fifo

Parameters
fifo address of the fifo to be used
buf the data to be added
n number of elements to be added
Description
This macro copies the given buffer into the fifo and returns the number of copied elements.
Note that with only one concurrent reader and one concurrent writer, you don’t need extra locking to use
these macro.
kfifo_in_spinlocked(fifo, buf, n, lock)

put data into the fifo using a spinlock for locking
Parameters
fifo address of the fifo to be used
buf the data to be added
n number of elements to be added
lock pointer to the spinlock to use for locking
Description
This macro copies the given values buffer into the fifo and returns the number of copied elements.
kfifo_out(fifo, buf, n)

get data from the fifo
Parameters
fifo address of the fifo to be used
buf pointer to the storage buffer
n max. number of elements to get
Description
This macro get some data from the fifo and return the numbers of elements copied.
Note that with only one concurrent reader and one concurrent writer, you don’t need extra locking to use
these macro.
kfifo_out_spinlocked(fifo, buf, n, lock)

get data from the fifo using a spinlock for locking
Parameters
fifo address of the fifo to be used
buf pointer to the storage buffer
n max. number of elements to get
lock pointer to the spinlock to use for locking
Description
This macro get the data from the fifo and return the numbers of elements copied.
kfifo_from_user(fifo, from, len, copied)

puts some data from user space into the fifo
Parameters

1.1. The Linux Kernel API 77

The kernel core API manual, Release 4.13.0-rc4+

fifo address of the fifo to be used
from pointer to the data to be added
len the length of the data to be added
copied pointer to output variable to store the number of copied bytes
Description
This macro copies at most len bytes from the from into the fifo, depending of the available space and
returns -EFAULT/0.
Note that with only one concurrent reader and one concurrent writer, you don’t need extra locking to use
these macro.
kfifo_to_user(fifo, to, len, copied)

copies data from the fifo into user space
Parameters
fifo address of the fifo to be used
to where the data must be copied
len the size of the destination buffer
copied pointer to output variable to store the number of copied bytes
Description
This macro copies at most len bytes from the fifo into the to buffer and returns -EFAULT/0.
Note that with only one concurrent reader and one concurrent writer, you don’t need extra locking to use
these macro.
kfifo_dma_in_prepare(fifo, sgl, nents, len)

setup a scatterlist for DMA input
Parameters
fifo address of the fifo to be used
sgl pointer to the scatterlist array
nents number of entries in the scatterlist array
len number of elements to transfer
Description
This macro fills a scatterlist for DMA input. It returns the number entries in the scatterlist array.
Note that with only one concurrent reader and one concurrent writer, you don’t need extra locking to use
these macros.
kfifo_dma_in_finish(fifo, len)

finish a DMA IN operation
Parameters
fifo address of the fifo to be used
len number of bytes to received
Description
This macro finish a DMA IN operation. The in counter will be updated by the len parameter. No error
checking will be done.
Note that with only one concurrent reader and one concurrent writer, you don’t need extra locking to use
these macros.

78 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

kfifo_dma_out_prepare(fifo, sgl, nents, len)
setup a scatterlist for DMA output

Parameters
fifo address of the fifo to be used
sgl pointer to the scatterlist array
nents number of entries in the scatterlist array
len number of elements to transfer
Description
This macro fills a scatterlist for DMA output which at most len bytes to transfer. It returns the number
entries in the scatterlist array. A zero means there is no space available and the scatterlist is not filled.
Note that with only one concurrent reader and one concurrent writer, you don’t need extra locking to use
these macros.
kfifo_dma_out_finish(fifo, len)

finish a DMA OUT operation
Parameters
fifo address of the fifo to be used
len number of bytes transferred
Description
This macro finish a DMA OUT operation. The out counter will be updated by the len parameter. No error
checking will be done.
Note that with only one concurrent reader and one concurrent writer, you don’t need extra locking to use
these macros.
kfifo_out_peek(fifo, buf, n)

gets some data from the fifo
Parameters
fifo address of the fifo to be used
buf pointer to the storage buffer
n max. number of elements to get
Description
This macro get the data from the fifo and return the numbers of elements copied. The data is not removed
from the fifo.
Note that with only one concurrent reader and one concurrent writer, you don’t need extra locking to use
these macro.

1.1.7 relay interface support

Relay interface support is designed to provide an efficient mechanism for tools and facilities to relay large
amounts of data from kernel space to user space.

relay interface

int relay_buf_full(struct rchan_buf * buf)
boolean, is the channel buffer full?

Parameters

1.1. The Linux Kernel API 79

The kernel core API manual, Release 4.13.0-rc4+

struct rchan_buf * buf channel buffer
Description

Returns 1 if the buffer is full, 0 otherwise.
void relay_reset(struct rchan * chan)

reset the channel
Parameters
struct rchan * chan the channel
Description

This has the effect of erasing all data from all channel buffers and restarting the channel in its
initial state. The buffers are not freed, so any mappings are still in effect.
NOTE. Care should be taken that the channel isn’t actually being used by anything when this
call is made.

struct rchan * relay_open(const char * base_filename, struct dentry * parent, size_t subbuf_size,
size_t n_subbufs, struct rchan_callbacks * cb, void * private_data)

create a new relay channel
Parameters
const char * base_filename base name of files to create, NULL for buffering only
struct dentry * parent dentry of parent directory, NULL for root directory or buffer
size_t subbuf_size size of sub-buffers
size_t n_subbufs number of sub-buffers
struct rchan_callbacks * cb client callback functions
void * private_data user-defined data
Description

Returns channel pointer if successful, NULL otherwise.
Creates a channel buffer for each cpu using the sizes and attributes specified. The created
channel buffer files will be named base_filename0...base_filenameN-1. File permissions will be
S_IRUSR.
If opening a buffer (parent = NULL) that you later wish to register in a filesystem, call re-
lay_late_setup_files() once the parent dentry is available.

int relay_late_setup_files(struct rchan * chan, const char * base_filename, struct dentry * par-
ent)

triggers file creation
Parameters
struct rchan * chan channel to operate on
const char * base_filename base name of files to create
struct dentry * parent dentry of parent directory, NULL for root directory
Description

Returns 0 if successful, non-zero otherwise.
Use to setup files for a previously buffer-only channel created by relay_open() with a NULL
parent dentry.
For example, this is useful for perfomring early tracing in kernel, before VFS is up and then
exposing the early results once the dentry is available.

80 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

size_t relay_switch_subbuf(struct rchan_buf * buf, size_t length)
switch to a new sub-buffer

Parameters
struct rchan_buf * buf channel buffer
size_t length size of current event
Description

Returns either the length passed in or 0 if full.
Performs sub-buffer-switch tasks such as invoking callbacks, updating padding counts, waking
up readers, etc.

void relay_subbufs_consumed(struct rchan * chan, unsigned int cpu, size_t subbufs_consumed)
update the buffer’s sub-buffers-consumed count

Parameters
struct rchan * chan the channel
unsigned int cpu the cpu associated with the channel buffer to update
size_t subbufs_consumed number of sub-buffers to add to current buf’s count
Description

Adds to the channel buffer’s consumed sub-buffer count. subbufs_consumed should be the
number of sub-buffers newly consumed, not the total consumed.
NOTE. Kernel clients don’t need to call this function if the channel mode is ‘overwrite’.

void relay_close(struct rchan * chan)
close the channel

Parameters
struct rchan * chan the channel
Description

Closes all channel buffers and frees the channel.
void relay_flush(struct rchan * chan)

close the channel
Parameters
struct rchan * chan the channel
Description

Flushes all channel buffers, i.e. forces buffer switch.
int relay_mmap_buf(struct rchan_buf * buf, struct vm_area_struct * vma)

mmap channel buffer to process address space
Parameters
struct rchan_buf * buf relay channel buffer
struct vm_area_struct * vma vm_area_struct describing memory to be mapped
Description

Returns 0 if ok, negative on error
Caller should already have grabbed mmap_sem.

void * relay_alloc_buf(struct rchan_buf * buf, size_t * size)
allocate a channel buffer

Parameters

1.1. The Linux Kernel API 81

The kernel core API manual, Release 4.13.0-rc4+

struct rchan_buf * buf the buffer struct
size_t * size total size of the buffer
Description

Returns a pointer to the resulting buffer, NULL if unsuccessful. The passed in size will get page
aligned, if it isn’t already.

struct rchan_buf * relay_create_buf(struct rchan * chan)
allocate and initialize a channel buffer

Parameters
struct rchan * chan the relay channel
Description

Returns channel buffer if successful, NULL otherwise.
void relay_destroy_channel(struct kref * kref)

free the channel struct
Parameters
struct kref * kref target kernel reference that contains the relay channel
Description

Should only be called from kref_put().
void relay_destroy_buf(struct rchan_buf * buf)

destroy an rchan_buf struct and associated buffer
Parameters
struct rchan_buf * buf the buffer struct
void relay_remove_buf(struct kref * kref)

remove a channel buffer
Parameters
struct kref * kref target kernel reference that contains the relay buffer
Description

Removes the file from the filesystem, which also frees the rchan_buf_struct and the channel
buffer. Should only be called from kref_put().

int relay_buf_empty(struct rchan_buf * buf)
boolean, is the channel buffer empty?

Parameters
struct rchan_buf * buf channel buffer
Description

Returns 1 if the buffer is empty, 0 otherwise.
void wakeup_readers(struct irq_work * work)

wake up readers waiting on a channel
Parameters
struct irq_work * work contains the channel buffer
Description

This is the function used to defer reader waking
void __relay_reset(struct rchan_buf * buf, unsigned int init)

reset a channel buffer

82 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct rchan_buf * buf the channel buffer
unsigned int init 1 if this is a first-time initialization
Description

See relay_reset() for description of effect.
void relay_close_buf(struct rchan_buf * buf)

close a channel buffer
Parameters
struct rchan_buf * buf channel buffer
Description

Marks the buffer finalized and restores the default callbacks. The channel buffer and channel
buffer data structure are then freed automatically when the last reference is given up.

int relay_file_open(struct inode * inode, struct file * filp)
open file op for relay files

Parameters
struct inode * inode the inode
struct file * filp the file
Description

Increments the channel buffer refcount.
int relay_file_mmap(struct file * filp, struct vm_area_struct * vma)

mmap file op for relay files
Parameters
struct file * filp the file
struct vm_area_struct * vma the vma describing what to map
Description

Calls upon relay_mmap_buf() to map the file into user space.
unsigned int relay_file_poll(struct file * filp, poll_table * wait)

poll file op for relay files
Parameters
struct file * filp the file
poll_table * wait poll table
Description

Poll implemention.
int relay_file_release(struct inode * inode, struct file * filp)

release file op for relay files
Parameters
struct inode * inode the inode
struct file * filp the file
Description

Decrements the channel refcount, as the filesystem is no longer using it.

1.1. The Linux Kernel API 83

The kernel core API manual, Release 4.13.0-rc4+

size_t relay_file_read_subbuf_avail(size_t read_pos, struct rchan_buf * buf)
return bytes available in sub-buffer

Parameters
size_t read_pos file read position
struct rchan_buf * buf relay channel buffer
size_t relay_file_read_start_pos(size_t read_pos, struct rchan_buf * buf)

find the first available byte to read
Parameters
size_t read_pos file read position
struct rchan_buf * buf relay channel buffer
Description

If the read_pos is in the middle of padding, return the position of the first actually available
byte, otherwise return the original value.

size_t relay_file_read_end_pos(struct rchan_buf * buf, size_t read_pos, size_t count)
return the new read position

Parameters
struct rchan_buf * buf relay channel buffer
size_t read_pos file read position
size_t count number of bytes to be read

1.1.8 Module Support

Module Loading

int __request_module(bool wait, const char * fmt, ...)
try to load a kernel module

Parameters
bool wait wait (or not) for the operation to complete
const char * fmt printf style format string for the name of the module
... arguments as specified in the format string
Description
Load a module using the user mode module loader. The function returns zero on success or a negative
errno code or positive exit code from “modprobe” on failure. Note that a successful module load does not
mean the module did not then unload and exit on an error of its own. Callers must check that the service
they requested is now available not blindly invoke it.
If module auto-loading support is disabled then this function becomes a no-operation.
struct subprocess_info * call_usermodehelper_setup(const char * path, char ** argv, char

** envp, gfp_t gfp_mask, int (*init)
(struct subprocess_info *info, struct
cred *new, void (*cleanup) (struct sub-
process_info *info, void * data)

prepare to call a usermode helper
Parameters
const char * path path to usermode executable
char ** argv arg vector for process

84 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

char ** envp environment for process
gfp_t gfp_mask gfp mask for memory allocation
int (*)(struct subprocess_info *info,struct cred *new) init an init function
void (*)(struct subprocess_info *info) cleanup a cleanup function
void * data arbitrary context sensitive data
Description
Returns either NULL on allocation failure, or a subprocess_info structure. This should be passed to
call_usermodehelper_exec to exec the process and free the structure.
The init function is used to customize the helper process prior to exec. A non-zero return code causes the
process to error out, exit, and return the failure to the calling process
The cleanup function is just before ethe subprocess_info is about to be freed. This can be used for freeing
the argv and envp. The Function must be runnable in either a process context or the context in which
call_usermodehelper_exec is called.
int call_usermodehelper_exec(struct subprocess_info * sub_info, int wait)

start a usermode application
Parameters
struct subprocess_info * sub_info information about the subprocessa
int wait wait for the application to finish and return status. when UMH_NO_WAIT don’t wait at all, but

you get no useful error back when the program couldn’t be exec’ed. This makes it safe to call from
interrupt context.

Description
Runs a user-space application. The application is started asynchronously if wait is not set, and runs as a
child of system workqueues. (ie. it runs with full root capabilities and optimized affinity).
int call_usermodehelper(const char * path, char ** argv, char ** envp, int wait)

prepare and start a usermode application
Parameters
const char * path path to usermode executable
char ** argv arg vector for process
char ** envp environment for process
int wait wait for the application to finish and return status. when UMH_NO_WAIT don’t wait at all, but

you get no useful error back when the program couldn’t be exec’ed. This makes it safe to call from
interrupt context.

Description
This function is the equivalent to use call_usermodehelper_setup() and
call_usermodehelper_exec().

Inter Module support

Refer to the file kernel/module.c for more information.

1.1.9 Hardware Interfaces

1.1. The Linux Kernel API 85

The kernel core API manual, Release 4.13.0-rc4+

Interrupt Handling

bool synchronize_hardirq(unsigned int irq)
wait for pending hard IRQ handlers (on other CPUs)

Parameters
unsigned int irq interrupt number to wait for
Description

This function waits for any pending hard IRQ handlers for this interrupt to complete before
returning. If you use this function while holding a resource the IRQ handler may need you will
deadlock. It does not take associated threaded handlers into account.
Do not use this for shutdown scenarios where you must be sure that all parts (hardirq and
threaded handler) have completed.

Return
false if a threaded handler is active.

This function may be called - with care - from IRQ context.
void synchronize_irq(unsigned int irq)

wait for pending IRQ handlers (on other CPUs)
Parameters
unsigned int irq interrupt number to wait for
Description

This function waits for any pending IRQ handlers for this interrupt to complete before returning.
If you use this function while holding a resource the IRQ handler may need you will deadlock.
This function may be called - with care - from IRQ context.

int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify * notify)
control notification of IRQ affinity changes

Parameters
unsigned int irq Interrupt for which to enable/disable notification
struct irq_affinity_notify * notify Context for notification, or NULL to disable notification. Func-

tion pointers must be initialised; the other fields will be initialised by this function.
Description

Must be called in process context. Notification may only be enabled after the IRQ is allocated
and must be disabled before the IRQ is freed using free_irq().

int irq_set_vcpu_affinity(unsigned int irq, void * vcpu_info)
Set vcpu affinity for the interrupt

Parameters
unsigned int irq interrupt number to set affinity
void * vcpu_info vCPU specific data
Description

This function uses the vCPU specific data to set the vCPU affinity for an irq. The vCPU specific
data is passed from outside, such as KVM. One example code path is as below: KVM -> IOMMU
-> irq_set_vcpu_affinity().

void disable_irq_nosync(unsigned int irq)
disable an irq without waiting

Parameters

86 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

unsigned int irq Interrupt to disable
Description

Disable the selected interrupt line. Disables and Enables are nested. Unlike disable_irq(), this
function does not ensure existing instances of the IRQ handler have completed before returning.
This function may be called from IRQ context.

void disable_irq(unsigned int irq)
disable an irq and wait for completion

Parameters
unsigned int irq Interrupt to disable
Description

Disable the selected interrupt line. Enables and Disables are nested. This function waits for any
pending IRQ handlers for this interrupt to complete before returning. If you use this function
while holding a resource the IRQ handler may need you will deadlock.
This function may be called - with care - from IRQ context.

bool disable_hardirq(unsigned int irq)
disables an irq and waits for hardirq completion

Parameters
unsigned int irq Interrupt to disable
Description

Disable the selected interrupt line. Enables and Disables are nested. This function waits for
any pending hard IRQ handlers for this interrupt to complete before returning. If you use this
function while holding a resource the hard IRQ handler may need you will deadlock.
When used to optimistically disable an interrupt from atomic context the return value must be
checked.

Return
false if a threaded handler is active.

This function may be called - with care - from IRQ context.
void enable_irq(unsigned int irq)

enable handling of an irq
Parameters
unsigned int irq Interrupt to enable
Description

Undoes the effect of one call to disable_irq(). If this matches the last disable, processing of
interrupts on this IRQ line is re-enabled.
This function may be called from IRQ context only when desc->irq_data.chip->bus_lock and
desc->chip->bus_sync_unlock are NULL !

int irq_set_irq_wake(unsigned int irq, unsigned int on)
control irq power management wakeup

Parameters
unsigned int irq interrupt to control
unsigned int on enable/disable power management wakeup
Description

1.1. The Linux Kernel API 87

The kernel core API manual, Release 4.13.0-rc4+

Enable/disable power management wakeup mode, which is disabled by default. Enables and
disables must match, just as they match for non-wakeup mode support.
Wakeup mode lets this IRQ wake the system from sleep states like “suspend to RAM”.

void irq_wake_thread(unsigned int irq, void * dev_id)
wake the irq thread for the action identified by dev_id

Parameters
unsigned int irq Interrupt line
void * dev_id Device identity for which the thread should be woken
int setup_irq(unsigned int irq, struct irqaction * act)

setup an interrupt
Parameters
unsigned int irq Interrupt line to setup
struct irqaction * act irqaction for the interrupt
Description
Used to statically setup interrupts in the early boot process.
void remove_irq(unsigned int irq, struct irqaction * act)

free an interrupt
Parameters
unsigned int irq Interrupt line to free
struct irqaction * act irqaction for the interrupt
Description
Used to remove interrupts statically setup by the early boot process.
const void * free_irq(unsigned int irq, void * dev_id)

free an interrupt allocated with request_irq
Parameters
unsigned int irq Interrupt line to free
void * dev_id Device identity to free
Description

Remove an interrupt handler. The handler is removed and if the interrupt line is no longer in use
by any driver it is disabled. On a shared IRQ the caller must ensure the interrupt is disabled on
the card it drives before calling this function. The function does not return until any executing
interrupts for this IRQ have completed.
This function must not be called from interrupt context.
Returns the devname argument passed to request_irq.

int request_threaded_irq(unsigned int irq, irq_handler_t handler, irq_handler_t thread_fn, un-
signed long irqflags, const char * devname, void * dev_id)

allocate an interrupt line
Parameters
unsigned int irq Interrupt line to allocate
irq_handler_t handler Function to be called when the IRQ occurs. Primary handler for threaded inter-

rupts If NULL and thread_fn != NULL the default primary handler is installed
irq_handler_t thread_fn Function called from the irq handler thread If NULL, no irq thread is created
unsigned long irqflags Interrupt type flags

88 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

const char * devname An ascii name for the claiming device
void * dev_id A cookie passed back to the handler function
Description

This call allocates interrupt resources and enables the interrupt line and IRQ handling. From the
point this call is made your handler function may be invoked. Since your handler function must
clear any interrupt the board raises, you must take care both to initialise your hardware and to
set up the interrupt handler in the right order.
If you want to set up a threaded irq handler for your device then you need to supply handler
and thread_fn. handler is still called in hard interrupt context and has to check whether the
interrupt originates from the device. If yes it needs to disable the interrupt on the device and
return IRQ_WAKE_THREAD which will wake up the handler thread and run thread_fn. This split
handler design is necessary to support shared interrupts.
Dev_id must be globally unique. Normally the address of the device data structure is used as
the cookie. Since the handler receives this value it makes sense to use it.
If your interrupt is shared you must pass a non NULL dev_id as this is required when freeing the
interrupt.
Flags:
IRQF_SHARED Interrupt is shared IRQF_TRIGGER_* Specify active edge(s) or level

int request_any_context_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const
char * name, void * dev_id)

allocate an interrupt line
Parameters
unsigned int irq Interrupt line to allocate
irq_handler_t handler Function to be called when the IRQ occurs. Threaded handler for threaded in-

terrupts.
unsigned long flags Interrupt type flags
const char * name An ascii name for the claiming device
void * dev_id A cookie passed back to the handler function
Description

This call allocates interrupt resources and enables the interrupt line and IRQ handling. It selects
either a hardirq or threaded handling method depending on the context.
On failure, it returns a negative value. On success, it returns either IRQC_IS_HARDIRQ or
IRQC_IS_NESTED.

bool irq_percpu_is_enabled(unsigned int irq)
Check whether the per cpu irq is enabled

Parameters
unsigned int irq Linux irq number to check for
Description
Must be called from a non migratable context. Returns the enable state of a per cpu interrupt on the
current cpu.
void free_percpu_irq(unsigned int irq, void __percpu * dev_id)

free an interrupt allocated with request_percpu_irq
Parameters
unsigned int irq Interrupt line to free
void __percpu * dev_id Device identity to free

1.1. The Linux Kernel API 89

The kernel core API manual, Release 4.13.0-rc4+

Description
Remove a percpu interrupt handler. The handler is removed, but the interrupt line is not dis-
abled. This must be done on each CPU before calling this function. The function does not return
until any executing interrupts for this IRQ have completed.
This function must not be called from interrupt context.

int __request_percpu_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char
* devname, void __percpu * dev_id)

allocate a percpu interrupt line
Parameters
unsigned int irq Interrupt line to allocate
irq_handler_t handler Function to be called when the IRQ occurs.
unsigned long flags Interrupt type flags (IRQF_TIMER only)
const char * devname An ascii name for the claiming device
void __percpu * dev_id A percpu cookie passed back to the handler function
Description

This call allocates interrupt resources and enables the interrupt on the local CPU. If the in-
terrupt is supposed to be enabled on other CPUs, it has to be done on each CPU using en-
able_percpu_irq().
Dev_id must be globally unique. It is a per-cpu variable, and the handler gets called with the
interrupted CPU’s instance of that variable.

int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool * state)
returns the irqchip state of a interrupt.

Parameters
unsigned int irq Interrupt line that is forwarded to a VM
enum irqchip_irq_state which One of IRQCHIP_STATE_* the caller wants to know about
bool * state a pointer to a boolean where the state is to be storeed
Description

This call snapshots the internal irqchip state of an interrupt, returning into state the bit corre-
sponding to stage which
This function should be called with preemption disabled if the interrupt controller has per-cpu
registers.

int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool val)
set the state of a forwarded interrupt.

Parameters
unsigned int irq Interrupt line that is forwarded to a VM
enum irqchip_irq_state which State to be restored (one of IRQCHIP_STATE_*)
bool val Value corresponding to which
Description

This call sets the internal irqchip state of an interrupt, depending on the value of which.
This function should be called with preemption disabled if the interrupt controller has per-cpu
registers.

90 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

DMA Channels

int request_dma(unsigned int dmanr, const char * device_id)
request and reserve a system DMA channel

Parameters
unsigned int dmanr DMA channel number
const char * device_id reserving device ID string, used in /proc/dma
void free_dma(unsigned int dmanr)

free a reserved system DMA channel
Parameters
unsigned int dmanr DMA channel number

Resources Management

struct resource * request_resource_conflict(struct resource * root, struct resource * new)
request and reserve an I/O or memory resource

Parameters
struct resource * root root resource descriptor
struct resource * new resource descriptor desired by caller
Description
Returns 0 for success, conflict resource on error.
int reallocate_resource(struct resource * root, struct resource * old, resource_size_t newsize,

struct resource_constraint * constraint)
allocate a slot in the resource tree given range & alignment. The resource will be relocated if the
new size cannot be reallocated in the current location.

Parameters
struct resource * root root resource descriptor
struct resource * old resource descriptor desired by caller
resource_size_t newsize new size of the resource descriptor
struct resource_constraint * constraint the size and alignment constraints to be met.
struct resource * lookup_resource(struct resource * root, resource_size_t start)

find an existing resource by a resource start address
Parameters
struct resource * root root resource descriptor
resource_size_t start resource start address
Description
Returns a pointer to the resource if found, NULL otherwise
struct resource * insert_resource_conflict(struct resource * parent, struct resource * new)

Inserts resource in the resource tree
Parameters
struct resource * parent parent of the new resource
struct resource * new new resource to insert

1.1. The Linux Kernel API 91

The kernel core API manual, Release 4.13.0-rc4+

Description
Returns 0 on success, conflict resource if the resource can’t be inserted.
This function is equivalent to request_resource_conflict when no conflict happens. If a conflict happens,
and the conflicting resources entirely fit within the range of the new resource, then the new resource is
inserted and the conflicting resources become children of the new resource.
This function is intended for producers of resources, such as FW modules and bus drivers.
void insert_resource_expand_to_fit(struct resource * root, struct resource * new)

Insert a resource into the resource tree
Parameters
struct resource * root root resource descriptor
struct resource * new new resource to insert
Description
Insert a resource into the resource tree, possibly expanding it in order tomake it encompass any conflicting
resources.
resource_size_t resource_alignment(struct resource * res)

calculate resource’s alignment
Parameters
struct resource * res resource pointer
Description
Returns alignment on success, 0 (invalid alignment) on failure.
int release_mem_region_adjustable(struct resource * parent, resource_size_t start, re-

source_size_t size)
release a previously reserved memory region

Parameters
struct resource * parent parent resource descriptor
resource_size_t start resource start address
resource_size_t size resource region size
Description
This interface is intended for memory hot-delete. The requested region is released from a currently busy
memory resource. The requested region must either match exactly or fit into a single busy resource entry.
In the latter case, the remaining resource is adjusted accordingly. Existing children of the busy memory
resource must be immutable in the request.
Note
• Additional release conditions, such as overlapping region, can be supported after they are confirmed
as valid cases.

• When a busy memory resource gets split into two entries, the code assumes that all children remain
in the lower address entry for simplicity. Enhance this logic when necessary.

int request_resource(struct resource * root, struct resource * new)
request and reserve an I/O or memory resource

Parameters
struct resource * root root resource descriptor
struct resource * new resource descriptor desired by caller

92 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
Returns 0 for success, negative error code on error.
int release_resource(struct resource * old)

release a previously reserved resource
Parameters
struct resource * old resource pointer
int region_intersects(resource_size_t start, size_t size, unsigned long flags, unsigned long desc)

determine intersection of region with known resources
Parameters
resource_size_t start region start address
size_t size size of region
unsigned long flags flags of resource (in iomem_resource)
unsigned long desc descriptor of resource (in iomem_resource) or IORES_DESC_NONE
Description
Check if the specified region partially overlaps or fully eclipses a resource identified by flags and desc (op-
tional with IORES_DESC_NONE). Return REGION_DISJOINT if the region does not overlap flags/desc, return
REGION_MIXED if the region overlaps flags/desc and another resource, and return REGION_INTERSECTS
if the region overlaps flags/desc and no other defined resource. Note that REGION_INTERSECTS is also
returned in the case when the specified region overlaps RAM and undefined memory holes.
region_intersect() is used by memory remapping functions to ensure the user is not remapping RAM
and is a vast speed up over walking through the resource table page by page.
int allocate_resource(struct resource * root, struct resource * new, resource_size_t size,

resource_size_t min, resource_size_t max, resource_size_t align, re-
source_size_t (*alignf) (void *, const struct resource *, resource_size_t,
resource_size_t, void * alignf_data)

allocate empty slot in the resource tree given range & alignment. The resource will be reallocated
with a new size if it was already allocated

Parameters
struct resource * root root resource descriptor
struct resource * new resource descriptor desired by caller
resource_size_t size requested resource region size
resource_size_t min minimum boundary to allocate
resource_size_t max maximum boundary to allocate
resource_size_t align alignment requested, in bytes
resource_size_t (*)(void *,const struct resource *,resource_size_t,resource_size_t) alignf

alignment function, optional, called if not NULL
void * alignf_data arbitrary data to pass to the alignf function
int insert_resource(struct resource * parent, struct resource * new)

Inserts a resource in the resource tree
Parameters
struct resource * parent parent of the new resource
struct resource * new new resource to insert

1.1. The Linux Kernel API 93

The kernel core API manual, Release 4.13.0-rc4+

Description
Returns 0 on success, -EBUSY if the resource can’t be inserted.
This function is intended for producers of resources, such as FW modules and bus drivers.
int remove_resource(struct resource * old)

Remove a resource in the resource tree
Parameters
struct resource * old resource to remove
Description
Returns 0 on success, -EINVAL if the resource is not valid.
This function removes a resource previously inserted by insert_resource() or in-
sert_resource_conflict(), and moves the children (if any) up to where they were before. in-
sert_resource() and insert_resource_conflict() insert a new resource, and move any conflicting
resources down to the children of the new resource.
insert_resource(), insert_resource_conflict() and remove_resource() are intended for producers
of resources, such as FW modules and bus drivers.
int adjust_resource(struct resource * res, resource_size_t start, resource_size_t size)

modify a resource’s start and size
Parameters
struct resource * res resource to modify
resource_size_t start new start value
resource_size_t size new size
Description
Given an existing resource, change its start and size to match the arguments. Returns 0 on success,
-EBUSY if it can’t fit. Existing children of the resource are assumed to be immutable.
struct resource * __request_region(struct resource * parent, resource_size_t start, re-

source_size_t n, const char * name, int flags)
create a new busy resource region

Parameters
struct resource * parent parent resource descriptor
resource_size_t start resource start address
resource_size_t n resource region size
const char * name reserving caller’s ID string
int flags IO resource flags
void __release_region(struct resource * parent, resource_size_t start, resource_size_t n)

release a previously reserved resource region
Parameters
struct resource * parent parent resource descriptor
resource_size_t start resource start address
resource_size_t n resource region size
Description
The described resource region must match a currently busy region.
int devm_request_resource(struct device * dev, struct resource * root, struct resource * new)

request and reserve an I/O or memory resource

94 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct device * dev device for which to request the resource
struct resource * root root of the resource tree from which to request the resource
struct resource * new descriptor of the resource to request
Description
This is a device-managed version of request_resource(). There is usually no need to release resources
requested by this function explicitly since that will be taken care of when the device is unbound from its
driver. If for some reason the resource needs to be released explicitly, because of ordering issues for
example, drivers must call devm_release_resource() rather than the regular release_resource().
When a conflict is detected between any existing resources and the newly requested resource, an error
message will be printed.
Returns 0 on success or a negative error code on failure.
void devm_release_resource(struct device * dev, struct resource * new)

release a previously requested resource
Parameters
struct device * dev device for which to release the resource
struct resource * new descriptor of the resource to release
Description
Releases a resource previously requested using devm_request_resource().

MTRR Handling

int arch_phys_wc_add(unsigned long base, unsigned long size)
add a WC MTRR and handle errors if PAT is unavailable

Parameters
unsigned long base Physical base address
unsigned long size Size of region
Description
If PAT is available, this does nothing. If PAT is unavailable, it attempts to add a WC MTRR covering size
bytes starting at base and logs an error if this fails.
The called should provide a power of two size on an equivalent power of two boundary.
Driversmust store the return value to pass tomtrr_del_wc_if_needed, but drivers should not try to interpret
that return value.

1.1.10 Security Framework

int security_init(void)
initializes the security framework

Parameters
void no arguments
Description
This should be called early in the kernel initialization sequence.
int security_module_enable(const char * module)

Load given security module on boot ?

1.1. The Linux Kernel API 95

The kernel core API manual, Release 4.13.0-rc4+

Parameters
const char * module the name of the module
Description
Each LSMmust pass this method before registering its own operations to avoid security registration races.
This method may also be used to check if your LSM is currently loaded during kernel initialization.
Return
true if:
• The passed LSM is the one chosen by user at boot time,
• or the passed LSM is configured as the default and the user did not choose an alternate LSM at boot
time.

Otherwise, return false.
void security_add_hooks(struct security_hook_list * hooks, int count, char * lsm)

Add a modules hooks to the hook lists.
Parameters
struct security_hook_list * hooks the hooks to add
int count the number of hooks to add
char * lsm the name of the security module
Description
Each LSM has to register its hooks with the infrastructure.
struct dentry * securityfs_create_file(const char * name, umode_t mode, struct dentry * par-

ent, void * data, const struct file_operations * fops)
create a file in the securityfs filesystem

Parameters
const char * name a pointer to a string containing the name of the file to create.
umode_t mode the permission that the file should have
struct dentry * parent a pointer to the parent dentry for this file. This should be a directory dentry if

set. If this parameter is NULL, then the file will be created in the root of the securityfs filesystem.
void * data a pointer to something that the caller will want to get to later on. The inode.i_private pointer

will point to this value on the open() call.
const struct file_operations * fops a pointer to a struct file_operations that should be used for this

file.
Description
This function creates a file in securityfs with the given name.
This function returns a pointer to a dentry if it succeeds. This pointer must be passed to the securi-
tyfs_remove() function when the file is to be removed (no automatic cleanup happens if your module
is unloaded, you are responsible here). If an error occurs, the function will return the error value (via
ERR_PTR).
If securityfs is not enabled in the kernel, the value -ENODEV is returned.
struct dentry * securityfs_create_dir(const char * name, struct dentry * parent)

create a directory in the securityfs filesystem
Parameters
const char * name a pointer to a string containing the name of the directory to create.

96 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

struct dentry * parent a pointer to the parent dentry for this file. This should be a directory dentry if
set. If this parameter is NULL, then the directory will be created in the root of the securityfs filesystem.

Description
This function creates a directory in securityfs with the given name.
This function returns a pointer to a dentry if it succeeds. This pointer must be passed to the securi-
tyfs_remove() function when the file is to be removed (no automatic cleanup happens if your module
is unloaded, you are responsible here). If an error occurs, the function will return the error value (via
ERR_PTR).
If securityfs is not enabled in the kernel, the value -ENODEV is returned.
struct dentry * securityfs_create_symlink(const char * name, struct dentry * parent, const char

* target, const struct inode_operations * iops)
create a symlink in the securityfs filesystem

Parameters
const char * name a pointer to a string containing the name of the symlink to create.
struct dentry * parent a pointer to the parent dentry for the symlink. This should be a directory

dentry if set. If this parameter is NULL, then the directory will be created in the root of the securityfs
filesystem.

const char * target a pointer to a string containing the name of the symlink’s target. If this pa-
rameter is NULL, then the iops parameter needs to be setup to handle .readlink and .get_link in-
ode_operations.

const struct inode_operations * iops a pointer to the struct inode_operations to use for the sym-
link. If this parameter is NULL, then the default simple_symlink_inode operations will be used.

Description
This function creates a symlink in securityfs with the given name.
This function returns a pointer to a dentry if it succeeds. This pointer must be passed to the securi-
tyfs_remove() function when the file is to be removed (no automatic cleanup happens if your module
is unloaded, you are responsible here). If an error occurs, the function will return the error value (via
ERR_PTR).
If securityfs is not enabled in the kernel, the value -ENODEV is returned.
void securityfs_remove(struct dentry * dentry)

removes a file or directory from the securityfs filesystem
Parameters
struct dentry * dentry a pointer to a the dentry of the file or directory to be removed.
Description
This function removes a file or directory in securityfs that was previously created with a call to another
securityfs function (like securityfs_create_file() or variants thereof.)
This function is required to be called in order for the file to be removed. No automatic cleanup of files will
happen when a module is removed; you are responsible here.

1.1.11 Audit Interfaces

struct audit_buffer * audit_log_start(struct audit_context * ctx, gfp_t gfp_mask, int type)
obtain an audit buffer

Parameters
struct audit_context * ctx audit_context (may be NULL)
gfp_t gfp_mask type of allocation

1.1. The Linux Kernel API 97

The kernel core API manual, Release 4.13.0-rc4+

int type audit message type
Description
Returns audit_buffer pointer on success or NULL on error.
Obtain an audit buffer. This routine does locking to obtain the audit buffer, but then no locking is required
for calls to audit_log_*format. If the task (ctx) is a task that is currently in a syscall, then the syscall is
marked as auditable and an audit record will be written at syscall exit. If there is no associated task, then
task context (ctx) should be NULL.
void audit_log_format(struct audit_buffer * ab, const char * fmt, ...)

format a message into the audit buffer.
Parameters
struct audit_buffer * ab audit_buffer
const char * fmt format string
... optional parameters matching fmt string
Description
All the work is done in audit_log_vformat.
void audit_log_end(struct audit_buffer * ab)

end one audit record
Parameters
struct audit_buffer * ab the audit_buffer
Description
We can not do a netlink send inside an irq context because it blocks (last arg, flags, is not set to
MSG_DONTWAIT), so the audit buffer is placed on a queue and a tasklet is scheduled to remove them
from the queue outside the irq context. May be called in any context.
void audit_log(struct audit_context * ctx, gfp_t gfp_mask, int type, const char * fmt, ...)

Log an audit record
Parameters
struct audit_context * ctx audit context
gfp_t gfp_mask type of allocation
int type audit message type
const char * fmt format string to use
... variable parameters matching the format string
Description
This is a convenience function that calls audit_log_start, audit_log_vformat, and audit_log_end. It may be
called in any context.
void audit_log_secctx(struct audit_buffer * ab, u32 secid)

Converts and logs SELinux context
Parameters
struct audit_buffer * ab audit_buffer
u32 secid security number
Description
This is a helper function that calls security_secid_to_secctx to convert secid to secctx and then adds the
(converted) SELinux context to the audit log by calling audit_log_format, thus also preventing leak of
internal secid to userspace. If secid cannot be converted audit_panic is called.

98 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

int audit_alloc(struct task_struct * tsk)
allocate an audit context block for a task

Parameters
struct task_struct * tsk task
Description
Filter on the task information and allocate a per-task audit context if necessary. Doing so turns on system
call auditing for the specified task. This is called from copy_process, so no lock is needed.
void __audit_free(struct task_struct * tsk)

free a per-task audit context
Parameters
struct task_struct * tsk task whose audit context block to free
Description
Called from copy_process and do_exit
void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, unsigned long a3, un-

signed long a4)
fill in an audit record at syscall entry

Parameters
int major major syscall type (function)
unsigned long a1 additional syscall register 1
unsigned long a2 additional syscall register 2
unsigned long a3 additional syscall register 3
unsigned long a4 additional syscall register 4
Description
Fill in audit context at syscall entry. This only happens if the audit context was created when the task was
created and the state or filters demand the audit context be built. If the state from the per-task filter or
from the per-syscall filter is AUDIT_RECORD_CONTEXT, then the record will be written at syscall exit time
(otherwise, it will only be written if another part of the kernel requests that it be written).
void __audit_syscall_exit(int success, long return_code)

deallocate audit context after a system call
Parameters
int success success value of the syscall
long return_code return value of the syscall
Description
Tear down after system call. If the audit context has been marked as auditable (either because of the
AUDIT_RECORD_CONTEXT state from filtering, or because some other part of the kernel wrote an audit
message), then write out the syscall information. In call cases, free the names stored from getname().
struct filename * __audit_reusename(const __user char * uptr)

fill out filename with info from existing entry
Parameters
const __user char * uptr userland ptr to pathname
Description
Search the audit_names list for the current audit context. If there is an existing entry with a matching
“uptr” then return the filename associated with that audit_name. If not, return NULL.

