
Linux Media Subsystem
Documentation

Release 4.13.0-rc4+

The kernel development community

Sep 05, 2017

CONTENTS

1 Linux Media Infrastructure userspace API 1
1.1 Introduction . 1
1.2 Part I - Video for Linux API . 1
1.3 Part II - Digital TV API . 387
1.4 Part III - Remote Controller API . 548
1.5 Part IV - Media Controller API . 571
1.6 Part V - Consumer Electronics Control API . 593
1.7 Generic Error Codes . 632
1.8 GNU Free Documentation License . 632

2 Media subsystem kernel internal API 639
2.1 Video4Linux devices . 639
2.2 Digital TV (DVB) devices . 766
2.3 Digital TV Common functions . 766
2.4 Digital TV Ring buffer . 770
2.5 Digital TV Frontend kABI . 774
2.6 Digital TV Demux kABI . 791
2.7 Demux Callback API . 792
2.8 Digital TV Conditional Access kABI . 798
2.9 Remote Controller devices . 800
2.10 Media Controller devices . 807
2.11 CEC Kernel Support . 833
2.12 MIPI CSI-2 . 840

3 Linux Digital TV driver-specific documentation 841
3.1 Introduction . 841
3.2 HOWTO: Get An Avermedia DVB-T working under Linux . 841
3.3 How to get the bt8xx cards working . 845
3.4 Hardware supported by the linuxtv.org DVB drivers . 847
3.5 Digital TV Conditional Access Interface (CI API) . 850
3.6 Idea behind the dvb-usb-framework . 853
3.7 FAQ . 858
3.8 Firmware files for lmedm04 cards . 860
3.9 Opera firmware . 861
3.10 How to set up the Technisat/B2C2 Flexcop devices . 862
3.11 TechnoTrend/Hauppauge DEC USB Driver . 863
3.12 UDEV rules for DVB . 864
3.13 Contributors . 865

4 Video4Linux (V4L) driver-specific documentation 867
4.1 Guidelines for Video4Linux pixel format 4CCs . 867
4.2 Infrared remote control support in video4linux drivers . 867
4.3 Using with lircd . 868
4.4 Using without lircd . 868
4.5 Tuner drivers . 868

i

4.6 Cards List . 871
4.7 The bttv driver . 899
4.8 The cafe_ccic driver . 928
4.9 The cpia2 driver . 928
4.10 The cx18 driver . 931
4.11 The cx2341x driver . 932
4.12 The cx88 driver . 992
4.13 The VPBE V4L2 driver design . 994
4.14 The Samsung S5P/EXYNOS4 FIMC driver . 995
4.15 i.MX Video Capture Driver . 997
4.16 The ivtv driver . 1005
4.17 Maxim Integrated MAX2175 RF to bits tuner driver . 1008
4.18 Vaio Picturebook Motion Eye Camera Driver . 1009
4.19 OMAP 3 Image Signal Processor (ISP) driver . 1011
4.20 OMAP4 ISS Driver . 1015
4.21 Philips webcams (pwc driver) . 1016
4.22 The pvrusb2 driver . 1019
4.23 PXA-Camera Host Driver . 1021
4.24 Qualcomm Camera Subsystem driver . 1024
4.25 The Radiotrack radio driver . 1026
4.26 Renesas R-Car Fine Display Processor (FDP1) Driver . 1030
4.27 The saa7134 driver . 1030
4.28 Cropping and Scaling algorithm, used in the sh_mobile_ceu_camera driver 1032
4.29 The Silicon Labs Si470x FM Radio Receivers driver . 1034
4.30 The Silicon Labs Si4713 FM Radio Transmitter Driver . 1036
4.31 The SI476x Driver . 1039
4.32 The Soc-Camera Drivers . 1041
4.33 The Linux USB Video Class (UVC) driver . 1043
4.34 The Virtual Video Test Driver (vivid) . 1046
4.35 The Zoran driver . 1064
4.36 Zoran 364xx based USB webcam module . 1073

5 CEC driver-specific documentation 1075
5.1 Pulse-Eight CEC Adapter driver . 1075

Index 1077

ii

CHAPTER

ONE

LINUX MEDIA INFRASTRUCTURE USERSPACE API

Copyright © 2009-2016 : LinuxTV Developers
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A
copy of the license is included in the chapter entitled “GNU Free Documentation License”.

1.1 Introduction

This document covers the Linux Kernel to Userspace API’s used by video and radio streaming devices,
including video cameras, analog and digital TV receiver cards, AM/FM receiver cards, Software Defined
Radio (SDR), streaming capture and output devices, codec devices and remote controllers.
A typical media device hardware is shown at Typical Media Device .
The media infrastructure API was designed to control such devices. It is divided into five parts.

1. The first part covers radio, video capture and output, cameras, analog TV devices and codecs.
2. The second part covers the API used for digital TV and Internet reception via one of the several

digital tv standards. While it is called as DVB API, in fact it covers several different video standards
including DVB-T/T2, DVB-S/S2, DVB-C, ATSC, ISDB-T, ISDB-S, DTMB, etc. The complete list of sup-
ported standards can be found at fe_delivery_system.

3. The third part covers the Remote Controller API.
4. The fourth part covers the Media Controller API.
5. The fifth part covers the CEC (Consumer Electronics Control) API.

It should also be noted that a media device may also have audio components, like mixers, PCM capture,
PCM playback, etc, which are controlled via ALSA API. For additional information and for the latest de-
velopment code, see: https://linuxtv.org. For discussing improvements, reporting troubles, sending new
drivers, etc, please mail to: Linux Media Mailing List (LMML).

1.2 Part I - Video for Linux API

This part describes the Video for Linux API version 2 (V4L2 API) specification.
Revision 4.5

1.2.1 Common API Elements

Programming a V4L2 device consists of these steps:
• Opening the device

1

https://linuxtv.org
http://vger.kernel.org/vger-lists.html#linux-media

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Fig. 1.1: Typical Media Device

2 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• Changing device properties, selecting a video and audio input, video standard, picture brightness a.
o.

• Negotiating a data format
• Negotiating an input/output method
• The actual input/output loop
• Closing the device

In practice most steps are optional and can be executed out of order. It depends on the V4L2 device type,
you can read about the details in Interfaces . In this chapter we will discuss the basic concepts applicable
to all devices.

Opening and Closing Devices

Device Naming

V4L2 drivers are implemented as kernel modules, loaded manually by the system administrator or auto-
matically when a device is first discovered. The driver modules plug into the “videodev” kernel module.
It provides helper functions and a common application interface specified in this document.
Each driver thus loaded registers one or more device nodes with major number 81 and a minor number
between 0 and 255. Minor numbers are allocated dynamically unless the kernel is compiled with the
kernel option CONFIG_VIDEO_FIXED_MINOR_RANGES. In that case minor numbers are allocated in ranges
depending on the device node type (video, radio, etc.).
Many drivers support “video_nr”, “radio_nr” or “vbi_nr” module options to select specific video/radio/vbi
node numbers. This allows the user to request that the device node is named e.g. /dev/video5 instead of
leaving it to chance. When the driver supports multiple devices of the same type more than one device
node number can be assigned, separated by commas:

modprobe mydriver video_nr=0,1 radio_nr=0,1

In /etc/modules.conf this may be written as:

options mydriver video_nr=0,1 radio_nr=0,1

When no device node number is given as module option the driver supplies a default.
Normally udev will create the device nodes in /dev automatically for you. If udev is not installed, then you
need to enable the CONFIG_VIDEO_FIXED_MINOR_RANGES kernel option in order to be able to correctly
relate a minor number to a device node number. I.e., you need to be certain that minor number 5 maps
to device node name video5. With this kernel option different device types have different minor number
ranges. These ranges are listed in Interfaces .
The creation of character special files (with mknod) is a privileged operation and devices cannot be opened
by major and minor number. That means applications cannot reliable scan for loaded or installed drivers.
The user must enter a device name, or the application can try the conventional device names.

Related Devices

Devices can support several functions. For example video capturing, VBI capturing and radio support.
The V4L2 API creates different nodes for each of these functions.
The V4L2 API was designed with the idea that one device node could support all functions. However,
in practice this never worked: this ‘feature’ was never used by applications and many drivers did not
support it and if they did it was certainly never tested. In addition, switching a device node between
different functions only works when using the streaming I/O API, not with the read() / write() API.
Today each device node supports just one function.

1.2. Part I - Video for Linux API 3

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Besides video input or output the hardware may also support audio sampling or playback. If so, these
functions are implemented as ALSA PCM devices with optional ALSA audio mixer devices.
One problem with all these devices is that the V4L2 API makes no provisions to find these related devices.
Some really complex devices use the Media Controller (see Part IV - Media Controller API) which can be
used for this purpose. But most drivers do not use it, and while some code exists that uses sysfs to discover
related devices (see libmedia_dev in the v4l-utils git repository), there is no library yet that can provide a
single API towards both Media Controller-based devices and devices that do not use the Media Controller.
If you want to work on this please write to the linux-media mailing list: https://linuxtv.org/lists.php.

Multiple Opens

V4L2 devices can be opened more than once. 1 When this is supported by the driver, users can for
example start a “panel” application to change controls like brightness or audio volume, while another
application captures video and audio. In other words, panel applications are comparable to an ALSA
audio mixer application. Just opening a V4L2 device should not change the state of the device. 2

Once an application has allocated the memory buffers needed for streaming data (by calling the ioctl
VIDIOC_REQBUFS or ioctl VIDIOC_CREATE_BUFS ioctls, or implicitly by calling the read() or write()
functions) that application (filehandle) becomes the owner of the device. It is no longer allowed to make
changes that would affect the buffer sizes (e.g. by calling the VIDIOC_S_FMT ioctl) and other applications
are no longer allowed to allocate buffers or start or stop streaming. The EBUSY error code will be returned
instead.
Merely opening a V4L2 device does not grant exclusive access. 3 Initiating data exchange however
assigns the right to read or write the requested type of data, and to change related properties, to this file
descriptor. Applications can request additional access privileges using the priority mechanism described
in Application Priority .

Shared Data Streams

V4L2 drivers should not support multiple applications reading or writing the same data stream on a device
by copying buffers, time multiplexing or similar means. This is better handled by a proxy application in
user space.

Functions

To open and close V4L2 devices applications use the open() and close() function, respectively. Devices
are programmed using the ioctl() function as explained in the following sections.

Querying Capabilities

Because V4L2 covers a wide variety of devices not all aspects of the API are equally applicable to all types
of devices. Furthermore devices of the same type have different capabilities and this specification permits
the omission of a few complicated and less important parts of the API.
The ioctl VIDIOC_QUERYCAP ioctl is available to check if the kernel device is compatible with this speci-
fication, and to query the functions and I/O methods supported by the device.
Starting with kernel version 3.1, ioctl VIDIOC_QUERYCAP will return the V4L2 API version used by the
driver, with generally matches the Kernel version. There’s no need of using ioctl VIDIOC_QUERYCAP to

1 There are still some old and obscure drivers that have not been updated to allow for multiple opens. This implies that for such
drivers open() can return an EBUSY error code when the device is already in use.

2 Unfortunately, opening a radio device often switches the state of the device to radio mode in many drivers. This behavior should
be fixed eventually as it violates the V4L2 specification.

3 Drivers could recognize the O_EXCL open flag. Presently this is not required, so applications cannot know if it really works.

4 Chapter 1. Linux Media Infrastructure userspace API

http://git.linuxtv.org/cgit.cgi/v4l-utils.git/
https://linuxtv.org/lists.php

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

check if a specific ioctl is supported, the V4L2 core now returns ENOTTY if a driver doesn’t provide support
for an ioctl.
Other features can be queried by calling the respective ioctl, for example ioctl VIDIOC_ENUMINPUT to
learn about the number, types and names of video connectors on the device. Although abstraction is a
major objective of this API, the ioctl VIDIOC_QUERYCAP ioctl also allows driver specific applications to
reliably identify the driver.
All V4L2 drivers must support ioctl VIDIOC_QUERYCAP . Applications should always call this ioctl after
opening the device.

Application Priority

When multiple applications share a device it may be desirable to assign them different priorities. Con-
trary to the traditional “rm -rf /” school of thought a video recording application could for example block
other applications from changing video controls or switching the current TV channel. Another objective
is to permit low priority applications working in background, which can be preempted by user controlled
applications and automatically regain control of the device at a later time.
Since these features cannot be implemented entirely in user space V4L2 defines the VIDIOC_G_PRIORITY
and VIDIOC_S_PRIORITY ioctls to request and query the access priority associate with a file descriptor.

Opening a device assigns a medium priority, compatible with earlier versions of V4L2 and drivers not
supporting these ioctls. Applications requiring a different priority will usually call VIDIOC_S_PRIORITY
after verifying the device with the ioctl VIDIOC_QUERYCAP ioctl.
Ioctls changing driver properties, such as VIDIOC_S_INPUT , return an EBUSY error code after another
application obtained higher priority.

Video Inputs and Outputs

Video inputs and outputs are physical connectors of a device. These can be for example RF connectors
(antenna/cable), CVBS a.k.a. Composite Video, S-Video and RGB connectors. Camera sensors are also
considered to be a video input. Video and VBI capture devices have inputs. Video and VBI output devices
have outputs, at least one each. Radio devices have no video inputs or outputs.
To learn about the number and attributes of the available inputs and outputs applications can enumer-
ate them with the ioctl VIDIOC_ENUMINPUT and ioctl VIDIOC_ENUMOUTPUT ioctl, respectively. The
struct v4l2_input returned by the ioctl VIDIOC_ENUMINPUT ioctl also contains signal :status information
applicable when the current video input is queried.
The VIDIOC_G_INPUT and VIDIOC_G_OUTPUT ioctls return the index of the current video input or output.
To select a different input or output applications call the VIDIOC_S_INPUT and VIDIOC_S_OUTPUT ioctls.
Drivers must implement all the input ioctls when the device has one or more inputs, all the output ioctls
when the device has one or more outputs.

Example: Information about the current video input

struct v4l2_input input;
int index;

if (-1 == ioctl(fd, VIDIOC_G_INPUT, &index)) {
perror("VIDIOC_G_INPUT");
exit(EXIT_FAILURE);

}

memset(&input, 0, sizeof(input));
input.index = index;

if (-1 == ioctl(fd, VIDIOC_ENUMINPUT, &input)) {

1.2. Part I - Video for Linux API 5

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

perror("VIDIOC_ENUMINPUT");
exit(EXIT_FAILURE);

}

printf("Current input: %s\\n", input.name);

Example: Switching to the first video input

int index;

index = 0;

if (-1 == ioctl(fd, VIDIOC_S_INPUT, &index)) {
perror("VIDIOC_S_INPUT");
exit(EXIT_FAILURE);

}

Audio Inputs and Outputs

Audio inputs and outputs are physical connectors of a device. Video capture devices have inputs, output
devices have outputs, zero or more each. Radio devices have no audio inputs or outputs. They have
exactly one tuner which in fact is an audio source, but this API associates tuners with video inputs or
outputs only, and radio devices have none of these. 1 A connector on a TV card to loop back the received
audio signal to a sound card is not considered an audio output.
Audio and video inputs and outputs are associated. Selecting a video source also selects an audio source.
This is most evident when the video and audio source is a tuner. Further audio connectors can combine
with more than one video input or output. Assumed two composite video inputs and two audio inputs
exist, there may be up to four valid combinations. The relation of video and audio connectors is defined in
the audioset field of the respective struct v4l2_input or struct v4l2_output, where each bit represents
the index number, starting at zero, of one audio input or output.
To learn about the number and attributes of the available inputs and outputs applications can enumer-
ate them with the ioctl VIDIOC_ENUMAUDIO and VIDIOC_ENUMAUDOUT ioctl, respectively. The struct
v4l2_audio returned by the ioctl VIDIOC_ENUMAUDIO ioctl also contains signal :status information ap-
plicable when the current audio input is queried.
The VIDIOC_G_AUDIO and VIDIOC_G_AUDOUT ioctls report the current audio input and output, respec-
tively.

Note:

Note that, unlike VIDIOC_G_INPUT and VIDIOC_G_OUTPUT these ioctls return a structure as ioctl
VIDIOC_ENUMAUDIO and VIDIOC_ENUMAUDOUT do, not just an index.

To select an audio input and change its properties applications call the VIDIOC_S_AUDIO ioctl. To select
an audio output (which presently has no changeable properties) applications call the VIDIOC_S_AUDOUT
ioctl.
Drivers must implement all audio input ioctls when the device has multiple selectable audio inputs, all
audio output ioctls when the device has multiple selectable audio outputs. When the device has any audio
inputs or outputs the driver must set the V4L2_CAP_AUDIO flag in the struct v4l2_capability returned
by the ioctl VIDIOC_QUERYCAP ioctl.

1 Actually struct v4l2_audio ought to have a tuner field like struct v4l2_input, not only making the API more consistent but also
permitting radio devices with multiple tuners.

6 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Example: Information about the current audio input

struct v4l2_audio audio;

memset(&audio, 0, sizeof(audio));

if (-1 == ioctl(fd, VIDIOC_G_AUDIO, &audio)) {
perror("VIDIOC_G_AUDIO");
exit(EXIT_FAILURE);

}

printf("Current input: %s\\n", audio.name);

Example: Switching to the first audio input

struct v4l2_audio audio;

memset(&audio, 0, sizeof(audio)); /* clear audio.mode, audio.reserved */

audio.index = 0;

if (-1 == ioctl(fd, VIDIOC_S_AUDIO, &audio)) {
perror("VIDIOC_S_AUDIO");
exit(EXIT_FAILURE);

}

Tuners and Modulators

Tuners

Video input devices can have one or more tuners demodulating a RF signal. Each tuner is associ-
ated with one or more video inputs, depending on the number of RF connectors on the tuner. The
type field of the respective struct v4l2_input returned by the ioctl VIDIOC_ENUMINPUT ioctl is set
to V4L2_INPUT_TYPE_TUNER and its tuner field contains the index number of the tuner.
Radio input devices have exactly one tuner with index zero, no video inputs.
To query and change tuner properties applications use the VIDIOC_G_TUNER and VIDIOC_S_TUNER
ioctls, respectively. The struct v4l2_tuner returned by VIDIOC_G_TUNER also contains signal status
information applicable when the tuner of the current video or radio input is queried.

Note:

VIDIOC_S_TUNER does not switch the current tuner, when there is more than one at all. The
tuner is solely determined by the current video input. Drivers must support both ioctls and set the
V4L2_CAP_TUNER flag in the struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl
when the device has one or more tuners.

Modulators

Video output devices can have one or more modulators, uh, modulating a video signal for radiation
or connection to the antenna input of a TV set or video recorder. Each modulator is associated with
one or more video outputs, depending on the number of RF connectors on the modulator. The type

1.2. Part I - Video for Linux API 7

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

field of the respective struct v4l2_output returned by the ioctl VIDIOC_ENUMOUTPUT ioctl is set to
V4L2_OUTPUT_TYPE_MODULATOR and its modulator field contains the index number of the modulator.
Radio output devices have exactly one modulator with index zero, no video outputs.
A video or radio device cannot support both a tuner and a modulator. Two separate device nodes will
have to be used for such hardware, one that supports the tuner functionality and one that supports the
modulator functionality. The reason is a limitation with the VIDIOC_S_FREQUENCY ioctl where you cannot
specify whether the frequency is for a tuner or a modulator.
To query and change modulator properties applications use the VIDIOC_G_MODULATOR and VID-
IOC_S_MODULATOR ioctl. Note that VIDIOC_S_MODULATOR does not switch the current modulator,
when there is more than one at all. The modulator is solely determined by the current video output.
Drivers must support both ioctls and set the V4L2_CAP_MODULATOR flag in the struct v4l2_capability
returned by the ioctl VIDIOC_QUERYCAP ioctl when the device has one or more modulators.

Radio Frequency

To get and set the tuner or modulator radio frequency applications use the VIDIOC_G_FREQUENCY and
VIDIOC_S_FREQUENCY ioctl which both take a pointer to a struct v4l2_frequency. These ioctls are used
for TV and radio devices alike. Drivers must support both ioctls when the tuner or modulator ioctls are
supported, or when the device is a radio device.

Video Standards

Video devices typically support one or more different video standards or variations of standards. Each
video input and output may support another set of standards. This set is reported by the std field of
struct v4l2_input and struct v4l2_output returned by the ioctl VIDIOC_ENUMINPUT and ioctl VID-
IOC_ENUMOUTPUT ioctls, respectively.
V4L2 defines one bit for each analog video standard currently in use worldwide, and sets aside bits for
driver defined standards, e. g. hybrid standards to watch NTSC video tapes on PAL TVs and vice versa.
Applications can use the predefined bits to select a particular standard, although presenting the user
a menu of supported standards is preferred. To enumerate and query the attributes of the supported
standards applications use the ioctl VIDIOC_ENUMSTD ioctl.
Many of the defined standards are actually just variations of a few major standards. The hardware may
in fact not distinguish between them, or do so internal and switch automatically. Therefore enumerated
standards also contain sets of one or more standard bits.
Assume a hypothetic tuner capable of demodulating B/PAL, G/PAL and I/PAL signals. The first enumerated
standard is a set of B and G/PAL, switched automatically depending on the selected radio frequency in UHF
or VHF band. Enumeration gives a “PAL-B/G” or “PAL-I” choice. Similar a Composite input may collapse
standards, enumerating “PAL-B/G/H/I”, “NTSC-M” and “SECAM-D/K”. 1

To query and select the standard used by the current video input or output applications call the VID-
IOC_G_STD and VIDIOC_S_STD ioctl, respectively. The received standard can be sensed with the ioctl
VIDIOC_QUERYSTD ioctl.

Note:

The parameter of all these ioctls is a pointer to a v4l2_std_id type (a standard set), not an index into
the standard enumeration. Drivers must implement all video standard ioctls when the device has one
or more video inputs or outputs.

Special rules apply to devices such as USB cameras where the notion of video standards makes little
sense. More generally for any capture or output device which is:

1 Some users are already confused by technical terms PAL, NTSC and SECAM. There is no point asking them to distinguish between
B, G, D, or K when the software or hardware can do that automatically.

8 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• incapable of capturing fields or frames at the nominal rate of the video standard, or
• that does not support the video standard formats at all.

Here the driver shall set the std field of struct v4l2_input and struct v4l2_output to zero and the
VIDIOC_G_STD , VIDIOC_S_STD , ioctl VIDIOC_QUERYSTD and ioctl VIDIOC_ENUMSTD ioctls shall return
the ENOTTY error code or the EINVAL error code.
Applications can make use of the Input capabilities and Output capabilities flags to determine whether
the video standard ioctls can be used with the given input or output.

Example: Information about the current video standard

v4l2_std_id std_id;
struct v4l2_standard standard;

if (-1 == ioctl(fd, VIDIOC_G_STD, &std_id)) {
/* Note when VIDIOC_ENUMSTD always returns ENOTTY this

is no video device or it falls under the USB exception,
and VIDIOC_G_STD returning ENOTTY is no error. */

perror("VIDIOC_G_STD");
exit(EXIT_FAILURE);

}

memset(&standard, 0, sizeof(standard));
standard.index = 0;

while (0 == ioctl(fd, VIDIOC_ENUMSTD, &standard)) {
if (standard.id & std_id) {

printf("Current video standard: %s\\n", standard.name);
exit(EXIT_SUCCESS);

}

standard.index++;
}

/* EINVAL indicates the end of the enumeration, which cannot be
empty unless this device falls under the USB exception. */

if (errno == EINVAL || standard.index == 0) {
perror("VIDIOC_ENUMSTD");
exit(EXIT_FAILURE);

}

Example: Listing the video standards supported by the current input

struct v4l2_input input;
struct v4l2_standard standard;

memset(&input, 0, sizeof(input));

if (-1 == ioctl(fd, VIDIOC_G_INPUT, &input.index)) {
perror("VIDIOC_G_INPUT");
exit(EXIT_FAILURE);

}

if (-1 == ioctl(fd, VIDIOC_ENUMINPUT, &input)) {
perror("VIDIOC_ENUM_INPUT");
exit(EXIT_FAILURE);

1.2. Part I - Video for Linux API 9

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

}

printf("Current input %s supports:\\n", input.name);

memset(&standard, 0, sizeof(standard));
standard.index = 0;

while (0 == ioctl(fd, VIDIOC_ENUMSTD, &standard)) {
if (standard.id & input.std)

printf("%s\\n", standard.name);

standard.index++;
}

/* EINVAL indicates the end of the enumeration, which cannot be
empty unless this device falls under the USB exception. */

if (errno != EINVAL || standard.index == 0) {
perror("VIDIOC_ENUMSTD");
exit(EXIT_FAILURE);

}

Example: Selecting a new video standard

struct v4l2_input input;
v4l2_std_id std_id;

memset(&input, 0, sizeof(input));

if (-1 == ioctl(fd, VIDIOC_G_INPUT, &input.index)) {
perror("VIDIOC_G_INPUT");
exit(EXIT_FAILURE);

}

if (-1 == ioctl(fd, VIDIOC_ENUMINPUT, &input)) {
perror("VIDIOC_ENUM_INPUT");
exit(EXIT_FAILURE);

}

if (0 == (input.std & V4L2_STD_PAL_BG)) {
fprintf(stderr, "Oops. B/G PAL is not supported.\\n");
exit(EXIT_FAILURE);

}

/* Note this is also supposed to work when only B
or G/PAL is supported. */

std_id = V4L2_STD_PAL_BG;

if (-1 == ioctl(fd, VIDIOC_S_STD, &std_id)) {
perror("VIDIOC_S_STD");
exit(EXIT_FAILURE);

}

Digital Video (DV) Timings

The video standards discussed so far have been dealing with Analog TV and the corresponding video
timings. Today there are many more different hardware interfaces such as High Definition TV interfaces
(HDMI), VGA, DVI connectors etc., that carry video signals and there is a need to extend the API to select

10 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

the video timings for these interfaces. Since it is not possible to extend the v4l2_std_id due to the limited
bits available, a new set of ioctls was added to set/get video timings at the input and output.
These ioctls deal with the detailed digital video timings that define each video format. This includes
parameters such as the active video width and height, signal polarities, frontporches, backporches, sync
widths etc. The linux/v4l2-dv-timings.h header can be used to get the timings of the formats in the
CEA-861-E and VESA DMT standards.
To enumerate and query the attributes of the DV timings supported by a device applications use the ioctl
VIDIOC_ENUM_DV_TIMINGS, VIDIOC_SUBDEV_ENUM_DV_TIMINGS and ioctl VIDIOC_DV_TIMINGS_CAP,
VIDIOC_SUBDEV_DV_TIMINGS_CAP ioctls. To set DV timings for the device applications use the VID-
IOC_S_DV_TIMINGS ioctl and to get current DV timings they use the VIDIOC_G_DV_TIMINGS ioctl. To de-
tect the DV timings as seen by the video receiver applications use the ioctl VIDIOC_QUERY_DV_TIMINGS
ioctl.
Applications can make use of the Input capabilities and Output capabilities flags to determine whether
the digital video ioctls can be used with the given input or output.

User Controls

Devices typically have a number of user-settable controls such as brightness, saturation and so on, which
would be presented to the user on a graphical user interface. But, different devices will have different
controls available, and furthermore, the range of possible values, and the default value will vary from de-
vice to device. The control ioctls provide the information and a mechanism to create a nice user interface
for these controls that will work correctly with any device.
All controls are accessed using an ID value. V4L2 defines several IDs for specific purposes. Drivers can
also implement their own custom controls using V4L2_CID_PRIVATE_BASE 1 and higher values. The pre-
defined control IDs have the prefix V4L2_CID_, and are listed in Control IDs . The ID is used when querying
the attributes of a control, and when getting or setting the current value.
Generally applications should present controls to the user without assumptions about their purpose. Each
control comes with a name string the user is supposed to understand. When the purpose is non-intuitive
the driver writer should provide a user manual, a user interface plug-in or a driver specific panel applica-
tion. Predefined IDs were introduced to change a few controls programmatically, for example to mute a
device during a channel switch.
Drivers may enumerate different controls after switching the current video input or output, tuner or mod-
ulator, or audio input or output. Different in the sense of other bounds, another default and current value,
step size or other menu items. A control with a certain custom ID can also change name and type.
If a control is not applicable to the current configuration of the device (for example, it doesn’t apply to the
current video input) drivers set the V4L2_CTRL_FLAG_INACTIVE flag.
Control values are stored globally, they do not change when switching except to stay within the reported
bounds. They also do not change e. g. when the device is opened or closed, when the tuner radio
frequency is changed or generally never without application request.
V4L2 specifies an event mechanism to notify applications when controls change value (see ioctl
VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT , event V4L2_EVENT_CTRL), panel applications
might want to make use of that in order to always reflect the correct control value.
All controls use machine endianness.

1 The use of V4L2_CID_PRIVATE_BASE is problematic because different drivers may use the same V4L2_CID_PRIVATE_BASE ID for
different controls. This makes it hard to programatically set such controls since the meaning of the control with that ID is driver
dependent. In order to resolve this drivers use unique IDs and the V4L2_CID_PRIVATE_BASE IDs are mapped to those unique IDs by
the kernel. Consider these V4L2_CID_PRIVATE_BASE IDs as aliases to the real IDs.

Many applications today still use the V4L2_CID_PRIVATE_BASE IDs instead of using ioctls VIDIOC_QUERYCTRL, VID-
IOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU with the V4L2_CTRL_FLAG_NEXT_CTRL flag to enumerate all IDs, so support for
V4L2_CID_PRIVATE_BASE is still around.

1.2. Part I - Video for Linux API 11

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Control IDs

V4L2_CID_BASE First predefined ID, equal to V4L2_CID_BRIGHTNESS.
V4L2_CID_USER_BASE Synonym of V4L2_CID_BASE.
V4L2_CID_BRIGHTNESS (integer) Picture brightness, or more precisely, the black level.
V4L2_CID_CONTRAST (integer) Picture contrast or luma gain.
V4L2_CID_SATURATION (integer) Picture color saturation or chroma gain.
V4L2_CID_HUE (integer) Hue or color balance.
V4L2_CID_AUDIO_VOLUME (integer) Overall audio volume. Note some drivers also provide an OSS or

ALSA mixer interface.
V4L2_CID_AUDIO_BALANCE (integer) Audio stereo balance. Minimum corresponds to all the way left,

maximum to right.
V4L2_CID_AUDIO_BASS (integer) Audio bass adjustment.
V4L2_CID_AUDIO_TREBLE (integer) Audio treble adjustment.
V4L2_CID_AUDIO_MUTE (boolean) Mute audio, i. e. set the volume to zero, however without affecting

V4L2_CID_AUDIO_VOLUME. Like ALSA drivers, V4L2 drivers must mute at load time to avoid excessive
noise. Actually the entire device should be reset to a low power consumption state.

V4L2_CID_AUDIO_LOUDNESS (boolean) Loudness mode (bass boost).
V4L2_CID_BLACK_LEVEL (integer) Another name for brightness (not a synonym of

V4L2_CID_BRIGHTNESS). This control is deprecated and should not be used in new drivers and
applications.

V4L2_CID_AUTO_WHITE_BALANCE (boolean) Automatic white balance (cameras).
V4L2_CID_DO_WHITE_BALANCE (button) This is an action control. When set (the value is ignored), the

device will do a white balance and then hold the current setting. Contrast this with the boolean
V4L2_CID_AUTO_WHITE_BALANCE, which, when activated, keeps adjusting the white balance.

V4L2_CID_RED_BALANCE (integer) Red chroma balance.
V4L2_CID_BLUE_BALANCE (integer) Blue chroma balance.
V4L2_CID_GAMMA (integer) Gamma adjust.
V4L2_CID_WHITENESS (integer) Whiteness for grey-scale devices. This is a synonym for

V4L2_CID_GAMMA. This control is deprecated and should not be used in new drivers and appli-
cations.

V4L2_CID_EXPOSURE (integer) Exposure (cameras). [Unit?]
V4L2_CID_AUTOGAIN (boolean) Automatic gain/exposure control.
V4L2_CID_GAIN (integer) Gain control.

Primarily used to control gain on e.g. TV tuners but also on webcams. Most devices control only
digital gain with this control but on some this could include analogue gain as well. Devices that
recognise the difference between digital and analogue gain use controls V4L2_CID_DIGITAL_GAIN
and V4L2_CID_ANALOGUE_GAIN.

V4L2_CID_HFLIP (boolean) Mirror the picture horizontally.
V4L2_CID_VFLIP (boolean) Mirror the picture vertically.
V4L2_CID_POWER_LINE_FREQUENCY (enum) Enables a power line frequency filter to avoid flicker. Possible

values for enum v4l2_power_line_frequency are: V4L2_CID_POWER_LINE_FREQUENCY_DISABLED
(0), V4L2_CID_POWER_LINE_FREQUENCY_50HZ (1), V4L2_CID_POWER_LINE_FREQUENCY_60HZ (2) and
V4L2_CID_POWER_LINE_FREQUENCY_AUTO (3).

12 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_HUE_AUTO (boolean) Enables automatic hue control by the device. The effect of setting
V4L2_CID_HUE while automatic hue control is enabled is undefined, drivers should ignore such re-
quest.

V4L2_CID_WHITE_BALANCE_TEMPERATURE (integer) This control specifies the white balance settings as
a color temperature in Kelvin. A driver should have a minimum of 2800 (incandescent) to 6500
(daylight). For more information about color temperature see Wikipedia.

V4L2_CID_SHARPNESS (integer) Adjusts the sharpness filters in a camera. The minimum value disables
the filters, higher values give a sharper picture.

V4L2_CID_BACKLIGHT_COMPENSATION (integer) Adjusts the backlight compensation in a camera. The
minimum value disables backlight compensation.

V4L2_CID_CHROMA_AGC (boolean) Chroma automatic gain control.
V4L2_CID_CHROMA_GAIN (integer) Adjusts the Chroma gain control (for use when chroma AGC is dis-

abled).
V4L2_CID_COLOR_KILLER (boolean) Enable the color killer (i. e. force a black & white image in case of

a weak video signal).
V4L2_CID_COLORFX (enum) Selects a color effect. The following values are defined:
V4L2_COLORFX_NONE Color effect is disabled.
V4L2_COLORFX_ANTIQUE An aging (old photo) effect.
V4L2_COLORFX_ART_FREEZE Frost color effect.
V4L2_COLORFX_AQUA Water color, cool tone.
V4L2_COLORFX_BW Black and white.
V4L2_COLORFX_EMBOSS Emboss, the highlights and shadows replace light/dark boundaries

and low contrast areas are set to a gray background.
V4L2_COLORFX_GRASS_GREEN Grass green.
V4L2_COLORFX_NEGATIVE Negative.
V4L2_COLORFX_SEPIA Sepia tone.
V4L2_COLORFX_SKETCH Sketch.
V4L2_COLORFX_SKIN_WHITEN Skin whiten.
V4L2_COLORFX_SKY_BLUE Sky blue.
V4L2_COLORFX_SOLARIZATION Solarization, the image is partially reversed in tone, only color values

above or below a certain threshold are inverted.
V4L2_COLORFX_SILHOUETTE Silhouette (outline).
V4L2_COLORFX_VIVID Vivid colors.
V4L2_COLORFX_SET_CBCR The Cb and Cr chroma components are replaced by fixed coefficients

determined by V4L2_CID_COLORFX_CBCR control.

V4L2_CID_COLORFX_CBCR (integer) Determines the Cb and Cr coefficients for V4L2_COLORFX_SET_CBCR
color effect. Bits [7:0] of the supplied 32 bit value are interpreted as Cr component, bits [15:8] as Cb
component and bits [31:16] must be zero.

V4L2_CID_AUTOBRIGHTNESS (boolean) Enable Automatic Brightness.
V4L2_CID_ROTATE (integer) Rotates the image by specified angle. Common angles are 90, 270 and

180. Rotating the image to 90 and 270 will reverse the height and width of the display window. It is
necessary to set the new height and width of the picture using the VIDIOC_S_FMT ioctl according
to the rotation angle selected.

V4L2_CID_BG_COLOR (integer) Sets the background color on the current output device. Background
color needs to be specified in the RGB24 format. The supplied 32 bit value is interpreted as bits 0-7
Red color information, bits 8-15 Green color information, bits 16-23 Blue color information and bits
24-31 must be zero.

V4L2_CID_ILLUMINATORS_1 V4L2_CID_ILLUMINATORS_2 (boolean) Switch on or off the illuminator 1 or
2 of the device (usually a microscope).

1.2. Part I - Video for Linux API 13

http://en.wikipedia.org/wiki/Color_temperature

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_MIN_BUFFERS_FOR_CAPTURE (integer) This is a read-only control that can be read by the ap-
plication and used as a hint to determine the number of CAPTURE buffers to pass to REQBUFS. The
value is the minimum number of CAPTURE buffers that is necessary for hardware to work.

V4L2_CID_MIN_BUFFERS_FOR_OUTPUT (integer) This is a read-only control that can be read by the ap-
plication and used as a hint to determine the number of OUTPUT buffers to pass to REQBUFS. The
value is the minimum number of OUTPUT buffers that is necessary for hardware to work.

V4L2_CID_ALPHA_COMPONENT (integer) Sets the alpha color component. When a capture device (or cap-
ture queue of a mem-to-mem device) produces a frame format that includes an alpha component
(e.g. packed RGB image formats) and the alpha value is not defined by the device or the mem-to-
mem input data this control lets you select the alpha component value of all pixels. When an output
device (or output queue of a mem-to-mem device) consumes a frame format that doesn’t include
an alpha component and the device supports alpha channel processing this control lets you set the
alpha component value of all pixels for further processing in the device.

V4L2_CID_LASTP1 End of the predefined control IDs (currently V4L2_CID_ALPHA_COMPONENT + 1).
V4L2_CID_PRIVATE_BASE ID of the first custom (driver specific) control. Applications depending on par-

ticular custom controls should check the driver name and version, see Querying Capabilities .
Applications can enumerate the available controls with the ioctls VIDIOC_QUERYCTRL, VID-
IOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU and VIDIOC_QUERYMENU ioctls, get and set a control
value with the VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls. Drivers must implement VIDIOC_QUERYCTRL,
VIDIOC_G_CTRL and VIDIOC_S_CTRL when the device has one or more controls, VIDIOC_QUERYMENU when
it has one or more menu type controls.

Example: Enumerating all controls

struct v4l2_queryctrl queryctrl;
struct v4l2_querymenu querymenu;

static void enumerate_menu(__u32 id)
{

printf(" Menu items:\\n");

memset(&querymenu, 0, sizeof(querymenu));
querymenu.id = id;

for (querymenu.index = queryctrl.minimum;
querymenu.index <= queryctrl.maximum;
querymenu.index++) {
if (0 == ioctl(fd, VIDIOC_QUERYMENU, &querymenu)) {

printf(" %s\\n", querymenu.name);
}

}
}

memset(&queryctrl, 0, sizeof(queryctrl));

queryctrl.id = V4L2_CTRL_FLAG_NEXT_CTRL;
while (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {

if (!(queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)) {
printf("Control %s\\n", queryctrl.name);

if (queryctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu(queryctrl.id);

}

queryctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;
}
if (errno != EINVAL) {

14 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

perror("VIDIOC_QUERYCTRL");
exit(EXIT_FAILURE);

}

Example: Enumerating all controls including compound controls

struct v4l2_query_ext_ctrl query_ext_ctrl;

memset(&query_ext_ctrl, 0, sizeof(query_ext_ctrl));

query_ext_ctrl.id = V4L2_CTRL_FLAG_NEXT_CTRL | V4L2_CTRL_FLAG_NEXT_COMPOUND;
while (0 == ioctl(fd, VIDIOC_QUERY_EXT_CTRL, &query_ext_ctrl)) {

if (!(query_ext_ctrl.flags & V4L2_CTRL_FLAG_DISABLED)) {
printf("Control %s\\n", query_ext_ctrl.name);

if (query_ext_ctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu(query_ext_ctrl.id);

}

query_ext_ctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL | V4L2_CTRL_FLAG_NEXT_COMPOUND;
}
if (errno != EINVAL) {

perror("VIDIOC_QUERY_EXT_CTRL");
exit(EXIT_FAILURE);

}

Example: Enumerating all user controls (old style)

memset(&queryctrl, 0, sizeof(queryctrl));

for (queryctrl.id = V4L2_CID_BASE;
queryctrl.id < V4L2_CID_LASTP1;
queryctrl.id++) {
if (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {

if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)
continue;

printf("Control %s\\n", queryctrl.name);

if (queryctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu(queryctrl.id);

} else {
if (errno == EINVAL)

continue;

perror("VIDIOC_QUERYCTRL");
exit(EXIT_FAILURE);

}
}

for (queryctrl.id = V4L2_CID_PRIVATE_BASE;;
queryctrl.id++) {
if (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {

if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)
continue;

printf("Control %s\\n", queryctrl.name);

1.2. Part I - Video for Linux API 15

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

if (queryctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu(queryctrl.id);

} else {
if (errno == EINVAL)

break;

perror("VIDIOC_QUERYCTRL");
exit(EXIT_FAILURE);

}
}

Example: Changing controls

struct v4l2_queryctrl queryctrl;
struct v4l2_control control;

memset(&queryctrl, 0, sizeof(queryctrl));
queryctrl.id = V4L2_CID_BRIGHTNESS;

if (-1 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {
if (errno != EINVAL) {

perror("VIDIOC_QUERYCTRL");
exit(EXIT_FAILURE);

} else {
printf("V4L2_CID_BRIGHTNESS is not supportedn");

}
} else if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED) {

printf("V4L2_CID_BRIGHTNESS is not supportedn");
} else {

memset(&control, 0, sizeof (control));
control.id = V4L2_CID_BRIGHTNESS;
control.value = queryctrl.default_value;

if (-1 == ioctl(fd, VIDIOC_S_CTRL, &control)) {
perror("VIDIOC_S_CTRL");
exit(EXIT_FAILURE);

}
}

memset(&control, 0, sizeof(control));
control.id = V4L2_CID_CONTRAST;

if (0 == ioctl(fd, VIDIOC_G_CTRL, &control)) {
control.value += 1;

/* The driver may clamp the value or return ERANGE, ignored here */

if (-1 == ioctl(fd, VIDIOC_S_CTRL, &control)
&& errno != ERANGE) {
perror("VIDIOC_S_CTRL");
exit(EXIT_FAILURE);

}
/* Ignore if V4L2_CID_CONTRAST is unsupported */
} else if (errno != EINVAL) {

perror("VIDIOC_G_CTRL");
exit(EXIT_FAILURE);

}

control.id = V4L2_CID_AUDIO_MUTE;
control.value = 1; /* silence */

16 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* Errors ignored */
ioctl(fd, VIDIOC_S_CTRL, &control);

Extended Controls

Introduction

The control mechanism as originally designed was meant to be used for user settings (brightness, satu-
ration, etc). However, it turned out to be a very useful model for implementing more complicated driver
APIs where each driver implements only a subset of a larger API.
The MPEG encoding API was the driving force behind designing and implementing this extended control
mechanism: the MPEG standard is quite large and the currently supported hardware MPEG encoders each
only implement a subset of this standard. Further more, many parameters relating to how the video
is encoded into an MPEG stream are specific to the MPEG encoding chip since the MPEG standard only
defines the format of the resulting MPEG stream, not how the video is actually encoded into that format.
Unfortunately, the original control API lacked some features needed for these new uses and so it was
extended into the (not terribly originally named) extended control API.
Even though the MPEG encoding API was the first effort to use the Extended Control API, nowadays there
are also other classes of Extended Controls, such as Camera Controls and FM Transmitter Controls. The
Extended Controls API as well as all Extended Controls classes are described in the following text.

The Extended Control API

Three new ioctls are available: VIDIOC_G_EXT_CTRLS , VIDIOC_S_EXT_CTRLS and VID-
IOC_TRY_EXT_CTRLS . These ioctls act on arrays of controls (as opposed to the VIDIOC_G_CTRL and
VIDIOC_S_CTRL ioctls that act on a single control). This is needed since it is often required to atomically
change several controls at once.
Each of the new ioctls expects a pointer to a struct v4l2_ext_controls. This structure contains a pointer
to the control array, a count of the number of controls in that array and a control class. Control classes
are used to group similar controls into a single class. For example, control class V4L2_CTRL_CLASS_USER
contains all user controls (i. e. all controls that can also be set using the old VIDIOC_S_CTRL ioctl).
Control class V4L2_CTRL_CLASS_MPEG contains all controls relating to MPEG encoding, etc.
All controls in the control array must belong to the specified control class. An error is returned if this is
not the case.
It is also possible to use an empty control array (count == 0) to check whether the specified control class
is supported.
The control array is a struct v4l2_ext_control array. The struct v4l2_ext_control is very similar to
struct v4l2_control, except for the fact that it also allows for 64-bit values and pointers to be passed.
Since the struct v4l2_ext_control supports pointers it is now also possible to have controls
with compound types such as N-dimensional arrays and/or structures. You need to specify the
V4L2_CTRL_FLAG_NEXT_COMPOUND when enumerating controls to actually be able to see such compound
controls. In other words, these controls with compound types should only be used programmatically.
Since such compound controls need to expose more information about themselves than is possi-
ble with ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU the VID-
IOC_QUERY_EXT_CTRL ioctl was added. In particular, this ioctl gives the dimensions of the N-dimensional
array if this control consists of more than one element.

1.2. Part I - Video for Linux API 17

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

1. It is important to realize that due to the flexibility of controls it is necessary to check whether the
control you want to set actually is supported in the driver and what the valid range of values is.
So use the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU (or
VIDIOC_QUERY_EXT_CTRL) and VIDIOC_QUERYMENU ioctls to check this.

2. It is possible that some of the menu indices in a control of type V4L2_CTRL_TYPE_MENUmay not be
supported (VIDIOC_QUERYMENU will return an error). A good example is the list of supported MPEG
audio bitrates. Some drivers only support one or two bitrates, others support a wider range.

All controls use machine endianness.

Enumerating Extended Controls

The recommended way to enumerate over the extended controls is by using ioctls VIDIOC_QUERYCTRL,
VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU in combination with the V4L2_CTRL_FLAG_NEXT_CTRL
flag:

struct v4l2_queryctrl qctrl;

qctrl.id = V4L2_CTRL_FLAG_NEXT_CTRL;
while (0 == ioctl (fd, VIDIOC_QUERYCTRL, &qctrl)) {

/* ... */
qctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;

}

The initial control ID is set to 0 ORed with the V4L2_CTRL_FLAG_NEXT_CTRL flag. The VIDIOC_QUERYCTRL
ioctl will return the first control with a higher ID than the specified one. When no such controls are found
an error is returned.
If you want to get all controls within a specific control class, then you can set the initial qctrl.id value to
the control class and add an extra check to break out of the loop when a control of another control class
is found:

qctrl.id = V4L2_CTRL_CLASS_MPEG | V4L2_CTRL_FLAG_NEXT_CTRL;
while (0 == ioctl(fd, VIDIOC_QUERYCTRL, &qctrl)) {

if (V4L2_CTRL_ID2CLASS(qctrl.id) != V4L2_CTRL_CLASS_MPEG)
break;
/* ... */

qctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;
}

The 32-bit qctrl.id value is subdivided into three bit ranges: the top 4 bits are reserved for flags (e.
g. V4L2_CTRL_FLAG_NEXT_CTRL) and are not actually part of the ID. The remaining 28 bits form the con-
trol ID, of which the most significant 12 bits define the control class and the least significant 16 bits
identify the control within the control class. It is guaranteed that these last 16 bits are always non-
zero for controls. The range of 0x1000 and up are reserved for driver-specific controls. The macro
V4L2_CTRL_ID2CLASS(id) returns the control class ID based on a control ID.
If the driver does not support extended controls, then VIDIOC_QUERYCTRL will fail when used in combi-
nation with V4L2_CTRL_FLAG_NEXT_CTRL. In that case the old method of enumerating control should be
used (see Example: Enumerating all controls). But if it is supported, then it is guaranteed to enumerate
over all controls, including driver-private controls.

18 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Creating Control Panels

It is possible to create control panels for a graphical user interface where the user can select the various
controls. Basically you will have to iterate over all controls using the method described above. Each
control class starts with a control of type V4L2_CTRL_TYPE_CTRL_CLASS. VIDIOC_QUERYCTRL will return
the name of this control class which can be used as the title of a tab page within a control panel.
The flags field of struct v4l2_queryctrl also contains hints on the behavior of the control. See the
ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU documentation for more
details.

Codec Control Reference

Below all controls within the Codec control class are described. First the generic controls, then controls
specific for certain hardware.

Note:

These controls are applicable to all codecs and not just MPEG. The defines are prefixed with
V4L2_CID_MPEG/V4L2_MPEG as the controls were originally made for MPEG codecs and later extended
to cover all encoding formats.

Generic Codec Controls

Codec Control IDs

V4L2_CID_MPEG_CLASS (class) The Codec class descriptor. Calling ioctls VIDIOC_QUERYCTRL, VID-
IOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control will return a description of this con-
trol class. This description can be used as the caption of a Tab page in a GUI, for example.

V4L2_CID_MPEG_STREAM_TYPE (enum)
enum v4l2_mpeg_stream_type - The MPEG-1, -2 or -4 output stream type. One cannot assume any-

thing here. Each hardware MPEG encoder tends to support different subsets of the available MPEG
stream types. This control is specific to multiplexed MPEG streams. The currently defined stream
types are:

V4L2_MPEG_STREAM_TYPE_MPEG2_PS MPEG-2 program stream
V4L2_MPEG_STREAM_TYPE_MPEG2_TS MPEG-2 transport stream
V4L2_MPEG_STREAM_TYPE_MPEG1_SS MPEG-1 system stream
V4L2_MPEG_STREAM_TYPE_MPEG2_DVD MPEG-2 DVD-compatible stream
V4L2_MPEG_STREAM_TYPE_MPEG1_VCD MPEG-1 VCD-compatible stream
V4L2_MPEG_STREAM_TYPE_MPEG2_SVCD MPEG-2 SVCD-compatible stream

V4L2_CID_MPEG_STREAM_PID_PMT (integer) Program Map Table Packet ID for the MPEG transport
stream (default 16)

V4L2_CID_MPEG_STREAM_PID_AUDIO (integer) Audio Packet ID for the MPEG transport stream (default
256)

V4L2_CID_MPEG_STREAM_PID_VIDEO (integer) Video Packet ID for the MPEG transport stream (default
260)

V4L2_CID_MPEG_STREAM_PID_PCR (integer) Packet ID for the MPEG transport stream carrying PCR fields
(default 259)

V4L2_CID_MPEG_STREAM_PES_ID_AUDIO (integer) Audio ID for MPEG PES
V4L2_CID_MPEG_STREAM_PES_ID_VIDEO (integer) Video ID for MPEG PES

1.2. Part I - Video for Linux API 19

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_MPEG_STREAM_VBI_FMT (enum)
enum v4l2_mpeg_stream_vbi_fmt - Some cards can embed VBI data (e. g. Closed Caption, Teletext)

into the MPEG stream. This control selects whether VBI data should be embedded, and if so, what
embedding method should be used. The list of possible VBI formats depends on the driver. The
currently defined VBI format types are:

V4L2_MPEG_STREAM_VBI_FMT_NONE No VBI in the MPEG stream
V4L2_MPEG_STREAM_VBI_FMT_IVTV VBI in private packets, IVTV format (documented

in the kernel sources in the file Documenta-
tion/video4linux/cx2341x/README.vbi)

V4L2_CID_MPEG_AUDIO_SAMPLING_FREQ (enum)
enum v4l2_mpeg_audio_sampling_freq - MPEG Audio sampling frequency. Possible values are:
V4L2_MPEG_AUDIO_SAMPLING_FREQ_44100 44.1 kHz
V4L2_MPEG_AUDIO_SAMPLING_FREQ_48000 48 kHz
V4L2_MPEG_AUDIO_SAMPLING_FREQ_32000 32 kHz

V4L2_CID_MPEG_AUDIO_ENCODING (enum)
enum v4l2_mpeg_audio_encoding - MPEG Audio encoding. This control is specific to multiplexed

MPEG streams. Possible values are:
V4L2_MPEG_AUDIO_ENCODING_LAYER_1 MPEG-1/2 Layer I encoding
V4L2_MPEG_AUDIO_ENCODING_LAYER_2 MPEG-1/2 Layer II encoding
V4L2_MPEG_AUDIO_ENCODING_LAYER_3 MPEG-1/2 Layer III encoding
V4L2_MPEG_AUDIO_ENCODING_AAC MPEG-2/4 AAC (Advanced Audio Coding)
V4L2_MPEG_AUDIO_ENCODING_AC3 AC-3 aka ATSC A/52 encoding

V4L2_CID_MPEG_AUDIO_L1_BITRATE (enum)
enum v4l2_mpeg_audio_l1_bitrate - MPEG-1/2 Layer I bitrate. Possible values are:
V4L2_MPEG_AUDIO_L1_BITRATE_32K 32 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_64K 64 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_96K 96 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_128K 128 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_160K 160 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_192K 192 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_224K 224 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_256K 256 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_288K 288 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_320K 320 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_352K 352 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_384K 384 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_416K 416 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_448K 448 kbit/s

V4L2_CID_MPEG_AUDIO_L2_BITRATE (enum)
enum v4l2_mpeg_audio_l2_bitrate - MPEG-1/2 Layer II bitrate. Possible values are:

20 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_MPEG_AUDIO_L2_BITRATE_32K 32 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_48K 48 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_56K 56 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_64K 64 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_80K 80 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_96K 96 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_112K 112 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_128K 128 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_160K 160 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_192K 192 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_224K 224 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_256K 256 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_320K 320 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_384K 384 kbit/s

V4L2_CID_MPEG_AUDIO_L3_BITRATE (enum)
enum v4l2_mpeg_audio_l3_bitrate - MPEG-1/2 Layer III bitrate. Possible values are:
V4L2_MPEG_AUDIO_L3_BITRATE_32K 32 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_40K 40 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_48K 48 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_56K 56 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_64K 64 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_80K 80 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_96K 96 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_112K 112 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_128K 128 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_160K 160 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_192K 192 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_224K 224 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_256K 256 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_320K 320 kbit/s

V4L2_CID_MPEG_AUDIO_AAC_BITRATE (integer) AAC bitrate in bits per second.
V4L2_CID_MPEG_AUDIO_AC3_BITRATE (enum)
enum v4l2_mpeg_audio_ac3_bitrate - AC-3 bitrate. Possible values are:
V4L2_MPEG_AUDIO_AC3_BITRATE_32K 32 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_40K 40 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_48K 48 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_56K 56 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_64K 64 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_80K 80 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_96K 96 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_112K 112 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_128K 128 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_160K 160 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_192K 192 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_224K 224 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_256K 256 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_320K 320 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_384K 384 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_448K 448 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_512K 512 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_576K 576 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_640K 640 kbit/s

1.2. Part I - Video for Linux API 21

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_MPEG_AUDIO_MODE (enum)
enum v4l2_mpeg_audio_mode - MPEG Audio mode. Possible values are:
V4L2_MPEG_AUDIO_MODE_STEREO Stereo
V4L2_MPEG_AUDIO_MODE_JOINT_STEREO Joint Stereo
V4L2_MPEG_AUDIO_MODE_DUAL Bilingual
V4L2_MPEG_AUDIO_MODE_MONO Mono

V4L2_CID_MPEG_AUDIO_MODE_EXTENSION (enum)
enum v4l2_mpeg_audio_mode_extension - Joint Stereo audio mode extension. In Layer I and II they

indicate which subbands are in intensity stereo. All other subbands are coded in stereo. Layer III is
not (yet) supported. Possible values are:

V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_4 Subbands 4-31 in intensity stereo
V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_8 Subbands 8-31 in intensity stereo
V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_12 Subbands 12-31 in intensity stereo
V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_16 Subbands 16-31 in intensity stereo

V4L2_CID_MPEG_AUDIO_EMPHASIS (enum)
enum v4l2_mpeg_audio_emphasis - Audio Emphasis. Possible values are:
V4L2_MPEG_AUDIO_EMPHASIS_NONE None
V4L2_MPEG_AUDIO_EMPHASIS_50_DIV_15_uS 50/15 microsecond emphasis
V4L2_MPEG_AUDIO_EMPHASIS_CCITT_J17 CCITT J.17

V4L2_CID_MPEG_AUDIO_CRC (enum)
enum v4l2_mpeg_audio_crc - CRC method. Possible values are:
V4L2_MPEG_AUDIO_CRC_NONE None
V4L2_MPEG_AUDIO_CRC_CRC16 16 bit parity check

V4L2_CID_MPEG_AUDIO_MUTE (boolean) Mutes the audio when capturing. This is not done by muting
audio hardware, which can still produce a slight hiss, but in the encoder itself, guaranteeing a fixed
and reproducible audio bitstream. 0 = unmuted, 1 = muted.

V4L2_CID_MPEG_AUDIO_DEC_PLAYBACK (enum)
enum v4l2_mpeg_audio_dec_playback - Determines how monolingual audio should be played back.

Possible values are:
V4L2_MPEG_AUDIO_DEC_PLAYBACK_AUTO Automatically determines the best playback

mode.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_STEREO Stereo playback.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_LEFT Left channel playback.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_RIGHT Right channel playback.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_MONO Mono playback.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_SWAPPED_STEREO Stereo playback with swapped left and right

channels.
V4L2_CID_MPEG_AUDIO_DEC_MULTILINGUAL_PLAYBACK (enum)
enum v4l2_mpeg_audio_dec_playback - Determines how multilingual audio should be played back.
V4L2_CID_MPEG_VIDEO_ENCODING (enum)
enum v4l2_mpeg_video_encoding - MPEG Video encoding method. This control is specific to multi-

plexed MPEG streams. Possible values are:
V4L2_MPEG_VIDEO_ENCODING_MPEG_1 MPEG-1 Video encoding
V4L2_MPEG_VIDEO_ENCODING_MPEG_2 MPEG-2 Video encoding
V4L2_MPEG_VIDEO_ENCODING_MPEG_4_AVC MPEG-4 AVC (H.264) Video encoding

V4L2_CID_MPEG_VIDEO_ASPECT (enum)

22 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

enum v4l2_mpeg_video_aspect - Video aspect. Possible values are:
V4L2_MPEG_VIDEO_ASPECT_1x1
V4L2_MPEG_VIDEO_ASPECT_4x3
V4L2_MPEG_VIDEO_ASPECT_16x9
V4L2_MPEG_VIDEO_ASPECT_221x100

V4L2_CID_MPEG_VIDEO_B_FRAMES (integer) Number of B-Frames (default 2)
V4L2_CID_MPEG_VIDEO_GOP_SIZE (integer) GOP size (default 12)
V4L2_CID_MPEG_VIDEO_GOP_CLOSURE (boolean) GOP closure (default 1)
V4L2_CID_MPEG_VIDEO_PULLDOWN (boolean) Enable 3:2 pulldown (default 0)
V4L2_CID_MPEG_VIDEO_BITRATE_MODE (enum)
enum v4l2_mpeg_video_bitrate_mode - Video bitrate mode. Possible values are:
V4L2_MPEG_VIDEO_BITRATE_MODE_VBR Variable bitrate
V4L2_MPEG_VIDEO_BITRATE_MODE_CBR Constant bitrate

V4L2_CID_MPEG_VIDEO_BITRATE (integer) Video bitrate in bits per second.
V4L2_CID_MPEG_VIDEO_BITRATE_PEAK (integer) Peak video bitrate in bits per second. Must be larger

or equal to the average video bitrate. It is ignored if the video bitrate mode is set to constant bitrate.
V4L2_CID_MPEG_VIDEO_TEMPORAL_DECIMATION (integer) For every captured frame, skip this many sub-

sequent frames (default 0).
V4L2_CID_MPEG_VIDEO_MUTE (boolean) “Mutes” the video to a fixed color when capturing. This is useful

for testing, to produce a fixed video bitstream. 0 = unmuted, 1 = muted.
V4L2_CID_MPEG_VIDEO_MUTE_YUV (integer) Sets the “mute” color of the video. The supplied 32-bit

integer is interpreted as follows (bit 0 = least significant bit):
Bit 0:7 V chrominance information
Bit 8:15 U chrominance information
Bit 16:23 Y luminance information
Bit 24:31 Must be zero.

V4L2_CID_MPEG_VIDEO_DEC_PTS (integer64) This read-only control returns the 33-bit video Presenta-
tion Time Stamp as defined in ITU T-REC-H.222.0 and ISO/IEC 13818-1 of the currently displayed
frame. This is the same PTS as is used in ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD
.

V4L2_CID_MPEG_VIDEO_DEC_FRAME (integer64) This read-only control returns the frame counter of the
frame that is currently displayed (decoded). This value is reset to 0 whenever the decoder is started.

V4L2_CID_MPEG_VIDEO_DECODER_SLICE_INTERFACE (boolean) If enabled the decoder expects to re-
ceive a single slice per buffer, otherwise the decoder expects a single frame in per buffer. Applicable
to the decoder, all codecs.

V4L2_CID_MPEG_VIDEO_H264_VUI_SAR_ENABLE (boolean) Enable writing sample aspect ratio in the
Video Usability Information. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_VUI_SAR_IDC (enum)
enum v4l2_mpeg_video_h264_vui_sar_idc - VUI sample aspect ratio indicator for H.264 encoding.

The value is defined in the table E-1 in the standard. Applicable to the H264 encoder.

1.2. Part I - Video for Linux API 23

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_UNSPECIFIED Unspecified
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_1x1 1x1
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_12x11 12x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_10x11 10x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_16x11 16x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_40x33 40x33
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_24x11 24x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_20x11 20x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_32x11 32x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_80x33 80x33
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_18x11 18x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_15x11 15x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_64x33 64x33
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_160x99 160x99
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_4x3 4x3
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_3x2 3x2
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_2x1 2x1
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_EXTENDED Extended SAR

V4L2_CID_MPEG_VIDEO_H264_VUI_EXT_SAR_WIDTH (integer) Extended sample aspect ratio width for
H.264 VUI encoding. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_VUI_EXT_SAR_HEIGHT (integer) Extended sample aspect ratio height for
H.264 VUI encoding. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_LEVEL (enum)
enum v4l2_mpeg_video_h264_level - The level information for the H264 video elementary stream.

Applicable to the H264 encoder. Possible values are:
V4L2_MPEG_VIDEO_H264_LEVEL_1_0 Level 1.0
V4L2_MPEG_VIDEO_H264_LEVEL_1B Level 1B
V4L2_MPEG_VIDEO_H264_LEVEL_1_1 Level 1.1
V4L2_MPEG_VIDEO_H264_LEVEL_1_2 Level 1.2
V4L2_MPEG_VIDEO_H264_LEVEL_1_3 Level 1.3
V4L2_MPEG_VIDEO_H264_LEVEL_2_0 Level 2.0
V4L2_MPEG_VIDEO_H264_LEVEL_2_1 Level 2.1
V4L2_MPEG_VIDEO_H264_LEVEL_2_2 Level 2.2
V4L2_MPEG_VIDEO_H264_LEVEL_3_0 Level 3.0
V4L2_MPEG_VIDEO_H264_LEVEL_3_1 Level 3.1
V4L2_MPEG_VIDEO_H264_LEVEL_3_2 Level 3.2
V4L2_MPEG_VIDEO_H264_LEVEL_4_0 Level 4.0
V4L2_MPEG_VIDEO_H264_LEVEL_4_1 Level 4.1
V4L2_MPEG_VIDEO_H264_LEVEL_4_2 Level 4.2
V4L2_MPEG_VIDEO_H264_LEVEL_5_0 Level 5.0
V4L2_MPEG_VIDEO_H264_LEVEL_5_1 Level 5.1

V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL (enum)
enum v4l2_mpeg_video_mpeg4_level - The level information for the MPEG4 elementary stream. Ap-

plicable to the MPEG4 encoder. Possible values are:
V4L2_MPEG_VIDEO_MPEG4_LEVEL_0 Level 0
V4L2_MPEG_VIDEO_MPEG4_LEVEL_0B Level 0b
V4L2_MPEG_VIDEO_MPEG4_LEVEL_1 Level 1
V4L2_MPEG_VIDEO_MPEG4_LEVEL_2 Level 2
V4L2_MPEG_VIDEO_MPEG4_LEVEL_3 Level 3
V4L2_MPEG_VIDEO_MPEG4_LEVEL_3B Level 3b
V4L2_MPEG_VIDEO_MPEG4_LEVEL_4 Level 4
V4L2_MPEG_VIDEO_MPEG4_LEVEL_5 Level 5

24 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_MPEG_VIDEO_H264_PROFILE (enum)
enum v4l2_mpeg_video_h264_profile - The profile information for H264. Applicable to the H264 en-

coder. Possible values are:
V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE Baseline profile
V4L2_MPEG_VIDEO_H264_PROFILE_CONSTRAINED_BASELINE Constrained Baseline profile
V4L2_MPEG_VIDEO_H264_PROFILE_MAIN Main profile
V4L2_MPEG_VIDEO_H264_PROFILE_EXTENDED Extended profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH High profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_10 High 10 profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_422 High 422 profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_444_PREDICTIVE High 444 Predictive profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_10_INTRA High 10 Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_422_INTRA High 422 Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_444_INTRA High 444 Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_CAVLC_444_INTRA CAVLC 444 Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_BASELINE Scalable Baseline profile
V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_HIGH Scalable High profile
V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_HIGH_INTRA Scalable High Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_STEREO_HIGH Stereo High profile
V4L2_MPEG_VIDEO_H264_PROFILE_MULTIVIEW_HIGH Multiview High profile

V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE (enum)
enum v4l2_mpeg_video_mpeg4_profile - The profile information for MPEG4. Applicable to the MPEG4

encoder. Possible values are:
V4L2_MPEG_VIDEO_MPEG4_PROFILE_SIMPLE Simple profile
V4L2_MPEG_VIDEO_MPEG4_PROFILE_ADVANCED_SIMPLE Advanced Simple profile
V4L2_MPEG_VIDEO_MPEG4_PROFILE_CORE Core profile
V4L2_MPEG_VIDEO_MPEG4_PROFILE_SIMPLE_SCALABLE Simple Scalable profile
V4L2_MPEG_VIDEO_MPEG4_PROFILE_ADVANCED_CODING_EFFICIENCY

V4L2_CID_MPEG_VIDEO_MAX_REF_PIC (integer) The maximum number of reference pictures used for
encoding. Applicable to the encoder.

V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE (enum)
enum v4l2_mpeg_video_multi_slice_mode - Determines how the encoder should handle division of

frame into slices. Applicable to the encoder. Possible values are:
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_SINGLE Single slice per frame.
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_MB Multiple slices with set maximum number of mac-

roblocks per slice.
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_BYTES Multiple slice with set maximum size in bytes per

slice.

V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_MB (integer) The maximum number of mac-
roblocks in a slice. Used when V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE is set to
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_MB. Applicable to the encoder.

V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_BYTES (integer) The maximum size of a
slice in bytes. Used when V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE is set to
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_BYTES. Applicable to the encoder.

V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_MODE (enum)
enum v4l2_mpeg_video_h264_loop_filter_mode - Loop filter mode for H264 encoder. Possible values

are:

1.2. Part I - Video for Linux API 25

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_ENABLED Loop filter is en-
abled.

V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_DISABLED Loop filter is dis-
abled.

V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_DISABLED_AT_SLICE_BOUNDARY Loop filter is dis-
abled at the slice
boundary.

V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_ALPHA (integer) Loop filter alpha coefficient, defined in the
H264 standard. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_BETA (integer) Loop filter beta coefficient, defined in the
H264 standard. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_ENTROPY_MODE (enum)
enum v4l2_mpeg_video_h264_entropy_mode - Entropy coding mode for H264 - CABAC/CAVALC. Ap-

plicable to the H264 encoder. Possible values are:
V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CAVLC Use CAVLC entropy coding.
V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CABAC Use CABAC entropy coding.

V4L2_CID_MPEG_VIDEO_H264_8X8_TRANSFORM (boolean) Enable 8X8 transform for H264. Applicable to
the H264 encoder.

V4L2_CID_MPEG_VIDEO_CYCLIC_INTRA_REFRESH_MB (integer) Cyclic intra macroblock refresh. This is
the number of continuous macroblocks refreshed every frame. Each frame a successive set of mac-
roblocks is refreshed until the cycle completes and starts from the top of the frame. Applicable to
H264, H263 and MPEG4 encoder.

V4L2_CID_MPEG_VIDEO_FRAME_RC_ENABLE (boolean) Frame level rate control enable. If this control
is disabled then the quantization parameter for each frame type is constant and set with ap-
propriate controls (e.g. V4L2_CID_MPEG_VIDEO_H263_I_FRAME_QP). If frame rate control is en-
abled then quantization parameter is adjusted to meet the chosen bitrate. Minimum and
maximum value for the quantization parameter can be set with appropriate controls (e.g.
V4L2_CID_MPEG_VIDEO_H263_MIN_QP). Applicable to encoders.

V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE (boolean) Macroblock level rate control enable. Applicable to
the MPEG4 and H264 encoders.

V4L2_CID_MPEG_VIDEO_MPEG4_QPEL (boolean) Quarter pixel motion estimation for MPEG4. Applicable
to the MPEG4 encoder.

V4L2_CID_MPEG_VIDEO_H263_I_FRAME_QP (integer) Quantization parameter for an I frame for H263.
Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H263_MIN_QP (integer) Minimum quantization parameter for H263. Valid
range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H263_MAX_QP (integer) Maximum quantization parameter for H263. Valid
range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H263_P_FRAME_QP (integer) Quantization parameter for an P frame for H263.
Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H263_B_FRAME_QP (integer) Quantization parameter for an B frame for H263.
Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H264_I_FRAME_QP (integer) Quantization parameter for an I frame for H264.
Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_H264_MIN_QP (integer) Minimum quantization parameter for H264. Valid
range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_H264_MAX_QP (integer) Maximum quantization parameter for H264. Valid
range: from 0 to 51.

26 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_MPEG_VIDEO_H264_P_FRAME_QP (integer) Quantization parameter for an P frame for H264.
Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_H264_B_FRAME_QP (integer) Quantization parameter for an B frame for H264.
Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_MPEG4_I_FRAME_QP (integer) Quantization parameter for an I frame for MPEG4.
Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_MPEG4_MIN_QP (integer) Minimum quantization parameter for MPEG4. Valid
range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_MPEG4_MAX_QP (integer) Maximum quantization parameter for MPEG4. Valid
range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_MPEG4_P_FRAME_QP (integer) Quantization parameter for an P frame for
MPEG4. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_MPEG4_B_FRAME_QP (integer) Quantization parameter for an B frame for
MPEG4. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_VBV_SIZE (integer) The Video Buffer Verifier size in kilobytes, it is used as a
limitation of frame skip. The VBV is defined in the standard as a mean to verify that the produced
stream will be successfully decoded. The standard describes it as “Part of a hypothetical decoder
that is conceptually connected to the output of the encoder. Its purpose is to provide a constraint on
the variability of the data rate that an encoder or editing process may produce.”. Applicable to the
MPEG1, MPEG2, MPEG4 encoders.

V4L2_CID_MPEG_VIDEO_VBV_DELAY (integer) Sets the initial delay in milliseconds for VBV buffer control.
V4L2_CID_MPEG_VIDEO_MV_H_SEARCH_RANGE (integer) Horizontal search range defines maximum hor-

izontal search area in pixels to search and match for the present Macroblock (MB) in the reference
picture. This V4L2 control macro is used to set horizontal search range for motion estimation module
in video encoder.

V4L2_CID_MPEG_VIDEO_MV_V_SEARCH_RANGE (integer) Vertical search range defines maximum vertical
search area in pixels to search and match for the present Macroblock (MB) in the reference picture.
This V4L2 control macro is used to set vertical search range for motion estimation module in video
encoder.

V4L2_CID_MPEG_VIDEO_FORCE_KEY_FRAME (button) Force a key frame for the next queued buffer. Ap-
plicable to encoders. This is a general, codec-agnostic keyframe control.

V4L2_CID_MPEG_VIDEO_H264_CPB_SIZE (integer) The Coded Picture Buffer size in kilobytes, it is used
as a limitation of frame skip. The CPB is defined in the H264 standard as a mean to verify that the
produced stream will be successfully decoded. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_I_PERIOD (integer) Period between I-frames in the open GOP for H264.
In case of an open GOP this is the period between two I-frames. The period between IDR (Instanta-
neous Decoding Refresh) frames is taken from the GOP_SIZE control. An IDR frame, which stands
for Instantaneous Decoding Refresh is an I-frame after which no prior frames are referenced. This
means that a stream can be restarted from an IDR frame without the need to store or decode any
previous frames. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_HEADER_MODE (enum)
enum v4l2_mpeg_video_header_mode - Determines whether the header is returned as the first buffer

or is it returned together with the first frame. Applicable to encoders. Possible values are:
V4L2_MPEG_VIDEO_HEADER_MODE_SEPARATE The stream header is returned separately

in the first buffer.
V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME The stream header is returned together

with the first encoded frame.
V4L2_CID_MPEG_VIDEO_REPEAT_SEQ_HEADER (boolean) Repeat the video sequence headers. Repeating

these headers makes random access to the video stream easier. Applicable to the MPEG1, 2 and 4

1.2. Part I - Video for Linux API 27

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

encoder.
V4L2_CID_MPEG_VIDEO_DECODER_MPEG4_DEBLOCK_FILTER (boolean) Enabled the deblocking post pro-

cessing filter for MPEG4 decoder. Applicable to the MPEG4 decoder.
V4L2_CID_MPEG_VIDEO_MPEG4_VOP_TIME_RES (integer) vop_time_increment_resolution value for

MPEG4. Applicable to the MPEG4 encoder.
V4L2_CID_MPEG_VIDEO_MPEG4_VOP_TIME_INC (integer) vop_time_increment value for MPEG4. Appli-

cable to the MPEG4 encoder.
V4L2_CID_MPEG_VIDEO_H264_SEI_FRAME_PACKING (boolean) Enable generation of frame packing sup-

plemental enhancement information in the encoded bitstream. The frame packing SEI message
contains the arrangement of L and R planes for 3D viewing. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_SEI_FP_CURRENT_FRAME_0 (boolean) Sets current frame as frame0 in
frame packing SEI. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE (enum)
enum v4l2_mpeg_video_h264_sei_fp_arrangement_type - Frame packing arrangement type for

H264 SEI. Applicable to the H264 encoder. Possible values are:
V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_CHEKERBOARD Pixels are alternatively from L

and R.
V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_COLUMN L and R are interlaced by col-

umn.
V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_ROW L and R are interlaced by row.
V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_SIDE_BY_SIDE L is on the left, R on the right.
V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_TOP_BOTTOM L is on top, R on bottom.
V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_TEMPORAL One view per frame.

V4L2_CID_MPEG_VIDEO_H264_FMO (boolean) Enables flexible macroblock ordering in the encoded bit-
stream. It is a technique used for restructuring the ordering of macroblocks in pictures. Applicable
to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_FMO_MAP_TYPE (enum)
enum v4l2_mpeg_video_h264_fmo_map_type - When using FMO, the map type divides the image in

different scan patterns of macroblocks. Applicable to the H264 encoder. Possible values are:
V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_INTERLEAVED_SLICES Slices are interleaved one af-

ter other with macroblocks
in run length order.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_SCATTERED_SLICES Scatters the macroblocks
based on a mathematical
function known to both
encoder and decoder.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_FOREGROUND_WITH_LEFT_OVER Macroblocks arranged in
rectangular areas or regions
of interest.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_BOX_OUT Slice groups grow in a cyclic
way from centre to out-
wards.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_RASTER_SCAN Slice groups grow in raster
scan pattern from left to
right.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_WIPE_SCAN Slice groups grow in wipe
scan pattern from top to bot-
tom.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_EXPLICIT User defined map type.

V4L2_CID_MPEG_VIDEO_H264_FMO_SLICE_GROUP (integer) Number of slice groups in FMO. Applicable to
the H264 encoder.

28 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_MPEG_VIDEO_H264_FMO_CHANGE_DIRECTION (enum)
enum v4l2_mpeg_video_h264_fmo_change_dir - Specifies a direction of the slice group change for

raster and wipe maps. Applicable to the H264 encoder. Possible values are:
V4L2_MPEG_VIDEO_H264_FMO_CHANGE_DIR_RIGHT Raster scan or wipe right.
V4L2_MPEG_VIDEO_H264_FMO_CHANGE_DIR_LEFT Reverse raster scan or wipe left.

V4L2_CID_MPEG_VIDEO_H264_FMO_CHANGE_RATE (integer) Specifies the size of the first slice group for
raster and wipe map. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_FMO_RUN_LENGTH (integer) Specifies the number of consecutive mac-
roblocks for the interleaved map. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_ASO (boolean) Enables arbitrary slice ordering in encoded bitstream. Ap-
plicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_ASO_SLICE_ORDER (integer) Specifies the slice order in ASO. Applicable
to the H264 encoder. The supplied 32-bit integer is interpreted as follows (bit 0 = least significant
bit):

Bit 0:15 Slice ID
Bit 16:32 Slice position or order

V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING (boolean) Enables H264 hierarchical coding. Ap-
plicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_TYPE (enum)
enum v4l2_mpeg_video_h264_hierarchical_coding_type - Specifies the hierarchical coding type.

Applicable to the H264 encoder. Possible values are:
V4L2_MPEG_VIDEO_H264_HIERARCHICAL_CODING_B Hierarchical B coding.
V4L2_MPEG_VIDEO_H264_HIERARCHICAL_CODING_P Hierarchical P coding.

V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_LAYER (integer) Specifies the number of hierar-
chical coding layers. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_LAYER_QP (integer) Specifies a user defined QP
for each layer. Applicable to the H264 encoder. The supplied 32-bit integer is interpreted as follows
(bit 0 = least significant bit):

Bit 0:15 QP value
Bit 16:32 Layer number

MFC 5.1 MPEG Controls

The following MPEG class controls deal with MPEG decoding and encoding settings that are specific to the
Multi Format Codec 5.1 device present in the S5P family of SoCs by Samsung.

MFC 5.1 Control IDs

V4L2_CID_MPEG_MFC51_VIDEO_DECODER_H264_DISPLAY_DELAY_ENABLE (boolean) If the display delay
is enabled then the decoder is forced to return a CAPTURE buffer (decoded frame) af-
ter processing a certain number of OUTPUT buffers. The delay can be set through
V4L2_CID_MPEG_MFC51_VIDEO_DECODER_H264_DISPLAY_DELAY. This feature can be used for example
for generating thumbnails of videos. Applicable to the H264 decoder.

V4L2_CID_MPEG_MFC51_VIDEO_DECODER_H264_DISPLAY_DELAY (integer) Display delay value for H264
decoder. The decoder is forced to return a decoded frame after the set ‘display delay’ number of
frames. If this number is low it may result in frames returned out of dispaly order, in addition the
hardware may still be using the returned buffer as a reference picture for subsequent frames.

1.2. Part I - Video for Linux API 29

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_MPEG_MFC51_VIDEO_H264_NUM_REF_PIC_FOR_P (integer) The number of reference pictures
used for encoding a P picture. Applicable to the H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_PADDING (boolean) Padding enable in the encoder - use a color instead
of repeating border pixels. Applicable to encoders.

V4L2_CID_MPEG_MFC51_VIDEO_PADDING_YUV (integer) Padding color in the encoder. Applicable to en-
coders. The supplied 32-bit integer is interpreted as follows (bit 0 = least significant bit):

Bit 0:7 V chrominance information
Bit 8:15 U chrominance information
Bit 16:23 Y luminance information
Bit 24:31 Must be zero.

V4L2_CID_MPEG_MFC51_VIDEO_RC_REACTION_COEFF (integer) Reaction coefficient for MFC rate control.
Applicable to encoders.

Note:

1. Valid only when the frame level RC is enabled.
2. For tight CBR, this field must be small (ex. 2 ~ 10). For VBR, this field must be large (ex.
100 ~ 1000).

3. It is not recommended to use the greater number than FRAME_RATE * (10^9 / BIT_RATE).

V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_DARK (boolean) Adaptive rate control
for dark region. Valid only when H.264 and macroblock level RC is enabled
(V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_SMOOTH (boolean) Adaptive rate control
for smooth region. Valid only when H.264 and macroblock level RC is enabled
(V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_STATIC (boolean) Adaptive rate con-
trol for static region. Valid only when H.264 and macroblock level RC is enabled
(V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_ACTIVITY (boolean) Adaptive rate con-
trol for activity region. Valid only when H.264 and macroblock level RC is enabled
(V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_FRAME_SKIP_MODE (enum)
enum v4l2_mpeg_mfc51_video_frame_skip_mode - Indicates in what conditions the encoder should

skip frames. If encoding a frame would cause the encoded stream to be larger then a chosen data
limit then the frame will be skipped. Possible values are:

V4L2_MPEG_MFC51_FRAME_SKIP_MODE_DISABLED Frame skip mode is disabled.
V4L2_MPEG_MFC51_FRAME_SKIP_MODE_LEVEL_LIMIT Frame skip mode enabled and buffer limit is set

by the chosen level and is defined by the stan-
dard.

V4L2_MPEG_MFC51_FRAME_SKIP_MODE_BUF_LIMIT Frame skip mode enabled and buffer limit is set
by the VBV (MPEG1/2/4) or CPB (H264) buffer
size control.

V4L2_CID_MPEG_MFC51_VIDEO_RC_FIXED_TARGET_BIT (integer) Enable rate-control with fixed target
bit. If this setting is enabled, then the rate control logic of the encoder will calculate the average
bitrate for a GOP and keep it below or equal the set bitrate target. Otherwise the rate control logic
calculates the overall average bitrate for the stream and keeps it below or equal to the set bitrate.
In the first case the average bitrate for the whole stream will be smaller then the set bitrate. This is
caused because the average is calculated for smaller number of frames, on the other hand enabling
this setting will ensure that the stream will meet tight bandwidth constraints. Applicable to encoders.

V4L2_CID_MPEG_MFC51_VIDEO_FORCE_FRAME_TYPE (enum)

30 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

enum v4l2_mpeg_mfc51_video_force_frame_type - Force a frame type for the next queued buffer.
Applicable to encoders. Possible values are:

V4L2_MPEG_MFC51_FORCE_FRAME_TYPE_DISABLED Forcing a specific frame type disabled.
V4L2_MPEG_MFC51_FORCE_FRAME_TYPE_I_FRAME Force an I-frame.
V4L2_MPEG_MFC51_FORCE_FRAME_TYPE_NOT_CODED Force a non-coded frame.

CX2341x MPEG Controls

The following MPEG class controls deal with MPEG encoding settings that are specific to the Conexant
CX23415 and CX23416 MPEG encoding chips.

CX2341x Control IDs

V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER_MODE (enum)
enum v4l2_mpeg_cx2341x_video_spatial_filter_mode - Sets the Spatial Filter mode (default MAN-

UAL). Possible values are:
V4L2_MPEG_CX2341X_VIDEO_SPATIAL_FILTER_MODE_MANUAL Choose the filter manually
V4L2_MPEG_CX2341X_VIDEO_SPATIAL_FILTER_MODE_AUTO Choose the filter automatically

V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER (integer (0-15)) The setting for the Spatial Filter.
0 = off, 15 = maximum. (Default is 0.)

V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE (enum)
enum v4l2_mpeg_cx2341x_video_luma_spatial_filter_type - Select the algorithm to use for the

Luma Spatial Filter (default 1D_HOR). Possible values:
V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_OFF No filter
V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_1D_HOR One-dimensional

horizontal
V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_1D_VERT One-dimensional

vertical
V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_2D_HV_SEPARABLE Two-dimensional

separable
V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_2D_SYM_NON_SEPARABLE Two-dimensional

symmetrical
non-separable

V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_SPATIAL_FILTER_TYPE (enum)
enum v4l2_mpeg_cx2341x_video_chroma_spatial_filter_type - Select the algorithm for the Chroma

Spatial Filter (default 1D_HOR). Possible values are:
V4L2_MPEG_CX2341X_VIDEO_CHROMA_SPATIAL_FILTER_TYPE_OFF No filter
V4L2_MPEG_CX2341X_VIDEO_CHROMA_SPATIAL_FILTER_TYPE_1D_HOR One-dimensional horizontal

V4L2_CID_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER_MODE (enum)
enum v4l2_mpeg_cx2341x_video_temporal_filter_mode - Sets the Temporal Filter mode (default

MANUAL). Possible values are:
V4L2_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER_MODE_MANUAL Choose the filter manually
V4L2_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER_MODE_AUTO Choose the filter automatically

V4L2_CID_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER (integer (0-31)) The setting for the Temporal Fil-
ter. 0 = off, 31 = maximum. (Default is 8 for full-scale capturing and 0 for scaled capturing.)

V4L2_CID_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE (enum)
enum v4l2_mpeg_cx2341x_video_median_filter_type - Median Filter Type (default OFF). Possible val-

ues are:

1.2. Part I - Video for Linux API 31

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_OFF No filter
V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_HOR Horizontal filter
V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_VERT Vertical filter
V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_HOR_VERT Horizontal and vertical filter
V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_DIAG Diagonal filter

V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_MEDIAN_FILTER_BOTTOM (integer (0-255)) Threshold above
which the luminance median filter is enabled (default 0)

V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_MEDIAN_FILTER_TOP (integer (0-255)) Threshold below
which the luminance median filter is enabled (default 255)

V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_MEDIAN_FILTER_BOTTOM (integer (0-255)) Threshold
above which the chroma median filter is enabled (default 0)

V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_MEDIAN_FILTER_TOP (integer (0-255)) Threshold below
which the chroma median filter is enabled (default 255)

V4L2_CID_MPEG_CX2341X_STREAM_INSERT_NAV_PACKETS (boolean) The CX2341X MPEG encoder can in-
sert one empty MPEG-2 PES packet into the stream between every four video frames. The packet
size is 2048 bytes, including the packet_start_code_prefix and stream_id fields. The stream_id is
0xBF (private stream 2). The payload consists of 0x00 bytes, to be filled in by the application. 0 =
do not insert, 1 = insert packets.

VPX Control Reference

The VPX controls include controls for encoding parameters of VPx video codec.

VPX Control IDs

V4L2_CID_MPEG_VIDEO_VPX_NUM_PARTITIONS (enum)
enum v4l2_vp8_num_partitions - The number of token partitions to use in VP8 encoder. Possible val-

ues are:
V4L2_CID_MPEG_VIDEO_VPX_1_PARTITION 1 coefficient partition
V4L2_CID_MPEG_VIDEO_VPX_2_PARTITIONS 2 coefficient partitions
V4L2_CID_MPEG_VIDEO_VPX_4_PARTITIONS 4 coefficient partitions
V4L2_CID_MPEG_VIDEO_VPX_8_PARTITIONS 8 coefficient partitions

V4L2_CID_MPEG_VIDEO_VPX_IMD_DISABLE_4X4 (boolean) Setting this prevents intra 4x4 mode in the
intra mode decision.

V4L2_CID_MPEG_VIDEO_VPX_NUM_REF_FRAMES (enum)
enum v4l2_vp8_num_ref_frames - The number of reference pictures for encoding P frames. Possible

values are:
V4L2_CID_MPEG_VIDEO_VPX_1_REF_FRAME Last encoded frame will be searched
V4L2_CID_MPEG_VIDEO_VPX_2_REF_FRAME Two frames will be searched among the last encoded

frame, the golden frame and the alternate reference
(altref) frame. The encoder implementation will decide
which two are chosen.

V4L2_CID_MPEG_VIDEO_VPX_3_REF_FRAME The last encoded frame, the golden frame and the al-
tref frame will be searched.

V4L2_CID_MPEG_VIDEO_VPX_FILTER_LEVEL (integer) Indicates the loop filter level. The adjustment of
the loop filter level is done via a delta value against a baseline loop filter value.

V4L2_CID_MPEG_VIDEO_VPX_FILTER_SHARPNESS (integer) This parameter affects the loop filter. Any-
thing above zero weakens the deblocking effect on the loop filter.

32 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_REF_PERIOD (integer) Sets the refresh period for the
golden frame. The period is defined in number of frames. For a value of ‘n’, every nth frame starting
from the first key frame will be taken as a golden frame. For eg. for encoding sequence of 0, 1, 2, 3,
4, 5, 6, 7 where the golden frame refresh period is set as 4, the frames 0, 4, 8 etc will be taken as
the golden frames as frame 0 is always a key frame.

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_SEL (enum)
enum v4l2_vp8_golden_frame_sel - Selects the golden frame for encoding. Possible values are:
V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_USE_PREV Use the (n-2)th frame as a golden frame, current frame

index being ‘n’.
V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_USE_REF_PERIOD Use the previous specific frame indicated by

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_REF_PERIOD
as a golden frame.

V4L2_CID_MPEG_VIDEO_VPX_MIN_QP (integer) Minimum quantization parameter for VP8.
V4L2_CID_MPEG_VIDEO_VPX_MAX_QP (integer) Maximum quantization parameter for VP8.
V4L2_CID_MPEG_VIDEO_VPX_I_FRAME_QP (integer) Quantization parameter for an I frame for VP8.
V4L2_CID_MPEG_VIDEO_VPX_P_FRAME_QP (integer) Quantization parameter for a P frame for VP8.
V4L2_CID_MPEG_VIDEO_VPX_PROFILE (integer) Select the desired profile for VPx encoder. Acceptable

values are 0, 1, 2 and 3 corresponding to encoder profiles 0, 1, 2 and 3.

Camera Control Reference

The Camera class includes controls for mechanical (or equivalent digital) features of a device such as
controllable lenses or sensors.

Camera Control IDs

V4L2_CID_CAMERA_CLASS (class) The Camera class descriptor. Calling ioctls VIDIOC_QUERYCTRL, VID-
IOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control will return a description of this con-
trol class.

V4L2_CID_EXPOSURE_AUTO (enum)
enum v4l2_exposure_auto_type - Enables automatic adjustments of the exposure time and/or iris

aperture. The effect of manual changes of the exposure time or iris aperture while these features
are enabled is undefined, drivers should ignore such requests. Possible values are:

V4L2_EXPOSURE_AUTO Automatic exposure time, automatic iris aperture.
V4L2_EXPOSURE_MANUAL Manual exposure time, manual iris.
V4L2_EXPOSURE_SHUTTER_PRIORITY Manual exposure time, auto iris.
V4L2_EXPOSURE_APERTURE_PRIORITY Auto exposure time, manual iris.

V4L2_CID_EXPOSURE_ABSOLUTE (integer) Determines the exposure time of the camera sensor. The ex-
posure time is limited by the frame interval. Drivers should interpret the values as 100 µs units,
where the value 1 stands for 1/10000th of a second, 10000 for 1 second and 100000 for 10 seconds.

V4L2_CID_EXPOSURE_AUTO_PRIORITY (boolean) When V4L2_CID_EXPOSURE_AUTO is set to AUTO or
APERTURE_PRIORITY, this control determines if the device may dynamically vary the frame rate.
By default this feature is disabled (0) and the frame rate must remain constant.

V4L2_CID_AUTO_EXPOSURE_BIAS (integer menu) Determines the automatic exposure compensation, it
is effective only when V4L2_CID_EXPOSURE_AUTO control is set to AUTO, SHUTTER_PRIORITY or APER-
TURE_PRIORITY. It is expressed in terms of EV, drivers should interpret the values as 0.001 EV units,
where the value 1000 stands for +1 EV.

1.2. Part I - Video for Linux API 33

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Increasing the exposure compensation value is equivalent to decreasing the exposure value (EV) and
will increase the amount of light at the image sensor. The camera performs the exposure compen-
sation by adjusting absolute exposure time and/or aperture.

V4L2_CID_EXPOSURE_METERING (enum)
enum v4l2_exposure_metering - Determines how the camera measures the amount of light available

for the frame exposure. Possible values are:
V4L2_EXPOSURE_METERING_AVERAGE Use the light information coming from the entire

frame and average giving no weighting to any par-
ticular portion of the metered area.

V4L2_EXPOSURE_METERING_CENTER_WEIGHTED Average the light information coming from the en-
tire frame giving priority to the center of the me-
tered area.

V4L2_EXPOSURE_METERING_SPOT Measure only very small area at the center of the
frame.

V4L2_EXPOSURE_METERING_MATRIX A multi-zone metering. The light intensity is mea-
sured in several points of the frame and the results
are combined. The algorithm of the zones selection
and their significance in calculating the final value
is device dependent.

V4L2_CID_PAN_RELATIVE (integer) This control turns the camera horizontally by the specified amount.
The unit is undefined. A positive value moves the camera to the right (clockwise when viewed from
above), a negative value to the left. A value of zero does not cause motion. This is a write-only
control.

V4L2_CID_TILT_RELATIVE (integer) This control turns the camera vertically by the specified amount.
The unit is undefined. A positive value moves the camera up, a negative value down. A value of zero
does not cause motion. This is a write-only control.

V4L2_CID_PAN_RESET (button) When this control is set, the camera moves horizontally to the default
position.

V4L2_CID_TILT_RESET (button) When this control is set, the camera moves vertically to the default
position.

V4L2_CID_PAN_ABSOLUTE (integer) This control turns the camera horizontally to the specified position.
Positive values move the camera to the right (clockwise when viewed from above), negative values
to the left. Drivers should interpret the values as arc seconds, with valid values between -180 * 3600
and +180 * 3600 inclusive.

V4L2_CID_TILT_ABSOLUTE (integer) This control turns the camera vertically to the specified position.
Positive values move the camera up, negative values down. Drivers should interpret the values as
arc seconds, with valid values between -180 * 3600 and +180 * 3600 inclusive.

V4L2_CID_FOCUS_ABSOLUTE (integer) This control sets the focal point of the camera to the specified
position. The unit is undefined. Positive values set the focus closer to the camera, negative values
towards infinity.

V4L2_CID_FOCUS_RELATIVE (integer) This control moves the focal point of the camera by the specified
amount. The unit is undefined. Positive values move the focus closer to the camera, negative values
towards infinity. This is a write-only control.

V4L2_CID_FOCUS_AUTO (boolean) Enables continuous automatic focus adjustments. The effect of man-
ual focus adjustments while this feature is enabled is undefined, drivers should ignore such requests.

V4L2_CID_AUTO_FOCUS_START (button) Starts single auto focus process. The effect of setting this con-
trol when V4L2_CID_FOCUS_AUTO is set to TRUE (1) is undefined, drivers should ignore such requests.

V4L2_CID_AUTO_FOCUS_STOP (button) Aborts automatic focusing started with
V4L2_CID_AUTO_FOCUS_START control. It is effective only when the continuous autofocus is
disabled, that is when V4L2_CID_FOCUS_AUTO control is set to FALSE (0).

34 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_AUTO_FOCUS_STATUS (bitmask) The automatic focus status. This is a read-only control.
Setting V4L2_LOCK_FOCUS lock bit of the V4L2_CID_3A_LOCK control may stop updates of the
V4L2_CID_AUTO_FOCUS_STATUS control value.

V4L2_AUTO_FOCUS_STATUS_IDLE Automatic focus is not active.
V4L2_AUTO_FOCUS_STATUS_BUSY Automatic focusing is in progress.
V4L2_AUTO_FOCUS_STATUS_REACHED Focus has been reached.
V4L2_AUTO_FOCUS_STATUS_FAILED Automatic focus has failed, the driver will not transition from

this state until another action is performed by an application.
V4L2_CID_AUTO_FOCUS_RANGE (enum)
enum v4l2_auto_focus_range - Determines auto focus distance range for which lens may be adjusted.
V4L2_AUTO_FOCUS_RANGE_AUTO The camera automatically selects the focus range.
V4L2_AUTO_FOCUS_RANGE_NORMAL Normal distance range, limited for best automatic focus perfor-

mance.
V4L2_AUTO_FOCUS_RANGE_MACRO Macro (close-up) auto focus. The camera will use its minimum

possible distance for auto focus.
V4L2_AUTO_FOCUS_RANGE_INFINITY The lens is set to focus on an object at infinite distance.

V4L2_CID_ZOOM_ABSOLUTE (integer) Specify the objective lens focal length as an absolute value. The
zoom unit is driver-specific and its value should be a positive integer.

V4L2_CID_ZOOM_RELATIVE (integer) Specify the objective lens focal length relatively to the current
value. Positive values move the zoom lens group towards the telephoto direction, negative values
towards the wide-angle direction. The zoom unit is driver-specific. This is a write-only control.

V4L2_CID_ZOOM_CONTINUOUS (integer) Move the objective lens group at the specified speed until it
reaches physical device limits or until an explicit request to stop the movement. A positive value
moves the zoom lens group towards the telephoto direction. A value of zero stops the zoom lens
group movement. A negative value moves the zoom lens group towards the wide-angle direction.
The zoom speed unit is driver-specific.

V4L2_CID_IRIS_ABSOLUTE (integer) This control sets the camera’s aperture to the specified value. The
unit is undefined. Larger values open the iris wider, smaller values close it.

V4L2_CID_IRIS_RELATIVE (integer) This control modifies the camera’s aperture by the specified
amount. The unit is undefined. Positive values open the iris one step further, negative values close
it one step further. This is a write-only control.

V4L2_CID_PRIVACY (boolean) Prevent video from being acquired by the camera. When this control is
set to TRUE (1), no image can be captured by the camera. Common means to enforce privacy are
mechanical obturation of the sensor and firmware image processing, but the device is not restricted
to these methods. Devices that implement the privacy control must support read access and may
support write access.

V4L2_CID_BAND_STOP_FILTER (integer) Switch the band-stop filter of a camera sensor on or off, or
specify its strength. Such band-stop filters can be used, for example, to filter out the fluorescent
light component.

V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE (enum)
enum v4l2_auto_n_preset_white_balance - Sets white balance to automatic, manual or a preset. The

presets determine color temperature of the light as a hint to the camera for white balance adjust-
ments resulting in most accurate color representation. The following white balance presets are listed
in order of increasing color temperature.

1.2. Part I - Video for Linux API 35

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_WHITE_BALANCE_MANUAL Manual white balance.
V4L2_WHITE_BALANCE_AUTO Automatic white balance adjustments.
V4L2_WHITE_BALANCE_INCANDESCENT White balance setting for incandescent (tungsten) lighting.

It generally cools down the colors and corresponds approxi-
mately to 2500...3500 K color temperature range.

V4L2_WHITE_BALANCE_FLUORESCENT White balance preset for fluorescent lighting. It corresponds
approximately to 4000...5000 K color temperature.

V4L2_WHITE_BALANCE_FLUORESCENT_H With this setting the camera will compensate for fluorescent
H lighting.

V4L2_WHITE_BALANCE_HORIZON White balance setting for horizon daylight. It corresponds
approximately to 5000 K color temperature.

V4L2_WHITE_BALANCE_DAYLIGHT White balance preset for daylight (with clear sky). It corre-
sponds approximately to 5000...6500 K color temperature.