1.1. The Linux Kernel API 99

The kernel core API manual, Release 4.13.0-rc4+

void __audit_getname(struct filename * name)
add a name to the list

Parameters
struct filename * name name to add
Description
Add a name to the list of audit names for this context. Called from fs/namei.c:getname().
void __audit_inode(struct filename * name, const struct dentry * dentry, unsigned int flags)

store the inode and device from a lookup
Parameters
struct filename * name name being audited
const struct dentry * dentry dentry being audited
unsigned int flags attributes for this particular entry
int auditsc_get_stamp(struct audit_context * ctx, struct timespec64 * t, unsigned int * serial)

get local copies of audit_context values
Parameters
struct audit_context * ctx audit_context for the task
struct timespec64 * t timespec64 to store time recorded in the audit_context
unsigned int * serial serial value that is recorded in the audit_context
Description
Also sets the context as auditable.
int audit_set_loginuid(kuid_t loginuid)

set current task’s audit_context loginuid
Parameters
kuid_t loginuid loginuid value
Description
Returns 0.
Called (set) from fs/proc/base.c::proc_loginuid_write().
void __audit_mq_open(int oflag, umode_t mode, struct mq_attr * attr)

record audit data for a POSIX MQ open
Parameters
int oflag open flag
umode_t mode mode bits
struct mq_attr * attr queue attributes
void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct time-

spec * abs_timeout)
record audit data for a POSIX MQ timed send/receive

Parameters
mqd_t mqdes MQ descriptor
size_t msg_len Message length
unsigned int msg_prio Message priority
const struct timespec * abs_timeout Message timeout in absolute time

100 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

void __audit_mq_notify(mqd_t mqdes, const struct sigevent * notification)
record audit data for a POSIX MQ notify

Parameters
mqd_t mqdes MQ descriptor
const struct sigevent * notification Notification event
void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr * mqstat)

record audit data for a POSIX MQ get/set attribute
Parameters
mqd_t mqdes MQ descriptor
struct mq_attr * mqstat MQ flags
void __audit_ipc_obj(struct kern_ipc_perm * ipcp)

record audit data for ipc object
Parameters
struct kern_ipc_perm * ipcp ipc permissions
void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)

record audit data for new ipc permissions
Parameters
unsigned long qbytes msgq bytes
uid_t uid msgq user id
gid_t gid msgq group id
umode_t mode msgq mode (permissions)
Description
Called only after audit_ipc_obj().
int __audit_socketcall(int nargs, unsigned long * args)

record audit data for sys_socketcall
Parameters
int nargs number of args, which should not be more than AUDITSC_ARGS.
unsigned long * args args array
void __audit_fd_pair(int fd1, int fd2)

record audit data for pipe and socketpair
Parameters
int fd1 the first file descriptor
int fd2 the second file descriptor
int __audit_sockaddr(int len, void * a)

record audit data for sys_bind, sys_connect, sys_sendto
Parameters
int len data length in user space
void * a data address in kernel space
Description
Returns 0 for success or NULL context or < 0 on error.
int audit_signal_info(int sig, struct task_struct * t)

record signal info for shutting down audit subsystem

1.1. The Linux Kernel API 101

The kernel core API manual, Release 4.13.0-rc4+

Parameters
int sig signal value
struct task_struct * t task being signaled
Description
If the audit subsystem is being terminated, record the task (pid) and uid that is doing that.
int __audit_log_bprm_fcaps(struct linux_binprm * bprm, const struct cred * new, const struct cred

* old)
store information about a loading bprm and relevant fcaps

Parameters
struct linux_binprm * bprm pointer to the bprm being processed
const struct cred * new the proposed new credentials
const struct cred * old the old credentials
Description
Simply check if the proc already has the caps given by the file and if not store the priv escalation info for
later auditing at the end of the syscall
-Eric
void __audit_log_capset(const struct cred * new, const struct cred * old)

store information about the arguments to the capset syscall
Parameters
const struct cred * new the new credentials
const struct cred * old the old (current) credentials
Description
Record the arguments userspace sent to sys_capset for later printing by the audit system if applicable
void audit_core_dumps(long signr)

record information about processes that end abnormally
Parameters
long signr signal value
Description
If a process ends with a core dump, something fishy is going on and we should record the event for
investigation.
int audit_rule_change(int type, int seq, void * data, size_t datasz)

apply all rules to the specified message type
Parameters
int type audit message type
int seq netlink audit message sequence (serial) number
void * data payload data
size_t datasz size of payload data
int audit_list_rules_send(struct sk_buff * request_skb, int seq)

list the audit rules
Parameters
struct sk_buff * request_skb skb of request we are replying to (used to target the reply)
int seq netlink audit message sequence (serial) number

102 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

int parent_len(const char * path)
find the length of the parent portion of a pathname

Parameters
const char * path pathname of which to determine length
int audit_compare_dname_path(const char * dname, const char * path, int parentlen)

compare given dentry name with last component in given path. Return of 0 indicates a match.
Parameters
const char * dname dentry name that we’re comparing
const char * path full pathname that we’re comparing
int parentlen length of the parent if known. Passing in AUDIT_NAME_FULL here indicates that we must

compute this value.

1.1.12 Accounting Framework

long sys_acct(const char __user * name)
enable/disable process accounting

Parameters
const char __user * name file name for accounting records or NULL to shutdown accounting
Description
Returns 0 for success or negative errno values for failure.
sys_acct() is the only system call needed to implement process accounting. It takes the name of the
file where accounting records should be written. If the filename is NULL, accounting will be shutdown.
void acct_collect(long exitcode, int group_dead)

collect accounting information into pacct_struct
Parameters
long exitcode task exit code
int group_dead not 0, if this thread is the last one in the process.
void acct_process(void)
Parameters
void no arguments
Description
handles process accounting for an exiting task

1.1.13 Block Devices

void blk_delay_queue(struct request_queue * q, unsigned long msecs)
restart queueing after defined interval

Parameters
struct request_queue * q The struct request_queue in question
unsigned long msecs Delay in msecs
Description

Sometimes queueing needs to be postponed for a little while, to allow resources to come back.
This function will make sure that queueing is restarted around the specified time.

1.1. The Linux Kernel API 103

The kernel core API manual, Release 4.13.0-rc4+

void blk_start_queue_async(struct request_queue * q)
asynchronously restart a previously stopped queue

Parameters
struct request_queue * q The struct request_queue in question
Description

blk_start_queue_async() will clear the stop flag on the queue, and ensure that the request_fn
for the queue is run from an async context.

void blk_start_queue(struct request_queue * q)
restart a previously stopped queue

Parameters
struct request_queue * q The struct request_queue in question
Description

blk_start_queue() will clear the stop flag on the queue, and call the request_fn for the queue
if it was in a stopped state when entered. Also see blk_stop_queue().

void blk_stop_queue(struct request_queue * q)
stop a queue

Parameters
struct request_queue * q The struct request_queue in question
Description

The Linux block layer assumes that a block driver will consume all entries on the request queue
when the request_fn strategy is called. Often this will not happen, because of hardware lim-
itations (queue depth settings). If a device driver gets a ‘queue full’ response, or if it simply
chooses not to queue more I/O at one point, it can call this function to prevent the request_fn
from being called until the driver has signalled it’s ready to go again. This happens by calling
blk_start_queue() to restart queue operations.

void blk_sync_queue(struct request_queue * q)
cancel any pending callbacks on a queue

Parameters
struct request_queue * q the queue
Description

The block layer may perform asynchronous callback activity on a queue, such as calling the
unplug function after a timeout. A block device may call blk_sync_queue to ensure that any
such activity is cancelled, thus allowing it to release resources that the callbacks might use.
The caller must already have made sure that its ->make_request_fn will not re-add plugging
prior to calling this function.
This function does not cancel any asynchronous activity arising out of elevator or throttling
code. That would require elevator_exit() and blkcg_exit_queue() to be called with queue
lock initialized.

void __blk_run_queue_uncond(struct request_queue * q)
run a queue whether or not it has been stopped

Parameters
struct request_queue * q The queue to run
Description

Invoke request handling on a queue if there are any pending requests. May be used to restart
request handling after a request has completed. This variant runs the queue whether or not the

104 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

queue has been stopped. Must be called with the queue lock held and interrupts disabled. See
also blk_run_queue.

void __blk_run_queue(struct request_queue * q)
run a single device queue

Parameters
struct request_queue * q The queue to run
Description

See blk_run_queue.
void blk_run_queue_async(struct request_queue * q)

run a single device queue in workqueue context
Parameters
struct request_queue * q The queue to run
Description

Tells kblockd to perform the equivalent of blk_run_queue on behalf of us.
Note

Since it is not allowed to run q->delay_work after blk_cleanup_queue() has canceled
q->delay_work, callers must hold the queue lock to avoid race conditions between
blk_cleanup_queue() and blk_run_queue_async().

void blk_run_queue(struct request_queue * q)
run a single device queue

Parameters
struct request_queue * q The queue to run
Description

Invoke request handling on this queue, if it has pending work to do. May be used to restart
queueing when a request has completed.

void blk_queue_bypass_start(struct request_queue * q)
enter queue bypass mode

Parameters
struct request_queue * q queue of interest
Description
In bypass mode, only the dispatch FIFO queue of q is used. This function makes q enter bypass mode
and drains all requests which were throttled or issued before. On return, it’s guaranteed that no request
is being throttled or has ELVPRIV set and blk_queue_bypass() true inside queue or RCU read lock.
void blk_queue_bypass_end(struct request_queue * q)

leave queue bypass mode
Parameters
struct request_queue * q queue of interest
Description
Leave bypass mode and restore the normal queueing behavior.
Note
although blk_queue_bypass_start() is only called for blk-sq queues, this function is called for both blk-
sq and blk-mq queues.

1.1. The Linux Kernel API 105

The kernel core API manual, Release 4.13.0-rc4+

void blk_cleanup_queue(struct request_queue * q)
shutdown a request queue

Parameters
struct request_queue * q request queue to shutdown
Description
Mark q DYING, drain all pending requests, mark q DEAD, destroy and put it. All future requests will be
failed immediately with -ENODEV.
struct request_queue * blk_init_queue(request_fn_proc * rfn, spinlock_t * lock)

prepare a request queue for use with a block device
Parameters
request_fn_proc * rfn The function to be called to process requests that have been placed on the

queue.
spinlock_t * lock Request queue spin lock
Description

If a block device wishes to use the standard request handling procedures, which sorts requests
and coalesces adjacent requests, then it must call blk_init_queue(). The function rfn will be
called when there are requests on the queue that need to be processed. If the device supports
plugging, then rfn may not be called immediately when requests are available on the queue,
but may be called at some time later instead. Plugged queues are generally unplugged when a
buffer belonging to one of the requests on the queue is needed, or due to memory pressure.
rfn is not required, or even expected, to remove all requests off the queue, but only as many
as it can handle at a time. If it does leave requests on the queue, it is responsible for arranging
that the requests get dealt with eventually.
The queue spin lock must be held while manipulating the requests on the request queue; this
lock will be taken also from interrupt context, so irq disabling is needed for it.
Function returns a pointer to the initialized request queue, or NULL if it didn’t succeed.

Note
blk_init_queue() must be paired with a blk_cleanup_queue() call when the block device is
deactivated (such as at module unload).

void blk_requeue_request(struct request_queue * q, struct request * rq)
put a request back on queue

Parameters
struct request_queue * q request queue where request should be inserted
struct request * rq request to be inserted
Description

Drivers often keep queueing requests until the hardware cannot accept more, when that con-
dition happens we need to put the request back on the queue. Must be called with queue lock
held.

void part_round_stats(int cpu, struct hd_struct * part)
Round off the performance stats on a struct disk_stats.

Parameters
int cpu cpu number for stats access
struct hd_struct * part target partition

106 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
The average IO queue length and utilisation statistics are maintained by observing the current state of
the queue length and the amount of time it has been in this state for.
Normally, that accounting is done on IO completion, but that can result in more than a second’s worth
of IO being accounted for within any one second, leading to >100% utilisation. To deal with that, we call
this function to do a round-off before returning the results when reading /proc/diskstats. This accounts
immediately for all queue usage up to the current jiffies and restarts the counters again.
blk_qc_t generic_make_request(struct bio * bio)

hand a buffer to its device driver for I/O
Parameters
struct bio * bio The bio describing the location in memory and on the device.
Description
generic_make_request() is used to make I/O requests of block devices. It is passed a struct bio, which
describes the I/O that needs to be done.
generic_make_request() does not return any status. The success/failure status of the request, along
with notification of completion, is delivered asynchronously through the bio->bi_end_io function described
(one day) else where.
The caller of generic_make_request must make sure that bi_io_vec are set to describe the memory buffer,
and that bi_dev and bi_sector are set to describe the device address, and the bi_end_io and optionally
bi_private are set to describe how completion notification should be signaled.
generic_make_request and the drivers it calls may use bi_next if this bio happens to be merged with some-
one else, and may resubmit the bio to a lower device by calling into generic_make_request recursively,
which means the bio should NOT be touched after the call to ->make_request_fn.
blk_qc_t submit_bio(struct bio * bio)

submit a bio to the block device layer for I/O
Parameters
struct bio * bio The struct bio which describes the I/O
Description
submit_bio() is very similar in purpose to generic_make_request(), and uses that function to do most
of the work. Both are fairly rough interfaces; bio must be presetup and ready for I/O.
blk_status_t blk_insert_cloned_request(struct request_queue * q, struct request * rq)

Helper for stacking drivers to submit a request
Parameters
struct request_queue * q the queue to submit the request
struct request * rq the request being queued
unsigned int blk_rq_err_bytes(const struct request * rq)

determine number of bytes till the next failure boundary
Parameters
const struct request * rq request to examine
Description

A request could be merge of IOs which require different failure handling. This function de-
termines the number of bytes which can be failed from the beginning of the request without
crossing into area which need to be retried further.

Return
The number of bytes to fail.

1.1. The Linux Kernel API 107

The kernel core API manual, Release 4.13.0-rc4+

struct request * blk_peek_request(struct request_queue * q)
peek at the top of a request queue

Parameters
struct request_queue * q request queue to peek at
Description

Return the request at the top of q. The returned request should be started using
blk_start_request() before LLD starts processing it.

Return
Pointer to the request at the top of q if available. Null otherwise.

void blk_start_request(struct request * req)
start request processing on the driver

Parameters
struct request * req request to dequeue
Description

Dequeue req and start timeout timer on it. This hands off the request to the driver.
Block internal functions which don’t want to start timer should call blk_dequeue_request().

struct request * blk_fetch_request(struct request_queue * q)
fetch a request from a request queue

Parameters
struct request_queue * q request queue to fetch a request from
Description

Return the request at the top of q. The request is started on return and LLD can start processing
it immediately.

Return
Pointer to the request at the top of q if available. Null otherwise.

bool blk_update_request(struct request * req, blk_status_t error, unsigned int nr_bytes)
Special helper function for request stacking drivers

Parameters
struct request * req the request being processed
blk_status_t error block status code
unsigned int nr_bytes number of bytes to complete req
Description

Ends I/O on a number of bytes attached to req, but doesn’t complete the request structure even
if req doesn’t have leftover. If req has leftover, sets it up for the next range of segments.
This special helper function is only for request stacking drivers (e.g. request-based dm) so that
they can handle partial completion. Actual device drivers should use blk_end_request instead.
Passing the result of blk_rq_bytes() as nr_bytes guarantees false return from this function.

Return
false - this request doesn’t have any more data true - this request has more data

void blk_unprep_request(struct request * req)
unprepare a request

Parameters

108 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

struct request * req the request
Description
This function makes a request ready for complete resubmission (or completion). It happens only after all
error handling is complete, so represents the appropriate moment to deallocate any resources that were
allocated to the request in the prep_rq_fn. The queue lock is held when calling this.
bool blk_end_request(struct request * rq, blk_status_t error, unsigned int nr_bytes)

Helper function for drivers to complete the request.
Parameters
struct request * rq the request being processed
blk_status_t error block status code
unsigned int nr_bytes number of bytes to complete
Description

Ends I/O on a number of bytes attached to rq. If rq has leftover, sets it up for the next range of
segments.

Return
false - we are done with this request true - still buffers pending for this request

void blk_end_request_all(struct request * rq, blk_status_t error)
Helper function for drives to finish the request.

Parameters
struct request * rq the request to finish
blk_status_t error block status code
Description

Completely finish rq.
bool __blk_end_request(struct request * rq, blk_status_t error, unsigned int nr_bytes)

Helper function for drivers to complete the request.
Parameters
struct request * rq the request being processed
blk_status_t error block status code
unsigned int nr_bytes number of bytes to complete
Description

Must be called with queue lock held unlike blk_end_request().
Return

false - we are done with this request true - still buffers pending for this request
void __blk_end_request_all(struct request * rq, blk_status_t error)

Helper function for drives to finish the request.
Parameters
struct request * rq the request to finish
blk_status_t error block status code
Description

Completely finish rq. Must be called with queue lock held.
bool __blk_end_request_cur(struct request * rq, blk_status_t error)

Helper function to finish the current request chunk.

1.1. The Linux Kernel API 109

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct request * rq the request to finish the current chunk for
blk_status_t error block status code
Description

Complete the current consecutively mapped chunk from rq. Must be called with queue lock
held.

Return
false - we are done with this request true - still buffers pending for this request

void rq_flush_dcache_pages(struct request * rq)
Helper function to flush all pages in a request

Parameters
struct request * rq the request to be flushed
Description

Flush all pages in rq.
int blk_lld_busy(struct request_queue * q)

Check if underlying low-level drivers of a device are busy
Parameters
struct request_queue * q the queue of the device being checked
Description

Check if underlying low-level drivers of a device are busy. If the drivers want to export their
busy state, they must set own exporting function using blk_queue_lld_busy() first.
Basically, this function is used only by request stacking drivers to stop dispatching requests to
underlying devices when underlying devices are busy. This behavior helps more I/O merging on
the queue of the request stacking driver and prevents I/O throughput regression on burst I/O
load.

Return
0 - Not busy (The request stacking driver should dispatch request) 1 - Busy (The request stacking
driver should stop dispatching request)

void blk_rq_unprep_clone(struct request * rq)
Helper function to free all bios in a cloned request

Parameters
struct request * rq the clone request to be cleaned up
Description

Free all bios in rq for a cloned request.
int blk_rq_prep_clone(struct request * rq, struct request * rq_src, struct bio_set * bs,

gfp_t gfp_mask, int (*bio_ctr) (struct bio *, struct bio *, void *, void
* data)

Helper function to setup clone request
Parameters
struct request * rq the request to be setup
struct request * rq_src original request to be cloned
struct bio_set * bs bio_set that bios for clone are allocated from
gfp_t gfp_mask memory allocation mask for bio

110 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

int (*)(struct bio *,struct bio *,void *) bio_ctr setup function to be called for each clone bio.
Returns 0 for success, non 0 for failure.

void * data private data to be passed to bio_ctr
Description

Clones bios in rq_src to rq, and copies attributes of rq_src to rq. The actual data parts of rq_src
(e.g. ->cmd, ->sense) are not copied, and copying such parts is the caller’s responsibility. Also,
pages which the original bios are pointing to are not copied and the cloned bios just point same
pages. So cloned bios must be completed before original bios, which means the caller must
complete rq before rq_src.

void blk_start_plug(struct blk_plug * plug)
initialize blk_plug and track it inside the task_struct

Parameters
struct blk_plug * plug The struct blk_plug that needs to be initialized
Description

Tracking blk_plug inside the task_struct will help with auto-flushing the pending I/O should the
task end up blocking between blk_start_plug() and blk_finish_plug(). This is important
from a performance perspective, but also ensures that we don’t deadlock. For instance, if the
task is blocking for a memory allocation, memory reclaim could end up wanting to free a page
belonging to that request that is currently residing in our private plug. By flushing the pending
I/O when the process goes to sleep, we avoid this kind of deadlock.

void blk_pm_runtime_init(struct request_queue * q, struct device * dev)
Block layer runtime PM initialization routine

Parameters
struct request_queue * q the queue of the device
struct device * dev the device the queue belongs to
Description

Initialize runtime-PM-related fields for q and start auto suspend for dev. Drivers that want
to take advantage of request-based runtime PM should call this function after dev has been
initialized, and its request queue q has been allocated, and runtime PM for it can not happen
yet(either due to disabled/forbidden or its usage_count > 0). In most cases, driver should call
this function before any I/O has taken place.
This function takes care of setting up using auto suspend for the device, the autosuspend delay
is set to -1 to make runtime suspend impossible until an updated value is either set by user or
by driver. Drivers do not need to touch other autosuspend settings.
The block layer runtime PM is request based, so only works for drivers that use request as their
IO unit instead of those directly use bio’s.

int blk_pre_runtime_suspend(struct request_queue * q)
Pre runtime suspend check

Parameters
struct request_queue * q the queue of the device
Description

This function will check if runtime suspend is allowed for the device by examining if there are
any requests pending in the queue. If there are requests pending, the device can not be runtime
suspended; otherwise, the queue’s status will be updated to SUSPENDING and the driver can
proceed to suspend the device.
For the not allowed case, we mark last busy for the device so that runtime PM core will try to
autosuspend it some time later.

1.1. The Linux Kernel API 111

The kernel core API manual, Release 4.13.0-rc4+

This function should be called near the start of the device’s runtime_suspend callback.
Return

0 - OK to runtime suspend the device -EBUSY - Device should not be runtime suspended
void blk_post_runtime_suspend(struct request_queue * q, int err)

Post runtime suspend processing
Parameters
struct request_queue * q the queue of the device
int err return value of the device’s runtime_suspend function
Description

Update the queue’s runtime status according to the return value of the device’s runtime suspend
function and mark last busy for the device so that PM core will try to auto suspend the device
at a later time.
This function should be called near the end of the device’s runtime_suspend callback.

void blk_pre_runtime_resume(struct request_queue * q)
Pre runtime resume processing

Parameters
struct request_queue * q the queue of the device
Description

Update the queue’s runtime status to RESUMING in preparation for the runtime resume of the
device.
This function should be called near the start of the device’s runtime_resume callback.

void blk_post_runtime_resume(struct request_queue * q, int err)
Post runtime resume processing

Parameters
struct request_queue * q the queue of the device
int err return value of the device’s runtime_resume function
Description

Update the queue’s runtime status according to the return value of the device’s runtime_resume
function. If it is successfully resumed, process the requests that are queued into the device’s
queue when it is resuming and then mark last busy and initiate autosuspend for it.
This function should be called near the end of the device’s runtime_resume callback.

void blk_set_runtime_active(struct request_queue * q)
Force runtime status of the queue to be active

Parameters
struct request_queue * q the queue of the device
Description
If the device is left runtime suspended during system suspend the resume hook typically resumes the
device and corrects runtime status accordingly. However, that does not affect the queue runtime PM
status which is still “suspended”. This prevents processing requests from the queue.
This function can be used in driver’s resume hook to correct queue runtime PM status and re-enable
peeking requests from the queue. It should be called before first request is added to the queue.
void __blk_drain_queue(struct request_queue * q, bool drain_all)

drain requests from request_queue

112 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct request_queue * q queue to drain
bool drain_all whether to drain all requests or only the ones w/ ELVPRIV
Description
Drain requests from q. If drain_all is set, all requests are drained. If not, only ELVPRIV requests are
drained. The caller is responsible for ensuring that no new requests which need to be drained are queued.

struct request * __get_request(struct request_list * rl, unsigned int op, struct bio * bio,
gfp_t gfp_mask)

get a free request
Parameters
struct request_list * rl request list to allocate from
unsigned int op operation and flags
struct bio * bio bio to allocate request for (can be NULL)
gfp_t gfp_mask allocation mask
Description
Get a free request from q. This function may fail under memory pressure or if q is dead.
Must be called with q->queue_lock held and, Returns ERR_PTR on failure, with q->queue_lock held. Re-
turns request pointer on success, with q->queue_lock not held.
struct request * get_request(struct request_queue * q, unsigned int op, struct bio * bio,

gfp_t gfp_mask)
get a free request

Parameters
struct request_queue * q request_queue to allocate request from
unsigned int op operation and flags
struct bio * bio bio to allocate request for (can be NULL)
gfp_t gfp_mask allocation mask
Description
Get a free request from q. If __GFP_DIRECT_RECLAIM is set in gfp_mask, this function keeps retrying
under memory pressure and fails iff q is dead.
Must be called with q->queue_lock held and, Returns ERR_PTR on failure, with q->queue_lock held. Re-
turns request pointer on success, with q->queue_lock not held.
bool blk_attempt_plug_merge(struct request_queue * q, struct bio * bio, unsigned int * re-

quest_count, struct request ** same_queue_rq)
try to merge with current‘s plugged list

Parameters
struct request_queue * q request_queue new bio is being queued at
struct bio * bio new bio being queued
unsigned int * request_count out parameter for number of traversed plugged requests
struct request ** same_queue_rq pointer to struct request that gets filled in when another request

associated with q is found on the plug list (optional, may be NULL)

1.1. The Linux Kernel API 113

The kernel core API manual, Release 4.13.0-rc4+

Description
Determine whether bio being queued on q can be merged with a request on current‘s plugged list.
Returns true if merge was successful, otherwise false.
Plugging coalesces IOs from the same issuer for the same purpose without going through q->queue_lock.
As such it’s more of an issuing mechanism than scheduling, and the request, while may have elvpriv data,
is not added on the elevator at this point. In addition, we don’t have reliable access to the elevator outside
queue lock. Only check basic merging parameters without querying the elevator.
Caller must ensure !blk_queue_nomerges(q) beforehand.
int blk_cloned_rq_check_limits(struct request_queue * q, struct request * rq)

Helper function to check a cloned request for new the queue limits
Parameters
struct request_queue * q the queue
struct request * rq the request being checked
Description

rqmay have been made based on weaker limitations of upper-level queues in request stacking
drivers, and it may violate the limitation of q. Since the block layer and the underlying device
driver trust rq after it is inserted to q, it should be checked against q before the insertion using
this generic function.
Request stacking drivers like request-based dm may change the queue limits when retrying
requests on other queues. Those requests need to be checked against the new queue limits
again during dispatch.

bool blk_end_bidi_request(struct request * rq, blk_status_t error, unsigned int nr_bytes, unsigned
int bidi_bytes)

Complete a bidi request
Parameters
struct request * rq the request to complete
blk_status_t error block status code
unsigned int nr_bytes number of bytes to complete rq
unsigned int bidi_bytes number of bytes to complete rq->next_rq
Description

Ends I/O on a number of bytes attached to rq and rq->next_rq. Drivers that supports bidi can
safely call this member for any type of request, bidi or uni. In the later case bidi_bytes is just
ignored.

Return
false - we are done with this request true - still buffers pending for this request

bool __blk_end_bidi_request(struct request * rq, blk_status_t error, unsigned int nr_bytes, un-
signed int bidi_bytes)

Complete a bidi request with queue lock held
Parameters
struct request * rq the request to complete
blk_status_t error block status code
unsigned int nr_bytes number of bytes to complete rq
unsigned int bidi_bytes number of bytes to complete rq->next_rq
Description

114 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Identical to blk_end_bidi_request() except that queue lock is assumed to be locked on entry
and remains so on return.

Return
false - we are done with this request true - still buffers pending for this request

int blk_rq_map_user_iov(struct request_queue * q, struct request * rq, struct rq_map_data
* map_data, const struct iov_iter * iter, gfp_t gfp_mask)

map user data to a request, for passthrough requests
Parameters
struct request_queue * q request queue where request should be inserted
struct request * rq request to map data to
struct rq_map_data * map_data pointer to the rq_map_data holding pages (if necessary)
const struct iov_iter * iter iovec iterator
gfp_t gfp_mask memory allocation flags
Description

Data will be mapped directly for zero copy I/O, if possible. Otherwise a kernel bounce buffer is
used.
Amatching blk_rq_unmap_user()must be issued at the end of I/O, while still in process context.

Note
The mapped bio may need to be bounced through blk_queue_bounce() before being submitted

to the device, as pages mapped may be out of reach. It’s the callers responsibility to make sure
this happens. The original bio must be passed back in to blk_rq_unmap_user() for proper unmap-
ping.

int blk_rq_unmap_user(struct bio * bio)
unmap a request with user data

Parameters
struct bio * bio start of bio list
Description

Unmap a rq previously mapped by blk_rq_map_user(). The caller must supply the original rq-
>bio from the blk_rq_map_user() return, since the I/O completion may have changed rq->bio.

int blk_rq_map_kern(struct request_queue * q, struct request * rq, void * kbuf, unsigned int len,
gfp_t gfp_mask)

map kernel data to a request, for passthrough requests
Parameters
struct request_queue * q request queue where request should be inserted
struct request * rq request to fill
void * kbuf the kernel buffer
unsigned int len length of user data
gfp_t gfp_mask memory allocation flags
Description

Data will be mapped directly if possible. Otherwise a bounce buffer is used. Can be called
multiple times to append multiple buffers.

void __blk_release_queue(struct work_struct * work)
release a request queue when it is no longer needed

1.1. The Linux Kernel API 115

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct work_struct * work pointer to the release_work member of the request queue to be released
Description

blk_release_queue is the counterpart of blk_init_queue(). It should be called when a request
queue is being released; typically when a block device is being de-registered. Its primary task
it to free the queue itself.

Notes
The low level driver must have finished any outstanding requests first via
blk_cleanup_queue().
Although blk_release_queue() may be called with preemption disabled,
__blk_release_queue() may sleep.

void blk_queue_prep_rq(struct request_queue * q, prep_rq_fn * pfn)
set a prepare_request function for queue

Parameters
struct request_queue * q queue
prep_rq_fn * pfn prepare_request function
Description
It’s possible for a queue to register a prepare_request callback which is invoked before the request is
handed to the request_fn. The goal of the function is to prepare a request for I/O, it can be used to build
a cdb from the request data for instance.
void blk_queue_unprep_rq(struct request_queue * q, unprep_rq_fn * ufn)

set an unprepare_request function for queue
Parameters
struct request_queue * q queue
unprep_rq_fn * ufn unprepare_request function
Description
It’s possible for a queue to register an unprepare_request callback which is invoked before the request
is finally completed. The goal of the function is to deallocate any data that was allocated in the pre-
pare_request callback.
void blk_set_default_limits(struct queue_limits * lim)

reset limits to default values
Parameters
struct queue_limits * lim the queue_limits structure to reset
Description

Returns a queue_limit struct to its default state.
void blk_set_stacking_limits(struct queue_limits * lim)

set default limits for stacking devices
Parameters
struct queue_limits * lim the queue_limits structure to reset
Description

Returns a queue_limit struct to its default state. Should be used by stacking drivers like DM that
have no internal limits.

void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
define an alternate make_request function for a device

116 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct request_queue * q the request queue for the device to be affected
make_request_fn * mfn the alternate make_request function
Description

The normal way for struct bios to be passed to a device driver is for them to be collected
into requests on a request queue, and then to allow the device driver to select requests off
that queue when it is ready. This works well for many block devices. However some block
devices (typically virtual devices such as md or lvm) do not benefit from the processing on the
request queue, and are served best by having the requests passed directly to them. This can
be achieved by providing a function to blk_queue_make_request().

Caveat: The driver that does this must be able to deal appropriately with buffers in “highmemory”. This
can be accomplished by either calling __bio_kmap_atomic() to get a temporary kernel mapping, or
by calling blk_queue_bounce() to create a buffer in normal memory.

void blk_queue_bounce_limit(struct request_queue * q, u64 max_addr)
set bounce buffer limit for queue

Parameters
struct request_queue * q the request queue for the device
u64 max_addr the maximum address the device can handle
Description

Different hardware can have different requirements as to what pages it can do I/O directly to.
A low level driver can call blk_queue_bounce_limit to have lower memory pages allocated as
bounce buffers for doing I/O to pages residing above max_addr.

void blk_queue_max_hw_sectors(struct request_queue * q, unsigned int max_hw_sectors)
set max sectors for a request for this queue

Parameters
struct request_queue * q the request queue for the device
unsigned int max_hw_sectors max hardware sectors in the usual 512b unit
Description

Enables a low level driver to set a hard upper limit, max_hw_sectors, on the size of requests.
max_hw_sectors is set by the device driver based upon the capabilities of the I/O controller.
max_dev_sectors is a hard limit imposed by the storage device for READ/WRITE requests. It is
set by the disk driver.
max_sectors is a soft limit imposed by the block layer for filesystem type requests. This value
can be overridden on a per-device basis in /sys/block/<device>/queue/max_sectors_kb. The
soft limit can not exceed max_hw_sectors.

void blk_queue_chunk_sectors(struct request_queue * q, unsigned int chunk_sectors)
set size of the chunk for this queue

Parameters
struct request_queue * q the request queue for the device
unsigned int chunk_sectors chunk sectors in the usual 512b unit
Description

If a driver doesn’t want IOs to cross a given chunk size, it can set this limit and prevent merging
across chunks. Note that the chunk size must currently be a power-of-2 in sectors. Also note
that the block layer must accept a page worth of data at any offset. So if the crossing of chunks
is a hard limitation in the driver, it must still be prepared to split single page bios.

1.1. The Linux Kernel API 117

The kernel core API manual, Release 4.13.0-rc4+

void blk_queue_max_discard_sectors(struct request_queue * q, unsigned
int max_discard_sectors)

set max sectors for a single discard
Parameters
struct request_queue * q the request queue for the device
unsigned int max_discard_sectors maximum number of sectors to discard
void blk_queue_max_write_same_sectors(struct request_queue * q, unsigned

int max_write_same_sectors)
set max sectors for a single write same

Parameters
struct request_queue * q the request queue for the device
unsigned int max_write_same_sectors maximum number of sectors to write per command
void blk_queue_max_write_zeroes_sectors(struct request_queue * q, unsigned

int max_write_zeroes_sectors)
set max sectors for a single write zeroes

Parameters
struct request_queue * q the request queue for the device
unsigned int max_write_zeroes_sectors maximum number of sectors to write per command
void blk_queue_max_segments(struct request_queue * q, unsigned short max_segments)

set max hw segments for a request for this queue
Parameters
struct request_queue * q the request queue for the device
unsigned short max_segments max number of segments
Description

Enables a low level driver to set an upper limit on the number of hw data segments in a request.
void blk_queue_max_discard_segments(struct request_queue * q, unsigned short max_segments)

set max segments for discard requests
Parameters
struct request_queue * q the request queue for the device
unsigned short max_segments max number of segments
Description

Enables a low level driver to set an upper limit on the number of segments in a discard request.
void blk_queue_max_segment_size(struct request_queue * q, unsigned int max_size)

set max segment size for blk_rq_map_sg
Parameters
struct request_queue * q the request queue for the device
unsigned int max_size max size of segment in bytes
Description

Enables a low level driver to set an upper limit on the size of a coalesced segment
void blk_queue_logical_block_size(struct request_queue * q, unsigned short size)

set logical block size for the queue
Parameters

118 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

struct request_queue * q the request queue for the device
unsigned short size the logical block size, in bytes
Description

This should be set to the lowest possible block size that the storage device can address. The
default of 512 covers most hardware.

void blk_queue_physical_block_size(struct request_queue * q, unsigned int size)
set physical block size for the queue

Parameters
struct request_queue * q the request queue for the device
unsigned int size the physical block size, in bytes
Description

This should be set to the lowest possible sector size that the hardware can operate on without
reverting to read-modify-write operations.

void blk_queue_alignment_offset(struct request_queue * q, unsigned int offset)
set physical block alignment offset

Parameters
struct request_queue * q the request queue for the device
unsigned int offset alignment offset in bytes
Description

Some devices are naturally misaligned to compensate for things like the legacy DOS partition
table 63-sector offset. Low-level drivers should call this function for devices whose first sector
is not naturally aligned.

void blk_limits_io_min(struct queue_limits * limits, unsigned int min)
set minimum request size for a device

Parameters
struct queue_limits * limits the queue limits
unsigned int min smallest I/O size in bytes
Description

Some devices have an internal block size bigger than the reported hardware sector size. This
function can be used to signal the smallest I/O the device can perform without incurring a per-
formance penalty.

void blk_queue_io_min(struct request_queue * q, unsigned int min)
set minimum request size for the queue

Parameters
struct request_queue * q the request queue for the device
unsigned int min smallest I/O size in bytes
Description

Storage devices may report a granularity or preferred minimum I/O size which is the smallest
request the device can perform without incurring a performance penalty. For disk drives this is
often the physical block size. For RAID arrays it is often the stripe chunk size. A properly aligned
multiple of minimum_io_size is the preferred request size for workloads where a high number
of I/O operations is desired.

void blk_limits_io_opt(struct queue_limits * limits, unsigned int opt)
set optimal request size for a device

1.1. The Linux Kernel API 119

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct queue_limits * limits the queue limits
unsigned int opt smallest I/O size in bytes
Description

Storage devices may report an optimal I/O size, which is the device’s preferred unit for sustained
I/O. This is rarely reported for disk drives. For RAID arrays it is usually the stripe width or the
internal track size. A properly aligned multiple of optimal_io_size is the preferred request size
for workloads where sustained throughput is desired.

void blk_queue_io_opt(struct request_queue * q, unsigned int opt)
set optimal request size for the queue

Parameters
struct request_queue * q the request queue for the device
unsigned int opt optimal request size in bytes
Description

Storage devices may report an optimal I/O size, which is the device’s preferred unit for sustained
I/O. This is rarely reported for disk drives. For RAID arrays it is usually the stripe width or the
internal track size. A properly aligned multiple of optimal_io_size is the preferred request size
for workloads where sustained throughput is desired.

void blk_queue_stack_limits(struct request_queue * t, struct request_queue * b)
inherit underlying queue limits for stacked drivers

Parameters
struct request_queue * t the stacking driver (top)
struct request_queue * b the underlying device (bottom)
int blk_stack_limits(struct queue_limits * t, struct queue_limits * b, sector_t start)

adjust queue_limits for stacked devices
Parameters
struct queue_limits * t the stacking driver limits (top device)
struct queue_limits * b the underlying queue limits (bottom, component device)
sector_t start first data sector within component device
Description

This function is used by stacking drivers like MD and DM to ensure that all component devices
have compatible block sizes and alignments. The stacking driver must provide a queue_limits
struct (top) and then iteratively call the stacking function for all component (bottom) devices.
The stacking function will attempt to combine the values and ensure proper alignment.
Returns 0 if the top and bottom queue_limits are compatible. The top device’s block sizes and
alignment offsets may be adjusted to ensure alignment with the bottom device. If no compat-
ible sizes and alignments exist, -1 is returned and the resulting top queue_limits will have the
misaligned flag set to indicate that the alignment_offset is undefined.

int bdev_stack_limits(struct queue_limits * t, struct block_device * bdev, sector_t start)
adjust queue limits for stacked drivers

Parameters
struct queue_limits * t the stacking driver limits (top device)
struct block_device * bdev the component block_device (bottom)
sector_t start first data sector within component device

120 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
Merges queue limits for a top device and a block_device. Returns 0 if alignment didn’t change.
Returns -1 if adding the bottom device caused misalignment.

void disk_stack_limits(struct gendisk * disk, struct block_device * bdev, sector_t offset)
adjust queue limits for stacked drivers

Parameters
struct gendisk * disk MD/DM gendisk (top)
struct block_device * bdev the underlying block device (bottom)
sector_t offset offset to beginning of data within component device
Description

Merges the limits for a top level gendisk and a bottom level block_device.
void blk_queue_dma_pad(struct request_queue * q, unsigned int mask)

set pad mask
Parameters
struct request_queue * q the request queue for the device
unsigned int mask pad mask
Description
Set dma pad mask.
Appending pad buffer to a request modifies the last entry of a scatter list such that it includes the pad
buffer.
void blk_queue_update_dma_pad(struct request_queue * q, unsigned int mask)

update pad mask
Parameters
struct request_queue * q the request queue for the device
unsigned int mask pad mask
Description
Update dma pad mask.
Appending pad buffer to a request modifies the last entry of a scatter list such that it includes the pad
buffer.
int blk_queue_dma_drain(struct request_queue * q, dma_drain_needed_fn * dma_drain_needed,

void * buf, unsigned int size)
Set up a drain buffer for excess dma.

Parameters
struct request_queue * q the request queue for the device
dma_drain_needed_fn * dma_drain_needed fn which returns non-zero if drain is necessary
void * buf physically contiguous buffer
unsigned int size size of the buffer in bytes
Description
Some devices have excess DMA problems and can’t simply discard (or zero fill) the unwanted piece of
the transfer. They have to have a real area of memory to transfer it into. The use case for this is ATAPI
devices in DMA mode. If the packet command causes a transfer bigger than the transfer size some HBAs
will lock up if there aren’t DMA elements to contain the excess transfer. What this API does is adjust the
queue so that the buf is always appended silently to the scatterlist.

1.1. The Linux Kernel API 121

The kernel core API manual, Release 4.13.0-rc4+

Note
This routine adjusts max_hw_segments to make room for appending the drain buffer. If you call
blk_queue_max_segments() after calling this routine, youmust set the limit to one fewer than your device
can support otherwise there won’t be room for the drain buffer.
void blk_queue_segment_boundary(struct request_queue * q, unsigned long mask)

set boundary rules for segment merging
Parameters
struct request_queue * q the request queue for the device
unsigned long mask the memory boundary mask
void blk_queue_virt_boundary(struct request_queue * q, unsigned long mask)

set boundary rules for bio merging
Parameters
struct request_queue * q the request queue for the device
unsigned long mask the memory boundary mask
void blk_queue_dma_alignment(struct request_queue * q, int mask)

set dma length and memory alignment
Parameters
struct request_queue * q the request queue for the device
int mask alignment mask
Description

set required memory and length alignment for direct dma transactions. this is used when build-
ing direct io requests for the queue.

void blk_queue_update_dma_alignment(struct request_queue * q, int mask)
update dma length and memory alignment

Parameters
struct request_queue * q the request queue for the device
int mask alignment mask
Description

update required memory and length alignment for direct dma transactions. If the requested
alignment is larger than the current alignment, then the current queue alignment is updated to
the new value, otherwise it is left alone. The design of this is to allow multiple objects (driver,
device, transport etc) to set their respective alignments without having them interfere.

void blk_set_queue_depth(struct request_queue * q, unsigned int depth)
tell the block layer about the device queue depth

Parameters
struct request_queue * q the request queue for the device
unsigned int depth queue depth
void blk_queue_write_cache(struct request_queue * q, bool wc, bool fua)

configure queue’s write cache
Parameters
struct request_queue * q the request queue for the device
bool wc write back cache on or off
bool fua device supports FUA writes, if true

122 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
Tell the block layer about the write cache of q.
void blk_execute_rq_nowait(struct request_queue * q, struct gendisk * bd_disk, struct request

* rq, int at_head, rq_end_io_fn * done)
insert a request into queue for execution

Parameters
struct request_queue * q queue to insert the request in
struct gendisk * bd_disk matching gendisk
struct request * rq request to insert
int at_head insert request at head or tail of queue
rq_end_io_fn * done I/O completion handler
Description

Insert a fully prepared request at the back of the I/O scheduler queue for execution. Don’t wait
for completion.

Note
This function will invoke done directly if the queue is dead.

void blk_execute_rq(struct request_queue * q, struct gendisk * bd_disk, struct request * rq,
int at_head)

insert a request into queue for execution
Parameters
struct request_queue * q queue to insert the request in
struct gendisk * bd_disk matching gendisk
struct request * rq request to insert
int at_head insert request at head or tail of queue
Description

Insert a fully prepared request at the back of the I/O scheduler queue for execution and wait for
completion.

int blkdev_issue_flush(struct block_device * bdev, gfp_t gfp_mask, sector_t * error_sector)
queue a flush

Parameters
struct block_device * bdev blockdev to issue flush for
gfp_t gfp_mask memory allocation flags (for bio_alloc)
sector_t * error_sector error sector
Description

Issue a flush for the block device in question. Caller can supply room for storing the error offset
in case of a flush error, if they wish to.

int blkdev_issue_discard(struct block_device * bdev, sector_t sector, sector_t nr_sects,
gfp_t gfp_mask, unsigned long flags)

queue a discard
Parameters
struct block_device * bdev blockdev to issue discard for
sector_t sector start sector

1.1. The Linux Kernel API 123

The kernel core API manual, Release 4.13.0-rc4+

sector_t nr_sects number of sectors to discard
gfp_t gfp_mask memory allocation flags (for bio_alloc)
unsigned long flags BLKDEV_DISCARD_* flags to control behaviour
Description

Issue a discard request for the sectors in question.
int blkdev_issue_write_same(struct block_device * bdev, sector_t sector, sector_t nr_sects,

gfp_t gfp_mask, struct page * page)
queue a write same operation

Parameters
struct block_device * bdev target blockdev
sector_t sector start sector
sector_t nr_sects number of sectors to write
gfp_t gfp_mask memory allocation flags (for bio_alloc)
struct page * page page containing data
Description

Issue a write same request for the sectors in question.
int __blkdev_issue_zeroout(struct block_device * bdev, sector_t sector, sector_t nr_sects,

gfp_t gfp_mask, struct bio ** biop, unsigned flags)
generate number of zero filed write bios

Parameters
struct block_device * bdev blockdev to issue
sector_t sector start sector
sector_t nr_sects number of sectors to write
gfp_t gfp_mask memory allocation flags (for bio_alloc)
struct bio ** biop pointer to anchor bio
unsigned flags controls detailed behavior
Description

Zero-fill a block range, either using hardware offload or by explicitly writing zeroes to the device.
Note that this function may fail with -EOPNOTSUPP if the driver signals zeroing offload support,
but the device fails to process the command (for some devices there is no non-destructive way
to verify whether this operation is actually supported). In this case the caller should call retry
the call to blkdev_issue_zeroout() and the fallback path will be used.
If a device is using logical block provisioning, the underlying space will not be released if flags
contains BLKDEV_ZERO_NOUNMAP.
If flags contains BLKDEV_ZERO_NOFALLBACK, the function will return -EOPNOTSUPP if no ex-
plicit hardware offload for zeroing is provided.

int blkdev_issue_zeroout(struct block_device * bdev, sector_t sector, sector_t nr_sects,
gfp_t gfp_mask, unsigned flags)

zero-fill a block range
Parameters
struct block_device * bdev blockdev to write
sector_t sector start sector
sector_t nr_sects number of sectors to write

124 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

gfp_t gfp_mask memory allocation flags (for bio_alloc)
unsigned flags controls detailed behavior
Description

Zero-fill a block range, either using hardware offload or by explicitly writing zeroes to the device.
See __blkdev_issue_zeroout() for the valid values for flags.

struct request * blk_queue_find_tag(struct request_queue * q, int tag)
find a request by its tag and queue

Parameters
struct request_queue * q The request queue for the device
int tag The tag of the request
Notes

Should be used when a device returns a tag and you want to match it with a request.
no locks need be held.

void blk_free_tags(struct blk_queue_tag * bqt)
release a given set of tag maintenance info

Parameters
struct blk_queue_tag * bqt the tag map to free
Description
Drop the reference count on bqt and frees it when the last reference is dropped.
void blk_queue_free_tags(struct request_queue * q)

release tag maintenance info
Parameters
struct request_queue * q the request queue for the device
Notes

This is used to disable tagged queuing to a device, yet leave queue in function.
struct blk_queue_tag * blk_init_tags(int depth, int alloc_policy)

initialize the tag info for an external tag map
Parameters
int depth the maximum queue depth supported
int alloc_policy tag allocation policy
int blk_queue_init_tags(struct request_queue * q, int depth, struct blk_queue_tag * tags,

int alloc_policy)
initialize the queue tag info

Parameters
struct request_queue * q the request queue for the device
int depth the maximum queue depth supported
struct blk_queue_tag * tags the tag to use
int alloc_policy tag allocation policy
Description
Queue lock must be held here if the function is called to resize an existing map.
int blk_queue_resize_tags(struct request_queue * q, int new_depth)

change the queueing depth

1.1. The Linux Kernel API 125

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct request_queue * q the request queue for the device
int new_depth the new max command queueing depth
Notes

Must be called with the queue lock held.
void blk_queue_end_tag(struct request_queue * q, struct request * rq)

end tag operations for a request
Parameters
struct request_queue * q the request queue for the device
struct request * rq the request that has completed
Description

Typically called when end_that_request_first() returns 0, meaning all transfers have been
done for a request. It’s important to call this function before end_that_request_last(), as
that will put the request back on the free list thus corrupting the internal tag list.

int blk_queue_start_tag(struct request_queue * q, struct request * rq)
find a free tag and assign it

Parameters
struct request_queue * q the request queue for the device
struct request * rq the block request that needs tagging
Description

This can either be used as a stand-alone helper, or possibly be assigned as the queue
prep_rq_fn (in which case struct request automagically gets a tag assigned). Note that this
function assumes that any type of request can be queued! if this is not true for your device, you
must check the request type before calling this function. The request will also be removed from
the request queue, so it’s the drivers responsibility to readd it if it should need to be restarted
for some reason.

void blk_queue_invalidate_tags(struct request_queue * q)
invalidate all pending tags

Parameters
struct request_queue * q the request queue for the device
Description

Hardware conditions may dictate a need to stop all pending requests. In this case, we will safely
clear the block side of the tag queue and readd all requests to the request queue in the right
order.

void __blk_queue_free_tags(struct request_queue * q)
release tag maintenance info

Parameters
struct request_queue * q the request queue for the device
Notes

blk_cleanup_queue()will take care of calling this function, if tagging has been used. So there’s
no need to call this directly.

int blk_rq_count_integrity_sg(struct request_queue * q, struct bio * bio)
Count number of integrity scatterlist elements

Parameters

126 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

struct request_queue * q request queue
struct bio * bio bio with integrity metadata attached
Description
Returns the number of elements required in a scatterlist corresponding to the integrity metadata in a bio.

int blk_rq_map_integrity_sg(struct request_queue * q, struct bio * bio, struct scatterlist * sglist)
Map integrity metadata into a scatterlist

Parameters
struct request_queue * q request queue
struct bio * bio bio with integrity metadata attached
struct scatterlist * sglist target scatterlist
Description
Map the integrity vectors in request into a scatterlist. The scatterlist must be big enough to hold all
elements. I.e. sized using blk_rq_count_integrity_sg().
int blk_integrity_compare(struct gendisk * gd1, struct gendisk * gd2)

Compare integrity profile of two disks
Parameters
struct gendisk * gd1 Disk to compare
struct gendisk * gd2 Disk to compare
Description
Meta-devices like DM and MD need to verify that all sub-devices use the same integrity format before
advertising to upper layers that they can send/receive integrity metadata. This function can be used to
check whether two gendisk devices have compatible integrity formats.
void blk_integrity_register(struct gendisk * disk, struct blk_integrity * template)

Register a gendisk as being integrity-capable
Parameters
struct gendisk * disk struct gendisk pointer to make integrity-aware
struct blk_integrity * template block integrity profile to register
Description
When a device needs to advertise itself as being able to send/receive integrity metadata it must use this
function to register the capability with the block layer. The template is a blk_integrity struct with values
appropriate for the underlying hardware. See Documentation/block/data-integrity.txt.
void blk_integrity_unregister(struct gendisk * disk)

Unregister block integrity profile
Parameters
struct gendisk * disk disk whose integrity profile to unregister
Description
This function unregisters the integrity capability from a block device.
int blk_trace_ioctl(struct block_device * bdev, unsigned cmd, char __user * arg)

handle the ioctls associated with tracing
Parameters
struct block_device * bdev the block device
unsigned cmd the ioctl cmd

1.1. The Linux Kernel API 127

The kernel core API manual, Release 4.13.0-rc4+

char __user * arg the argument data, if any
void blk_trace_shutdown(struct request_queue * q)

stop and cleanup trace structures
Parameters
struct request_queue * q the request queue associated with the device
void blk_add_trace_rq(struct request * rq, int error, unsigned int nr_bytes, u32 what)

Add a trace for a request oriented action
Parameters
struct request * rq the source request
int error return status to log
unsigned int nr_bytes number of completed bytes
u32 what the action
Description

Records an action against a request. Will log the bio offset + size.
void blk_add_trace_bio(struct request_queue * q, struct bio * bio, u32 what, int error)

Add a trace for a bio oriented action
Parameters
struct request_queue * q queue the io is for
struct bio * bio the source bio
u32 what the action
int error error, if any
Description

Records an action against a bio. Will log the bio offset + size.
void blk_add_trace_bio_remap(void * ignore, struct request_queue * q, struct bio * bio, dev_t dev,

sector_t from)
Add a trace for a bio-remap operation

Parameters
void * ignore trace callback data parameter (not used)
struct request_queue * q queue the io is for
struct bio * bio the source bio
dev_t dev target device
sector_t from source sector
Description

Device mapper or raid target sometimes need to split a bio because it spans a stripe (or similar).
Add a trace for that action.

void blk_add_trace_rq_remap(void * ignore, struct request_queue * q, struct request * rq,
dev_t dev, sector_t from)

Add a trace for a request-remap operation
Parameters
void * ignore trace callback data parameter (not used)
struct request_queue * q queue the io is for
struct request * rq the source request

128 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

dev_t dev target device
sector_t from source sector
Description

Device mapper remaps request to other devices. Add a trace for that action.
int blk_mangle_minor(int minor)

scatter minor numbers apart
Parameters
int minor minor number to mangle
Description
Scatter consecutively allocated minor number apart if MANGLE_DEVT is enabled. Mangling twice gives
the original value.
Return
Mangled value.
Context
Don’t care.
int blk_alloc_devt(struct hd_struct * part, dev_t * devt)

allocate a dev_t for a partition
Parameters
struct hd_struct * part partition to allocate dev_t for
dev_t * devt out parameter for resulting dev_t
Description
Allocate a dev_t for block device.
Return
0 on success, allocated dev_t is returned in *devt. -errno on failure.
Context
Might sleep.
void blk_free_devt(dev_t devt)

free a dev_t
Parameters
dev_t devt dev_t to free
Description
Free devt which was allocated using blk_alloc_devt().
Context
Might sleep.
void disk_replace_part_tbl(struct gendisk * disk, struct disk_part_tbl * new_ptbl)

replace disk->part_tbl in RCU-safe way
Parameters
struct gendisk * disk disk to replace part_tbl for
struct disk_part_tbl * new_ptbl new part_tbl to install

1.1. The Linux Kernel API 129

The kernel core API manual, Release 4.13.0-rc4+

Description
Replace disk->part_tbl with new_ptbl in RCU-safe way. The original ptbl is freed using RCU callback.
LOCKING: Matching bd_mutx locked.
int disk_expand_part_tbl(struct gendisk * disk, int partno)

expand disk->part_tbl
Parameters
struct gendisk * disk disk to expand part_tbl for
int partno expand such that this partno can fit in
Description
Expand disk->part_tbl such that partno can fit in. disk->part_tbl uses RCU to allow unlocked dereferenc-
ing for stats and other stuff.
LOCKING: Matching bd_mutex locked, might sleep.
Return
0 on success, -errno on failure.
void disk_block_events(struct gendisk * disk)

block and flush disk event checking
Parameters
struct gendisk * disk disk to block events for
Description
On return from this function, it is guaranteed that event checking isn’t in progress and won’t happen until
unblocked by disk_unblock_events(). Events blocking is counted and the actual unblocking happens
after the matching number of unblocks are done.
Note that this intentionally does not block event checking from disk_clear_events().
Context
Might sleep.
void disk_unblock_events(struct gendisk * disk)

unblock disk event checking
Parameters
struct gendisk * disk disk to unblock events for
Description
Undo disk_block_events(). When the block count reaches zero, it starts events polling if configured.
Context
Don’t care. Safe to call from irq context.
void disk_flush_events(struct gendisk * disk, unsigned int mask)

schedule immediate event checking and flushing
Parameters
struct gendisk * disk disk to check and flush events for
unsigned int mask events to flush
Description
Schedule immediate event checking on disk if not blocked. Events in mask are scheduled to be cleared
from the driver. Note that this doesn’t clear the events from disk->ev.
Context

130 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

If mask is non-zero must be called with bdev->bd_mutex held.
unsigned int disk_clear_events(struct gendisk * disk, unsigned int mask)

synchronously check, clear and return pending events
Parameters
struct gendisk * disk disk to fetch and clear events from
unsigned int mask mask of events to be fetched and cleared
Description
Disk events are synchronously checked and pending events in mask are cleared and returned. This
ignores the block count.
Context
Might sleep.
struct hd_struct * disk_get_part(struct gendisk * disk, int partno)

get partition
Parameters
struct gendisk * disk disk to look partition from
int partno partition number
Description
Look for partition partno from disk. If found, increment reference count and return it.
Context
Don’t care.
Return
Pointer to the found partition on success, NULL if not found.
void disk_part_iter_init(struct disk_part_iter * piter, struct gendisk * disk, unsigned int flags)

initialize partition iterator
Parameters
struct disk_part_iter * piter iterator to initialize
struct gendisk * disk disk to iterate over
unsigned int flags DISK_PITER_* flags
Description
Initialize piter so that it iterates over partitions of disk.
Context
Don’t care.
struct hd_struct * disk_part_iter_next(struct disk_part_iter * piter)

proceed iterator to the next partition and return it
Parameters
struct disk_part_iter * piter iterator of interest
Description
Proceed piter to the next partition and return it.
Context
Don’t care.

1.1. The Linux Kernel API 131

The kernel core API manual, Release 4.13.0-rc4+

void disk_part_iter_exit(struct disk_part_iter * piter)
finish up partition iteration

Parameters
struct disk_part_iter * piter iter of interest
Description
Called when iteration is over. Cleans up piter.
Context
Don’t care.
struct hd_struct * disk_map_sector_rcu(struct gendisk * disk, sector_t sector)

map sector to partition
Parameters
struct gendisk * disk gendisk of interest
sector_t sector sector to map
Description
Find out which partition sector maps to on disk. This is primarily used for stats accounting.
Context
RCU read locked. The returned partition pointer is valid only while preemption is disabled.
Return
Found partition on success, part0 is returned if no partition matches
int register_blkdev(unsigned int major, const char * name)

register a new block device
Parameters
unsigned int major the requested major device number [1..255]. If major = 0, try to allocate any

unused major number.
const char * name the name of the new block device as a zero terminated string
Description
The name must be unique within the system.
The return value depends on the major input parameter:
• if a major device number was requested in range [1..255] then the function returns zero on success,
or a negative error code

• if any unused major number was requested with major = 0 parameter then the return value is the
allocated major number in range [1..255] or a negative error code otherwise

void device_add_disk(struct device * parent, struct gendisk * disk)
add partitioning information to kernel list

Parameters
struct device * parent parent device for the disk
struct gendisk * disk per-device partitioning information
Description
This function registers the partitioning information in disk with the kernel.
FIXME: error handling
struct gendisk * get_gendisk(dev_t devt, int * partno)

get partitioning information for a given device

132 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
dev_t devt device to get partitioning information for
int * partno returned partition index
Description
This function gets the structure containing partitioning information for the given device devt.
struct block_device * bdget_disk(struct gendisk * disk, int partno)

do bdget() by gendisk and partition number
Parameters
struct gendisk * disk gendisk of interest
int partno partition number
Description
Find partition partno from disk, do bdget() on it.
Context
Don’t care.
Return
Resulting block_device on success, NULL on failure.

1.1.14 Char devices

int register_chrdev_region(dev_t from, unsigned count, const char * name)
register a range of device numbers

Parameters
dev_t from the first in the desired range of device numbers; must include the major number.
unsigned count the number of consecutive device numbers required
const char * name the name of the device or driver.
Description
Return value is zero on success, a negative error code on failure.
int alloc_chrdev_region(dev_t * dev, unsigned baseminor, unsigned count, const char * name)

register a range of char device numbers
Parameters
dev_t * dev output parameter for first assigned number
unsigned baseminor first of the requested range of minor numbers
unsigned count the number of minor numbers required
const char * name the name of the associated device or driver
Description
Allocates a range of char device numbers. The major number will be chosen dynamically, and returned
(along with the first minor number) in dev. Returns zero or a negative error code.
int __register_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char

* name, const struct file_operations * fops)
create and register a cdev occupying a range of minors

Parameters
unsigned int major major device number or 0 for dynamic allocation

1.1. The Linux Kernel API 133

The kernel core API manual, Release 4.13.0-rc4+

unsigned int baseminor first of the requested range of minor numbers
unsigned int count the number of minor numbers required
const char * name name of this range of devices
const struct file_operations * fops file operations associated with this devices
Description
If major == 0 this functions will dynamically allocate a major and return its number.
If major > 0 this function will attempt to reserve a device with the given major number and will return
zero on success.
Returns a -ve errno on failure.
The name of this device has nothing to do with the name of the device in /dev. It only helps to keep track
of the different owners of devices. If your module name has only one type of devices it’s ok to use e.g.
the name of the module here.
void unregister_chrdev_region(dev_t from, unsigned count)

unregister a range of device numbers
Parameters
dev_t from the first in the range of numbers to unregister
unsigned count the number of device numbers to unregister
Description
This function will unregister a range of count device numbers, starting with from. The caller should
normally be the one who allocated those numbers in the first place...
void __unregister_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const

char * name)
unregister and destroy a cdev

Parameters
unsigned int major major device number
unsigned int baseminor first of the range of minor numbers
unsigned int count the number of minor numbers this cdev is occupying
const char * name name of this range of devices
Description
Unregister and destroy the cdev occupying the region described by major, baseminor and count. This
function undoes what __register_chrdev() did.
int cdev_add(struct cdev * p, dev_t dev, unsigned count)

add a char device to the system
Parameters
struct cdev * p the cdev structure for the device
dev_t dev the first device number for which this device is responsible
unsigned count the number of consecutive minor numbers corresponding to this device
Description
cdev_add() adds the device represented by p to the system, making it live immediately. A negative error
code is returned on failure.
void cdev_set_parent(struct cdev * p, struct kobject * kobj)

set the parent kobject for a char device
Parameters

134 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

struct cdev * p the cdev structure
struct kobject * kobj the kobject to take a reference to
Description
cdev_set_parent() sets a parent kobject which will be referenced appropriately so the parent is not freed
before the cdev. This should be called before cdev_add.
int cdev_device_add(struct cdev * cdev, struct device * dev)

add a char device and it’s corresponding struct device, linkink
Parameters
struct cdev * cdev the cdev structure
struct device * dev the device structure
Description
cdev_device_add() adds the char device represented by cdev to the system, just as cdev_add does. It
then adds dev to the system using device_add The dev_t for the char device will be taken from the struct
device which needs to be initialized first. This helper function correctly takes a reference to the parent
device so the parent will not get released until all references to the cdev are released.
This helper uses dev->devt for the device number. If it is not set it will not add the cdev and it will be
equivalent to device_add.
This function should be used whenever the struct cdev and the struct device are members of the same
structure whose lifetime is managed by the struct device.
NOTE
Callers must assume that userspace was able to open the cdev and can call cdev fops callbacks at any
time, even if this function fails.
void cdev_device_del(struct cdev * cdev, struct device * dev)

inverse of cdev_device_add
Parameters
struct cdev * cdev the cdev structure
struct device * dev the device structure
Description
cdev_device_del() is a helper function to call cdev_del and device_del. It should be used whenever
cdev_device_add is used.
If dev->devt is not set it will not remove the cdev and will be equivalent to device_del.
NOTE
This guarantees that associated sysfs callbacks are not running or runnable, however any cdevs already
open will remain and their fops will still be callable even after this function returns.
void cdev_del(struct cdev * p)

remove a cdev from the system
Parameters
struct cdev * p the cdev structure to be removed
Description
cdev_del() removes p from the system, possibly freeing the structure itself.
NOTE
This guarantees that cdev device will no longer be able to be opened, however any cdevs already open
will remain and their fops will still be callable even after cdev_del returns.

1.1. The Linux Kernel API 135

The kernel core API manual, Release 4.13.0-rc4+

struct cdev * cdev_alloc(void)
allocate a cdev structure

Parameters
void no arguments
Description
Allocates and returns a cdev structure, or NULL on failure.
void cdev_init(struct cdev * cdev, const struct file_operations * fops)

initialize a cdev structure
Parameters
struct cdev * cdev the structure to initialize
const struct file_operations * fops the file_operations for this device
Description
Initializes cdev, remembering fops, making it ready to add to the system with cdev_add().

1.1.15 Clock Framework

The clock framework defines programming interfaces to support software management of the system
clock tree. This framework is widely used with System-On-Chip (SOC) platforms to support power man-
agement and various devices which may need custom clock rates. Note that these “clocks” don’t relate
to timekeeping or real time clocks (RTCs), each of which have separate frameworks. These struct clk
instances may be used to manage for example a 96 MHz signal that is used to shift bits into and out of
peripherals or busses, or otherwise trigger synchronous state machine transitions in system hardware.
Power management is supported by explicit software clock gating: unused clocks are disabled, so the
system doesn’t waste power changing the state of transistors that aren’t in active use. On some systems
this may be backed by hardware clock gating, where clocks are gated without being disabled in software.
Sections of chips that are powered but not clocked may be able to retain their last state. This low power
state is often called a retention mode. This mode still incurs leakage currents, especially with finer circuit
geometries, but for CMOS circuits power is mostly used by clocked state changes.
Power-aware drivers only enable their clocks when the device they manage is in active use. Also, system
sleep states often differ according to which clock domains are active: while a “standby” state may allow
wakeup from several active domains, a “mem” (suspend-to-RAM) state may require a more wholesale
shutdown of clocks derived from higher speed PLLs and oscillators, limiting the number of possible wakeup
event sources. A driver’s suspend method may need to be aware of system-specific clock constraints on
the target sleep state.
Some platforms support programmable clock generators. These can be used by external chips of various
kinds, such as other CPUs, multimedia codecs, and devices with strict requirements for interface clocking.

struct clk_notifier
associate a clk with a notifier

Definition

struct clk_notifier {
struct clk * clk;
struct srcu_notifier_head notifier_head;
struct list_head node;

};

Members
clk struct clk * to associate the notifier with

136 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

notifier_head a blocking_notifier_head for this clk
node linked list pointers
Description
A list of struct clk_notifier is maintained by the notifier code. An entry is created whenever code registers
the first notifier on a particular clk. Future notifiers on that clk are added to the notifier_head.
struct clk_notifier_data

rate data to pass to the notifier callback
Definition

struct clk_notifier_data {
struct clk * clk;
unsigned long old_rate;
unsigned long new_rate;

};

Members
clk struct clk * being changed
old_rate previous rate of this clk
new_rate new rate of this clk
Description
For a pre-notifier, old_rate is the clk’s rate before this rate change, and new_rate is what the rate will be in
the future. For a post-notifier, old_rate and new_rate are both set to the clk’s current rate (this was done
to optimize the implementation).
struct clk_bulk_data

Data used for bulk clk operations.
Definition

struct clk_bulk_data {
const char * id;
struct clk * clk;

};

Members
id clock consumer ID
clk struct clk * to store the associated clock
Description
The CLK APIs provide a series of clk_bulk_() API calls as a convenience to consumers which require
multiple clks. This structure is used to manage data for these calls.
int clk_notifier_register(struct clk * clk, struct notifier_block * nb)

change notifier callback
Parameters
struct clk * clk clock whose rate we are interested in
struct notifier_block * nb notifier block with callback function pointer
Description
ProTip: debugging across notifier chains can be frustrating. Make sure that your notifier callback function
prints a nice big warning in case of failure.
int clk_notifier_unregister(struct clk * clk, struct notifier_block * nb)

change notifier callback

1.1. The Linux Kernel API 137

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct clk * clk clock whose rate we are no longer interested in
struct notifier_block * nb notifier block which will be unregistered
long clk_get_accuracy(struct clk * clk)

obtain the clock accuracy in ppb (parts per billion) for a clock source.
Parameters
struct clk * clk clock source
Description
This gets the clock source accuracy expressed in ppb. A perfect clock returns 0.
int clk_set_phase(struct clk * clk, int degrees)

adjust the phase shift of a clock signal
Parameters
struct clk * clk clock signal source
int degrees number of degrees the signal is shifted
Description
Shifts the phase of a clock signal by the specified degrees. Returns 0 on success, -EERROR otherwise.
int clk_get_phase(struct clk * clk)

return the phase shift of a clock signal
Parameters
struct clk * clk clock signal source
Description
Returns the phase shift of a clock node in degrees, otherwise returns -EERROR.
bool clk_is_match(const struct clk * p, const struct clk * q)

check if two clk’s point to the same hardware clock
Parameters
const struct clk * p clk compared against q
const struct clk * q clk compared against p
Description
Returns true if the two struct clk pointers both point to the same hardware clock node. Put differently,
returns true if p and q share the same struct clk_core object.
Returns false otherwise. Note that two NULL clks are treated as matching.
int clk_prepare(struct clk * clk)

prepare a clock source
Parameters
struct clk * clk clock source
Description
This prepares the clock source for use.
Must not be called from within atomic context.
void clk_unprepare(struct clk * clk)

undo preparation of a clock source
Parameters

138 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

struct clk * clk clock source
Description
This undoes a previously prepared clock. The caller must balance the number of prepare and unprepare
calls.
Must not be called from within atomic context.
struct clk * clk_get(struct device * dev, const char * id)

lookup and obtain a reference to a clock producer.
Parameters
struct device * dev device for clock “consumer”
const char * id clock consumer ID
Description
Returns a struct clk corresponding to the clock producer, or valid IS_ERR() condition containing errno.
The implementation uses dev and id to determine the clock consumer, and thereby the clock producer.
(IOW, id may be identical strings, but clk_get may return different clock producers depending on dev.)
Drivers must assume that the clock source is not enabled.
clk_get should not be called from within interrupt context.
int clk_bulk_get(struct device * dev, int num_clks, struct clk_bulk_data * clks)

lookup and obtain a number of references to clock producer.
Parameters
struct device * dev device for clock “consumer”
int num_clks the number of clk_bulk_data
struct clk_bulk_data * clks the clk_bulk_data table of consumer
Description
This helper function allows drivers to get several clk consumers in one operation. If any of the clk cannot
be acquired then any clks that were obtained will be freed before returning to the caller.
Returns 0 if all clocks specified in clk_bulk_data table are obtained successfully, or valid IS_ERR() condition
containing errno. The implementation uses dev and clk_bulk_data.id to determine the clock consumer,
and thereby the clock producer. The clock returned is stored in each clk_bulk_data.clk field.
Drivers must assume that the clock source is not enabled.
clk_bulk_get should not be called from within interrupt context.
int devm_clk_bulk_get(struct device * dev, int num_clks, struct clk_bulk_data * clks)

managed get multiple clk consumers
Parameters
struct device * dev device for clock “consumer”
int num_clks the number of clk_bulk_data
struct clk_bulk_data * clks the clk_bulk_data table of consumer
Description
Return 0 on success, an errno on failure.
This helper function allows drivers to get several clk consumers in one operation with management, the
clks will automatically be freed when the device is unbound.
struct clk * devm_clk_get(struct device * dev, const char * id)

lookup and obtain a managed reference to a clock producer.
Parameters

1.1. The Linux Kernel API 139

The kernel core API manual, Release 4.13.0-rc4+

struct device * dev device for clock “consumer”
const char * id clock consumer ID
Description
Returns a struct clk corresponding to the clock producer, or valid IS_ERR() condition containing errno.
The implementation uses dev and id to determine the clock consumer, and thereby the clock producer.
(IOW, id may be identical strings, but clk_get may return different clock producers depending on dev.)
Drivers must assume that the clock source is not enabled.
devm_clk_get should not be called from within interrupt context.
The clock will automatically be freed when the device is unbound from the bus.
struct clk * devm_get_clk_from_child(struct device * dev, struct device_node * np, const char

* con_id)
lookup and obtain a managed reference to a clock producer from child node.

Parameters
struct device * dev device for clock “consumer”
struct device_node * np pointer to clock consumer node
const char * con_id clock consumer ID
Description
This function parses the clocks, and uses them to look up the struct clk from the registered list of clock
providers by using np and con_id
The clock will automatically be freed when the device is unbound from the bus.
int clk_enable(struct clk * clk)

inform the system when the clock source should be running.
Parameters
struct clk * clk clock source
Description
If the clock can not be enabled/disabled, this should return success.
May be called from atomic contexts.
Returns success (0) or negative errno.
int clk_bulk_enable(int num_clks, const struct clk_bulk_data * clks)

inform the system when the set of clks should be running.
Parameters
int num_clks the number of clk_bulk_data
const struct clk_bulk_data * clks the clk_bulk_data table of consumer
Description
May be called from atomic contexts.
Returns success (0) or negative errno.
void clk_disable(struct clk * clk)

inform the system when the clock source is no longer required.
Parameters
struct clk * clk clock source

140 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
Inform the system that a clock source is no longer required by a driver and may be shut down.
May be called from atomic contexts.
Implementation detail: if the clock source is shared between multiple drivers, clk_enable() calls must
be balanced by the same number of clk_disable() calls for the clock source to be disabled.
void clk_bulk_disable(int num_clks, const struct clk_bulk_data * clks)

inform the system when the set of clks is no longer required.
Parameters
int num_clks the number of clk_bulk_data
const struct clk_bulk_data * clks the clk_bulk_data table of consumer
Description
Inform the system that a set of clks is no longer required by a driver and may be shut down.
May be called from atomic contexts.
Implementation detail: if the set of clks is shared between multiple drivers, clk_bulk_enable() calls
must be balanced by the same number of clk_bulk_disable() calls for the clock source to be disabled.
unsigned long clk_get_rate(struct clk * clk)

obtain the current clock rate (in Hz) for a clock source. This is only valid once the clock source has
been enabled.

Parameters
struct clk * clk clock source
void clk_put(struct clk * clk)

“free” the clock source
Parameters
struct clk * clk clock source
Note
drivers must ensure that all clk_enable calls made on this clock source are balanced by clk_disable calls
prior to calling this function.
clk_put should not be called from within interrupt context.
void clk_bulk_put(int num_clks, struct clk_bulk_data * clks)

“free” the clock source
Parameters
int num_clks the number of clk_bulk_data
struct clk_bulk_data * clks the clk_bulk_data table of consumer
Note
drivers must ensure that all clk_bulk_enable calls made on this clock source are balanced by
clk_bulk_disable calls prior to calling this function.
clk_bulk_put should not be called from within interrupt context.
void devm_clk_put(struct device * dev, struct clk * clk)

“free” a managed clock source
Parameters
struct device * dev device used to acquire the clock
struct clk * clk clock source acquired with devm_clk_get()

1.1. The Linux Kernel API 141

The kernel core API manual, Release 4.13.0-rc4+

Note
drivers must ensure that all clk_enable calls made on this clock source are balanced by clk_disable calls
prior to calling this function.
clk_put should not be called from within interrupt context.
long clk_round_rate(struct clk * clk, unsigned long rate)

adjust a rate to the exact rate a clock can provide
Parameters
struct clk * clk clock source
unsigned long rate desired clock rate in Hz
Description
This answers the question “if I were to pass rate to clk_set_rate(), what clock rate would I end up
with?” without changing the hardware in any way. In other words:

rate = clk_round_rate(clk, r);
and:

clk_set_rate(clk, r); rate = clk_get_rate(clk);
are equivalent except the former does not modify the clock hardware in any way.
Returns rounded clock rate in Hz, or negative errno.
int clk_set_rate(struct clk * clk, unsigned long rate)

set the clock rate for a clock source
Parameters
struct clk * clk clock source
unsigned long rate desired clock rate in Hz
Description
Returns success (0) or negative errno.
bool clk_has_parent(struct clk * clk, struct clk * parent)

check if a clock is a possible parent for another
Parameters
struct clk * clk clock source
struct clk * parent parent clock source
Description
This function can be used in drivers that need to check that a clock can be the parent of another without
actually changing the parent.
Returns true if parent is a possible parent for clk, false otherwise.
int clk_set_rate_range(struct clk * clk, unsigned long min, unsigned long max)

set a rate range for a clock source
Parameters
struct clk * clk clock source
unsigned long min desired minimum clock rate in Hz, inclusive
unsigned long max desired maximum clock rate in Hz, inclusive
Description
Returns success (0) or negative errno.

142 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

int clk_set_min_rate(struct clk * clk, unsigned long rate)
set a minimum clock rate for a clock source

Parameters
struct clk * clk clock source
unsigned long rate desired minimum clock rate in Hz, inclusive
Description
Returns success (0) or negative errno.
int clk_set_max_rate(struct clk * clk, unsigned long rate)

set a maximum clock rate for a clock source
Parameters
struct clk * clk clock source
unsigned long rate desired maximum clock rate in Hz, inclusive
Description
Returns success (0) or negative errno.
int clk_set_parent(struct clk * clk, struct clk * parent)

set the parent clock source for this clock
Parameters
struct clk * clk clock source
struct clk * parent parent clock source
Description
Returns success (0) or negative errno.
struct clk * clk_get_parent(struct clk * clk)

get the parent clock source for this clock
Parameters
struct clk * clk clock source
Description
Returns struct clk corresponding to parent clock source, or valid IS_ERR() condition containing errno.
struct clk * clk_get_sys(const char * dev_id, const char * con_id)

get a clock based upon the device name
Parameters
const char * dev_id device name
const char * con_id connection ID
Description
Returns a struct clk corresponding to the clock producer, or valid IS_ERR() condition containing errno.
The implementation uses dev_id and con_id to determine the clock consumer, and thereby the clock
producer. In contrast to clk_get() this function takes the device name instead of the device itself for
identification.
Drivers must assume that the clock source is not enabled.
clk_get_sys should not be called from within interrupt context.

1.1. The Linux Kernel API 143

The kernel core API manual, Release 4.13.0-rc4+

1.2 Generic Associative Array Implementation

1.2.1 Overview

This associative array implementation is an object container with the following properties:
1. Objects are opaque pointers. The implementation does not care where they point (if anywhere) or
what they point to (if anything).

Note:

Pointers to objects _must_ be zero in the least significant bit.

2. Objects do not need to contain linkage blocks for use by the array. This permits an object to be
located in multiple arrays simultaneously. Rather, the array is made up of metadata blocks that
point to objects.

3. Objects require index keys to locate them within the array.
4. Index keys must be unique. Inserting an object with the same key as one already in the array will
replace the old object.

5. Index keys can be of any length and can be of different lengths.
6. Index keys should encode the length early on, before any variation due to length is seen.
7. Index keys can include a hash to scatter objects throughout the array.
8. The array can iterated over. The objects will not necessarily come out in key order.
9. The array can be iterated over whilst it is being modified, provided the RCU readlock is being held
by the iterator. Note, however, under these circumstances, some objects may be seen more than
once. If this is a problem, the iterator should lock against modification. Objects will not be missed,
however, unless deleted.

10. Objects in the array can be looked up by means of their index key.
11. Objects can be looked up whilst the array is being modified, provided the RCU readlock is being held

by the thread doing the look up.
The implementation uses a tree of 16-pointer nodes internally that are indexed on each level by nibbles
from the index key in the same manner as in a radix tree. To improve memory efficiency, shortcuts can
be emplaced to skip over what would otherwise be a series of single-occupancy nodes. Further, nodes
pack leaf object pointers into spare space in the node rather than making an extra branch until as such
time an object needs to be added to a full node.

1.2.2 The Public API

The public API can be found in <linux/assoc_array.h>. The associative array is rooted on the following
structure:

struct assoc_array {
...

};

The code is selected by enabling CONFIG_ASSOCIATIVE_ARRAY with:

./script/config -e ASSOCIATIVE_ARRAY

144 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Edit Script

The insertion and deletion functions produce an ‘edit script’ that can later be applied to effect the changes
without risking ENOMEM. This retains the preallocated metadata blocks that will be installed in the internal
tree and keeps track of the metadata blocks that will be removed from the tree when the script is applied.
This is also used to keep track of dead blocks and dead objects after the script has been applied so that
they can be freed later. The freeing is done after an RCU grace period has passed - thus allowing access
functions to proceed under the RCU read lock.
The script appears as outside of the API as a pointer of the type:

struct assoc_array_edit;

There are two functions for dealing with the script:
1. Apply an edit script:

void assoc_array_apply_edit(struct assoc_array_edit *edit);

This will perform the edit functions, interpolating various write barriers to permit accesses under the RCU
read lock to continue. The edit script will then be passed to call_rcu() to free it and any dead stuff it
points to.
2. Cancel an edit script:

void assoc_array_cancel_edit(struct assoc_array_edit *edit);

This frees the edit script and all preallocated memory immediately. If this was for insertion, the new object
is _not_ released by this function, but must rather be released by the caller.
These functions are guaranteed not to fail.

Operations Table

Various functions take a table of operations:

struct assoc_array_ops {
...

};

This points to a number of methods, all of which need to be provided:
1. Get a chunk of index key from caller data:

unsigned long (*get_key_chunk)(const void *index_key, int level);

This should return a chunk of caller-supplied index key starting at the bit position given by the level
argument. The level argument will be amultiple of ASSOC_ARRAY_KEY_CHUNK_SIZE and the function should
return ASSOC_ARRAY_KEY_CHUNK_SIZE bits. No error is possible.
2. Get a chunk of an object’s index key:

unsigned long (*get_object_key_chunk)(const void *object, int level);

As the previous function, but gets its data from an object in the array rather than from a caller-supplied
index key.
3. See if this is the object we’re looking for:

bool (*compare_object)(const void *object, const void *index_key);

Compare the object against an index key and return true if it matches and false if it doesn’t.

1.2. Generic Associative Array Implementation 145

The kernel core API manual, Release 4.13.0-rc4+

4. Diff the index keys of two objects:

int (*diff_objects)(const void *object, const void *index_key);

Return the bit position at which the index key of the specified object differs from the given index key or
-1 if they are the same.
5. Free an object:

void (*free_object)(void *object);

Free the specified object. Note that this may be called an RCU grace period after as-
soc_array_apply_edit() was called, so synchronize_rcu() may be necessary on module unloading.

Manipulation Functions

There are a number of functions for manipulating an associative array:
1. Initialise an associative array:

void assoc_array_init(struct assoc_array *array);

This initialises the base structure for an associative array. It can’t fail.
2. Insert/replace an object in an associative array:

struct assoc_array_edit *
assoc_array_insert(struct assoc_array *array,

const struct assoc_array_ops *ops,
const void *index_key,
void *object);

This inserts the given object into the array. Note that the least significant bit of the pointer must be zero
as it’s used to type-mark pointers internally.
If an object already exists for that key then it will be replaced with the new object and the old one will be
freed automatically.
The index_key argument should hold index key information and is passed to the methods in the ops table
when they are called.
This function makes no alteration to the array itself, but rather returns an edit script that must be applied.
-ENOMEM is returned in the case of an out-of-memory error.
The caller should lock exclusively against other modifiers of the array.
3. Delete an object from an associative array:

struct assoc_array_edit *
assoc_array_delete(struct assoc_array *array,

const struct assoc_array_ops *ops,
const void *index_key);

This deletes an object that matches the specified data from the array.
The index_key argument should hold index key information and is passed to the methods in the ops table
when they are called.
This function makes no alteration to the array itself, but rather returns an edit script that must be applied.
-ENOMEM is returned in the case of an out-of-memory error. NULL will be returned if the specified object is
not found within the array.
The caller should lock exclusively against other modifiers of the array.
4. Delete all objects from an associative array:

146 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

struct assoc_array_edit *
assoc_array_clear(struct assoc_array *array,

const struct assoc_array_ops *ops);

This deletes all the objects from an associative array and leaves it completely empty.
This function makes no alteration to the array itself, but rather returns an edit script that must be applied.
-ENOMEM is returned in the case of an out-of-memory error.
The caller should lock exclusively against other modifiers of the array.
5. Destroy an associative array, deleting all objects:

void assoc_array_destroy(struct assoc_array *array,
const struct assoc_array_ops *ops);

This destroys the contents of the associative array and leaves it completely empty. It is not permitted for
another thread to be traversing the array under the RCU read lock at the same time as this function is
destroying it as no RCU deferral is performed on memory release - something that would require memory
to be allocated.
The caller should lock exclusively against other modifiers and accessors of the array.
6. Garbage collect an associative array:

int assoc_array_gc(struct assoc_array *array,
const struct assoc_array_ops *ops,
bool (*iterator)(void *object, void *iterator_data),
void *iterator_data);

This iterates over the objects in an associative array and passes each one to iterator(). If iterator()
returns true, the object is kept. If it returns false, the object will be freed. If the iterator() function
returns true, it must perform any appropriate refcount incrementing on the object before returning.
The internal tree will be packed down if possible as part of the iteration to reduce the number of nodes in
it.
The iterator_data is passed directly to iterator() and is otherwise ignored by the function.
The function will return 0 if successful and -ENOMEM if there wasn’t enough memory.
It is possible for other threads to iterate over or search the array under the RCU read lock whilst this
function is in progress. The caller should lock exclusively against other modifiers of the array.