V4L2_WHITE_BALANCE_FLASH With this setting the camera will compensate for the flash
light. It slightly warms up the colors and corresponds
roughly to 5000...5500 K color temperature.

V4L2_WHITE_BALANCE_CLOUDY White balance preset for moderately overcast sky. This op-
tion corresponds approximately to 6500...8000 K color tem-
perature range.

V4L2_WHITE_BALANCE_SHADE White balance preset for shade or heavily overcast sky. It
corresponds approximately to 9000...10000 K color temper-
ature.

V4L2_CID_WIDE_DYNAMIC_RANGE (boolean) Enables or disables the camera’s wide dynamic range fea-
ture. This feature allows to obtain clear images in situations where intensity of the illumination varies
significantly throughout the scene, i.e. there are simultaneously very dark and very bright areas. It
is most commonly realized in cameras by combining two subsequent frames with different exposure
times. 1

V4L2_CID_IMAGE_STABILIZATION (boolean) Enables or disables image stabilization.
V4L2_CID_ISO_SENSITIVITY (integer menu) Determines ISO equivalent of an image sensor indicat-

ing the sensor’s sensitivity to light. The numbers are expressed in arithmetic scale, as per ISO
12232:2006 standard, where doubling the sensor sensitivity is represented by doubling the numer-
ical ISO value. Applications should interpret the values as standard ISO values multiplied by 1000,
e.g. control value 800 stands for ISO 0.8. Drivers will usually support only a subset of standard ISO
values. The effect of setting this control while the V4L2_CID_ISO_SENSITIVITY_AUTO control is set
to a value other than V4L2_CID_ISO_SENSITIVITY_MANUAL is undefined, drivers should ignore such
requests.

V4L2_CID_ISO_SENSITIVITY_AUTO (enum)
enum v4l2_iso_sensitivity_type - Enables or disables automatic ISO sensitivity adjustments.
V4L2_CID_ISO_SENSITIVITY_MANUAL Manual ISO sensitivity.
V4L2_CID_ISO_SENSITIVITY_AUTO Automatic ISO sensitivity adjustments.

V4L2_CID_SCENE_MODE (enum)
enum v4l2_scene_mode - This control allows to select scene programs as the camera automatic modes

optimized for common shooting scenes. Within these modes the camera determines best exposure,
aperture, focusing, light metering, white balance and equivalent sensitivity. The controls of those
parameters are influenced by the scene mode control. An exact behavior in each mode is subject to
the camera specification.
When the scene mode feature is not used, this control should be set to V4L2_SCENE_MODE_NONE to
make sure the other possibly related controls are accessible. The following scene programs are
defined:

1 This control may be changed to a menu control in the future, if more options are required.

36 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_SCENE_MODE_NONE The scene mode feature is disabled.
V4L2_SCENE_MODE_BACKLIGHT Backlight. Compensates for dark shadows when light is coming

from behind a subject, also by automatically turning on the flash.
V4L2_SCENE_MODE_BEACH_SNOW Beach and snow. This mode compensates for all-white or bright

scenes, which tend to look gray and low contrast, when camera’s
automatic exposure is based on an average scene brightness.
To compensate, this mode automatically slightly overexposes the
frames. The white balance may also be adjusted to compensate
for the fact that reflected snow looks bluish rather than white.

V4L2_SCENE_MODE_CANDLELIGHT Candle light. The camera generally raises the ISO sensitivity and
lowers the shutter speed. This mode compensates for relatively
close subject in the scene. The flash is disabled in order to pre-
serve the ambiance of the light.

V4L2_SCENE_MODE_DAWN_DUSK Dawn and dusk. Preserves the colors seen in low natural light
before dusk and after down. The camera may turn off the flash,
and automatically focus at infinity. It will usually boost saturation
and lower the shutter speed.

V4L2_SCENE_MODE_FALL_COLORS Fall colors. Increases saturation and adjusts white balance for
color enhancement. Pictures of autumn leaves get saturated reds
and yellows.

V4L2_SCENE_MODE_FIREWORKS Fireworks. Long exposure times are used to capture the expand-
ing burst of light from a firework. The camera may invoke image
stabilization.

V4L2_SCENE_MODE_LANDSCAPE Landscape. The camera may choose a small aperture to provide
deep depth of field and long exposure duration to help capture
detail in dim light conditions. The focus is fixed at infinity. Suitable
for distant and wide scenery.

V4L2_SCENE_MODE_NIGHT Night, also known as Night Landscape. Designed for low light con-
ditions, it preserves detail in the dark areas without blowing out
bright objects. The camera generally sets itself to a medium-to-
high ISO sensitivity, with a relatively long exposure time, and turns
flash off. As such, there will be increased image noise and the pos-
sibility of blurred image.

V4L2_SCENE_MODE_PARTY_INDOOR Party and indoor. Designed to capture indoor scenes that are lit
by indoor background lighting as well as the flash. The camera
usually increases ISO sensitivity, and adjusts exposure for the low
light conditions.

V4L2_SCENE_MODE_PORTRAIT Portrait. The camera adjusts the aperture so that the depth of field
is reduced, which helps to isolate the subject against a smooth
background. Most cameras recognize the presence of faces in the
scene and focus on them. The color hue is adjusted to enhance
skin tones. The intensity of the flash is often reduced.

V4L2_SCENE_MODE_SPORTS Sports. Significantly increases ISO and uses a fast shutter speed to
freeze motion of rapidly-moving subjects. Increased image noise
may be seen in this mode.

V4L2_SCENE_MODE_SUNSET Sunset. Preserves deep hues seen in sunsets and sunrises. It
bumps up the saturation.

V4L2_SCENE_MODE_TEXT Text. It applies extra contrast and sharpness, it is typically a black-
and-white mode optimized for readability. Automatic focus may
be switched to close-up mode and this setting may also involve
some lens-distortion correction.

V4L2_CID_3A_LOCK (bitmask) This control locks or unlocks the automatic focus, exposure and white
balance. The automatic adjustments can be paused independently by setting the corresponding
lock bit to 1. The camera then retains the settings until the lock bit is cleared. The following lock bits
are defined:
When a given algorithm is not enabled, drivers should ignore requests to lock it and should re-
turn no error. An example might be an application setting bit V4L2_LOCK_WHITE_BALANCE when the

1.2. Part I - Video for Linux API 37

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_AUTO_WHITE_BALANCE control is set to FALSE. The value of this control may be changed by
exposure, white balance or focus controls.

V4L2_LOCK_EXPOSURE Automatic exposure adjustments lock.
V4L2_LOCK_WHITE_BALANCE Automatic white balance adjustments lock.
V4L2_LOCK_FOCUS Automatic focus lock.

V4L2_CID_PAN_SPEED (integer) This control turns the camera horizontally at the specific speed. The
unit is undefined. A positive value moves the camera to the right (clockwise when viewed from
above), a negative value to the left. A value of zero stops the motion if one is in progress and has no
effect otherwise.

V4L2_CID_TILT_SPEED (integer) This control turns the camera vertically at the specified speed. The
unit is undefined. A positive value moves the camera up, a negative value down. A value of zero
stops the motion if one is in progress and has no effect otherwise.

FM Transmitter Control Reference

The FM Transmitter (FM_TX) class includes controls for common features of FM transmissions capable
devices. Currently this class includes parameters for audio compression, pilot tone generation, audio
deviation limiter, RDS transmission and tuning power features.

FM_TX Control IDs

V4L2_CID_FM_TX_CLASS (class) The FM_TX class descriptor. Calling ioctls VIDIOC_QUERYCTRL, VID-
IOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control will return a description of this con-
trol class.

V4L2_CID_RDS_TX_DEVIATION (integer) Configures RDS signal frequency deviation level in Hz. The
range and step are driver-specific.

V4L2_CID_RDS_TX_PI (integer) Sets the RDS Programme Identification field for transmission.
V4L2_CID_RDS_TX_PTY (integer) Sets the RDS Programme Type field for transmission. This encodes up

to 31 pre-defined programme types.
V4L2_CID_RDS_TX_PS_NAME (string) Sets the Programme Service name (PS_NAME) for transmission. It

is intended for static display on a receiver. It is the primary aid to listeners in programme service
identification and selection. In Annex E of IEC 62106 , the RDS specification, there is a full description
of the correct character encoding for Programme Service name strings. Also from RDS specification,
PS is usually a single eight character text. However, it is also possible to find receivers which can
scroll strings sized as 8 x N characters. So, this control must be configured with steps of 8 characters.
The result is it must always contain a string with size multiple of 8.

V4L2_CID_RDS_TX_RADIO_TEXT (string) Sets the Radio Text info for transmission. It is a textual de-
scription of what is being broadcasted. RDS Radio Text can be applied when broadcaster wishes to
transmit longer PS names, programme-related information or any other text. In these cases, Radio-
Text should be used in addition to V4L2_CID_RDS_TX_PS_NAME. The encoding for Radio Text strings is
also fully described in Annex E of IEC 62106 . The length of Radio Text strings depends on which RDS
Block is being used to transmit it, either 32 (2A block) or 64 (2B block). However, it is also possible
to find receivers which can scroll strings sized as 32 x N or 64 x N characters. So, this control must
be configured with steps of 32 or 64 characters. The result is it must always contain a string with
size multiple of 32 or 64.

V4L2_CID_RDS_TX_MONO_STEREO (boolean) Sets the Mono/Stereo bit of the Decoder Identification code.
If set, then the audio was recorded as stereo.

V4L2_CID_RDS_TX_ARTIFICIAL_HEAD (boolean) Sets the Artificial Head bit of the Decoder Identification
code. If set, then the audio was recorded using an artificial head.

V4L2_CID_RDS_TX_COMPRESSED (boolean) Sets the Compressed bit of the Decoder Identification code.
If set, then the audio is compressed.

38 Chapter 1. Linux Media Infrastructure userspace API

http://en.wikipedia.org/wiki/Artificial_head

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_RDS_TX_DYNAMIC_PTY (boolean) Sets the Dynamic PTY bit of the Decoder Identification code.
If set, then the PTY code is dynamically switched.

V4L2_CID_RDS_TX_TRAFFIC_ANNOUNCEMENT (boolean) If set, then a traffic announcement is in progress.
V4L2_CID_RDS_TX_TRAFFIC_PROGRAM (boolean) If set, then the tuned programme carries traffic an-

nouncements.
V4L2_CID_RDS_TX_MUSIC_SPEECH (boolean) If set, then this channel broadcasts music. If cleared, then

it broadcasts speech. If the transmitter doesn’t make this distinction, then it should be set.
V4L2_CID_RDS_TX_ALT_FREQS_ENABLE (boolean) If set, then transmit alternate frequencies.
V4L2_CID_RDS_TX_ALT_FREQS (__u32 array) The alternate frequencies in kHz units. The RDS standard

allows for up to 25 frequencies to be defined. Drivers may support fewer frequencies so check the
array size.

V4L2_CID_AUDIO_LIMITER_ENABLED (boolean) Enables or disables the audio deviation limiter feature.
The limiter is useful when trying to maximize the audio volume, minimize receiver-generated distor-
tion and prevent overmodulation.

V4L2_CID_AUDIO_LIMITER_RELEASE_TIME (integer) Sets the audio deviation limiter feature release
time. Unit is in useconds. Step and range are driver-specific.

V4L2_CID_AUDIO_LIMITER_DEVIATION (integer) Configures audio frequency deviation level in Hz. The
range and step are driver-specific.

V4L2_CID_AUDIO_COMPRESSION_ENABLED (boolean) Enables or disables the audio compression feature.
This feature amplifies signals below the threshold by a fixed gain and compresses audio signals above
the threshold by the ratio of Threshold/(Gain + Threshold).

V4L2_CID_AUDIO_COMPRESSION_GAIN (integer) Sets the gain for audio compression feature. It is a dB
value. The range and step are driver-specific.

V4L2_CID_AUDIO_COMPRESSION_THRESHOLD (integer) Sets the threshold level for audio compression
freature. It is a dB value. The range and step are driver-specific.

V4L2_CID_AUDIO_COMPRESSION_ATTACK_TIME (integer) Sets the attack time for audio compression fea-
ture. It is a useconds value. The range and step are driver-specific.

V4L2_CID_AUDIO_COMPRESSION_RELEASE_TIME (integer) Sets the release time for audio compression
feature. It is a useconds value. The range and step are driver-specific.

V4L2_CID_PILOT_TONE_ENABLED (boolean) Enables or disables the pilot tone generation feature.
V4L2_CID_PILOT_TONE_DEVIATION (integer) Configures pilot tone frequency deviation level. Unit is in

Hz. The range and step are driver-specific.
V4L2_CID_PILOT_TONE_FREQUENCY (integer) Configures pilot tone frequency value. Unit is in Hz. The

range and step are driver-specific.
V4L2_CID_TUNE_PREEMPHASIS (enum)
enum v4l2_preemphasis - Configures the pre-emphasis value for broadcasting. A pre-emphasis filter

is applied to the broadcast to accentuate the high audio frequencies. Depending on the region, a
time constant of either 50 or 75 useconds is used. The enum v4l2_preemphasis defines possible
values for pre-emphasis. Here they are:

V4L2_PREEMPHASIS_DISABLED No pre-emphasis is applied.
V4L2_PREEMPHASIS_50_uS A pre-emphasis of 50 uS is used.
V4L2_PREEMPHASIS_75_uS A pre-emphasis of 75 uS is used.

V4L2_CID_TUNE_POWER_LEVEL (integer) Sets the output power level for signal transmission. Unit is in
dBuV. Range and step are driver-specific.

V4L2_CID_TUNE_ANTENNA_CAPACITOR (integer) This selects the value of antenna tuning capacitor man-
ually or automatically if set to zero. Unit, range and step are driver-specific.

For more details about RDS specification, refer to IEC 62106 document, from CENELEC.

1.2. Part I - Video for Linux API 39

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Flash Control Reference

The V4L2 flash controls are intended to provide generic access to flash controller devices. Flash controller
devices are typically used in digital cameras.
The interface can support both LED and xenon flash devices. As of writing this, there is no xenon flash
driver using this interface.

Supported use cases

Unsynchronised LED flash (software strobe)

Unsynchronised LED flash is controlled directly by the host as the sensor. The flash must be enabled by
the host before the exposure of the image starts and disabled once it ends. The host is fully responsible
for the timing of the flash.
Example of such device: Nokia N900.

Synchronised LED flash (hardware strobe)

The synchronised LED flash is pre-programmed by the host (power and timeout) but controlled by the
sensor through a strobe signal from the sensor to the flash.
The sensor controls the flash duration and timing. This information typically must be made available to
the sensor.

LED flash as torch

LED flash may be used as torch in conjunction with another use case involving camera or individually.

Flash Control IDs

V4L2_CID_FLASH_CLASS (class) The FLASH class descriptor.
V4L2_CID_FLASH_LED_MODE (menu) Defines the mode of the flash LED, the high-power white LED at-

tached to the flash controller. Setting this control may not be possible in presence of some faults.
See V4L2_CID_FLASH_FAULT.

V4L2_FLASH_LED_MODE_NONE Off.
V4L2_FLASH_LED_MODE_FLASH Flash mode.
V4L2_FLASH_LED_MODE_TORCH Torch mode. See V4L2_CID_FLASH_TORCH_INTENSITY.

V4L2_CID_FLASH_STROBE_SOURCE (menu) Defines the source of the flash LED strobe.
V4L2_FLASH_STROBE_SOURCE_SOFTWARE The flash strobe is triggered by using the

V4L2_CID_FLASH_STROBE control.
V4L2_FLASH_STROBE_SOURCE_EXTERNAL The flash strobe is triggered by an external source. Typically

this is a sensor, which makes it possible to synchronises the
flash strobe start to exposure start.

V4L2_CID_FLASH_STROBE (button) Strobe flash. Valid when V4L2_CID_FLASH_LED_MODE is
set to V4L2_FLASH_LED_MODE_FLASH and V4L2_CID_FLASH_STROBE_SOURCE is set to
V4L2_FLASH_STROBE_SOURCE_SOFTWARE. Setting this control may not be possible in presence of
some faults. See V4L2_CID_FLASH_FAULT.

V4L2_CID_FLASH_STROBE_STOP (button) Stop flash strobe immediately.

40 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_FLASH_STROBE_STATUS (boolean) Strobe status: whether the flash is strobing at the moment
or not. This is a read-only control.

V4L2_CID_FLASH_TIMEOUT (integer) Hardware timeout for flash. The flash strobe is stopped after this
period of time has passed from the start of the strobe.

V4L2_CID_FLASH_INTENSITY (integer) Intensity of the flash strobe when the flash LED is in flash mode
(V4L2_FLASH_LED_MODE_FLASH). The unit should be milliamps (mA) if possible.

V4L2_CID_FLASH_TORCH_INTENSITY (integer) Intensity of the flash LED in torch mode
(V4L2_FLASH_LED_MODE_TORCH). The unit should be milliamps (mA) if possible. Setting this
control may not be possible in presence of some faults. See V4L2_CID_FLASH_FAULT.

V4L2_CID_FLASH_INDICATOR_INTENSITY (integer) Intensity of the indicator LED. The indicator LED
may be fully independent of the flash LED. The unit should be microamps (uA) if possible.

V4L2_CID_FLASH_FAULT (bitmask) Faults related to the flash. The faults tell about specific problems in
the flash chip itself or the LEDs attached to it. Faults may prevent further use of some of the flash
controls. In particular, V4L2_CID_FLASH_LED_MODE is set to V4L2_FLASH_LED_MODE_NONE if the
fault affects the flash LED. Exactly which faults have such an effect is chip dependent. Reading the
faults resets the control and returns the chip to a usable state if possible.

V4L2_FLASH_FAULT_OVER_VOLTAGE Flash controller voltage to the flash LED has exceeded
the limit specific to the flash controller.

V4L2_FLASH_FAULT_TIMEOUT The flash strobe was still on when the timeout set by
the user — V4L2_CID_FLASH_TIMEOUT control — has
expired. Not all flash controllers may set this in all such
conditions.

V4L2_FLASH_FAULT_OVER_TEMPERATURE The flash controller has overheated.
V4L2_FLASH_FAULT_SHORT_CIRCUIT The short circuit protection of the flash controller has

been triggered.
V4L2_FLASH_FAULT_OVER_CURRENT Current in the LED power supply has exceeded the limit

specific to the flash controller.
V4L2_FLASH_FAULT_INDICATOR The flash controller has detected a short or open circuit

condition on the indicator LED.
V4L2_FLASH_FAULT_UNDER_VOLTAGE Flash controller voltage to the flash LED has been be-

low the minimum limit specific to the flash controller.
V4L2_FLASH_FAULT_INPUT_VOLTAGE The input voltage of the flash controller is below the

limit under which strobing the flash at full current will
not be possible.The condition persists until this flag is
no longer set.

V4L2_FLASH_FAULT_LED_OVER_TEMPERATURE The temperature of the LED has exceeded its allowed
upper limit.

V4L2_CID_FLASH_CHARGE (boolean) Enable or disable charging of the xenon flash capacitor.
V4L2_CID_FLASH_READY (boolean) Is the flash ready to strobe? Xenon flashes require their capacitors

charged before strobing. LED flashes often require a cooldown period after strobe during which
another strobe will not be possible. This is a read-only control.

JPEG Control Reference

The JPEG class includes controls for common features of JPEG encoders and decoders. Currently it includes
features for codecs implementing progressive baseline DCT compression process with Huffman entrophy
coding.

JPEG Control IDs

V4L2_CID_JPEG_CLASS (class) The JPEG class descriptor. Calling ioctls VIDIOC_QUERYCTRL, VID-
IOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control will return a description of this con-

1.2. Part I - Video for Linux API 41

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

trol class.
V4L2_CID_JPEG_CHROMA_SUBSAMPLING (menu) The chroma subsampling factors describe how each com-

ponent of an input image is sampled, in respect to maximum sample rate in each spatial dimension.
See ITU-T.81 , clause A.1.1. for more details. The V4L2_CID_JPEG_CHROMA_SUBSAMPLING control
determines how Cb and Cr components are downsampled after converting an input image from RGB
to Y’CbCr color space.

V4L2_JPEG_CHROMA_SUBSAMPLING_444 No chroma subsampling, each pixel has Y, Cr and Cb values.
V4L2_JPEG_CHROMA_SUBSAMPLING_422 Horizontally subsample Cr, Cb components by a factor of 2.
V4L2_JPEG_CHROMA_SUBSAMPLING_420 Subsample Cr, Cb components horizontally and vertically by

2.
V4L2_JPEG_CHROMA_SUBSAMPLING_411 Horizontally subsample Cr, Cb components by a factor of 4.
V4L2_JPEG_CHROMA_SUBSAMPLING_410 Subsample Cr, Cb components horizontally by 4 and verti-

cally by 2.
V4L2_JPEG_CHROMA_SUBSAMPLING_GRAY Use only luminance component.

V4L2_CID_JPEG_RESTART_INTERVAL (integer) The restart interval determines an interval of inserting
RSTm markers (m = 0..7). The purpose of these markers is to additionally reinitialize the encoder
process, in order to process blocks of an image independently. For the lossy compression processes
the restart interval unit is MCU (Minimum Coded Unit) and its value is contained in DRI (Define Restart
Interval) marker. If V4L2_CID_JPEG_RESTART_INTERVAL control is set to 0, DRI and RSTm markers
will not be inserted.

V4L2_CID_JPEG_COMPRESSION_QUALITY (integer) V4L2_CID_JPEG_COMPRESSION_QUALITY control de-
termines trade-off between image quality and size. It provides simpler method for applications to
control image quality, without a need for direct reconfiguration of luminance and chrominance quan-
tization tables. In cases where a driver uses quantization tables configured directly by an application,
using interfaces defined elsewhere, V4L2_CID_JPEG_COMPRESSION_QUALITY control should be set by
driver to 0.
The value range of this control is driver-specific. Only positive, non-zero values are meaningful. The
recommended range is 1 - 100, where larger values correspond to better image quality.

V4L2_CID_JPEG_ACTIVE_MARKER (bitmask) Specify which JPEG markers are included in compressed
stream. This control is valid only for encoders.

V4L2_JPEG_ACTIVE_MARKER_APP0 Application data segment APP0.
V4L2_JPEG_ACTIVE_MARKER_APP1 Application data segment APP1.
V4L2_JPEG_ACTIVE_MARKER_COM Comment segment.
V4L2_JPEG_ACTIVE_MARKER_DQT Quantization tables segment.
V4L2_JPEG_ACTIVE_MARKER_DHT Huffman tables segment.

For more details about JPEG specification, refer to ITU-T.81 , JFIF , W3C JPEG JFIF .

Image Source Control Reference

The Image Source control class is intended for low-level control of image source devices such as image
sensors. The devices feature an analogue to digital converter and a bus transmitter to transmit the image
data out of the device.

Image Source Control IDs

V4L2_CID_IMAGE_SOURCE_CLASS (class) The IMAGE_SOURCE class descriptor.
V4L2_CID_VBLANK (integer) Vertical blanking. The idle period after every frame during which no image

data is produced. The unit of vertical blanking is a line. Every line has length of the image width
plus horizontal blanking at the pixel rate defined by V4L2_CID_PIXEL_RATE control in the same sub-
device.

42 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_HBLANK (integer) Horizontal blanking. The idle period after every line of image data during
which no image data is produced. The unit of horizontal blanking is pixels.

V4L2_CID_ANALOGUE_GAIN (integer) Analogue gain is gain affecting all colour components in the pixel
matrix. The gain operation is performed in the analogue domain before A/D conversion.

V4L2_CID_TEST_PATTERN_RED (integer) Test pattern red colour component.
V4L2_CID_TEST_PATTERN_GREENR (integer) Test pattern green (next to red) colour component.
V4L2_CID_TEST_PATTERN_BLUE (integer) Test pattern blue colour component.
V4L2_CID_TEST_PATTERN_GREENB (integer) Test pattern green (next to blue) colour component.

Image Process Control Reference

The Image Process control class is intended for low-level control of image processing functions. Unlike
V4L2_CID_IMAGE_SOURCE_CLASS, the controls in this class affect processing the image, and do not control
capturing of it.

Image Process Control IDs

V4L2_CID_IMAGE_PROC_CLASS (class) The IMAGE_PROC class descriptor.
V4L2_CID_LINK_FREQ (integer menu) Data bus frequency. Together with the media bus pixel code, bus

type (clock cycles per sample), the data bus frequency defines the pixel rate (V4L2_CID_PIXEL_RATE)
in the pixel array (or possibly elsewhere, if the device is not an image sensor). The frame rate can be
calculated from the pixel clock, image width and height and horizontal and vertical blanking. While
the pixel rate control may be defined elsewhere than in the subdev containing the pixel array, the
frame rate cannot be obtained from that information. This is because only on the pixel array it can be
assumed that the vertical and horizontal blanking information is exact: no other blanking is allowed
in the pixel array. The selection of frame rate is performed by selecting the desired horizontal and
vertical blanking. The unit of this control is Hz.

V4L2_CID_PIXEL_RATE (64-bit integer) Pixel rate in the source pads of the subdev. This control is
read-only and its unit is pixels / second.

V4L2_CID_TEST_PATTERN (menu) Some capture/display/sensor devices have the capability to generate
test pattern images. These hardware specific test patterns can be used to test if a device is working
properly.

V4L2_CID_DEINTERLACING_MODE (menu) The video deinterlacing mode (such as Bob, Weave, ...). The
menu items are driver specific and are documented in Video4Linux (V4L) driver-specific documen-
tation .

V4L2_CID_DIGITAL_GAIN (integer) Digital gain is the value by which all colour components are multi-
plied by. Typically the digital gain applied is the control value divided by e.g. 0x100, meaning that
to get no digital gain the control value needs to be 0x100. The no-gain configuration is also typically
the default.

Digital Video Control Reference

The Digital Video control class is intended to control receivers and transmitters for VGA, DVI (Digital Visual
Interface), HDMI (HDMI) and DisplayPort (DP). These controls are generally expected to be private to
the receiver or transmitter subdevice that implements them, so they are only exposed on the /dev/v4l-
subdev* device node.

1.2. Part I - Video for Linux API 43

http://en.wikipedia.org/wiki/Vga
http://en.wikipedia.org/wiki/Digital_Visual_Interface

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

Note that these devices can have multiple input or output pads which are hooked up to e.g. HDMI
connectors. Even though the subdevice will receive or transmit video from/to only one of those pads,
the other pads can still be active when it comes to EDID (Extended Display Identification Data, EDID
) and HDCP (High-bandwidth Digital Content Protection System, HDCP) processing, allowing the de-
vice to do the fairly slow EDID/HDCP handling in advance. This allows for quick switching between
connectors.

These pads appear in several of the controls in this section as bitmasks, one bit for each pad. Bit 0
corresponds to pad 0, bit 1 to pad 1, etc. The maximum value of the control is the set of valid pads.

Digital Video Control IDs

V4L2_CID_DV_CLASS (class) The Digital Video class descriptor.
V4L2_CID_DV_TX_HOTPLUG (bitmask) Many connectors have a hotplug pin which is high if EDID infor-

mation is available from the source. This control shows the state of the hotplug pin as seen by the
transmitter. Each bit corresponds to an output pad on the transmitter. If an output pad does not
have an associated hotplug pin, then the bit for that pad will be 0. This read-only control is applicable
to DVI-D, HDMI and DisplayPort connectors.

V4L2_CID_DV_TX_RXSENSE (bitmask) Rx Sense is the detection of pull-ups on the TMDS clock lines. This
normally means that the sink has left/entered standby (i.e. the transmitter can sense that the re-
ceiver is ready to receive video). Each bit corresponds to an output pad on the transmitter. If an
output pad does not have an associated Rx Sense, then the bit for that pad will be 0. This read-only
control is applicable to DVI-D and HDMI devices.

V4L2_CID_DV_TX_EDID_PRESENT (bitmask) When the transmitter sees the hotplug signal from the re-
ceiver it will attempt to read the EDID. If set, then the transmitter has read at least the first block
(= 128 bytes). Each bit corresponds to an output pad on the transmitter. If an output pad does not
support EDIDs, then the bit for that pad will be 0. This read-only control is applicable to VGA, DVI-A/D,
HDMI and DisplayPort connectors.

V4L2_CID_DV_TX_MODE (enum)
enum v4l2_dv_tx_mode - HDMI transmitters can transmit in DVI-D mode (just video) or in HDMI mode

(video + audio + auxiliary data). This control selects which mode to use: V4L2_DV_TX_MODE_DVI_D
or V4L2_DV_TX_MODE_HDMI. This control is applicable to HDMI connectors.

V4L2_CID_DV_TX_RGB_RANGE (enum)
enum v4l2_dv_rgb_range - Select the quantization range for RGB output. V4L2_DV_RANGE_AUTO fol-

lows the RGB quantization range specified in the standard for the video interface (ie. CEA-861-E
for HDMI). V4L2_DV_RANGE_LIMITED and V4L2_DV_RANGE_FULL override the standard to be com-

patible with sinks that have not implemented the standard correctly (unfortunately quite common
for HDMI and DVI-D). Full range allows all possible values to be used whereas limited range sets the
range to (16 << (N-8)) - (235 << (N-8)) where N is the number of bits per component. This control
is applicable to VGA, DVI-A/D, HDMI and DisplayPort connectors.

V4L2_CID_DV_TX_IT_CONTENT_TYPE (enum)
enum v4l2_dv_it_content_type - Configures the IT Content Type of the transmitted video. This informa-

tion is sent over HDMI and DisplayPort connectors as part of the AVI InfoFrame. The term ‘IT Content’
is used for content that originates from a computer as opposed to content from a TV broadcast or an
analog source. The enum v4l2_dv_it_content_type defines the possible content types:

44 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_DV_IT_CONTENT_TYPE_GRAPHICS Graphics content. Pixel data should be passed unfiltered and
without analog reconstruction.

V4L2_DV_IT_CONTENT_TYPE_PHOTO Photo content. The content is derived from digital still pic-
tures. The content should be passed through with minimal
scaling and picture enhancements.

V4L2_DV_IT_CONTENT_TYPE_CINEMA Cinema content.
V4L2_DV_IT_CONTENT_TYPE_GAME Game content. Audio and video latency should be mini-

mized.
V4L2_DV_IT_CONTENT_TYPE_NO_ITC No IT Content information is available and the ITC bit in the

AVI InfoFrame is set to 0.

V4L2_CID_DV_RX_POWER_PRESENT (bitmask) Detects whether the receiver receives power from the
source (e.g. HDMI carries 5V on one of the pins). This is often used to power an eeprom which con-
tains EDID information, such that the source can read the EDID even if the sink is in standby/power
off. Each bit corresponds to an input pad on the transmitter. If an input pad cannot detect whether
power is present, then the bit for that pad will be 0. This read-only control is applicable to DVI-D,
HDMI and DisplayPort connectors.

V4L2_CID_DV_RX_RGB_RANGE (enum)
enum v4l2_dv_rgb_range - Select the quantization range for RGB input. V4L2_DV_RANGE_AUTO fol-

lows the RGB quantization range specified in the standard for the video interface (ie. CEA-861-E
for HDMI). V4L2_DV_RANGE_LIMITED and V4L2_DV_RANGE_FULL override the standard to be com-

patible with sources that have not implemented the standard correctly (unfortunately quite common
for HDMI and DVI-D). Full range allows all possible values to be used whereas limited range sets the
range to (16 << (N-8)) - (235 << (N-8)) where N is the number of bits per component. This control
is applicable to VGA, DVI-A/D, HDMI and DisplayPort connectors.

V4L2_CID_DV_RX_IT_CONTENT_TYPE (enum)
enum v4l2_dv_it_content_type - Reads the IT Content Type of the received video. This information is

sent over HDMI and DisplayPort connectors as part of the AVI InfoFrame. The term ‘IT Content’ is
used for content that originates from a computer as opposed to content from a TV broadcast or an
analog source. See V4L2_CID_DV_TX_IT_CONTENT_TYPE for the available content types.

FM Receiver Control Reference

The FM Receiver (FM_RX) class includes controls for common features of FM Reception capable devices.

FM_RX Control IDs

V4L2_CID_FM_RX_CLASS (class) The FM_RX class descriptor. Calling ioctls VIDIOC_QUERYCTRL, VID-
IOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control will return a description of this con-
trol class.

V4L2_CID_RDS_RECEPTION (boolean) Enables/disables RDS reception by the radio tuner
V4L2_CID_RDS_RX_PTY (integer) Gets RDS Programme Type field. This encodes up to 31 pre-defined

programme types.
V4L2_CID_RDS_RX_PS_NAME (string) Gets the Programme Service name (PS_NAME). It is intended for

static display on a receiver. It is the primary aid to listeners in programme service identification and
selection. In Annex E of IEC 62106 , the RDS specification, there is a full description of the correct
character encoding for Programme Service name strings. Also from RDS specification, PS is usually
a single eight character text. However, it is also possible to find receivers which can scroll strings
sized as 8 x N characters. So, this control must be configured with steps of 8 characters. The result
is it must always contain a string with size multiple of 8.

V4L2_CID_RDS_RX_RADIO_TEXT (string) Gets the Radio Text info. It is a textual description of what is
being broadcasted. RDS Radio Text can be applied when broadcaster wishes to transmit longer PS

1.2. Part I - Video for Linux API 45

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

names, programme-related information or any other text. In these cases, RadioText can be used in
addition to V4L2_CID_RDS_RX_PS_NAME. The encoding for Radio Text strings is also fully described in
Annex E of IEC 62106 . The length of Radio Text strings depends on which RDS Block is being used to
transmit it, either 32 (2A block) or 64 (2B block). However, it is also possible to find receivers which
can scroll strings sized as 32 x N or 64 x N characters. So, this control must be configured with steps
of 32 or 64 characters. The result is it must always contain a string with size multiple of 32 or 64.

V4L2_CID_RDS_RX_TRAFFIC_ANNOUNCEMENT (boolean) If set, then a traffic announcement is in progress.
V4L2_CID_RDS_RX_TRAFFIC_PROGRAM (boolean) If set, then the tuned programme carries traffic an-

nouncements.
V4L2_CID_RDS_RX_MUSIC_SPEECH (boolean) If set, then this channel broadcasts music. If cleared, then

it broadcasts speech. If the transmitter doesn’t make this distinction, then it will be set.
V4L2_CID_TUNE_DEEMPHASIS (enum)
enum v4l2_deemphasis - Configures the de-emphasis value for reception. A de-emphasis filter is ap-

plied to the broadcast to accentuate the high audio frequencies. Depending on the region, a time
constant of either 50 or 75 useconds is used. The enum v4l2_deemphasis defines possible values
for de-emphasis. Here they are:

V4L2_DEEMPHASIS_DISABLED No de-emphasis is applied.
V4L2_DEEMPHASIS_50_uS A de-emphasis of 50 uS is used.
V4L2_DEEMPHASIS_75_uS A de-emphasis of 75 uS is used.

Detect Control Reference

The Detect class includes controls for common features of various motion or object detection capable
devices.

Detect Control IDs

V4L2_CID_DETECT_CLASS (class) The Detect class descriptor. Calling ioctls VIDIOC_QUERYCTRL, VID-
IOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control will return a description of this con-
trol class.

V4L2_CID_DETECT_MD_MODE (menu) Sets the motion detection mode.
V4L2_DETECT_MD_MODE_DISABLED Disable motion detection.
V4L2_DETECT_MD_MODE_GLOBAL Use a single motion detection threshold.
V4L2_DETECT_MD_MODE_THRESHOLD_GRID The image is divided into a grid, each cell with its own

motion detection threshold. These thresholds are set
through the V4L2_CID_DETECT_MD_THRESHOLD_GRID ma-
trix control.

V4L2_DETECT_MD_MODE_REGION_GRID The image is divided into a grid, each cell with its own
region value that specifies which per-region motion de-
tection thresholds should be used. Each region has its
own thresholds. How these per-region thresholds are set
up is driver-specific. The region values for the grid are
set through the V4L2_CID_DETECT_MD_REGION_GRID ma-
trix control.

V4L2_CID_DETECT_MD_GLOBAL_THRESHOLD (integer) Sets the global motion detection threshold to be
used with the V4L2_DETECT_MD_MODE_GLOBAL motion detection mode.

V4L2_CID_DETECT_MD_THRESHOLD_GRID (__u16 matrix) Sets the motion detection thresholds for each
cell in the grid. To be used with the V4L2_DETECT_MD_MODE_THRESHOLD_GRID motion detection mode.
Matrix element (0, 0) represents the cell at the top-left of the grid.

46 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_DETECT_MD_REGION_GRID (__u8 matrix) Sets the motion detection region value for each cell
in the grid. To be used with the V4L2_DETECT_MD_MODE_REGION_GRID motion detection mode. Matrix
element (0, 0) represents the cell at the top-left of the grid.

RF Tuner Control Reference

The RF Tuner (RF_TUNER) class includes controls for common features of devices having RF tuner.
In this context, RF tuner is radio receiver circuit between antenna and demodulator. It receives radio
frequency (RF) from the antenna and converts that received signal to lower intermediate frequency (IF)
or baseband frequency (BB). Tuners that could do baseband output are often called Zero-IF tuners. Older
tuners were typically simple PLL tuners inside a metal box, whilst newer ones are highly integrated chips
without a metal box “silicon tuners”. These controls are mostly applicable for new feature rich silicon
tuners, just because older tuners does not have much adjustable features.
For more information about RF tuners see Tuner (radio) and RF front end from Wikipedia.

RF_TUNER Control IDs

V4L2_CID_RF_TUNER_CLASS (class) The RF_TUNER class descriptor. Calling ioctls VIDIOC_QUERYCTRL,
VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control will return a description of this
control class.

V4L2_CID_RF_TUNER_BANDWIDTH_AUTO (boolean) Enables/disables tuner radio channel bandwidth con-
figuration. In automatic mode bandwidth configuration is performed by the driver.

V4L2_CID_RF_TUNER_BANDWIDTH (integer) Filter(s) on tuner signal path are used to filter signal accord-
ing to receiving party needs. Driver configures filters to fulfill desired bandwidth requirement. Used
when V4L2_CID_RF_TUNER_BANDWIDTH_AUTO is not set. Unit is in Hz. The range and step are
driver-specific.

V4L2_CID_RF_TUNER_LNA_GAIN_AUTO (boolean) Enables/disables LNA automatic gain control (AGC)
V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO (boolean) Enables/disables mixer automatic gain control (AGC)
V4L2_CID_RF_TUNER_IF_GAIN_AUTO (boolean) Enables/disables IF automatic gain control (AGC)
V4L2_CID_RF_TUNER_RF_GAIN (integer) The RF amplifier is the very first amplifier on the receiver signal

path, just right after the antenna input. The difference between the LNA gain and the RF gain in this
document is that the LNA gain is integrated in the tuner chip while the RF gain is a separate chip.
There may be both RF and LNA gain controls in the same device. The range and step are driver-
specific.

V4L2_CID_RF_TUNER_LNA_GAIN (integer) LNA (low noise amplifier) gain is first gain stage on the
RF tuner signal path. It is located very close to tuner antenna input. Used when
V4L2_CID_RF_TUNER_LNA_GAIN_AUTO is not set. See V4L2_CID_RF_TUNER_RF_GAIN to understand
how RF gain and LNA gain differs from the each others. The range and step are driver-specific.

V4L2_CID_RF_TUNER_MIXER_GAIN (integer) Mixer gain is second gain stage on the RF tuner signal
path. It is located inside mixer block, where RF signal is down-converted by the mixer. Used when
V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO is not set. The range and step are driver-specific.

V4L2_CID_RF_TUNER_IF_GAIN (integer) IF gain is last gain stage on the RF tuner signal path. It is
located on output of RF tuner. It controls signal level of intermediate frequency output or baseband
output. Used when V4L2_CID_RF_TUNER_IF_GAIN_AUTO is not set. The range and step are driver-
specific.

V4L2_CID_RF_TUNER_PLL_LOCK (boolean) Is synthesizer PLL locked? RF tuner is receiving given fre-
quency when that control is set. This is a read-only control.

1.2. Part I - Video for Linux API 47

http://en.wikipedia.org/wiki/Tuner_%28radio%29
http://en.wikipedia.org/wiki/RF_front_end

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Data Formats

Data Format Negotiation

Different devices exchange different kinds of data with applications, for example video images, raw or
sliced VBI data, RDS datagrams. Even within one kind many different formats are possible, in particular
an abundance of image formats. Although drivers must provide a default and the selection persists across
closing and reopening a device, applications should always negotiate a data format before engaging in
data exchange. Negotiation means the application asks for a particular format and the driver selects and
reports the best the hardware can do to satisfy the request. Of course applications can also just query
the current selection.
A single mechanism exists to negotiate all data formats using the aggregate struct v4l2_format and
the VIDIOC_G_FMT and VIDIOC_S_FMT ioctls. Additionally the VIDIOC_TRY_FMT ioctl can be used to
examine what the hardware could do, without actually selecting a new data format. The data formats
supported by the V4L2 API are covered in the respective device section in Interfaces . For a closer look
at image formats see Image Formats .
The VIDIOC_S_FMT ioctl is a major turning-point in the initialization sequence. Prior to this point multiple
panel applications can access the same device concurrently to select the current input, change controls
or modify other properties. The first VIDIOC_S_FMT assigns a logical stream (video data, VBI data etc.)
exclusively to one file descriptor.
Exclusive means no other application, more precisely no other file descriptor, can grab this stream or
change device properties inconsistent with the negotiated parameters. A video standard change for ex-
ample, when the new standard uses a different number of scan lines, can invalidate the selected image
format. Therefore only the file descriptor owning the stream can make invalidating changes. Accordingly
multiple file descriptors which grabbed different logical streams prevent each other from interfering with
their settings. When for example video overlay is about to start or already in progress, simultaneous video
capturing may be restricted to the same cropping and image size.
When applications omit the VIDIOC_S_FMT ioctl its locking side effects are implied by the next step, the
selection of an I/O method with the ioctl VIDIOC_REQBUFS ioctl or implicit with the first read() or write()
call.
Generally only one logical stream can be assigned to a file descriptor, the exception being drivers permit-
ting simultaneous video capturing and overlay using the same file descriptor for compatibility with V4L
and earlier versions of V4L2. Switching the logical stream or returning into “panel mode” is possible by
closing and reopening the device. Drivers may support a switch using VIDIOC_S_FMT .
All drivers exchanging data with applications must support the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl.
Implementation of the VIDIOC_TRY_FMT is highly recommended but optional.

Image Format Enumeration

Apart of the generic format negotiation functions a special ioctl to enumerate all image formats supported
by video capture, overlay or output devices is available. 1

The ioctl VIDIOC_ENUM_FMT ioctl must be supported by all drivers exchanging image data with applica-
tions.

Important:

Drivers are not supposed to convert image formats in kernel space. Theymust enumerate only formats
directly supported by the hardware. If necessary driver writers should publish an example conversion
routine or library for integration into applications.

1 Enumerating formats an application has no a-priori knowledge of (otherwise it could explicitly ask for them and need not enu-
merate) seems useless, but there are applications serving as proxy between drivers and the actual video applications for which this
is useful.

48 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Single- and multi-planar APIs

Some devices require data for each input or output video frame to be placed in discontiguous memory
buffers. In such cases, one video frame has to be addressed using more than one memory address, i.e.
one pointer per “plane”. A plane is a sub-buffer of the current frame. For examples of such formats see
Image Formats .
Initially, V4L2 API did not support multi-planar buffers and a set of extensions has been introduced to
handle them. Those extensions constitute what is being referred to as the “multi-planar API”.
Some of the V4L2 API calls and structures are interpreted differently, depending on whether single- or
multi-planar API is being used. An application can choose whether to use one or the other by passing
a corresponding buffer type to its ioctl calls. Multi-planar versions of buffer types are suffixed with an
_MPLANE string. For a list of available multi-planar buffer types see enum v4l2_buf_type.

Multi-planar formats

Multi-planar API introduces new multi-planar formats. Those formats use a separate set of FourCC codes.
It is important to distinguish between the multi-planar API and a multi-planar format. Multi-planar API calls
can handle all single-planar formats as well (as long as they are passed in multi-planar API structures),
while the single-planar API cannot handle multi-planar formats.

Calls that distinguish between single and multi-planar APIs

VIDIOC_QUERYCAP Two additional multi-planar capabilities are added. They can be set together with
non-multi-planar ones for devices that handle both single- and multi-planar formats.

VIDIOC_G_FMT , VIDIOC_S_FMT , VIDIOC_TRY_FMT New structures for describing multi-planar for-
mats are added: struct v4l2_pix_format_mplane and struct v4l2_plane_pix_format. Drivers may
define new multi-planar formats, which have distinct FourCC codes from the existing single-planar
ones.

VIDIOC_QBUF , VIDIOC_DQBUF , VIDIOC_QUERYBUF A new struct v4l2_plane structure for de-
scribing planes is added. Arrays of this structure are passed in the new m.planes field of struct
v4l2_buffer.

VIDIOC_REQBUFS Will allocate multi-planar buffers as requested.

Image Cropping, Insertion and Scaling

Some video capture devices can sample a subsection of the picture and shrink or enlarge it to an image
of arbitrary size. We call these abilities cropping and scaling. Some video output devices can scale an
image up or down and insert it at an arbitrary scan line and horizontal offset into a video signal.
Applications can use the following API to select an area in the video signal, query the default area and the
hardware limits.

Note:

Despite their name, the VIDIOC_CROPCAP , VIDIOC_G_CROP and VIDIOC_S_CROP ioctls apply to
input as well as output devices.

Scaling requires a source and a target. On a video capture or overlay device the source is the video
signal, and the cropping ioctls determine the area actually sampled. The target are images read by the
application or overlaid onto the graphics screen. Their size (and position for an overlay) is negotiated with
the VIDIOC_G_FMT and VIDIOC_S_FMT ioctls.

1.2. Part I - Video for Linux API 49

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

On a video output device the source are the images passed in by the application, and their size is again
negotiated with the VIDIOC_G_FMT and VIDIOC_S_FMT ioctls, or may be encoded in a compressed video
stream. The target is the video signal, and the cropping ioctls determine the area where the images are
inserted.
Source and target rectangles are defined even if the device does not support scaling or the VID-
IOC_G_CROP and VIDIOC_S_CROP ioctls. Their size (and position where applicable) will be fixed in
this case.

Note:

All capture and output devices must support the VIDIOC_CROPCAP ioctl such that applications can
determine if scaling takes place.

Cropping Structures

Fig. 1.2: Image Cropping, Insertion and Scaling
The cropping, insertion and scaling process

For capture devices the coordinates of the top left corner, width and height of the area which can be
sampled is given by the bounds substructure of the struct v4l2_cropcap returned by the VIDIOC_CROPCAP
ioctl. To support a wide range of hardware this specification does not define an origin or units. However

by convention drivers should horizontally count unscaled samples relative to 0H (the leading edge of the
horizontal sync pulse, see Figure 4.1. Line synchronization). Vertically ITU-R line numbers of the first
field (see ITU R-525 line numbering for 525 lines and for 625 lines), multiplied by two if the driver can
capture both fields.
The top left corner, width and height of the source rectangle, that is the area actually sampled, is given
by struct v4l2_crop using the same coordinate system as struct v4l2_cropcap. Applications can use the
VIDIOC_G_CROP and VIDIOC_S_CROP ioctls to get and set this rectangle. It must lie completely within

the capture boundaries and the driver may further adjust the requested size and/or position according to
hardware limitations.
Each capture device has a default source rectangle, given by the defrect substructure of struct
v4l2_cropcap. The center of this rectangle shall align with the center of the active picture area of the

50 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

video signal, and cover what the driver writer considers the complete picture. Drivers shall reset the
source rectangle to the default when the driver is first loaded, but not later.
For output devices these structures and ioctls are used accordingly, defining the target rectangle where
the images will be inserted into the video signal.

Scaling Adjustments

Video hardware can have various cropping, insertion and scaling limitations. It may only scale up or
down, support only discrete scaling factors, or have different scaling abilities in horizontal and vertical
direction. Also it may not support scaling at all. At the same time the struct v4l2_crop rectangle may
have to be aligned, and both the source and target rectangles may have arbitrary upper and lower size
limits. In particular the maximum width and height in struct v4l2_crop may be smaller than the struct
v4l2_cropcap. bounds area. Therefore, as usual, drivers are expected to adjust the requested parameters
and return the actual values selected.
Applications can change the source or the target rectangle first, as they may prefer a particular image size
or a certain area in the video signal. If the driver has to adjust both to satisfy hardware limitations, the
last requested rectangle shall take priority, and the driver should preferably adjust the opposite one. The
VIDIOC_TRY_FMT ioctl however shall not change the driver state and therefore only adjust the requested
rectangle.
Suppose scaling on a video capture device is restricted to a factor 1:1 or 2:1 in either direction and the
target image size must be a multiple of 16 × 16 pixels. The source cropping rectangle is set to defaults,
which are also the upper limit in this example, of 640 × 400 pixels at offset 0, 0. An application requests an
image size of 300 × 225 pixels, assuming video will be scaled down from the “full picture” accordingly. The
driver sets the image size to the closest possible values 304 × 224, then chooses the cropping rectangle
closest to the requested size, that is 608 × 224 (224 × 2:1 would exceed the limit 400). The offset 0, 0
is still valid, thus unmodified. Given the default cropping rectangle reported by VIDIOC_CROPCAP the
application can easily propose another offset to center the cropping rectangle.
Now the application may insist on covering an area using a picture aspect ratio closer to the original
request, so it asks for a cropping rectangle of 608 × 456 pixels. The present scaling factors limit cropping
to 640 × 384, so the driver returns the cropping size 608 × 384 and adjusts the image size to closest
possible 304 × 192.