Access Functions

There are two functions for accessing an associative array:
1. Iterate over all the objects in an associative array:

int assoc_array_iterate(const struct assoc_array *array,
int (*iterator)(const void *object,

void *iterator_data),
void *iterator_data);

This passes each object in the array to the iterator callback function. iterator_data is private data for
that function.
This may be used on an array at the same time as the array is being modified, provided the RCU read lock
is held. Under such circumstances, it is possible for the iteration function to see some objects twice. If this
is a problem, then modification should be locked against. The iteration algorithm should not, however,
miss any objects.
The function will return 0 if no objects were in the array or else it will return the result of the last iterator
function called. Iteration stops immediately if any call to the iteration function results in a non-zero return.

1.2. Generic Associative Array Implementation 147

The kernel core API manual, Release 4.13.0-rc4+

2. Find an object in an associative array:

void *assoc_array_find(const struct assoc_array *array,
const struct assoc_array_ops *ops,
const void *index_key);

This walks through the array’s internal tree directly to the object specified by the index key..
This may be used on an array at the same time as the array is being modified, provided the RCU read lock
is held.
The function will return the object if found (and set *_type to the object type) or will return NULL if the
object was not found.

Index Key Form

The index key can be of any form, but since the algorithms aren’t told how long the key is, it is strongly
recommended that the index key includes its length very early on before any variation due to the length
would have an effect on comparisons.
This will cause leaves with different length keys to scatter away from each other - and those with the same
length keys to cluster together.
It is also recommended that the index key begin with a hash of the rest of the key to maximise scattering
throughout keyspace.
The better the scattering, the wider and lower the internal tree will be.
Poor scattering isn’t too much of a problem as there are shortcuts and nodes can contain mixtures of
leaves and metadata pointers.
The index key is read in chunks of machine word. Each chunk is subdivided into one nibble (4 bits) per
level, so on a 32-bit CPU this is good for 8 levels and on a 64-bit CPU, 16 levels. Unless the scattering is
really poor, it is unlikely that more than one word of any particular index key will have to be used.

1.2.3 Internal Workings

The associative array data structure has an internal tree. This tree is constructed of two types of metadata
blocks: nodes and shortcuts.
A node is an array of slots. Each slot can contain one of four things:
• A NULL pointer, indicating that the slot is empty.
• A pointer to an object (a leaf).
• A pointer to a node at the next level.
• A pointer to a shortcut.

Basic Internal Tree Layout

Ignoring shortcuts for the moment, the nodes form a multilevel tree. The index key space is strictly
subdivided by the nodes in the tree and nodes occur on fixed levels. For example:

Level: 0 1 2 3
=============== =============== =============== ===============

NODE D
NODE B NODE C +------>+---+

+------>+---+ +------>+---+ | | 0 |
NODE A | | 0 | | | 0 | | +---+
+---+ | +---+ | +---+ | : :
| 0 | | : : | : : | +---+

148 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

+---+ | +---+ | +---+ | | f |
| 1 |---+ | 3 |---+ | 7 |---+ +---+
+---+ +---+ +---+
: : : : | 8 |---+
+---+ +---+ +---+ | NODE E
| e |---+ | f | : : +------>+---+
+---+ | +---+ +---+ | 0 |
| f | | | f | +---+
+---+ | +---+ : :

| NODE F +---+
+------>+---+ | f |

| 0 | NODE G +---+
+---+ +------>+---+
: : | | 0 |
+---+ | +---+
| 6 |---+ : :
+---+ +---+
: : | f |
+---+ +---+
| f |
+---+

In the above example, there are 7 nodes (A-G), each with 16 slots (0-f). Assuming no other meta data
nodes in the tree, the key space is divided thusly:

KEY PREFIX NODE
========== ====
137* D
138* E
13[0-69-f]* C
1[0-24-f]* B
e6* G
e[0-57-f]* F
[02-df]* A

So, for instance, keys with the following example index keys will be found in the appropriate nodes:

INDEX KEY PREFIX NODE
=============== ======= ====
13694892892489 13 C
13795289025897 137 D
13889dde88793 138 E
138bbb89003093 138 E
1394879524789 12 C
1458952489 1 B
9431809de993ba - A
b4542910809cd - A
e5284310def98 e F
e68428974237 e6 G
e7fffcbd443 e F
f3842239082 - A

To save memory, if a node can hold all the leaves in its portion of keyspace, then the node will have all
those leaves in it and will not have any metadata pointers - even if some of those leaves would like to be
in the same slot.
A node can contain a heterogeneous mix of leaves and metadata pointers. Metadata pointers must be
in the slots that match their subdivisions of key space. The leaves can be in any slot not occupied by
a metadata pointer. It is guaranteed that none of the leaves in a node will match a slot occupied by a
metadata pointer. If the metadata pointer is there, any leaf whose key matches the metadata key prefix
must be in the subtree that the metadata pointer points to.
In the above example list of index keys, node A will contain:

1.2. Generic Associative Array Implementation 149

The kernel core API manual, Release 4.13.0-rc4+

SLOT CONTENT INDEX KEY (PREFIX)
==== =============== ==================
1 PTR TO NODE B 1*
any LEAF 9431809de993ba
any LEAF b4542910809cd
e PTR TO NODE F e*
any LEAF f3842239082

and node B:

3 PTR TO NODE C 13*
any LEAF 1458952489

Shortcuts

Shortcuts are metadata records that jump over a piece of keyspace. A shortcut is a replacement for a
series of single-occupancy nodes ascending through the levels. Shortcuts exist to save memory and to
speed up traversal.
It is possible for the root of the tree to be a shortcut - say, for example, the tree contains at least 17 nodes
all with key prefix 1111. The insertion algorithm will insert a shortcut to skip over the 1111 keyspace in a
single bound and get to the fourth level where these actually become different.

Splitting And Collapsing Nodes

Each node has a maximum capacity of 16 leaves and metadata pointers. If the insertion algorithm finds
that it is trying to insert a 17th object into a node, that node will be split such that at least two leaves that
have a common key segment at that level end up in a separate node rooted on that slot for that common
key segment.
If the leaves in a full node and the leaf that is being inserted are sufficiently similar, then a shortcut will
be inserted into the tree.
When the number of objects in the subtree rooted at a node falls to 16 or fewer, then the subtree will be
collapsed down to a single node - and this will ripple towards the root if possible.

Non-Recursive Iteration

Each node and shortcut contains a back pointer to its parent and the number of slot in that parent that
points to it. None-recursive iteration uses these to proceed rootwards through the tree, going to the parent
node, slot N + 1 to make sure progress is made without the need for a stack.
The backpointers, however, make simultaneous alteration and iteration tricky.

Simultaneous Alteration And Iteration

There are a number of cases to consider:
1. Simple insert/replace. This involves simply replacing a NULL or old matching leaf pointer with the
pointer to the new leaf after a barrier. The metadata blocks don’t change otherwise. An old leaf
won’t be freed until after the RCU grace period.

2. Simple delete. This involves just clearing an old matching leaf. The metadata blocks don’t change
otherwise. The old leaf won’t be freed until after the RCU grace period.

3. Insertion replacing part of a subtree that we haven’t yet entered. This may involve replacement of
part of that subtree - but that won’t affect the iteration as we won’t have reached the pointer to it
yet and the ancestry blocks are not replaced (the layout of those does not change).

150 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

4. Insertion replacing nodes that we’re actively processing. This isn’t a problem as we’ve passed the
anchoring pointer and won’t switch onto the new layout until we follow the back pointers - at which
point we’ve already examined the leaves in the replaced node (we iterate over all the leaves in a
node before following any of its metadata pointers).
We might, however, re-see some leaves that have been split out into a new branch that’s in a slot
further along than we were at.

5. Insertion replacing nodes that we’re processing a dependent branch of. This won’t affect us until we
follow the back pointers. Similar to (4).

6. Deletion collapsing a branch under us. This doesn’t affect us because the back pointers will get us
back to the parent of the new node before we could see the new node. The entire collapsed subtree
is thrown away unchanged - and will still be rooted on the same slot, so we shouldn’t process it a
second time as we’ll go back to slot + 1.

Note:

Under some circumstances, we need to simultaneously change the parent pointer and the parent slot
pointer on a node (say, for example, we inserted another node before it and moved it up a level). We
cannot do this without locking against a read - so we have to replace that node too.
However, when we’re changing a shortcut into a node this isn’t a problem as shortcuts only have one
slot and so the parent slot number isn’t used when traversing backwards over one. This means that
it’s okay to change the slot number first - provided suitable barriers are used to make sure the parent
slot number is read after the back pointer.

Obsolete blocks and leaves are freed up after an RCU grace period has passed, so as long as anyone doing
walking or iteration holds the RCU read lock, the old superstructure should not go away on them.

1.3 Semantics and Behavior of Atomic and Bitmask Operations

Author David S. Miller
This document is intended to serve as a guide to Linux port maintainers on how to implement atomic
counter, bitops, and spinlock interfaces properly.

1.3.1 Atomic Type And Operations

The atomic_t type should be defined as a signed integer and the atomic_long_t type as a signed long
integer. Also, they should be made opaque such that any kind of cast to a normal C integer type will fail.
Something like the following should suffice:

typedef struct { int counter; } atomic_t;
typedef struct { long counter; } atomic_long_t;

Historically, counter has been declared volatile. This is now discouraged. See
Documentation/process/volatile-considered-harmful.rst for the complete rationale.
local_t is very similar to atomic_t. If the counter is per CPU and only updated by one CPU, local_t is probably
more appropriate. Please see Documentation/core-api/local_ops.rst for the semantics of local_t.
The first operations to implement for atomic_t’s are the initializers and plain reads.

#define ATOMIC_INIT(i) { (i) }
#define atomic_set(v, i) ((v)->counter = (i))

The first macro is used in definitions, such as:

1.3. Semantics and Behavior of Atomic and Bitmask Operations 151

The kernel core API manual, Release 4.13.0-rc4+

static atomic_t my_counter = ATOMIC_INIT(1);

The initializer is atomic in that the return values of the atomic operations are guaranteed to be correct
reflecting the initialized value if the initializer is used before runtime. If the initializer is used at runtime, a
proper implicit or explicit read memory barrier is needed before reading the value with atomic_read from
another thread.
As with all of the atomic_ interfaces, replace the leading atomic_ with atomic_long_ to operate on
atomic_long_t.
The second interface can be used at runtime, as in:

struct foo { atomic_t counter; };
...

struct foo *k;

k = kmalloc(sizeof(*k), GFP_KERNEL);
if (!k)

return -ENOMEM;
atomic_set(&k->counter, 0);

The setting is atomic in that the return values of the atomic operations by all threads are guaranteed to be
correct reflecting either the value that has been set with this operation or set with another operation. A
proper implicit or explicit memory barrier is needed before the value set with the operation is guaranteed
to be readable with atomic_read from another thread.
Next, we have:

#define atomic_read(v) ((v)->counter)

which simply reads the counter value currently visible to the calling thread. The read is atomic in that the
return value is guaranteed to be one of the values initialized or modified with the interface operations if a
proper implicit or explicit memory barrier is used after possible runtime initialization by any other thread
and the value is modified only with the interface operations. atomic_read does not guarantee that the
runtime initialization by any other thread is visible yet, so the user of the interface must take care of that
with a proper implicit or explicit memory barrier.

Warning:

atomic_read() and atomic_set() DO NOT IMPLY BARRIERS!
Some architectures may choose to use the volatile keyword, barriers, or inline assembly to guaran-
tee some degree of immediacy for atomic_read() and atomic_set(). This is not uniformly guaranteed,
and may change in the future, so all users of atomic_t should treat atomic_read() and atomic_set()
as simple C statements that may be reordered or optimized away entirely by the compiler or proces-
sor, and explicitly invoke the appropriate compiler and/or memory barrier for each use case. Failure
to do so will result in code that may suddenly break when used with different architectures or com-
piler optimizations, or even changes in unrelated code which changes how the compiler optimizes
the section accessing atomic_t variables.

Properly aligned pointers, longs, ints, and chars (and unsigned equivalents) may be atomically loaded
from and stored to in the same sense as described for atomic_read() and atomic_set(). The READ_ONCE()
and WRITE_ONCE() macros should be used to prevent the compiler from using optimizations that might
otherwise optimize accesses out of existence on the one hand, or that might create unsolicited accesses
on the other.
For example consider the following code:

while (a > 0)
do_something();

152 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

If the compiler can prove that do_something() does not store to the variable a, then the compiler is within
its rights transforming this to the following:

tmp = a;
if (a > 0)

for (;;)
do_something();

If you don’t want the compiler to do this (and you probably don’t), then you should use something like the
following:

while (READ_ONCE(a) < 0)
do_something();

Alternatively, you could place a barrier() call in the loop.
For another example, consider the following code:

tmp_a = a;
do_something_with(tmp_a);
do_something_else_with(tmp_a);

If the compiler can prove that do_something_with() does not store to the variable a, then the compiler is
within its rights to manufacture an additional load as follows:

tmp_a = a;
do_something_with(tmp_a);
tmp_a = a;
do_something_else_with(tmp_a);

This could fatally confuse your code if it expected the same value to be passed to do_something_with()
and do_something_else_with().
The compiler would be likely to manufacture this additional load if do_something_with() was an inline
function that made very heavy use of registers: reloading from variable a could save a flush to the stack
and later reload. To prevent the compiler from attacking your code in this manner, write the following:

tmp_a = READ_ONCE(a);
do_something_with(tmp_a);
do_something_else_with(tmp_a);

For a final example, consider the following code, assuming that the variable a is set at boot time before
the second CPU is brought online and never changed later, so that memory barriers are not needed:

if (a)
b = 9;

else
b = 42;

The compiler is within its rights to manufacture an additional store by transforming the above code into
the following:

b = 42;
if (a)

b = 9;

This could come as a fatal surprise to other code running concurrently that expected b to never have the
value 42 if a was zero. To prevent the compiler from doing this, write something like:

if (a)
WRITE_ONCE(b, 9);

else
WRITE_ONCE(b, 42);

1.3. Semantics and Behavior of Atomic and Bitmask Operations 153

The kernel core API manual, Release 4.13.0-rc4+

Don’t even -think- about doing this without proper use of memory barriers, locks, or atomic operations if
variable a can change at runtime!

Warning:

READ_ONCE() OR WRITE_ONCE() DO NOT IMPLY A BARRIER!

Now, we move onto the atomic operation interfaces typically implemented with the help of assembly
code.

void atomic_add(int i, atomic_t *v);
void atomic_sub(int i, atomic_t *v);
void atomic_inc(atomic_t *v);
void atomic_dec(atomic_t *v);

These four routines add and subtract integral values to/from the given atomic_t value. The first two
routines pass explicit integers by which to make the adjustment, whereas the latter two use an implicit
adjustment value of “1”.
One very important aspect of these two routines is that they DO NOT require any explicit memory barriers.
They need only perform the atomic_t counter update in an SMP safe manner.
Next, we have:

int atomic_inc_return(atomic_t *v);
int atomic_dec_return(atomic_t *v);

These routines add 1 and subtract 1, respectively, from the given atomic_t and return the new counter
value after the operation is performed.
Unlike the above routines, it is required that these primitives include explicit memory barriers that are
performed before and after the operation. It must be done such that all memory operations before and
after the atomic operation calls are strongly ordered with respect to the atomic operation itself.
For example, it should behave as if a smp_mb() call existed both before and after the atomic operation.
If the atomic instructions used in an implementation provide explicit memory barrier semantics which
satisfy the above requirements, that is fine as well.
Let’s move on:

int atomic_add_return(int i, atomic_t *v);
int atomic_sub_return(int i, atomic_t *v);

These behave just like atomic_{inc,dec}_return() except that an explicit counter adjustment is given in-
stead of the implicit “1”. This means that like atomic_{inc,dec}_return(), the memory barrier semantics
are required.
Next:

int atomic_inc_and_test(atomic_t *v);
int atomic_dec_and_test(atomic_t *v);

These two routines increment and decrement by 1, respectively, the given atomic counter. They return a
boolean indicating whether the resulting counter value was zero or not.
Again, these primitives provide explicit memory barrier semantics around the atomic operation:

int atomic_sub_and_test(int i, atomic_t *v);

This is identical to atomic_dec_and_test() except that an explicit decrement is given instead of the implicit
“1”. This primitive must provide explicit memory barrier semantics around the operation:

154 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

int atomic_add_negative(int i, atomic_t *v);

The given increment is added to the given atomic counter value. A boolean is return which indicates
whether the resulting counter value is negative. This primitive must provide explicit memory barrier
semantics around the operation.
Then:

int atomic_xchg(atomic_t *v, int new);

This performs an atomic exchange operation on the atomic variable v, setting the given new value. It
returns the old value that the atomic variable v had just before the operation.
atomic_xchg must provide explicit memory barriers around the operation.

int atomic_cmpxchg(atomic_t *v, int old, int new);

This performs an atomic compare exchange operation on the atomic value v, with the given old and new
values. Like all atomic_xxx operations, atomic_cmpxchg will only satisfy its atomicity semantics as long
as all other accesses of *v are performed through atomic_xxx operations.
atomic_cmpxchg must provide explicit memory barriers around the operation, although if the comparison
fails then no memory ordering guarantees are required.
The semantics for atomic_cmpxchg are the same as those defined for ‘cas’ below.
Finally:

int atomic_add_unless(atomic_t *v, int a, int u);

If the atomic value v is not equal to u, this function adds a to v, and returns non zero. If v is equal to u
then it returns zero. This is done as an atomic operation.
atomic_add_unless must provide explicit memory barriers around the operation unless it fails (returns 0).
atomic_inc_not_zero, equivalent to atomic_add_unless(v, 1, 0)
If a caller requires memory barrier semantics around an atomic_t operation which does not return a value,
a set of interfaces are defined which accomplish this:

void smp_mb__before_atomic(void);
void smp_mb__after_atomic(void);

Preceding a non-value-returning read-modify-write atomic operation with smp_mb__before_atomic() and
following it with smp_mb__after_atomic() provides the same full ordering that is provided by value-
returning read-modify-write atomic operations.
For example, smp_mb__before_atomic() can be used like so:

obj->dead = 1;
smp_mb__before_atomic();
atomic_dec(&obj->ref_count);

It makes sure that all memory operations preceding the atomic_dec() call are strongly ordered with respect
to the atomic counter operation. In the above example, it guarantees that the assignment of “1” to obj-
>dead will be globally visible to other cpus before the atomic counter decrement.
Without the explicit smp_mb__before_atomic() call, the implementation could legally allow the atomic
counter update visible to other cpus before the “obj->dead = 1;” assignment.
A missing memory barrier in the cases where they are required by the atomic_t implementation above
can have disastrous results. Here is an example, which follows a pattern occurring frequently in the Linux
kernel. It is the use of atomic counters to implement reference counting, and it works such that once the
counter falls to zero it can be guaranteed that no other entity can be accessing the object:

1.3. Semantics and Behavior of Atomic and Bitmask Operations 155

The kernel core API manual, Release 4.13.0-rc4+

static void obj_list_add(struct obj *obj, struct list_head *head)
{

obj->active = 1;
list_add(&obj->list, head);

}

static void obj_list_del(struct obj *obj)
{

list_del(&obj->list);
obj->active = 0;

}

static void obj_destroy(struct obj *obj)
{

BUG_ON(obj->active);
kfree(obj);

}

struct obj *obj_list_peek(struct list_head *head)
{

if (!list_empty(head)) {
struct obj *obj;

obj = list_entry(head->next, struct obj, list);
atomic_inc(&obj->refcnt);
return obj;

}
return NULL;

}

void obj_poke(void)
{

struct obj *obj;

spin_lock(&global_list_lock);
obj = obj_list_peek(&global_list);
spin_unlock(&global_list_lock);

if (obj) {
obj->ops->poke(obj);
if (atomic_dec_and_test(&obj->refcnt))

obj_destroy(obj);
}

}

void obj_timeout(struct obj *obj)
{

spin_lock(&global_list_lock);
obj_list_del(obj);
spin_unlock(&global_list_lock);

if (atomic_dec_and_test(&obj->refcnt))
obj_destroy(obj);

}

Note:

This is a simplification of the ARP queue management in the generic neighbour discover code of the
networking. Olaf Kirch found a bug wrt. memory barriers in kfree_skb() that exposed the atomic_t
memory barrier requirements quite clearly.

156 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Given the above scheme, it must be the case that the obj->active update done by the obj list deletion be
visible to other processors before the atomic counter decrement is performed.
Otherwise, the counter could fall to zero, yet obj->active would still be set, thus triggering the assertion
in obj_destroy(). The error sequence looks like this:

cpu 0 cpu 1
obj_poke() obj_timeout()
obj = obj_list_peek();
... gains ref to obj, refcnt=2

obj_list_del(obj);
obj->active = 0 ...
... visibility delayed ...
atomic_dec_and_test()
... refcnt drops to 1 ...

atomic_dec_and_test()
... refcount drops to 0 ...
obj_destroy()
BUG() triggers since obj->active
still seen as one

obj->active update visibility occurs

With the memory barrier semantics required of the atomic_t operations which return values, the above se-
quence of memory visibility can never happen. Specifically, in the above case the atomic_dec_and_test()
counter decrement would not become globally visible until the obj->active update does.
As a historical note, 32-bit Sparc used to only allow usage of 24-bits of its atomic_t type. This was because
it used 8 bits as a spinlock for SMP safety. Sparc32 lacked a “compare and swap” type instruction. How-
ever, 32-bit Sparc has since been moved over to a “hash table of spinlocks” scheme, that allows the full
32-bit counter to be realized. Essentially, an array of spinlocks are indexed into based upon the address
of the atomic_t being operated on, and that lock protects the atomic operation. Parisc uses the same
scheme.
Another note is that the atomic_t operations returning values are extremely slow on an old 386.

1.3.2 Atomic Bitmask

We will now cover the atomic bitmask operations. You will find that their SMP and memory barrier seman-
tics are similar in shape and scope to the atomic_t ops above.
Native atomic bit operations are defined to operate on objects aligned to the size of an “unsigned long”
C data type, and are least of that size. The endianness of the bits within each “unsigned long” are the
native endianness of the cpu.

void set_bit(unsigned long nr, volatile unsigned long *addr);
void clear_bit(unsigned long nr, volatile unsigned long *addr);
void change_bit(unsigned long nr, volatile unsigned long *addr);

These routines set, clear, and change, respectively, the bit number indicated by “nr” on the bit mask
pointed to by “ADDR”.
They must execute atomically, yet there are no implicit memory barrier semantics required of these in-
terfaces.

int test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
int test_and_change_bit(unsigned long nr, volatile unsigned long *addr);

Like the above, except that these routines return a boolean which indicates whether the changed bit was
set _BEFORE_ the atomic bit operation.

1.3. Semantics and Behavior of Atomic and Bitmask Operations 157

The kernel core API manual, Release 4.13.0-rc4+

WARNING! It is incredibly important that the value be a boolean, ie. “0” or “1”. Do not try to be fancy and
save a few instructions by declaring the above to return “long” and just returning something like “old_val
& mask” because that will not work.
For one thing, this return value gets truncated to int in many code paths using these interfaces, so on
64-bit if the bit is set in the upper 32-bits then testers will never see that.
One great example of where this problem crops up are the thread_info flag operations. Routines such as
test_and_set_ti_thread_flag() chop the return value into an int. There are other places where things like
this occur as well.
These routines, like the atomic_t counter operations returning values, must provide explicit memory bar-
rier semantics around their execution. All memory operations before the atomic bit operation call must be
made visible globally before the atomic bit operation is made visible. Likewise, the atomic bit operation
must be visible globally before any subsequent memory operation is made visible. For example:

obj->dead = 1;
if (test_and_set_bit(0, &obj->flags))

/* ... */;
obj->killed = 1;

The implementation of test_and_set_bit() must guarantee that “obj->dead = 1;” is visible to cpus before
the atomic memory operation done by test_and_set_bit() becomes visible. Likewise, the atomic memory
operation done by test_and_set_bit() must become visible before “obj->killed = 1;” is visible.
Finally there is the basic operation:

int test_bit(unsigned long nr, __const__ volatile unsigned long *addr);

Which returns a boolean indicating if bit “nr” is set in the bitmask pointed to by “addr”.
If explicit memory barriers are required around {set,clear}_bit() (which do not return a value, and thus
does not need to provide memory barrier semantics), two interfaces are provided:

void smp_mb__before_atomic(void);
void smp_mb__after_atomic(void);

They are used as follows, and are akin to their atomic_t operation brothers:

/* All memory operations before this call will
* be globally visible before the clear_bit().
*/
smp_mb__before_atomic();
clear_bit(...);

/* The clear_bit() will be visible before all
* subsequent memory operations.
*/
smp_mb__after_atomic();

There are two special bitops with lock barrier semantics (acquire/release, same as spinlocks). These
operate in the same way as their non-_lock/unlock postfixed variants, except that they are to pro-
vide acquire/release semantics, respectively. This means they can be used for bit_spin_trylock and
bit_spin_unlock type operations without specifying any more barriers.

int test_and_set_bit_lock(unsigned long nr, unsigned long *addr);
void clear_bit_unlock(unsigned long nr, unsigned long *addr);
void __clear_bit_unlock(unsigned long nr, unsigned long *addr);

The __clear_bit_unlock version is non-atomic, however it still implements unlock barrier semantics. This
can be useful if the lock itself is protecting the other bits in the word.
Finally, there are non-atomic versions of the bitmask operations provided. They are used in contexts
where some other higher-level SMP locking scheme is being used to protect the bitmask, and thus less

158 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

expensive non-atomic operations may be used in the implementation. They have names similar to the
above bitmask operation interfaces, except that two underscores are prefixed to the interface name.

void __set_bit(unsigned long nr, volatile unsigned long *addr);
void __clear_bit(unsigned long nr, volatile unsigned long *addr);
void __change_bit(unsigned long nr, volatile unsigned long *addr);
int __test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
int __test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
int __test_and_change_bit(unsigned long nr, volatile unsigned long *addr);

These non-atomic variants also do not require any special memory barrier semantics.
The routines xchg() and cmpxchg() must provide the same exact memory-barrier semantics as the atomic
and bit operations returning values.

Note:

If someone wants to use xchg(), cmpxchg() and their variants, linux/atomic.h should be included rather
than asm/cmpxchg.h, unless the code is in arch/* and can take care of itself.

Spinlocks and rwlocks have memory barrier expectations as well. The rule to follow is simple:
1. When acquiring a lock, the implementation must make it globally visible before any subsequent
memory operation.

2. When releasing a lock, the implementation must make it such that all previous memory operations
are globally visible before the lock release.

Which finally brings us to _atomic_dec_and_lock(). There is an architecture-neutral version implemented
in lib/dec_and_lock.c, but most platforms will wish to optimize this in assembler.

int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock);

Atomically decrement the given counter, and if will drop to zero atomically acquire the given spinlock and
perform the decrement of the counter to zero. If it does not drop to zero, do nothing with the spinlock.
It is actually pretty simple to get the memory barrier correct. Simply satisfy the spinlock grab require-
ments, which is make sure the spinlock operation is globally visible before any subsequent memory op-
eration.
We can demonstrate this operation more clearly if we define an abstract atomic operation:

long cas(long *mem, long old, long new);

“cas” stands for “compare and swap”. It atomically:
1. Compares “old” with the value currently at “mem”.
2. If they are equal, “new” is written to “mem”.
3. Regardless, the current value at “mem” is returned.

As an example usage, here is what an atomic counter update might look like:

void example_atomic_inc(long *counter)
{

long old, new, ret;

while (1) {
old = *counter;
new = old + 1;

ret = cas(counter, old, new);
if (ret == old)

1.3. Semantics and Behavior of Atomic and Bitmask Operations 159

The kernel core API manual, Release 4.13.0-rc4+

break;
}

}

Let’s use cas() in order to build a pseudo-C atomic_dec_and_lock():

int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock)
{

long old, new, ret;
int went_to_zero;

went_to_zero = 0;
while (1) {

old = atomic_read(atomic);
new = old - 1;
if (new == 0) {

went_to_zero = 1;
spin_lock(lock);

}
ret = cas(atomic, old, new);
if (ret == old)

break;
if (went_to_zero) {

spin_unlock(lock);
went_to_zero = 0;

}
}

return went_to_zero;
}

Now, as far as memory barriers go, as long as spin_lock() strictly orders all subsequent memory operations
(including the cas()) with respect to itself, things will be fine.
Said another way, _atomic_dec_and_lock() must guarantee that a counter dropping to zero is never made
visible before the spinlock being acquired.

Note:

Note that this also means that for the case where the counter is not dropping to zero, there are no
memory ordering requirements.

1.4 CPU hotplug in the Kernel

Date December, 2016
Author Sebastian Andrzej Siewior <bigeasy@linutronix.de>, Rusty Russell

<rusty@rustcorp.com.au>, Srivatsa Vaddagiri <vatsa@in.ibm.com>, Ashok Raj
<ashok.raj@intel.com>, Joel Schopp <jschopp@austin.ibm.com>

1.4.1 Introduction

Modern advances in system architectures have introduced advanced error reporting and correction ca-
pabilities in processors. There are couple OEMS that support NUMA hardware which are hot pluggable as
well, where physical node insertion and removal require support for CPU hotplug.

160 Chapter 1. Core utilities

mailto:bigeasy@linutronix.de
mailto:rusty@rustcorp.com.au
mailto:vatsa@in.ibm.com
mailto:ashok.raj@intel.com
mailto:jschopp@austin.ibm.com

The kernel core API manual, Release 4.13.0-rc4+

Such advances require CPUs available to a kernel to be removed either for provisioning reasons, or for RAS
purposes to keep an offending CPU off system execution path. Hence the need for CPU hotplug support
in the Linux kernel.
A more novel use of CPU-hotplug support is its use today in suspend resume support for SMP. Dual-core
and HT support makes even a laptop run SMP kernels which didn’t support these methods.

1.4.2 Command Line Switches

maxcpus=n Restrict boot time CPUs to n. Say if you have fourV CPUs, using maxcpus=2 will only boot two.
You can choose to bring the other CPUs later online.

nr_cpus=n Restrict the total amount CPUs the kernel will support. If the number supplied here is lower
than the number of physically available CPUs than those CPUs can not be brought online later.

additional_cpus=n Use this to limit hotpluggable CPUs. This option sets cpu_possible_mask =
cpu_present_mask + additional_cpus

This option is limited to the IA64 architecture.
possible_cpus=n This option sets possible_cpus bits in cpu_possible_mask.

This option is limited to the X86 and S390 architecture.
cede_offline={"off","on"} Use this option to disable/enable putting offlined processors to an extended

H_CEDE state on supported pseries platforms. If nothing is specified, cede_offline is set to “on”.
This option is limited to the PowerPC architecture.

cpu0_hotplug Allow to shutdown CPU0.
This option is limited to the X86 architecture.

1.4.3 CPU maps

cpu_possible_mask Bitmap of possible CPUs that can ever be available in the system. This is used to
allocate some boot time memory for per_cpu variables that aren’t designed to grow/shrink as CPUs
are made available or removed. Once set during boot time discovery phase, the map is static, i.e no
bits are added or removed anytime. Trimming it accurately for your system needs upfront can save
some boot time memory.

cpu_online_mask Bitmap of all CPUs currently online. Its set in __cpu_up() after a CPU is available for
kernel scheduling and ready to receive interrupts from devices. Its cleared when a CPU is brought
down using __cpu_disable(), before which all OS services including interrupts are migrated to an-
other target CPU.

cpu_present_mask Bitmap of CPUs currently present in the system. Not all of them may be online. When
physical hotplug is processed by the relevant subsystem (e.g ACPI) can change and new bit either be
added or removed from the map depending on the event is hot-add/hot-remove. There are currently
no locking rules as of now. Typical usage is to init topology during boot, at which time hotplug is
disabled.

You really don’t need to manipulate any of the system CPU maps. They should be read-only for most use.
When setting up per-cpu resources almost always use cpu_possible_mask or for_each_possible_cpu()
to iterate. To macro for_each_cpu() can be used to iterate over a custom CPU mask.
Never use anything other than cpumask_t to represent bitmap of CPUs.

1.4.4 Using CPU hotplug

The kernel option CONFIG_HOTPLUG_CPU needs to be enabled. It is currently available on multiple archi-
tectures including ARM, MIPS, PowerPC and X86. The configuration is done via the sysfs interface:

1.4. CPU hotplug in the Kernel 161

The kernel core API manual, Release 4.13.0-rc4+

$ ls -lh /sys/devices/system/cpu
total 0
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu0
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu1
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu2
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu3
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu4
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu5
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu6
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu7
drwxr-xr-x 2 root root 0 Dec 21 16:33 hotplug
-r--r--r-- 1 root root 4.0K Dec 21 16:33 offline
-r--r--r-- 1 root root 4.0K Dec 21 16:33 online
-r--r--r-- 1 root root 4.0K Dec 21 16:33 possible
-r--r--r-- 1 root root 4.0K Dec 21 16:33 present

The files offline, online, possible, present represent the CPU masks. Each CPU folder contains an online
file which controls the logical on (1) and off (0) state. To logically shutdown CPU4:

$ echo 0 > /sys/devices/system/cpu/cpu4/online
smpboot: CPU 4 is now offline

Once the CPU is shutdown, it will be removed from /proc/interrupts, /proc/cpuinfo and should also not be
shown visible by the top command. To bring CPU4 back online:

$ echo 1 > /sys/devices/system/cpu/cpu4/online
smpboot: Booting Node 0 Processor 4 APIC 0x1

The CPU is usable again. This should work on all CPUs. CPU0 is often special and excluded from CPU
hotplug. On X86 the kernel option CONFIG_BOOTPARAM_HOTPLUG_CPU0 has to be enabled in order to
be able to shutdown CPU0. Alternatively the kernel command option cpu0_hotplug can be used. Some
known dependencies of CPU0:
• Resume from hibernate/suspend. Hibernate/suspend will fail if CPU0 is offline.
• PIC interrupts. CPU0 can’t be removed if a PIC interrupt is detected.

Please let Fenghua Yu <fenghua.yu@intel.com> know if you find any dependencies on CPU0.

1.4.5 The CPU hotplug coordination

The offline case

Once a CPU has been logically shutdown the teardown callbacks of registered hotplug states will be in-
voked, starting with CPUHP_ONLINE and terminating at state CPUHP_OFFLINE. This includes:
• If tasks are frozen due to a suspend operation then cpuhp_tasks_frozen will be set to true.
• All processes are migrated away from this outgoing CPU to new CPUs. The new CPU is chosen from
each process’ current cpuset, which may be a subset of all online CPUs.

• All interrupts targeted to this CPU are migrated to a new CPU
• timers are also migrated to a new CPU
• Once all services are migrated, kernel calls an arch specific routine __cpu_disable() to perform
arch specific cleanup.

Using the hotplug API

It is possible to receive notifications once a CPU is offline or onlined. This might be important to certain
drivers which need to perform some kind of setup or clean up functions based on the number of available

162 Chapter 1. Core utilities

mailto:fenghua.yu@intel.com

The kernel core API manual, Release 4.13.0-rc4+

CPUs:

#include <linux/cpuhotplug.h>

ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "X/Y:online",
Y_online, Y_prepare_down);

X is the subsystem and Y the particular driver. The Y_online callback will be invoked during registration
on all online CPUs. If an error occurs during the online callback the Y_prepare_down callback will be
invoked on all CPUs on which the online callback was previously invoked. After registration completed,
the Y_online callback will be invoked once a CPU is brought online and Y_prepare_down will be invoked
when a CPU is shutdown. All resources which were previously allocated in Y_online should be released
in Y_prepare_down. The return value ret is negative if an error occurred during the registration process.
Otherwise a positive value is returned which contains the allocated hotplug for dynamically allocated
states (CPUHP_AP_ONLINE_DYN). It will return zero for predefined states.
The callback can be remove by invoking cpuhp_remove_state(). In case of a dynamically allocated state
(CPUHP_AP_ONLINE_DYN) use the returned state. During the removal of a hotplug state the teardown
callback will be invoked.

Multiple instances

If a driver has multiple instances and each instance needs to perform the callback independently then it
is likely that a ‘’multi-state” should be used. First a multi-state state needs to be registered:

ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "X/Y:online,
Y_online, Y_prepare_down);

Y_hp_online = ret;

The cpuhp_setup_state_multi() behaves similar to cpuhp_setup_state() except it prepares the call-
backs for a multi state and does not invoke the callbacks. This is a one time setup. Once a new instance
is allocated, you need to register this new instance:

ret = cpuhp_state_add_instance(Y_hp_online, &d->node);

This function will add this instance to your previously allocated Y_hp_online state and invoke the previously
registered callback (Y_online) on all online CPUs. The node element is a struct hlist_node member of
your per-instance data structure.
On removal of the instance: :: cpuhp_state_remove_instance(Y_hp_online, &d->node)
should be invoked which will invoke the teardown callback on all online CPUs.

Manual setup

Usually it is handy to invoke setup and teardown callbacks on registration or removal of a state because
usually the operation needs to performed once a CPU goes online (offline) and during initial setup (shut-
down) of the driver. However each registration and removal function is also available with a _nocalls
suffix which does not invoke the provided callbacks if the invocation of the callbacks is not desired. Dur-
ing the manual setup (or teardown) the functions get_online_cpus() and put_online_cpus() should
be used to inhibit CPU hotplug operations.

The ordering of the events

The hotplug states are defined in include/linux/cpuhotplug.h:
• The states CPUHP_OFFLINE … CPUHP_AP_OFFLINE are invoked before the CPU is up.

1.4. CPU hotplug in the Kernel 163

The kernel core API manual, Release 4.13.0-rc4+

• The states CPUHP_AP_OFFLINE … CPUHP_AP_ONLINE are invoked just the after the CPU has been
brought up. The interrupts are off and the scheduler is not yet active on this CPU. Starting with
CPUHP_AP_OFFLINE the callbacks are invoked on the target CPU.

• The states between CPUHP_AP_ONLINE_DYN and CPUHP_AP_ONLINE_DYN_END are reserved for the
dynamic allocation.

• The states are invoked in the reverse order on CPU shutdown starting with CPUHP_ONLINE and
stopping at CPUHP_OFFLINE. Here the callbacks are invoked on the CPU that will be shutdown until
CPUHP_AP_OFFLINE.

A dynamically allocated state via CPUHP_AP_ONLINE_DYN is often enough. However if an earlier invocation
during the bring up or shutdown is required then an explicit state should be acquired. An explicit state
might also be required if the hotplug event requires specific ordering in respect to another hotplug event.

1.4.6 Testing of hotplug states

One way to verify whether a custom state is working as expected or not is to shutdown a CPU and then
put it online again. It is also possible to put the CPU to certain state (for instance CPUHP_AP_ONLINE) and
then go back to CPUHP_ONLINE. This would simulate an error one state after CPUHP_AP_ONLINE which
would lead to rollback to the online state.
All registered states are enumerated in /sys/devices/system/cpu/hotplug/states:

$ tail /sys/devices/system/cpu/hotplug/states
138: mm/vmscan:online
139: mm/vmstat:online
140: lib/percpu_cnt:online
141: acpi/cpu-drv:online
142: base/cacheinfo:online
143: virtio/net:online
144: x86/mce:online
145: printk:online
168: sched:active
169: online

To rollback CPU4 to lib/percpu_cnt:online and back online just issue:

$ cat /sys/devices/system/cpu/cpu4/hotplug/state
169
$ echo 140 > /sys/devices/system/cpu/cpu4/hotplug/target
$ cat /sys/devices/system/cpu/cpu4/hotplug/state
140

It is important to note that the teardown callbac of state 140 have been invoked. And now get back online:

$ echo 169 > /sys/devices/system/cpu/cpu4/hotplug/target
$ cat /sys/devices/system/cpu/cpu4/hotplug/state
169

With trace events enabled, the individual steps are visible, too:

TASK-PID CPU# TIMESTAMP FUNCTION
| | | | |

bash-394 [001] 22.976: cpuhp_enter: cpu: 0004 target: 140 step: 169 (cpuhp_kick_ap_work)
cpuhp/4-31 [004] 22.977: cpuhp_enter: cpu: 0004 target: 140 step: 168 (sched_cpu_deactivate)
cpuhp/4-31 [004] 22.990: cpuhp_exit: cpu: 0004 state: 168 step: 168 ret: 0
cpuhp/4-31 [004] 22.991: cpuhp_enter: cpu: 0004 target: 140 step: 144 (mce_cpu_pre_down)
cpuhp/4-31 [004] 22.992: cpuhp_exit: cpu: 0004 state: 144 step: 144 ret: 0
cpuhp/4-31 [004] 22.993: cpuhp_multi_enter: cpu: 0004 target: 140 step: 143 (virtnet_cpu_
↪→down_prep)
cpuhp/4-31 [004] 22.994: cpuhp_exit: cpu: 0004 state: 143 step: 143 ret: 0

164 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

cpuhp/4-31 [004] 22.995: cpuhp_enter: cpu: 0004 target: 140 step: 142 (cacheinfo_cpu_pre_
↪→down)
cpuhp/4-31 [004] 22.996: cpuhp_exit: cpu: 0004 state: 142 step: 142 ret: 0

bash-394 [001] 22.997: cpuhp_exit: cpu: 0004 state: 140 step: 169 ret: 0
bash-394 [005] 95.540: cpuhp_enter: cpu: 0004 target: 169 step: 140 (cpuhp_kick_ap_work)

cpuhp/4-31 [004] 95.541: cpuhp_enter: cpu: 0004 target: 169 step: 141 (acpi_soft_cpu_online)
cpuhp/4-31 [004] 95.542: cpuhp_exit: cpu: 0004 state: 141 step: 141 ret: 0
cpuhp/4-31 [004] 95.543: cpuhp_enter: cpu: 0004 target: 169 step: 142 (cacheinfo_cpu_online)
cpuhp/4-31 [004] 95.544: cpuhp_exit: cpu: 0004 state: 142 step: 142 ret: 0
cpuhp/4-31 [004] 95.545: cpuhp_multi_enter: cpu: 0004 target: 169 step: 143 (virtnet_cpu_
↪→online)
cpuhp/4-31 [004] 95.546: cpuhp_exit: cpu: 0004 state: 143 step: 143 ret: 0
cpuhp/4-31 [004] 95.547: cpuhp_enter: cpu: 0004 target: 169 step: 144 (mce_cpu_online)
cpuhp/4-31 [004] 95.548: cpuhp_exit: cpu: 0004 state: 144 step: 144 ret: 0
cpuhp/4-31 [004] 95.549: cpuhp_enter: cpu: 0004 target: 169 step: 145 (console_cpu_notify)
cpuhp/4-31 [004] 95.550: cpuhp_exit: cpu: 0004 state: 145 step: 145 ret: 0
cpuhp/4-31 [004] 95.551: cpuhp_enter: cpu: 0004 target: 169 step: 168 (sched_cpu_activate)
cpuhp/4-31 [004] 95.552: cpuhp_exit: cpu: 0004 state: 168 step: 168 ret: 0

bash-394 [005] 95.553: cpuhp_exit: cpu: 0004 state: 169 step: 140 ret: 0

As it an be seen, CPU4 went down until timestamp 22.996 and then back up until 95.552. All invoked
callbacks including their return codes are visible in the trace.

1.4.7 Architecture’s requirements

The following functions and configurations are required:
CONFIG_HOTPLUG_CPU This entry needs to be enabled in Kconfig
__cpu_up() Arch interface to bring up a CPU
__cpu_disable() Arch interface to shutdown a CPU, no more interrupts can be handled by the kernel

after the routine returns. This includes the shutdown of the timer.
__cpu_die() This actually supposed to ensure death of the CPU. Actually look at some example code in

other arch that implement CPU hotplug. The processor is taken down from the idle() loop for that
specific architecture. __cpu_die() typically waits for some per_cpu state to be set, to ensure the
processor dead routine is called to be sure positively.

1.4.8 User Space Notification

After CPU successfully onlined or offline udev events are sent. A udev rule like:

SUBSYSTEM=="cpu", DRIVERS=="processor", DEVPATH=="/devices/system/cpu/*", RUN+="the_hotplug_
↪→receiver.sh"

will receive all events. A script like:

#!/bin/sh

if ["${ACTION}" = "offline"]
then

echo "CPU ${DEVPATH##*/} offline"

elif ["${ACTION}" = "online"]
then

echo "CPU ${DEVPATH##*/} online"

fi

can process the event further.

1.4. CPU hotplug in the Kernel 165

The kernel core API manual, Release 4.13.0-rc4+

1.4.9 Kernel Inline Documentations Reference

int cpuhp_setup_state(enum cpuhp_state state, const char * name, int (*startup) (unsigned
int cpu, int (*teardown) (unsigned int cpu)

Setup hotplug state callbacks with calling the callbacks
Parameters
enum cpuhp_state state The state for which the calls are installed
const char * name Name of the callback (will be used in debug output)
int (*)(unsigned int cpu) startup startup callback function
int (*)(unsigned int cpu) teardown teardown callback function
Description
Installs the callback functions and invokes the startup callback on the present cpus which have already
reached the state.
int cpuhp_setup_state_nocalls(enum cpuhp_state state, const char * name, int (*startup) (un-

signed int cpu, int (*teardown) (unsigned int cpu)
Setup hotplug state callbacks without calling the callbacks

Parameters
enum cpuhp_state state The state for which the calls are installed
const char * name Name of the callback.
int (*)(unsigned int cpu) startup startup callback function
int (*)(unsigned int cpu) teardown teardown callback function
Description
Same as cpuhp_setup_state except that no calls are executed are invoked during installation of this
callback. NOP if SMP=n or HOTPLUG_CPU=n.
int cpuhp_setup_state_multi(enum cpuhp_state state, const char * name, int (*startup) (unsigned

int cpu, struct hlist_node *node, int (*teardown) (unsigned int cpu,
struct hlist_node *node)

Add callbacks for multi state
Parameters
enum cpuhp_state state The state for which the calls are installed
const char * name Name of the callback.
int (*)(unsigned int cpu,struct hlist_node *node) startup startup callback function
int (*)(unsigned int cpu,struct hlist_node *node) teardown teardown callback function
Description
Sets the internal multi_instance flag and prepares a state to work as amulti instance callback. No callbacks
are invoked at this point. The callbacks are invoked once an instance for this state are registered via
cpuhp_state_add_instance or cpuhp_state_add_instance_nocalls.
int cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node * node)

Add an instance for a state and invoke startup callback.
Parameters
enum cpuhp_state state The state for which the instance is installed
struct hlist_node * node The node for this individual state.

166 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
Installs the instance for the state and invokes the startup callback on the present cpus which
have already reached the state. The state must have been earlier marked as multi-instance by
cpuhp_setup_state_multi.
int cpuhp_state_add_instance_nocalls(enum cpuhp_state state, struct hlist_node * node)

Add an instance for a state without invoking the startup callback.
Parameters
enum cpuhp_state state The state for which the instance is installed
struct hlist_node * node The node for this individual state.
Description
Installs the instance for the state The state must have been earlier marked as multi-instance by
cpuhp_setup_state_multi.
void cpuhp_remove_state(enum cpuhp_state state)

Remove hotplug state callbacks and invoke the teardown
Parameters
enum cpuhp_state state The state for which the calls are removed
Description
Removes the callback functions and invokes the teardown callback on the present cpus which have already
reached the state.
void cpuhp_remove_state_nocalls(enum cpuhp_state state)

Remove hotplug state callbacks without invoking teardown
Parameters
enum cpuhp_state state The state for which the calls are removed
void cpuhp_remove_multi_state(enum cpuhp_state state)

Remove hotplug multi state callback
Parameters
enum cpuhp_state state The state for which the calls are removed
Description
Removes the callback functions from a multi state. This is the reverse of cpuhp_setup_state_multi().
All instances should have been removed before invoking this function.
int cpuhp_state_remove_instance(enum cpuhp_state state, struct hlist_node * node)

Remove hotplug instance from state and invoke the teardown callback
Parameters
enum cpuhp_state state The state from which the instance is removed
struct hlist_node * node The node for this individual state.
Description
Removes the instance and invokes the teardown callback on the present cpus which have already reached
the state.
int cpuhp_state_remove_instance_nocalls(enum cpuhp_state state, struct hlist_node * node)

Remove hotplug instance from state without invoking the reatdown callback
Parameters
enum cpuhp_state state The state from which the instance is removed
struct hlist_node * node The node for this individual state.

1.4. CPU hotplug in the Kernel 167

The kernel core API manual, Release 4.13.0-rc4+

Description
Removes the instance without invoking the teardown callback.

1.5 Semantics and Behavior of Local Atomic Operations

Author Mathieu Desnoyers
This document explains the purpose of the local atomic operations, how to implement them for any given
architecture and shows how they can be used properly. It also stresses on the precautions that must be
taken when reading those local variables across CPUs when the order of memory writes matters.

Note:

Note that local_t based operations are not recommended for general kernel use. Please use the
this_cpu operations instead unless there is really a special purpose. Most uses of local_t in the
kernel have been replaced by this_cpu operations. this_cpu operations combine the relocation with
the local_t like semantics in a single instruction and yield more compact and faster executing code.

1.5.1 Purpose of local atomic operations

Local atomic operations are meant to provide fast and highly reentrant per CPU counters. They minimize
the performance cost of standard atomic operations by removing the LOCK prefix and memory barriers
normally required to synchronize across CPUs.
Having fast per CPU atomic counters is interesting in many cases: it does not require disabling interrupts
to protect from interrupt handlers and it permits coherent counters in NMI handlers. It is especially useful
for tracing purposes and for various performance monitoring counters.
Local atomic operations only guarantee variable modification atomicity wrt the CPU which owns the data.
Therefore, care must taken to make sure that only one CPU writes to the local_t data. This is done
by using per cpu data and making sure that we modify it from within a preemption safe context. It is
however permitted to read local_t data from any CPU: it will then appear to be written out of order wrt
other memory writes by the owner CPU.

1.5.2 Implementation for a given architecture

It can be done by slightly modifying the standard atomic operations: only their UP variant must be kept.
It typically means removing LOCK prefix (on i386 and x86_64) and any SMP synchronization barrier. If the
architecture does not have a different behavior between SMP and UP, including asm-generic/local.h in
your architecture’s local.h is sufficient.
The local_t type is defined as an opaque signed long by embedding an atomic_long_t inside a struc-
ture. This is made so a cast from this type to a long fails. The definition looks like:

typedef struct { atomic_long_t a; } local_t;

1.5.3 Rules to follow when using local atomic operations

• Variables touched by local ops must be per cpu variables.
• Only the CPU owner of these variables must write to them.
• This CPU can use local ops from any context (process, irq, softirq, nmi, ...) to update its local_t
variables.

168 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

• Preemption (or interrupts) must be disabled when using local ops in process context to make sure
the process won’t be migrated to a different CPU between getting the per-cpu variable and doing the
actual local op.

• When using local ops in interrupt context, no special care must be taken on a mainline kernel, since
they will run on the local CPU with preemption already disabled. I suggest, however, to explicitly
disable preemption anyway to make sure it will still work correctly on -rt kernels.

• Reading the local cpu variable will provide the current copy of the variable.
• Reads of these variables can be done from any CPU, because updates to “long”, aligned, variables
are always atomic. Since no memory synchronization is done by the writer CPU, an outdated copy
of the variable can be read when reading some other cpu’s variables.

1.5.4 How to use local atomic operations

#include <linux/percpu.h>
#include <asm/local.h>

static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0);

1.5.5 Counting

Counting is done on all the bits of a signed long.
In preemptible context, use get_cpu_var() and put_cpu_var() around local atomic operations: it makes
sure that preemption is disabled around write access to the per cpu variable. For instance:

local_inc(&get_cpu_var(counters));
put_cpu_var(counters);

If you are already in a preemption-safe context, you can use this_cpu_ptr() instead:

local_inc(this_cpu_ptr(&counters));

1.5.6 Reading the counters

Those local counters can be read from foreign CPUs to sum the count. Note that the data seen by local_read
across CPUs must be considered to be out of order relatively to other memory writes happening on the
CPU that owns the data:

long sum = 0;
for_each_online_cpu(cpu)

sum += local_read(&per_cpu(counters, cpu));

If you want to use a remote local_read to synchronize access to a resource between CPUs, explicit
smp_wmb() and smp_rmb()memory barriers must be used respectively on the writer and the reader CPUs.
It would be the case if you use the local_t variable as a counter of bytes written in a buffer: there should
be a smp_wmb() between the buffer write and the counter increment and also a smp_rmb() between the
counter read and the buffer read.
Here is a sample module which implements a basic per cpu counter using local.h:

/* test-local.c
*
* Sample module for local.h usage.
*/

1.5. Semantics and Behavior of Local Atomic Operations 169

The kernel core API manual, Release 4.13.0-rc4+

#include <asm/local.h>
#include <linux/module.h>
#include <linux/timer.h>

static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0);

static struct timer_list test_timer;

/* IPI called on each CPU. */
static void test_each(void *info)
{

/* Increment the counter from a non preemptible context */
printk("Increment on cpu %d\n", smp_processor_id());
local_inc(this_cpu_ptr(&counters));

/* This is what incrementing the variable would look like within a
* preemptible context (it disables preemption) :
*
* local_inc(&get_cpu_var(counters));
* put_cpu_var(counters);
*/

}

static void do_test_timer(unsigned long data)
{

int cpu;

/* Increment the counters */
on_each_cpu(test_each, NULL, 1);
/* Read all the counters */
printk("Counters read from CPU %d\n", smp_processor_id());
for_each_online_cpu(cpu) {

printk("Read : CPU %d, count %ld\n", cpu,
local_read(&per_cpu(counters, cpu)));

}
del_timer(&test_timer);
test_timer.expires = jiffies + 1000;
add_timer(&test_timer);

}

static int __init test_init(void)
{

/* initialize the timer that will increment the counter */
init_timer(&test_timer);
test_timer.function = do_test_timer;
test_timer.expires = jiffies + 1;
add_timer(&test_timer);

return 0;
}

static void __exit test_exit(void)
{

del_timer_sync(&test_timer);
}

module_init(test_init);
module_exit(test_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mathieu Desnoyers");
MODULE_DESCRIPTION("Local Atomic Ops");

170 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

1.6 Concurrency Managed Workqueue (cmwq)

Date September, 2010
Author Tejun Heo <tj@kernel.org>
Author Florian Mickler <florian@mickler.org>

1.6.1 Introduction

There are many cases where an asynchronous process execution context is needed and the workqueue
(wq) API is the most commonly used mechanism for such cases.
When such an asynchronous execution context is needed, a work item describing which function to exe-
cute is put on a queue. An independent thread serves as the asynchronous execution context. The queue
is called workqueue and the thread is called worker.
While there are work items on the workqueue the worker executes the functions associated with the work
items one after the other. When there is no work item left on the workqueue the worker becomes idle.
When a new work item gets queued, the worker begins executing again.

1.6.2 Why cmwq?

In the original wq implementation, a multi threaded (MT) wq had one worker thread per CPU and a single
threaded (ST) wq had one worker thread system-wide. A single MT wq needed to keep around the same
number of workers as the number of CPUs. The kernel grew a lot of MT wq users over the years and
with the number of CPU cores continuously rising, some systems saturated the default 32k PID space just
booting up.
Although MT wq wasted a lot of resource, the level of concurrency provided was unsatisfactory. The
limitation was common to both ST and MT wq albeit less severe on MT. Each wq maintained its own
separate worker pool. A MT wq could provide only one execution context per CPU while a ST wq one for
the whole system. Work items had to compete for those very limited execution contexts leading to various
problems including proneness to deadlocks around the single execution context.
The tension between the provided level of concurrency and resource usage also forced its users to make
unnecessary tradeoffs like libata choosing to use ST wq for polling PIOs and accepting an unnecessary
limitation that no two polling PIOs can progress at the same time. As MT wq don’t provide much better
concurrency, users which require higher level of concurrency, like async or fscache, had to implement
their own thread pool.
Concurrency Managed Workqueue (cmwq) is a reimplementation of wq with focus on the following goals.
• Maintain compatibility with the original workqueue API.
• Use per-CPU unified worker pools shared by all wq to provide flexible level of concurrency on demand
without wasting a lot of resource.

• Automatically regulate worker pool and level of concurrency so that the API users don’t need to worry
about such details.

1.6.3 The Design

In order to ease the asynchronous execution of functions a new abstraction, the work item, is introduced.
A work item is a simple struct that holds a pointer to the function that is to be executed asynchronously.
Whenever a driver or subsystem wants a function to be executed asynchronously it has to set up a work
item pointing to that function and queue that work item on a workqueue.

1.6. Concurrency Managed Workqueue (cmwq) 171

mailto:tj@kernel.org
mailto:florian@mickler.org

The kernel core API manual, Release 4.13.0-rc4+

Special purpose threads, called worker threads, execute the functions off of the queue, one after the other.
If no work is queued, the worker threads become idle. These worker threads are managed in so called
worker-pools.
The cmwq design differentiates between the user-facing workqueues that subsystems and drivers queue
work items on and the backend mechanism which manages worker-pools and processes the queued work
items.
There are two worker-pools, one for normal work items and the other for high priority ones, for each
possible CPU and some extra worker-pools to serve work items queued on unbound workqueues - the
number of these backing pools is dynamic.
Subsystems and drivers can create and queue work items through special workqueue API functions as
they see fit. They can influence some aspects of the way the work items are executed by setting flags on
the workqueue they are putting the work item on. These flags include things like CPU locality, concurrency
limits, priority and more. To get a detailed overview refer to the API description of alloc_workqueue()
below.
When a work item is queued to a workqueue, the target worker-pool is determined according to the
queue parameters and workqueue attributes and appended on the shared worklist of the worker-pool. For
example, unless specifically overridden, a work item of a bound workqueue will be queued on the worklist
of either normal or highpri worker-pool that is associated to the CPU the issuer is running on.
For any worker pool implementation, managing the concurrency level (how many execution contexts are
active) is an important issue. cmwq tries to keep the concurrency at a minimal but sufficient level. Minimal
to save resources and sufficient in that the system is used at its full capacity.
Each worker-pool bound to an actual CPU implements concurrency management by hooking into the
scheduler. The worker-pool is notified whenever an active worker wakes up or sleeps and keeps track of
the number of the currently runnable workers. Generally, work items are not expected to hog a CPU and
consume many cycles. That means maintaining just enough concurrency to prevent work processing from
stalling should be optimal. As long as there are one or more runnable workers on the CPU, the worker-pool
doesn’t start execution of a new work, but, when the last running worker goes to sleep, it immediately
schedules a new worker so that the CPU doesn’t sit idle while there are pending work items. This allows
using a minimal number of workers without losing execution bandwidth.
Keeping idle workers around doesn’t cost other than the memory space for kthreads, so cmwq holds onto
idle ones for a while before killing them.
For unbound workqueues, the number of backing pools is dynamic. Unbound workqueue can be assigned
custom attributes using apply_workqueue_attrs() and workqueue will automatically create backing
worker pools matching the attributes. The responsibility of regulating concurrency level is on the users.
There is also a flag to mark a bound wq to ignore the concurrency management. Please refer to the API
section for details.
Forward progress guarantee relies on that workers can be created when more execution contexts are
necessary, which in turn is guaranteed through the use of rescue workers. All work items which might be
used on code paths that handle memory reclaim are required to be queued on wq’s that have a rescue-
worker reserved for execution under memory pressure. Else it is possible that the worker-pool deadlocks
waiting for execution contexts to free up.

1.6.4 Application Programming Interface (API)

alloc_workqueue() allocates a wq. The original create_*workqueue() functions are deprecated
and scheduled for removal. alloc_workqueue() takes three arguments - @‘‘name‘‘, @flags and
@max_active. @name is the name of the wq and also used as the name of the rescuer thread if there
is one.
A wq no longer manages execution resources but serves as a domain for forward progress guarantee,
flush and work item attributes. @flags and @max_active control how work items are assigned execution
resources, scheduled and executed.

172 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

flags

WQ_UNBOUND Work items queued to an unbound wq are served by the special worker-pools which host
workers which are not bound to any specific CPU. This makes the wq behave as a simple execution
context provider without concurrency management. The unbound worker-pools try to start execution
of work items as soon as possible. Unbound wq sacrifices locality but is useful for the following cases.
• Wide fluctuation in the concurrency level requirement is expected and using bound wq may end
up creating large number of mostly unused workers across different CPUs as the issuer hops
through different CPUs.

• Long running CPU intensive workloads which can be better managed by the system scheduler.
WQ_FREEZABLE A freezable wq participates in the freeze phase of the system suspend operations. Work

items on the wq are drained and no new work item starts execution until thawed.
WQ_MEM_RECLAIM All wq which might be used in the memory reclaim paths MUST have this flag set. The

wq is guaranteed to have at least one execution context regardless of memory pressure.
WQ_HIGHPRI Work items of a highpri wq are queued to the highpri worker-pool of the target cpu. Highpri

worker-pools are served by worker threads with elevated nice level.
Note that normal and highpri worker-pools don’t interact with each other. Each maintain its separate
pool of workers and implements concurrency management among its workers.

WQ_CPU_INTENSIVE Work items of a CPU intensive wq do not contribute to the concurrency level. In other
words, runnable CPU intensive work items will not prevent other work items in the same worker-pool
from starting execution. This is useful for bound work items which are expected to hog CPU cycles
so that their execution is regulated by the system scheduler.
Although CPU intensive work items don’t contribute to the concurrency level, start of their executions
is still regulated by the concurrency management and runnable non-CPU-intensive work items can
delay execution of CPU intensive work items.
This flag is meaningless for unbound wq.

Note that the flag WQ_NON_REENTRANT no longer exists as all workqueues are now non-reentrant - any work
item is guaranteed to be executed by at most one worker system-wide at any given time.

max_active

@max_active determines the maximum number of execution contexts per CPU which can be assigned to
the work items of a wq. For example, with @max_active of 16, at most 16 work items of the wq can be
executing at the same time per CPU.
Currently, for a bound wq, the maximum limit for @max_active is 512 and the default value used when 0
is specified is 256. For an unbound wq, the limit is higher of 512 and 4 * num_possible_cpus(). These
values are chosen sufficiently high such that they are not the limiting factor while providing protection in
runaway cases.
The number of active work items of a wq is usually regulated by the users of the wq, more specifically, by
how many work items the users may queue at the same time. Unless there is a specific need for throttling
the number of active work items, specifying ‘0’ is recommended.
Some users depend on the strict execution ordering of ST wq. The combination of @max_active of 1 and
WQ_UNBOUND is used to achieve this behavior. Work items on such wq are always queued to the unbound
worker-pools and only one work item can be active at any given time thus achieving the same ordering
property as ST wq.

1.6.5 Example Execution Scenarios

The following example execution scenarios try to illustrate how cmwq behave under different configura-
tions.

1.6. Concurrency Managed Workqueue (cmwq) 173

The kernel core API manual, Release 4.13.0-rc4+

Work items w0, w1, w2 are queued to a bound wq q0 on the same CPU. w0 burns CPU for 5ms
then sleeps for 10ms then burns CPU for 5ms again before finishing. w1 and w2 burn CPU for
5ms then sleep for 10ms.

Ignoring all other tasks, works and processing overhead, and assuming simple FIFO scheduling, the fol-
lowing is one highly simplified version of possible sequences of events with the original wq.

TIME IN MSECS EVENT
0 w0 starts and burns CPU
5 w0 sleeps
15 w0 wakes up and burns CPU
20 w0 finishes
20 w1 starts and burns CPU
25 w1 sleeps
35 w1 wakes up and finishes
35 w2 starts and burns CPU
40 w2 sleeps
50 w2 wakes up and finishes

And with cmwq with @max_active >= 3,

TIME IN MSECS EVENT
0 w0 starts and burns CPU
5 w0 sleeps
5 w1 starts and burns CPU
10 w1 sleeps
10 w2 starts and burns CPU
15 w2 sleeps
15 w0 wakes up and burns CPU
20 w0 finishes
20 w1 wakes up and finishes
25 w2 wakes up and finishes

If @max_active == 2,

TIME IN MSECS EVENT
0 w0 starts and burns CPU
5 w0 sleeps
5 w1 starts and burns CPU
10 w1 sleeps
15 w0 wakes up and burns CPU
20 w0 finishes
20 w1 wakes up and finishes
20 w2 starts and burns CPU
25 w2 sleeps
35 w2 wakes up and finishes

Now, let’s assume w1 and w2 are queued to a different wq q1 which has WQ_CPU_INTENSIVE set,

TIME IN MSECS EVENT
0 w0 starts and burns CPU
5 w0 sleeps
5 w1 and w2 start and burn CPU
10 w1 sleeps
15 w2 sleeps
15 w0 wakes up and burns CPU
20 w0 finishes
20 w1 wakes up and finishes
25 w2 wakes up and finishes

174 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

1.6.6 Guidelines

• Do not forget to use WQ_MEM_RECLAIM if a wq may process work items which are used during memory
reclaim. Each wq with WQ_MEM_RECLAIM set has an execution context reserved for it. If there is
dependency among multiple work items used during memory reclaim, they should be queued to
separate wq each with WQ_MEM_RECLAIM.

• Unless strict ordering is required, there is no need to use ST wq.
• Unless there is a specific need, using 0 for @max_active is recommended. In most use cases, con-
currency level usually stays well under the default limit.

• A wq serves as a domain for forward progress guarantee (WQ_MEM_RECLAIM, flush and work item
attributes. Work items which are not involved in memory reclaim and don’t need to be flushed as a
part of a group of work items, and don’t require any special attribute, can use one of the system wq.
There is no difference in execution characteristics between using a dedicated wq and a system wq.

• Unless work items are expected to consume a huge amount of CPU cycles, using a bound wq is
usually beneficial due to the increased level of locality in wq operations and work item execution.

1.6.7 Debugging

Because the work functions are executed by generic worker threads there are a few tricks needed to shed
some light on misbehaving workqueue users.
Worker threads show up in the process list as:

root 5671 0.0 0.0 0 0 ? S 12:07 0:00 [kworker/0:1]
root 5672 0.0 0.0 0 0 ? S 12:07 0:00 [kworker/1:2]
root 5673 0.0 0.0 0 0 ? S 12:12 0:00 [kworker/0:0]
root 5674 0.0 0.0 0 0 ? S 12:13 0:00 [kworker/1:0]

If kworkers are going crazy (using too much cpu), there are two types of possible problems:
1. Something being scheduled in rapid succession
2. A single work item that consumes lots of cpu cycles

The first one can be tracked using tracing:

$ echo workqueue:workqueue_queue_work > /sys/kernel/debug/tracing/set_event
$ cat /sys/kernel/debug/tracing/trace_pipe > out.txt
(wait a few secs)
^C

If something is busy looping on work queueing, it would be dominating the output and the offender can
be determined with the work item function.
For the second type of problems it should be possible to just check the stack trace of the offending worker
thread.

$ cat /proc/THE_OFFENDING_KWORKER/stack

The work item’s function should be trivially visible in the stack trace.

1.6.8 Kernel Inline Documentations Reference

struct workqueue_attrs
A struct for workqueue attributes.

Definition

1.6. Concurrency Managed Workqueue (cmwq) 175

The kernel core API manual, Release 4.13.0-rc4+

struct workqueue_attrs {
int nice;
cpumask_var_t cpumask;
bool no_numa;

};

Members
nice nice level
cpumask allowed CPUs
no_numa disable NUMA affinity

Unlike other fields, no_numa isn’t a property of a worker_pool. It only modifies how ap-
ply_workqueue_attrs() select pools and thus doesn’t participate in pool hash calculations or equal-
ity comparisons.

Description
This can be used to change attributes of an unbound workqueue.
work_pending(work)

Find out whether a work item is currently pending
Parameters
work The work item in question
delayed_work_pending(w)

Find out whether a delayable work item is currently pending
Parameters
w The work item in question
alloc_workqueue(fmt, flags, max_active, args...)

allocate a workqueue
Parameters
fmt printf format for the name of the workqueue
flags WQ_* flags
max_active max in-flight work items, 0 for default
args... args for fmt
Description
Allocate a workqueue with the specified parameters. For detailed information on WQ_* flags, please refer
to Documentation/core-api/workqueue.rst.
The __lock_name macro dance is to guarantee that single lock_class_key doesn’t end up with different
namesm, which isn’t allowed by lockdep.
Return
Pointer to the allocated workqueue on success, NULL on failure.
alloc_ordered_workqueue(fmt, flags, args...)

allocate an ordered workqueue
Parameters
fmt printf format for the name of the workqueue
flags WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
args... args for fmt

176 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
Allocate an ordered workqueue. An ordered workqueue executes at most one work item at any given time
in the queued order. They are implemented as unbound workqueues with max_active of one.
Return
Pointer to the allocated workqueue on success, NULL on failure.
bool queue_work(struct workqueue_struct * wq, struct work_struct * work)

queue work on a workqueue
Parameters
struct workqueue_struct * wq workqueue to use
struct work_struct * work work to queue
Description
Returns false if work was already on a queue, true otherwise.
We queue the work to the CPU on which it was submitted, but if the CPU dies it can be processed by
another CPU.
bool queue_delayed_work(struct workqueue_struct * wq, struct delayed_work * dwork, unsigned

long delay)
queue work on a workqueue after delay

Parameters
struct workqueue_struct * wq workqueue to use
struct delayed_work * dwork delayable work to queue
unsigned long delay number of jiffies to wait before queueing
Description
Equivalent to queue_delayed_work_on() but tries to use the local CPU.
bool mod_delayed_work(struct workqueue_struct * wq, struct delayed_work * dwork, unsigned

long delay)
modify delay of or queue a delayed work

Parameters
struct workqueue_struct * wq workqueue to use
struct delayed_work * dwork work to queue
unsigned long delay number of jiffies to wait before queueing
Description
mod_delayed_work_on() on local CPU.
bool schedule_work_on(int cpu, struct work_struct * work)

put work task on a specific cpu
Parameters
int cpu cpu to put the work task on
struct work_struct * work job to be done
Description
This puts a job on a specific cpu
bool schedule_work(struct work_struct * work)

put work task in global workqueue
Parameters

1.6. Concurrency Managed Workqueue (cmwq) 177

The kernel core API manual, Release 4.13.0-rc4+

struct work_struct * work job to be done
Description
Returns false if work was already on the kernel-global workqueue and true otherwise.
This puts a job in the kernel-global workqueue if it was not already queued and leaves it in the same
position on the kernel-global workqueue otherwise.
void flush_scheduled_work(void)

ensure that any scheduled work has run to completion.
Parameters
void no arguments
Description
Forces execution of the kernel-global workqueue and blocks until its completion.
Think twice before calling this function! It’s very easy to get into trouble if you don’t take great care.
Either of the following situations will lead to deadlock:

One of the work items currently on the workqueue needs to acquire a lock held by your code or
its caller.
Your code is running in the context of a work routine.

They will be detected by lockdep when they occur, but the first might not occur very often. It depends on
what work items are on the workqueue and what locks they need, which you have no control over.
In most situations flushing the entire workqueue is overkill; you merely need to know that a particular
work item isn’t queued and isn’t running. In such cases you should use cancel_delayed_work_sync()
or cancel_work_sync() instead.
bool schedule_delayed_work_on(int cpu, struct delayed_work * dwork, unsigned long delay)

queue work in global workqueue on CPU after delay
Parameters
int cpu cpu to use
struct delayed_work * dwork job to be done
unsigned long delay number of jiffies to wait
Description
After waiting for a given time this puts a job in the kernel-global workqueue on the specified CPU.
bool schedule_delayed_work(struct delayed_work * dwork, unsigned long delay)

put work task in global workqueue after delay
Parameters
struct delayed_work * dwork job to be done
unsigned long delay number of jiffies to wait or 0 for immediate execution
Description
After waiting for a given time this puts a job in the kernel-global workqueue.

1.7 Linux generic IRQ handling

Copyright © 2005-2010: Thomas Gleixner
Copyright © 2005-2006: Ingo Molnar

178 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

1.7.1 Introduction

The generic interrupt handling layer is designed to provide a complete abstraction of interrupt handling
for device drivers. It is able to handle all the different types of interrupt controller hardware. Device
drivers use generic API functions to request, enable, disable and free interrupts. The drivers do not have
to know anything about interrupt hardware details, so they can be used on different platforms without
code changes.
This documentation is provided to developers who want to implement an interrupt subsystem based for
their architecture, with the help of the generic IRQ handling layer.

1.7.2 Rationale

The original implementation of interrupt handling in Linux uses the __do_IRQ() super-handler, which is
able to deal with every type of interrupt logic.
Originally, Russell King identified different types of handlers to build a quite universal set for the ARM
interrupt handler implementation in Linux 2.5/2.6. He distinguished between:
• Level type
• Edge type
• Simple type

During the implementation we identified another type:
• Fast EOI type

In the SMP world of the __do_IRQ() super-handler another type was identified:
• Per CPU type

This split implementation of high-level IRQ handlers allows us to optimize the flow of the interrupt handling
for each specific interrupt type. This reduces complexity in that particular code path and allows the
optimized handling of a given type.
The original general IRQ implementation used hw_interrupt_type structures and their ->ack, ->end [etc.]
callbacks to differentiate the flow control in the super-handler. This leads to a mix of flow logic and low-
level hardware logic, and it also leads to unnecessary code duplication: for example in i386, there is an
ioapic_level_irq and an ioapic_edge_irq IRQ-type which share many of the low-level details but have
different flow handling.
A more natural abstraction is the clean separation of the ‘irq flow’ and the ‘chip details’.
Analysing a couple of architecture’s IRQ subsystem implementations reveals that most of them can use a
generic set of ‘irq flow’ methods and only need to add the chip-level specific code. The separation is also
valuable for (sub)architectures which need specific quirks in the IRQ flow itself but not in the chip details
- and thus provides a more transparent IRQ subsystem design.
Each interrupt descriptor is assigned its own high-level flow handler, which is normally one of the generic
implementations. (This high-level flow handler implementation also makes it simple to provide demulti-
plexing handlers which can be found in embedded platforms on various architectures.)
The separation makes the generic interrupt handling layer more flexible and extensible. For example,
an (sub)architecture can use a generic IRQ-flow implementation for ‘level type’ interrupts and add a
(sub)architecture specific ‘edge type’ implementation.
To make the transition to the new model easier and prevent the breakage of existing implementations,
the __do_IRQ() super-handler is still available. This leads to a kind of duality for the time being. Over
time the new model should be used in more and more architectures, as it enables smaller and cleaner
IRQ subsystems. It’s deprecated for three years now and about to be removed.

1.7. Linux generic IRQ handling 179

The kernel core API manual, Release 4.13.0-rc4+

1.7.3 Known Bugs And Assumptions

None (knock on wood).

1.7.4 Abstraction layers

There are three main levels of abstraction in the interrupt code:
1. High-level driver API
2. High-level IRQ flow handlers
3. Chip-level hardware encapsulation

Interrupt control flow

Each interrupt is described by an interrupt descriptor structure irq_desc. The interrupt is referenced by
an ‘unsigned int’ numeric value which selects the corresponding interrupt description structure in the de-
scriptor structures array. The descriptor structure contains status information and pointers to the interrupt
flow method and the interrupt chip structure which are assigned to this interrupt.
Whenever an interrupt triggers, the low-level architecture code calls into the generic interrupt code by
calling desc->handle_irq(). This high-level IRQ handling function only uses desc->irq_data.chip primi-
tives referenced by the assigned chip descriptor structure.

High-level Driver API

The high-level Driver API consists of following functions:
• request_irq()

• free_irq()

• disable_irq()

• enable_irq()

• disable_irq_nosync() (SMP only)
• synchronize_irq() (SMP only)
• irq_set_irq_type()

• irq_set_irq_wake()

• irq_set_handler_data()

• irq_set_chip()

• irq_set_chip_data()

See the autogenerated function documentation for details.

High-level IRQ flow handlers

The generic layer provides a set of pre-defined irq-flow methods:
• handle_level_irq()

• handle_edge_irq()

• handle_fasteoi_irq()

• handle_simple_irq()

• handle_percpu_irq()

180 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

• handle_edge_eoi_irq()

• handle_bad_irq()

The interrupt flow handlers (either pre-defined or architecture specific) are assigned to specific interrupts
by the architecture either during bootup or during device initialization.

Default flow implementations

Helper functions

The helper functions call the chip primitives and are used by the default flow implementations. The
following helper functions are implemented (simplified excerpt):

default_enable(struct irq_data *data)
{

desc->irq_data.chip->irq_unmask(data);
}

default_disable(struct irq_data *data)
{

if (!delay_disable(data))
desc->irq_data.chip->irq_mask(data);

}

default_ack(struct irq_data *data)
{

chip->irq_ack(data);
}

default_mask_ack(struct irq_data *data)
{

if (chip->irq_mask_ack) {
chip->irq_mask_ack(data);

} else {
chip->irq_mask(data);
chip->irq_ack(data);

}
}

noop(struct irq_data *data))
{
}

Default flow handler implementations

Default Level IRQ flow handler

handle_level_irq provides a generic implementation for level-triggered interrupts.
The following control flow is implemented (simplified excerpt):

:c:func:`desc->irq_data.chip->irq_mask_ack`;
handle_irq_event(desc->action);
:c:func:`desc->irq_data.chip->irq_unmask`;

1.7. Linux generic IRQ handling 181

The kernel core API manual, Release 4.13.0-rc4+

Default Fast EOI IRQ flow handler

handle_fasteoi_irq provides a generic implementation for interrupts, which only need an EOI at the end of
the handler.
The following control flow is implemented (simplified excerpt):

handle_irq_event(desc->action);
:c:func:`desc->irq_data.chip->irq_eoi`;

Default Edge IRQ flow handler

handle_edge_irq provides a generic implementation for edge-triggered interrupts.
The following control flow is implemented (simplified excerpt):

if (desc->status & running) {
:c:func:`desc->irq_data.chip->irq_mask_ack`;
desc->status |= pending | masked;
return;

}
:c:func:`desc->irq_data.chip->irq_ack`;
desc->status |= running;
do {

if (desc->status & masked)
:c:func:`desc->irq_data.chip->irq_unmask`;

desc->status &= ~pending;
handle_irq_event(desc->action);

} while (status & pending);
desc->status &= ~running;

Default simple IRQ flow handler

handle_simple_irq provides a generic implementation for simple interrupts.

Note:

The simple flow handler does not call any handler/chip primitives.

The following control flow is implemented (simplified excerpt):

handle_irq_event(desc->action);

Default per CPU flow handler

handle_percpu_irq provides a generic implementation for per CPU interrupts.
Per CPU interrupts are only available on SMP and the handler provides a simplified version without locking.
The following control flow is implemented (simplified excerpt):

if (desc->irq_data.chip->irq_ack)
:c:func:`desc->irq_data.chip->irq_ack`;

handle_irq_event(desc->action);
if (desc->irq_data.chip->irq_eoi)

:c:func:`desc->irq_data.chip->irq_eoi`;

182 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

EOI Edge IRQ flow handler

handle_edge_eoi_irq provides an abnomination of the edge handler which is solely used to tame a badly
wreckaged irq controller on powerpc/cell.

Bad IRQ flow handler

handle_bad_irq is used for spurious interrupts which have no real handler assigned..

Quirks and optimizations

The generic functions are intended for ‘clean’ architectures and chips, which have no platform-specific
IRQ handling quirks. If an architecture needs to implement quirks on the ‘flow’ level then it can do so by
overriding the high-level irq-flow handler.

Delayed interrupt disable

This per interrupt selectable feature, which was introduced by Russell King in the ARM interrupt imple-
mentation, does not mask an interrupt at the hardware level when disable_irq() is called. The interrupt
is kept enabled and is masked in the flow handler when an interrupt event happens. This prevents losing
edge interrupts on hardware which does not store an edge interrupt event while the interrupt is disabled
at the hardware level. When an interrupt arrives while the IRQ_DISABLED flag is set, then the interrupt
is masked at the hardware level and the IRQ_PENDING bit is set. When the interrupt is re-enabled by
enable_irq() the pending bit is checked and if it is set, the interrupt is resent either via hardware or by
a software resend mechanism. (It’s necessary to enable CONFIG_HARDIRQS_SW_RESEND when you want
to use the delayed interrupt disable feature and your hardware is not capable of retriggering an interrupt.)
The delayed interrupt disable is not configurable.

Chip-level hardware encapsulation

The chip-level hardware descriptor structure irq_chip contains all the direct chip relevant functions,
which can be utilized by the irq flow implementations.
• irq_ack

• irq_mask_ack - Optional, recommended for performance
• irq_mask

• irq_unmask

• irq_eoi - Optional, required for EOI flow handlers
• irq_retrigger - Optional
• irq_set_type - Optional
• irq_set_wake - Optional

These primitives are strictly intended to mean what they say: ack means ACK, masking means masking
of an IRQ line, etc. It is up to the flow handler(s) to use these basic units of low-level functionality.

1.7.5 __do_IRQ entry point

The original implementation __do_IRQ() was an alternative entry point for all types of interrupts. It no
longer exists.

1.7. Linux generic IRQ handling 183

The kernel core API manual, Release 4.13.0-rc4+

This handler turned out to be not suitable for all interrupt hardware and was therefore reimplemented
with split functionality for edge/level/simple/percpu interrupts. This is not only a functional optimization.
It also shortens code paths for interrupts.

1.7.6 Locking on SMP

The locking of chip registers is up to the architecture that defines the chip primitives. The per-irq structure
is protected via desc->lock, by the generic layer.

1.7.7 Generic interrupt chip

To avoid copies of identical implementations of IRQ chips the core provides a configurable generic interrupt
chip implementation. Developers should check carefully whether the generic chip fits their needs before
implementing the same functionality slightly differently themselves.
void irq_gc_mask_set_bit(struct irq_data * d)

Mask chip via setting bit in mask register
Parameters
struct irq_data * d irq_data
Description
Chip has a single mask register. Values of this register are cached and protected by gc->lock
void irq_gc_mask_clr_bit(struct irq_data * d)

Mask chip via clearing bit in mask register
Parameters
struct irq_data * d irq_data
Description
Chip has a single mask register. Values of this register are cached and protected by gc->lock
void irq_gc_ack_set_bit(struct irq_data * d)

Ack pending interrupt via setting bit
Parameters
struct irq_data * d irq_data
struct irq_chip_generic * irq_alloc_generic_chip(const char * name, int num_ct, unsigned

int irq_base, void __iomem * reg_base,
irq_flow_handler_t handler)

Allocate a generic chip and initialize it
Parameters
const char * name Name of the irq chip
int num_ct Number of irq_chip_type instances associated with this
unsigned int irq_base Interrupt base nr for this chip
void __iomem * reg_base Register base address (virtual)
irq_flow_handler_t handler Default flow handler associated with this chip
Description
Returns an initialized irq_chip_generic structure. The chip defaults to the primary (index 0) irq_chip_type
and handler

184 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

int __irq_alloc_domain_generic_chips(struct irq_domain * d, int irqs_per_chip, int num_ct, const
char * name, irq_flow_handler_t handler, unsigned int clr,
unsigned int set, enum irq_gc_flags gcflags)

Allocate generic chips for an irq domain
Parameters
struct irq_domain * d irq domain for which to allocate chips
int irqs_per_chip Number of interrupts each chip handles (max 32)
int num_ct Number of irq_chip_type instances associated with this
const char * name Name of the irq chip
irq_flow_handler_t handler Default flow handler associated with these chips
unsigned int clr IRQ_* bits to clear in the mapping function
unsigned int set IRQ_* bits to set in the mapping function
enum irq_gc_flags gcflags Generic chip specific setup flags
struct irq_chip_generic * irq_get_domain_generic_chip(struct irq_domain * d, unsigned

int hw_irq)
Get a pointer to the generic chip of a hw_irq

Parameters
struct irq_domain * d irq domain pointer
unsigned int hw_irq Hardware interrupt number
void irq_setup_generic_chip(struct irq_chip_generic * gc, u32 msk, enum irq_gc_flags flags, un-

signed int clr, unsigned int set)
Setup a range of interrupts with a generic chip

Parameters
struct irq_chip_generic * gc Generic irq chip holding all data
u32 msk Bitmask holding the irqs to initialize relative to gc->irq_base
enum irq_gc_flags flags Flags for initialization
unsigned int clr IRQ_* bits to clear
unsigned int set IRQ_* bits to set
Description
Set up max. 32 interrupts starting from gc->irq_base. Note, this initializes all interrupts to the primary
irq_chip_type and its associated handler.
int irq_setup_alt_chip(struct irq_data * d, unsigned int type)

Switch to alternative chip
Parameters
struct irq_data * d irq_data for this interrupt
unsigned int type Flow type to be initialized
Description
Only to be called from chip->:c:func:irq_set_type() callbacks.
void irq_remove_generic_chip(struct irq_chip_generic * gc, u32 msk, unsigned int clr, unsigned

int set)
Remove a chip

Parameters
struct irq_chip_generic * gc Generic irq chip holding all data

1.7. Linux generic IRQ handling 185

The kernel core API manual, Release 4.13.0-rc4+

u32 msk Bitmask holding the irqs to initialize relative to gc->irq_base
unsigned int clr IRQ_* bits to clear
unsigned int set IRQ_* bits to set
Description
Remove up to 32 interrupts starting from gc->irq_base.