Examples

Source and target rectangles shall remain unchanged across closing and reopening a device, such that
piping data into or out of a device will work without special preparations. More advanced applications
should ensure the parameters are suitable before starting I/O.

Note:

On the next two examples, a video capture device is assumed; change
V4L2_BUF_TYPE_VIDEO_CAPTURE for other types of device.

Example: Resetting the cropping parameters

struct v4l2_cropcap cropcap;
struct v4l2_crop crop;

memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_CROPCAP, &cropcap)) {

1.2. Part I - Video for Linux API 51

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

perror ("VIDIOC_CROPCAP");
exit (EXIT_FAILURE);

}

memset (&crop, 0, sizeof (crop));
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect;

/* Ignore if cropping is not supported (EINVAL). */

if (-1 == ioctl (fd, VIDIOC_S_CROP, &crop)
&& errno != EINVAL) {
perror ("VIDIOC_S_CROP");
exit (EXIT_FAILURE);

}

Example: Simple downscaling

struct v4l2_cropcap cropcap;
struct v4l2_format format;

reset_cropping_parameters ();

/* Scale down to 1/4 size of full picture. */

memset (&format, 0, sizeof (format)); /* defaults */

format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

format.fmt.pix.width = cropcap.defrect.width >> 1;
format.fmt.pix.height = cropcap.defrect.height >> 1;
format.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;

if (-1 == ioctl (fd, VIDIOC_S_FMT, &format)) {
perror ("VIDIOC_S_FORMAT");
exit (EXIT_FAILURE);

}

/* We could check the actual image size now, the actual scaling factor
or if the driver can scale at all. */

Example: Selecting an output area

Note:

This example assumes an output device.

struct v4l2_cropcap cropcap;
struct v4l2_crop crop;

memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;

if (-1 == ioctl (fd, VIDIOC_CROPCAP;, &cropcap)) {
perror ("VIDIOC_CROPCAP");
exit (EXIT_FAILURE);

52 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

}

memset (&crop, 0, sizeof (crop));

crop.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
crop.c = cropcap.defrect;

/* Scale the width and height to 50 % of their original size
and center the output. */

crop.c.width /= 2;
crop.c.height /= 2;
crop.c.left += crop.c.width / 2;
crop.c.top += crop.c.height / 2;

/* Ignore if cropping is not supported (EINVAL). */

if (-1 == ioctl (fd, VIDIOC_S_CROP, &crop)
&& errno != EINVAL) {
perror ("VIDIOC_S_CROP");
exit (EXIT_FAILURE);

}

Example: Current scaling factor and pixel aspect

Note:

This example assumes a video capture device.

struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format format;
double hscale, vscale;
double aspect;
int dwidth, dheight;

memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_CROPCAP, &cropcap)) {
perror ("VIDIOC_CROPCAP");
exit (EXIT_FAILURE);

}

memset (&crop, 0, sizeof (crop));
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_G_CROP, &crop)) {
if (errno != EINVAL) {

perror ("VIDIOC_G_CROP");
exit (EXIT_FAILURE);

}

/* Cropping not supported. */
crop.c = cropcap.defrect;

}

memset (&format, 0, sizeof (format));

1.2. Part I - Video for Linux API 53

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

format.fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_G_FMT, &format)) {
perror ("VIDIOC_G_FMT");
exit (EXIT_FAILURE);

}

/* The scaling applied by the driver. */

hscale = format.fmt.pix.width / (double) crop.c.width;
vscale = format.fmt.pix.height / (double) crop.c.height;

aspect = cropcap.pixelaspect.numerator /
(double) cropcap.pixelaspect.denominator;

aspect = aspect * hscale / vscale;

/* Devices following ITU-R BT.601 do not capture
square pixels. For playback on a computer monitor
we should scale the images to this size. */

dwidth = format.fmt.pix.width / aspect;
dheight = format.fmt.pix.height;

API for cropping, composing and scaling

Introduction

Some video capture devices can sample a subsection of a picture and shrink or enlarge it to an image
of arbitrary size. Next, the devices can insert the image into larger one. Some video output devices can
crop part of an input image, scale it up or down and insert it at an arbitrary scan line and horizontal offset
into a video signal. We call these abilities cropping, scaling and composing.
On a video capture device the source is a video signal, and the cropping target determine the area actually
sampled. The sink is an image stored in a memory buffer. The composing area specifies which part of the
buffer is actually written to by the hardware.
On a video output device the source is an image in a memory buffer, and the cropping target is a part of
an image to be shown on a display. The sink is the display or the graphics screen. The application may
select the part of display where the image should be displayed. The size and position of such a window is
controlled by the compose target.
Rectangles for all cropping and composing targets are defined even if the device does supports neither
cropping nor composing. Their size and position will be fixed in such a case. If the device does not support
scaling then the cropping and composing rectangles have the same size.

Selection targets

See Selection targets for more information.

Configuration

Applications can use the selection API to select an area in a video signal or a buffer, and to query for
default settings and hardware limits.
Video hardware can have various cropping, composing and scaling limitations. It may only scale up or
down, support only discrete scaling factors, or have different scaling abilities in the horizontal and vertical
directions. Also it may not support scaling at all. At the same time the cropping/composing rectangles
may have to be aligned, and both the source and the sink may have arbitrary upper and lower size limits.

54 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Fig. 1.3: Cropping and composing targets
Targets used by a cropping, composing and scaling process

Therefore, as usual, drivers are expected to adjust the requested parameters and return the actual values
selected. An application can control the rounding behaviour using constraint flags .

Configuration of video capture

See figure Cropping and composing targets for examples of the selection targets available for a video
capture device. It is recommended to configure the cropping targets before to the composing targets.
The range of coordinates of the top left corner, width and height of areas that can be sampled is given by
the V4L2_SEL_TGT_CROP_BOUNDS target. It is recommended for the driver developers to put the top/left
corner at position (0,0). The rectangle’s coordinates are expressed in pixels.
The top left corner, width and height of the source rectangle, that is the area actually sampled, is given by
the V4L2_SEL_TGT_CROP target. It uses the same coordinate system as V4L2_SEL_TGT_CROP_BOUNDS. The
active cropping area must lie completely inside the capture boundaries. The driver may further adjust the
requested size and/or position according to hardware limitations.
Each capture device has a default source rectangle, given by the V4L2_SEL_TGT_CROP_DEFAULT target.
This rectangle shall over what the driver writer considers the complete picture. Drivers shall set the active
crop rectangle to the default when the driver is first loaded, but not later.
The composing targets refer to a memory buffer. The limits of composing coordinates are obtained using
V4L2_SEL_TGT_COMPOSE_BOUNDS. All coordinates are expressed in pixels. The rectangle’s top/left corner
must be located at position (0,0). The width and height are equal to the image size set by VIDIOC_S_FMT
.
The part of a buffer into which the image is inserted by the hardware is controlled by the
V4L2_SEL_TGT_COMPOSE target. The rectangle’s coordinates are also expressed in the same coordinate
system as the bounds rectangle. The composing rectangle must lie completely inside bounds rectan-
gle. The driver must adjust the composing rectangle to fit to the bounding limits. Moreover, the driver
can perform other adjustments according to hardware limitations. The application can control rounding
behaviour using constraint flags .
For capture devices the default composing rectangle is queried using V4L2_SEL_TGT_COMPOSE_DEFAULT.
It is usually equal to the bounding rectangle.
The part of a buffer that is modified by the hardware is given by V4L2_SEL_TGT_COMPOSE_PADDED. It con-
tains all pixels defined using V4L2_SEL_TGT_COMPOSE plus all padding data modified by hardware during

1.2. Part I - Video for Linux API 55

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

insertion process. All pixels outside this rectangle must not be changed by the hardware. The content of
pixels that lie inside the padded area but outside active area is undefined. The application can use the
padded and active rectangles to detect where the rubbish pixels are located and remove them if needed.

Configuration of video output

For output devices targets and ioctls are used similarly to the video capture case. The composing rectangle
refers to the insertion of an image into a video signal. The cropping rectangles refer to a memory buffer.
It is recommended to configure the composing targets before to the cropping targets.
The cropping targets refer to the memory buffer that contains an image to be inserted into a video signal
or graphical screen. The limits of cropping coordinates are obtained using V4L2_SEL_TGT_CROP_BOUNDS.
All coordinates are expressed in pixels. The top/left corner is always point (0,0). The width and height is
equal to the image size specified using VIDIOC_S_FMT ioctl.
The top left corner, width and height of the source rectangle, that is the area from which image date are
processed by the hardware, is given by the V4L2_SEL_TGT_CROP. Its coordinates are expressed in in the
same coordinate system as the bounds rectangle. The active cropping area must lie completely inside
the crop boundaries and the driver may further adjust the requested size and/or position according to
hardware limitations.
For output devices the default cropping rectangle is queried using V4L2_SEL_TGT_CROP_DEFAULT. It is
usually equal to the bounding rectangle.
The part of a video signal or graphics display where the image is inserted by the hardware is controlled
by V4L2_SEL_TGT_COMPOSE target. The rectangle’s coordinates are expressed in pixels. The composing
rectangle must lie completely inside the bounds rectangle. The driver must adjust the area to fit to the
bounding limits. Moreover, the driver can perform other adjustments according to hardware limitations.
The device has a default composing rectangle, given by the V4L2_SEL_TGT_COMPOSE_DEFAULT target. This
rectangle shall cover what the driver writer considers the complete picture. It is recommended for the
driver developers to put the top/left corner at position (0,0). Drivers shall set the active composing
rectangle to the default one when the driver is first loaded.
The devices may introduce additional content to video signal other than an image from memory buffers. It
includes borders around an image. However, such a padded area is driver-dependent feature not covered
by this document. Driver developers are encouraged to keep padded rectangle equal to active one. The
padded target is accessed by the V4L2_SEL_TGT_COMPOSE_PADDED identifier. It must contain all pixels
from the V4L2_SEL_TGT_COMPOSE target.

Scaling control

An application can detect if scaling is performed by comparing the width and the height of rectangles
obtained using V4L2_SEL_TGT_CROP and V4L2_SEL_TGT_COMPOSE targets. If these are not equal then the
scaling is applied. The application can compute the scaling ratios using these values.

Comparison with old cropping API

The selection API was introduced to cope with deficiencies of previous API , that was designed to control
simple capture devices. Later the cropping API was adopted by video output drivers. The ioctls are used
to select a part of the display were the video signal is inserted. It should be considered as an API abuse
because the described operation is actually the composing. The selection API makes a clear distinction
between composing and cropping operations by setting the appropriate targets. The V4L2 API lacks any
support for composing to and cropping from an image inside a memory buffer. The application could
configure a capture device to fill only a part of an image by abusing V4L2 API. Cropping a smaller image
from a larger one is achieved by setting the field bytesperline at struct v4l2_pix_format. Introduc-
ing an image offsets could be done by modifying field m_userptr at struct v4l2_buffer before calling
ioctl VIDIOC_QBUF, VIDIOC_DQBUF . Those operations should be avoided because they are not portable

56 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

(endianness), and do not work for macroblock and Bayer formats and mmap buffers. The selection API
deals with configuration of buffer cropping/composing in a clear, intuitive and portable way. Next, with
the selection API the concepts of the padded target and constraints flags are introduced. Finally, struct
v4l2_crop and struct v4l2_cropcap have no reserved fields. Therefore there is no way to extend their
functionality. The new struct v4l2_selection provides a lot of place for future extensions. Driver devel-
opers are encouraged to implement only selection API. The former cropping API would be simulated using
the new one.

Examples

(A video capture device is assumed; change V4L2_BUF_TYPE_VIDEO_CAPTURE for other devices; change
target to V4L2_SEL_TGT_COMPOSE_* family to configure composing area)

Example: Resetting the cropping parameters

struct v4l2_selection sel = {
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
.target = V4L2_SEL_TGT_CROP_DEFAULT,

};
ret = ioctl(fd, VIDIOC_G_SELECTION, &sel);
if (ret)

exit(-1);
sel.target = V4L2_SEL_TGT_CROP;
ret = ioctl(fd, VIDIOC_S_SELECTION, &sel);
if (ret)

exit(-1);

Setting a composing area on output of size of at most half of limit placed at a center of a display.

Example: Simple downscaling

struct v4l2_selection sel = {
.type = V4L2_BUF_TYPE_VIDEO_OUTPUT,
.target = V4L2_SEL_TGT_COMPOSE_BOUNDS,

};
struct v4l2_rect r;

ret = ioctl(fd, VIDIOC_G_SELECTION, &sel);
if (ret)

exit(-1);
/* setting smaller compose rectangle */
r.width = sel.r.width / 2;
r.height = sel.r.height / 2;
r.left = sel.r.width / 4;
r.top = sel.r.height / 4;
sel.r = r;
sel.target = V4L2_SEL_TGT_COMPOSE;
sel.flags = V4L2_SEL_FLAG_LE;
ret = ioctl(fd, VIDIOC_S_SELECTION, &sel);
if (ret)

exit(-1);

A video output device is assumed; change V4L2_BUF_TYPE_VIDEO_OUTPUT for other devices

1.2. Part I - Video for Linux API 57

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Example: Querying for scaling factors

struct v4l2_selection compose = {
.type = V4L2_BUF_TYPE_VIDEO_OUTPUT,
.target = V4L2_SEL_TGT_COMPOSE,

};
struct v4l2_selection crop = {

.type = V4L2_BUF_TYPE_VIDEO_OUTPUT,

.target = V4L2_SEL_TGT_CROP,
};
double hscale, vscale;

ret = ioctl(fd, VIDIOC_G_SELECTION, &compose);
if (ret)

exit(-1);
ret = ioctl(fd, VIDIOC_G_SELECTION, &crop);
if (ret)

exit(-1);

/* computing scaling factors */
hscale = (double)compose.r.width / crop.r.width;
vscale = (double)compose.r.height / crop.r.height;

Streaming Parameters

Streaming parameters are intended to optimize the video capture process as well as I/O. Presently appli-
cations can request a high quality capture mode with the VIDIOC_S_PARM ioctl.
The current video standard determines a nominal number of frames per second. If less than this number
of frames is to be captured or output, applications can request frame skipping or duplicating on the driver
side. This is especially useful when using the read() or write() , which are not augmented by timestamps
or sequence counters, and to avoid unnecessary data copying.
Finally these ioctls can be used to determine the number of buffers used internally by a driver in read/write
mode. For implications see the section discussing the read() function.
To get and set the streaming parameters applications call the VIDIOC_G_PARM and VIDIOC_S_PARM ioctl,
respectively. They take a pointer to a struct v4l2_streamparm, which contains a union holding separate
parameters for input and output devices.
These ioctls are optional, drivers need not implement them. If so, they return the EINVAL error code.

1.2.2 Image Formats

The V4L2 API was primarily designed for devices exchanging image data with applications. The struct
v4l2_pix_format and struct v4l2_pix_format_mplane structures define the format and layout of an
image in memory. The former is used with the single-planar API, while the latter is used with the multi-
planar version (see Single- and multi-planar APIs). Image formats are negotiated with the VIDIOC_S_FMT
ioctl. (The explanations here focus on video capturing and output, for overlay frame buffer formats see

also VIDIOC_G_FBUF .)

Single-planar format structure

v4l2_pix_format

Table 1.1: struct v4l2_pix_format

__u32 width Image width in pixels.
Continued on next page

58 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.1 – continued from previous page
__u32 height Image height in pixels. If field is one of V4L2_FIELD_TOP,

V4L2_FIELD_BOTTOM or V4L2_FIELD_ALTERNATE then height
refers to the number of lines in the field, otherwise it refers
to the number of lines in the frame (which is twice the field
height for interlaced formats).

Applications set these fields to request an image
size, drivers return the closest possible values. In case of
planar formats the width and height applies to the largest
plane. To avoid ambiguities drivers must return values rounded up
to a multiple of the scale factor of any smaller planes. For
example when the image format is YUV 4:2:0, width and
height must be multiples of two.

__u32 pixelformat The pixel format or type of compression, set by the applica-
tion. This is a little endian four character code . V4L2 defines
standard RGB formats in Packed RGB Image Formats , YUV for-
mats in YUV Formats , and reserved codes in Reserved Image
Formats

enum
:c:type::v4l2_field

field Video images are typically interlaced. Applications can request
to capture or output only the top or bottom field, or both fields
interlaced or sequentially stored in one buffer or alternating in
separate buffers. Drivers return the actual field order selected.
For more details on fields see Field Order .

__u32 bytesperline Distance in bytes between the leftmost pixels in two adjacent
lines.

Both applications and drivers can set this field to request
padding bytes at the end of each line. Drivers however may ignore
the value requested by the application, returning width times
bytes per pixel or a larger value required by the hardware. That
implies applications can just set this field to zero to get a
reasonable default.

Video hardware may access padding bytes, therefore they must
reside in accessible memory. Consider cases where padding bytes
after the last line of an image cross a system page boundary.
Input devices may write padding bytes, the value is undefined.
Output devices ignore the contents of padding bytes.

When the image format is planar the bytesperline value ap-
plies
to the first plane and is divided by the same factor as the
width field for the other planes. For example the Cb and Cr
planes of a YUV 4:2:0 image have half as many padding bytes
following each line as the Y plane. To avoid ambiguities drivers
must return a bytesperline value rounded up to a multiple of
the scale factor.

For compressed formats the bytesperline value makes no sense.
Applications and drivers must set this to 0 in that case.

__u32 sizeimage Size in bytes of the buffer to hold a complete image, set by the
driver. Usually this is bytesperline times height. When the
image consists of variable length compressed data this is the
maximum number of bytes required to hold an image.

Continued on next page

1.2. Part I - Video for Linux API 59

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.1 – continued from previous page
enum
v4l2_colorspace

colorspace This information supplements the pixelformat and must be
set by the driver for capture streams and by the application for
output streams, see Colorspaces .

__u32 priv This field indicates whether the remaining fields of the struct
v4l2_pix_format, also called the extended fields, are valid.
When set to V4L2_PIX_FMT_PRIV_MAGIC, it indicates that the
extended fields have been correctly initialized. When set to
any other value it indicates that the extended fields contain
undefined values.
Applications that wish to use the pixel format extended fields
must first ensure that the feature is supported by querying the
device for the V4L2_CAP_EXT_PIX_FORMAT capability. If the
capability isn’t set the pixel format extended fields are not sup-
ported and using the extended fields will lead to undefined re-
sults.
To use the extended fields, applications must set the priv field
to V4L2_PIX_FMT_PRIV_MAGIC, initialize all the extended fields
and zero the unused bytes of the struct v4l2_format raw_data
field.
When the priv field isn’t set to V4L2_PIX_FMT_PRIV_MAGIC
drivers must act as if all the extended fields were set
to zero. On return drivers must set the priv field to
V4L2_PIX_FMT_PRIV_MAGIC and all the extended fields to ap-
plicable values.

__u32 flags Flags set by the application or driver, see Format Flags .
enum
v4l2_ycbcr_encoding

ycbcr_enc This information supplements the colorspace and must be set
by the driver for capture streams and by the application for
output streams, see Colorspaces .

enum
v4l2_hsv_encoding

hsv_enc This information supplements the colorspace and must be set
by the driver for capture streams and by the application for
output streams, see Colorspaces .

enum
v4l2_quantization

quantization This information supplements the colorspace and must be set
by the driver for capture streams and by the application for
output streams, see Colorspaces .

enum
v4l2_xfer_func

xfer_func This information supplements the colorspace and must be set
by the driver for capture streams and by the application for
output streams, see Colorspaces .

Multi-planar format structures

The struct v4l2_plane_pix_format structures define size and layout for each of the planes in a multi-
planar format. The struct v4l2_pix_format_mplane structure contains information common to all planes
(such as image width and height) and an array of struct v4l2_plane_pix_format structures, describing
all planes of that format.
v4l2_plane_pix_format

Table 1.2: struct v4l2_plane_pix_format
__u32 sizeimage Maximum size in bytes required for image data in

this plane.
__u32 bytesperline Distance in bytes between the leftmost pixels in

two adjacent lines. See struct v4l2_pix_format.
__u16 reserved[6] Reserved for future extensions. Should be zeroed

by drivers and applications.

v4l2_pix_format_mplane

60 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.3: struct v4l2_pix_format_mplane
__u32 width Image width in pixels. See struct

v4l2_pix_format.
__u32 height Image height in pixels. See struct

v4l2_pix_format.
__u32 pixelformat The pixel format. Both single- and multi-

planar four character codes can be used.
enum v4l2_field field See struct v4l2_pix_format.
enum v4l2_colorspace colorspace See struct v4l2_pix_format.
struct
v4l2_plane_pix_format

plane_fmt[VIDEO_MAX_PLANES] An array of structures describing format of
each plane this pixel format consists of.
The number of valid entries in this array
has to be put in the num_planes field.

__u8 num_planes Number of planes (i.e. separate memory
buffers) for this format and the number of
valid entries in the plane_fmt array.

__u8 flags Flags set by the application or driver, see
Format Flags .

enum
v4l2_ycbcr_encoding

ycbcr_enc This information supplements the col-
orspace and must be set by the driver for
capture streams and by the application for
output streams, see Colorspaces .

enum
v4l2_hsv_encoding

hsv_enc This information supplements the col-
orspace and must be set by the driver for
capture streams and by the application for
output streams, see Colorspaces .

enum
v4l2_quantization

quantization This information supplements the col-
orspace and must be set by the driver for
capture streams and by the application for
output streams, see Colorspaces .

enum v4l2_xfer_func xfer_func This information supplements the col-
orspace and must be set by the driver for
capture streams and by the application for
output streams, see Colorspaces .

__u8 reserved[7] Reserved for future extensions. Should be
zeroed by drivers and applications.

Standard Image Formats

In order to exchange images between drivers and applications, it is necessary to have standard image
data formats which both sides will interpret the same way. V4L2 includes several such formats, and this
section is intended to be an unambiguous specification of the standard image data formats in V4L2.
V4L2 drivers are not limited to these formats, however. Driver-specific formats are possible. In that case
the application may depend on a codec to convert images to one of the standard formats when needed.
But the data can still be stored and retrieved in the proprietary format. For example, a device may support
a proprietary compressed format. Applications can still capture and save the data in the compressed
format, saving much disk space, and later use a codec to convert the images to the X Windows screen
format when the video is to be displayed.
Even so, ultimately, some standard formats are needed, so the V4L2 specification would not be complete
without well-defined standard formats.
The V4L2 standard formats are mainly uncompressed formats. The pixels are always arranged in memory
from left to right, and from top to bottom. The first byte of data in the image buffer is always for the
leftmost pixel of the topmost row. Following that is the pixel immediately to its right, and so on until the
end of the top row of pixels. Following the rightmost pixel of the row there may be zero or more bytes of

1.2. Part I - Video for Linux API 61

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

padding to guarantee that each row of pixel data has a certain alignment. Following the pad bytes, if any,
is data for the leftmost pixel of the second row from the top, and so on. The last row has just as many
pad bytes after it as the other rows.
In V4L2 each format has an identifier which looks like PIX_FMT_XXX, defined in the videodev2.h header
file. These identifiers represent four character (FourCC) codes which are also listed below, however they
are not the same as those used in the Windows world.
For some formats, data is stored in separate, discontiguous memory buffers. Those formats are identified
by a separate set of FourCC codes and are referred to as “multi-planar formats”. For example, a YUV422
frame is normally stored in one memory buffer, but it can also be placed in two or three separate buffers,
with Y component in one buffer and CbCr components in another in the 2-planar version or with each
component in its own buffer in the 3-planar case. Those sub-buffers are referred to as “planes”.

Indexed Format

In this format each pixel is represented by an 8 bit index into a 256 entry ARGB palette. It is intended for
Video Output Overlays only. There are no ioctls to access the palette, this must be done with ioctls of

the Linux framebuffer API.

Table 1.4: Indexed Image Format
Identifier Code Byte 0

Bit 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_PAL8 ‘PAL8’ i7 i6 i5 i4 i3 i2 i1 i0

RGB Formats

Packed RGB formats

Description

These formats are designed to match the pixel formats of typical PC graphics frame buffers. They occupy
8, 16, 24 or 32 bits per pixel. These are all packed-pixel formats, meaning all the data for a pixel lie next
to each other in memory.

Table 1.5: Packed RGB Image Formats
Identifier Code Byte 0 in memory Byte 1 Byte 2 Byte 3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_RGB332 ‘RGB1’ r2 r1 r0 g2 g1 g0 b1 b0
V4L2_PIX_FMT_ARGB444 ‘AR12’ g3 g2 g1 g0 b3 b2 b1 b0 a3 a2 a1 a0 r3 r2 r1 r0
V4L2_PIX_FMT_XRGB444 ‘XR12’ g3 g2 g1 g0 b3 b2 b1 b0 r3 r2 r1 r0
V4L2_PIX_FMT_ARGB555 ‘AR15’ g2 g1 g0 b4 b3 b2 b1 b0 a r4 r3 r2 r1 r0 g4 g3
V4L2_PIX_FMT_XRGB555 ‘XR15’ g2 g1 g0 b4 b3 b2 b1 b0 r4 r3 r2 r1 r0 g4 g3
V4L2_PIX_FMT_RGB565 ‘RGBP’ g2 g1 g0 b4 b3 b2 b1 b0 r4 r3 r2 r1 r0 g5 g4 g3
V4L2_PIX_FMT_ARGB555X ‘AR15’ | (1 << 31) a r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0
V4L2_PIX_FMT_XRGB555X ‘XR15’ | (1 << 31) r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0
V4L2_PIX_FMT_RGB565X ‘RGBR’ r4 r3 r2 r1 r0 g5 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0
V4L2_PIX_FMT_BGR24 ‘BGR3’ b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0
V4L2_PIX_FMT_RGB24 ‘RGB3’ r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0
V4L2_PIX_FMT_BGR666 ‘BGRH’ b5 b4 b3 b2 b1 b0 g5 g4 g3 g2 g1 g0 r5 r4 r3 r2 r1 r0
V4L2_PIX_FMT_ABGR32 ‘AR24’ b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0 a7 a6 a5 a4 a3 a2 a1 a0
V4L2_PIX_FMT_XBGR32 ‘XR24’ b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0
V4L2_PIX_FMT_ARGB32 ‘BA24’ a7 a6 a5 a4 a3 a2 a1 a0 r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0
V4L2_PIX_FMT_XRGB32 ‘BX24’ r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

62 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

Bit 7 is the most significant bit.

The usage and value of the alpha bits (a) in the ARGB and ABGR formats (collectively referred to as alpha
formats) depend on the device type and hardware operation. Capture devices (including capture queues
of mem-to-mem devices) fill the alpha component in memory. When the device outputs an alpha channel
the alpha component will have a meaningful value. Otherwise, when the device doesn’t output an alpha
channel but can set the alpha bit to a user-configurable value, the V4L2_CID_ALPHA_COMPONENT control
is used to specify that alpha value, and the alpha component of all pixels will be set to the value specified
by that control. Otherwise a corresponding format without an alpha component (XRGB or XBGR) must be
used instead of an alpha format.
Output devices (including output queues of mem-to-mem devices and video output overlay devices)

read the alpha component from memory. When the device processes the alpha channel the alpha com-
ponent must be filled with meaningful values by applications. Otherwise a corresponding format without
an alpha component (XRGB or XBGR) must be used instead of an alpha format.
The XRGB and XBGR formats contain undefined bits (-). Applications, devices and drivers must ignore
those bits, for both Video Capture Interface and Video Output Interface devices.
Byte Order. Each cell is one byte.

Table 1.6: RGB byte order
start + 0: B00 G00 R00 B01 G01 R01 B02 G02 R02 B03 G03 R03
start + 12: B10 G10 R10 B11 G11 R11 B12 G12 R12 B13 G13 R13
start + 24: B20 G20 R20 B21 G21 R21 B22 G22 R22 B23 G23 R23
start + 36: B30 G30 R30 B31 G31 R31 B32 G32 R32 B33 G33 R33

Formats defined in Deprecated Packed RGB Image Formats are deprecated and must not be used by
new drivers. They are documented here for reference. The meaning of their alpha bits (a) are ill-defined
and interpreted as in either the corresponding ARGB or XRGB format, depending on the driver.

Table 1.7: Deprecated Packed RGB Image Formats
Identifier Code Byte 0 in memory Byte 1 Byte 2 Byte 3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_RGB444 ‘R444’ g3 g2 g1 g0 b3 b2 b1 b0 a3 a2 a1 a0 r3 r2 r1 r0
V4L2_PIX_FMT_RGB555 ‘RGBO’ g2 g1 g0 b4 b3 b2 b1 b0 a r4 r3 r2 r1 r0 g4 g3
V4L2_PIX_FMT_RGB555X ‘RGBQ’ a r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0
V4L2_PIX_FMT_BGR32 ‘BGR4’ b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0 a7 a6 a5 a4 a3 a2 a1 a0
V4L2_PIX_FMT_RGB32 ‘RGB4’ a7 a6 a5 a4 a3 a2 a1 a0 r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

A test utility to determine which RGB formats a driver actually supports is available from the LinuxTV
v4l-dvb repository. See https://linuxtv.org/repo/ for access instructions.

V4L2_PIX_FMT_SRGGB8 (‘RGGB’), V4L2_PIX_FMT_SGRBG8 (‘GRBG’),
V4L2_PIX_FMT_SGBRG8 (‘GBRG’), V4L2_PIX_FMT_SBGGR8 (‘BA81’),

8-bit Bayer formats

Description

These four pixel formats are raw sRGB / Bayer formats with 8 bits per sample. Each sample is stored in
a byte. Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating red
and blue rows. They are conventionally described as GRGR... BGBG..., RGRG... GBGB..., etc. Below is an
example of a small V4L2_PIX_FMT_SBGGR8 image:
Byte Order. Each cell is one byte.

1.2. Part I - Video for Linux API 63

https://linuxtv.org/repo/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

start + 0: B00 G01 B02 G03
start + 4: G10 R11 G12 R13
start + 8: B20 G21 B22 G23
start + 12: G30 R31 G32 R33

V4L2_PIX_FMT_SRGGB10 (‘RG10’), V4L2_PIX_FMT_SGRBG10 (‘BA10’),
V4L2_PIX_FMT_SGBRG10 (‘GB10’), V4L2_PIX_FMT_SBGGR10 (‘BG10’),

V4L2_PIX_FMT_SGRBG10 V4L2_PIX_FMT_SGBRG10 V4L2_PIX_FMT_SBGGR10 10-bit Bayer formats ex-
panded to 16 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 10 bits per sample. Each sample is stored in
a 16-bit word, with 6 unused high bits filled with zeros. Each n-pixel row contains n/2 green samples and
n/2 blue or red samples, with alternating red and blue rows. Bytes are stored in memory in little endian
order. They are conventionally described as GRGR... BGBG..., RGRG... GBGB..., etc. Below is an example
of one of these formats:
Byte Order. Each cell is one byte, the 6 most significant bits in the high bytes are 0.

start + 0: B00low B00high G01low G01high B02low B02high G03low G03high
start + 8: G10low G10high R11low R11high G12low G12high R13low R13high
start + 16: B20low B20high G21low G21high B22low B22high G23low G23high
start + 24: G30low G30high R31low R31high G32low G32high R33low R33high

V4L2_PIX_FMT_SRGGB10P (‘pRAA’), V4L2_PIX_FMT_SGRBG10P (‘pgAA’),
V4L2_PIX_FMT_SGBRG10P (‘pGAA’), V4L2_PIX_FMT_SBGGR10P (‘pBAA’),

V4L2_PIX_FMT_SGRBG10P V4L2_PIX_FMT_SGBRG10P V4L2_PIX_FMT_SBGGR10P 10-bit packed Bayer for-
mats

Description

These four pixel formats are packed raw sRGB / Bayer formats with 10 bits per sample. Every four con-
secutive samples are packed into 5 bytes. Each of the first 4 bytes contain the 8 high order bits of the
pixels, and the 5th byte contains the 2 least significants bits of each pixel, in the same order.
Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating green-red and
green-blue rows. They are conventionally described as GRGR... BGBG..., RGRG... GBGB..., etc. Below is
an example of a small V4L2_PIX_FMT_SBGGR10P image:
Byte Order. Each cell is one byte.

start + 0: B00high G01high B02high G03high G03low(bits 7–6) B02low(bits 5–4)
G01low(bits 3–2) B00low(bits 1–0)

start + 5: G10high R11high G12high R13high R13low(bits 7–6) G12low(bits 5–4)
R11low(bits 3–2) G10low(bits 1–0)

start + 10: B20high G21high B22high G23high G23low(bits 7–6) B22low(bits 5–4)
G21low(bits 3–2) B20low(bits 1–0)

start + 15: G30high R31high G32high R33high R33low(bits 7–6) G32low(bits 5–4)
R31low(bits 3–2) G30low(bits 1–0)

64 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_PIX_FMT_SBGGR10ALAW8 (‘aBA8’), V4L2_PIX_FMT_SGBRG10ALAW8 (‘aGA8’),
V4L2_PIX_FMT_SGRBG10ALAW8 (‘agA8’), V4L2_PIX_FMT_SRGGB10ALAW8 (‘aRA8’),

V4L2_PIX_FMT_SGBRG10ALAW8 V4L2_PIX_FMT_SGRBG10ALAW8 V4L2_PIX_FMT_SRGGB10ALAW8 10-bit
Bayer formats compressed to 8 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 10 bits per color compressed to 8 bits each, us-
ing the A-LAW algorithm. Each color component consumes 8 bits of memory. In other respects this format
is similar to V4L2_PIX_FMT_SRGGB8 (‘RGGB’), V4L2_PIX_FMT_SGRBG8 (‘GRBG’), V4L2_PIX_FMT_SGBRG8
(‘GBRG’), V4L2_PIX_FMT_SBGGR8 (‘BA81’), .

V4L2_PIX_FMT_SBGGR10DPCM8 (‘bBA8’), V4L2_PIX_FMT_SGBRG10DPCM8 (‘bGA8’),
V4L2_PIX_FMT_SGRBG10DPCM8 (‘BD10’), V4L2_PIX_FMT_SRGGB10DPCM8 (‘bRA8’),

man V4L2_PIX_FMT_SBGGR10DPCM8(2)

V4L2_PIX_FMT_SGBRG10DPCM8 V4L2_PIX_FMT_SGRBG10DPCM8 V4L2_PIX_FMT_SRGGB10DPCM8 10-bit
Bayer formats compressed to 8 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 10 bits per colour compressed to 8 bits each,
using DPCM compression. DPCM, differential pulse-code modulation, is lossy. Each colour component
consumes 8 bits of memory. In other respects this format is similar to V4L2_PIX_FMT_SRGGB10 (‘RG10’),
V4L2_PIX_FMT_SGRBG10 (‘BA10’), V4L2_PIX_FMT_SGBRG10 (‘GB10’), V4L2_PIX_FMT_SBGGR10 (‘BG10’),
.

V4L2_PIX_FMT_SRGGB12 (‘RG12’), V4L2_PIX_FMT_SGRBG12 (‘BA12’),
V4L2_PIX_FMT_SGBRG12 (‘GB12’), V4L2_PIX_FMT_SBGGR12 (‘BG12’),

V4L2_PIX_FMT_SGRBG12 V4L2_PIX_FMT_SGBRG12 V4L2_PIX_FMT_SBGGR12 12-bit Bayer formats ex-
panded to 16 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 12 bits per colour. Each colour component
is stored in a 16-bit word, with 4 unused high bits filled with zeros. Each n-pixel row contains n/2 green
samples and n/2 blue or red samples, with alternating red and blue rows. Bytes are stored in memory in
little endian order. They are conventionally described as GRGR... BGBG..., RGRG... GBGB..., etc. Below is
an example of a small V4L2_PIX_FMT_SBGGR12 image:
Byte Order. Each cell is one byte, the 4 most significant bits in the high bytes are 0.

start + 0: B00low B00high G01low G01high B02low B02high G03low G03high
start + 8: G10low G10high R11low R11high G12low G12high R13low R13high
start + 16: B20low B20high G21low G21high B22low B22high G23low G23high
start + 24: G30low G30high R31low R31high G32low G32high R33low R33high

1.2. Part I - Video for Linux API 65

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_PIX_FMT_SRGGB12P (‘pRAA’), V4L2_PIX_FMT_SGRBG12P (‘pgAA’),
V4L2_PIX_FMT_SGBRG12P (‘pGAA’), V4L2_PIX_FMT_SBGGR12P (‘pBAA’),

12-bit packed Bayer formats

Description

These four pixel formats are packed raw sRGB / Bayer formats with 12 bits per colour. Every two consec-
utive samples are packed into three bytes. Each of the first two bytes contain the 8 high order bits of the
pixels, and the third byte contains the four least significants bits of each pixel, in the same order.
Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating green-red and
green-blue rows. They are conventionally described as GRGR... BGBG..., RGRG... GBGB..., etc. Below is
an example of a small V4L2_PIX_FMT_SBGGR12P image:
Byte Order. Each cell is one byte.

start + 0: B00high G01high G01low(bits 7–4)
B00low(bits 3–0)

B02high G03high G03low(bits 7–4)
B02low(bits 3–0)

start + 6: G10high R11high R11low(bits 7–4)
G10low(bits 3–0)

G12high R13high R13low(bits 3–2)
G12low(bits 3–0)

start + 12: B20high G21high G21low(bits 7–4)
B20low(bits 3–0)

B22high G23high G23low(bits 7–4)
B22low(bits 3–0)

start + 18: G30high R31high R31low(bits 7–4)
G30low(bits 3–0)

G32high R33high R33low(bits 3–2)
G32low(bits 3–0)

V4L2_PIX_FMT_SRGGB16 (‘RG16’), V4L2_PIX_FMT_SGRBG16 (‘GR16’),
V4L2_PIX_FMT_SGBRG16 (‘GB16’), V4L2_PIX_FMT_SBGGR16 (‘BYR2’),

16-bit Bayer formats

Description

These four pixel formats are raw sRGB / Bayer formats with 16 bits per sample. Each sample is stored in
a 16-bit word. Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating
red and blue rows. Bytes are stored in memory in little endian order. They are conventionally described as
GRGR... BGBG..., RGRG... GBGB..., etc. Below is an example of a small V4L2_PIX_FMT_SBGGR16 image:
Byte Order. Each cell is one byte.

start + 0: B00low B00high G01low G01high B02low B02high G03low G03high
start + 8: G10low G10high R11low R11high G12low G12high R13low R13high
start + 16: B20low B20high G21low G21high B22low B22high G23low G23high
start + 24: G30low G30high R31low R31high G32low G32high R33low R33high

YUV Formats

YUV is the format native to TV broadcast and composite video signals. It separates the brightness infor-
mation (Y) from the color information (U and V or Cb and Cr). The color information consists of red and
blue color difference signals, this way the green component can be reconstructed by subtracting from
the brightness component. See Colorspaces for conversion examples. YUV was chosen because early
television would only transmit brightness information. To add color in a way compatible with existing
receivers a new signal carrier was added to transmit the color difference signals. Secondary in the YUV
format the U and V components usually have lower resolution than the Y component. This is an analog
video compression technique taking advantage of a property of the human visual system, being more
sensitive to brightness information.

66 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Packed YUV formats

Description

Similar to the packed RGB formats these formats store the Y, Cb and Cr component of each pixel in one
16 or 32 bit word.

Table 1.8: Packed YUV Image Formats
Identifier Code Byte 0 in memory Byte 1 Byte 2 Byte 3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_YUV444 ‘Y444’ Cb3 Cb2 Cb1 Cb0 Cr3 Cr2 Cr1 Cr0 a3 a2 a1 a0 Y’3 Y’2 Y’1 Y’0

V4L2_PIX_FMT_YUV555 ‘YUVO’ Cb2 Cb1 Cb0 Cr4 Cr3 Cr2 Cr1 Cr0 a Y’4 Y’3 Y’2 Y’1 Y’0 Cb4 Cb3

V4L2_PIX_FMT_YUV565 ‘YUVP’ Cb2 Cb1 Cb0 Cr4 Cr3 Cr2 Cr1 Cr0 Y’4 Y’3 Y’2 Y’1 Y’0 Cb5 Cb4 Cb3

V4L2_PIX_FMT_YUV32 ‘YUV4’ a7 a6 a5 a4 a3 a2 a1 a0 Y’7 Y’6 Y’5 Y’4 Y’3 Y’2 Y’1 Y’0 Cb7 Cb6 Cb5 Cb4 Cb3 Cb2 Cb1 Cb0 Cr7 Cr6 Cr5 Cr4 Cr3 Cr2 Cr1 Cr0

Note:

1. Bit 7 is the most significant bit;
2. The value of a = alpha bits is undefined when reading from the driver, ignored when writing to
the driver, except when alpha blending has been negotiated for a Video Overlay or Video Output
Overlay .

V4L2_PIX_FMT_GREY (‘GREY’)

Grey-scale image

Description

This is a grey-scale image. It is really a degenerate Y’CbCr format which simply contains no Cb or Cr data.
Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33

V4L2_PIX_FMT_Y10 (‘Y10 ‘)

Grey-scale image

Description

This is a grey-scale image with a depth of 10 bits per pixel. Pixels are stored in 16-bit words with unused
high bits padded with 0. The least significant byte is stored at lower memory addresses (little-endian).
Byte Order. Each cell is one byte.

start + 0: Y’00low Y’00high Y’01low Y’01high Y’02low Y’02high Y’03low Y’03high
start + 8: Y’10low Y’10high Y’11low Y’11high Y’12low Y’12high Y’13low Y’13high
start + 16: Y’20low Y’20high Y’21low Y’21high Y’22low Y’22high Y’23low Y’23high
start + 24: Y’30low Y’30high Y’31low Y’31high Y’32low Y’32high Y’33low Y’33high

1.2. Part I - Video for Linux API 67

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_PIX_FMT_Y12 (‘Y12 ‘)

Grey-scale image

Description

This is a grey-scale image with a depth of 12 bits per pixel. Pixels are stored in 16-bit words with unused
high bits padded with 0. The least significant byte is stored at lower memory addresses (little-endian).
Byte Order. Each cell is one byte.

start + 0: Y’00low Y’00high Y’01low Y’01high Y’02low Y’02high Y’03low Y’03high
start + 8: Y’10low Y’10high Y’11low Y’11high Y’12low Y’12high Y’13low Y’13high
start + 16: Y’20low Y’20high Y’21low Y’21high Y’22low Y’22high Y’23low Y’23high
start + 24: Y’30low Y’30high Y’31low Y’31high Y’32low Y’32high Y’33low Y’33high

V4L2_PIX_FMT_Y10BPACK (‘Y10B’)

Grey-scale image as a bit-packed array

Description

This is a packed grey-scale image format with a depth of 10 bits per pixel. Pixels are stored in a bit-packed
array of 10bit bits per pixel, with no padding between them and with the most significant bits coming first
from the left.
Bit-packed representation.
pixels cross the byte boundary and have a ratio of 5 bytes for each 4 pixels.

Y’00[9:2] Y’00[1:0]Y’01[9:4] Y’01[3:0]Y’02[9:6] Y’02[5:0]Y’03[9:8] Y’03[7:0]

V4L2_PIX_FMT_Y16 (‘Y16 ‘)

Grey-scale image

Description

This is a grey-scale image with a depth of 16 bits per pixel. The least significant byte is stored at lower
memory addresses (little-endian).

Note:

The actual sampling precision may be lower than 16 bits, for example 10 bits per pixel with values in
range 0 to 1023.

Byte Order. Each cell is one byte.
start + 0: Y’00low Y’00high Y’01low Y’01high Y’02low Y’02high Y’03low Y’03high
start + 8: Y’10low Y’10high Y’11low Y’11high Y’12low Y’12high Y’13low Y’13high
start + 16: Y’20low Y’20high Y’21low Y’21high Y’22low Y’22high Y’23low Y’23high
start + 24: Y’30low Y’30high Y’31low Y’31high Y’32low Y’32high Y’33low Y’33high

68 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_PIX_FMT_Y16_BE (‘Y16 ‘ | (1 << 31))

Grey-scale image

Description

This is a grey-scale image with a depth of 16 bits per pixel. The most significant byte is stored at lower
memory addresses (big-endian).

Note:

The actual sampling precision may be lower than 16 bits, for example 10 bits per pixel with values in
range 0 to 1023.

Byte Order. Each cell is one byte.
start + 0: Y’00high Y’00low Y’01high Y’01low Y’02high Y’02low Y’03high Y’03low
start + 8: Y’10high Y’10low Y’11high Y’11low Y’12high Y’12low Y’13high Y’13low
start + 16: Y’20high Y’20low Y’21high Y’21low Y’22high Y’22low Y’23high Y’23low
start + 24: Y’30high Y’30low Y’31high Y’31low Y’32high Y’32low Y’33high Y’33low

V4L2_PIX_FMT_Y8I (‘Y8I ‘)

Interleaved grey-scale image, e.g. from a stereo-pair

Description

This is a grey-scale image with a depth of 8 bits per pixel, but with pixels from 2 sources interleaved. Each
pixel is stored in a 16-bit word. E.g. the R200 RealSense camera stores pixel from the left sensor in lower
and from the right sensor in the higher 8 bits.
Byte Order. Each cell is one byte.

start + 0: Y’00left Y’00right Y’01left Y’01right Y’02left Y’02right Y’03left Y’03right
start + 8: Y’10left Y’10right Y’11left Y’11right Y’12left Y’12right Y’13left Y’13right
start + 16: Y’20left Y’20right Y’21left Y’21right Y’22left Y’22right Y’23left Y’23right
start + 24: Y’30left Y’30right Y’31left Y’31right Y’32left Y’32right Y’33left Y’33right

V4L2_PIX_FMT_Y12I (‘Y12I’)

Interleaved grey-scale image, e.g. from a stereo-pair

Description

This is a grey-scale image with a depth of 12 bits per pixel, but with pixels from 2 sources interleaved
and bit-packed. Each pixel is stored in a 24-bit word in the little-endian order. On a little-endian machine
these pixels can be deinterlaced using

__u8 *buf;
left0 = 0xfff & *(__u16 *)buf;
right0 = *(__u16 *)(buf + 1) >> 4;

1.2. Part I - Video for Linux API 69

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Bit-packed representation. pixels cross the byte boundary and have a ratio of 3 bytes for each inter-
leaved pixel.

Y’0left[7:0] Y’0right[3:0]Y’0left[11:8] Y’0right[11:4]

V4L2_PIX_FMT_UV8 (‘UV8’)

UV plane interleaved

Description

In this format there is no Y plane, Only CbCr plane. ie (UV interleaved)
Byte Order. Each cell is one byte.

start + 0: Cb00 Cr00 Cb01 Cr01
start + 4: Cb10 Cr10 Cb11 Cr11
start + 8: Cb20 Cr20 Cb21 Cr21
start + 12: Cb30 Cr30 Cb31 Cr31

V4L2_PIX_FMT_YUYV (‘YUYV’)

Packed format with ½ horizontal chroma resolution, also known as YUV 4:2:2

Description

In this format each four bytes is two pixels. Each four bytes is two Y’s, a Cb and a Cr. Each Y goes to one of
the pixels, and the Cb and Cr belong to both pixels. As you can see, the Cr and Cb components have half
the horizontal resolution of the Y component. V4L2_PIX_FMT_YUYV is known in the Windows environment
as YUY2.
Byte Order. Each cell is one byte.

start + 0: Y’00 Cb00 Y’01 Cr00 Y’02 Cb01 Y’03 Cr01
start + 8: Y’10 Cb10 Y’11 Cr10 Y’12 Cb11 Y’13 Cr11
start + 16: Y’20 Cb20 Y’21 Cr20 Y’22 Cb21 Y’23 Cr21
start + 24: Y’30 Cb30 Y’31 Cr30 Y’32 Cb31 Y’33 Cr31

Color Sample Location:
0 1 2 3

0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

V4L2_PIX_FMT_UYVY (‘UYVY’)

Variation of V4L2_PIX_FMT_YUYV with different order of samples in memory

Description

In this format each four bytes is two pixels. Each four bytes is two Y’s, a Cb and a Cr. Each Y goes to one
of the pixels, and the Cb and Cr belong to both pixels. As you can see, the Cr and Cb components have
half the horizontal resolution of the Y component.

70 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Byte Order. Each cell is one byte.
start + 0: Cb00 Y’00 Cr00 Y’01 Cb01 Y’02 Cr01 Y’03
start + 8: Cb10 Y’10 Cr10 Y’11 Cb11 Y’12 Cr11 Y’13
start + 16: Cb20 Y’20 Cr20 Y’21 Cb21 Y’22 Cr21 Y’23
start + 24: Cb30 Y’30 Cr30 Y’31 Cb31 Y’32 Cr31 Y’33

Color Sample Location:
0 1 2 3

0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

V4L2_PIX_FMT_YVYU (‘YVYU’)

Variation of V4L2_PIX_FMT_YUYV with different order of samples in memory

Description

In this format each four bytes is two pixels. Each four bytes is two Y’s, a Cb and a Cr. Each Y goes to one
of the pixels, and the Cb and Cr belong to both pixels. As you can see, the Cr and Cb components have
half the horizontal resolution of the Y component.
Byte Order. Each cell is one byte.

start + 0: Y’00 Cr00 Y’01 Cb00 Y’02 Cr01 Y’03 Cb01
start + 8: Y’10 Cr10 Y’11 Cb10 Y’12 Cr11 Y’13 Cb11
start + 16: Y’20 Cr20 Y’21 Cb20 Y’22 Cr21 Y’23 Cb21
start + 24: Y’30 Cr30 Y’31 Cb30 Y’32 Cr31 Y’33 Cb31

Color Sample Location:
0 1 2 3

0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

V4L2_PIX_FMT_VYUY (‘VYUY’)

Variation of V4L2_PIX_FMT_YUYV with different order of samples in memory

Description

In this format each four bytes is two pixels. Each four bytes is two Y’s, a Cb and a Cr. Each Y goes to one
of the pixels, and the Cb and Cr belong to both pixels. As you can see, the Cr and Cb components have
half the horizontal resolution of the Y component.
Byte Order. Each cell is one byte.

start + 0: Cr00 Y’00 Cb00 Y’01 Cr01 Y’02 Cb01 Y’03
start + 8: Cr10 Y’10 Cb10 Y’11 Cr11 Y’12 Cb11 Y’13
start + 16: Cr20 Y’20 Cb20 Y’21 Cr21 Y’22 Cb21 Y’23
start + 24: Cr30 Y’30 Cb30 Y’31 Cr31 Y’32 Cb31 Y’33

Color Sample Location:

1.2. Part I - Video for Linux API 71

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

0 1 2 3
0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

V4L2_PIX_FMT_Y41P (‘Y41P’)

Format with ¼ horizontal chroma resolution, also known as YUV 4:1:1

Description

In this format each 12 bytes is eight pixels. In the twelve bytes are two CbCr pairs and eight Y’s. The first
CbCr pair goes with the first four Y’s, and the second CbCr pair goes with the other four Y’s. The Cb and
Cr components have one fourth the horizontal resolution of the Y component.
Do not confuse this format with V4L2_PIX_FMT_YUV411P . Y41P is derived from “YUV 4:1:1 packed”, while
YUV411P stands for “YUV 4:1:1 planar”.
Byte Order. Each cell is one byte.

start + 0: Cb00 Y’00 Cr00 Y’01 Cb01 Y’02 Cr01 Y’03 Y’04 Y’05 Y’06 Y’07
start + 12: Cb10 Y’10 Cr10 Y’11 Cb11 Y’12 Cr11 Y’13 Y’14 Y’15 Y’16 Y’17
start + 24: Cb20 Y’20 Cr20 Y’21 Cb21 Y’22 Cr21 Y’23 Y’24 Y’25 Y’26 Y’27
start + 36: Cb30 Y’30 Cr30 Y’31 Cb31 Y’32 Cr31 Y’33 Y’34 Y’35 Y’36 Y’37

Color Sample Location:
0 1 2 3 4 5 6 7

0 Y Y C Y Y Y Y C Y Y
1 Y Y C Y Y Y Y C Y Y
2 Y Y C Y Y Y Y C Y Y
3 Y Y C Y Y Y Y C Y Y

V4L2_PIX_FMT_YVU420 (‘YV12’), V4L2_PIX_FMT_YUV420 (‘YU12’)

V4L2_PIX_FMT_YUV420 Planar formats with ½ horizontal and vertical chroma resolution, also known as
YUV 4:2:0

Description

These are planar formats, as opposed to a packed format. The three components are separated into three
sub- images or planes. The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YVU420,
the Cr plane immediately follows the Y plane in memory. The Cr plane is half the width and half the height
of the Y plane (and of the image). Each Cr belongs to four pixels, a two-by-two square of the image. For
example, Cr0 belongs to Y’00, Y’01, Y’10, and Y’11. Following the Cr plane is the Cb plane, just like the Cr
plane. V4L2_PIX_FMT_YUV420 is the same except the Cb plane comes first, then the Cr plane.
If the Y plane has pad bytes after each row, then the Cr and Cb planes have half as many pad bytes after
their rows. In other words, two Cx rows (including padding) is exactly as long as one Y row (including
padding).
Byte Order. Each cell is one byte.

72 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cr00 Cr01
start + 18: Cr10 Cr11
start + 20: Cb00 Cb01
start + 22: Cb10 Cb11

Color Sample Location:
0 1 2 3

0 Y Y Y Y
C C

1 Y Y Y Y

2 Y Y Y Y
C C

3 Y Y Y Y

V4L2_PIX_FMT_YUV420M (‘YM12’), V4L2_PIX_FMT_YVU420M (‘YM21’)

V4L2_PIX_FMT_YVU420M Variation of V4L2_PIX_FMT_YUV420 and V4L2_PIX_FMT_YVU420 with planes non
contiguous in memory.

Description

This is a multi-planar format, as opposed to a packed format. The three components are separated into
three sub-images or planes.
The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YUV420M the Cb data constitutes
the second plane which is half the width and half the height of the Y plane (and of the image). Each Cb
belongs to four pixels, a two-by-two square of the image. For example, Cb0 belongs to Y’00, Y’01, Y’10, and
Y’11. The Cr data, just like the Cb plane, is in the third plane.
V4L2_PIX_FMT_YVU420M is the same except the Cr data is stored in the second plane and the Cb data in
the third plane.
If the Y plane has pad bytes after each row, then the Cb and Cr planes have half as many pad bytes after
their rows. In other words, two Cx rows (including padding) is exactly as long as one Y row (including
padding).
V4L2_PIX_FMT_YUV420M and V4L2_PIX_FMT_YVU420M are intended to be used only in drivers and applica-
tions that support the multi-planar API, described in Single- and multi-planar APIs .
Byte Order. Each cell is one byte.

start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cb01
start1 + 2: Cb10 Cb11

start2 + 0: Cr00 Cr01
start2 + 2: Cr10 Cr11

Color Sample Location:

1.2. Part I - Video for Linux API 73

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

0 1 2 3
0 Y Y Y Y

C C
1 Y Y Y Y

2 Y Y Y Y
C C

3 Y Y Y Y

V4L2_PIX_FMT_YUV422M (‘YM16’), V4L2_PIX_FMT_YVU422M (‘YM61’)

V4L2_PIX_FMT_YVU422M Planar formats with ½ horizontal resolution, also known as YUV and YVU 4:2:2

Description

This is a multi-planar format, as opposed to a packed format. The three components are separated into
three sub-images or planes.
The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YUV422M the Cb data constitutes
the second plane which is half the width of the Y plane (and of the image). Each Cb belongs to two pixels.
For example, Cb0 belongs to Y’00, Y’01. The Cr data, just like the Cb plane, is in the third plane.
V4L2_PIX_FMT_YVU422M is the same except the Cr data is stored in the second plane and the Cb data in
the third plane.
If the Y plane has pad bytes after each row, then the Cb and Cr planes have half as many pad bytes after
their rows. In other words, two Cx rows (including padding) is exactly as long as one Y row (including
padding).
V4L2_PIX_FMT_YUV422M and V4L2_PIX_FMT_YVU422M are intended to be used only in drivers and applica-
tions that support the multi-planar API, described in Single- and multi-planar APIs .
Byte Order. Each cell is one byte.

start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cb01
start1 + 2: Cb10 Cb11
start1 + 4: Cb20 Cb21
start1 + 6: Cb30 Cb31

start2 + 0: Cr00 Cr01
start2 + 2: Cr10 Cr11
start2 + 4: Cr20 Cr21
start2 + 6: Cr30 Cr31

Color Sample Location:
0 1 2 3

0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

74 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_PIX_FMT_YUV444M (‘YM24’), V4L2_PIX_FMT_YVU444M (‘YM42’)

V4L2_PIX_FMT_YVU444M Planar formats with full horizontal resolution, also known as YUV and YVU 4:4:4

Description

This is a multi-planar format, as opposed to a packed format. The three components are separated into
three sub-images or planes.
The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YUV444M the Cb data constitutes
the second plane which is the same width and height as the Y plane (and as the image). The Cr data, just
like the Cb plane, is in the third plane.
V4L2_PIX_FMT_YVU444M is the same except the Cr data is stored in the second plane and the Cb data in
the third plane.
If the Y plane has pad bytes after each row, then the Cb and Cr planes have the same number of pad
bytes after their rows.
V4L2_PIX_FMT_YUV444M and V4L2_PIX_FMT_YUV444M are intended to be used only in drivers and applica-
tions that support the multi-planar API, described in Single- and multi-planar APIs .
Byte Order. Each cell is one byte.

start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cb01 Cb02 Cb03
start1 + 4: Cb10 Cb11 Cb12 Cb13
start1 + 8: Cb20 Cb21 Cb22 Cb23
start1 + 12: Cb20 Cb21 Cb32 Cb33

start2 + 0: Cr00 Cr01 Cr02 Cr03
start2 + 4: Cr10 Cr11 Cr12 Cr13
start2 + 8: Cr20 Cr21 Cr22 Cr23
start2 + 12: Cr30 Cr31 Cr32 Cr33

Color Sample Location:
0 1 2 3

0 YC YC YC YC
1 YC YC YC YC
2 YC YC YC YC
3 YC YC YC YC

V4L2_PIX_FMT_YVU410 (‘YVU9’), V4L2_PIX_FMT_YUV410 (‘YUV9’)

V4L2_PIX_FMT_YUV410 Planar formats with ¼ horizontal and vertical chroma resolution, also known as
YUV 4:1:0

Description

These are planar formats, as opposed to a packed format. The three components are separated into three
sub-images or planes. The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YVU410,
the Cr plane immediately follows the Y plane in memory. The Cr plane is ¼ the width and ¼ the height of
the Y plane (and of the image). Each Cr belongs to 16 pixels, a four-by-four square of the image. Following

1.2. Part I - Video for Linux API 75

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

the Cr plane is the Cb plane, just like the Cr plane. V4L2_PIX_FMT_YUV410 is the same, except the Cb plane
comes first, then the Cr plane.
If the Y plane has pad bytes after each row, then the Cr and Cb planes have ¼ as many pad bytes after
their rows. In other words, four Cx rows (including padding) are exactly as long as one Y row (including
padding).
Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cr00
start + 17: Cb00

Color Sample Location:
0 1 2 3

0 Y Y Y Y

1 Y Y Y Y
C

2 Y Y Y Y

3 Y Y Y Y

V4L2_PIX_FMT_YUV422P (‘422P’)

Format with ½ horizontal chroma resolution, also known as YUV 4:2:2. Planar layout as opposed to
V4L2_PIX_FMT_YUYV

Description

This format is not commonly used. This is a planar version of the YUYV format. The three components
are separated into three sub-images or planes. The Y plane is first. The Y plane has one byte per pixel.
The Cb plane immediately follows the Y plane in memory. The Cb plane is half the width of the Y plane
(and of the image). Each Cb belongs to two pixels. For example, Cb0 belongs to Y’00, Y’01. Following the
Cb plane is the Cr plane, just like the Cb plane.
If the Y plane has pad bytes after each row, then the Cr and Cb planes have half as many pad bytes after
their rows. In other words, two Cx rows (including padding) is exactly as long as one Y row (including
padding).
Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00 Cb01
start + 18: Cb10 Cb11
start + 20: Cb20 Cb21
start + 22: Cb30 Cb31
start + 24: Cr00 Cr01
start + 26: Cr10 Cr11
start + 28: Cr20 Cr21
start + 30: Cr30 Cr31

Color Sample Location:

76 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

0 1 2 3
0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

V4L2_PIX_FMT_YUV411P (‘411P’)

Format with ¼ horizontal chroma resolution, also known as YUV 4:1:1. Planar layout as opposed to
V4L2_PIX_FMT_Y41P

Description

This format is not commonly used. This is a planar format similar to the 4:2:2 planar format except with
half as many chroma. The three components are separated into three sub-images or planes. The Y plane
is first. The Y plane has one byte per pixel. The Cb plane immediately follows the Y plane in memory. The
Cb plane is ¼ the width of the Y plane (and of the image). Each Cb belongs to 4 pixels all on the same
row. For example, Cb0 belongs to Y’00, Y’01, Y’02 and Y’03. Following the Cb plane is the Cr plane, just like
the Cb plane.
If the Y plane has pad bytes after each row, then the Cr and Cb planes have ¼ as many pad bytes after
their rows. In other words, four C x rows (including padding) is exactly as long as one Y row (including
padding).
Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00
start + 17: Cb10
start + 18: Cb20
start + 19: Cb30
start + 20: Cr00
start + 21: Cr10
start + 22: Cr20
start + 23: Cr30

Color Sample Location:
0 1 2 3

0 Y Y C Y Y
1 Y Y C Y Y
2 Y Y C Y Y
3 Y Y C Y Y

V4L2_PIX_FMT_NV12 (‘NV12’), V4L2_PIX_FMT_NV21 (‘NV21’)

V4L2_PIX_FMT_NV21 Formats with ½ horizontal and vertical chroma resolution, also known as YUV
4:2:0. One luminance and one chrominance plane with alternating chroma samples as opposed to
V4L2_PIX_FMT_YVU420

1.2. Part I - Video for Linux API 77

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

These are two-plane versions of the YUV 4:2:0 format. The three components are separated into two
sub-images or planes. The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_NV12,
a combined CbCr plane immediately follows the Y plane in memory. The CbCr plane is the same width, in
bytes, as the Y plane (and of the image), but is half as tall in pixels. Each CbCr pair belongs to four pixels.
For example, Cb0/Cr0 belongs to Y’00, Y’01, Y’10, Y’11. V4L2_PIX_FMT_NV21 is the same except the Cb and
Cr bytes are swapped, the CrCb plane starts with a Cr byte.
If the Y plane has pad bytes after each row, then the CbCr plane has as many pad bytes after its rows.
Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00 Cr00 Cb01 Cr01
start + 20: Cb10 Cr10 Cb11 Cr11

Color Sample Location:
0 1 2 3

0 Y Y Y Y
C C

1 Y Y Y Y

2 Y Y Y Y
C C

3 Y Y Y Y

V4L2_PIX_FMT_NV12M (‘NM12’), V4L2_PIX_FMT_NV21M (‘NM21’),
V4L2_PIX_FMT_NV12MT_16X16

V4L2_PIX_FMT_NV21M V4L2_PIX_FMT_NV12MT_16X16 Variation of V4L2_PIX_FMT_NV12 and
V4L2_PIX_FMT_NV21 with planes non contiguous in memory.

Description

This is a multi-planar, two-plane version of the YUV 4:2:0 format. The three components are separated into
two sub-images or planes. V4L2_PIX_FMT_NV12M differs from V4L2_PIX_FMT_NV12 in that the two planes
are non-contiguous in memory, i.e. the chroma plane do not necessarily immediately follows the luma
plane. The luminance data occupies the first plane. The Y plane has one byte per pixel. In the second
plane there is a chrominance data with alternating chroma samples. The CbCr plane is the same width, in
bytes, as the Y plane (and of the image), but is half as tall in pixels. Each CbCr pair belongs to four pixels.
For example, Cb0/Cr0 belongs to Y’00, Y’01, Y’10, Y’11. V4L2_PIX_FMT_NV12MT_16X16 is the tiled version of
V4L2_PIX_FMT_NV12M with 16x16 macroblock tiles. Here pixels are arranged in 16x16 2D tiles and tiles
are arranged in linear order in memory. V4L2_PIX_FMT_NV21M is the same as V4L2_PIX_FMT_NV12M except
the Cb and Cr bytes are swapped, the CrCb plane starts with a Cr byte.
V4L2_PIX_FMT_NV12M is intended to be used only in drivers and applications that support the multi-planar
API, described in Single- and multi-planar APIs .
If the Y plane has pad bytes after each row, then the CbCr plane has as many pad bytes after its rows.
Byte Order. Each cell is one byte.

78 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cr00 Cb01 Cr01
start1 + 4: Cb10 Cr10 Cb11 Cr11

Color Sample Location:
0 1 2 3

0 Y Y Y Y
C C

1 Y Y Y Y

2 Y Y Y Y
C C

3 Y Y Y Y

V4L2_PIX_FMT_NV12MT (‘TM12’)

Formats with ½ horizontal and vertical chroma resolution. This format has two planes - one for luminance
and one for chrominance. Chroma samples are interleaved. The difference to V4L2_PIX_FMT_NV12 is the
memory layout. Pixels are grouped in macroblocks of 64x32 size. The order of macroblocks in memory is
also not standard.

Description

This is the two-plane versions of the YUV 4:2:0 format where data is grouped into 64x32 macroblocks. The
three components are separated into two sub-images or planes. The Y plane has one byte per pixel and
pixels are grouped into 64x32 macroblocks. The CbCr plane has the same width, in bytes, as the Y plane
(and the image), but is half as tall in pixels. The chroma plane is also grouped into 64x32 macroblocks.
Width of the buffer has to be aligned to the multiple of 128, and height alignment is 32. Every four
adjacent buffers - two horizontally and two vertically are grouped together and are located in memory in
Z or flipped Z order.
Layout of macroblocks in memory is presented in the following figure.

Fig. 1.4: V4L2_PIX_FMT_NV12MT macroblock Z shape memory layout

The requirement that width is multiple of 128 is implemented because, the Z shape cannot be cut in half
horizontally. In case the vertical resolution of macroblocks is odd then the last row of macroblocks is
arranged in a linear order.
In case of chroma the layout is identical. Cb and Cr samples are interleaved. Height of the buffer is aligned
to 32.
Memory layout of macroblocks of V4L2_PIX_FMT_NV12MT format in most extreme case.

1.2. Part I - Video for Linux API 79

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Fig. 1.5: Example V4L2_PIX_FMT_NV12MT memory layout of macroblocks

V4L2_PIX_FMT_NV16 (‘NV16’), V4L2_PIX_FMT_NV61 (‘NV61’)

V4L2_PIX_FMT_NV61 Formats with ½ horizontal chroma resolution, also known as YUV 4:2:2. One lumi-
nance and one chrominance plane with alternating chroma samples as opposed to V4L2_PIX_FMT_YVU420

Description

These are two-plane versions of the YUV 4:2:2 format. The three components are separated into two
sub-images or planes. The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_NV16, a
combined CbCr plane immediately follows the Y plane in memory. The CbCr plane is the same width and
height, in bytes, as the Y plane (and of the image). Each CbCr pair belongs to two pixels. For example,
Cb0/Cr0 belongs to Y’00, Y’01. V4L2_PIX_FMT_NV61 is the same except the Cb and Cr bytes are swapped,
the CrCb plane starts with a Cr byte.
If the Y plane has pad bytes after each row, then the CbCr plane has as many pad bytes after its rows.
Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00 Cr00 Cb01 Cr01
start + 20: Cb10 Cr10 Cb11 Cr11
start + 24: Cb20 Cr20 Cb21 Cr21
start + 28: Cb30 Cr30 Cb31 Cr31

Color Sample Location:

80 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

0 1 2 3
0 Y Y Y Y

C C
1 Y Y Y Y

C C

2 Y Y Y Y
C C

3 Y Y Y Y
C C

V4L2_PIX_FMT_NV16M (‘NM16’), V4L2_PIX_FMT_NV61M (‘NM61’)

V4L2_PIX_FMT_NV61M Variation of V4L2_PIX_FMT_NV16 and V4L2_PIX_FMT_NV61 with planes non contigu-
ous in memory.

Description

This is a multi-planar, two-plane version of the YUV 4:2:2 format. The three components are separated
into two sub-images or planes. V4L2_PIX_FMT_NV16M differs from V4L2_PIX_FMT_NV16 in that the two
planes are non-contiguous in memory, i.e. the chroma plane does not necessarily immediately follow the
luma plane. The luminance data occupies the first plane. The Y plane has one byte per pixel. In the
second plane there is chrominance data with alternating chroma samples. The CbCr plane is the same
width and height, in bytes, as the Y plane. Each CbCr pair belongs to two pixels. For example, Cb0/Cr0
belongs to Y’00, Y’01. V4L2_PIX_FMT_NV61M is the same as V4L2_PIX_FMT_NV16M except the Cb and Cr
bytes are swapped, the CrCb plane starts with a Cr byte.
V4L2_PIX_FMT_NV16M and V4L2_PIX_FMT_NV61M are intended to be used only in drivers and applications
that support the multi-planar API, described in Single- and multi-planar APIs .
Byte Order. Each cell is one byte.

start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cr00 Cb02 Cr02
start1 + 4: Cb10 Cr10 Cb12 Cr12
start1 + 8: Cb20 Cr20 Cb22 Cr22
start1 + 12: Cb30 Cr30 Cb32 Cr32

Color Sample Location:
0 1 2 3

0 Y Y Y Y
C C

1 Y Y Y Y
C C

2 Y Y Y Y
C C

3 Y Y Y Y
C C

1.2. Part I - Video for Linux API 81

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_PIX_FMT_NV24 (‘NV24’), V4L2_PIX_FMT_NV42 (‘NV42’)

V4L2_PIX_FMT_NV42 Formats with full horizontal and vertical chroma resolutions, also known as YUV
4:4:4. One luminance and one chrominance plane with alternating chroma samples as opposed to
V4L2_PIX_FMT_YVU420

Description

These are two-plane versions of the YUV 4:4:4 format. The three components are separated into two
sub-images or planes. The Y plane is first, with each Y sample stored in one byte per pixel. For
V4L2_PIX_FMT_NV24, a combined CbCr plane immediately follows the Y plane in memory. The CbCr plane
has the same width and height, in pixels, as the Y plane (and the image). Each line contains one CbCr
pair per pixel, with each Cb and Cr sample stored in one byte. V4L2_PIX_FMT_NV42 is the same except
that the Cb and Cr samples are swapped, the CrCb plane starts with a Cr sample.
If the Y plane has pad bytes after each row, then the CbCr plane has twice as many pad bytes after its
rows.
Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00 Cr00 Cb01 Cr01 Cb02 Cr02 Cb03 Cr03
start + 24: Cb10 Cr10 Cb11 Cr11 Cb12 Cr12 Cb13 Cr13
start + 32: Cb20 Cr20 Cb21 Cr21 Cb22 Cr22 Cb23 Cr23
start + 40: Cb30 Cr30 Cb31 Cr31 Cb32 Cr32 Cb33 Cr33

V4L2_PIX_FMT_M420 (‘M420’)

Format with ½ horizontal and vertical chroma resolution, also known as YUV 4:2:0. Hybrid plane line-
interleaved layout.

Description

M420 is a YUV format with ½ horizontal and vertical chroma subsampling (YUV 4:2:0). Pixels are organized
as interleaved luma and chroma planes. Two lines of luma data are followed by one line of chroma data.
The luma plane has one byte per pixel. The chroma plane contains interleaved CbCr pixels subsampled
by ½ in the horizontal and vertical directions. Each CbCr pair belongs to four pixels. For example, Cb0/Cr0
belongs to Y’00, Y’01, Y’10, Y’11.
All line lengths are identical: if the Y lines include pad bytes so do the CbCr lines.
Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Cb00 Cr00 Cb01 Cr01
start + 16: Y’20 Y’21 Y’22 Y’23
start + 20: Y’30 Y’31 Y’32 Y’33
start + 24: Cb10 Cr10 Cb11 Cr11

Color Sample Location:

82 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

0 1 2 3
0 Y Y Y Y

C C
1 Y Y Y Y

2 Y Y Y Y
C C

3 Y Y Y Y

HSV Formats

These formats store the color information of the image in a geometrical representation. The colors are
mapped into a cylinder, where the angle is the HUE, the height is the VALUE and the distance to the center
is the SATURATION. This is a very useful format for image segmentation algorithms.

Packed HSV formats

Description

The hue (h) is measured in degrees, the equivalence between degrees and LSBs depends on the hsv-
encoding used, see Colorspaces . The saturation (s) and the value (v) are measured in percentage of the
cylinder: 0 being the smallest value and 255 the maximum.
The values are packed in 24 or 32 bit formats.

Table 1.9: Packed HSV Image Formats
Identifier Code Byte 0 in memory Byte 1 Byte 2 Byte 3

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_HSV32 ‘HSV4’ h7 h6 h5 h4 h3 h2 h1 h0 s7 s6 s5 s4 s3 s2 s1 s0 v7 v6 v5 v4 v3 v2 v1 v0
V4L2_PIX_FMT_HSV24 ‘HSV3’ h7 h6 h5 h4 h3 h2 h1 h0 s7 s6 s5 s4 s3 s2 s1 s0 v7 v6 v5 v4 v3 v2 v1 v0

Bit 7 is the most significant bit.

Depth Formats

Depth data provides distance to points, mapped onto the image plane

V4L2_PIX_FMT_INZI (‘INZI’)

Infrared 10-bit linked with Depth 16-bit images

Description

Proprietary multi-planar format used by Intel SR300 Depth cameras, comprise of Infrared image followed
by Depth data. The pixel definition is 32-bpp, with the Depth and Infrared Data split into separate contin-
uous planes of identical dimensions.
The first plane - Infrared data - is stored according to V4L2_PIX_FMT_Y10 greyscale format. Each pixel is
16-bit cell, with actual data stored in the 10 LSBs with values in range 0 to 1023. The six remaining MSBs
are padded with zeros.
The second plane provides 16-bit per-pixel Depth data arranged in V4L2-PIX-FMT-Z16 format.

1.2. Part I - Video for Linux API 83

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Frame Structure. Each cell is a 16-bit word with more signifi-
cant data stored at higher memory address (byte order is little-endian).

Ir0,0 Ir0,1 Ir0,2
...
Infrared Data
...
... Irn-1,n-3 Irn-1,n-2 Irn-1,n-1
Depth0,0 Depth0,1 Depth0,2
...
Depth Data
...
... Depthn-1,n-3 Depthn-1,n-2 Depthn-1,n-1

V4L2_PIX_FMT_Z16 (‘Z16 ‘)

16-bit depth data with distance values at each pixel

Description

This is a 16-bit format, representing depth data. Each pixel is a distance to the respective point in the
image coordinates. Distance unit can vary and has to be negotiated with the device separately. Each
pixel is stored in a 16-bit word in the little endian byte order.
Byte Order. Each cell is one byte.

start + 0: Z00low Z00high Z01low Z01high Z02low Z02high Z03low Z03high
start + 8: Z10low Z10high Z11low Z11high Z12low Z12high Z13low Z13high
start + 16: Z20low Z20high Z21low Z21high Z22low Z22high Z23low Z23high
start + 24: Z30low Z30high Z31low Z31high Z32low Z32high Z33low Z33high

84 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Compressed Formats

Table 1.10: Compressed Image Formats
Identifier Code Details

V4L2_PIX_FMT_JPEG ‘JPEG’ TBD. See also VIDIOC_G_JPEGCOMP , VID-
IOC_S_JPEGCOMP .

V4L2_PIX_FMT_MPEG ‘MPEG’ MPEG multiplexed stream. The actual for-
mat is determined by extended control
V4L2_CID_MPEG_STREAM_TYPE, see Codec Control
IDs .

V4L2_PIX_FMT_H264 ‘H264’ H264 video elementary stream with start codes.

V4L2_PIX_FMT_H264_NO_SC ‘AVC1’ H264 video elementary stream without start
codes.

V4L2_PIX_FMT_H264_MVC ‘M264’ H264 MVC video elementary stream.

V4L2_PIX_FMT_H263 ‘H263’ H263 video elementary stream.

V4L2_PIX_FMT_MPEG1 ‘MPG1’ MPEG1 video elementary stream.

V4L2_PIX_FMT_MPEG2 ‘MPG2’ MPEG2 video elementary stream.

V4L2_PIX_FMT_MPEG4 ‘MPG4’ MPEG4 video elementary stream.

V4L2_PIX_FMT_XVID ‘XVID’ Xvid video elementary stream.

V4L2_PIX_FMT_VC1_ANNEX_G ‘VC1G’ VC1, SMPTE 421M Annex G compliant stream.

V4L2_PIX_FMT_VC1_ANNEX_L ‘VC1L’ VC1, SMPTE 421M Annex L compliant stream.

V4L2_PIX_FMT_VP8 ‘VP80’ VP8 video elementary stream.

V4L2_PIX_FMT_VP9 ‘VP90’ VP9 video elementary stream.

SDR Formats

These formats are used for SDR interface only.

V4L2_SDR_FMT_CU8 (‘CU08’)

Complex unsigned 8-bit IQ sample

Description

This format contains sequence of complex number samples. Each complex number consist two parts,
called In-phase and Quadrature (IQ). Both I and Q are represented as a 8 bit unsigned number. I value
comes first and Q value after that.
Byte Order. Each cell is one byte.

start + 0: I’0
start + 1: Q’0

1.2. Part I - Video for Linux API 85

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_SDR_FMT_CU16LE (‘CU16’)

Complex unsigned 16-bit little endian IQ sample

Description

This format contains sequence of complex number samples. Each complex number consist two parts,
called In-phase and Quadrature (IQ). Both I and Q are represented as a 16 bit unsigned little endian
number. I value comes first and Q value after that.
Byte Order. Each cell is one byte.

start + 0: I’0[7:0] I’0[15:8]
start + 2: Q’0[7:0] Q’0[15:8]

V4L2_SDR_FMT_CS8 (‘CS08’)

Complex signed 8-bit IQ sample

Description

This format contains sequence of complex number samples. Each complex number consist two parts,
called In-phase and Quadrature (IQ). Both I and Q are represented as a 8 bit signed number. I value
comes first and Q value after that.
Byte Order. Each cell is one byte.

start + 0: I’0
start + 1: Q’0

V4L2_SDR_FMT_CS14LE (‘CS14’)

Complex signed 14-bit little endian IQ sample

Description

This format contains sequence of complex number samples. Each complex number consist two parts,
called In-phase and Quadrature (IQ). Both I and Q are represented as a 14 bit signed little endian number.
I value comes first and Q value after that. 14 bit value is stored in 16 bit space with unused high bits
padded with 0.
Byte Order. Each cell is one byte.

start + 0: I’0[7:0] I’0[13:8]
start + 2: Q’0[7:0] Q’0[13:8]

V4L2_SDR_FMT_RU12LE (‘RU12’)

Real unsigned 12-bit little endian sample

86 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

This format contains sequence of real number samples. Each sample is represented as a 12 bit unsigned
little endian number. Sample is stored in 16 bit space with unused high bits padded with 0.
Byte Order. Each cell is one byte.

start + 0: I’0[7:0] I’0[11:8]

V4L2_SDR_FMT_PCU16BE (‘PC16’)

Planar complex unsigned 16-bit big endian IQ sample

Description

This format contains a sequence of complex number samples. Each complex number consist of two parts
called In-phase and Quadrature (IQ). Both I and Q are represented as a 16 bit unsigned big endian number
stored in 32 bit space. The remaining unused bits within the 32 bit space will be padded with 0. I value
starts first and Q value starts at an offset equalling half of the buffer size (i.e.) offset = buffersize/2. Out
of the 16 bits, bit 15:2 (14 bit) is data and bit 1:0 (2 bit) can be any value.
Byte Order. Each cell is one byte.
Offset: Byte B0 Byte B1 Byte B2 Byte B3
start + 0: I’0[13:6] I’0[5:0]; B1[1:0]=pad pad pad
start + 4: I’1[13:6] I’1[5:0]; B1[1:0]=pad pad pad
...
start + offset: Q’0[13:6] Q’0[5:0]; B1[1:0]=pad pad pad
start + offset + 4: Q’1[13:6] Q’1[5:0]; B1[1:0]=pad pad pad

V4L2_SDR_FMT_PCU18BE (‘PC18’)

Planar complex unsigned 18-bit big endian IQ sample

Description

This format contains a sequence of complex number samples. Each complex number consist of two parts
called In-phase and Quadrature (IQ). Both I and Q are represented as a 18 bit unsigned big endian number
stored in 32 bit space. The remaining unused bits within the 32 bit space will be padded with 0. I value
starts first and Q value starts at an offset equalling half of the buffer size (i.e.) offset = buffersize/2. Out
of the 18 bits, bit 17:2 (16 bit) is data and bit 1:0 (2 bit) can be any value.
Byte Order. Each cell is one byte.
Offset: Byte B0 Byte B1 Byte B2 Byte B3
start + 0: I’0[17:10] I’0[9:2] I’0[1:0]; B2[5:0]=pad pad
start + 4: I’1[17:10] I’1[9:2] I’1[1:0]; B2[5:0]=pad pad
...
start + offset: Q’0[17:10] Q’0[9:2] Q’0[1:0]; B2[5:0]=pad pad
start + offset + 4: Q’1[17:10] Q’1[9:2] Q’1[1:0]; B2[5:0]=pad pad

V4L2_SDR_FMT_PCU20BE (‘PC20’)

Planar complex unsigned 20-bit big endian IQ sample

1.2. Part I - Video for Linux API 87

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

This format contains a sequence of complex number samples. Each complex number consist of two parts
called In-phase and Quadrature (IQ). Both I and Q are represented as a 20 bit unsigned big endian number
stored in 32 bit space. The remaining unused bits within the 32 bit space will be padded with 0. I value
starts first and Q value starts at an offset equalling half of the buffer size (i.e.) offset = buffersize/2. Out
of the 20 bits, bit 19:2 (18 bit) is data and bit 1:0 (2 bit) can be any value.
Byte Order. Each cell is one byte.
Offset: Byte B0 Byte B1 Byte B2 Byte B3
start + 0: I’0[19:12] I’0[11:4] I’0[3:0]; B2[3:0]=pad pad
start + 4: I’1[19:12] I’1[11:4] I’1[3:0]; B2[3:0]=pad pad
...
start + offset: Q’0[19:12] Q’0[11:4] Q’0[3:0]; B2[3:0]=pad pad
start + offset + 4: Q’1[19:12] Q’1[11:4] Q’1[3:0]; B2[3:0]=pad pad

Touch Formats

These formats are used for Touch Devices interface only.

V4L2_TCH_FMT_DELTA_TD16 (‘TD16’)

man V4L2_TCH_FMT_DELTA_TD16(2)

16-bit signed Touch Delta

Description

This format represents delta data from a touch controller.
Delta values may range from -32768 to 32767. Typically the values will vary through a small range
depending on whether the sensor is touched or not. The full value may be seen if one of the touchscreen
nodes has a fault or the line is not connected.
Byte Order. Each cell is one byte.

start + 0: D’00high D’00low D’01high D’01low D’02high D’02low D’03high D’03low
start + 8: D’10high D’10low D’11high D’11low D’12high D’12low D’13high D’13low
start + 16: D’20high D’20low D’21high D’21low D’22high D’22low D’23high D’23low
start + 24: D’30high D’30low D’31high D’31low D’32high D’32low D’33high D’33low

V4L2_TCH_FMT_DELTA_TD08 (‘TD08’)

man V4L2_TCH_FMT_DELTA_TD08(2)

8-bit signed Touch Delta

Description

This format represents delta data from a touch controller.
Delta values may range from -128 to 127. Typically the values will vary through a small range depending
on whether the sensor is touched or not. The full value may be seen if one of the touchscreen nodes has
a fault or the line is not connected.
Byte Order. Each cell is one byte.

88 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

start + 0: D’00 D’01 D’02 D’03
start + 4: D’10 D’11 D’12 D’13
start + 8: D’20 D’21 D’22 D’23
start + 12: D’30 D’31 D’32 D’33

V4L2_TCH_FMT_TU16 (‘TU16’)

man V4L2_TCH_FMT_TU16(2)

16-bit unsigned raw touch data

Description

This format represents unsigned 16-bit data from a touch controller.
This may be used for output for raw and reference data. Values may range from 0 to 65535.
Byte Order. Each cell is one byte.

start + 0: R’00high R’00low R’01high R’01low R’02high R’02low R’03high R’03low
start + 8: R’10high R’10low R’11high R’11low R’12high R’12low R’13high R’13low
start + 16: R’20high R’20low R’21high R’21low R’22high R’22low R’23high R’23low
start + 24: R’30high R’30low R’31high R’31low R’32high R’32low R’33high R’33low

V4L2_TCH_FMT_TU08 (‘TU08’)

man V4L2_TCH_FMT_TU08(2)

8-bit unsigned raw touch data

Description

This format represents unsigned 8-bit data from a touch controller.
This may be used for output for raw and reference data. Values may range from 0 to 255.
Byte Order. Each cell is one byte.

start + 0: R’00 R’01 R’02 R’03
start + 4: R’10 R’11 R’12 R’13
start + 8: R’20 R’21 R’22 R’23
start + 12: R’30 R’31 R’32 R’33

Metadata Formats

These formats are used for the Metadata Interface interface only.

V4L2_META_FMT_VSP1_HGO (‘VSPH’)

Renesas R-Car VSP1 1-D Histogram Data

1.2. Part I - Video for Linux API 89

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

This format describes histogram data generated by the Renesas R-Car VSP1 1-D Histogram (HGO) engine.
The VSP1 HGO is a histogram computation engine that can operate on RGB, YCrCb or HSV data. It operates
on a possibly cropped and subsampled input image and computes the minimum, maximum and sum of
all pixels as well as per-channel histograms.
The HGO can compute histograms independently per channel, on the maximum of the three channels
(RGB data only) or on the Y channel only (YCbCr only). It can additionally output the histogram with 64 or
256 bins, resulting in four possible modes of operation.

• In 64 bins normal mode, the HGO operates on the three channels independently to compute three
64-bins histograms. RGB, YCbCr and HSV image formats are supported.

• In 64 bins maximum mode, the HGO operates on the maximum of the (R, G, B) channels to compute
a single 64-bins histogram. Only the RGB image format is supported.

• In 256 bins normal mode, the HGO operates on the Y channel to compute a single 256-bins histogram.
Only the YCbCr image format is supported.

• In 256 bins maximummode, the HGO operates on the maximum of the (R, G, B) channels to compute
a single 256-bins histogram. Only the RGB image format is supported.

Byte Order. All data is stored in memory in little endian format. Each cell in the tables contains one byte.

Table 1.11: VSP1 HGO Data - 64 Bins, Normal Mode (792 bytes)
Offset Memory

[31:24] [23:16] [15:8] [7:0]
0 R/Cr/H max [7:0] R/Cr/H min [7:0]
4 G/Y/S max [7:0] G/Y/S min [7:0]
8 B/Cb/V max [7:0] B/Cb/V min [7:0]
12 R/Cr/H sum [31:0]
16 G/Y/S sum [31:0]
20 B/Cb/V sum [31:0]
24 R/Cr/H bin 0 [31:0]

...
276 R/Cr/H bin 63 [31:0]
280 G/Y/S bin 0 [31:0]

...
532 G/Y/S bin 63 [31:0]
536 B/Cb/V bin 0 [31:0]

...
788 B/Cb/V bin 63 [31:0]

Table 1.12: VSP1 HGO Data - 64 Bins, Max Mode (264 bytes)
Offset Memory

[31:24] [23:16] [15:8] [7:0]
0 max(R,G,B) max [7:0] max(R,G,B) min [7:0]
4 max(R,G,B) sum [31:0]
8 max(R,G,B) bin 0 [31:0]

...
260 max(R,G,B) bin 63 [31:0]

90 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.13: VSP1 HGO Data - 256 Bins, Normal Mode
(1032 bytes)
Offset Memory

[31:24] [23:16] [15:8] [7:0]
0 Y max [7:0] Y min [7:0]
4 Y sum [31:0]
8 Y bin 0 [31:0]

...
1028 Y bin 255 [31:0]

Table 1.14: VSP1 HGO Data - 256 Bins, Max Mode (1032 bytes)
Offset Memory

[31:24] [23:16] [15:8] [7:0]
0 max(R,G,B) max [7:0] max(R,G,B) min [7:0]
4 max(R,G,B) sum [31:0]
8 max(R,G,B) bin 0 [31:0]

...
1028 max(R,G,B) bin 255 [31:0]

V4L2_META_FMT_VSP1_HGT (‘VSPT’)

Renesas R-Car VSP1 2-D Histogram Data

Description

This format describes histogram data generated by the Renesas R-Car VSP1 2-D Histogram (HGT) engine.
The VSP1 HGT is a histogram computation engine that operates on HSV data. It operates on a possibly
cropped and subsampled input image and computes the sum, maximum and minimum of the S component
as well as a weighted frequency histogram based on the H and S components.
The histogram is a matrix of 6 Hue and 32 Saturation buckets, 192 in total. Each HSV value is added to
one or more buckets with a weight between 1 and 16 depending on the Hue areas configuration. Finding
the corresponding buckets is done by inspecting the H and S value independently.
The Saturation position n (0 - 31) of the bucket in the matrix is found by the expression:

n = S / 8
The Hue position m (0 - 5) of the bucket in the matrix depends on how the HGT Hue areas are configured.
There are 6 user configurable Hue Areas which can be configured to cover overlapping Hue values:

Area 0 Area 1 Area 2 Area 3 Area 4 Area 5
________ ________ ________ ________ ________ ________

\ /| |\ /| |\ /| |\ /| |\ /| |\ /| |\ /
\ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ /
X | | X | | X | | X | | X | | X | | X

/ \ | | / \ | | / \ | | / \ | | / \ | | / \ | | / \
/ \| |/ \| |/ \| |/ \| |/ \| |/ \| |/ \
5U 0L 0U 1L 1U 2L 2U 3L 3U 4L 4U 5L 5U 0L

<0..............................Hue Value............................255>

When two consecutive areas don’t overlap (n+1L is equal to nU) the boundary value is considered as part
of the lower area.
Pixels with a hue value included in the centre of an area (between nL and nU included) are attributed
to that single area and given a weight of 16. Pixels with a hue value included in the overlapping region

1.2. Part I - Video for Linux API 91

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

between two areas (between n+1L and nU excluded) are attributed to both areas and given a weight for
each of these areas proportional to their position along the diagonal lines (rounded down).
The Hue area setup must match one of the following constrains:

0L <= 0U <= 1L <= 1U <= 2L <= 2U <= 3L <= 3U <= 4L <= 4U <= 5L <= 5U

0U <= 1L <= 1U <= 2L <= 2U <= 3L <= 3U <= 4L <= 4U <= 5L <= 5U <= 0L

Byte Order. All data is stored in memory in little endian format. Each cell in the tables contains one byte.

Table 1.15: VSP1 HGT Data - (776 bytes)
Offset Memory

[31:24] [23:16] [15:8] [7:0]
0 • S max [7:0] • S min [7:0]

4 S sum [31:0]
8 Histogram bucket (m=0, n=0) [31:0]
12 Histogram bucket (m=0, n=1) [31:0]

...
132 Histogram bucket (m=0, n=31) [31:0]
136 Histogram bucket (m=1, n=0) [31:0]

...
264 Histogram bucket (m=2, n=0) [31:0]

...
392 Histogram bucket (m=3, n=0) [31:0]

...
520 Histogram bucket (m=4, n=0) [31:0]

...
648 Histogram bucket (m=5, n=0) [31:0]

...
772 Histogram bucket (m=5, n=31) [31:0]

Reserved Format Identifiers

These formats are not defined by this specification, they are just listed for reference and to avoid naming
conflicts. If you want to register your own format, send an e-mail to the linux-media mailing list https:
//linuxtv.org/lists.php for inclusion in the videodev2.h file. If you want to share your format with other
developers add a link to your documentation and send a copy to the linux-media mailing list for inclusion in
this section. If you think your format should be listed in a standard format section please make a proposal
on the linux-media mailing list.

Table 1.16: Reserved Image Formats

Identifier Code Details
V4L2_PIX_FMT_DV ‘dvsd’ unknown
V4L2_PIX_FMT_ET61X251 ‘E625’ Compressed format of the ET61X251 driver.
V4L2_PIX_FMT_HI240 ‘HI24’ 8 bit RGB format used by the BTTV driver.
V4L2_PIX_FMT_HM12 ‘HM12’ YUV 4:2:0 format used by the IVTV driver, http:

//www.ivtvdriver.org/
The format is documented in the ker-
nel sources in the file Documenta-
tion/video4linux/cx2341x/README.hm12

V4L2_PIX_FMT_CPIA1 ‘CPIA’ YUV format used by the gspca cpia1 driver.
Continued on next page

92 Chapter 1. Linux Media Infrastructure userspace API

https://linuxtv.org/lists.php
https://linuxtv.org/lists.php
http://www.ivtvdriver.org/
http://www.ivtvdriver.org/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.16 – continued from previous page
Identifier Code Details
V4L2_PIX_FMT_JPGL ‘JPGL’ JPEG-Light format (Pegasus Lossless JPEG) used

in Divio webcams NW 80x.
V4L2_PIX_FMT_SPCA501 ‘S501’ YUYV per line used by the gspca driver.
V4L2_PIX_FMT_SPCA505 ‘S505’ YYUV per line used by the gspca driver.
V4L2_PIX_FMT_SPCA508 ‘S508’ YUVY per line used by the gspca driver.
V4L2_PIX_FMT_SPCA561 ‘S561’ Compressed GBRG Bayer format used by the

gspca driver.
V4L2_PIX_FMT_PAC207 ‘P207’ Compressed BGGR Bayer format used by the

gspca driver.
V4L2_PIX_FMT_MR97310A ‘M310’ Compressed BGGR Bayer format used by the

gspca driver.
V4L2_PIX_FMT_JL2005BCD ‘JL20’ JPEG compressed RGGB Bayer format used by the

gspca driver.
V4L2_PIX_FMT_OV511 ‘O511’ OV511 JPEG format used by the gspca driver.
V4L2_PIX_FMT_OV518 ‘O518’ OV518 JPEG format used by the gspca driver.
V4L2_PIX_FMT_PJPG ‘PJPG’ Pixart 73xx JPEG format used by the gspca driver.
V4L2_PIX_FMT_SE401 ‘S401’ Compressed RGB format used by the gspca se401

driver
V4L2_PIX_FMT_SQ905C ‘905C’ Compressed RGGB bayer format used by the

gspca driver.
V4L2_PIX_FMT_MJPEG ‘MJPG’ Compressed format used by the Zoran driver
V4L2_PIX_FMT_PWC1 ‘PWC1’ Compressed format of the PWC driver.
V4L2_PIX_FMT_PWC2 ‘PWC2’ Compressed format of the PWC driver.
V4L2_PIX_FMT_SN9C10X ‘S910’ Compressed format of the SN9C102 driver.
V4L2_PIX_FMT_SN9C20X_I420 ‘S920’ YUV 4:2:0 format of the gspca sn9c20x driver.
V4L2_PIX_FMT_SN9C2028 ‘SONX’ Compressed GBRG bayer format of the gspca

sn9c2028 driver.
V4L2_PIX_FMT_STV0680 ‘S680’ Bayer format of the gspca stv0680 driver.
V4L2_PIX_FMT_WNVA ‘WNVA’ Used by the Winnov Videum driver, http://www.

thedirks.org/winnov/
V4L2_PIX_FMT_TM6000 ‘TM60’ Used by Trident tm6000
V4L2_PIX_FMT_CIT_YYVYUY ‘CITV’ Used by xirlink CIT, found at IBM webcams.

Uses one line of Y then 1 line of VYUY
V4L2_PIX_FMT_KONICA420 ‘KONI’ Used by Konica webcams.

YUV420 planar in blocks of 256 pixels.
V4L2_PIX_FMT_YYUV ‘YYUV’ unknown
V4L2_PIX_FMT_Y4 ‘Y04 ‘ Old 4-bit greyscale format. Only the most signif-

icant 4 bits of each byte are used, the other bits
are set to 0.

V4L2_PIX_FMT_Y6 ‘Y06 ‘ Old 6-bit greyscale format. Only the most signif-
icant 6 bits of each byte are used, the other bits
are set to 0.

Continued on next page

1.2. Part I - Video for Linux API 93

http://www.thedirks.org/winnov/
http://www.thedirks.org/winnov/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.16 – continued from previous page
Identifier Code Details
V4L2_PIX_FMT_S5C_UYVY_JPG ‘S5CI’ Two-planar format used by Samsung S5C73MX

cameras. The first plane contains interleaved
JPEG and UYVY image data, followed by meta data
in form of an array of offsets to the UYVY data
blocks. The actual pointer array follows immedi-
ately the interleaved JPEG/UYVY data, the number
of entries in this array equals the height of the
UYVY image. Each entry is a 4-byte unsigned inte-
ger in big endian order and it’s an offset to a single
pixel line of the UYVY image. The first plane can
start either with JPEG or UYVY data chunk. The
size of a single UYVY block equals the UYVY im-
age’s width multiplied by 2. The size of a JPEG
chunk depends on the image and can vary with
each line.
The second plane, at an offset of 4084 bytes, con-
tains a 4-byte offset to the pointer array in the first
plane. This offset is followed by a 4-byte value
indicating size of the pointer array. All numbers
in the second plane are also in big endian order.
Remaining data in the second plane is undefined.
The information in the second plane allows to eas-
ily find location of the pointer array, which can be
different for each frame. The size of the pointer
array is constant for given UYVY image height.
In order to extract UYVY and JPEG frames an appli-
cation can initially set a data pointer to the start of
first plane and then add an offset from the first en-
try of the pointers table. Such a pointer indicates
start of an UYVY image pixel line. Whole UYVY line
can be copied to a separate buffer. These steps
should be repeated for each line, i.e. the number
of entries in the pointer array. Anything what’s in
between the UYVY lines is JPEG data and should
be concatenated to form the JPEG stream.

V4L2_PIX_FMT_MT21C ‘MT21’ Compressed two-planar YVU420 format
used by Mediatek MT8173. The compres-
sion is lossless. It is an opaque interme-
diate format and the MDP hardware must
be used to convert V4L2_PIX_FMT_MT21C to
V4L2_PIX_FMT_NV12M, V4L2_PIX_FMT_YUV420M
or V4L2_PIX_FMT_YVU420.