1.7.8 Structures

This chapter contains the autogenerated documentation of the structures which are used in the generic
IRQ layer.
struct irq_common_data

per irq data shared by all irqchips
Definition

struct irq_common_data {
unsigned int __private state_use_accessors;

#ifdef CONFIG_NUMA
unsigned int node;

#endif
void * handler_data;
struct msi_desc * msi_desc;
cpumask_var_t affinity;

#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
cpumask_var_t effective_affinity;

#endif
#ifdef CONFIG_GENERIC_IRQ_IPI
unsigned int ipi_offset;

#endif
};

Members
state_use_accessors status information for irq chip functions. Use accessor functions to deal with it
node node index useful for balancing
handler_data per-IRQ data for the irq_chip methods
msi_desc MSI descriptor
affinity IRQ affinity on SMP. If this is an IPI related irq, then this is the mask of the CPUs to which an IPI

can be sent.
effective_affinity The effective IRQ affinity on SMP as some irq chips do not allow multi CPU destina-

tions. A subset of affinity.
ipi_offset Offset of first IPI target cpu in affinity. Optional.
struct irq_data

per irq chip data passed down to chip functions
Definition

struct irq_data {
u32 mask;
unsigned int irq;
unsigned long hwirq;
struct irq_common_data * common;
struct irq_chip * chip;
struct irq_domain * domain;

#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY

186 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

struct irq_data * parent_data;
#endif
void * chip_data;

};

Members
mask precomputed bitmask for accessing the chip registers
irq interrupt number
hwirq hardware interrupt number, local to the interrupt domain
common point to data shared by all irqchips
chip low level interrupt hardware access
domain Interrupt translation domain; responsible for mapping between hwirq number and linux irq num-

ber.
parent_data pointer to parent struct irq_data to support hierarchy irq_domain
chip_data platform-specific per-chip private data for the chip methods, to allow shared chip implemen-

tations
struct irq_chip

hardware interrupt chip descriptor
Definition

struct irq_chip {
struct device * parent_device;
const char * name;
unsigned int (* irq_startup) (struct irq_data *data);
void (* irq_shutdown) (struct irq_data *data);
void (* irq_enable) (struct irq_data *data);
void (* irq_disable) (struct irq_data *data);
void (* irq_ack) (struct irq_data *data);
void (* irq_mask) (struct irq_data *data);
void (* irq_mask_ack) (struct irq_data *data);
void (* irq_unmask) (struct irq_data *data);
void (* irq_eoi) (struct irq_data *data);
int (* irq_set_affinity) (struct irq_data *data, const struct cpumask *dest, bool force);
int (* irq_retrigger) (struct irq_data *data);
int (* irq_set_type) (struct irq_data *data, unsigned int flow_type);
int (* irq_set_wake) (struct irq_data *data, unsigned int on);
void (* irq_bus_lock) (struct irq_data *data);
void (* irq_bus_sync_unlock) (struct irq_data *data);
void (* irq_cpu_online) (struct irq_data *data);
void (* irq_cpu_offline) (struct irq_data *data);
void (* irq_suspend) (struct irq_data *data);
void (* irq_resume) (struct irq_data *data);
void (* irq_pm_shutdown) (struct irq_data *data);
void (* irq_calc_mask) (struct irq_data *data);
void (* irq_print_chip) (struct irq_data *data, struct seq_file *p);
int (* irq_request_resources) (struct irq_data *data);
void (* irq_release_resources) (struct irq_data *data);
void (* irq_compose_msi_msg) (struct irq_data *data, struct msi_msg *msg);
void (* irq_write_msi_msg) (struct irq_data *data, struct msi_msg *msg);
int (* irq_get_irqchip_state) (struct irq_data *data, enum irqchip_irq_state which, bool␣

↪→*state);
int (* irq_set_irqchip_state) (struct irq_data *data, enum irqchip_irq_state which, bool␣

↪→state);
int (* irq_set_vcpu_affinity) (struct irq_data *data, void *vcpu_info);
void (* ipi_send_single) (struct irq_data *data, unsigned int cpu);
void (* ipi_send_mask) (struct irq_data *data, const struct cpumask *dest);

1.7. Linux generic IRQ handling 187

The kernel core API manual, Release 4.13.0-rc4+

unsigned long flags;
};

Members
parent_device pointer to parent device for irqchip
name name for /proc/interrupts
irq_startup start up the interrupt (defaults to ->enable if NULL)
irq_shutdown shut down the interrupt (defaults to ->disable if NULL)
irq_enable enable the interrupt (defaults to chip->unmask if NULL)
irq_disable disable the interrupt
irq_ack start of a new interrupt
irq_mask mask an interrupt source
irq_mask_ack ack and mask an interrupt source
irq_unmask unmask an interrupt source
irq_eoi end of interrupt
irq_set_affinity Set the CPU affinity on SMP machines. If the force argument is true, it tells the driver

to unconditionally apply the affinity setting. Sanity checks against the supplied affinity mask are not
required. This is used for CPU hotplug where the target CPU is not yet set in the cpu_online_mask.

irq_retrigger resend an IRQ to the CPU
irq_set_type set the flow type (IRQ_TYPE_LEVEL/etc.) of an IRQ
irq_set_wake enable/disable power-management wake-on of an IRQ
irq_bus_lock function to lock access to slow bus (i2c) chips
irq_bus_sync_unlock function to sync and unlock slow bus (i2c) chips
irq_cpu_online configure an interrupt source for a secondary CPU
irq_cpu_offline un-configure an interrupt source for a secondary CPU
irq_suspend function called from core code on suspend once per chip, when one or more interrupts are

installed
irq_resume function called from core code on resume once per chip, when one ore more interrupts are

installed
irq_pm_shutdown function called from core code on shutdown once per chip
irq_calc_mask Optional function to set irq_data.mask for special cases
irq_print_chip optional to print special chip info in show_interrupts
irq_request_resources optional to request resources before calling any other callback related to this

irq
irq_release_resources optional to release resources acquired with irq_request_resources
irq_compose_msi_msg optional to compose message content for MSI
irq_write_msi_msg optional to write message content for MSI
irq_get_irqchip_state return the internal state of an interrupt
irq_set_irqchip_state set the internal state of a interrupt
irq_set_vcpu_affinity optional to target a vCPU in a virtual machine
ipi_send_single send a single IPI to destination cpus

188 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

ipi_send_mask send an IPI to destination cpus in cpumask
flags chip specific flags
struct irq_chip_regs

register offsets for struct irq_gci
Definition

struct irq_chip_regs {
unsigned long enable;
unsigned long disable;
unsigned long mask;
unsigned long ack;
unsigned long eoi;
unsigned long type;
unsigned long polarity;

};

Members
enable Enable register offset to reg_base
disable Disable register offset to reg_base
mask Mask register offset to reg_base
ack Ack register offset to reg_base
eoi Eoi register offset to reg_base
type Type configuration register offset to reg_base
polarity Polarity configuration register offset to reg_base
struct irq_chip_type

Generic interrupt chip instance for a flow type
Definition

struct irq_chip_type {
struct irq_chip chip;
struct irq_chip_regs regs;
irq_flow_handler_t handler;
u32 type;
u32 mask_cache_priv;
u32 * mask_cache;

};

Members
chip The real interrupt chip which provides the callbacks
regs Register offsets for this chip
handler Flow handler associated with this chip
type Chip can handle these flow types
mask_cache_priv Cached mask register private to the chip type
mask_cache Pointer to cached mask register
Description
A irq_generic_chip can have several instances of irq_chip_type when it requires different functions and
register offsets for different flow types.
struct irq_chip_generic

Generic irq chip data structure

1.7. Linux generic IRQ handling 189

The kernel core API manual, Release 4.13.0-rc4+

Definition

struct irq_chip_generic {
raw_spinlock_t lock;
void __iomem * reg_base;
u32 (* reg_readl) (void __iomem *addr);
void (* reg_writel) (u32 val, void __iomem *addr);
void (* suspend) (struct irq_chip_generic *gc);
void (* resume) (struct irq_chip_generic *gc);
unsigned int irq_base;
unsigned int irq_cnt;
u32 mask_cache;
u32 type_cache;
u32 polarity_cache;
u32 wake_enabled;
u32 wake_active;
unsigned int num_ct;
void * private;
unsigned long installed;
unsigned long unused;
struct irq_domain * domain;
struct list_head list;
struct irq_chip_type chip_types;

};

Members
lock Lock to protect register and cache data access
reg_base Register base address (virtual)
reg_readl Alternate I/O accessor (defaults to readl if NULL)
reg_writel Alternate I/O accessor (defaults to writel if NULL)
suspend Function called from core code on suspend once per chip; can be useful instead of

irq_chip::suspend to handle chip details even when no interrupts are in use
resume Function called from core code on resume once per chip; can be useful instead of irq_chip::suspend

to handle chip details even when no interrupts are in use
irq_base Interrupt base nr for this chip
irq_cnt Number of interrupts handled by this chip
mask_cache Cached mask register shared between all chip types
type_cache Cached type register
polarity_cache Cached polarity register
wake_enabled Interrupt can wakeup from suspend
wake_active Interrupt is marked as an wakeup from suspend source
num_ct Number of available irq_chip_type instances (usually 1)
private Private data for non generic chip callbacks
installed bitfield to denote installed interrupts
unused bitfield to denote unused interrupts
domain irq domain pointer
list List head for keeping track of instances
chip_types Array of interrupt irq_chip_types

190 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
Note, that irq_chip_generic can have multiple irq_chip_type implementations which can be associated
to a particular irq line of an irq_chip_generic instance. That allows to share and protect state in an
irq_chip_generic instance when we need to implement different flow mechanisms (level/edge) for it.
enum irq_gc_flags

Initialization flags for generic irq chips
Constants
IRQ_GC_INIT_MASK_CACHE Initialize the mask_cache by reading mask reg
IRQ_GC_INIT_NESTED_LOCK Set the lock class of the irqs to nested for irq chips which need to call

irq_set_wake() on the parent irq. Usually GPIO implementations
IRQ_GC_MASK_CACHE_PER_TYPE Mask cache is chip type private
IRQ_GC_NO_MASK Do not calculate irq_data->mask
IRQ_GC_BE_IO Use big-endian register accesses (default: LE)
struct irqaction

per interrupt action descriptor
Definition

struct irqaction {
irq_handler_t handler;
void * dev_id;
void __percpu * percpu_dev_id;
struct irqaction * next;
irq_handler_t thread_fn;
struct task_struct * thread;
struct irqaction * secondary;
unsigned int irq;
unsigned int flags;
unsigned long thread_flags;
unsigned long thread_mask;
const char * name;
struct proc_dir_entry * dir;

};

Members
handler interrupt handler function
dev_id cookie to identify the device
percpu_dev_id cookie to identify the device
next pointer to the next irqaction for shared interrupts
thread_fn interrupt handler function for threaded interrupts
thread thread pointer for threaded interrupts
secondary pointer to secondary irqaction (force threading)
irq interrupt number
flags flags (see IRQF_* above)
thread_flags flags related to thread
thread_mask bitmask for keeping track of thread activity
name name of the device
dir pointer to the proc/irq/NN/name entry

1.7. Linux generic IRQ handling 191

The kernel core API manual, Release 4.13.0-rc4+

struct irq_affinity_notify
context for notification of IRQ affinity changes

Definition

struct irq_affinity_notify {
unsigned int irq;
struct kref kref;
struct work_struct work;
void (* notify) (struct irq_affinity_notify *, const cpumask_t *mask);
void (* release) (struct kref *ref);

};

Members
irq Interrupt to which notification applies
kref Reference count, for internal use
work Work item, for internal use
notify Function to be called on change. This will be called in process context.
release Function to be called on release. This will be called in process context. Once registered, the

structure must only be freed when this function is called or later.
struct irq_affinity

Description for automatic irq affinity assignements
Definition

struct irq_affinity {
int pre_vectors;
int post_vectors;

};

Members
pre_vectors Don’t apply affinity to pre_vectors at beginning of the MSI(-X) vector space
post_vectors Don’t apply affinity to post_vectors at end of the MSI(-X) vector space
int irq_set_affinity(unsigned int irq, const struct cpumask * cpumask)

Set the irq affinity of a given irq
Parameters
unsigned int irq Interrupt to set affinity
const struct cpumask * cpumask cpumask
Description
Fails if cpumask does not contain an online CPU
int irq_force_affinity(unsigned int irq, const struct cpumask * cpumask)

Force the irq affinity of a given irq
Parameters
unsigned int irq Interrupt to set affinity
const struct cpumask * cpumask cpumask
Description
Same as irq_set_affinity, but without checking the mask against online cpus.
Solely for low level cpu hotplug code, where we need to make per cpu interrupts affine before the cpu
becomes online.

192 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

1.7.9 Public Functions Provided

This chapter contains the autogenerated documentation of the kernel API functions which are exported.
bool synchronize_hardirq(unsigned int irq)

wait for pending hard IRQ handlers (on other CPUs)
Parameters
unsigned int irq interrupt number to wait for
Description

This function waits for any pending hard IRQ handlers for this interrupt to complete before
returning. If you use this function while holding a resource the IRQ handler may need you will
deadlock. It does not take associated threaded handlers into account.
Do not use this for shutdown scenarios where you must be sure that all parts (hardirq and
threaded handler) have completed.

Return
false if a threaded handler is active.

This function may be called - with care - from IRQ context.
void synchronize_irq(unsigned int irq)

wait for pending IRQ handlers (on other CPUs)
Parameters
unsigned int irq interrupt number to wait for
Description

This function waits for any pending IRQ handlers for this interrupt to complete before returning.
If you use this function while holding a resource the IRQ handler may need you will deadlock.
This function may be called - with care - from IRQ context.

int irq_can_set_affinity(unsigned int irq)
Check if the affinity of a given irq can be set

Parameters
unsigned int irq Interrupt to check
bool irq_can_set_affinity_usr(unsigned int irq)

Check if affinity of a irq can be set from user space
Parameters
unsigned int irq Interrupt to check
Description
Like irq_can_set_affinity() above, but additionally checks for the AFFINITY_MANAGED flag.
void irq_set_thread_affinity(struct irq_desc * desc)

Notify irq threads to adjust affinity
Parameters
struct irq_desc * desc irq descriptor which has affitnity changed
Description

We just set IRQTF_AFFINITY and delegate the affinity setting to the interrupt thread itself. We
can not call set_cpus_allowed_ptr() here as we hold desc->lock and this code can be called
from hard interrupt context.

int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify * notify)
control notification of IRQ affinity changes

1.7. Linux generic IRQ handling 193

The kernel core API manual, Release 4.13.0-rc4+

Parameters
unsigned int irq Interrupt for which to enable/disable notification
struct irq_affinity_notify * notify Context for notification, or NULL to disable notification. Func-

tion pointers must be initialised; the other fields will be initialised by this function.
Description

Must be called in process context. Notification may only be enabled after the IRQ is allocated
and must be disabled before the IRQ is freed using free_irq().

int irq_set_vcpu_affinity(unsigned int irq, void * vcpu_info)
Set vcpu affinity for the interrupt

Parameters
unsigned int irq interrupt number to set affinity
void * vcpu_info vCPU specific data
Description

This function uses the vCPU specific data to set the vCPU affinity for an irq. The vCPU specific
data is passed from outside, such as KVM. One example code path is as below: KVM -> IOMMU
-> irq_set_vcpu_affinity().

void disable_irq_nosync(unsigned int irq)
disable an irq without waiting

Parameters
unsigned int irq Interrupt to disable
Description

Disable the selected interrupt line. Disables and Enables are nested. Unlike disable_irq(), this
function does not ensure existing instances of the IRQ handler have completed before returning.
This function may be called from IRQ context.

void disable_irq(unsigned int irq)
disable an irq and wait for completion

Parameters
unsigned int irq Interrupt to disable
Description

Disable the selected interrupt line. Enables and Disables are nested. This function waits for any
pending IRQ handlers for this interrupt to complete before returning. If you use this function
while holding a resource the IRQ handler may need you will deadlock.
This function may be called - with care - from IRQ context.

bool disable_hardirq(unsigned int irq)
disables an irq and waits for hardirq completion

Parameters
unsigned int irq Interrupt to disable
Description

Disable the selected interrupt line. Enables and Disables are nested. This function waits for
any pending hard IRQ handlers for this interrupt to complete before returning. If you use this
function while holding a resource the hard IRQ handler may need you will deadlock.
When used to optimistically disable an interrupt from atomic context the return value must be
checked.

194 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Return
false if a threaded handler is active.

This function may be called - with care - from IRQ context.
void enable_irq(unsigned int irq)

enable handling of an irq
Parameters
unsigned int irq Interrupt to enable
Description

Undoes the effect of one call to disable_irq(). If this matches the last disable, processing of
interrupts on this IRQ line is re-enabled.
This function may be called from IRQ context only when desc->irq_data.chip->bus_lock and
desc->chip->bus_sync_unlock are NULL !

int irq_set_irq_wake(unsigned int irq, unsigned int on)
control irq power management wakeup

Parameters
unsigned int irq interrupt to control
unsigned int on enable/disable power management wakeup
Description

Enable/disable power management wakeup mode, which is disabled by default. Enables and
disables must match, just as they match for non-wakeup mode support.
Wakeup mode lets this IRQ wake the system from sleep states like “suspend to RAM”.

void irq_wake_thread(unsigned int irq, void * dev_id)
wake the irq thread for the action identified by dev_id

Parameters
unsigned int irq Interrupt line
void * dev_id Device identity for which the thread should be woken
int setup_irq(unsigned int irq, struct irqaction * act)

setup an interrupt
Parameters
unsigned int irq Interrupt line to setup
struct irqaction * act irqaction for the interrupt
Description
Used to statically setup interrupts in the early boot process.
void remove_irq(unsigned int irq, struct irqaction * act)

free an interrupt
Parameters
unsigned int irq Interrupt line to free
struct irqaction * act irqaction for the interrupt
Description
Used to remove interrupts statically setup by the early boot process.
const void * free_irq(unsigned int irq, void * dev_id)

free an interrupt allocated with request_irq

1.7. Linux generic IRQ handling 195

The kernel core API manual, Release 4.13.0-rc4+

Parameters
unsigned int irq Interrupt line to free
void * dev_id Device identity to free
Description

Remove an interrupt handler. The handler is removed and if the interrupt line is no longer in use
by any driver it is disabled. On a shared IRQ the caller must ensure the interrupt is disabled on
the card it drives before calling this function. The function does not return until any executing
interrupts for this IRQ have completed.
This function must not be called from interrupt context.
Returns the devname argument passed to request_irq.

int request_threaded_irq(unsigned int irq, irq_handler_t handler, irq_handler_t thread_fn, un-
signed long irqflags, const char * devname, void * dev_id)

allocate an interrupt line
Parameters
unsigned int irq Interrupt line to allocate
irq_handler_t handler Function to be called when the IRQ occurs. Primary handler for threaded inter-

rupts If NULL and thread_fn != NULL the default primary handler is installed
irq_handler_t thread_fn Function called from the irq handler thread If NULL, no irq thread is created
unsigned long irqflags Interrupt type flags
const char * devname An ascii name for the claiming device
void * dev_id A cookie passed back to the handler function
Description

This call allocates interrupt resources and enables the interrupt line and IRQ handling. From the
point this call is made your handler function may be invoked. Since your handler function must
clear any interrupt the board raises, you must take care both to initialise your hardware and to
set up the interrupt handler in the right order.
If you want to set up a threaded irq handler for your device then you need to supply handler
and thread_fn. handler is still called in hard interrupt context and has to check whether the
interrupt originates from the device. If yes it needs to disable the interrupt on the device and
return IRQ_WAKE_THREAD which will wake up the handler thread and run thread_fn. This split
handler design is necessary to support shared interrupts.
Dev_id must be globally unique. Normally the address of the device data structure is used as
the cookie. Since the handler receives this value it makes sense to use it.
If your interrupt is shared you must pass a non NULL dev_id as this is required when freeing the
interrupt.
Flags:
IRQF_SHARED Interrupt is shared IRQF_TRIGGER_* Specify active edge(s) or level

int request_any_context_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const
char * name, void * dev_id)

allocate an interrupt line
Parameters
unsigned int irq Interrupt line to allocate
irq_handler_t handler Function to be called when the IRQ occurs. Threaded handler for threaded in-

terrupts.
unsigned long flags Interrupt type flags

196 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

const char * name An ascii name for the claiming device
void * dev_id A cookie passed back to the handler function
Description

This call allocates interrupt resources and enables the interrupt line and IRQ handling. It selects
either a hardirq or threaded handling method depending on the context.
On failure, it returns a negative value. On success, it returns either IRQC_IS_HARDIRQ or
IRQC_IS_NESTED.

bool irq_percpu_is_enabled(unsigned int irq)
Check whether the per cpu irq is enabled

Parameters
unsigned int irq Linux irq number to check for
Description
Must be called from a non migratable context. Returns the enable state of a per cpu interrupt on the
current cpu.
void remove_percpu_irq(unsigned int irq, struct irqaction * act)

free a per-cpu interrupt
Parameters
unsigned int irq Interrupt line to free
struct irqaction * act irqaction for the interrupt
Description
Used to remove interrupts statically setup by the early boot process.
void free_percpu_irq(unsigned int irq, void __percpu * dev_id)

free an interrupt allocated with request_percpu_irq
Parameters
unsigned int irq Interrupt line to free
void __percpu * dev_id Device identity to free
Description

Remove a percpu interrupt handler. The handler is removed, but the interrupt line is not dis-
abled. This must be done on each CPU before calling this function. The function does not return
until any executing interrupts for this IRQ have completed.
This function must not be called from interrupt context.

int setup_percpu_irq(unsigned int irq, struct irqaction * act)
setup a per-cpu interrupt

Parameters
unsigned int irq Interrupt line to setup
struct irqaction * act irqaction for the interrupt
Description
Used to statically setup per-cpu interrupts in the early boot process.
int __request_percpu_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char

* devname, void __percpu * dev_id)
allocate a percpu interrupt line

Parameters
unsigned int irq Interrupt line to allocate

1.7. Linux generic IRQ handling 197

The kernel core API manual, Release 4.13.0-rc4+

irq_handler_t handler Function to be called when the IRQ occurs.
unsigned long flags Interrupt type flags (IRQF_TIMER only)
const char * devname An ascii name for the claiming device
void __percpu * dev_id A percpu cookie passed back to the handler function
Description

This call allocates interrupt resources and enables the interrupt on the local CPU. If the in-
terrupt is supposed to be enabled on other CPUs, it has to be done on each CPU using en-
able_percpu_irq().
Dev_id must be globally unique. It is a per-cpu variable, and the handler gets called with the
interrupted CPU’s instance of that variable.

int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool * state)
returns the irqchip state of a interrupt.

Parameters
unsigned int irq Interrupt line that is forwarded to a VM
enum irqchip_irq_state which One of IRQCHIP_STATE_* the caller wants to know about
bool * state a pointer to a boolean where the state is to be storeed
Description

This call snapshots the internal irqchip state of an interrupt, returning into state the bit corre-
sponding to stage which
This function should be called with preemption disabled if the interrupt controller has per-cpu
registers.

int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool val)
set the state of a forwarded interrupt.

Parameters
unsigned int irq Interrupt line that is forwarded to a VM
enum irqchip_irq_state which State to be restored (one of IRQCHIP_STATE_*)
bool val Value corresponding to which
Description

This call sets the internal irqchip state of an interrupt, depending on the value of which.
This function should be called with preemption disabled if the interrupt controller has per-cpu
registers.

int irq_set_chip(unsigned int irq, struct irq_chip * chip)
set the irq chip for an irq

Parameters
unsigned int irq irq number
struct irq_chip * chip pointer to irq chip description structure
int irq_set_irq_type(unsigned int irq, unsigned int type)

set the irq trigger type for an irq
Parameters
unsigned int irq irq number
unsigned int type IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h
int irq_set_handler_data(unsigned int irq, void * data)

set irq handler data for an irq

198 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
unsigned int irq Interrupt number
void * data Pointer to interrupt specific data
Description

Set the hardware irq controller data for an irq
int irq_set_msi_desc_off(unsigned int irq_base, unsigned int irq_offset, struct msi_desc * entry)

set MSI descriptor data for an irq at offset
Parameters
unsigned int irq_base Interrupt number base
unsigned int irq_offset Interrupt number offset
struct msi_desc * entry Pointer to MSI descriptor data
Description

Set the MSI descriptor entry for an irq at offset
int irq_set_msi_desc(unsigned int irq, struct msi_desc * entry)

set MSI descriptor data for an irq
Parameters
unsigned int irq Interrupt number
struct msi_desc * entry Pointer to MSI descriptor data
Description

Set the MSI descriptor entry for an irq
int irq_set_chip_data(unsigned int irq, void * data)

set irq chip data for an irq
Parameters
unsigned int irq Interrupt number
void * data Pointer to chip specific data
Description

Set the hardware irq chip data for an irq
void irq_disable(struct irq_desc * desc)

Mark interrupt disabled
Parameters
struct irq_desc * desc irq descriptor which should be disabled
Description
If the chip does not implement the irq_disable callback, we use a lazy disable approach. That means we
mark the interrupt disabled, but leave the hardware unmasked. That’s an optimization because we avoid
the hardware access for the common case where no interrupt happens after we marked it disabled. If
an interrupt happens, then the interrupt flow handler masks the line at the hardware level and marks it
pending.
If the interrupt chip does not implement the irq_disable callback, a driver can disable the lazy approach
for a particular irq line by calling ‘irq_set_status_flags(irq, IRQ_DISABLE_UNLAZY)’. This can be used for
devices which cannot disable the interrupt at the device level under certain circumstances and have to
use disable_irq[_nosync] instead.
void handle_simple_irq(struct irq_desc * desc)

Simple and software-decoded IRQs.

1.7. Linux generic IRQ handling 199

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description

Simple interrupts are either sent from a demultiplexing interrupt handler or come from hard-
ware, where no interrupt hardware control is necessary.

Note
The caller is expected to handle the ack, clear, mask and unmask issues if necessary.
void handle_untracked_irq(struct irq_desc * desc)

Simple and software-decoded IRQs.
Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description

Untracked interrupts are sent from a demultiplexing interrupt handler when the demultiplexer
does not know which device it its multiplexed irq domain generated the interrupt. IRQ’s handled
through here are not subjected to stats tracking, randomness, or spurious interrupt detection.

Note
Like handle_simple_irq, the caller is expected to handle the ack, clear, mask and unmask issues if

necessary.
void handle_level_irq(struct irq_desc * desc)

Level type irq handler
Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description

Level type interrupts are active as long as the hardware line has the active level. This may
require to mask the interrupt and unmask it after the associated handler has acknowledged the
device, so the interrupt line is back to inactive.

void handle_fasteoi_irq(struct irq_desc * desc)
irq handler for transparent controllers

Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description

Only a single callback will be issued to the chip: an ->:c:func:eoi() call when the interrupt has
been serviced. This enables support for modern forms of interrupt handlers, which handle the
flow details in hardware, transparently.

void handle_edge_irq(struct irq_desc * desc)
edge type IRQ handler

Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description

Interrupt occures on the falling and/or rising edge of a hardware signal. The occurrence is
latched into the irq controller hardware and must be acked in order to be reenabled. After the
ack another interrupt can happen on the same source even before the first one is handled by the
associated event handler. If this happens it might be necessary to disable (mask) the interrupt
depending on the controller hardware. This requires to reenable the interrupt inside of the loop

200 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

which handles the interrupts which have arrived while the handler was running. If all pending
interrupts are handled, the loop is left.

void handle_edge_eoi_irq(struct irq_desc * desc)
edge eoi type IRQ handler

Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description
Similar as the above handle_edge_irq, but using eoi and w/o the mask/unmask logic.
void handle_percpu_irq(struct irq_desc * desc)

Per CPU local irq handler
Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description

Per CPU interrupts on SMP machines without locking requirements
void handle_percpu_devid_irq(struct irq_desc * desc)

Per CPU local irq handler with per cpu dev ids
Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description
Per CPU interrupts on SMPmachines without locking requirements. Same as handle_percpu_irq() above
but with the following extras:
action->percpu_dev_id is a pointer to percpu variables which contain the real device id for the cpu on
which this handler is called
void irq_cpu_online(void)

Invoke all irq_cpu_online functions.
Parameters
void no arguments
Description

Iterate through all irqs and invoke the chip.:c:func:irq_cpu_online() for each.
void irq_cpu_offline(void)

Invoke all irq_cpu_offline functions.
Parameters
void no arguments
Description

Iterate through all irqs and invoke the chip.:c:func:irq_cpu_offline() for each.
void irq_chip_enable_parent(struct irq_data * data)

Enable the parent interrupt (defaults to unmask if NULL)
Parameters
struct irq_data * data Pointer to interrupt specific data
void irq_chip_disable_parent(struct irq_data * data)

Disable the parent interrupt (defaults to mask if NULL)
Parameters

1.7. Linux generic IRQ handling 201

The kernel core API manual, Release 4.13.0-rc4+

struct irq_data * data Pointer to interrupt specific data
void irq_chip_ack_parent(struct irq_data * data)

Acknowledge the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
void irq_chip_mask_parent(struct irq_data * data)

Mask the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
void irq_chip_unmask_parent(struct irq_data * data)

Unmask the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
void irq_chip_eoi_parent(struct irq_data * data)

Invoke EOI on the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
int irq_chip_set_affinity_parent(struct irq_data * data, const struct cpumask * dest, bool force)

Set affinity on the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
const struct cpumask * dest The affinity mask to set
bool force Flag to enforce setting (disable online checks)
Description
Conditinal, as the underlying parent chip might not implement it.
int irq_chip_set_type_parent(struct irq_data * data, unsigned int type)

Set IRQ type on the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
unsigned int type IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h
Description
Conditional, as the underlying parent chip might not implement it.
int irq_chip_retrigger_hierarchy(struct irq_data * data)

Retrigger an interrupt in hardware
Parameters
struct irq_data * data Pointer to interrupt specific data
Description
Iterate through the domain hierarchy of the interrupt and check whether a hw retrigger function exists. If
yes, invoke it.
int irq_chip_set_vcpu_affinity_parent(struct irq_data * data, void * vcpu_info)

Set vcpu affinity on the parent interrupt
Parameters

202 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

struct irq_data * data Pointer to interrupt specific data
void * vcpu_info The vcpu affinity information
int irq_chip_set_wake_parent(struct irq_data * data, unsigned int on)

Set/reset wake-up on the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
unsigned int on Whether to set or reset the wake-up capability of this irq
Description
Conditional, as the underlying parent chip might not implement it.
int irq_chip_compose_msi_msg(struct irq_data * data, struct msi_msg * msg)

Componse msi message for a irq chip
Parameters
struct irq_data * data Pointer to interrupt specific data
struct msi_msg * msg Pointer to the MSI message
Description
For hierarchical domains we find the first chip in the hierarchy which implements the
irq_compose_msi_msg callback. For non hierarchical we use the top level chip.
int irq_chip_pm_get(struct irq_data * data)

Enable power for an IRQ chip
Parameters
struct irq_data * data Pointer to interrupt specific data
Description
Enable the power to the IRQ chip referenced by the interrupt data structure.
int irq_chip_pm_put(struct irq_data * data)

Disable power for an IRQ chip
Parameters
struct irq_data * data Pointer to interrupt specific data
Description
Disable the power to the IRQ chip referenced by the interrupt data structure, belongs. Note that power
will only be disabled, once this function has been called for all IRQs that have called irq_chip_pm_get().

1.7.10 Internal Functions Provided

This chapter contains the autogenerated documentation of the internal functions.
int generic_handle_irq(unsigned int irq)

Invoke the handler for a particular irq
Parameters
unsigned int irq The irq number to handle
int __handle_domain_irq(struct irq_domain * domain, unsigned int hwirq, bool lookup, struct

pt_regs * regs)
Invoke the handler for a HW irq belonging to a domain

Parameters
struct irq_domain * domain The domain where to perform the lookup

1.7. Linux generic IRQ handling 203

The kernel core API manual, Release 4.13.0-rc4+

unsigned int hwirq The HW irq number to convert to a logical one
bool lookup Whether to perform the domain lookup or not
struct pt_regs * regs Register file coming from the low-level handling code
Return
0 on success, or -EINVAL if conversion has failed
void irq_free_descs(unsigned int from, unsigned int cnt)

free irq descriptors
Parameters
unsigned int from Start of descriptor range
unsigned int cnt Number of consecutive irqs to free
int __ref __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node, struct module

* owner, const struct cpumask * affinity)
allocate and initialize a range of irq descriptors

Parameters
int irq Allocate for specific irq number if irq >= 0
unsigned int from Start the search from this irq number
unsigned int cnt Number of consecutive irqs to allocate.
int node Preferred node on which the irq descriptor should be allocated
struct module * owner Owning module (can be NULL)
const struct cpumask * affinity Optional pointer to an affinity mask array of size cnt which hints

where the irq descriptors should be allocated and which default affinities to use
Description
Returns the first irq number or error code
unsigned int irq_alloc_hwirqs(int cnt, int node)

Allocate an irq descriptor and initialize the hardware
Parameters
int cnt number of interrupts to allocate
int node node on which to allocate
Description
Returns an interrupt number > 0 or 0, if the allocation fails.
void irq_free_hwirqs(unsigned int from, int cnt)

Free irq descriptor and cleanup the hardware
Parameters
unsigned int from Free from irq number
int cnt number of interrupts to free
unsigned int irq_get_next_irq(unsigned int offset)

get next allocated irq number
Parameters
unsigned int offset where to start the search
Description
Returns next irq number after offset or nr_irqs if none is found.

204 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
Get the statistics for an interrupt on a cpu

Parameters
unsigned int irq The interrupt number
int cpu The cpu number
Description
Returns the sum of interrupt counts on cpu since boot for irq. The caller must ensure that the interrupt
is not removed concurrently.
unsigned int kstat_irqs(unsigned int irq)

Get the statistics for an interrupt
Parameters
unsigned int irq The interrupt number
Description
Returns the sum of interrupt counts on all cpus since boot for irq. The caller must ensure that the interrupt
is not removed concurrently.
unsigned int kstat_irqs_usr(unsigned int irq)

Get the statistics for an interrupt
Parameters
unsigned int irq The interrupt number
Description
Returns the sum of interrupt counts on all cpus since boot for irq. Contrary to kstat_irqs() this can be
called from any preemptible context. It’s protected against concurrent removal of an interrupt descriptor
when sparse irqs are enabled.
void handle_bad_irq(struct irq_desc * desc)

handle spurious and unhandled irqs
Parameters
struct irq_desc * desc description of the interrupt
Description
Handles spurious and unhandled IRQ’s. It also prints a debugmessage.
int irq_set_chip(unsigned int irq, struct irq_chip * chip)

set the irq chip for an irq
Parameters
unsigned int irq irq number
struct irq_chip * chip pointer to irq chip description structure
int irq_set_irq_type(unsigned int irq, unsigned int type)

set the irq trigger type for an irq
Parameters
unsigned int irq irq number
unsigned int type IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h
int irq_set_handler_data(unsigned int irq, void * data)

set irq handler data for an irq
Parameters
unsigned int irq Interrupt number

1.7. Linux generic IRQ handling 205

The kernel core API manual, Release 4.13.0-rc4+

void * data Pointer to interrupt specific data
Description

Set the hardware irq controller data for an irq
int irq_set_msi_desc_off(unsigned int irq_base, unsigned int irq_offset, struct msi_desc * entry)

set MSI descriptor data for an irq at offset
Parameters
unsigned int irq_base Interrupt number base
unsigned int irq_offset Interrupt number offset
struct msi_desc * entry Pointer to MSI descriptor data
Description

Set the MSI descriptor entry for an irq at offset
int irq_set_msi_desc(unsigned int irq, struct msi_desc * entry)

set MSI descriptor data for an irq
Parameters
unsigned int irq Interrupt number
struct msi_desc * entry Pointer to MSI descriptor data
Description

Set the MSI descriptor entry for an irq
int irq_set_chip_data(unsigned int irq, void * data)

set irq chip data for an irq
Parameters
unsigned int irq Interrupt number
void * data Pointer to chip specific data
Description

Set the hardware irq chip data for an irq
void irq_disable(struct irq_desc * desc)

Mark interrupt disabled
Parameters
struct irq_desc * desc irq descriptor which should be disabled
Description
If the chip does not implement the irq_disable callback, we use a lazy disable approach. That means we
mark the interrupt disabled, but leave the hardware unmasked. That’s an optimization because we avoid
the hardware access for the common case where no interrupt happens after we marked it disabled. If
an interrupt happens, then the interrupt flow handler masks the line at the hardware level and marks it
pending.
If the interrupt chip does not implement the irq_disable callback, a driver can disable the lazy approach
for a particular irq line by calling ‘irq_set_status_flags(irq, IRQ_DISABLE_UNLAZY)’. This can be used for
devices which cannot disable the interrupt at the device level under certain circumstances and have to
use disable_irq[_nosync] instead.
void handle_simple_irq(struct irq_desc * desc)

Simple and software-decoded IRQs.
Parameters
struct irq_desc * desc the interrupt description structure for this irq

206 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
Simple interrupts are either sent from a demultiplexing interrupt handler or come from hard-
ware, where no interrupt hardware control is necessary.

Note
The caller is expected to handle the ack, clear, mask and unmask issues if necessary.
void handle_untracked_irq(struct irq_desc * desc)

Simple and software-decoded IRQs.
Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description

Untracked interrupts are sent from a demultiplexing interrupt handler when the demultiplexer
does not know which device it its multiplexed irq domain generated the interrupt. IRQ’s handled
through here are not subjected to stats tracking, randomness, or spurious interrupt detection.

Note
Like handle_simple_irq, the caller is expected to handle the ack, clear, mask and unmask issues if

necessary.
void handle_level_irq(struct irq_desc * desc)

Level type irq handler
Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description

Level type interrupts are active as long as the hardware line has the active level. This may
require to mask the interrupt and unmask it after the associated handler has acknowledged the
device, so the interrupt line is back to inactive.

void handle_fasteoi_irq(struct irq_desc * desc)
irq handler for transparent controllers

Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description

Only a single callback will be issued to the chip: an ->:c:func:eoi() call when the interrupt has
been serviced. This enables support for modern forms of interrupt handlers, which handle the
flow details in hardware, transparently.

void handle_edge_irq(struct irq_desc * desc)
edge type IRQ handler

Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description

Interrupt occures on the falling and/or rising edge of a hardware signal. The occurrence is
latched into the irq controller hardware and must be acked in order to be reenabled. After the
ack another interrupt can happen on the same source even before the first one is handled by the
associated event handler. If this happens it might be necessary to disable (mask) the interrupt
depending on the controller hardware. This requires to reenable the interrupt inside of the loop
which handles the interrupts which have arrived while the handler was running. If all pending
interrupts are handled, the loop is left.