Table 1.17: Format Flags
V4L2_PIX_FMT_FLAG_PREMUL_ALPHA 0x00000001 The color values are premultiplied by the alpha

channel value. For example, if a light blue pixel
with 50% transparency was described by RGBA
values (128, 192, 255, 128), the same pixel de-
scribed with premultiplied colors would be de-
scribed by RGBA values (64, 96, 128, 128)

94 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Colorspaces

‘Color’ is a very complex concept and depends on physics, chemistry and biology. Just because you have
three numbers that describe the ‘red’, ‘green’ and ‘blue’ components of the color of a pixel does not mean
that you can accurately display that color. A colorspace defines what it actually means to have an RGB
value of e.g. (255, 0, 0). That is, which color should be reproduced on the screen in a perfectly calibrated
environment.
In order to do that we first need to have a good definition of color, i.e. some way to uniquely and unam-
biguously define a color so that someone else can reproduce it. Human color vision is trichromatic since
the human eye has color receptors that are sensitive to three different wavelengths of light. Hence the
need to use three numbers to describe color. Be glad you are not a mantis shrimp as those are sensitive
to 12 different wavelengths, so instead of RGB we would be using the ABCDEFGHIJKL colorspace...
Color exists only in the eye and brain and is the result of how strongly color receptors are stimulated. This
is based on the Spectral Power Distribution (SPD) which is a graph showing the intensity (radiant power)
of the light at wavelengths covering the visible spectrum as it enters the eye. The science of colorimetry
is about the relationship between the SPD and color as perceived by the human brain.
Since the human eye has only three color receptors it is perfectly possible that different SPDs will result
in the same stimulation of those receptors and are perceived as the same color, even though the SPD of
the light is different.
In the 1920s experiments were devised to determine the relationship between SPDs and the perceived
color and that resulted in the CIE 1931 standard that defines spectral weighting functions that model the
perception of color. Specifically that standard defines functions that can take an SPD and calculate the
stimulus for each color receptor. After some further mathematical transforms these stimuli are known
as the CIE XYZ tristimulus values and these X, Y and Z values describe a color as perceived by a human
unambiguously. These X, Y and Z values are all in the range [0…1].
The Y value in the CIE XYZ colorspace corresponds to luminance. Often the CIE XYZ colorspace is trans-
formed to the normalized CIE xyY colorspace:
x = X / (X + Y + Z)
y = Y / (X + Y + Z)
The x and y values are the chromaticity coordinates and can be used to define a color without the lumi-
nance component Y. It is very confusing to have such similar names for these colorspaces. Just be aware
that if colors are specified with lower case ‘x’ and ‘y’, then the CIE xyY colorspace is used. Upper case ‘X’
and ‘Y’ refer to the CIE XYZ colorspace. Also, y has nothing to do with luminance. Together x and y specify
a color, and Y the luminance. That is really all you need to remember from a practical point of view. At
the end of this section you will find reading resources that go into much more detail if you are interested.
A monitor or TV will reproduce colors by emitting light at three different wavelengths, the combination
of which will stimulate the color receptors in the eye and thus cause the perception of color. Historically
these wavelengths were defined by the red, green and blue phosphors used in the displays. These color
primaries are part of what defines a colorspace.
Different display devices will have different primaries and some primaries are more suitable for some
display technologies than others. This has resulted in a variety of colorspaces that are used for different
display technologies or uses. To define a colorspace you need to define the three color primaries (these
are typically defined as x, y chromaticity coordinates from the CIE xyY colorspace) but also the white
reference: that is the color obtained when all three primaries are at maximum power. This determines
the relative power or energy of the primaries. This is usually chosen to be close to daylight which has
been defined as the CIE D65 Illuminant.
To recapitulate: the CIE XYZ colorspace uniquely identifies colors. Other colorspaces are defined by three
chromaticity coordinates defined in the CIE xyY colorspace. Based on those a 3x3 matrix can be con-
structed that transforms CIE XYZ colors to colors in the new colorspace.
Both the CIE XYZ and the RGB colorspace that are derived from the specific chromaticity primaries are
linear colorspaces. But neither the eye, nor display technology is linear. Doubling the values of all com-
ponents in the linear colorspace will not be perceived as twice the intensity of the color. So each col-

1.2. Part I - Video for Linux API 95

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

orspace also defines a transfer function that takes a linear color component value and transforms it to the
non-linear component value, which is a closer match to the non-linear performance of both the eye and
displays. Linear component values are denoted RGB, non-linear are denoted as R’G’B’. In general colors
used in graphics are all R’G’B’, except in openGL which uses linear RGB. Special care should be taken
when dealing with openGL to provide linear RGB colors or to use the built-in openGL support to apply the
inverse transfer function.
The final piece that defines a colorspace is a function that transforms non-linear R’G’B’ to non-linear
Y’CbCr. This function is determined by the so-called luma coefficients. There may be multiple possible
Y’CbCr encodings allowed for the same colorspace. Many encodings of color prefer to use luma (Y’) and
chroma (CbCr) instead of R’G’B’. Since the human eye is more sensitive to differences in luminance than
in color this encoding allows one to reduce the amount of color information compared to the luma data.
Note that the luma (Y’) is unrelated to the Y in the CIE XYZ colorspace. Also note that Y’CbCr is often
called YCbCr or YUV even though these are strictly speaking wrong.
Sometimes people confuse Y’CbCr as being a colorspace. This is not correct, it is just an encoding of an
R’G’B’ color into luma and chroma values. The underlying colorspace that is associated with the R’G’B’
color is also associated with the Y’CbCr color.
The final step is how the RGB, R’G’B’ or Y’CbCr values are quantized. The CIE XYZ colorspace where
X, Y and Z are in the range [0…1] describes all colors that humans can perceive, but the transform to
another colorspace will produce colors that are outside the [0…1] range. Once clamped to the [0…1]
range those colors can no longer be reproduced in that colorspace. This clamping is what reduces the
extent or gamut of the colorspace. How the range of [0…1] is translated to integer values in the range
of [0…255] (or higher, depending on the color depth) is called the quantization. This is not part of the
colorspace definition. In practice RGB or R’G’B’ values are full range, i.e. they use the full [0…255] range.
Y’CbCr values on the other hand are limited range with Y’ using [16…235] and Cb and Cr using [16…240].
Unfortunately, in some cases limited range RGB is also used where the components use the range
[16…235]. And full range Y’CbCr also exists using the [0…255] range.
In order to correctly interpret a color you need to know the quantization range, whether it is R’G’B’ or
Y’CbCr, the used Y’CbCr encoding and the colorspace. From that information you can calculate the corre-
sponding CIE XYZ color and map that again to whatever colorspace your display device uses.
The colorspace definition itself consists of the three chromaticity primaries, the white reference chro-
maticity, a transfer function and the luma coefficients needed to transform R’G’B’ to Y’CbCr. While some
colorspace standards correctly define all four, quite often the colorspace standard only defines some, and
you have to rely on other standards for the missing pieces. The fact that colorspaces are often a mix
of different standards also led to very confusing naming conventions where the name of a standard was
used to name a colorspace when in fact that standard was part of various other colorspaces as well.
If you want to read more about colors and colorspaces, then the following resources are useful: poynton
is a good practical book for video engineers, colimg has a much broader scope and describes many

more aspects of color (physics, chemistry, biology, etc.). The http://www.brucelindbloom.com website is
an excellent resource, especially with respect to the mathematics behind colorspace conversions. The
wikipedia CIE 1931 colorspace article is also very useful.

Defining Colorspaces in V4L2

In V4L2 colorspaces are defined by four values. The first is the colorspace identifier (enum
v4l2_colorspace) which defines the chromaticities, the default transfer function, the default Y’CbCr
encoding and the default quantization method. The second is the transfer function identifier (enum
v4l2_xfer_func) to specify non-standard transfer functions. The third is the Y’CbCr encoding identifier
(enum v4l2_ycbcr_encoding) to specify non-standard Y’CbCr encodings and the fourth is the quantiza-
tion identifier (enum v4l2_quantization) to specify non-standard quantization methods. Most of the
time only the colorspace field of struct v4l2_pix_format or struct v4l2_pix_format_mplane needs to be
filled in. On HSV formats the Hue is defined as the angle on the cylindrical color representation. Usually
this angle is measured in degrees, i.e. 0-360. When we map this angle value into 8 bits, there are two
basic ways to do it: Divide the angular value by 2 (0-179), or use the whole range, 0-255, dividing the
angular value by 1.41. The enum v4l2_hsv_encoding specifies which encoding is used.

96 Chapter 1. Linux Media Infrastructure userspace API

http://www.brucelindbloom.com
http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

The default R’G’B’ quantization is full range for all colorspaces except for BT.2020 which uses limited
range R’G’B’ quantization.

v4l2_colorspace

Table 1.18: V4L2 Colorspaces
Identifier Details
V4L2_COLORSPACE_DEFAULT The default colorspace. This can be used by applications to let the

driver fill in the colorspace.
V4L2_COLORSPACE_SMPTE170M See Colorspace SMPTE 170M (V4L2_COLORSPACE_SMPTE170M) .
V4L2_COLORSPACE_REC709 See Colorspace Rec. 709 (V4L2_COLORSPACE_REC709) .
V4L2_COLORSPACE_SRGB See Colorspace sRGB (V4L2_COLORSPACE_SRGB) .
V4L2_COLORSPACE_ADOBERGB See Colorspace Adobe RGB (V4L2_COLORSPACE_ADOBERGB) .
V4L2_COLORSPACE_BT2020 See Colorspace BT.2020 (V4L2_COLORSPACE_BT2020) .
V4L2_COLORSPACE_DCI_P3 See Colorspace DCI-P3 (V4L2_COLORSPACE_DCI_P3) .
V4L2_COLORSPACE_SMPTE240M See Colorspace SMPTE 240M (V4L2_COLORSPACE_SMPTE240M) .
V4L2_COLORSPACE_470_SYSTEM_M See Colorspace NTSC 1953 (V4L2_COLORSPACE_470_SYSTEM_M)

.
V4L2_COLORSPACE_470_SYSTEM_BG See Colorspace EBU Tech. 3213

(V4L2_COLORSPACE_470_SYSTEM_BG) .
V4L2_COLORSPACE_JPEG See Colorspace JPEG (V4L2_COLORSPACE_JPEG) .
V4L2_COLORSPACE_RAW The raw colorspace. This is used for raw image capture where the

image is minimally processed and is using the internal colorspace
of the device. The software that processes an image using this
‘colorspace’ will have to know the internals of the capture device.

v4l2_xfer_func

Table 1.19: V4L2 Transfer Function
Identifier Details
V4L2_XFER_FUNC_DEFAULT Use the default transfer function as defined by the colorspace.
V4L2_XFER_FUNC_709 Use the Rec. 709 transfer function.
V4L2_XFER_FUNC_SRGB Use the sRGB transfer function.
V4L2_XFER_FUNC_ADOBERGB Use the AdobeRGB transfer function.
V4L2_XFER_FUNC_SMPTE240M Use the SMPTE 240M transfer function.
V4L2_XFER_FUNC_NONE Do not use a transfer function (i.e. use linear RGB values).
V4L2_XFER_FUNC_DCI_P3 Use the DCI-P3 transfer function.
V4L2_XFER_FUNC_SMPTE2084 Use the SMPTE 2084 transfer function. See Transfer Function SMPTE

2084 (V4L2_XFER_FUNC_SMPTE2084) .

v4l2_ycbcr_encoding

1.2. Part I - Video for Linux API 97

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.20: V4L2 Y’CbCr Encodings
Identifier Details
V4L2_YCBCR_ENC_DEFAULT Use the default Y’CbCr encoding as defined by the colorspace.
V4L2_YCBCR_ENC_601 Use the BT.601 Y’CbCr encoding.
V4L2_YCBCR_ENC_709 Use the Rec. 709 Y’CbCr encoding.
V4L2_YCBCR_ENC_XV601 Use the extended gamut xvYCC BT.601 encoding.
V4L2_YCBCR_ENC_XV709 Use the extended gamut xvYCC Rec. 709 encoding.
V4L2_YCBCR_ENC_BT2020 Use the default non-constant luminance BT.2020 Y’CbCr encod-

ing.
V4L2_YCBCR_ENC_BT2020_CONST_LUM Use the constant luminance BT.2020 Yc’CbcCrc encoding.
V4L2_YCBCR_ENC_SMPTE_240M Use the SMPTE 240M Y’CbCr encoding.

v4l2_hsv_encoding

Table 1.21: V4L2 HSV Encodings
Identifier Details
V4L2_HSV_ENC_180 For the Hue, each LSB is two degrees.
V4L2_HSV_ENC_256 For the Hue, the 360 degrees are mapped into 8 bits, i.e. each

LSB is roughly 1.41 degrees.

v4l2_quantization

Table 1.22: V4L2 Quantization Methods
Identifier Details
V4L2_QUANTIZATION_DEFAULT Use the default quantization encoding as defined by the col-

orspace. This is always full range for R’G’B’ (except for the
BT.2020 colorspace) and HSV. It is usually limited range for
Y’CbCr.

V4L2_QUANTIZATION_FULL_RANGE Use the full range quantization encoding. I.e. the range [0…1]
is mapped to [0…255] (with possible clipping to [1…254] to
avoid the 0x00 and 0xff values). Cb and Cr are mapped from
[-0.5…0.5] to [0…255] (with possible clipping to [1…254] to
avoid the 0x00 and 0xff values).

V4L2_QUANTIZATION_LIM_RANGE Use the limited range quantization encoding. I.e. the range
[0…1] is mapped to [16…235]. Cb and Cr are mapped from
[-0.5…0.5] to [16…240].

Detailed Colorspace Descriptions

Colorspace SMPTE 170M (V4L2_COLORSPACE_SMPTE170M)

The SMPTE 170M standard defines the colorspace used by NTSC and PAL and by SDTV in general. The
default transfer function is V4L2_XFER_FUNC_709. The default Y’CbCr encoding is V4L2_YCBCR_ENC_601.
The default Y’CbCr quantization is limited range. The chromaticities of the primary colors and the white
reference are:

Table 1.23: SMPTE 170M Chromaticities
Color x y
Red 0.630 0.340
Green 0.310 0.595
Blue 0.155 0.070
White Reference (D65) 0.3127 0.3290

98 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The red, green and blue chromaticities are also often referred to as the SMPTE C set, so this colorspace is
sometimes called SMPTE C as well.
The transfer function defined for SMPTE 170M is the same as the one defined in Rec. 709.

L′ = −1.099(−L)0.45 + 0.099, for L ≤ −0.018

L′ = 4.5L, for − 0.018 < L < 0.018

L′ = 1.099L0.45 − 0.099, for L ≥ 0.018

Inverse Transfer function:

L = −
(
L′ − 0.099

−1.099

) 1
0.45

, for L′ ≤ −0.081

L =
L′

4.5
, for − 0.081 < L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601
encoding:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. This conversion to
Y’CbCr is identical to the one defined in the ITU BT.601 standard and this colorspace is sometimes called
BT.601 as well, even though BT.601 does not mention any color primaries.
The default quantization is limited range, but full range is possible although rarely seen.

Colorspace Rec. 709 (V4L2_COLORSPACE_REC709)

The ITU BT.709 standard defines the colorspace used by HDTV in general. The default transfer func-
tion is V4L2_XFER_FUNC_709. The default Y’CbCr encoding is V4L2_YCBCR_ENC_709. The default Y’CbCr
quantization is limited range. The chromaticities of the primary colors and the white reference are:

Table 1.24: Rec. 709 Chromaticities
Color x y
Red 0.640 0.330
Green 0.300 0.600
Blue 0.150 0.060
White Reference (D65) 0.3127 0.3290

The full name of this standard is Rec. ITU-R BT.709-5.
Transfer function. Normally L is in the range [0…1], but for the extended gamut xvYCC encoding values
outside that range are allowed.

L′ = −1.099(−L)0.45 + 0.099, for L ≤ −0.018

L′ = 4.5L, for − 0.018 < L < 0.018

L′ = 1.099L0.45 − 0.099, for L ≥ 0.018

1.2. Part I - Video for Linux API 99

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Inverse Transfer function:

L = −
(
L′ − 0.099

−1.099

) 1
0.45

, for L′ ≤ −0.081

L =
L′

4.5
, for − 0.081 < L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_709
encoding:

Y ′ = 0.2126R′ + 0.7152G′ + 0.0722B′

Cb = −0.1146R′ − 0.3854G′ + 0.5B′

Cr = 0.5R′ − 0.4542G′ − 0.0458B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5].
The default quantization is limited range, but full range is possible although rarely seen.
The V4L2_YCBCR_ENC_709 encoding described above is the default for this colorspace, but it can be over-
ridden with V4L2_YCBCR_ENC_601, in which case the BT.601 Y’CbCr encoding is used.
Two additional extended gamut Y’CbCr encodings are also possible with this colorspace:
The xvYCC 709 encoding (V4L2_YCBCR_ENC_XV709, xvYCC) is similar to the Rec. 709 encoding, but it
allows for R’, G’ and B’ values that are outside the range [0…1]. The resulting Y’, Cb and Cr values are
scaled and offset according to the limited range formula:

Y ′ =
219

256
∗ (0.2126R′ + 0.7152G′ + 0.0722B′) +

16

256

Cb =
224

256
∗ (−0.1146R′ − 0.3854G′ + 0.5B′)

Cr =
224

256
∗ (0.5R′ − 0.4542G′ − 0.0458B′)

The xvYCC 601 encoding (V4L2_YCBCR_ENC_XV601, xvYCC) is similar to the BT.601 encoding, but it allows
for R’, G’ and B’ values that are outside the range [0…1]. The resulting Y’, Cb and Cr values are scaled
and offset according to the limited range formula:

Y ′ =
219

256
∗ (0.2990R′ + 0.5870G′ + 0.1140B′) +

16

256

Cb =
224

256
∗ (−0.1687R′ − 0.3313G′ + 0.5B′)

Cr =
224

256
∗ (0.5R′ − 0.4187G′ − 0.0813B′)

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5] and quantized
without further scaling or offsets. The non-standard xvYCC 709 or xvYCC 601 encodings can be used
by selecting V4L2_YCBCR_ENC_XV709 or V4L2_YCBCR_ENC_XV601. As seen by the xvYCC formulas these
encodings always use limited range quantization, there is no full range variant. The whole point of these
extended gamut encodings is that values outside the limited range are still valid, although they map to
R’, G’ and B’ values outside the [0…1] range and are therefore outside the Rec. 709 colorspace gamut.

Colorspace sRGB (V4L2_COLORSPACE_SRGB)

The sRGB standard defines the colorspace used by most webcams and computer graphics. The default
transfer function is V4L2_XFER_FUNC_SRGB. The default Y’CbCr encoding is V4L2_YCBCR_ENC_601. The
default Y’CbCr quantization is limited range.

100 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note that the sYCC standard specifies full range quantization, however all current capture hardware
supported by the kernel convert R’G’B’ to limited range Y’CbCr. So choosing full range as the default
would break how applications interpret the quantization range.
The chromaticities of the primary colors and the white reference are:

Table 1.25: sRGB Chromaticities
Color x y
Red 0.640 0.330
Green 0.300 0.600
Blue 0.150 0.060
White Reference (D65) 0.3127 0.3290

These chromaticities are identical to the Rec. 709 colorspace.
Transfer function. Note that negative values for L are only used by the Y’CbCr conversion.

L′ = −1.055(−L)
1

2.4 + 0.055, for L < −0.0031308

L′ = 12.92L, for − 0.0031308 ≤ L ≤ 0.0031308

L′ = 1.055L
1

2.4 − 0.055, for 0.0031308 < L ≤ 1

Inverse Transfer function:

L = −((−L′ + 0.055)/1.055)2.4, for L′ < −0.04045

L = L′/12.92, for − 0.04045 ≤ L′ ≤ 0.04045

L = ((L′ + 0.055)/1.055)2.4, for L′ > 0.04045

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601
encoding as defined by sYCC :

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. This transform is
identical to one defined in SMPTE 170M/BT.601. The Y’CbCr quantization is limited range.

Colorspace Adobe RGB (V4L2_COLORSPACE_ADOBERGB)

The AdobeRGB standard defines the colorspace used by computer graphics that use the AdobeRGB
colorspace. This is also known as the opRGB standard. The default transfer function is
V4L2_XFER_FUNC_ADOBERGB. The default Y’CbCr encoding is V4L2_YCBCR_ENC_601. The default Y’CbCr
quantization is limited range.
Note that the opRGB standard specifies full range quantization, however all current capture hardware
supported by the kernel convert R’G’B’ to limited range Y’CbCr. So choosing full range as the default
would break how applications interpret the quantization range.
The chromaticities of the primary colors and the white reference are:

Table 1.26: Adobe RGB Chromaticities
Color x y
Red 0.6400 0.3300
Green 0.2100 0.7100
Blue 0.1500 0.0600
White Reference (D65) 0.3127 0.3290

1.2. Part I - Video for Linux API 101

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Transfer function:

L′ = L
1

2.19921875

Inverse Transfer function:

L = L′(2.19921875)

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601
encoding:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. This transform is
identical to one defined in SMPTE 170M/BT.601. The Y’CbCr quantization is limited range.

Colorspace BT.2020 (V4L2_COLORSPACE_BT2020)

The ITU BT.2020 standard defines the colorspace used by Ultra-high definition television (UHDTV). The de-
fault transfer function is V4L2_XFER_FUNC_709. The default Y’CbCr encoding is V4L2_YCBCR_ENC_BT2020.
The default R’G’B’ quantization is limited range (!), and so is the default Y’CbCr quantization. The chro-
maticities of the primary colors and the white reference are:

Table 1.27: BT.2020 Chromaticities
Color x y
Red 0.708 0.292
Green 0.170 0.797
Blue 0.131 0.046
White Reference (D65) 0.3127 0.3290

Transfer function (same as Rec. 709):

L′ = 4.5L, for 0 ≤ L < 0.018

L′ = 1.099L0.45 − 0.099, for 0.018 ≤ L ≤ 1

Inverse Transfer function:
L = L′/4.5, for L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

Please note that while Rec. 709 is defined as the default transfer function by the ITU BT.2020
standard, in practice this colorspace is often used with the Transfer Function SMPTE 2084
(V4L2_XFER_FUNC_SMPTE2084) . In particular Ultra HD Blu-ray discs use this combination.
The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_BT2020 encoding:

Y ′ = 0.2627R′ + 0.6780G′ + 0.0593B′

Cb = −0.1396R′ − 0.3604G′ + 0.5B′

Cr = 0.5R′ − 0.4598G′ − 0.0402B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The Y’CbCr quan-
tization is limited range.
There is also an alternate constant luminance R’G’B’ to Yc’CbcCrc (V4L2_YCBCR_ENC_BT2020_CONST_LUM)
encoding:

102 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Luma:

Y c′ = (0.2627R+ 0.6780G+ 0.0593B)′

B′ − Y c′ ≤ 0 :

Cbc = (B′ − Y c′)/1.9404

B′ − Y c′ > 0 :

Cbc = (B′ − Y c′)/1.5816

R′ − Y c′ ≤ 0 :

Crc = (R′ − Y ′)/1.7184

R′ − Y c′ > 0 :

Crc = (R′ − Y ′)/0.9936

Yc’ is clamped to the range [0…1] and Cbc and Crc are clamped to the range [-0.5…0.5]. The Yc’CbcCrc
quantization is limited range.

Colorspace DCI-P3 (V4L2_COLORSPACE_DCI_P3)

The SMPTE RP 431-2 standard defines the colorspace used by cinema projectors that use the DCI-P3
colorspace. The default transfer function is V4L2_XFER_FUNC_DCI_P3. The default Y’CbCr encoding is
V4L2_YCBCR_ENC_709. The default Y’CbCr quantization is limited range.

Note:

Note that this colorspace standard does not specify a Y’CbCr encoding since it is not meant to be
encoded to Y’CbCr. So this default Y’CbCr encoding was picked because it is the HDTV encoding.

The chromaticities of the primary colors and the white reference are:

Table 1.28: DCI-P3 Chromaticities
Color x y
Red 0.6800 0.3200
Green 0.2650 0.6900
Blue 0.1500 0.0600
White Reference 0.3140 0.3510

Transfer function:

L′ = L
1

2.6

Inverse Transfer function:

L = L′(2.6)

Y’CbCr encoding is not specified. V4L2 defaults to Rec. 709.

Colorspace SMPTE 240M (V4L2_COLORSPACE_SMPTE240M)

The SMPTE 240M standard was an interim standard used during the early days of HDTV (1988-1998).
It has been superseded by Rec. 709. The default transfer function is V4L2_XFER_FUNC_SMPTE240M. The
default Y’CbCr encoding is V4L2_YCBCR_ENC_SMPTE240M. The default Y’CbCr quantization is limited range.
The chromaticities of the primary colors and the white reference are:

1.2. Part I - Video for Linux API 103

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.29: SMPTE 240M Chromaticities
Color x y
Red 0.630 0.340
Green 0.310 0.595
Blue 0.155 0.070
White Reference (D65) 0.3127 0.3290

These chromaticities are identical to the SMPTE 170M colorspace.
Transfer function:

L′ = 4L, for 0 ≤ L < 0.0228

L′ = 1.1115L0.45 − 0.1115, for 0.0228 ≤ L ≤ 1

Inverse Transfer function:

L =
L′

4
, for 0 ≤ L′ < 0.0913

L =

(
L′ + 0.1115

1.1115

) 1
0.45

, for L′ ≥ 0.0913

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_SMPTE240M encoding:

Y ′ = 0.2122R′ + 0.7013G′ + 0.0865B′

Cb = −0.1161R′ − 0.3839G′ + 0.5B′

Cr = 0.5R′ − 0.4451G′ − 0.0549B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The Y’CbCr quan-
tization is limited range.

Colorspace NTSC 1953 (V4L2_COLORSPACE_470_SYSTEM_M)

This standard defines the colorspace used by NTSC in 1953. In practice this colorspace is obsolete and
SMPTE 170M should be used instead. The default transfer function is V4L2_XFER_FUNC_709. The default
Y’CbCr encoding is V4L2_YCBCR_ENC_601. The default Y’CbCr quantization is limited range. The chro-
maticities of the primary colors and the white reference are:

Table 1.30: NTSC 1953 Chromaticities
Color x y
Red 0.67 0.33
Green 0.21 0.71
Blue 0.14 0.08
White Reference (C) 0.310 0.316

Note:

This colorspace uses Illuminant C instead of D65 as the white reference. To correctly convert an image
in this colorspace to another that uses D65 you need to apply a chromatic adaptation algorithm such
as the Bradford method.

The transfer function was never properly defined for NTSC 1953. The Rec. 709 transfer function is rec-
ommended in the literature:

L′ = 4.5L, for 0 ≤ L < 0.018

L′ = 1.099L0.45 − 0.099, for 0.018 ≤ L ≤ 1

104 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Inverse Transfer function:

L =
L′

4.5
, for L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601
encoding:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The Y’CbCr quan-
tization is limited range. This transform is identical to one defined in SMPTE 170M/BT.601.

Colorspace EBU Tech. 3213 (V4L2_COLORSPACE_470_SYSTEM_BG)

The EBU Tech 3213 standard defines the colorspace used by PAL/SECAM in 1975. In practice this
colorspace is obsolete and SMPTE 170M should be used instead. The default transfer function is
V4L2_XFER_FUNC_709. The default Y’CbCr encoding is V4L2_YCBCR_ENC_601. The default Y’CbCr quanti-
zation is limited range. The chromaticities of the primary colors and the white reference are:

Table 1.31: EBU Tech. 3213 Chromaticities
Color x y
Red 0.64 0.33
Green 0.29 0.60
Blue 0.15 0.06
White Reference (D65) 0.3127 0.3290

The transfer function was never properly defined for this colorspace. The Rec. 709 transfer function is
recommended in the literature:

L′ = 4.5L, for 0 ≤ L < 0.018

L′ = 1.099L0.45 − 0.099, for 0.018 ≤ L ≤ 1

Inverse Transfer function:

L =
L′

4.5
, for L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601
encoding:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The Y’CbCr quan-
tization is limited range. This transform is identical to one defined in SMPTE 170M/BT.601.

Colorspace JPEG (V4L2_COLORSPACE_JPEG)

This colorspace defines the colorspace used by most (Motion-)JPEG formats. The chromaticities
of the primary colors and the white reference are identical to sRGB. The transfer function use is

1.2. Part I - Video for Linux API 105

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_XFER_FUNC_SRGB. The Y’CbCr encoding is V4L2_YCBCR_ENC_601 with full range quantization where
Y’ is scaled to [0…255] and Cb/Cr are scaled to [-128…128] and then clipped to [-128…127].

Note:

The JPEG standard does not actually store colorspace information. So if something other than sRGB
is used, then the driver will have to set that information explicitly. Effectively V4L2_COLORSPACE_JPEG
can be considered to be an abbreviation for V4L2_COLORSPACE_SRGB, V4L2_YCBCR_ENC_601 and
V4L2_QUANTIZATION_FULL_RANGE.

Detailed Transfer Function Descriptions

Transfer Function SMPTE 2084 (V4L2_XFER_FUNC_SMPTE2084)

The SMPTE ST 2084 standard defines the transfer function used by High Dynamic Range content.
Constants: m1 = (2610 / 4096) / 4

m2 = (2523 / 4096) * 128
c1 = 3424 / 4096
c2 = (2413 / 4096) * 32
c3 = (2392 / 4096) * 32

Transfer function: L’ = ((c1 + c2 * Lm1) / (1 + c3 * Lm1))m2

Inverse Transfer function: L = (max(L’1/m2 - c1, 0) / (c2 - c3 * L’1/m2))1/m1

Take care when converting between this transfer function and non-HDR transfer functions: the linear RGB
values [0…1] of HDR content map to a luminance range of 0 to 10000 cd/m2 whereas the linear RGB
values of non-HDR (aka Standard Dynamic Range or SDR) map to a luminance range of 0 to 100 cd/m2.
To go from SDR to HDR you will have to divide L by 100 first. To go in the other direction you will have to
multiply L by 100. Of course, this clamps all luminance values over 100 cd/m2 to 100 cd/m2.
There are better methods, see e.g. colimg for more in-depth information about this.

1.2.3 Input/Output

The V4L2 API defines several different methods to read from or write to a device. All drivers exchanging
data with applications must support at least one of them.
The classic I/O method using the read() and write() function is automatically selected after opening a
V4L2 device. When the driver does not support this method attempts to read or write will fail at any time.
Other methods must be negotiated. To select the streaming I/O method with memory mapped or user
buffers applications call the ioctl VIDIOC_REQBUFS ioctl. The asynchronous I/O method is not defined
yet.
Video overlay can be considered another I/O method, although the application does not directly receive the
image data. It is selected by initiating video overlay with the VIDIOC_S_FMT ioctl. For more information
see Video Overlay Interface .
Generally exactly one I/O method, including overlay, is associated with each file descriptor. The only
exceptions are applications not exchanging data with a driver (“panel applications”, see Opening and
Closing Devices) and drivers permitting simultaneous video capturing and overlay using the same file
descriptor, for compatibility with V4L and earlier versions of V4L2.

106 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

VIDIOC_S_FMT and ioctl VIDIOC_REQBUFS would permit this to some degree, but for simplicity drivers
need not support switching the I/O method (after first switching away from read/write) other than by
closing and reopening the device.
The following sections describe the various I/O methods in more detail.

Read/Write

Input and output devices support the read() and write() function, respectively, when the
V4L2_CAP_READWRITE flag in the capabilities field of struct v4l2_capability returned by the ioctl
VIDIOC_QUERYCAP ioctl is set.
Drivers may need the CPU to copy the data, but they may also support DMA to or from user memory, so
this I/O method is not necessarily less efficient than other methods merely exchanging buffer pointers. It
is considered inferior though because no meta-information like frame counters or timestamps are passed.
This information is necessary to recognize frame dropping and to synchronize with other data streams.
However this is also the simplest I/O method, requiring little or no setup to exchange data. It permits
command line stunts like this (the vidctrl tool is fictitious):

$ vidctrl /dev/video --input=0 --format=YUYV --size=352x288
$ dd if=/dev/video of=myimage.422 bs=202752 count=1

To read from the device applications use the read() function, to write the write() function. Drivers
must implement one I/O method if they exchange data with applications, but it need not be this. 1 When
reading or writing is supported, the driver must also support the select() and poll() function. 2

Streaming I/O (Memory Mapping)

Input and output devices support this I/O method when the V4L2_CAP_STREAMING flag in the capabilities
field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl is set. There are two
streaming methods, to determine if the memory mapping flavor is supported applications must call the
ioctl VIDIOC_REQBUFS ioctl with the memory type set to V4L2_MEMORY_MMAP.
Streaming is an I/O method where only pointers to buffers are exchanged between application and driver,
the data itself is not copied. Memory mapping is primarily intended to map buffers in device memory into
the application’s address space. Device memory can be for example the video memory on a graphics
card with a video capture add-on. However, being the most efficient I/O method available for a long time,
many other drivers support streaming as well, allocating buffers in DMA-able main memory.
A driver can support many sets of buffers. Each set is identified by a unique buffer type value. The sets
are independent and each set can hold a different type of data. To access different sets at the same time
different file descriptors must be used. 1

To allocate device buffers applications call the ioctl VIDIOC_REQBUFS ioctl with the desired number of
buffers and buffer type, for example V4L2_BUF_TYPE_VIDEO_CAPTURE. This ioctl can also be used to change
the number of buffers or to free the allocated memory, provided none of the buffers are still mapped.
Before applications can access the buffers they must map them into their address space with the mmap()
function. The location of the buffers in device memory can be determined with the ioctl VIDIOC_QUERYBUF
ioctl. In the single-planar API case, the m.offset and length returned in a struct v4l2_buffer are

passed as sixth and second parameter to the mmap() function. When using the multi-planar API, struct
v4l2_buffer contains an array of struct v4l2_plane structures, each containing its own m.offset and
length. When using the multi-planar API, every plane of every buffer has to be mapped separately, so
the number of calls to mmap() should be equal to number of buffers times number of planes in each

1 It would be desirable if applications could depend on drivers supporting all I/O interfaces, but as much as the complex memory
mapping I/O can be inadequate for some devices we have no reason to require this interface, which is most useful for simple
applications capturing still images.

2 At the driver level select() and poll() are the same, and select() is too important to be optional.
1 One could use one file descriptor and set the buffer type field accordingly when calling ioctl VIDIOC_QBUF, VIDIOC_DQBUF

etc., but it makes the select() function ambiguous. We also like the clean approach of one file descriptor per logical stream. Video
overlay for example is also a logical stream, although the CPU is not needed for continuous operation.

1.2. Part I - Video for Linux API 107

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

buffer. The offset and length values must not be modified. Remember, the buffers are allocated in physical
memory, as opposed to virtual memory, which can be swapped out to disk. Applications should free the
buffers as soon as possible with the munmap() function.

Example: Mapping buffers in the single-planar API

struct v4l2_requestbuffers reqbuf;
struct {

void *start;
size_t length;

} *buffers;
unsigned int i;

memset(&reqbuf, 0, sizeof(reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_MMAP;
reqbuf.count = 20;

if (-1 == ioctl (fd, VIDIOC_REQBUFS, &reqbuf)) {
if (errno == EINVAL)

printf("Video capturing or mmap-streaming is not supported\\n");
else

perror("VIDIOC_REQBUFS");

exit(EXIT_FAILURE);
}

/* We want at least five buffers. */

if (reqbuf.count < 5) {
/* You may need to free the buffers here. */
printf("Not enough buffer memory\\n");
exit(EXIT_FAILURE);

}

buffers = calloc(reqbuf.count, sizeof(*buffers));
assert(buffers != NULL);

for (i = 0; i < reqbuf.count; i++) {
struct v4l2_buffer buffer;

memset(&buffer, 0, sizeof(buffer));
buffer.type = reqbuf.type;
buffer.memory = V4L2_MEMORY_MMAP;
buffer.index = i;

if (-1 == ioctl (fd, VIDIOC_QUERYBUF, &buffer)) {
perror("VIDIOC_QUERYBUF");
exit(EXIT_FAILURE);

}

buffers[i].length = buffer.length; /* remember for munmap() */

buffers[i].start = mmap(NULL, buffer.length,
PROT_READ | PROT_WRITE, /* recommended */
MAP_SHARED, /* recommended */
fd, buffer.m.offset);

if (MAP_FAILED == buffers[i].start) {
/* If you do not exit here you should unmap() and free()

the buffers mapped so far. */

108 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

perror("mmap");
exit(EXIT_FAILURE);

}
}

/* Cleanup. */

for (i = 0; i < reqbuf.count; i++)
munmap(buffers[i].start, buffers[i].length);

Example: Mapping buffers in the multi-planar API

struct v4l2_requestbuffers reqbuf;
/* Our current format uses 3 planes per buffer */
#define FMT_NUM_PLANES = 3

struct {
void *start[FMT_NUM_PLANES];
size_t length[FMT_NUM_PLANES];

} *buffers;
unsigned int i, j;

memset(&reqbuf, 0, sizeof(reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
reqbuf.memory = V4L2_MEMORY_MMAP;
reqbuf.count = 20;

if (ioctl(fd, VIDIOC_REQBUFS, &reqbuf) < 0) {
if (errno == EINVAL)

printf("Video capturing or mmap-streaming is not supported\\n");
else

perror("VIDIOC_REQBUFS");

exit(EXIT_FAILURE);
}

/* We want at least five buffers. */

if (reqbuf.count < 5) {
/* You may need to free the buffers here. */
printf("Not enough buffer memory\\n");
exit(EXIT_FAILURE);

}

buffers = calloc(reqbuf.count, sizeof(*buffers));
assert(buffers != NULL);

for (i = 0; i < reqbuf.count; i++) {
struct v4l2_buffer buffer;
struct v4l2_plane planes[FMT_NUM_PLANES];

memset(&buffer, 0, sizeof(buffer));
buffer.type = reqbuf.type;
buffer.memory = V4L2_MEMORY_MMAP;
buffer.index = i;
/* length in struct v4l2_buffer in multi-planar API stores the size
* of planes array. */
buffer.length = FMT_NUM_PLANES;
buffer.m.planes = planes;

1.2. Part I - Video for Linux API 109

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

if (ioctl(fd, VIDIOC_QUERYBUF, &buffer) < 0) {
perror("VIDIOC_QUERYBUF");
exit(EXIT_FAILURE);

}

/* Every plane has to be mapped separately */
for (j = 0; j < FMT_NUM_PLANES; j++) {

buffers[i].length[j] = buffer.m.planes[j].length; /* remember for munmap() */

buffers[i].start[j] = mmap(NULL, buffer.m.planes[j].length,
PROT_READ | PROT_WRITE, /* recommended */
MAP_SHARED, /* recommended */
fd, buffer.m.planes[j].m.offset);

if (MAP_FAILED == buffers[i].start[j]) {
/* If you do not exit here you should unmap() and free()

the buffers and planes mapped so far. */
perror("mmap");
exit(EXIT_FAILURE);

}
}

}

/* Cleanup. */

for (i = 0; i < reqbuf.count; i++)
for (j = 0; j < FMT_NUM_PLANES; j++)

munmap(buffers[i].start[j], buffers[i].length[j]);

Conceptually streaming drivers maintain two buffer queues, an incoming and an outgoing queue. They
separate the synchronous capture or output operation locked to a video clock from the application which
is subject to random disk or network delays and preemption by other processes, thereby reducing the
probability of data loss. The queues are organized as FIFOs, buffers will be output in the order enqueued
in the incoming FIFO, and were captured in the order dequeued from the outgoing FIFO.
The driver may require a minimum number of buffers enqueued at all times to function, apart of this no
limit exists on the number of buffers applications can enqueue in advance, or dequeue and process. They
can also enqueue in a different order than buffers have been dequeued, and the driver can fill enqueued
empty buffers in any order. 2 The index number of a buffer (struct v4l2_buffer index) plays no role here,
it only identifies the buffer.
Initially all mapped buffers are in dequeued state, inaccessible by the driver. For capturing applications
it is customary to first enqueue all mapped buffers, then to start capturing and enter the read loop. Here
the application waits until a filled buffer can be dequeued, and re-enqueues the buffer when the data is
no longer needed. Output applications fill and enqueue buffers, when enough buffers are stacked up the
output is started with VIDIOC_STREAMON . In the write loop, when the application runs out of free buffers,
it must wait until an empty buffer can be dequeued and reused.
To enqueue and dequeue a buffer applications use the ioctl VIDIOC_QBUF, VIDIOC_DQBUF and VID-
IOC_DQBUF ioctl. The status of a buffer being mapped, enqueued, full or empty can be determined at
any time using the ioctl VIDIOC_QUERYBUF ioctl. Two methods exist to suspend execution of the applica-
tion until one or more buffers can be dequeued. By default VIDIOC_DQBUF blocks when no buffer is in the
outgoing queue. When the O_NONBLOCK flag was given to the open() function, VIDIOC_DQBUF returns
immediately with an EAGAIN error code when no buffer is available. The select() or poll() functions are
always available.
To start and stop capturing or output applications call the VIDIOC_STREAMON and VIDIOC_STREAMOFF
ioctl.

2 Random enqueue order permits applications processing images out of order (such as video codecs) to return buffers earlier,
reducing the probability of data loss. Random fill order allows drivers to reuse buffers on a LIFO-basis, taking advantage of caches
holding scatter-gather lists and the like.

110 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Drivers implementing memory mapping I/O must support the VIDIOC_REQBUFS , VIDIOC_QUERYBUF ,
VIDIOC_QBUF , VIDIOC_DQBUF , VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctls, the mmap() ,
munmap() , select() and poll() function. 3

[capture example]

Streaming I/O (User Pointers)

Input and output devices support this I/O method when the V4L2_CAP_STREAMING flag in the capabilities
field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl is set. If the particular
user pointer method (not only memory mapping) is supported must be determined by calling the ioctl
VIDIOC_REQBUFS ioctl with the memory type set to V4L2_MEMORY_USERPTR.
This I/O method combines advantages of the read/write and memory mapping methods. Buffers (planes)
are allocated by the application itself, and can reside for example in virtual or shared memory. Only
pointers to data are exchanged, these pointers and meta-information are passed in struct v4l2_buffer
(or in struct v4l2_plane in the multi-planar API case). The driver must be switched into user pointer
I/O mode by calling the ioctl VIDIOC_REQBUFS with the desired buffer type. No buffers (planes) are
allocated beforehand, consequently they are not indexed and cannot be queried like mapped buffers with
the VIDIOC_QUERYBUF ioctl.

Example: Initiating streaming I/O with user pointers

struct v4l2_requestbuffers reqbuf;

memset (&reqbuf, 0, sizeof (reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_USERPTR;

if (ioctl (fd, VIDIOC_REQBUFS, &reqbuf) == -1) {
if (errno == EINVAL)

printf ("Video capturing or user pointer streaming is not supported\\n");
else

perror ("VIDIOC_REQBUFS");

exit (EXIT_FAILURE);
}

Buffer (plane) addresses and sizes are passed on the fly with the VIDIOC_QBUF ioctl. Although buffers
are commonly cycled, applications can pass different addresses and sizes at each VIDIOC_QBUF call. If
required by the hardware the driver swaps memory pages within physical memory to create a continuous
area of memory. This happens transparently to the application in the virtual memory subsystem of the
kernel. When buffer pages have been swapped out to disk they are brought back and finally locked in
physical memory for DMA. 1

Filled or displayed buffers are dequeued with the VIDIOC_DQBUF ioctl. The driver can unlock the memory
pages at any time between the completion of the DMA and this ioctl. The memory is also unlocked
when VIDIOC_STREAMOFF is called, ioctl VIDIOC_REQBUFS , or when the device is closed. Applications
must take care not to free buffers without dequeuing. For once, the buffers remain locked until further,
wasting physical memory. Second the driver will not be notified when the memory is returned to the
application’s free list and subsequently reused for other purposes, possibly completing the requested
DMA and overwriting valuable data.

3 At the driver level select() and poll() are the same, and select() is too important to be optional. The rest should be evident.
1 We expect that frequently used buffers are typically not swapped out. Anyway, the process of swapping, locking or generating

scatter-gather lists may be time consuming. The delay can be masked by the depth of the incoming buffer queue, and perhaps by
maintaining caches assuming a buffer will be soon enqueued again. On the other hand, to optimize memory usage drivers can limit
the number of buffers locked in advance and recycle the most recently used buffers first. Of course, the pages of empty buffers
in the incoming queue need not be saved to disk. Output buffers must be saved on the incoming and outgoing queue because an
application may share them with other processes.

1.2. Part I - Video for Linux API 111

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

For capturing applications it is customary to enqueue a number of empty buffers, to start capturing and
enter the read loop. Here the application waits until a filled buffer can be dequeued, and re-enqueues
the buffer when the data is no longer needed. Output applications fill and enqueue buffers, when enough
buffers are stacked up output is started. In the write loop, when the application runs out of free buffers it
must wait until an empty buffer can be dequeued and reused. Two methods exist to suspend execution
of the application until one or more buffers can be dequeued. By default VIDIOC_DQBUF blocks when
no buffer is in the outgoing queue. When the O_NONBLOCK flag was given to the open() function, VID-
IOC_DQBUF returns immediately with an EAGAIN error code when no buffer is available. The select() or
poll() function are always available.
To start and stop capturing or output applications call the VIDIOC_STREAMON and VIDIOC_STREAMOFF
ioctl.

Note:

ref:VIDIOC_STREAMOFF <VIDIOC_STREAMON> removes all buffers from both queues and unlocks all
buffers as a side effect. Since there is no notion of doing anything “now” on a multitasking system,
if an application needs to synchronize with another event it should examine the struct v4l2_buffer
timestamp of captured or outputted buffers.

Drivers implementing user pointer I/O must support the VIDIOC_REQBUFS , VIDIOC_QBUF , VID-
IOC_DQBUF , VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctls, the select() and poll() function.
2

Streaming I/O (DMA buffer importing)

The DMABUF framework provides a generic method for sharing buffers between multiple devices. Device
drivers that support DMABUF can export a DMA buffer to userspace as a file descriptor (known as the ex-
porter role), import a DMA buffer from userspace using a file descriptor previously exported for a different
or the same device (known as the importer role), or both. This section describes the DMABUF importer
role API in V4L2.
Refer to DMABUF exporting for details about exporting V4L2 buffers as DMABUF file descriptors.
Input and output devices support the streaming I/O method when the V4L2_CAP_STREAMING flag in the
capabilities field of struct v4l2_capability returned by the VIDIOC_QUERYCAP ioctl is set. Whether
importing DMA buffers through DMABUF file descriptors is supported is determined by calling the VID-
IOC_REQBUFS ioctl with the memory type set to V4L2_MEMORY_DMABUF.
This I/O method is dedicated to sharing DMA buffers between different devices, which may be V4L devices
or other video-related devices (e.g. DRM). Buffers (planes) are allocated by a driver on behalf of an
application. Next, these buffers are exported to the application as file descriptors using an API which
is specific for an allocator driver. Only such file descriptor are exchanged. The descriptors and meta-
information are passed in struct v4l2_buffer (or in struct v4l2_plane in the multi-planar API case). The
driver must be switched into DMABUF I/O mode by calling the VIDIOC_REQBUFS with the desired buffer
type.

Example: Initiating streaming I/O with DMABUF file descriptors

struct v4l2_requestbuffers reqbuf;

memset(&reqbuf, 0, sizeof (reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_DMABUF;
reqbuf.count = 1;

2 At the driver level select() and poll() are the same, and select() is too important to be optional. The rest should be evident.

112 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

if (ioctl(fd, VIDIOC_REQBUFS, &reqbuf) == -1) {
if (errno == EINVAL)

printf("Video capturing or DMABUF streaming is not supported\\n");
else

perror("VIDIOC_REQBUFS");

exit(EXIT_FAILURE);
}

The buffer (plane) file descriptor is passed on the fly with the VIDIOC_QBUF ioctl. In case of multiplanar
buffers, every plane can be associated with a different DMABUF descriptor. Although buffers are commonly
cycled, applications can pass a different DMABUF descriptor at each VIDIOC_QBUF call.

Example: Queueing DMABUF using single plane API

int buffer_queue(int v4lfd, int index, int dmafd)
{

struct v4l2_buffer buf;

memset(&buf, 0, sizeof buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_DMABUF;
buf.index = index;
buf.m.fd = dmafd;

if (ioctl(v4lfd, VIDIOC_QBUF, &buf) == -1) {
perror("VIDIOC_QBUF");
return -1;

}

return 0;
}

Example 3.6. Queueing DMABUF using multi plane API

int buffer_queue_mp(int v4lfd, int index, int dmafd[], int n_planes)
{

struct v4l2_buffer buf;
struct v4l2_plane planes[VIDEO_MAX_PLANES];
int i;

memset(&buf, 0, sizeof buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
buf.memory = V4L2_MEMORY_DMABUF;
buf.index = index;
buf.m.planes = planes;
buf.length = n_planes;

memset(&planes, 0, sizeof planes);

for (i = 0; i < n_planes; ++i)
buf.m.planes[i].m.fd = dmafd[i];

if (ioctl(v4lfd, VIDIOC_QBUF, &buf) == -1) {
perror("VIDIOC_QBUF");
return -1;

}

1.2. Part I - Video for Linux API 113

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

return 0;
}

Captured or displayed buffers are dequeued with the VIDIOC_DQBUF ioctl. The driver can unlock the
buffer at any time between the completion of the DMA and this ioctl. The memory is also unlocked when
VIDIOC_STREAMOFF is called, VIDIOC_REQBUFS , or when the device is closed.
For capturing applications it is customary to enqueue a number of empty buffers, to start capturing and
enter the read loop. Here the application waits until a filled buffer can be dequeued, and re-enqueues
the buffer when the data is no longer needed. Output applications fill and enqueue buffers, when enough
buffers are stacked up output is started. In the write loop, when the application runs out of free buffers it
must wait until an empty buffer can be dequeued and reused. Two methods exist to suspend execution
of the application until one or more buffers can be dequeued. By default VIDIOC_DQBUF blocks when
no buffer is in the outgoing queue. When the O_NONBLOCK flag was given to the open() function, VID-
IOC_DQBUF returns immediately with an EAGAIN error code when no buffer is available. The select()
and poll() functions are always available.
To start and stop capturing or displaying applications call the VIDIOC_STREAMON and VID-
IOC_STREAMOFF ioctls.