1.7. Linux generic IRQ handling 207

The kernel core API manual, Release 4.13.0-rc4+

void handle_edge_eoi_irq(struct irq_desc * desc)
edge eoi type IRQ handler

Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description
Similar as the above handle_edge_irq, but using eoi and w/o the mask/unmask logic.
void handle_percpu_irq(struct irq_desc * desc)

Per CPU local irq handler
Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description

Per CPU interrupts on SMP machines without locking requirements
void handle_percpu_devid_irq(struct irq_desc * desc)

Per CPU local irq handler with per cpu dev ids
Parameters
struct irq_desc * desc the interrupt description structure for this irq
Description
Per CPU interrupts on SMPmachines without locking requirements. Same as handle_percpu_irq() above
but with the following extras:
action->percpu_dev_id is a pointer to percpu variables which contain the real device id for the cpu on
which this handler is called
void irq_cpu_online(void)

Invoke all irq_cpu_online functions.
Parameters
void no arguments
Description

Iterate through all irqs and invoke the chip.:c:func:irq_cpu_online() for each.
void irq_cpu_offline(void)

Invoke all irq_cpu_offline functions.
Parameters
void no arguments
Description

Iterate through all irqs and invoke the chip.:c:func:irq_cpu_offline() for each.
void irq_chip_enable_parent(struct irq_data * data)

Enable the parent interrupt (defaults to unmask if NULL)
Parameters
struct irq_data * data Pointer to interrupt specific data
void irq_chip_disable_parent(struct irq_data * data)

Disable the parent interrupt (defaults to mask if NULL)
Parameters
struct irq_data * data Pointer to interrupt specific data

208 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

void irq_chip_ack_parent(struct irq_data * data)
Acknowledge the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data
void irq_chip_mask_parent(struct irq_data * data)

Mask the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
void irq_chip_unmask_parent(struct irq_data * data)

Unmask the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
void irq_chip_eoi_parent(struct irq_data * data)

Invoke EOI on the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
int irq_chip_set_affinity_parent(struct irq_data * data, const struct cpumask * dest, bool force)

Set affinity on the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
const struct cpumask * dest The affinity mask to set
bool force Flag to enforce setting (disable online checks)
Description
Conditinal, as the underlying parent chip might not implement it.
int irq_chip_set_type_parent(struct irq_data * data, unsigned int type)

Set IRQ type on the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
unsigned int type IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h
Description
Conditional, as the underlying parent chip might not implement it.
int irq_chip_retrigger_hierarchy(struct irq_data * data)

Retrigger an interrupt in hardware
Parameters
struct irq_data * data Pointer to interrupt specific data
Description
Iterate through the domain hierarchy of the interrupt and check whether a hw retrigger function exists. If
yes, invoke it.
int irq_chip_set_vcpu_affinity_parent(struct irq_data * data, void * vcpu_info)

Set vcpu affinity on the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data

1.7. Linux generic IRQ handling 209

The kernel core API manual, Release 4.13.0-rc4+

void * vcpu_info The vcpu affinity information
int irq_chip_set_wake_parent(struct irq_data * data, unsigned int on)

Set/reset wake-up on the parent interrupt
Parameters
struct irq_data * data Pointer to interrupt specific data
unsigned int on Whether to set or reset the wake-up capability of this irq
Description
Conditional, as the underlying parent chip might not implement it.
int irq_chip_compose_msi_msg(struct irq_data * data, struct msi_msg * msg)

Componse msi message for a irq chip
Parameters
struct irq_data * data Pointer to interrupt specific data
struct msi_msg * msg Pointer to the MSI message
Description
For hierarchical domains we find the first chip in the hierarchy which implements the
irq_compose_msi_msg callback. For non hierarchical we use the top level chip.
int irq_chip_pm_get(struct irq_data * data)

Enable power for an IRQ chip
Parameters
struct irq_data * data Pointer to interrupt specific data
Description
Enable the power to the IRQ chip referenced by the interrupt data structure.
int irq_chip_pm_put(struct irq_data * data)

Disable power for an IRQ chip
Parameters
struct irq_data * data Pointer to interrupt specific data
Description
Disable the power to the IRQ chip referenced by the interrupt data structure, belongs. Note that power
will only be disabled, once this function has been called for all IRQs that have called irq_chip_pm_get().

1.7.11 Credits

The following people have contributed to this document:
1. Thomas Gleixner tglx@linutronix.de
2. Ingo Molnar mingo@elte.hu

1.8 Using flexible arrays in the kernel

Large contiguous memory allocations can be unreliable in the Linux kernel. Kernel programmers will
sometimes respond to this problem by allocating pages with vmalloc(). This solution not ideal, though.
On 32-bit systems, memory from vmalloc() must be mapped into a relatively small address space; it’s
easy to run out. On SMP systems, the page table changes required by vmalloc() allocations can require

210 Chapter 1. Core utilities

mailto:tglx@linutronix.de
mailto:mingo@elte.hu

The kernel core API manual, Release 4.13.0-rc4+

expensive cross-processor interrupts on all CPUs. And, on all systems, use of space in the vmalloc() range
increases pressure on the translation lookaside buffer (TLB), reducing the performance of the system.
In many cases, the need for memory from vmalloc() can be eliminated by piecing together an array from
smaller parts; the flexible array library exists to make this task easier.
A flexible array holds an arbitrary (within limits) number of fixed-sized objects, accessed via an integer
index. Sparse arrays are handled reasonably well. Only single-page allocations are made, so memory
allocation failures should be relatively rare. The down sides are that the arrays cannot be indexed directly,
individual object size cannot exceed the system page size, and putting data into a flexible array requires a
copy operation. It’s also worth noting that flexible arrays do no internal locking at all; if concurrent access
to an array is possible, then the caller must arrange for appropriate mutual exclusion.
The creation of a flexible array is done with flex_array_alloc():

#include <linux/flex_array.h>

struct flex_array *flex_array_alloc(int element_size,
unsigned int total,
gfp_t flags);

The individual object size is provided by element_size, while total is the maximum number of objects
which can be stored in the array. The flags argument is passed directly to the internal memory allocation
calls. With the current code, using flags to ask for high memory is likely to lead to notably unpleasant side
effects.
It is also possible to define flexible arrays at compile time with:

DEFINE_FLEX_ARRAY(name, element_size, total);

This macro will result in a definition of an array with the given name; the element size and total will be
checked for validity at compile time.
Storing data into a flexible array is accomplished with a call to flex_array_put():

int flex_array_put(struct flex_array *array, unsigned int element_nr,
void *src, gfp_t flags);

This call will copy the data from src into the array, in the position indicated by element_nr (which must
be less than the maximum specified when the array was created). If any memory allocations must be
performed, flags will be used. The return value is zero on success, a negative error code otherwise.
There might possibly be a need to store data into a flexible array while running in some sort of atomic
context; in this situation, sleeping in the memory allocator would be a bad thing. That can be avoided
by using GFP_ATOMIC for the flags value, but, often, there is a better way. The trick is to ensure that any
needed memory allocations are done before entering atomic context, using flex_array_prealloc():

int flex_array_prealloc(struct flex_array *array, unsigned int start,
unsigned int nr_elements, gfp_t flags);

This function will ensure that memory for the elements indexed in the range defined by start and
nr_elements has been allocated. Thereafter, a flex_array_put() call on an element in that range is
guaranteed not to block.
Getting data back out of the array is done with flex_array_get():

void *flex_array_get(struct flex_array *fa, unsigned int element_nr);

The return value is a pointer to the data element, or NULL if that particular element has never been
allocated.
Note that it is possible to get back a valid pointer for an element which has never been stored in the array.
Memory for array elements is allocated one page at a time; a single allocation could provide memory for
several adjacent elements. Flexible array elements are normally initialized to the value FLEX_ARRAY_FREE

1.8. Using flexible arrays in the kernel 211

The kernel core API manual, Release 4.13.0-rc4+

(defined as 0x6c in <linux/poison.h>), so errors involving that number probably result from use of unstored
array entries. Note that, if array elements are allocated with __GFP_ZERO, they will be initialized to zero
and this poisoning will not happen.
Individual elements in the array can be cleared with flex_array_clear():

int flex_array_clear(struct flex_array *array, unsigned int element_nr);

This function will set the given element to FLEX_ARRAY_FREE and return zero. If storage for the indicated
element is not allocated for the array, flex_array_clear()will return -EINVAL instead. Note that clearing
an element does not release the storage associated with it; to reduce the allocated size of an array, call
flex_array_shrink():

int flex_array_shrink(struct flex_array *array);

The return value will be the number of pages of memory actually freed. This function works by scanning
the array for pages containing nothing but FLEX_ARRAY_FREE bytes, so (1) it can be expensive, and (2) it
will not work if the array’s pages are allocated with __GFP_ZERO.
It is possible to remove all elements of an array with a call to flex_array_free_parts():

void flex_array_free_parts(struct flex_array *array);

This call frees all elements, but leaves the array itself in place. Freeing the entire array is done with
flex_array_free():

void flex_array_free(struct flex_array *array);

As of this writing, there are no users of flexible arrays in the mainline kernel. The functions described here
are also not exported to modules; that will probably be fixed when somebody comes up with a need for it.

1.8.1 Flexible array functions

struct flex_array * flex_array_alloc(int element_size, unsigned int total, gfp_t flags)
Creates a flexible array.

Parameters
int element_size individual object size.
unsigned int total maximum number of objects which can be stored.
gfp_t flags GFP flags
Return
Returns an object of structure flex_array.
int flex_array_prealloc(struct flex_array * fa, unsigned int start, unsigned int nr_elements,

gfp_t flags)
Ensures that memory for the elements indexed in the range defined by start and nr_elements has
been allocated.

Parameters
struct flex_array * fa array to allocate memory to.
unsigned int start start address
unsigned int nr_elements number of elements to be allocated.
gfp_t flags GFP flags
void flex_array_free(struct flex_array * fa)

Removes all elements of a flexible array.

212 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct flex_array * fa array to be freed.
void flex_array_free_parts(struct flex_array * fa)

Removes all elements of a flexible array, but leaves the array itself in place.
Parameters
struct flex_array * fa array to be emptied.
int flex_array_put(struct flex_array * fa, unsigned int element_nr, void * src, gfp_t flags)

Stores data into a flexible array.
Parameters
struct flex_array * fa array where element is to be stored.
unsigned int element_nr position to copy, must be less than the maximum specified when the array

was created.
void * src data source to be copied into the array.
gfp_t flags GFP flags
Return
Returns zero on success, a negative error code otherwise.
int flex_array_clear(struct flex_array * fa, unsigned int element_nr)

Clears an individual element in the array, sets the given element to FLEX_ARRAY_FREE.
Parameters
struct flex_array * fa array to which element to be cleared belongs.
unsigned int element_nr element position to clear.
Return
Returns zero on success, -EINVAL otherwise.
void * flex_array_get(struct flex_array * fa, unsigned int element_nr)

Retrieves data into a flexible array.
Parameters
struct flex_array * fa array from which data is to be retrieved.
unsigned int element_nr Element position to retrieve data from.
Return
Returns a pointer to the data element, or NULL if that particular element has never been allo-

cated.
int flex_array_shrink(struct flex_array * fa)

Reduces the allocated size of an array.
Parameters
struct flex_array * fa array to shrink.
Return
Returns number of pages of memory actually freed.

1.9 Reed-Solomon Library Programming Interface

Author Thomas Gleixner

1.9. Reed-Solomon Library Programming Interface 213

The kernel core API manual, Release 4.13.0-rc4+

1.9.1 Introduction

The generic Reed-Solomon Library provides encoding, decoding and error correction functions.
Reed-Solomon codes are used in communication and storage applications to ensure data integrity.
This documentation is provided for developers who want to utilize the functions provided by the library.

1.9.2 Known Bugs And Assumptions

None.

1.9.3 Usage

This chapter provides examples of how to use the library.

Initializing

The init function init_rs returns a pointer to an rs decoder structure, which holds the necessary information
for encoding, decoding and error correction with the given polynomial. It either uses an existing matching
decoder or creates a new one. On creation all the lookup tables for fast en/decoding are created. The
function may take a while, so make sure not to call it in critical code paths.

/* the Reed Solomon control structure */
static struct rs_control *rs_decoder;

/* Symbolsize is 10 (bits)
* Primitive polynomial is x^10+x^3+1
* first consecutive root is 0
* primitive element to generate roots = 1
* generator polynomial degree (number of roots) = 6
*/
rs_decoder = init_rs (10, 0x409, 0, 1, 6);

Encoding

The encoder calculates the Reed-Solomon code over the given data length and stores the result in the
parity buffer. Note that the parity buffer must be initialized before calling the encoder.
The expanded data can be inverted on the fly by providing a non-zero inversion mask. The expanded data
is XOR’ed with the mask. This is used e.g. for FLASH ECC, where the all 0xFF is inverted to an all 0x00.
The Reed-Solomon code for all 0x00 is all 0x00. The code is inverted before storing to FLASH so it is 0xFF
too. This prevents that reading from an erased FLASH results in ECC errors.
The databytes are expanded to the given symbol size on the fly. There is no support for encoding contin-
uous bitstreams with a symbol size != 8 at the moment. If it is necessary it should be not a big deal to
implement such functionality.

/* Parity buffer. Size = number of roots */
uint16_t par[6];
/* Initialize the parity buffer */
memset(par, 0, sizeof(par));
/* Encode 512 byte in data8. Store parity in buffer par */
encode_rs8 (rs_decoder, data8, 512, par, 0);

214 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Decoding

The decoder calculates the syndrome over the given data length and the received parity symbols and
corrects errors in the data.
If a syndrome is available from a hardware decoder then the syndrome calculation is skipped.
The correction of the data buffer can be suppressed by providing a correction pattern buffer and an error
location buffer to the decoder. The decoder stores the calculated error location and the correction bitmask
in the given buffers. This is useful for hardware decoders which use a weird bit ordering scheme.
The databytes are expanded to the given symbol size on the fly. There is no support for decoding con-
tinuous bitstreams with a symbolsize != 8 at the moment. If it is necessary it should be not a big deal to
implement such functionality.

Decoding with syndrome calculation, direct data correction

/* Parity buffer. Size = number of roots */
uint16_t par[6];
uint8_t data[512];
int numerr;
/* Receive data */
.....
/* Receive parity */
.....
/* Decode 512 byte in data8.*/
numerr = decode_rs8 (rs_decoder, data8, par, 512, NULL, 0, NULL, 0, NULL);

Decoding with syndrome given by hardware decoder, direct data correction

/* Parity buffer. Size = number of roots */
uint16_t par[6], syn[6];
uint8_t data[512];
int numerr;
/* Receive data */
.....
/* Receive parity */
.....
/* Get syndrome from hardware decoder */
.....
/* Decode 512 byte in data8.*/
numerr = decode_rs8 (rs_decoder, data8, par, 512, syn, 0, NULL, 0, NULL);

Decoding with syndrome given by hardware decoder, no direct data correction.

Note: It’s not necessary to give data and received parity to the decoder.

/* Parity buffer. Size = number of roots */
uint16_t par[6], syn[6], corr[8];
uint8_t data[512];
int numerr, errpos[8];
/* Receive data */
.....
/* Receive parity */
.....
/* Get syndrome from hardware decoder */
.....
/* Decode 512 byte in data8.*/

1.9. Reed-Solomon Library Programming Interface 215

The kernel core API manual, Release 4.13.0-rc4+

numerr = decode_rs8 (rs_decoder, NULL, NULL, 512, syn, 0, errpos, 0, corr);
for (i = 0; i < numerr; i++) {

do_error_correction_in_your_buffer(errpos[i], corr[i]);
}

Cleanup

The function free_rs frees the allocated resources, if the caller is the last user of the decoder.

/* Release resources */
free_rs(rs_decoder);

1.9.4 Structures

This chapter contains the autogenerated documentation of the structures which are used in the Reed-
Solomon Library and are relevant for a developer.
struct rs_control

rs control structure
Definition

struct rs_control {
int mm;
int nn;
uint16_t * alpha_to;
uint16_t * index_of;
uint16_t * genpoly;
int nroots;
int fcr;
int prim;
int iprim;
int gfpoly;
int (* gffunc) (int);
int users;
struct list_head list;

};

Members
mm Bits per symbol
nn Symbols per block (= (1<<mm)-1)
alpha_to log lookup table
index_of Antilog lookup table
genpoly Generator polynomial
nroots Number of generator roots = number of parity symbols
fcr First consecutive root, index form
prim Primitive element, index form
iprim prim-th root of 1, index form
gfpoly The primitive generator polynominal
gffunc Function to generate the field, if non-canonical representation
users Users of this structure
list List entry for the rs control list

216 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

1.9.5 Public Functions Provided

This chapter contains the autogenerated documentation of the Reed-Solomon functions which are ex-
ported.
void free_rs(struct rs_control * rs)

Free the rs control structure, if it is no longer used
Parameters
struct rs_control * rs the control structure which is not longer used by the caller
struct rs_control * init_rs(int symsize, int gfpoly, int fcr, int prim, int nroots)

Find a matching or allocate a new rs control structure
Parameters
int symsize the symbol size (number of bits)
int gfpoly the extended Galois field generator polynomial coefficients, with the 0th coefficient in the

low order bit. The polynomial must be primitive;
int fcr the first consecutive root of the rs code generator polynomial in index form
int prim primitive element to generate polynomial roots
int nroots RS code generator polynomial degree (number of roots)
struct rs_control * init_rs_non_canonical(int symsize, int (*gffunc) (int, int fcr, int prim,

int nroots)
Find a matching or allocate a new rs control structure, for fields with non-canonical representation

Parameters
int symsize the symbol size (number of bits)
int (*)(int) gffunc pointer to function to generate the next field element, or themultiplicative identity

element if given 0. Used instead of gfpoly if gfpoly is 0
int fcr the first consecutive root of the rs code generator polynomial in index form
int prim primitive element to generate polynomial roots
int nroots RS code generator polynomial degree (number of roots)
int encode_rs8(struct rs_control * rs, uint8_t * data, int len, uint16_t * par, uint16_t invmsk)

Calculate the parity for data values (8bit data width)
Parameters
struct rs_control * rs the rs control structure
uint8_t * data data field of a given type
int len data length
uint16_t * par parity data, must be initialized by caller (usually all 0)
uint16_t invmsk invert data mask (will be xored on data)
Description

The parity uses a uint16_t data type to enable symbol size > 8. The calling code must take care
of encoding of the syndrome result for storage itself.

int decode_rs8(struct rs_control * rs, uint8_t * data, uint16_t * par, int len, uint16_t * s, int no_eras,
int * eras_pos, uint16_t invmsk, uint16_t * corr)

Decode codeword (8bit data width)
Parameters
struct rs_control * rs the rs control structure

1.9. Reed-Solomon Library Programming Interface 217

The kernel core API manual, Release 4.13.0-rc4+

uint8_t * data data field of a given type
uint16_t * par received parity data field
int len data length
uint16_t * s syndrome data field (if NULL, syndrome is calculated)
int no_eras number of erasures
int * eras_pos position of erasures, can be NULL
uint16_t invmsk invert data mask (will be xored on data, not on parity!)
uint16_t * corr buffer to store correction bitmask on eras_pos
Description

The syndrome and parity uses a uint16_t data type to enable symbol size > 8. The calling code
must take care of decoding of the syndrome result and the received parity before calling this
code. Returns the number of corrected bits or -EBADMSG for uncorrectable errors.

int encode_rs16(struct rs_control * rs, uint16_t * data, int len, uint16_t * par, uint16_t invmsk)
Calculate the parity for data values (16bit data width)

Parameters
struct rs_control * rs the rs control structure
uint16_t * data data field of a given type
int len data length
uint16_t * par parity data, must be initialized by caller (usually all 0)
uint16_t invmsk invert data mask (will be xored on data, not on parity!)
Description

Each field in the data array contains up to symbol size bits of valid data.
int decode_rs16(struct rs_control * rs, uint16_t * data, uint16_t * par, int len, uint16_t * s,

int no_eras, int * eras_pos, uint16_t invmsk, uint16_t * corr)
Decode codeword (16bit data width)

Parameters
struct rs_control * rs the rs control structure
uint16_t * data data field of a given type
uint16_t * par received parity data field
int len data length
uint16_t * s syndrome data field (if NULL, syndrome is calculated)
int no_eras number of erasures
int * eras_pos position of erasures, can be NULL
uint16_t invmsk invert data mask (will be xored on data, not on parity!)
uint16_t * corr buffer to store correction bitmask on eras_pos
Description

Each field in the data array contains up to symbol size bits of valid data. Returns the number of
corrected bits or -EBADMSG for uncorrectable errors.

218 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

1.9.6 Credits

The library code for encoding and decoding was written by Phil Karn.

Copyright 2002, Phil Karn, KA9Q
May be used under the terms of the GNU General Public License (GPL)

The wrapper functions and interfaces are written by Thomas Gleixner.
Many users have provided bugfixes, improvements and helping hands for testing. Thanks a lot.
The following people have contributed to this document:
Thomas Gleixnertglx@linutronix.de

1.10 The genalloc/genpool subsystem

There are a number of memory-allocation subsystems in the kernel, each aimed at a specific need. Some-
times, however, a kernel developer needs to implement a new allocator for a specific range of special-
purpose memory; often that memory is located on a device somewhere. The author of the driver for that
device can certainly write a little allocator to get the job done, but that is the way to fill the kernel with
dozens of poorly tested allocators. Back in 2005, Jes Sorensen lifted one of those allocators from the
sym53c8xx_2 driver and posted it as a generic module for the creation of ad hoc memory allocators. This
code was merged for the 2.6.13 release; it has been modified considerably since then.
Code using this allocator should include <linux/genalloc.h>. The action begins with the creation of a pool
using one of:
struct gen_pool * gen_pool_create(int min_alloc_order, int nid)

create a new special memory pool
Parameters
int min_alloc_order log base 2 of number of bytes each bitmap bit represents
int nid node id of the node the pool structure should be allocated on, or -1
Description
Create a new special memory pool that can be used to manage special purpose memory not managed by
the regular kmalloc/kfree interface.
struct gen_pool * devm_gen_pool_create(struct device * dev, int min_alloc_order, int nid, const

char * name)
managed gen_pool_create

Parameters
struct device * dev device that provides the gen_pool
int min_alloc_order log base 2 of number of bytes each bitmap bit represents
int nid node selector for allocated gen_pool, NUMA_NO_NODE for all nodes
const char * name name of a gen_pool or NULL, identifies a particular gen_pool on device
Description
Create a new special memory pool that can be used to manage special purpose memory not managed by
the regular kmalloc/kfree interface. The pool will be automatically destroyed by the device management
code.
A call to gen_pool_create() will create a pool. The granularity of allocations is set with min_alloc_order;
it is a log-base-2 number like those used by the page allocator, but it refers to bytes rather than pages.
So, if min_alloc_order is passed as 3, then all allocations will be a multiple of eight bytes. Increasing
min_alloc_order decreases the memory required to track the memory in the pool. The nid parameter

1.10. The genalloc/genpool subsystem 219

mailto:tglx@linutronix.de
https://lwn.net/Articles/125842/

The kernel core API manual, Release 4.13.0-rc4+

specifies which NUMA node should be used for the allocation of the housekeeping structures; it can be -1
if the caller doesn’t care.
The “managed” interface devm_gen_pool_create() ties the pool to a specific device. Among other things,
it will automatically clean up the pool when the given device is destroyed.
A pool is shut down with:
void gen_pool_destroy(struct gen_pool * pool)

destroy a special memory pool
Parameters
struct gen_pool * pool pool to destroy
Description
Destroy the specified special memory pool. Verifies that there are no outstanding allocations.
It’s worth noting that, if there are still allocations outstanding from the given pool, this function will take
the rather extreme step of invoking BUG(), crashing the entire system. You have been warned.
A freshly created pool has no memory to allocate. It is fairly useless in that state, so one of the first orders
of business is usually to add memory to the pool. That can be done with one of:
int gen_pool_add(struct gen_pool * pool, unsigned long addr, size_t size, int nid)

add a new chunk of special memory to the pool
Parameters
struct gen_pool * pool pool to add new memory chunk to
unsigned long addr starting address of memory chunk to add to pool
size_t size size in bytes of the memory chunk to add to pool
int nid node id of the node the chunk structure and bitmap should be allocated on, or -1
Description
Add a new chunk of special memory to the specified pool.
Returns 0 on success or a -ve errno on failure.
int gen_pool_add_virt(struct gen_pool * pool, unsigned long virt, phys_addr_t phys, size_t size,

int nid)
add a new chunk of special memory to the pool

Parameters
struct gen_pool * pool pool to add new memory chunk to
unsigned long virt virtual starting address of memory chunk to add to pool
phys_addr_t phys physical starting address of memory chunk to add to pool
size_t size size in bytes of the memory chunk to add to pool
int nid node id of the node the chunk structure and bitmap should be allocated on, or -1
Description
Add a new chunk of special memory to the specified pool.
Returns 0 on success or a -ve errno on failure.
A call to gen_pool_add() will place the size bytes of memory starting at addr (in the kernel’s virtual
address space) into the given pool, once again using nid as the node ID for ancillary memory allocations.
The gen_pool_add_virt() variant associates an explicit physical address with the memory; this is only
necessary if the pool will be used for DMA allocations.
The functions for allocating memory from the pool (and putting it back) are:

220 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

unsigned long gen_pool_alloc(struct gen_pool * pool, size_t size)
allocate special memory from the pool

Parameters
struct gen_pool * pool pool to allocate from
size_t size number of bytes to allocate from the pool
Description
Allocate the requested number of bytes from the specified pool. Uses the pool allocation function (with
first-fit algorithm by default). Can not be used in NMI handler on architectures without NMI-safe cmpxchg
implementation.
void * gen_pool_dma_alloc(struct gen_pool * pool, size_t size, dma_addr_t * dma)

allocate special memory from the pool for DMA usage
Parameters
struct gen_pool * pool pool to allocate from
size_t size number of bytes to allocate from the pool
dma_addr_t * dma dma-view physical address return value. Use NULL if unneeded.
Description
Allocate the requested number of bytes from the specified pool. Uses the pool allocation function (with
first-fit algorithm by default). Can not be used in NMI handler on architectures without NMI-safe cmpxchg
implementation.
void gen_pool_free(struct gen_pool * pool, unsigned long addr, size_t size)

free allocated special memory back to the pool
Parameters
struct gen_pool * pool pool to free to
unsigned long addr starting address of memory to free back to pool
size_t size size in bytes of memory to free
Description
Free previously allocated special memory back to the specified pool. Can not be used in NMI handler on
architectures without NMI-safe cmpxchg implementation.
As one would expect, gen_pool_alloc() will allocate size< bytes from the given pool. The
gen_pool_dma_alloc() variant allocates memory for use with DMA operations, returning the associated
physical address in the space pointed to by dma. This will only work if the memory was added with
gen_pool_add_virt(). Note that this function departs from the usual genpool pattern of using unsigned
long values to represent kernel addresses; it returns a void * instead.
That all seems relatively simple; indeed, some developers clearly found it to be too simple. After all,
the interface above provides no control over how the allocation functions choose which specific piece of
memory to return. If that sort of control is needed, the following functions will be of interest:
unsigned long gen_pool_alloc_algo(struct gen_pool * pool, size_t size, genpool_algo_t algo, void

* data)
allocate special memory from the pool

Parameters
struct gen_pool * pool pool to allocate from
size_t size number of bytes to allocate from the pool
genpool_algo_t algo algorithm passed from caller
void * data data passed to algorithm

1.10. The genalloc/genpool subsystem 221

The kernel core API manual, Release 4.13.0-rc4+

Description
Allocate the requested number of bytes from the specified pool. Uses the pool allocation function (with
first-fit algorithm by default). Can not be used in NMI handler on architectures without NMI-safe cmpxchg
implementation.
void gen_pool_set_algo(struct gen_pool * pool, genpool_algo_t algo, void * data)

set the allocation algorithm
Parameters
struct gen_pool * pool pool to change allocation algorithm
genpool_algo_t algo custom algorithm function
void * data additional data used by algo
Description
Call algo for each memory allocation in the pool. If algo is NULL use gen_pool_first_fit as default memory
allocation function.
Allocations with gen_pool_alloc_algo() specify an algorithm to be used to choose the memory to be
allocated; the default algorithm can be set with gen_pool_set_algo(). The data value is passed to
the algorithm; most ignore it, but it is occasionally needed. One can, naturally, write a special-purpose
algorithm, but there is a fair set already available:
• gen_pool_first_fit is a simple first-fit allocator; this is the default algorithm if none other has been
specified.

• gen_pool_first_fit_align forces the allocation to have a specific alignment (passed via data in a gen-
pool_data_align structure).

• gen_pool_first_fit_order_align aligns the allocation to the order of the size. A 60-byte allocation will
thus be 64-byte aligned, for example.

• gen_pool_best_fit, as one would expect, is a simple best-fit allocator.
• gen_pool_fixed_alloc allocates at a specific offset (passed in a genpool_data_fixed structure via the
data parameter) within the pool. If the indicated memory is not available the allocation fails.

There is a handful of other functions, mostly for purposes like querying the space available in the pool
or iterating through chunks of memory. Most users, however, should not need much beyond what has
been described above. With luck, wider awareness of this module will help to prevent the writing of
special-purpose memory allocators in the future.
phys_addr_t gen_pool_virt_to_phys(struct gen_pool * pool, unsigned long addr)

return the physical address of memory
Parameters
struct gen_pool * pool pool to allocate from
unsigned long addr starting address of memory
Description
Returns the physical address on success, or -1 on error.
void gen_pool_for_each_chunk(struct gen_pool * pool, void (*func) (struct gen_pool *pool, struct

gen_pool_chunk *chunk, void *data, void * data)
call func for every chunk of generic memory pool

Parameters
struct gen_pool * pool the generic memory pool
void (*)(struct gen_pool *pool,struct gen_pool_chunk *chunk,void *data) func func to call
void * data additional data used by func

222 Chapter 1. Core utilities

The kernel core API manual, Release 4.13.0-rc4+

Description
Call func for every chunk of generic memory pool. The func is called with rcu_read_lock held.
bool addr_in_gen_pool(struct gen_pool * pool, unsigned long start, size_t size)

checks if an address falls within the range of a pool
Parameters
struct gen_pool * pool the generic memory pool
unsigned long start start address
size_t size size of the region
Description
Check if the range of addresses falls within the specified pool. Returns true if the entire range is contained
in the pool and false otherwise.
size_t gen_pool_avail(struct gen_pool * pool)

get available free space of the pool
Parameters
struct gen_pool * pool pool to get available free space
Description
Return available free space of the specified pool.
size_t gen_pool_size(struct gen_pool * pool)

get size in bytes of memory managed by the pool
Parameters
struct gen_pool * pool pool to get size
Description
Return size in bytes of memory managed by the pool.
struct gen_pool * gen_pool_get(struct device * dev, const char * name)

Obtain the gen_pool (if any) for a device
Parameters
struct device * dev device to retrieve the gen_pool from
const char * name name of a gen_pool or NULL, identifies a particular gen_pool on device
Description
Returns the gen_pool for the device if one is present, or NULL.
struct gen_pool * of_gen_pool_get(struct device_node * np, const char * propname, int index)

find a pool by phandle property
Parameters
struct device_node * np device node
const char * propname property name containing phandle(s)
int index index into the phandle array
Description
Returns the pool that contains the chunk starting at the physical address of the device tree node pointed
at by the phandle property, or NULL if not found.

1.10. The genalloc/genpool subsystem 223

The kernel core API manual, Release 4.13.0-rc4+

224 Chapter 1. Core utilities

CHAPTER

TWO

INTERFACES FOR KERNEL DEBUGGING

2.1 The object-lifetime debugging infrastructure

Author Thomas Gleixner

2.1.1 Introduction

debugobjects is a generic infrastructure to track the life time of kernel objects and validate the operations
on those.
debugobjects is useful to check for the following error patterns:
• Activation of uninitialized objects
• Initialization of active objects
• Usage of freed/destroyed objects

debugobjects is not changing the data structure of the real object so it can be compiled in with a minimal
runtime impact and enabled on demand with a kernel command line option.

2.1.2 Howto use debugobjects

A kernel subsystem needs to provide a data structure which describes the object type and add calls into
the debug code at appropriate places. The data structure to describe the object type needs at minimum
the name of the object type. Optional functions can and should be provided to fixup detected problems
so the kernel can continue to work and the debug information can be retrieved from a live system instead
of hard core debugging with serial consoles and stack trace transcripts from the monitor.
The debug calls provided by debugobjects are:
• debug_object_init
• debug_object_init_on_stack
• debug_object_activate
• debug_object_deactivate
• debug_object_destroy
• debug_object_free
• debug_object_assert_init

Each of these functions takes the address of the real object and a pointer to the object type specific debug
description structure.
Each detected error is reported in the statistics and a limited number of errors are printk’ed including a
full stack trace.

225

The kernel core API manual, Release 4.13.0-rc4+

The statistics are available via /sys/kernel/debug/debug_objects/stats. They provide information about
the number of warnings and the number of successful fixups along with information about the usage of
the internal tracking objects and the state of the internal tracking objects pool.

2.1.3 Debug functions

void debug_object_init(void * addr, struct debug_obj_descr * descr)
debug checks when an object is initialized

Parameters
void * addr address of the object
struct debug_obj_descr * descr pointer to an object specific debug description structure
This function is called whenever the initialization function of a real object is called.
When the real object is already tracked by debugobjects it is checked, whether the object can be initialized.
Initializing is not allowed for active and destroyed objects. When debugobjects detects an error, then it
calls the fixup_init function of the object type description structure if provided by the caller. The fixup
function can correct the problem before the real initialization of the object happens. E.g. it can deactivate
an active object in order to prevent damage to the subsystem.
When the real object is not yet tracked by debugobjects, debugobjects allocates a tracker object for the
real object and sets the tracker object state to ODEBUG_STATE_INIT. It verifies that the object is not on the
callers stack. If it is on the callers stack then a limited number of warnings including a full stack trace is
printk’ed. The calling code must use debug_object_init_on_stack() and remove the object before leaving
the function which allocated it. See next section.
void debug_object_init_on_stack(void * addr, struct debug_obj_descr * descr)

debug checks when an object on stack is initialized
Parameters
void * addr address of the object
struct debug_obj_descr * descr pointer to an object specific debug description structure
This function is called whenever the initialization function of a real object which resides on the stack is
called.
When the real object is already tracked by debugobjects it is checked, whether the object can be initialized.
Initializing is not allowed for active and destroyed objects. When debugobjects detects an error, then it
calls the fixup_init function of the object type description structure if provided by the caller. The fixup
function can correct the problem before the real initialization of the object happens. E.g. it can deactivate
an active object in order to prevent damage to the subsystem.
When the real object is not yet tracked by debugobjects debugobjects allocates a tracker object for the
real object and sets the tracker object state to ODEBUG_STATE_INIT. It verifies that the object is on the
callers stack.
An object which is on the stack must be removed from the tracker by calling debug_object_free() before
the function which allocates the object returns. Otherwise we keep track of stale objects.
int debug_object_activate(void * addr, struct debug_obj_descr * descr)

debug checks when an object is activated
Parameters
void * addr address of the object
struct debug_obj_descr * descr pointer to an object specific debug description structure Returns 0

for success, -EINVAL for check failed.
This function is called whenever the activation function of a real object is called.

226 Chapter 2. Interfaces for kernel debugging

The kernel core API manual, Release 4.13.0-rc4+

When the real object is already tracked by debugobjects it is checked, whether the object can be activated.
Activating is not allowed for active and destroyed objects. When debugobjects detects an error, then it
calls the fixup_activate function of the object type description structure if provided by the caller. The fixup
function can correct the problem before the real activation of the object happens. E.g. it can deactivate
an active object in order to prevent damage to the subsystem.
When the real object is not yet tracked by debugobjects then the fixup_activate function is called if avail-
able. This is necessary to allow the legitimate activation of statically allocated and initialized objects. The
fixup function checks whether the object is valid and calls the debug_objects_init() function to initialize
the tracking of this object.
When the activation is legitimate, then the state of the associated tracker object is set to ODE-
BUG_STATE_ACTIVE.
void debug_object_deactivate(void * addr, struct debug_obj_descr * descr)

debug checks when an object is deactivated
Parameters
void * addr address of the object
struct debug_obj_descr * descr pointer to an object specific debug description structure
This function is called whenever the deactivation function of a real object is called.
When the real object is tracked by debugobjects it is checked, whether the object can be deactivated.
Deactivating is not allowed for untracked or destroyed objects.
When the deactivation is legitimate, then the state of the associated tracker object is set to ODE-
BUG_STATE_INACTIVE.
void debug_object_destroy(void * addr, struct debug_obj_descr * descr)

debug checks when an object is destroyed
Parameters
void * addr address of the object
struct debug_obj_descr * descr pointer to an object specific debug description structure
This function is called to mark an object destroyed. This is useful to prevent the usage of invalid objects,
which are still available in memory: either statically allocated objects or objects which are freed later.
When the real object is tracked by debugobjects it is checked, whether the object can be destroyed.
Destruction is not allowed for active and destroyed objects. When debugobjects detects an error, then it
calls the fixup_destroy function of the object type description structure if provided by the caller. The fixup
function can correct the problem before the real destruction of the object happens. E.g. it can deactivate
an active object in order to prevent damage to the subsystem.
When the destruction is legitimate, then the state of the associated tracker object is set to ODE-
BUG_STATE_DESTROYED.
void debug_object_free(void * addr, struct debug_obj_descr * descr)

debug checks when an object is freed
Parameters
void * addr address of the object
struct debug_obj_descr * descr pointer to an object specific debug description structure
This function is called before an object is freed.
When the real object is tracked by debugobjects it is checked, whether the object can be freed. Free is
not allowed for active objects. When debugobjects detects an error, then it calls the fixup_free function of
the object type description structure if provided by the caller. The fixup function can correct the problem
before the real free of the object happens. E.g. it can deactivate an active object in order to prevent
damage to the subsystem.

2.1. The object-lifetime debugging infrastructure 227

The kernel core API manual, Release 4.13.0-rc4+

Note that debug_object_free removes the object from the tracker. Later usage of the object is detected
by the other debug checks.
void debug_object_assert_init(void * addr, struct debug_obj_descr * descr)

debug checks when object should be init-ed
Parameters
void * addr address of the object
struct debug_obj_descr * descr pointer to an object specific debug description structure
This function is called to assert that an object has been initialized.
When the real object is not tracked by debugobjects, it calls fixup_assert_init of the object type description
structure provided by the caller, with the hardcoded object state ODEBUG_NOT_AVAILABLE. The fixup
function can correct the problem by calling debug_object_init and other specific initializing functions.
When the real object is already tracked by debugobjects it is ignored.

2.1.4 Fixup functions

Debug object type description structure

struct debug_obj
representaion of an tracked object

Definition

struct debug_obj {
struct hlist_node node;
enum debug_obj_state state;
unsigned int astate;
void * object;
struct debug_obj_descr * descr;

};

Members
node hlist node to link the object into the tracker list
state tracked object state
astate current active state
object pointer to the real object
descr pointer to an object type specific debug description structure
struct debug_obj_descr

object type specific debug description structure
Definition

struct debug_obj_descr {
const char * name;
void *(* debug_hint) (void *addr);
bool (* is_static_object) (void *addr);
bool (* fixup_init) (void *addr, enum debug_obj_state state);
bool (* fixup_activate) (void *addr, enum debug_obj_state state);
bool (* fixup_destroy) (void *addr, enum debug_obj_state state);
bool (* fixup_free) (void *addr, enum debug_obj_state state);
bool (* fixup_assert_init) (void *addr, enum debug_obj_state state);

};

Members

228 Chapter 2. Interfaces for kernel debugging

The kernel core API manual, Release 4.13.0-rc4+

name name of the object typee
debug_hint function returning address, which have associated kernel symbol, to allow identify the object
is_static_object return true if the obj is static, otherwise return false
fixup_init fixup function, which is called when the init check fails. All fixup functions must return true

if fixup was successful, otherwise return false
fixup_activate fixup function, which is called when the activate check fails
fixup_destroy fixup function, which is called when the destroy check fails
fixup_free fixup function, which is called when the free check fails
fixup_assert_init fixup function, which is called when the assert_init check fails

fixup_init

This function is called from the debug code whenever a problem in debug_object_init is detected. The
function takes the address of the object and the state which is currently recorded in the tracker.
Called from debug_object_init when the object state is:
• ODEBUG_STATE_ACTIVE

The function returns true when the fixup was successful, otherwise false. The return value is used to
update the statistics.
Note, that the function needs to call the debug_object_init() function again, after the damage has been
repaired in order to keep the state consistent.

fixup_activate

This function is called from the debug code whenever a problem in debug_object_activate is detected.
Called from debug_object_activate when the object state is:
• ODEBUG_STATE_NOTAVAILABLE
• ODEBUG_STATE_ACTIVE

The function returns true when the fixup was successful, otherwise false. The return value is used to
update the statistics.
Note that the function needs to call the debug_object_activate() function again after the damage has been
repaired in order to keep the state consistent.
The activation of statically initialized objects is a special case. When debug_object_activate() has
no tracked object for this object address then fixup_activate() is called with object state ODE-
BUG_STATE_NOTAVAILABLE. The fixup function needs to check whether this is a legitimate case of a
statically initialized object or not. In case it is it calls debug_object_init() and debug_object_activate()
to make the object known to the tracker and marked active. In this case the function should return false
because this is not a real fixup.

fixup_destroy

This function is called from the debug code whenever a problem in debug_object_destroy is detected.
Called from debug_object_destroy when the object state is:
• ODEBUG_STATE_ACTIVE

The function returns true when the fixup was successful, otherwise false. The return value is used to
update the statistics.

2.1. The object-lifetime debugging infrastructure 229

The kernel core API manual, Release 4.13.0-rc4+

fixup_free

This function is called from the debug code whenever a problem in debug_object_free is detected. Fur-
ther it can be called from the debug checks in kfree/vfree, when an active object is detected from the
debug_check_no_obj_freed() sanity checks.
Called from debug_object_free() or debug_check_no_obj_freed() when the object state is:
• ODEBUG_STATE_ACTIVE

The function returns true when the fixup was successful, otherwise false. The return value is used to
update the statistics.

fixup_assert_init

This function is called from the debug code whenever a problem in debug_object_assert_init is detected.
Called from debug_object_assert_init() with a hardcoded state ODEBUG_STATE_NOTAVAILABLE when the
object is not found in the debug bucket.
The function returns true when the fixup was successful, otherwise false. The return value is used to
update the statistics.
Note, this function should make sure debug_object_init() is called before returning.
The handling of statically initialized objects is a special case. The fixup function should check if this is
a legitimate case of a statically initialized object or not. In this case only debug_object_init() should be
called to make the object known to the tracker. Then the function should return false because this is not
a real fixup.

2.1.5 Known Bugs And Assumptions

None (knock on wood).

2.2 The Linux Kernel Tracepoint API

Author Jason Baron
Author William Cohen

2.2.1 Introduction

Tracepoints are static probe points that are located in strategic points throughout the kernel. ‘Probes’
register/unregister with tracepoints via a callback mechanism. The ‘probes’ are strictly typed functions
that are passed a unique set of parameters defined by each tracepoint.
From this simple callback mechanism, ‘probes’ can be used to profile, debug, and understand kernel
behavior. There are a number of tools that provide a framework for using ‘probes’. These tools include
Systemtap, ftrace, and LTTng.
Tracepoints are defined in a number of header files via various macros. Thus, the purpose of this document
is to provide a clear accounting of the available tracepoints. The intention is to understand not only what
tracepoints are available but also to understand where future tracepoints might be added.
The API presented has functions of the form: trace_tracepointname(function parameters). These are
the tracepoints callbacks that are found throughout the code. Registering and unregistering probes with
these callback sites is covered in the Documentation/trace/* directory.

230 Chapter 2. Interfaces for kernel debugging

The kernel core API manual, Release 4.13.0-rc4+

2.2.2 IRQ

void trace_irq_handler_entry(int irq, struct irqaction * action)
called immediately before the irq action handler

Parameters
int irq irq number
struct irqaction * action pointer to struct irqaction
Description
The struct irqaction pointed to by action contains various information about the handler, including the
device name, action->name, and the device id, action->dev_id. When used in conjunction with the
irq_handler_exit tracepoint, we can figure out irq handler latencies.
void trace_irq_handler_exit(int irq, struct irqaction * action, int ret)

called immediately after the irq action handler returns
Parameters
int irq irq number
struct irqaction * action pointer to struct irqaction
int ret return value
Description
If the ret value is set to IRQ_HANDLED, then we know that the corresponding action->handler successfully
handled this irq. Otherwise, the irq might be a shared irq line, or the irq was not handled successfully.
Can be used in conjunction with the irq_handler_entry to understand irq handler latencies.
void trace_softirq_entry(unsigned int vec_nr)

called immediately before the softirq handler
Parameters
unsigned int vec_nr softirq vector number
Description
When used in combination with the softirq_exit tracepoint we can determine the softirq handler routine.
void trace_softirq_exit(unsigned int vec_nr)

called immediately after the softirq handler returns
Parameters
unsigned int vec_nr softirq vector number
Description
When used in combination with the softirq_entry tracepoint we can determine the softirq handler routine.

void trace_softirq_raise(unsigned int vec_nr)
called immediately when a softirq is raised

Parameters
unsigned int vec_nr softirq vector number
Description
When used in combination with the softirq_entry tracepoint we can determine the softirq raise to run
latency.

2.2. The Linux Kernel Tracepoint API 231

The kernel core API manual, Release 4.13.0-rc4+

2.2.3 SIGNAL

void trace_signal_generate(int sig, struct siginfo * info, struct task_struct * task, int group,
int result)

called when a signal is generated
Parameters
int sig signal number
struct siginfo * info pointer to struct siginfo
struct task_struct * task pointer to struct task_struct
int group shared or private
int result TRACE_SIGNAL_*
Description
Current process sends a ‘sig’ signal to ‘task’ process with ‘info’ siginfo. If ‘info’ is SEND_SIG_NOINFO or
SEND_SIG_PRIV, ‘info’ is not a pointer and you can’t access its field. Instead, SEND_SIG_NOINFO means
that si_code is SI_USER, and SEND_SIG_PRIV means that si_code is SI_KERNEL.
void trace_signal_deliver(int sig, struct siginfo * info, struct k_sigaction * ka)

called when a signal is delivered
Parameters
int sig signal number
struct siginfo * info pointer to struct siginfo
struct k_sigaction * ka pointer to struct k_sigaction
Description
A ‘sig’ signal is delivered to current process with ‘info’ siginfo, and it will be handled by ‘ka’. ka-
>sa.sa_handler can be SIG_IGN or SIG_DFL. Note that some signals reported by signal_generate trace-
point can be lost, ignored or modified (by debugger) before hitting this tracepoint. This means, this can
show which signals are actually delivered, but matching generated signals and delivered signals may not
be correct.

2.2.4 Block IO

void trace_block_touch_buffer(struct buffer_head * bh)
mark a buffer accessed

Parameters
struct buffer_head * bh buffer_head being touched
Description
Called from touch_buffer().
void trace_block_dirty_buffer(struct buffer_head * bh)

mark a buffer dirty
Parameters
struct buffer_head * bh buffer_head being dirtied
Description
Called from mark_buffer_dirty().
void trace_block_rq_requeue(struct request_queue * q, struct request * rq)

place block IO request back on a queue

232 Chapter 2. Interfaces for kernel debugging

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct request_queue * q queue holding operation
struct request * rq block IO operation request
Description
The block operation request rq is being placed back into queue q. For some reason the request was not
completed and needs to be put back in the queue.
void trace_block_rq_complete(struct request * rq, int error, unsigned int nr_bytes)

block IO operation completed by device driver
Parameters
struct request * rq block operations request
int error status code
unsigned int nr_bytes number of completed bytes
Description
The block_rq_complete tracepoint event indicates that some portion of operation request has been com-
pleted by the device driver. If the rq->bio is NULL, then there is absolutely no additional work to do for
the request. If rq->bio is non-NULL then there is additional work required to complete the request.
void trace_block_rq_insert(struct request_queue * q, struct request * rq)

insert block operation request into queue
Parameters
struct request_queue * q target queue
struct request * rq block IO operation request
Description
Called immediately before block operation request rq is inserted into queue q. The fields in the operation
request rq struct can be examined to determine which device and sectors the pending operation would
access.
void trace_block_rq_issue(struct request_queue * q, struct request * rq)

issue pending block IO request operation to device driver
Parameters
struct request_queue * q queue holding operation
struct request * rq block IO operation operation request
Description
Called when block operation request rq from queue q is sent to a device driver for processing.
void trace_block_bio_bounce(struct request_queue * q, struct bio * bio)

used bounce buffer when processing block operation
Parameters
struct request_queue * q queue holding the block operation
struct bio * bio block operation
Description
A bounce buffer was used to handle the block operation bio in q. This occurs when hardware limitations
prevent a direct transfer of data between the bio data memory area and the IO device. Use of a bounce
buffer requires extra copying of data and decreases performance.
void trace_block_bio_complete(struct request_queue * q, struct bio * bio, int error)

completed all work on the block operation

2.2. The Linux Kernel Tracepoint API 233

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct request_queue * q queue holding the block operation
struct bio * bio block operation completed
int error io error value
Description
This tracepoint indicates there is no further work to do on this block IO operation bio.
void trace_block_bio_backmerge(struct request_queue * q, struct request * rq, struct bio * bio)

merging block operation to the end of an existing operation
Parameters
struct request_queue * q queue holding operation
struct request * rq request bio is being merged into
struct bio * bio new block operation to merge
Description
Merging block request bio to the end of an existing block request in queue q.
void trace_block_bio_frontmerge(struct request_queue * q, struct request * rq, struct bio * bio)

merging block operation to the beginning of an existing operation
Parameters
struct request_queue * q queue holding operation
struct request * rq request bio is being merged into
struct bio * bio new block operation to merge
Description
Merging block IO operation bio to the beginning of an existing block operation in queue q.
void trace_block_bio_queue(struct request_queue * q, struct bio * bio)

putting new block IO operation in queue
Parameters
struct request_queue * q queue holding operation
struct bio * bio new block operation
Description
About to place the block IO operation bio into queue q.
void trace_block_getrq(struct request_queue * q, struct bio * bio, int rw)

get a free request entry in queue for block IO operations
Parameters
struct request_queue * q queue for operations
struct bio * bio pending block IO operation
int rw low bit indicates a read (0) or a write (1)
Description
A request struct for queue q has been allocated to handle the block IO operation bio.
void trace_block_sleeprq(struct request_queue * q, struct bio * bio, int rw)

waiting to get a free request entry in queue for block IO operation
Parameters
struct request_queue * q queue for operation

234 Chapter 2. Interfaces for kernel debugging

The kernel core API manual, Release 4.13.0-rc4+

struct bio * bio pending block IO operation
int rw low bit indicates a read (0) or a write (1)
Description
In the case where a request struct cannot be provided for queue q the process needs to wait for an request
struct to become available. This tracepoint event is generated each time the process goes to sleep waiting
for request struct become available.
void trace_block_plug(struct request_queue * q)

keep operations requests in request queue
Parameters
struct request_queue * q request queue to plug
Description
Plug the request queue q. Do not allow block operation requests to be sent to the device driver. Instead,
accumulate requests in the queue to improve throughput performance of the block device.
void trace_block_unplug(struct request_queue * q, unsigned int depth, bool explicit)

release of operations requests in request queue
Parameters
struct request_queue * q request queue to unplug
unsigned int depth number of requests just added to the queue
bool explicit whether this was an explicit unplug, or one from schedule()

Description
Unplug request queue q because device driver is scheduled to work on elements in the request queue.
void trace_block_split(struct request_queue * q, struct bio * bio, unsigned int new_sector)

split a single bio struct into two bio structs
Parameters
struct request_queue * q queue containing the bio
struct bio * bio block operation being split
unsigned int new_sector The starting sector for the new bio
Description
The bio request bio in request queue q needs to be split into two bio requests. The newly created bio
request starts at new_sector. This split may be required due to hardware limitation such as operation
crossing device boundaries in a RAID system.
void trace_block_bio_remap(struct request_queue * q, struct bio * bio, dev_t dev, sector_t from)

map request for a logical device to the raw device
Parameters
struct request_queue * q queue holding the operation
struct bio * bio revised operation
dev_t dev device for the operation
sector_t from original sector for the operation
Description
An operation for a logical device has been mapped to the raw block device.
void trace_block_rq_remap(struct request_queue * q, struct request * rq, dev_t dev, sec-

tor_t from)
map request for a block operation request

2.2. The Linux Kernel Tracepoint API 235

The kernel core API manual, Release 4.13.0-rc4+

Parameters
struct request_queue * q queue holding the operation
struct request * rq block IO operation request
dev_t dev device for the operation
sector_t from original sector for the operation
Description
The block operation request rq in q has been remapped. The block operation request rq holds the current
information and from hold the original sector.

2.2.5 Workqueue

void trace_workqueue_queue_work(unsigned int req_cpu, struct pool_workqueue * pwq, struct
work_struct * work)

called when a work gets queued
Parameters
unsigned int req_cpu the requested cpu
struct pool_workqueue * pwq pointer to struct pool_workqueue
struct work_struct * work pointer to struct work_struct
Description
This event occurs when a work is queued immediately or once a delayed work is actually queued on a
workqueue (ie: once the delay has been reached).
void trace_workqueue_activate_work(struct work_struct * work)

called when a work gets activated
Parameters
struct work_struct * work pointer to struct work_struct
Description
This event occurs when a queued work is put on the active queue, which happens immediately after
queueing unless max_active limit is reached.
void trace_workqueue_execute_start(struct work_struct * work)

called immediately before the workqueue callback
Parameters
struct work_struct * work pointer to struct work_struct
Description
Allows to track workqueue execution.
void trace_workqueue_execute_end(struct work_struct * work)

called immediately after the workqueue callback
Parameters
struct work_struct * work pointer to struct work_struct
Description
Allows to track workqueue execution.

236 Chapter 2. Interfaces for kernel debugging

INDEX

Symbols
__audit_fd_pair (C function), 101
__audit_free (C function), 99
__audit_getname (C function), 99
__audit_inode (C function), 100
__audit_ipc_obj (C function), 101
__audit_ipc_set_perm (C function), 101
__audit_log_bprm_fcaps (C function), 102
__audit_log_capset (C function), 102
__audit_mq_getsetattr (C function), 101
__audit_mq_notify (C function), 100
__audit_mq_open (C function), 100
__audit_mq_sendrecv (C function), 100
__audit_reusename (C function), 99
__audit_sockaddr (C function), 101
__audit_socketcall (C function), 101
__audit_syscall_entry (C function), 99
__audit_syscall_exit (C function), 99
__bitmap_parse (C function), 26
__bitmap_parselist (C function), 31
__bitmap_shift_left (C function), 25
__bitmap_shift_right (C function), 25
__blk_drain_queue (C function), 112
__blk_end_bidi_request (C function), 114
__blk_end_request (C function), 109
__blk_end_request_all (C function), 109
__blk_end_request_cur (C function), 109
__blk_queue_free_tags (C function), 126
__blk_release_queue (C function), 115
__blk_run_queue (C function), 105
__blk_run_queue_uncond (C function), 104
__blkdev_issue_zeroout (C function), 124
__change_bit (C function), 22
__clear_user (C function), 44
__ffs (C function), 24
__generic_file_write_iter (C function), 52
__get_pfnblock_flags_mask (C function), 59
__get_request (C function), 113
__get_user (C function), 43
__handle_domain_irq (C function), 203
__irq_alloc_descs (C function), 204
__irq_alloc_domain_generic_chips (C function), 184
__list_del_entry (C function), 3
__lock_page (C function), 48
__put_user (C function), 43
__register_chrdev (C function), 133

__relay_reset (C function), 82
__release_region (C function), 94
__request_module (C function), 84
__request_percpu_irq (C function), 90, 197
__request_region (C function), 94
__set_bit (C function), 22
__sysfs_match_string (C function), 19
__test_and_clear_bit (C function), 24
__test_and_set_bit (C function), 23
__unregister_chrdev (C function), 134

A
absent_pages_in_range (C function), 61
access_ok (C function), 42
acct_collect (C function), 103
acct_process (C function), 103
add_page_wait_queue (C function), 48
add_to_page_cache_locked (C function), 47
addr_in_gen_pool (C function), 223
adjust_resource (C function), 94
alloc_chrdev_region (C function), 133
alloc_contig_range (C function), 62
alloc_ordered_workqueue (C function), 176
alloc_pages_exact_nid (C function), 59
alloc_vm_area (C function), 59
alloc_workqueue (C function), 176
allocate_resource (C function), 93
arch_phys_wc_add (C function), 95
audit_alloc (C function), 98
audit_compare_dname_path (C function), 103
audit_core_dumps (C function), 102
audit_list_rules_send (C function), 102
audit_log (C function), 98
audit_log_end (C function), 98
audit_log_format (C function), 98
audit_log_secctx (C function), 98
audit_log_start (C function), 97
audit_rule_change (C function), 102
audit_set_loginuid (C function), 100
audit_signal_info (C function), 101
auditsc_get_stamp (C function), 100

B
balance_dirty_pages_ratelimited (C function), 65
bdev_stack_limits (C function), 120
bdget_disk (C function), 133

237

The kernel core API manual, Release 4.13.0-rc4+

bitmap_allocate_region (C function), 30
bitmap_bitremap (C function), 28
bitmap_copy_le (C function), 31
bitmap_find_free_region (C function), 30
bitmap_find_next_zero_area_off (C function), 26
bitmap_fold (C function), 29
bitmap_from_u32array (C function), 30
bitmap_onto (C function), 28
bitmap_ord_to_pos (C function), 32
bitmap_parse_user (C function), 26
bitmap_parselist_user (C function), 27
bitmap_pos_to_ord (C function), 32
bitmap_print_to_pagebuf (C function), 27
bitmap_release_region (C function), 30
bitmap_remap (C function), 27
bitmap_to_u32array (C function), 31
blk_add_trace_bio (C function), 128
blk_add_trace_bio_remap (C function), 128
blk_add_trace_rq (C function), 128
blk_add_trace_rq_remap (C function), 128
blk_alloc_devt (C function), 129
blk_attempt_plug_merge (C function), 113
blk_cleanup_queue (C function), 105
blk_cloned_rq_check_limits (C function), 114
blk_delay_queue (C function), 103
blk_end_bidi_request (C function), 114
blk_end_request (C function), 109
blk_end_request_all (C function), 109
blk_execute_rq (C function), 123
blk_execute_rq_nowait (C function), 123
blk_fetch_request (C function), 108
blk_free_devt (C function), 129
blk_free_tags (C function), 125
blk_init_queue (C function), 106
blk_init_tags (C function), 125
blk_insert_cloned_request (C function), 107
blk_integrity_compare (C function), 127
blk_integrity_register (C function), 127
blk_integrity_unregister (C function), 127
blk_limits_io_min (C function), 119
blk_limits_io_opt (C function), 119
blk_lld_busy (C function), 110
blk_mangle_minor (C function), 129
blk_peek_request (C function), 107
blk_pm_runtime_init (C function), 111
blk_post_runtime_resume (C function), 112
blk_post_runtime_suspend (C function), 112
blk_pre_runtime_resume (C function), 112
blk_pre_runtime_suspend (C function), 111
blk_queue_alignment_offset (C function), 119
blk_queue_bounce_limit (C function), 117
blk_queue_bypass_end (C function), 105
blk_queue_bypass_start (C function), 105
blk_queue_chunk_sectors (C function), 117
blk_queue_dma_alignment (C function), 122
blk_queue_dma_drain (C function), 121
blk_queue_dma_pad (C function), 121
blk_queue_end_tag (C function), 126

blk_queue_find_tag (C function), 125
blk_queue_free_tags (C function), 125
blk_queue_init_tags (C function), 125
blk_queue_invalidate_tags (C function), 126
blk_queue_io_min (C function), 119
blk_queue_io_opt (C function), 120
blk_queue_logical_block_size (C function), 118
blk_queue_make_request (C function), 116
blk_queue_max_discard_sectors (C function), 117
blk_queue_max_discard_segments (C function),

118
blk_queue_max_hw_sectors (C function), 117
blk_queue_max_segment_size (C function), 118
blk_queue_max_segments (C function), 118
blk_queue_max_write_same_sectors (C function),

118
blk_queue_max_write_zeroes_sectors (C function),

118
blk_queue_physical_block_size (C function), 119
blk_queue_prep_rq (C function), 116
blk_queue_resize_tags (C function), 125
blk_queue_segment_boundary (C function), 122
blk_queue_stack_limits (C function), 120
blk_queue_start_tag (C function), 126
blk_queue_unprep_rq (C function), 116
blk_queue_update_dma_alignment (C function),

122
blk_queue_update_dma_pad (C function), 121
blk_queue_virt_boundary (C function), 122
blk_queue_write_cache (C function), 122
blk_requeue_request (C function), 106
blk_rq_count_integrity_sg (C function), 126
blk_rq_err_bytes (C function), 107
blk_rq_map_integrity_sg (C function), 127
blk_rq_map_kern (C function), 115
blk_rq_map_user_iov (C function), 115
blk_rq_prep_clone (C function), 110
blk_rq_unmap_user (C function), 115
blk_rq_unprep_clone (C function), 110
blk_run_queue (C function), 105
blk_run_queue_async (C function), 105
blk_set_default_limits (C function), 116
blk_set_queue_depth (C function), 122
blk_set_runtime_active (C function), 112
blk_set_stacking_limits (C function), 116
blk_stack_limits (C function), 120
blk_start_plug (C function), 111
blk_start_queue (C function), 104
blk_start_queue_async (C function), 103
blk_start_request (C function), 108
blk_stop_queue (C function), 104
blk_sync_queue (C function), 104
blk_trace_ioctl (C function), 127
blk_trace_shutdown (C function), 128
blk_unprep_request (C function), 108
blk_update_request (C function), 108
blkdev_issue_discard (C function), 123
blkdev_issue_flush (C function), 123

238 Index

The kernel core API manual, Release 4.13.0-rc4+

blkdev_issue_write_same (C function), 124
blkdev_issue_zeroout (C function), 124
bprintf (C function), 13
bstr_printf (C function), 13

C
call_usermodehelper (C function), 85
call_usermodehelper_exec (C function), 85
call_usermodehelper_setup (C function), 84
cdev_add (C function), 134
cdev_alloc (C function), 135
cdev_del (C function), 135
cdev_device_add (C function), 135
cdev_device_del (C function), 135
cdev_init (C function), 136
cdev_set_parent (C function), 134
change_bit (C function), 23
clear_bit (C function), 22
clear_user (C function), 44
clk_bulk_data (C type), 137
clk_bulk_disable (C function), 141
clk_bulk_enable (C function), 140
clk_bulk_get (C function), 139
clk_bulk_put (C function), 141
clk_disable (C function), 140
clk_enable (C function), 140
clk_get (C function), 139
clk_get_accuracy (C function), 138
clk_get_parent (C function), 143
clk_get_phase (C function), 138
clk_get_rate (C function), 141
clk_get_sys (C function), 143
clk_has_parent (C function), 142
clk_is_match (C function), 138
clk_notifier (C type), 136
clk_notifier_data (C type), 137
clk_notifier_register (C function), 137
clk_notifier_unregister (C function), 137
clk_prepare (C function), 138
clk_put (C function), 141
clk_round_rate (C function), 142
clk_set_max_rate (C function), 143
clk_set_min_rate (C function), 142
clk_set_parent (C function), 143
clk_set_phase (C function), 138
clk_set_rate (C function), 142
clk_set_rate_range (C function), 142
clk_unprepare (C function), 138
cpuhp_remove_multi_state (C function), 167
cpuhp_remove_state (C function), 167
cpuhp_remove_state_nocalls (C function), 167
cpuhp_setup_state (C function), 166
cpuhp_setup_state_multi (C function), 166
cpuhp_setup_state_nocalls (C function), 166
cpuhp_state_add_instance (C function), 166
cpuhp_state_add_instance_nocalls (C function), 167
cpuhp_state_remove_instance (C function), 167

cpuhp_state_remove_instance_nocalls (C function),
167

crc16 (C function), 33
crc32_be_generic (C function), 34
crc32_generic_shift (C function), 34
crc32_le_generic (C function), 34
crc7_be (C function), 33
crc_ccitt (C function), 35
crc_itu_t (C function), 34

D
debug_obj (C type), 228
debug_obj_descr (C type), 228
debug_object_activate (C function), 226
debug_object_assert_init (C function), 228
debug_object_deactivate (C function), 227
debug_object_destroy (C function), 227
debug_object_free (C function), 227
debug_object_init (C function), 226
debug_object_init_on_stack (C function), 226
DECLARE_KFIFO (C function), 73
DECLARE_KFIFO_PTR (C function), 73
decode_rs16 (C function), 218
decode_rs8 (C function), 217
DEFINE_KFIFO (C function), 74
delayed_work_pending (C function), 176
delete_from_page_cache (C function), 45
device_add_disk (C function), 132
devm_clk_bulk_get (C function), 139
devm_clk_get (C function), 139
devm_clk_put (C function), 141
devm_gen_pool_create (C function), 219
devm_get_clk_from_child (C function), 140
devm_release_resource (C function), 95
devm_request_resource (C function), 94
disable_hardirq (C function), 87, 194
disable_irq (C function), 87, 194
disable_irq_nosync (C function), 86, 194
disk_block_events (C function), 130
disk_clear_events (C function), 131
disk_expand_part_tbl (C function), 130
disk_flush_events (C function), 130
disk_get_part (C function), 131
disk_map_sector_rcu (C function), 132
disk_part_iter_exit (C function), 131
disk_part_iter_init (C function), 131
disk_part_iter_next (C function), 131
disk_replace_part_tbl (C function), 129
disk_stack_limits (C function), 121
disk_unblock_events (C function), 130
dma_pool_alloc (C function), 64
dma_pool_create (C function), 63
dma_pool_destroy (C function), 64
dma_pool_free (C function), 64
dmam_pool_create (C function), 64
dmam_pool_destroy (C function), 65

Index 239

The kernel core API manual, Release 4.13.0-rc4+

E
enable_irq (C function), 87, 195
encode_rs16 (C function), 218
encode_rs8 (C function), 217
end_page_writeback (C function), 48

F
ffs (C function), 24
ffz (C function), 24
file_check_and_advance_wb_err (C function), 47
file_write_and_wait_range (C function), 47
filemap_fault (C function), 51
filemap_fdatawait (C function), 46
filemap_fdatawait_keep_errors (C function), 46
filemap_fdatawait_range (C function), 46
filemap_flush (C function), 45
filemap_range_has_page (C function), 45
filemap_write_and_wait_range (C function), 46
find_get_entries_tag (C function), 51
find_get_entry (C function), 49
find_get_pages_contig (C function), 50
find_get_pages_tag (C function), 50
find_lock_entry (C function), 49
find_min_pfn_with_active_regions (C function), 61
find_next_best_node (C function), 60
flex_array_alloc (C function), 212
flex_array_clear (C function), 213
flex_array_free (C function), 212
flex_array_free_parts (C function), 213
flex_array_get (C function), 213
flex_array_prealloc (C function), 212
flex_array_put (C function), 213
flex_array_shrink (C function), 213
fls (C function), 25
fls64 (C function), 25
flush_scheduled_work (C function), 178
follow_pfn (C function), 55
free_area_init_nodes (C function), 61
free_bootmem_with_active_regions (C function), 60
free_dma (C function), 91
free_irq (C function), 88, 195
free_percpu_irq (C function), 89, 197
free_rs (C function), 217

G
gen_pool_add (C function), 220
gen_pool_add_virt (C function), 220
gen_pool_alloc (C function), 220
gen_pool_alloc_algo (C function), 221
gen_pool_avail (C function), 223
gen_pool_create (C function), 219
gen_pool_destroy (C function), 220
gen_pool_dma_alloc (C function), 221
gen_pool_for_each_chunk (C function), 222
gen_pool_free (C function), 221
gen_pool_get (C function), 223
gen_pool_set_algo (C function), 222

gen_pool_size (C function), 223
gen_pool_virt_to_phys (C function), 222
generic_file_read_iter (C function), 51
generic_file_write_iter (C function), 52
generic_handle_irq (C function), 203
generic_make_request (C function), 107
generic_writepages (C function), 66
get_gendisk (C function), 132
get_option (C function), 32
get_options (C function), 33
get_pfn_range_for_nid (C function), 60
get_request (C function), 113
get_user (C function), 42
get_user_pages_fast (C function), 41

H
handle_bad_irq (C function), 205
handle_edge_eoi_irq (C function), 201, 207
handle_edge_irq (C function), 200, 207
handle_fasteoi_irq (C function), 200, 207
handle_level_irq (C function), 200, 207
handle_percpu_devid_irq (C function), 201, 208
handle_percpu_irq (C function), 201, 208
handle_simple_irq (C function), 199, 206
handle_untracked_irq (C function), 200, 207
hlist_for_each_entry (C function), 9
hlist_for_each_entry_continue (C function), 9
hlist_for_each_entry_from (C function), 9
hlist_for_each_entry_safe (C function), 10

I
ida_destroy (C function), 37
ida_get_new_above (C function), 37
ida_remove (C function), 37
ida_simple_get (C function), 37
ida_simple_remove (C function), 37
idr_alloc (C function), 35
idr_alloc_cyclic (C function), 35
idr_for_each (C function), 36
idr_get_next (C function), 36
idr_replace (C function), 36
INIT_KFIFO (C function), 74
init_rs (C function), 217
init_rs_non_canonical (C function), 217
insert_resource (C function), 93
insert_resource_conflict (C function), 91
insert_resource_expand_to_fit (C function), 92
invalidate_inode_pages2 (C function), 68
invalidate_inode_pages2_range (C function), 67
invalidate_mapping_pages (C function), 67
ipc64_perm_to_ipc_perm (C function), 71
ipc_addid (C function), 70
ipc_check_perms (C function), 70
ipc_findkey (C function), 69
ipc_get_maxid (C function), 70
ipc_init (C function), 69
ipc_init_ids (C function), 69
ipc_init_proc_interface (C function), 69

240 Index

The kernel core API manual, Release 4.13.0-rc4+

ipc_lock (C function), 72
ipc_obtain_object_check (C function), 72
ipc_obtain_object_idr (C function), 72
ipc_parse_version (C function), 73
ipc_rmid (C function), 71
ipc_update_perm (C function), 72
ipcctl_pre_down_nolock (C function), 73
ipcget (C function), 72
ipcget_new (C function), 70
ipcget_public (C function), 71
ipcperms (C function), 71
irq_affinity (C type), 192
irq_affinity_notify (C type), 191
irq_alloc_generic_chip (C function), 184
irq_alloc_hwirqs (C function), 204
irq_can_set_affinity (C function), 193
irq_can_set_affinity_usr (C function), 193
irq_chip (C type), 187
irq_chip_ack_parent (C function), 202, 208
irq_chip_compose_msi_msg (C function), 203, 210
irq_chip_disable_parent (C function), 201, 208
irq_chip_enable_parent (C function), 201, 208
irq_chip_eoi_parent (C function), 202, 209
irq_chip_generic (C type), 189
irq_chip_mask_parent (C function), 202, 209
irq_chip_pm_get (C function), 203, 210
irq_chip_pm_put (C function), 203, 210
irq_chip_regs (C type), 189
irq_chip_retrigger_hierarchy (C function), 202, 209
irq_chip_set_affinity_parent (C function), 202, 209
irq_chip_set_type_parent (C function), 202, 209
irq_chip_set_vcpu_affinity_parent (C function), 202,

209
irq_chip_set_wake_parent (C function), 203, 210
irq_chip_type (C type), 189
irq_chip_unmask_parent (C function), 202, 209
irq_common_data (C type), 186
irq_cpu_offline (C function), 201, 208
irq_cpu_online (C function), 201, 208
irq_data (C type), 186
irq_disable (C function), 199, 206
irq_force_affinity (C function), 192
irq_free_descs (C function), 204
irq_free_hwirqs (C function), 204
irq_gc_ack_set_bit (C function), 184
irq_gc_flags (C type), 191
irq_gc_mask_clr_bit (C function), 184
irq_gc_mask_set_bit (C function), 184
irq_get_domain_generic_chip (C function), 185
irq_get_irqchip_state (C function), 90, 198
irq_get_next_irq (C function), 204
irq_percpu_is_enabled (C function), 89, 197
irq_remove_generic_chip (C function), 185
irq_set_affinity (C function), 192
irq_set_affinity_notifier (C function), 86, 193
irq_set_chip (C function), 198, 205
irq_set_chip_data (C function), 199, 206
irq_set_handler_data (C function), 198, 205

irq_set_irq_type (C function), 198, 205
irq_set_irq_wake (C function), 87, 195
irq_set_irqchip_state (C function), 90, 198
irq_set_msi_desc (C function), 199, 206
irq_set_msi_desc_off (C function), 199, 206
irq_set_thread_affinity (C function), 193
irq_set_vcpu_affinity (C function), 86, 194
irq_setup_alt_chip (C function), 185
irq_setup_generic_chip (C function), 185
irq_wake_thread (C function), 88, 195
irqaction (C type), 191

K
kcalloc (C function), 39
kernel_to_ipc64_perm (C function), 71
kfifo_alloc (C function), 75
kfifo_avail (C function), 75
kfifo_dma_in_finish (C function), 78
kfifo_dma_in_prepare (C function), 78
kfifo_dma_out_finish (C function), 79
kfifo_dma_out_prepare (C function), 78
kfifo_esize (C function), 74
kfifo_free (C function), 75
kfifo_from_user (C function), 77
kfifo_get (C function), 76
kfifo_in (C function), 76
kfifo_in_spinlocked (C function), 77
kfifo_init (C function), 76
kfifo_initialized (C function), 74
kfifo_is_empty (C function), 75
kfifo_is_full (C function), 75
kfifo_len (C function), 75
kfifo_out (C function), 77
kfifo_out_peek (C function), 79
kfifo_out_spinlocked (C function), 77
kfifo_peek (C function), 76
kfifo_peek_len (C function), 75
kfifo_put (C function), 76
kfifo_recsize (C function), 74
kfifo_reset (C function), 74
kfifo_reset_out (C function), 74
kfifo_size (C function), 74
kfifo_skip (C function), 75
kfifo_to_user (C function), 78
kfree (C function), 40
kfree_const (C function), 40
kmalloc (C function), 38
kmalloc_array (C function), 38
kmem_cache_alloc (C function), 39
kmem_cache_alloc_node (C function), 39
kmem_cache_free (C function), 39
kmemdup (C function), 41
kmemdup_nul (C function), 41
ksize (C function), 40
kstat_irqs (C function), 205
kstat_irqs_cpu (C function), 204
kstat_irqs_usr (C function), 205
kstrdup (C function), 40

Index 241

The kernel core API manual, Release 4.13.0-rc4+

kstrdup_const (C function), 40
kstrndup (C function), 40
kstrtobool (C function), 15
kstrtoint (C function), 15
kstrtol (C function), 14
kstrtoll (C function), 14
kstrtouint (C function), 15
kstrtoul (C function), 14
kstrtoull (C function), 14
kvmalloc_node (C function), 42
kzalloc (C function), 39
kzalloc_node (C function), 39

L
list_add (C function), 3
list_add_tail (C function), 3
list_cut_position (C function), 4
list_del_init (C function), 3
list_empty (C function), 4
list_empty_careful (C function), 4
list_entry (C function), 5
list_first_entry (C function), 5
list_first_entry_or_null (C function), 6
list_for_each (C function), 6
list_for_each_entry (C function), 7
list_for_each_entry_continue (C function), 7
list_for_each_entry_continue_reverse (C function), 7
list_for_each_entry_from (C function), 8
list_for_each_entry_from_reverse (C function), 8
list_for_each_entry_reverse (C function), 7
list_for_each_entry_safe (C function), 8
list_for_each_entry_safe_continue (C function), 8
list_for_each_entry_safe_from (C function), 8
list_for_each_entry_safe_reverse (C function), 9
list_for_each_prev (C function), 6
list_for_each_prev_safe (C function), 7
list_for_each_safe (C function), 6
list_is_last (C function), 4
list_is_singular (C function), 4
list_last_entry (C function), 6
list_move (C function), 4
list_move_tail (C function), 4
list_next_entry (C function), 6
list_prepare_entry (C function), 7
list_prev_entry (C function), 6
list_replace (C function), 3
list_rotate_left (C function), 4
list_safe_reset_next (C function), 9
list_splice (C function), 5
list_splice_init (C function), 5
list_splice_tail (C function), 5
list_splice_tail_init (C function), 5
lookup_resource (C function), 91

M
match_string (C function), 19
memchr (C function), 21
memchr_inv (C function), 21

memcmp (C function), 21
memcpy (C function), 20
memdup_user (C function), 41
memdup_user_nul (C function), 41
memmove (C function), 20
memparse (C function), 33
mempool_alloc (C function), 63
mempool_create (C function), 62
mempool_destroy (C function), 62
mempool_free (C function), 63
mempool_resize (C function), 63
memscan (C function), 21
memset (C function), 20
memzero_explicit (C function), 20
mod_delayed_work (C function), 177

N
node_map_pfn_alignment (C function), 61
nr_free_pagecache_pages (C function), 60
nr_free_zone_pages (C function), 59

O
of_gen_pool_get (C function), 223

P
page_cache_async_readahead (C function), 45
page_cache_next_hole (C function), 48
page_cache_prev_hole (C function), 49
page_cache_sync_readahead (C function), 44
pagecache_get_page (C function), 50
pagecache_isize_extended (C function), 68
parent_len (C function), 102
part_round_stats (C function), 106
put_user (C function), 43

Q
queue_delayed_work (C function), 177
queue_work (C function), 177

R
read_cache_page (C function), 51
read_cache_page_gfp (C function), 52
read_cache_pages (C function), 44
reallocate_resource (C function), 91
region_intersects (C function), 93
register_blkdev (C function), 132
register_chrdev_region (C function), 133
relay_alloc_buf (C function), 81
relay_buf_empty (C function), 82
relay_buf_full (C function), 79
relay_close (C function), 81
relay_close_buf (C function), 83
relay_create_buf (C function), 82
relay_destroy_buf (C function), 82
relay_destroy_channel (C function), 82
relay_file_mmap (C function), 83
relay_file_open (C function), 83

242 Index

The kernel core API manual, Release 4.13.0-rc4+

relay_file_poll (C function), 83
relay_file_read_end_pos (C function), 84
relay_file_read_start_pos (C function), 84
relay_file_read_subbuf_avail (C function), 83
relay_file_release (C function), 83
relay_flush (C function), 81
relay_late_setup_files (C function), 80
relay_mmap_buf (C function), 81
relay_open (C function), 80
relay_remove_buf (C function), 82
relay_reset (C function), 80
relay_subbufs_consumed (C function), 81
relay_switch_subbuf (C function), 80
release_mem_region_adjustable (C function), 92
release_resource (C function), 93
remap_pfn_range (C function), 54
remap_vmalloc_range (C function), 58
remap_vmalloc_range_partial (C function), 58
remove_irq (C function), 88, 195
remove_percpu_irq (C function), 197
remove_resource (C function), 94
replace_page_cache_page (C function), 47
request_any_context_irq (C function), 89, 196
request_dma (C function), 91
request_resource (C function), 92
request_resource_conflict (C function), 91
request_threaded_irq (C function), 88, 196
resource_alignment (C function), 92
rq_flush_dcache_pages (C function), 110
rs_control (C type), 216

S
schedule_delayed_work (C function), 178
schedule_delayed_work_on (C function), 178
schedule_work (C function), 177
schedule_work_on (C function), 177
scnprintf (C function), 12
security_add_hooks (C function), 96
security_init (C function), 95
security_module_enable (C function), 95
securityfs_create_dir (C function), 96
securityfs_create_file (C function), 96
securityfs_create_symlink (C function), 97
securityfs_remove (C function), 97
set_bit (C function), 22
set_dma_reserve (C function), 61
set_pfnblock_flags_mask (C function), 59
setup_irq (C function), 88, 195
setup_per_zone_wmarks (C function), 62
setup_percpu_irq (C function), 197
simple_strtol (C function), 10
simple_strtoll (C function), 10
simple_strtoul (C function), 10
simple_strtoull (C function), 10
skip_spaces (C function), 18
snprintf (C function), 11
sparse_memory_present_with_active_regions (C

function), 60

sprintf (C function), 12
sscanf (C function), 13
strcat (C function), 17
strchr (C function), 17
strchrnul (C function), 17
strcmp (C function), 17
strcpy (C function), 16
strcspn (C function), 19
strim (C function), 18
strlcat (C function), 17
strlcpy (C function), 16
strlen (C function), 18
strncasecmp (C function), 16
strncat (C function), 17
strnchr (C function), 18
strncmp (C function), 17
strncpy (C function), 16
strnlen (C function), 18
strnstr (C function), 21
strpbrk (C function), 19
strrchr (C function), 18
strreplace (C function), 22
strscpy (C function), 16
strsep (C function), 19
strspn (C function), 18
strstr (C function), 21
submit_bio (C function), 107
synchronize_hardirq (C function), 86, 193
synchronize_irq (C function), 86, 193
sys_acct (C function), 103
sysfs_streq (C function), 19

T
tag_pages_for_writeback (C function), 65
test_and_change_bit (C function), 24
test_and_clear_bit (C function), 23
test_and_set_bit (C function), 23
test_and_set_bit_lock (C function), 23
test_bit (C function), 24
trace_block_bio_backmerge (C function), 234
trace_block_bio_bounce (C function), 233
trace_block_bio_complete (C function), 233
trace_block_bio_frontmerge (C function), 234
trace_block_bio_queue (C function), 234
trace_block_bio_remap (C function), 235
trace_block_dirty_buffer (C function), 232
trace_block_getrq (C function), 234
trace_block_plug (C function), 235
trace_block_rq_complete (C function), 233
trace_block_rq_insert (C function), 233
trace_block_rq_issue (C function), 233
trace_block_rq_remap (C function), 235
trace_block_rq_requeue (C function), 232
trace_block_sleeprq (C function), 234
trace_block_split (C function), 235
trace_block_touch_buffer (C function), 232
trace_block_unplug (C function), 235
trace_irq_handler_entry (C function), 231

Index 243

The kernel core API manual, Release 4.13.0-rc4+

trace_irq_handler_exit (C function), 231
trace_signal_deliver (C function), 232
trace_signal_generate (C function), 232
trace_softirq_entry (C function), 231
trace_softirq_exit (C function), 231
trace_softirq_raise (C function), 231
trace_workqueue_activate_work (C function), 236
trace_workqueue_execute_end (C function), 236
trace_workqueue_execute_start (C function), 236
trace_workqueue_queue_work (C function), 236
truncate_inode_pages (C function), 67
truncate_inode_pages_final (C function), 67
truncate_inode_pages_range (C function), 66
truncate_pagecache (C function), 68
truncate_pagecache_range (C function), 69
truncate_setsize (C function), 68
try_to_release_page (C function), 52

U
unlock_page (C function), 48
unmap_kernel_range (C function), 56
unmap_kernel_range_noflush (C function), 56
unmap_mapping_range (C function), 54
unregister_chrdev_region (C function), 134

V
vbin_printf (C function), 12
vfree (C function), 56
vm_insert_page (C function), 53
vm_insert_pfn (C function), 53
vm_insert_pfn_prot (C function), 54
vm_iomap_memory (C function), 54
vm_map_ram (C function), 55
vm_unmap_aliases (C function), 55
vm_unmap_ram (C function), 55
vmalloc (C function), 57
vmalloc_32 (C function), 58
vmalloc_32_user (C function), 58
vmalloc_node (C function), 57
vmalloc_user (C function), 57
vmap (C function), 57
vscnprintf (C function), 11
vsnprintf (C function), 11
vsprintf (C function), 12
vsscanf (C function), 13
vunmap (C function), 56
vzalloc (C function), 57
vzalloc_node (C function), 57

W
wait_for_stable_page (C function), 66
wakeup_readers (C function), 82
work_pending (C function), 176
workqueue_attrs (C type), 175
write_cache_pages (C function), 65
write_one_page (C function), 66

Z
zap_vma_ptes (C function), 53

244 Index

	Core utilities
	Interfaces for kernel debugging
	Index