Note:

VIDIOC_STREAMOFF removes all buffers from both queues and unlocks all buffers as a side effect.
Since there is no notion of doing anything “now” on a multitasking system, if an application needs to
synchronize with another event it should examine the struct v4l2_buffer timestamp of captured or
outputted buffers.

Drivers implementing DMABUF importing I/O must support the VIDIOC_REQBUFS , VIDIOC_QBUF , VID-
IOC_DQBUF , VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctls, and the select() and poll() functions.

Asynchronous I/O

This method is not defined yet.

Buffers

A buffer contains data exchanged by application and driver using one of the Streaming I/O methods. In the
multi-planar API, the data is held in planes, while the buffer structure acts as a container for the planes.
Only pointers to buffers (planes) are exchanged, the data itself is not copied. These pointers, together with
meta-information like timestamps or field parity, are stored in a struct v4l2_buffer, argument to the ioctl
VIDIOC_QUERYBUF , ioctl VIDIOC_QBUF, VIDIOC_DQBUF and VIDIOC_DQBUF ioctl. In the multi-planar
API, some plane-specific members of struct v4l2_buffer, such as pointers and sizes for each plane, are
stored in struct struct v4l2_plane instead. In that case, struct struct v4l2_buffer contains an array of
plane structures.
Dequeued video buffers come with timestamps. The driver decides at which part of the frame and with
which clock the timestamp is taken. Please see flags in the masks V4L2_BUF_FLAG_TIMESTAMP_MASK and
V4L2_BUF_FLAG_TSTAMP_SRC_MASK in Buffer Flags . These flags are always valid and constant across
all buffers during the whole video stream. Changes in these flags may take place as a side effect of
VIDIOC_S_INPUT or VIDIOC_S_OUTPUT however. The V4L2_BUF_FLAG_TIMESTAMP_COPY timestamp type
which is used by e.g. on mem-to-mem devices is an exception to the rule: the timestamp source flags
are copied from the OUTPUT video buffer to the CAPTURE video buffer.

114 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Interactions between formats, controls and buffers

V4L2 exposes parameters that influence the buffer size, or the way data is laid out in the buffer. Those
parameters are exposed through both formats and controls. One example of such a control is the
V4L2_CID_ROTATE control that modifies the direction in which pixels are stored in the buffer, as well as
the buffer size when the selected format includes padding at the end of lines.
The set of information needed to interpret the content of a buffer (e.g. the pixel format, the line stride, the
tiling orientation or the rotation) is collectively referred to in the rest of this section as the buffer layout.
Controls that can modify the buffer layout shall set the V4L2_CTRL_FLAG_MODIFY_LAYOUT flag.
Modifying formats or controls that influence the buffer size or layout require the stream to be stopped.
Any attempt at such a modification while the stream is active shall cause the ioctl setting the format or the
control to return the EBUSY error code. In that case drivers shall also set the V4L2_CTRL_FLAG_GRABBED
flag when calling VIDIOC_QUERYCTRL() or VIDIOC_QUERY_EXT_CTRL() for such a control while the stream
is active.

Note:

The VIDIOC_S_SELECTION() ioctl can, depending on the hardware (for instance if the device doesn’t
include a scaler), modify the format in addition to the selection rectangle. Similarly, the VID-
IOC_S_INPUT(), VIDIOC_S_OUTPUT(), VIDIOC_S_STD() and VIDIOC_S_DV_TIMINGS() ioctls can also
modify the format and selection rectangles. When those ioctls result in a buffer size or layout change,
drivers shall handle that condition as they would handle it in the VIDIOC_S_FMT() ioctl in all cases
described in this section.

Controls that only influence the buffer layout can be modified at any time when the stream is stopped.
As they don’t influence the buffer size, no special handling is needed to synchronize those controls with
buffer allocation and the V4L2_CTRL_FLAG_GRABBED flag is cleared once the stream is stopped.
Formats and controls that influence the buffer size interact with buffer allocation. The simplest way to
handle this is for drivers to always require buffers to be reallocated in order to change those formats or
controls. In that case, to perform such changes, userspace applications shall first stop the video stream
with the VIDIOC_STREAMOFF() ioctl if it is running and free all buffers with the VIDIOC_REQBUFS() ioctl if
they are allocated. After freeing all buffers the V4L2_CTRL_FLAG_GRABBED flag for controls is cleared. The
format or controls can then be modified, and buffers shall then be reallocated and the stream restarted.
A typical ioctl sequence is

1. VIDIOC_STREAMOFF
2. VIDIOC_REQBUFS(0)
3. VIDIOC_S_EXT_CTRLS
4. VIDIOC_S_FMT
5. VIDIOC_REQBUFS(n)
6. VIDIOC_QBUF
7. VIDIOC_STREAMON

The second VIDIOC_REQBUFS() call will take the new format and control value into account to compute
the buffer size to allocate. Applications can also retrieve the size by calling the VIDIOC_G_FMT() ioctl if
needed.

1.2. Part I - Video for Linux API 115

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

The API doesn’t mandate the above order for control (3.) and format (4.) changes. Format and controls
can be set in a different order, or even interleaved, depending on the device and use case. For instance
some controls might behave differently for different pixel formats, in which case the format might need
to be set first.

When reallocation is required, any attempt to modify format or controls that influences the buffer size while
buffers are allocated shall cause the format or control set ioctl to return the EBUSY error. Any attempt to
queue a buffer too small for the current format or controls shall cause the VIDIOC_QBUF() ioctl to return
a EINVAL error.
Buffer reallocation is an expensive operation. To avoid that cost, drivers can (and are encouraged to)
allow format or controls that influence the buffer size to be changed with buffers allocated. In that case,
a typical ioctl sequence to modify format and controls is

1. VIDIOC_STREAMOFF
2. VIDIOC_S_EXT_CTRLS
3. VIDIOC_S_FMT
4. VIDIOC_QBUF
5. VIDIOC_STREAMON

For this sequence to operate correctly, queued buffers need to be large enough for the new format or
controls. Drivers shall return a ENOSPC error in response to format change (VIDIOC_S_FMT()) or control
changes (VIDIOC_S_CTRL() or VIDIOC_S_EXT_CTRLS()) if buffers too small for the new format are cur-
rently queued. As a simplification, drivers are allowed to return a EBUSY error from these ioctls if any
buffer is currently queued, without checking the queued buffers sizes.
Additionally, drivers shall return a EINVAL error from the VIDIOC_QBUF() ioctl if the buffer being queued
is too small for the current format or controls. Together, these requirements ensure that queued buffers
will always be large enough for the configured format and controls.
Userspace applications can query the buffer size required for a given format and controls by first setting
the desired control values and then trying the desired format. The VIDIOC_TRY_FMT() ioctl will return the
required buffer size.

1. VIDIOC_S_EXT_CTRLS(x)
2. VIDIOC_TRY_FMT()
3. VIDIOC_S_EXT_CTRLS(y)
4. VIDIOC_TRY_FMT()

The VIDIOC_CREATE_BUFS() ioctl can then be used to allocate buffers based on the queried sizes (for
instance by allocating a set of buffers large enough for all the desired formats and controls, or by allocating
separate set of appropriately sized buffers for each use case).
v4l2_buffer

struct v4l2_buffer

116 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.32: struct v4l2_buffer

__u32 index Number of the buffer, set by the application except when
calling VIDIOC_DQBUF , then it is set by the driver.
This field can range from zero to the number of buffers
allocated with the ioctl VIDIOC_REQBUFS ioctl (struct
v4l2_requestbuffers count), plus any buffers allocated
with ioctl VIDIOC_CREATE_BUFS minus one.

__u32 type Type of the buffer, same as struct v4l2_format type or
struct v4l2_requestbuffers type, set by the application.
See v4l2_buf_type

__u32 bytesused The number of bytes occupied by the data in the buffer.
It depends on the negotiated data format and may change
with each buffer for compressed variable size data like JPEG
images. Drivers must set this field when type refers to
a capture stream, applications when it refers to an output
stream. If the application sets this to 0 for an output stream,
then bytesused will be set to the size of the buffer (see the
length field of this struct) by the driver. For multiplanar
formats this field is ignored and the planes pointer is used
instead.

__u32 flags Flags set by the application or driver, see Buffer Flags .
__u32 field Indicates the field order of the image in the buffer, see

v4l2_field. This field is not used when the buffer contains
VBI data. Drivers must set it when type refers to a capture
stream, applications when it refers to an output stream.

struct timeval timestamp For capture streams this is time when the first data byte
was captured, as returned by the clock_gettime() function
for the relevant clock id; see V4L2_BUF_FLAG_TIMESTAMP_*
in Buffer Flags . For output streams the driver stores the
time at which the last data byte was actually sent out in
the timestamp field. This permits applications to monitor
the drift between the video and system clock. For output
streams that use V4L2_BUF_FLAG_TIMESTAMP_COPY the ap-
plication has to fill in the timestamp which will be copied by
the driver to the capture stream.

struct
v4l2_timecode

timecode When type is V4L2_BUF_TYPE_VIDEO_CAPTURE and the
V4L2_BUF_FLAG_TIMECODE flag is set in flags, this struc-
ture contains a frame timecode. In V4L2_FIELD_ALTERNATE
mode the top and bottom field contain the same timecode.
Timecodes are intended to help video editing and are typi-
cally recorded on video tapes, but also embedded in com-
pressed formats like MPEG. This field is independent of the
timestamp and sequence fields.

__u32 sequence Set by the driver, counting the frames (not fields!) in se-
quence. This field is set for both input and output devices.

Continued on next page

1.2. Part I - Video for Linux API 117

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.32 – continued from previous page
In V4L2_FIELD_ALTERNATE mode the top and
bottom field have the same sequence number. The count starts at
zero and includes dropped or repeated frames. A dropped frame was
received by an input device but could not be stored due to lack of
free buffer space. A repeated frame was displayed again by an
output device because the application did not pass new data in
time.

Note:

This may count the frames received e.g. over USB, without
taking into account the frames dropped by the remote hardware due
to limited compression throughput or bus bandwidth. These devices
identify by not enumerating any video standards, see
Video Standards .

__u32 memory This field must be set by applications and/or drivers in ac-
cordance with the selected I/O method. See v4l2_memory

union m
__u32 offset For the single-planar API and when memory is

V4L2_MEMORY_MMAP this is the offset of the buffer from
the start of the device memory. The value is returned by
the driver and apart of serving as parameter to the mmap()
function not useful for applications. See Streaming I/O
(Memory Mapping) for details

unsigned long userptr For the single-planar API and when memory is
V4L2_MEMORY_USERPTR this is a pointer to the buffer
(casted to unsigned long type) in virtual memory, set by the
application. See Streaming I/O (User Pointers) for details.

struct
v4l2_plane

*planes When using the multi-planar API, contains a userspace
pointer to an array of struct v4l2_plane. The size of
the array should be put in the length field of this struct
v4l2_buffer structure.

int fd For the single-plane API and when memory is
V4L2_MEMORY_DMABUF this is the file descriptor associ-
ated with a DMABUF buffer.

__u32 length Size of the buffer (not the payload) in bytes for the single-
planar API. This is set by the driver based on the calls to ioctl
VIDIOC_REQBUFS and/or ioctl VIDIOC_CREATE_BUFS . For
the multi-planar API the application sets this to the number
of elements in the planes array. The driver will fill in the
actual number of valid elements in that array.

__u32 reserved2 A place holder for future extensions. Drivers and applica-
tions must set this to 0.

__u32 reserved A place holder for future extensions. Drivers and applica-
tions must set this to 0.

v4l2_plane

struct v4l2_plane

118 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

__u32 bytesused The number of bytes occupied by data
in the plane (its payload). Drivers must
set this field when type refers to a cap-
ture stream, applications when it refers
to an output stream. If the application
sets this to 0 for an output stream, then
bytesused will be set to the size of the
plane (see the length field of this struct)
by the driver.
Note:

Note that the actual image data
starts at data_offsetwhichmay not
be 0.

__u32 length Size in bytes of the plane (not its pay-
load). This is set by the driver based
on the calls to ioctl VIDIOC_REQBUFS
and/or ioctl VIDIOC_CREATE_BUFS .

union m
__u32 mem_offset When the memory type in the

containing struct v4l2_buffer is
V4L2_MEMORY_MMAP, this is the value
that should be passed to mmap() ,
similar to the offset field in struct
v4l2_buffer.

unsigned long userptr When the memory type in the
containing struct v4l2_buffer is
V4L2_MEMORY_USERPTR, this is a
userspace pointer to the memory
allocated for this plane by an applica-
tion.

int fd When the memory type in the
containing struct v4l2_buffer is
V4L2_MEMORY_DMABUF, this is a file
descriptor associated with a DMABUF
buffer, similar to the fd field in struct
v4l2_buffer.

__u32 data_offset Offset in bytes to video data in the
plane. Drivers must set this field when
type refers to a capture stream, applica-
tions when it refers to an output stream.
Note:

That data_offset is included in byte-
sused. So the size of the image in the
plane is bytesused-data_offset at
offset data_offset from the start of
the plane.

__u32 reserved[11] Reserved for future use. Should be ze-
roed by drivers and applications.

v4l2_buf_type

1.2. Part I - Video for Linux API 119

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

enum v4l2_buf_type

V4L2_BUF_TYPE_VIDEO_CAPTURE 1 Buffer of a single-planar video capture stream, see
Video Capture Interface .

V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE 9 Buffer of a multi-planar video capture stream, see Video
Capture Interface .

V4L2_BUF_TYPE_VIDEO_OUTPUT 2 Buffer of a single-planar video output stream, see Video
Output Interface .

V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE 10 Buffer of a multi-planar video output stream, see Video
Output Interface .

V4L2_BUF_TYPE_VIDEO_OVERLAY 3 Buffer for video overlay, see Video Overlay Interface .
V4L2_BUF_TYPE_VBI_CAPTURE 4 Buffer of a raw VBI capture stream, see Raw VBI Data

Interface .
V4L2_BUF_TYPE_VBI_OUTPUT 5 Buffer of a raw VBI output stream, see Raw VBI Data

Interface .
V4L2_BUF_TYPE_SLICED_VBI_CAPTURE 6 Buffer of a sliced VBI capture stream, see Sliced VBI

Data Interface .
V4L2_BUF_TYPE_SLICED_VBI_OUTPUT 7 Buffer of a sliced VBI output stream, see Sliced VBI Data

Interface .
V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY 8 Buffer for video output overlay (OSD), see Video Output

Overlay Interface .
V4L2_BUF_TYPE_SDR_CAPTURE 11 Buffer for Software Defined Radio (SDR) capture stream,

see Software Defined Radio Interface (SDR) .
V4L2_BUF_TYPE_SDR_OUTPUT 12 Buffer for Software Defined Radio (SDR) output stream,

see Software Defined Radio Interface (SDR) .
V4L2_BUF_TYPE_META_CAPTURE 13 Buffer for metadata capture, see Metadata Interface .

Buffer Flags

V4L2_BUF_FLAG_MAPPED
0x00000001

The buffer resides in device memory and has
been mapped into the application’s address
space, see Streaming I/O (Memory Mapping)

for details. Drivers set or clear this flag
when the ioctl VIDIOC_QUERYBUF , ioctl VID-
IOC_QBUF, VIDIOC_DQBUF or VIDIOC_DQBUF
ioctl is called. Set by the driver.

V4L2_BUF_FLAG_QUEUED
0x00000002

Internally drivers maintain two buffer queues,
an incoming and outgoing queue. When this
flag is set, the buffer is currently on the in-
coming queue. It automatically moves to the
outgoing queue after the buffer has been filled
(capture devices) or displayed (output devices).
Drivers set or clear this flag when the VID-
IOC_QUERYBUF ioctl is called. After (successful)
calling the VIDIOC_QBUFioctl it is always set and
after VIDIOC_DQBUF always cleared.

Continued on next page

120 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.34 – continued from previous page
V4L2_BUF_FLAG_DONE

0x00000004
When this flag is set, the buffer is cur-

rently on the outgoing queue, ready to be de-
queued from the driver. Drivers set or clear
this flag when the VIDIOC_QUERYBUF ioctl is
called. After calling the VIDIOC_QBUF or VID-
IOC_DQBUF it is always cleared. Of course
a buffer cannot be on both queues at the
same time, the V4L2_BUF_FLAG_QUEUED and
V4L2_BUF_FLAG_DONE flag are mutually exclu-
sive. They can be both cleared however, then
the buffer is in “dequeued” state, in the appli-
cation domain so to say.

V4L2_BUF_FLAG_ERROR
0x00000040

When this flag is set, the buffer has been de-
queued successfully, although the data might
have been corrupted. This is recoverable,
streaming may continue as normal and the
buffer may be reused normally. Drivers set this
flag when the VIDIOC_DQBUF ioctl is called.

V4L2_BUF_FLAG_KEYFRAME
0x00000008

Drivers set or clear this flag when calling the
VIDIOC_DQBUF ioctl. It may be set by video cap-
ture devices when the buffer contains a com-
pressed image which is a key frame (or field),
i. e. can be decompressed on its own. Also
known as an I-frame. Applications can set this
bit when type refers to an output stream.

V4L2_BUF_FLAG_PFRAME
0x00000010

Similar to V4L2_BUF_FLAG_KEYFRAME this flags
predicted frames or fields which contain only
differences to a previous key frame. Applica-
tions can set this bit when type refers to an out-
put stream.

V4L2_BUF_FLAG_BFRAME
0x00000020

Similar to V4L2_BUF_FLAG_KEYFRAME this flags
a bi-directional predicted frame or field which
contains only the differences between the cur-
rent frame and both the preceding and follow-
ing key frames to specify its content. Applica-
tions can set this bit when type refers to an out-
put stream.

V4L2_BUF_FLAG_TIMECODE
0x00000100

The timecode field is valid. Drivers set or clear
this flag when the VIDIOC_DQBUF ioctl is called.
Applications can set this bit and the correspond-
ing timecode structure when type refers to an
output stream.

V4L2_BUF_FLAG_PREPARED
0x00000400

The buffer has been prepared for I/O and can
be queued by the application. Drivers set or
clear this flag when the ioctl VIDIOC_QUERYBUF
, VIDIOC_PREPARE_BUF , ioctl VIDIOC_QBUF,
VIDIOC_DQBUF or VIDIOC_DQBUF ioctl is
called.

V4L2_BUF_FLAG_NO_CACHE_INVALIDATE
0x00000800

Caches do not have to be invalidated for this
buffer. Typically applications shall use this flag
if the data captured in the buffer is not going
to be touched by the CPU, instead the buffer
will, probably, be passed on to a DMA-capable
hardware unit for further processing or output.

Continued on next page

1.2. Part I - Video for Linux API 121

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.34 – continued from previous page
V4L2_BUF_FLAG_NO_CACHE_CLEAN

0x00001000
Caches do not have to be cleaned for this

buffer. Typically applications shall use this flag
for output buffers if the data in this buffer has
not been created by the CPU but by some DMA-
capable unit, in which case caches have not
been used.

V4L2_BUF_FLAG_LAST
0x00100000

Last buffer produced by the hardware.
mem2mem codec drivers set this flag on the
capture queue for the last buffer when the ioctl
VIDIOC_QUERYBUF or VIDIOC_DQBUF ioctl is
called. Due to hardware limitations, the last
buffer may be empty. In this case the driver will
set the bytesused field to 0, regardless of the
format. Any Any subsequent call to the VID-
IOC_DQBUF ioctl will not block anymore, but
return an EPIPE error code.

V4L2_BUF_FLAG_TIMESTAMP_MASK
0x0000e000

Mask for timestamp types below. To test the
timestamp type, mask out bits not belonging to
timestamp type by performing a logical and op-
eration with buffer flags and timestamp mask.

V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN
0x00000000

Unknown timestamp type. This type is
used by drivers before Linux 3.9 and may
be either monotonic (see below) or real-
time (wall clock). Monotonic clock has been
favoured in embedded systems whereas most
of the drivers use the realtime clock. Ei-
ther kinds of timestamps are available in
user space via clock_gettime() using clock
IDs CLOCK_MONOTONIC and CLOCK_REALTIME, re-
spectively.

V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC
0x00002000

The buffer timestamp has been taken from the
CLOCK_MONOTONIC clock. To access the same
clock outside V4L2, use clock_gettime().

V4L2_BUF_FLAG_TIMESTAMP_COPY
0x00004000

The CAPTURE buffer timestamp has been taken
from the corresponding OUTPUT buffer. This
flag applies only to mem2mem devices.

V4L2_BUF_FLAG_TSTAMP_SRC_MASK
0x00070000

Mask for timestamp sources below. The
timestamp source defines the point of time the
timestamp is taken in relation to the frame.
Logical ‘and’ operation between the flags
field and V4L2_BUF_FLAG_TSTAMP_SRC_MASK
produces the value of the timestamp source.
Applications must set the timestamp source
when type refers to an output stream and
V4L2_BUF_FLAG_TIMESTAMP_COPY is set.

V4L2_BUF_FLAG_TSTAMP_SRC_EOF
0x00000000

End Of Frame. The buffer timestamp has been
taken when the last pixel of the frame has been
received or the last pixel of the frame has been
transmitted. In practice, software generated
timestamps will typically be read from the clock
a small amount of time after the last pixel has
been received or transmitten, depending on the
system and other activity in it.

Continued on next page

122 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.34 – continued from previous page
V4L2_BUF_FLAG_TSTAMP_SRC_SOE

0x00010000
Start Of Exposure. The buffer timestamp

has been taken when the exposure of the
frame has begun. This is only valid for the
V4L2_BUF_TYPE_VIDEO_CAPTURE buffer type.

v4l2_memory

enum v4l2_memory

V4L2_MEMORY_MMAP 1 The buffer is used for memory mapping I/O.
V4L2_MEMORY_USERPTR 2 The buffer is used for user pointer I/O.
V4L2_MEMORY_OVERLAY 3 [to do]
V4L2_MEMORY_DMABUF 4 The buffer is used for DMA shared buffer I/O.

Timecodes

The struct v4l2_timecode structure is designed to hold a SMPTE 12M or similar timecode. (struct struct
timeval timestamps are stored in struct v4l2_buffer field timestamp.)
v4l2_timecode

struct v4l2_timecode

__u32 type Frame rate the timecodes are based on, see Time-
code Types .

__u32 flags Timecode flags, see Timecode Flags .
__u8 frames Frame count, 0 ... 23/24/29/49/59, depending on

the type of timecode.
__u8 seconds Seconds count, 0 ... 59. This is a binary, not BCD

number.
__u8 minutes Minutes count, 0 ... 59. This is a binary, not BCD

number.
__u8 hours Hours count, 0 ... 29. This is a binary, not BCD

number.
__u8 userbits[4] The “user group” bits from the timecode.

Timecode Types

V4L2_TC_TYPE_24FPS 1 24 frames per second, i. e. film.
V4L2_TC_TYPE_25FPS 2 25 frames per second, i. e. PAL or SECAM video.
V4L2_TC_TYPE_30FPS 3 30 frames per second, i. e. NTSC video.
V4L2_TC_TYPE_50FPS 4
V4L2_TC_TYPE_60FPS 5

1.2. Part I - Video for Linux API 123

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Timecode Flags

V4L2_TC_FLAG_DROPFRAME 0x0001 Indicates “drop frame” semantics for counting frames
in 29.97 fps material. When set, frame numbers 0 and
1 at the start of each minute, except minutes 0, 10,
20, 30, 40, 50 are omitted from the count.

V4L2_TC_FLAG_COLORFRAME 0x0002 The “color frame” flag.
V4L2_TC_USERBITS_field 0x000C Field mask for the “binary group flags”.
V4L2_TC_USERBITS_USERDEFINED 0x0000 Unspecified format.
V4L2_TC_USERBITS_8BITCHARS 0x0008 8-bit ISO characters.

Field Order

We have to distinguish between progressive and interlaced video. Progressive video transmits all lines of
a video image sequentially. Interlaced video divides an image into two fields, containing only the odd and
even lines of the image, respectively. Alternating the so called odd and even field are transmitted, and
due to a small delay between fields a cathode ray TV displays the lines interleaved, yielding the original
frame. This curious technique was invented because at refresh rates similar to film the image would fade
out too quickly. Transmitting fields reduces the flicker without the necessity of doubling the frame rate
and with it the bandwidth required for each channel.
It is important to understand a video camera does not expose one frame at a time, merely transmitting
the frames separated into fields. The fields are in fact captured at two different instances in time. An
object on screen may well move between one field and the next. For applications analysing motion it is
of paramount importance to recognize which field of a frame is older, the temporal order.
When the driver provides or accepts images field by field rather than interleaved, it is also important
applications understand how the fields combine to frames. We distinguish between top (aka odd) and
bottom (aka even) fields, the spatial order: The first line of the top field is the first line of an interlaced
frame, the first line of the bottom field is the second line of that frame.
However because fields were captured one after the other, arguing whether a frame commences with the
top or bottom field is pointless. Any two successive top and bottom, or bottom and top fields yield a valid
frame. Only when the source was progressive to begin with, e. g. when transferring film to video, two
fields may come from the same frame, creating a natural order.
Counter to intuition the top field is not necessarily the older field. Whether the older field contains the
top or bottom lines is a convention determined by the video standard. Hence the distinction between
temporal and spatial order of fields. The diagrams below should make this clearer.
All video capture and output devices must report the current field order. Some drivers may permit the
selection of a different order, to this end applications initialize the field field of struct v4l2_pix_format
before calling the VIDIOC_S_FMT ioctl. If this is not desired it should have the value V4L2_FIELD_ANY (0).

enum v4l2_field

v4l2_field

124 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_FIELD_ANY 0 Applications request this field order when any
one of the V4L2_FIELD_NONE, V4L2_FIELD_TOP,
V4L2_FIELD_BOTTOM, or V4L2_FIELD_INTERLACED
formats is acceptable. Drivers choose de-
pending on hardware capabilities or e. g.
the requested image size, and return the ac-
tual field order. Drivers must never return
V4L2_FIELD_ANY. If multiple field orders are pos-
sible the driver must choose one of the possi-
ble field orders during VIDIOC_S_FMT or VID-
IOC_TRY_FMT . struct v4l2_buffer field can
never be V4L2_FIELD_ANY.

V4L2_FIELD_NONE 1 Images are in progressive format, not interlaced.
The driver may also indicate this order when it
cannot distinguish between V4L2_FIELD_TOP and
V4L2_FIELD_BOTTOM.

V4L2_FIELD_TOP 2 Images consist of the top (aka odd) field only.
V4L2_FIELD_BOTTOM 3 Images consist of the bottom (aka even) field

only. Applications may wish to prevent a device
from capturing interlaced images because they
will have “comb” or “feathering” artefacts around
moving objects.

V4L2_FIELD_INTERLACED 4 Images contain both fields, interleaved line by
line. The temporal order of the fields (whether the
top or bottom field is first transmitted) depends on
the current video standard. M/NTSC transmits the
bottom field first, all other standards the top field
first.

V4L2_FIELD_SEQ_TB 5 Images contain both fields, the top field lines are
stored first in memory, immediately followed by
the bottom field lines. Fields are always stored
in temporal order, the older one first in memory.
Image sizes refer to the frame, not fields.

V4L2_FIELD_SEQ_BT 6 Images contain both fields, the bottom field lines
are stored first in memory, immediately followed
by the top field lines. Fields are always stored in
temporal order, the older one first in memory. Im-
age sizes refer to the frame, not fields.

V4L2_FIELD_ALTERNATE 7 The two fields of a frame are passed in sepa-
rate buffers, in temporal order, i. e. the older
one first. To indicate the field parity (whether the
current field is a top or bottom field) the driver
or application, depending on data direction, must
set struct v4l2_buffer field to V4L2_FIELD_TOP
or V4L2_FIELD_BOTTOM. Any two successive fields
pair to build a frame. If fields are successive, with-
out any dropped fields between them (fields can
drop individually), can be determined from the
struct v4l2_buffer sequence field. This format
cannot be selected when using the read/write I/O
method since there is no way to communicate if a
field was a top or bottom field.

V4L2_FIELD_INTERLACED_TB 8 Images contain both fields, interleaved line by
line, top field first. The top field is transmitted
first.

V4L2_FIELD_INTERLACED_BT 9 Images contain both fields, interleaved line by
line, top field first. The bottom field is transmit-
ted first.

1.2. Part I - Video for Linux API 125

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Field Order, Top Field First Transmitted

Field Order, Bottom Field First Transmitted

1.2.4 Interfaces

Video Capture Interface

Video capture devices sample an analog video signal and store the digitized images in memory. Today
nearly all devices can capture at full 25 or 30 frames/second. With this interface applications can control
the capture process and move images from the driver into user space.
Conventionally V4L2 video capture devices are accessed through character device special files named
/dev/video and /dev/video0 to /dev/video63 with major number 81 and minor numbers 0 to 63.
/dev/video is typically a symbolic link to the preferred video device.

Note:

The same device file names are used for video output devices.

Querying Capabilities

Devices supporting the video capture interface set the V4L2_CAP_VIDEO_CAPTURE or
V4L2_CAP_VIDEO_CAPTURE_MPLANE flag in the capabilities field of struct v4l2_capability returned
by the ioctl VIDIOC_QUERYCAP ioctl. As secondary device functions they may also support the video
overlay (V4L2_CAP_VIDEO_OVERLAY) and the raw VBI capture (V4L2_CAP_VBI_CAPTURE) interface. At
least one of the read/write or streaming I/O methods must be supported. Tuners and audio inputs are
optional.

Supplemental Functions

Video capture devices shall support audio input , Tuners and Modulators , controls , cropping and
scaling and streaming parameter ioctls as needed. The video input ioctls must be supported by all
video capture devices.

Image Format Negotiation

The result of a capture operation is determined by cropping and image format parameters. The former
select an area of the video picture to capture, the latter how images are stored in memory, i. e. in RGB or
YUV format, the number of bits per pixel or width and height. Together they also define how images are
scaled in the process.
As usual these parameters are not reset at open() time to permit Unix tool chains, programming a device
and then reading from it as if it was a plain file. Well written V4L2 applications ensure they really get what
they want, including cropping and scaling.
Cropping initialization at minimum requires to reset the parameters to defaults. An example is given in
Image Cropping, Insertion and Scaling .
To query the current image format applications set the type field of a struct v4l2_format to
V4L2_BUF_TYPE_VIDEO_CAPTURE or V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE and call the VIDIOC_G_FMT
ioctl with a pointer to this structure. Drivers fill the struct v4l2_pix_format pix or the struct

v4l2_pix_format_mplane pix_mp member of the fmt union.

126 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Fig. 1.6: Field Order, Top Field First Transmitted

1.2. Part I - Video for Linux API 127

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Fig. 1.7: Field Order, Bottom Field First Transmitted

128 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

To request different parameters applications set the type field of a struct v4l2_format as above and
initialize all fields of the struct v4l2_pix_format vbi member of the fmt union, or better just modify the
results of VIDIOC_G_FMT , and call the VIDIOC_S_FMT ioctl with a pointer to this structure. Drivers may
adjust the parameters and finally return the actual parameters as VIDIOC_G_FMT does.
Like VIDIOC_S_FMT the VIDIOC_TRY_FMT ioctl can be used to learn about hardware limitations without
disabling I/O or possibly time consuming hardware preparations.
The contents of struct v4l2_pix_format and struct v4l2_pix_format_mplane are discussed in Image
Formats . See also the specification of the VIDIOC_G_FMT , VIDIOC_S_FMT and VIDIOC_TRY_FMT ioctls
for details. Video capture devices must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl,
even if VIDIOC_S_FMT ignores all requests and always returns default parameters as VIDIOC_G_FMT
does. VIDIOC_TRY_FMT is optional.

Reading Images

A video capture device may support the : read() function and/or streaming (memory mapping or user
pointer) I/O. See Input/Output for details.

Video Overlay Interface

Also known as Framebuffer Overlay or Previewing.
Video overlay devices have the ability to genlock (TV-)video into the (VGA-)video signal of a graphics card,
or to store captured images directly in video memory of a graphics card, typically with clipping. This can
be considerable more efficient than capturing images and displaying them by other means. In the old
days when only nuclear power plants needed cooling towers this used to be the only way to put live video
into a window.
Video overlay devices are accessed through the same character special files as video capture devices.

Note:

The default function of a /dev/video device is video capturing. The overlay function is only available
after calling the VIDIOC_S_FMT ioctl.

The driver may support simultaneous overlay and capturing using the read/write and streaming I/O meth-
ods. If so, operation at the nominal frame rate of the video standard is not guaranteed. Frames may be
directed away from overlay to capture, or one field may be used for overlay and the other for capture if
the capture parameters permit this.
Applications should use different file descriptors for capturing and overlay. This must be supported by all
drivers capable of simultaneous capturing and overlay. Optionally these drivers may also permit capturing
and overlay with a single file descriptor for compatibility with V4L and earlier versions of V4L2. 1

Querying Capabilities

Devices supporting the video overlay interface set the V4L2_CAP_VIDEO_OVERLAY flag in the capabilities
field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. The overlay I/O method
specified below must be supported. Tuners and audio inputs are optional.

1 A common application of two file descriptors is the XFree86 Xv/V4L interface driver and a V4L2 application. While the X server
controls video overlay, the application can take advantage of memory mapping and DMA.

In the opinion of the designers of this API, no driver writer taking the efforts to support simultaneous capturing and overlay will
restrict this ability by requiring a single file descriptor, as in V4L and earlier versions of V4L2. Making this optional means applications
depending on two file descriptors need backup routines to be compatible with all drivers, which is considerable more work than using
two fds in applications which do not. Also two fd’s fit the general concept of one file descriptor for each logical stream. Hence as a
complexity trade-off drivers must support two file descriptors and may support single fd operation.

1.2. Part I - Video for Linux API 129

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Supplemental Functions

Video overlay devices shall support audio input , Tuners and Modulators , controls , cropping and
scaling and streaming parameter ioctls as needed. The video input and video standard ioctls must
be supported by all video overlay devices.

Setup

Before overlay can commence applications must program the driver with frame buffer parameters, namely
the address and size of the frame buffer and the image format, for example RGB 5:6:5. The VID-
IOC_G_FBUF and VIDIOC_S_FBUF ioctls are available to get and set these parameters, respectively.
The VIDIOC_S_FBUF ioctl is privileged because it allows to set up DMA into physical memory, bypassing
the memory protection mechanisms of the kernel. Only the superuser can change the frame buffer ad-
dress and size. Users are not supposed to run TV applications as root or with SUID bit set. A small helper
application with suitable privileges should query the graphics system and program the V4L2 driver at the
appropriate time.
Some devices add the video overlay to the output signal of the graphics card. In this case the frame buffer
is not modified by the video device, and the frame buffer address and pixel format are not needed by the
driver. The VIDIOC_S_FBUF ioctl is not privileged. An application can check for this type of device by
calling the VIDIOC_G_FBUF ioctl.
A driver may support any (or none) of five clipping/blending methods:

1. Chroma-keying displays the overlaid image only where pixels in the primary graphics surface assume
a certain color.

2. A bitmap can be specified where each bit corresponds to a pixel in the overlaid image. When the bit
is set, the corresponding video pixel is displayed, otherwise a pixel of the graphics surface.

3. A list of clipping rectangles can be specified. In these regions no video is displayed, so the graphics
surface can be seen here.

4. The framebuffer has an alpha channel that can be used to clip or blend the framebuffer with the
video.

5. A global alpha value can be specified to blend the framebuffer contents with video images.
When simultaneous capturing and overlay is supported and the hardware prohibits different image and
frame buffer formats, the format requested first takes precedence. The attempt to capture (VIDIOC_S_FMT
) or overlay (VIDIOC_S_FBUF) may fail with an EBUSY error code or return accordingly modified parame-
ters..

Overlay Window

The overlaid image is determined by cropping and overlay window parameters. The former select an area
of the video picture to capture, the latter how images are overlaid and clipped. Cropping initialization at
minimum requires to reset the parameters to defaults. An example is given in Image Cropping, Insertion
and Scaling .
The overlay window is described by a struct v4l2_window. It defines the size of the image, its position
over the graphics surface and the clipping to be applied. To get the current parameters applications set
the type field of a struct v4l2_format to V4L2_BUF_TYPE_VIDEO_OVERLAY and call the VIDIOC_G_FMT
ioctl. The driver fills the struct v4l2_window substructure named win. It is not possible to retrieve a

previously programmed clipping list or bitmap.
To program the overlay window applications set the type field of a struct v4l2_format to
V4L2_BUF_TYPE_VIDEO_OVERLAY, initialize the win substructure and call the VIDIOC_S_FMT ioctl. The
driver adjusts the parameters against hardware limits and returns the actual parameters as VID-
IOC_G_FMT does. Like VIDIOC_S_FMT , the VIDIOC_TRY_FMT ioctl can be used to learn about driver

130 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

capabilities without actually changing driver state. Unlike VIDIOC_S_FMT this also works after the over-
lay has been enabled.
The scaling factor of the overlaid image is implied by the width and height given in struct v4l2_window
and the size of the cropping rectangle. For more information see Image Cropping, Insertion and Scaling .
When simultaneous capturing and overlay is supported and the hardware prohibits different image and
window sizes, the size requested first takes precedence. The attempt to capture or overlay as well (
VIDIOC_S_FMT) may fail with an EBUSY error code or return accordingly modified parameters.
v4l2_window

struct v4l2_window

struct v4l2_rect w Size and position of the window relative to the top, left corner of the frame buffer
defined with VIDIOC_S_FBUF . The window can extend the frame buffer width and height, the x and
y coordinates can be negative, and it can lie completely outside the frame buffer. The driver clips
the window accordingly, or if that is not possible, modifies its size and/or position.

enum v4l2_field field Applications set this field to determine which video field shall be overlaid, typi-
cally one of V4L2_FIELD_ANY (0), V4L2_FIELD_TOP, V4L2_FIELD_BOTTOM or V4L2_FIELD_INTERLACED.
Drivers may have to choose a different field order and return the actual setting here.

__u32 chromakey When chroma-keying has been negotiated with VIDIOC_S_FBUF applications set this
field to the desired pixel value for the chroma key. The format is the same as the pixel format of the
framebuffer (struct v4l2_framebuffer fmt.pixelformat field), with bytes in host order. E. g. for
V4L2_PIX_FMT_BGR24 the value should be 0xRRGGBB on a little endian, 0xBBGGRR on a big endian
host.

struct v4l2_clip * clips When chroma-keying has not been negotiated and VIDIOC_G_FBUF indi-
cated this capability, applications can set this field to point to an array of clipping rectangles.
Like the window coordinates w, clipping rectangles are defined relative to the top, left corner of the
frame buffer. However clipping rectangles must not extend the frame buffer width and height, and
they must not overlap. If possible applications should merge adjacent rectangles. Whether this must
create x-y or y-x bands, or the order of rectangles, is not defined. When clip lists are not supported
the driver ignores this field. Its contents after calling VIDIOC_S_FMT are undefined.

__u32 clipcount When the application set the clips field, this field must contain the number of clipping
rectangles in the list. When clip lists are not supported the driver ignores this field, its contents after
calling VIDIOC_S_FMT are undefined. When clip lists are supported but no clipping is desired this
field must be set to zero.

void * bitmap When chroma-keying has not been negotiated and VIDIOC_G_FBUF indicated this capa-
bility, applications can set this field to point to a clipping bit mask.

It must be of the same size as the window, w.width and w.height. Each bit corresponds to a pixel in the
overlaid image, which is displayed only when the bit is set. Pixel coordinates translate to bits like:

((__u8 *) bitmap)[w.width * y + x / 8] & (1 << (x & 7))

where 0 ≤ x < w.width and 0 ≤ y <w.height. 2

When a clipping bit mask is not supported the driver ignores this field, its contents after calling VID-
IOC_S_FMT are undefined. When a bit mask is supported but no clipping is desired this field must be set
to NULL.
Applications need not create a clip list or bit mask. When they pass both, or despite negotiating chroma-
keying, the results are undefined. Regardless of the chosen method, the clipping abilities of the hardware
may be limited in quantity or quality. The results when these limits are exceeded are undefined. 3

2 Should we require w.width to be a multiple of eight?
3 When the image is written into frame buffer memory it will be undesirable if the driver clips out less pixels than expected,

because the application and graphics system are not aware these regions need to be refreshed. The driver should clip out more

1.2. Part I - Video for Linux API 131

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

__u8 global_alpha The global alpha value used to blend the framebuffer with video images, if global
alpha blending has been negotiated (V4L2_FBUF_FLAG_GLOBAL_ALPHA, see VIDIOC_S_FBUF , Frame
Buffer Flags).

Note:

This field was added in Linux 2.6.23, extending the structure. However the VIDIOC_[G|S|TRY]_FMT
ioctls, which take a pointer to a v4l2_format parent structure with padding bytes at the end, are not
affected.

v4l2_clip

struct v4l2_clip 4

struct v4l2_rect c Coordinates of the clipping rectangle, relative to the top, left corner of the frame
buffer. Only window pixels outside all clipping rectangles are displayed.

struct v4l2_clip * next Pointer to the next clipping rectangle, NULL when this is the last rectangle.
Drivers ignore this field, it cannot be used to pass a linked list of clipping rectangles.

v4l2_rect

struct v4l2_rect

__s32 left Horizontal offset of the top, left corner of the rectangle, in pixels.
__s32 top Vertical offset of the top, left corner of the rectangle, in pixels. Offsets increase to the right

and down.
__u32 width Width of the rectangle, in pixels.
__u32 height Height of the rectangle, in pixels.

Enabling Overlay

To start or stop the frame buffer overlay applications call the ioctl VIDIOC_OVERLAY ioctl.

Video Output Interface

Video output devices encode stills or image sequences as analog video signal. With this interface appli-
cations can control the encoding process and move images from user space to the driver.
Conventionally V4L2 video output devices are accessed through character device special files named
/dev/video and /dev/video0 to /dev/video63 with major number 81 and minor numbers 0 to 63.
/dev/video is typically a symbolic link to the preferred video device.

Note:

The same device file names are used also for video capture devices.

pixels or not write the image at all.
4 The X Window system defines “regions” which are vectors of struct BoxRec { short x1,y1,x2,y2; } with width = x2 -x1

and height = y2 -y1, so one cannot pass X11 clip lists directly.

132 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Querying Capabilities

Devices supporting the video output interface set the V4L2_CAP_VIDEO_OUTPUT or
V4L2_CAP_VIDEO_OUTPUT_MPLANE flag in the capabilities field of struct v4l2_capability returned by
the ioctl VIDIOC_QUERYCAP ioctl. As secondary device functions they may also support the raw VBI
output (V4L2_CAP_VBI_OUTPUT) interface. At least one of the read/write or streaming I/O methods must
be supported. Modulators and audio outputs are optional.

Supplemental Functions

Video output devices shall support audio output , modulator , controls , cropping and scaling and
streaming parameter ioctls as needed. The video output ioctls must be supported by all video output
devices.

Image Format Negotiation

The output is determined by cropping and image format parameters. The former select an area of the
video picture where the image will appear, the latter how images are stored in memory, i. e. in RGB or
YUV format, the number of bits per pixel or width and height. Together they also define how images are
scaled in the process.
As usual these parameters are not reset at open() time to permit Unix tool chains, programming a device
and then writing to it as if it was a plain file. Well written V4L2 applications ensure they really get what
they want, including cropping and scaling.
Cropping initialization at minimum requires to reset the parameters to defaults. An example is given in
Image Cropping, Insertion and Scaling .
To query the current image format applications set the type field of a struct v4l2_format to
V4L2_BUF_TYPE_VIDEO_OUTPUT or V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE and call the VIDIOC_G_FMT
ioctl with a pointer to this structure. Drivers fill the struct v4l2_pix_format pix or the struct

v4l2_pix_format_mplane pix_mp member of the fmt union.
To request different parameters applications set the type field of a struct v4l2_format as above and
initialize all fields of the struct v4l2_pix_format vbi member of the fmt union, or better just modify the
results of VIDIOC_G_FMT , and call the VIDIOC_S_FMT ioctl with a pointer to this structure. Drivers may
adjust the parameters and finally return the actual parameters as VIDIOC_G_FMT does.
Like VIDIOC_S_FMT the VIDIOC_TRY_FMT ioctl can be used to learn about hardware limitations without
disabling I/O or possibly time consuming hardware preparations.
The contents of struct v4l2_pix_format and struct v4l2_pix_format_mplane are discussed in Image
Formats . See also the specification of the VIDIOC_G_FMT , VIDIOC_S_FMT and VIDIOC_TRY_FMT ioctls
for details. Video output devices must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl,
even if VIDIOC_S_FMT ignores all requests and always returns default parameters as VIDIOC_G_FMT
does. VIDIOC_TRY_FMT is optional.

Writing Images

A video output device may support the write() function and/or streaming (memory mapping or user
pointer) I/O. See Input/Output for details.

Video Output Overlay Interface

Also known as On-Screen Display (OSD)

1.2. Part I - Video for Linux API 133

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Some video output devices can overlay a framebuffer image onto the outgoing video signal. Applications
can set up such an overlay using this interface, which borrows structures and ioctls of the Video Overlay
interface.
The OSD function is accessible through the same character special file as the Video Output function.

Note:

The default function of such a /dev/video device is video capturing or output. The OSD function is
only available after calling the VIDIOC_S_FMT ioctl.

Querying Capabilities

Devices supporting the Video Output Overlay interface set the V4L2_CAP_VIDEO_OUTPUT_OVERLAY flag in
the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl.

Framebuffer

Contrary to the Video Overlay interface the framebuffer is normally implemented on the TV card and
not the graphics card. On Linux it is accessible as a framebuffer device (/dev/fbN). Given a V4L2 de-
vice, applications can find the corresponding framebuffer device by calling the VIDIOC_G_FBUF ioctl. It
returns, amongst other information, the physical address of the framebuffer in the base field of struct
v4l2_framebuffer. The framebuffer device ioctl FBIOGET_FSCREENINFO returns the same address in
the smem_start field of struct struct fb_fix_screeninfo. The FBIOGET_FSCREENINFO ioctl and struct
fb_fix_screeninfo are defined in the linux/fb.h header file.
The width and height of the framebuffer depends on the current video standard. A V4L2 driver may reject
attempts to change the video standard (or any other ioctl which would imply a framebuffer size change)
with an EBUSY error code until all applications closed the framebuffer device.

Example: Finding a framebuffer device for OSD

#include <linux/fb.h>

struct v4l2_framebuffer fbuf;
unsigned int i;
int fb_fd;

if (-1 == ioctl(fd, VIDIOC_G_FBUF, &fbuf)) {
perror("VIDIOC_G_FBUF");
exit(EXIT_FAILURE);

}

for (i = 0; i < 30; i++) {
char dev_name[16];
struct fb_fix_screeninfo si;

snprintf(dev_name, sizeof(dev_name), "/dev/fb%u", i);

fb_fd = open(dev_name, O_RDWR);
if (-1 == fb_fd) {

switch (errno) {
case ENOENT: /* no such file */
case ENXIO: /* no driver */

continue;

134 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

default:
perror("open");
exit(EXIT_FAILURE);

}
}

if (0 == ioctl(fb_fd, FBIOGET_FSCREENINFO, &si)) {
if (si.smem_start == (unsigned long)fbuf.base)

break;
} else {

/* Apparently not a framebuffer device. */
}

close(fb_fd);
fb_fd = -1;

}

/* fb_fd is the file descriptor of the framebuffer device
for the video output overlay, or -1 if no device was found. */

Overlay Window and Scaling

The overlay is controlled by source and target rectangles. The source rectangle selects a subsection of
the framebuffer image to be overlaid, the target rectangle an area in the outgoing video signal where
the image will appear. Drivers may or may not support scaling, and arbitrary sizes and positions of these
rectangles. Further drivers may support any (or none) of the clipping/blending methods defined for the
Video Overlay interface.
A struct v4l2_window defines the size of the source rectangle, its position in the framebuffer and the
clipping/blending method to be used for the overlay. To get the current parameters applications set the
type field of a struct v4l2_format to V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY and call the VIDIOC_G_FMT
ioctl. The driver fills the struct v4l2_window substructure named win. It is not possible to retrieve a

previously programmed clipping list or bitmap.
To program the source rectangle applications set the type field of a struct v4l2_format to
V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY, initialize the win substructure and call the VIDIOC_S_FMT ioctl.
The driver adjusts the parameters against hardware limits and returns the actual parameters as VID-
IOC_G_FMT does. Like VIDIOC_S_FMT , the VIDIOC_TRY_FMT ioctl can be used to learn about driver
capabilities without actually changing driver state. Unlike VIDIOC_S_FMT this also works after the over-
lay has been enabled.
A struct v4l2_crop defines the size and position of the target rectangle. The scaling factor of the overlay
is implied by the width and height given in struct v4l2_window and struct v4l2_crop. The cropping API
applies to Video Output and Video Output Overlay devices in the same way as to Video Capture and
Video Overlay devices, merely reversing the direction of the data flow. For more information see Image
Cropping, Insertion and Scaling .

Enabling Overlay

There is no V4L2 ioctl to enable or disable the overlay, however the framebuffer interface of the driver
may support the FBIOBLANK ioctl.

Codec Interface

A V4L2 codec can compress, decompress, transform, or otherwise convert video data from one format
into another format, in memory. Typically such devices are memory-to-memory devices (i.e. devices with
the V4L2_CAP_VIDEO_M2M or V4L2_CAP_VIDEO_M2M_MPLANE capability set).

1.2. Part I - Video for Linux API 135

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

A memory-to-memory video node acts just like a normal video node, but it supports both output (sending
frames from memory to the codec hardware) and capture (receiving the processed frames from the codec
hardware into memory) stream I/O. An application will have to setup the stream I/O for both sides and
finally call VIDIOC_STREAMON for both capture and output to start the codec.
Video compression codecs use the MPEG controls to setup their codec parameters

Note:

The MPEG controls actually support many more codecs than just MPEG. See Codec Control Reference
.

Memory-to-memory devices function as a shared resource: you can open the video node multiple times,
each application setting up their own codec properties that are local to the file handle, and each can use
it independently from the others. The driver will arbitrate access to the codec and reprogram it whenever
another file handler gets access. This is different from the usual video node behavior where the video
properties are global to the device (i.e. changing something through one file handle is visible through
another file handle).

Effect Devices Interface

Note:

This interface has been be suspended from the V4L2 API. The implementation for such effects should
be done via mem2mem devices.

A V4L2 video effect device can do image effects, filtering, or combine two or more images or image
streams. For example video transitions or wipes. Applications send data to be processed and receive the
result data either with read() and write() functions, or through the streaming I/O mechanism.
[to do]

Raw VBI Data Interface

VBI is an abbreviation of Vertical Blanking Interval, a gap in the sequence of lines of an analog video
signal. During VBI no picture information is transmitted, allowing some time while the electron beam
of a cathode ray tube TV returns to the top of the screen. Using an oscilloscope you will find here the
vertical synchronization pulses and short data packages ASK modulated 1 onto the video signal. These
are transmissions of services such as Teletext or Closed Caption.
Subject of this interface type is raw VBI data, as sampled off a video signal, or to be added to a signal for
output. The data format is similar to uncompressed video images, a number of lines times a number of
samples per line, we call this a VBI image.
Conventionally V4L2 VBI devices are accessed through character device special files named /dev/vbi and
/dev/vbi0 to /dev/vbi31 with major number 81 and minor numbers 224 to 255. /dev/vbi is typically a
symbolic link to the preferred VBI device. This convention applies to both input and output devices.
To address the problems of finding related video and VBI devices VBI capturing and output is also available
as device function under /dev/video. To capture or output raw VBI data with these devices applications
must call the VIDIOC_S_FMT ioctl. Accessed as /dev/vbi, raw VBI capturing or output is the default
device function.

1 ASK: Amplitude-Shift Keying. A high signal level represents a ‘1’ bit, a low level a ‘0’ bit.

136 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Querying Capabilities

Devices supporting the raw VBI capturing or output API set the V4L2_CAP_VBI_CAPTURE or
V4L2_CAP_VBI_OUTPUT flags, respectively, in the capabilities field of struct v4l2_capability returned
by the ioctl VIDIOC_QUERYCAP ioctl. At least one of the read/write, streaming or asynchronous I/O meth-
ods must be supported. VBI devices may or may not have a tuner or modulator.

Supplemental Functions

VBI devices shall support video input or output , tuner or modulator , and controls ioctls as needed. The
video standard ioctls provide information vital to program a VBI device, therefore must be supported.

Raw VBI Format Negotiation

Raw VBI sampling abilities can vary, in particular the sampling frequency. To properly interpret the data
V4L2 specifies an ioctl to query the sampling parameters. Moreover, to allow for some flexibility applica-
tions can also suggest different parameters.
As usual these parameters are not reset at open() time to permit Unix tool chains, programming a device
and then reading from it as if it was a plain file. Well written V4L2 applications should always ensure they
really get what they want, requesting reasonable parameters and then checking if the actual parameters
are suitable.
To query the current raw VBI capture parameters applications set the type field of a struct v4l2_format
to V4L2_BUF_TYPE_VBI_CAPTURE or V4L2_BUF_TYPE_VBI_OUTPUT, and call the VIDIOC_G_FMT ioctl with
a pointer to this structure. Drivers fill the struct v4l2_vbi_format vbi member of the fmt union.
To request different parameters applications set the type field of a struct v4l2_format as above and
initialize all fields of the struct v4l2_vbi_format vbi member of the fmt union, or better just modify the
results of VIDIOC_G_FMT , and call the VIDIOC_S_FMT ioctl with a pointer to this structure. Drivers
return an EINVAL error code only when the given parameters are ambiguous, otherwise they modify the
parameters according to the hardware capabilities and return the actual parameters. When the driver
allocates resources at this point, it may return an EBUSY error code to indicate the returned parameters
are valid but the required resources are currently not available. That may happen for instance when the
video and VBI areas to capture would overlap, or when the driver supports multiple opens and another
process already requested VBI capturing or output. Anyway, applications must expect other resource
allocation points which may return EBUSY, at the ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF ioctl and
the first read() , write() and select() calls.
VBI devices must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl, even if VIDIOC_S_FMT
ignores all requests and always returns default parameters as VIDIOC_G_FMT does. VIDIOC_TRY_FMT
is optional.
v4l2_vbi_format

Table 1.35: struct v4l2_vbi_format

__u32 sampling_rate Samples per second, i. e. unit 1 Hz.
__u32 offset Horizontal offset of the VBI image, relative to the leading edge

of the line synchronization pulse and counted in samples: The
first sample in the VBI image will be located offset / sam-
pling_rate seconds following the leading edge. See also
Figure 4.1. Line synchronization .

__u32 samples_per_line
Continued on next page

1.2. Part I - Video for Linux API 137

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.35 – continued from previous page
__u32 sample_format Defines the sample format as in Image Formats , a four-

character-code. 2 Usually this is V4L2_PIX_FMT_GREY, i. e.
each sample consists of 8 bits with lower values oriented to-
wards the black level. Do not assume any other correlation
of values with the signal level. For example, the MSB does
not necessarily indicate if the signal is ‘high’ or ‘low’ because
128 may not be the mean value of the signal. Drivers shall
not convert the sample format by software.

__u32 start2 This is the scanning system line number associated with the
first line of the VBI image, of the first and the second field
respectively. See Figure 4.2. ITU-R 525 line numbering
(M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line num-
bering for valid values. The V4L2_VBI_ITU_525_F1_START,
V4L2_VBI_ITU_525_F2_START, V4L2_VBI_ITU_625_F1_START
and V4L2_VBI_ITU_625_F2_START defines give the start line
numbers for each field for each 525 or 625 line format as
a convenience. Don’t forget that ITU line numbering starts
at 1, not 0. VBI input drivers can return start values 0 if
the hardware cannot reliable identify scanning lines, VBI
acquisition may not require this information.

__u32 count2 The number of lines in the first and second field image, re-
spectively.

Drivers should be as flexibility as possible. For example, it may
be possible to extend or move the VBI capture window down to the
picture area, implementing a ’full field mode’ to capture data
service transmissions embedded in the picture.

An application can set the first or second count value to zero
if no data is required from the respective field; count[1]
if the scanning system is progressive, i. e. not interlaced. The
corresponding start value shall be ignored by the application and
driver. Anyway, drivers may not support single field capturing and
return both count values non-zero.

Both count values set to zero, or line numbers are outside the
bounds depicted4, or a field image covering lines of two
fields, are invalid and shall not be returned by the driver.

To initialize the start and count fields, applications
must first determine the current video standard selection. The
v4l2_std_id or the framelines field
of struct v4l2_standard can be evaluated
for this purpose.

__u32 flags See Raw VBI Format Flags below. Currently only drivers set
flags, applications must set this field to zero.

__u32 reserved2 This array is reserved for future extensions. Drivers and ap-
plications must set it to zero.

2 A few devices may be unable to sample VBI data at all but can extend the video capture window to the VBI region.
4 The valid values ar shown at Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line

numbering .

138 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.36: Raw VBI Format Flags
V4L2_VBI_UNSYNC 0x0001 This flag indicates hardware which does not properly distinguish be-

tween fields. Normally the VBI image stores the first field (lower scan-
ning line numbers) first in memory. This may be a top or bottom field
depending on the video standard. When this flag is set the first or
second field may be stored first, however the fields are still in correct
temporal order with the older field first in memory. 3

V4L2_VBI_INTERLACED 0x0002 By default the two field images will be passed sequentially; all lines
of the first field followed by all lines of the second field (compare
Field Order V4L2_FIELD_SEQ_TB and V4L2_FIELD_SEQ_BT, whether
the top or bottom field is first in memory depends on the video
standard). When this flag is set, the two fields are interlaced (cf.
V4L2_FIELD_INTERLACED). The first line of the first field followed by
the first line of the second field, then the two second lines, and so
on. Such a layout may be necessary when the hardware has been
programmed to capture or output interlaced video images and is un-
able to separate the fields for VBI capturing at the same time. For
simplicity setting this flag implies that both count values are equal
and non-zero.

Remember the VBI image format depends on the selected video standard, therefore the application must
choose a new standard or query the current standard first. Attempts to read or write data ahead of format
negotiation, or after switching the video standard which may invalidate the negotiated VBI parameters,
should be refused by the driver. A format change during active I/O is not permitted.

Reading and writing VBI images

To assure synchronization with the field number and easier implementation, the smallest unit of data
passed at a time is one frame, consisting of two fields of VBI images immediately following in memory.
The total size of a frame computes as follows:

(count[0] + count[1]) * samples_per_line * sample size in bytes

The sample size is most likely always one byte, applications must check the sample_format field though,
to function properly with other drivers.
A VBI device may support read/write and/or streaming (memory mapping or user pointer) I/O. The
latter bears the possibility of synchronizing video and VBI data by using buffer timestamps.
Remember the VIDIOC_STREAMON ioctl and the first read() , write() and select() call can be re-
source allocation points returning an EBUSY error code if the required hardware resources are temporarily
unavailable, for example the device is already in use by another process.

Sliced VBI Data Interface

VBI stands for Vertical Blanking Interval, a gap in the sequence of lines of an analog video signal. During
VBI no picture information is transmitted, allowing some time while the electron beam of a cathode ray
tube TV returns to the top of the screen.
Sliced VBI devices use hardware to demodulate data transmitted in the VBI. V4L2 drivers shall not do this
by software, see also the raw VBI interface . The data is passed as short packets of fixed size, covering
one scan line each. The number of packets per video frame is variable.
Sliced VBI capture and output devices are accessed through the same character special files as raw VBI
devices. When a driver supports both interfaces, the default function of a /dev/vbi device is raw VBI

3 Most VBI services transmit on both fields, but some have different semantics depending on the field number. These cannot be
reliable decoded or encoded when V4L2_VBI_UNSYNC is set.

1.2. Part I - Video for Linux API 139

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Fig. 1.8: Figure 4.1. Line synchronization

Fig. 1.9: Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL)

140 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Fig. 1.10: Figure 4.3. ITU-R 625 line numbering

capturing or output, and the sliced VBI function is only available after calling the VIDIOC_S_FMT ioctl as
defined below. Likewise a /dev/video device may support the sliced VBI API, however the default function
here is video capturing or output. Different file descriptors must be used to pass raw and sliced VBI data
simultaneously, if this is supported by the driver.

Querying Capabilities

Devices supporting the sliced VBI capturing or output API set the V4L2_CAP_SLICED_VBI_CAPTURE or
V4L2_CAP_SLICED_VBI_OUTPUT flag respectively, in the capabilities field of struct v4l2_capability
returned by the ioctl VIDIOC_QUERYCAP ioctl. At least one of the read/write, streaming or asynchronous
I/O methods must be supported. Sliced VBI devices may have a tuner or modulator.

Supplemental Functions

Sliced VBI devices shall support video input or output and tuner or modulator ioctls if they have these
capabilities, and they may support User Controls ioctls. The video standard ioctls provide information
vital to program a sliced VBI device, therefore must be supported.

Sliced VBI Format Negotiation

To find out which data services are supported by the hardware applications can call the VID-
IOC_G_SLICED_VBI_CAP ioctl. All drivers implementing the sliced VBI interface must support this ioctl.
The results may differ from those of the VIDIOC_S_FMT ioctl when the number of VBI lines the hardware
can capture or output per frame, or the number of services it can identify on a given line are limited. For
example on PAL line 16 the hardware may be able to look for a VPS or Teletext signal, but not both at the
same time.
To determine the currently selected services applications set the type field of struct v4l2_format to
V4L2_BUF_TYPE_SLICED_VBI_CAPTURE or V4L2_BUF_TYPE_SLICED_VBI_OUTPUT, and the VIDIOC_G_FMT
ioctl fills the fmt.sliced member, a struct v4l2_sliced_vbi_format.
Applications can request different parameters by initializing or modifying the fmt.sliced member and
calling the VIDIOC_S_FMT ioctl with a pointer to the struct v4l2_format structure.
The sliced VBI API is more complicated than the raw VBI API because the hardware must be told which
VBI service to expect on each scan line. Not all services may be supported by the hardware on all lines
(this is especially true for VBI output where Teletext is often unsupported and other services can only be
inserted in one specific line). In many cases, however, it is sufficient to just set the service_set field to
the required services and let the driver fill the service_lines array according to hardware capabilities.
Only if more precise control is needed should the programmer set the service_lines array explicitly.
The VIDIOC_S_FMT ioctl modifies the parameters according to hardware capabilities. When the driver
allocates resources at this point, it may return an EBUSY error code if the required resources are temporarily

1.2. Part I - Video for Linux API 141

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

unavailable. Other resource allocation points which may return EBUSY can be the ioctl VIDIOC_STREAMON,
VIDIOC_STREAMOFF ioctl and the first read() , write() and select() call.
v4l2_sliced_vbi_format

struct v4l2_sliced_vbi_format

__u32 service_set

If service_set is non-zero when passed with
VIDIOC_S_FMT or
VIDIOC_TRY_FMT , the service_lines
array will be filled by the driver according to the services
specified in this field. For example, if service_set is
initialized with V4L2_SLICED_TELETEXT_B | V4L2_SLICED_WSS_625,
a driver for the cx25840 video decoder sets lines 7-22 of both
fields 1 to V4L2_SLICED_TELETEXT_B and line 23 of the first
field to V4L2_SLICED_WSS_625. If service_set is set to
zero, then the values of service_lines will be used instead.

On return the driver sets this field to the union of all elements
of the returned service_lines array. It may contain less
services than requested, perhaps just one, if the hardware cannot
handle more services simultaneously. It may be empty (zero) if
none of the requested services are supported by the hardware.

__u16 service_lines[2][24]

Applications initialize this array with sets of data services the
driver shall look for or insert on the respective scan line.
Subject to hardware capabilities drivers return the requested set,
a subset, which may be just a single service, or an empty set.
When the hardware cannot handle multiple services on the same line
the driver shall choose one. No assumptions can be made on which
service the driver chooses.

Data services are defined in Sliced VBI services . Array indices
map to ITU-R line numbers2 as follows:

Element 525 line systems 625 line systems
service_lines[0][1] 1 1
service_lines[0][23] 23 23
service_lines[1][1] 264 314
service_lines[1][23] 286 336
Drivers must set service_lines [0][0] and
service_lines[1][0] to zero. The
V4L2_VBI_ITU_525_F1_START, V4L2_VBI_ITU_525_F2_START,
V4L2_VBI_ITU_625_F1_START and V4L2_VBI_ITU_625_F2_START
defines give the start line numbers for each field for each 525 or
625 line format as a convenience. Don’t forget that ITU line
numbering starts at 1, not 0.

__u32 io_size

Maximum number of bytes passed by one
read() or write() call,
and the buffer size in bytes for the
ioctl VIDIOC_QBUF, VIDIOC_DQBUF and
VIDIOC_DQBUF ioctl. Drivers set this field
to the size of struct
v4l2_sliced_vbi_data times the
number of non-zero elements in the returned service_lines
array (that is the number of lines potentially carrying data).

__u32 reserved[2]
This array is reserved for future extensions.

Applications and drivers must set it to zero.

1 According to ETS 300 706 lines 6-22 of the first field and lines 5-22 of the second field may carry Teletext data.
2 See also Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line numbering .

142 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Sliced VBI services

Symbol Value Reference Lines, usually Payload
V4L2_SLICED_TELETEXT_B
(Teletext System B)

0x0001 ETS 300 706 ,
ITU BT.653

PAL/SECAM
line 7-22,
320-335 (sec-
ond field
7-22)

Last 42 of the 45 byte Teletext packet, that is without
clock run-in and framing code, lsb first transmitted.

V4L2_SLICED_VPS 0x0400 ETS 300 231 PAL line 16 Byte number 3 to 15 according to Figure 9 of ETS
300 231, lsb first transmitted.

V4L2_SLICED_CAPTION_525 0x1000 CEA 608-E NTSC line 21,
284 (second
field 21)

Two bytes in transmission order, including parity bit,
lsb first transmitted.

V4L2_SLICED_WSS_625 0x4000 ITU BT.1119 ,
EN 300 294

PAL/SECAM
line 23 Byte 0 1

msb lsb msb lsb
Bit 7 6 5 4 3 2 1 0 x x 13 12 11 10 9

V4L2_SLICED_VBI_525 0x1000 Set of services applicable to 525 line systems.
V4L2_SLICED_VBI_625 0x4401 Set of services applicable to 625 line systems.

Drivers may return an EINVAL error code when applications attempt to read or write data without prior
format negotiation, after switching the video standard (which may invalidate the negotiated VBI param-
eters) and after switching the video input (which may change the video standard as a side effect). The
VIDIOC_S_FMT ioctl may return an EBUSY error code when applications attempt to change the format while
i/o is in progress (between a ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF and VIDIOC_STREAMOFF call,
and after the first read() or write() call).

Reading and writing sliced VBI data

A single read() or write() call must pass all data belonging to one video frame. That is an array of struct
v4l2_sliced_vbi_data structures with one or more elements and a total size not exceeding io_size
bytes. Likewise in streaming I/O mode one buffer of io_size bytes must contain data of one video frame.
The id of unused struct v4l2_sliced_vbi_data elements must be zero.
v4l2_sliced_vbi_data

1.2. Part I - Video for Linux API 143

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_sliced_vbi_data

__u32 id A flag from Sliced VBI services identifying the
type of data in this packet. Only a single bit
must be set. When the id of a captured packet
is zero, the packet is empty and the contents of
other fields are undefined. Applications shall ig-
nore empty packets. When the id of a packet for
output is zero the contents of the data field are
undefined and the driver must no longer insert
data on the requested field and line.

__u32 field The video field number this data has been cap-
tured from, or shall be inserted at. 0 for the first
field, 1 for the second field.

__u32 line The field (as opposed to frame) line number this
data has been captured from, or shall be inserted
at. See Figure 4.2. ITU-R 525 line numbering
(M/NTSC and M/PAL) and Figure 4.3. ITU-R 625
line numbering for valid values. Sliced VBI cap-
ture devices can set the line number of all packets
to 0 if the hardware cannot reliably identify scan
lines. The field number must always be valid.

__u32 reserved This field is reserved for future extensions. Appli-
cations and drivers must set it to zero.

__u8 data[48] The packet payload. See Sliced VBI services for
the contents and number of bytes passed for each
data type. The contents of padding bytes at the
end of this array are undefined, drivers and appli-
cations shall ignore them.

Packets are always passed in ascending line number order, without duplicate line numbers. The write()
function and the ioctl VIDIOC_QBUF, VIDIOC_DQBUF ioctl must return an EINVAL error code when appli-
cations violate this rule. They must also return an EINVAL error code when applications pass an incorrect
field or line number, or a combination of field, line and id which has not been negotiated with the
VIDIOC_G_FMT or VIDIOC_S_FMT ioctl. When the line numbers are unknown the driver must pass the
packets in transmitted order. The driver can insert empty packets with id set to zero anywhere in the
packet array.
To assure synchronization and to distinguish from frame dropping, when a captured frame does not carry
any of the requested data services drivers must pass one or more empty packets. When an application
fails to pass VBI data in time for output, the driver must output the last VPS and WSS packet again, and
disable the output of Closed Caption and Teletext data, or output data which is ignored by Closed Caption
and Teletext decoders.
A sliced VBI device may support read/write and/or streaming (memory mapping and/or user pointer)
I/O. The latter bears the possibility of synchronizing video and VBI data by using buffer timestamps.

Sliced VBI Data in MPEG Streams

If a device can produce an MPEG output stream, it may be capable of providing negotiated sliced VBI
services as data embedded in the MPEG stream. Users or applications control this sliced VBI data insertion
with the V4L2_CID_MPEG_STREAM_VBI_FMT control.
If the driver does not provide the V4L2_CID_MPEG_STREAM_VBI_FMT control, or only allows that control
to be set to V4L2_MPEG_STREAM_VBI_FMT_NONE , then the device cannot embed sliced VBI data in the
MPEG stream.
The V4L2_CID_MPEG_STREAM_VBI_FMT control does not implicitly set the device driver to capture nor
cease capturing sliced VBI data. The control only indicates to embed sliced VBI data in the MPEG stream,

144 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

if an application has negotiated sliced VBI service be captured.
It may also be the case that a device can embed sliced VBI data in only certain types of MPEG streams: for
example in an MPEG-2 PS but not an MPEG-2 TS. In this situation, if sliced VBI data insertion is requested,
the sliced VBI data will be embedded in MPEG stream types when supported, and silently omitted from
MPEG stream types where sliced VBI data insertion is not supported by the device.
The following subsections specify the format of the embedded sliced VBI data.

MPEG Stream Embedded, Sliced VBI Data Format: NONE

The V4L2_MPEG_STREAM_VBI_FMT_NONE embedded sliced VBI format shall be interpreted by drivers as
a control to cease embedding sliced VBI data in MPEG streams. Neither the device nor driver shall insert
“empty” embedded sliced VBI data packets in the MPEG stream when this format is set. No MPEG stream
data structures are specified for this format.

MPEG Stream Embedded, Sliced VBI Data Format: IVTV

The V4L2_MPEG_STREAM_VBI_FMT_IVTV embedded sliced VBI format, when supported, indicates to the
driver to embed up to 36 lines of sliced VBI data per frame in an MPEG-2 Private Stream 1 PES packet
encapsulated in an MPEG-2 Program Pack in the MPEG stream.
Historical context: This format specification originates from a custom, embedded, sliced VBI data format
used by the ivtv driver. This format has already been informally specified in the kernel sources in the
file Documentation/video4linux/cx2341x/README.vbi . The maximum size of the payload and other
aspects of this format are driven by the CX23415 MPEG decoder’s capabilities and limitations with respect
to extracting, decoding, and displaying sliced VBI data embedded within an MPEG stream.
This format’s use is not exclusive to the ivtv driver nor exclusive to CX2341x devices, as the sliced VBI
data packet insertion into the MPEG stream is implemented in driver software. At least the cx18 driver
provides sliced VBI data insertion into an MPEG-2 PS in this format as well.
The following definitions specify the payload of the MPEG-2 Private Stream 1 PES packets that contain
sliced VBI data when V4L2_MPEG_STREAM_VBI_FMT_IVTV is set. (The MPEG-2 Private Stream 1 PES
packet header and encapsulating MPEG-2 Program Pack header are not detailed here. Please refer to the
MPEG-2 specifications for details on those packet headers.)
The payload of the MPEG-2 Private Stream 1 PES packets that contain sliced VBI data is specified by struct
v4l2_mpeg_vbi_fmt_ivtv. The payload is variable length, depending on the actual number of lines of
sliced VBI data present in a video frame. The payload may be padded at the end with unspecified fill bytes
to align the end of the payload to a 4-byte boundary. The payload shall never exceed 1552 bytes (2 fields
with 18 lines/field with 43 bytes of data/line and a 4 byte magic number).
v4l2_mpeg_vbi_fmt_ivtv

1.2. Part I - Video for Linux API 145

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_mpeg_vbi_fmt_ivtv

__u8 magic[4] A “magic” constant from Magic Constants for struct
v4l2_mpeg_vbi_fmt_ivtv magic field that indicates this is a
valid sliced VBI data payload and also indicates which member
of the anonymous union, itv0 or ITV0, to use for the payload
data.

union (anonymous)
struct
v4l2_mpeg_vbi_itv0

itv0 The primary form of the sliced VBI data payload that contains
anywhere from 1 to 35 lines of sliced VBI data. Line masks are
provided in this form of the payload indicating which VBI lines
are provided.

struct
v4l2_mpeg_vbi_ITV0

ITV0 An alternate form of the sliced VBI data payload used when 36
lines of sliced VBI data are present. No line masks are provided
in this form of the payload; all valid line mask bits are implcitly
set.

Magic Constants for struct v4l2_mpeg_vbi_fmt_ivtv magic field

Defined Symbol Value Description
V4L2_MPEG_VBI_IVTV_MAGIC0 “itv0” Indicates the itv0 member of the union in struct

v4l2_mpeg_vbi_fmt_ivtv is valid.
V4L2_MPEG_VBI_IVTV_MAGIC1 “ITV0” Indicates the ITV0 member of the union in struct

v4l2_mpeg_vbi_fmt_ivtv is valid and that 36
lines of sliced VBI data are present.

v4l2_mpeg_vbi_itv0

v4l2_mpeg_vbi_ITV0

structs v4l2_mpeg_vbi_itv0 and v4l2_mpeg_vbi_ITV0

__le32 linemask[2] Bitmasks indicating the VBI service lines present. These
linemask values are stored in little endian byte order in
the MPEG stream. Some reference linemask bit positions
with their corresponding VBI line number and video field
are given below. b0 indicates the least significant bit of a
linemask value:
linemask[0] b0: line 6 first field
linemask[0] b17: line 23 first field
linemask[0] b18: line 6 second field
linemask[0] b31: line 19 second field
linemask[1] b0: line 20 second field
linemask[1] b3: line 23 second field
linemask[1] b4-b31: unused and set to 0

struct
v4l2_mpeg_vbi_itv0_line

line[35] This is a variable length array that holds from 1 to 35 lines
of sliced VBI data. The sliced VBI data lines present corre-
spond to the bits set in the linemask array, starting from
b0 of linemask[0] up through b31 of linemask[0], and from
b0 of linemask[1] up through b3 of linemask[1]. line[0]
corresponds to the first bit found set in the linemask ar-
ray, line[1] corresponds to the second bit found set in
the linemask array, etc. If no linemask array bits are set,
then line[0] may contain one line of unspecified data that
should be ignored by applications.

146 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_mpeg_vbi_ITV0

struct
v4l2_mpeg_vbi_itv0_line

line[36] A fixed length array of 36 lines of sliced
VBI data. line[0] through line[17] cor-
respond to lines 6 through 23 of the first
field. line[18] through line[35] corresponds
to lines 6 through 23 of the second field.

v4l2_mpeg_vbi_itv0_line

struct v4l2_mpeg_vbi_itv0_line

__u8 id A line identifier value from Line Identifiers for
struct v4l2_mpeg_vbi_itv0_line id field that indi-
cates the type of sliced VBI data stored on this
line.

__u8 data[42] The sliced VBI data for the line.

Line Identifiers for struct v4l2_mpeg_vbi_itv0_line id field

Defined Symbol Value Description
V4L2_MPEG_VBI_IVTV_TELETEXT_B 1 Refer to Sliced VBI services for a description of

the line payload.
V4L2_MPEG_VBI_IVTV_CAPTION_525 4 Refer to Sliced VBI services for a description of

the line payload.
V4L2_MPEG_VBI_IVTV_WSS_625 5 Refer to Sliced VBI services for a description of

the line payload.
V4L2_MPEG_VBI_IVTV_VPS 7 Refer to Sliced VBI services for a description of

the line payload.

Teletext Interface

This interface was aimed at devices receiving and demodulating Teletext data [ETS 300 706 , ITU BT.653
], evaluating the Teletext packages and storing formatted pages in cache memory. Such devices are
usually implemented as microcontrollers with serial interface (I:sup:2C) and could be found on old TV
cards, dedicated Teletext decoding cards and home-brew devices connected to the PC parallel port.
The Teletext API was designed by Martin Buck. It was defined in the kernel header file linux/videotext.h,
the specification is available from ftp://ftp.gwdg.de/pub/linux/misc/videotext/. (Videotext is the name of
the German public television Teletext service.)
Eventually the Teletext API was integrated into the V4L API with character device file names /dev/vtx0
to /dev/vtx31, device major number 81, minor numbers 192 to 223.
However, teletext decoders were quickly replaced by more generic VBI demodulators and those dedicated
teletext decoders no longer exist. For many years the vtx devices were still around, even though nobody
used them. So the decision was made to finally remove support for the Teletext API in kernel 2.6.37.
Modern devices all use the raw or Sliced VBI Data Interface VBI API.

Radio Interface

This interface is intended for AM and FM (analog) radio receivers and transmitters.
Conventionally V4L2 radio devices are accessed through character device special files named /dev/radio
and /dev/radio0 to /dev/radio63 with major number 81 and minor numbers 64 to 127.

1.2. Part I - Video for Linux API 147

ftp://ftp.gwdg.de/pub/linux/misc/videotext/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Querying Capabilities

Devices supporting the radio interface set the V4L2_CAP_RADIO and V4L2_CAP_TUNER or
V4L2_CAP_MODULATOR flag in the capabilities field of struct v4l2_capability returned by the
ioctl VIDIOC_QUERYCAP ioctl. Other combinations of capability flags are reserved for future extensions.

Supplemental Functions

Radio devices can support controls , and must support the tuner or modulator ioctls.
They do not support the video input or output, audio input or output, video standard, cropping and scaling,
compression and streaming parameter, or overlay ioctls. All other ioctls and I/O methods are reserved for
future extensions.

Programming

Radio devices may have a couple audio controls (as discussed in User Controls) such as a volume control,
possibly custom controls. Further all radio devices have one tuner or modulator (these are discussed in
Tuners and Modulators) with index number zero to select the radio frequency and to determine if a

monaural or FM stereo program is received/emitted. Drivers switch automatically between AM and FM
depending on the selected frequency. The VIDIOC_G_TUNER or VIDIOC_G_MODULATOR ioctl reports the
supported frequency range.

RDS Interface

The Radio Data System transmits supplementary information in binary format, for example the station
name or travel information, on an inaudible audio subcarrier of a radio program. This interface is aimed
at devices capable of receiving and/or transmitting RDS information.
For more information see the core RDS standard IEC 62106 and the RBDS standard NRSC-4-B .

Note:

Note that the RBDS standard as is used in the USA is almost identical to the RDS standard. Any RDS
decoder/encoder can also handle RBDS. Only some of the fields have slightly different meanings. See
the RBDS standard for more information.

The RBDS standard also specifies support for MMBS (Modified Mobile Search). This is a proprietary format
which seems to be discontinued. The RDS interface does not support this format. Should support for
MMBS (or the so-called ‘E blocks’ in general) be needed, then please contact the linux-media mailing list:
https://linuxtv.org/lists.php.

Querying Capabilities

Devices supporting the RDS capturing API set the V4L2_CAP_RDS_CAPTURE flag in the capabilities field
of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. Any tuner that supports RDS
will set the V4L2_TUNER_CAP_RDS flag in the capability field of struct v4l2_tuner. If the driver only
passes RDS blocks without interpreting the data the V4L2_TUNER_CAP_RDS_BLOCK_IO flag has to be set,
see Reading RDS data . For future use the flag V4L2_TUNER_CAP_RDS_CONTROLS has also been defined.
However, a driver for a radio tuner with this capability does not yet exist, so if you are planning to write
such a driver you should discuss this on the linux-media mailing list: https://linuxtv.org/lists.php.
Whether an RDS signal is present can be detected by looking at the rxsubchans field of struct v4l2_tuner:
the V4L2_TUNER_SUB_RDS will be set if RDS data was detected.

148 Chapter 1. Linux Media Infrastructure userspace API

https://linuxtv.org/lists.php
https://linuxtv.org/lists.php

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Devices supporting the RDS output API set the V4L2_CAP_RDS_OUTPUT flag in the capabilities field
of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. Any modulator that sup-
ports RDS will set the V4L2_TUNER_CAP_RDS flag in the capability field of struct v4l2_modulator. In
order to enable the RDS transmission one must set the V4L2_TUNER_SUB_RDS bit in the txsubchans
field of struct v4l2_modulator. If the driver only passes RDS blocks without interpreting the data the
V4L2_TUNER_CAP_RDS_BLOCK_IO flag has to be set. If the tuner is capable of handling RDS entities like
program identification codes and radio text, the flag V4L2_TUNER_CAP_RDS_CONTROLS should be set, see
Writing RDS data and FM Transmitter Control Reference .

Reading RDS data

RDS data can be read from the radio device with the read() function. The data is packed in groups of
three bytes.

Writing RDS data

RDS data can be written to the radio device with the write() function. The data is packed in groups of
three bytes, as follows:

RDS datastructures

v4l2_rds_data

Table 1.38: struct v4l2_rds_data
__u8 lsb Least Significant Byte of RDS Block
__u8 msb Most Significant Byte of RDS Block
__u8 block Block description

Table 1.39: Block description
Bits 0-2 Block (aka offset) of the received data.
Bits 3-5 Deprecated. Currently identical to bits 0-2. Do not use these bits.
Bit 6 Corrected bit. Indicates that an error was corrected for this data block.
Bit 7 Error bit. Indicates that an uncorrectable error occurred during reception of this

block.

Table 1.40: Block defines
V4L2_RDS_BLOCK_MSK 7 Mask for bits 0-2 to get the block ID.
V4L2_RDS_BLOCK_A 0 Block A.
V4L2_RDS_BLOCK_B 1 Block B.
V4L2_RDS_BLOCK_C 2 Block C.
V4L2_RDS_BLOCK_D 3 Block D.
V4L2_RDS_BLOCK_C_ALT 4 Block C’.
V4L2_RDS_BLOCK_INVALID read-only 7 An invalid block.
V4L2_RDS_BLOCK_CORRECTED read-only 0x40 A bit error was detected but corrected.
V4L2_RDS_BLOCK_ERROR read-only 0x80 An uncorrectable error occurred.

Software Defined Radio Interface (SDR)

SDR is an abbreviation of Software Defined Radio, the radio device which uses application software for
modulation or demodulation. This interface is intended for controlling and data streaming of such devices.
SDR devices are accessed through character device special files named /dev/swradio0 to
/dev/swradio255 with major number 81 and dynamically allocated minor numbers 0 to 255.

1.2. Part I - Video for Linux API 149

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Querying Capabilities

Devices supporting the SDR receiver interface set the V4L2_CAP_SDR_CAPTURE and V4L2_CAP_TUNER flag
in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. That
flag means the device has an Analog to Digital Converter (ADC), which is a mandatory element for the
SDR receiver.
Devices supporting the SDR transmitter interface set the V4L2_CAP_SDR_OUTPUT and
V4L2_CAP_MODULATOR flag in the capabilities field of struct v4l2_capability returned by the
ioctl VIDIOC_QUERYCAP ioctl. That flag means the device has an Digital to Analog Converter (DAC),
which is a mandatory element for the SDR transmitter.
At least one of the read/write, streaming or asynchronous I/O methods must be supported.

Supplemental Functions

SDR devices can support controls , and must support the Tuners and Modulators ioctls. Tuner ioctls are
used for setting the ADC/DAC sampling rate (sampling frequency) and the possible radio frequency (RF).
The V4L2_TUNER_SDR tuner type is used for setting SDR device ADC/DAC frequency, and the
V4L2_TUNER_RF tuner type is used for setting radio frequency. The tuner index of the RF tuner (if any)
must always follow the SDR tuner index. Normally the SDR tuner is #0 and the RF tuner is #1.
The ioctl VIDIOC_S_HW_FREQ_SEEK ioctl is not supported.

Data Format Negotiation

The SDR device uses the Data Formats ioctls to select the capture and output format. Both the sampling
resolution and the data streaming format are bound to that selectable format. In addition to the basic
Data Formats ioctls, the ioctl VIDIOC_ENUM_FMT ioctl must be supported as well.
To use the Data Formats ioctls applications set the type field of a struct v4l2_format to
V4L2_BUF_TYPE_SDR_CAPTURE or V4L2_BUF_TYPE_SDR_OUTPUT and use the struct v4l2_sdr_format sdr
member of the fmt union as needed per the desired operation. Currently there is two fields, pixelformat
and buffersize, of struct struct v4l2_sdr_format which are used. Content of the pixelformat is V4L2
FourCC code of the data format. The buffersize field is maximum buffer size in bytes required for data
transfer, set by the driver in order to inform application.
v4l2_sdr_format

Table 1.41: struct v4l2_sdr_format
__u32 pixelformat The data format or type of compression, set by the

application. This is a little endian four character
code . V4L2 defines SDR formats in SDR Formats
.

__u32 buffersize Maximum size in bytes required for data. Value is
set by the driver.

__u8 reserved[24] This array is reserved for future extensions.
Drivers and applications must set it to zero.

An SDR device may support read/write and/or streaming (memory mapping or user pointer) I/O.

Touch Devices

Touch devices are accessed through character device special files named /dev/v4l-touch0 to /dev/v4l-
touch255 with major number 81 and dynamically allocated minor numbers 0 to 255.

150 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Overview

Sensors may be Optical, or Projected Capacitive touch (PCT).
Processing is required to analyse the raw data and produce input events. In some systems, this may
be performed on the ASIC and the raw data is purely a side-channel for diagnostics or tuning. In other
systems, the ASIC is a simple analogue front end device which delivers touch data at high rate, and any
touch processing must be done on the host.
For capacitive touch sensing, the touchscreen is composed of an array of horizontal and vertical conduc-
tors (alternatively called rows/columns, X/Y lines, or tx/rx). Mutual Capacitance measured is at the nodes
where the conductors cross. Alternatively, Self Capacitance measures the signal from each column and
row independently.
A touch input may be determined by comparing the raw capacitance measurement to a no-touch reference
(or “baseline”) measurement:
Delta = Raw - Reference
The reference measurement takes account of variations in the capacitance across the touch sensor matrix,
for example manufacturing irregularities, environmental or edge effects.

Querying Capabilities

Devices supporting the touch interface set the V4L2_CAP_VIDEO_CAPTURE flag and the V4L2_CAP_TOUCH
flag in the capabilities field of v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl.
At least one of the read/write or streaming I/O methods must be supported.
The formats supported by touch devices are documented in Touch Formats .

Data Format Negotiation

A touch device may support any I/O method.

Event Interface

The V4L2 event interface provides a means for a user to get immediately notified on certain conditions
taking place on a device. This might include start of frame or loss of signal events, for example. Changes
in the value or state of a V4L2 control can also be reported through events.
To receive events, the events the user is interested in first must be subscribed using the ioctl VID-
IOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT ioctl. Once an event is subscribed, the events
of subscribed types are dequeueable using the ioctl VIDIOC_DQEVENT ioctl. Events may be unsub-
scribed using VIDIOC_UNSUBSCRIBE_EVENT ioctl. The special event type V4L2_EVENT_ALL may be used
to unsubscribe all the events the driver supports.
The event subscriptions and event queues are specific to file handles. Subscribing an event on one file
handle does not affect other file handles.
The information on dequeueable events is obtained by using select or poll system calls on video devices.
The V4L2 events use POLLPRI events on poll system call and exceptions on select system call.
Starting with kernel 3.1 certain guarantees can be given with regards to events:

1. Each subscribed event has its own internal dedicated event queue. This means that flooding of one
event type will not interfere with other event types.

2. If the internal event queue for a particular subscribed event becomes full, then the oldest event in
that queue will be dropped.

1.2. Part I - Video for Linux API 151

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

3. Where applicable, certain event types can ensure that the payload of the oldest event that is about
to be dropped will be merged with the payload of the next oldest event. Thus ensuring that no infor-
mation is lost, but only an intermediate step leading up to that information. See the documentation
for the event you want to subscribe to whether this is applicable for that event or not.

Sub-device Interface

The complex nature of V4L2 devices, where hardware is often made of several integrated circuits that
need to interact with each other in a controlled way, leads to complex V4L2 drivers. The drivers usually
reflect the hardware model in software, and model the different hardware components as software blocks
called sub-devices.
V4L2 sub-devices are usually kernel-only objects. If the V4L2 driver implements the media device API,
they will automatically inherit from media entities. Applications will be able to enumerate the sub-devices
and discover the hardware topology using the media entities, pads and links enumeration API.
In addition to make sub-devices discoverable, drivers can also choose to make them directly configurable
by applications. When both the sub-device driver and the V4L2 device driver support this, sub-devices
will feature a character device node on which ioctls can be called to

• query, read and write sub-devices controls
• subscribe and unsubscribe to events and retrieve them
• negotiate image formats on individual pads

Sub-device character device nodes, conventionally named /dev/v4l-subdev*, use major number 81.

Controls

Most V4L2 controls are implemented by sub-device hardware. Drivers usually merge all controls and ex-
pose them through video device nodes. Applications can control all sub-devices through a single interface.
Complex devices sometimes implement the same control in different pieces of hardware. This situation is
common in embedded platforms, where both sensors and image processing hardware implement identical
functions, such as contrast adjustment, white balance or faulty pixels correction. As the V4L2 controls
API doesn’t support several identical controls in a single device, all but one of the identical controls are
hidden.
Applications can access those hidden controls through the sub-device node with the V4L2 control API
described in User Controls . The ioctls behave identically as when issued on V4L2 device nodes, with the
exception that they deal only with controls implemented in the sub-device.
Depending on the driver, those controls might also be exposed through one (or several) V4L2 device
nodes.

Events

V4L2 sub-devices can notify applications of events as described in Event Interface . The API behaves
identically as when used on V4L2 device nodes, with the exception that it only deals with events generated
by the sub-device. Depending on the driver, those events might also be reported on one (or several) V4L2
device nodes.

152 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Pad-level Formats

Warning:

Pad-level formats are only applicable to very complex devices that need to expose low-level format
configuration to user space. Generic V4L2 applications do not need to use the API described in this
section.

Note:

For the purpose of this section, the term format means the combination of media bus data format,
frame width and frame height.

Image formats are typically negotiated on video capture and output devices using the format and selection
ioctls. The driver is responsible for configuring every block in the video pipeline according to the requested
format at the pipeline input and/or output.
For complex devices, such as often found in embedded systems, identical image sizes at the output of a
pipeline can be achieved using different hardware configurations. One such example is shown on Image
Format Negotiation on Pipelines , where image scaling can be performed on both the video sensor and
the host image processing hardware.
The sensor scaler is usually of less quality than the host scaler, but scaling on the sensor is required
to achieve higher frame rates. Depending on the use case (quality vs. speed), the pipeline must be
configured differently. Applications need to configure the formats at every point in the pipeline explicitly.
Drivers that implement the media API can expose pad-level image format configuration to applications.
When they do, applications can use the VIDIOC_SUBDEV_G_FMT and VIDIOC_SUBDEV_S_FMT ioctls. to
negotiate formats on a per-pad basis.
Applications are responsible for configuring coherent parameters on the whole pipeline and making sure
that connected pads have compatible formats. The pipeline is checked for formats mismatch at VID-
IOC_STREAMON time, and an EPIPE error code is then returned if the configuration is invalid.
Pad-level image format configuration support can be tested by calling the ioctl VIDIOC_SUBDEV_G_FMT,
VIDIOC_SUBDEV_S_FMT ioctl on pad 0. If the driver returns an EINVAL error code pad-level format con-
figuration is not supported by the sub-device.

Format Negotiation

Acceptable formats on pads can (and usually do) depend on a number of external parameters, such as
formats on other pads, active links, or even controls. Finding a combination of formats on all pads in a
video pipeline, acceptable to both application and driver, can’t rely on formats enumeration only. A format
negotiation mechanism is required.
Central to the format negotiation mechanism are the get/set format operations. When called with
the which argument set to V4L2_SUBDEV_FORMAT_TRY , the VIDIOC_SUBDEV_G_FMT and VID-
IOC_SUBDEV_S_FMT ioctls operate on a set of formats parameters that are not connected to the hardware
configuration. Modifying those ‘try’ formats leaves the device state untouched (this applies to both the
software state stored in the driver and the hardware state stored in the device itself).
While not kept as part of the device state, try formats are stored in the sub-device file handles. A
VIDIOC_SUBDEV_G_FMT call will return the last try format set on the same sub-device file handle. Several
applications querying the same sub-device at the same time will thus not interact with each other.
To find out whether a particular format is supported by the device, applications use the VID-
IOC_SUBDEV_S_FMT ioctl. Drivers verify and, if needed, change the requested format based on device

1.2. Part I - Video for Linux API 153

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

0 Host
Scaler 1

0 V4L I/O

HQ: 1280x720
HS: 1280x720

0 Host
Frontend 1

HQ: 2592x1968
HS: 1296x984

Sensor 0

HQ: 2592x1968
HS: 1296x984

Fig. 1.11: Image Format Negotiation on Pipelines
High quality and high speed pipeline configuration

154 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

requirements and return the possibly modified value. Applications can then choose to try a different
format or accept the returned value and continue.
Formats returned by the driver during a negotiation iteration are guaranteed to be supported by the
device. In particular, drivers guarantee that a returned format will not be further changed if passed to
an VIDIOC_SUBDEV_S_FMT call as-is (as long as external parameters, such as formats on other pads or
links’ configuration are not changed).
Drivers automatically propagate formats inside sub-devices. When a try or active format is set on a pad,
corresponding formats on other pads of the same sub-device can be modified by the driver. Drivers are
free to modify formats as required by the device. However, they should comply with the following rules
when possible:

• Formats should be propagated from sink pads to source pads. Modifying a format on a source pad
should not modify the format on any sink pad.

• Sub-devices that scale frames using variable scaling factors should reset the scale factors to default
values when sink pads formats are modified. If the 1:1 scaling ratio is supported, this means that
source pads formats should be reset to the sink pads formats.

Formats are not propagated across links, as that would involve propagating them from one sub-device file
handle to another. Applications must then take care to configure both ends of every link explicitly with
compatible formats. Identical formats on the two ends of a link are guaranteed to be compatible. Drivers
are free to accept different formats matching device requirements as being compatible.
Sample Pipeline Configuration shows a sample configuration sequence for the pipeline described in
Image Format Negotiation on Pipelines (table columns list entity names and pad numbers).

Table 1.42: Sample Pipeline Configuration
Sensor/0 format Frontend/0 format Frontend/1 format Scaler/0 format Scaler/0 compose selec-

tion rectangle
Scaler/1 format

Initial state 2048x1536/SGRBG8_1X8 (default) (default) (default) (default) (default)
Configure frontend
sink format

2048x1536/SGRBG8_1X8 2048x1536/SGRBG8_1X8 2046x1534/SGRBG8_1X8 (default) (default) (default)

Configure scaler sink
format

2048x1536/SGRBG8_1X8 2048x1536/SGRBG8_1X8 2046x1534/SGRBG8_1X8 2046x1534/SGRBG8_1X8 0,0/2046x1534 2046x1534/SGRBG8_1X8

Configure scaler sink
compose selection

2048x1536/SGRBG8_1X8 2048x1536/SGRBG8_1X8 2046x1534/SGRBG8_1X8 2046x1534/SGRBG8_1X8 0,0/1280x960 1280x960/SGRBG8_1X8

1. Initial state. The sensor source pad format is set to its native 3MP size and
V4L2_MBUS_FMT_SGRBG8_1X8 media bus code. Formats on the host frontend and scaler sink
and source pads have the default values, as well as the compose rectangle on the scaler’s sink pad.

2. The application configures the frontend sink pad format’s size to 2048x1536 and its media bus code
to V4L2_MBUS_FMT_SGRBG_1X8. The driver propagates the format to the frontend source pad.

3. The application configures the scaler sink pad format’s size to 2046x1534 and the media bus code
to V4L2_MBUS_FMT_SGRBG_1X8 to match the frontend source size and media bus code. The media
bus code on the sink pad is set to V4L2_MBUS_FMT_SGRBG_1X8. The driver propagates the size to
the compose selection rectangle on the scaler’s sink pad, and the format to the scaler source pad.

4. The application configures the size of the compose selection rectangle of the scaler’s sink pad
1280x960. The driver propagates the size to the scaler’s source pad format.

When satisfied with the try results, applications can set the active formats by setting the which argument
to V4L2_SUBDEV_FORMAT_ACTIVE. Active formats are changed exactly as try formats by drivers. To avoid
modifying the hardware state during format negotiation, applications should negotiate try formats first
and then modify the active settings using the try formats returned during the last negotiation iteration.
This guarantees that the active format will be applied as-is by the driver without being modified.

Selections: cropping, scaling and composition

Many sub-devices support cropping frames on their input or output pads (or possible even on both).
Cropping is used to select the area of interest in an image, typically on an image sensor or a video
decoder. It can also be used as part of digital zoom implementations to select the area of the image that
will be scaled up.

1.2. Part I - Video for Linux API 155

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Crop settings are defined by a crop rectangle and represented in a struct v4l2_rect by the coordinates
of the top left corner and the rectangle size. Both the coordinates and sizes are expressed in pixels.
As for pad formats, drivers store try and active rectangles for the selection targets Common selection
definitions .
On sink pads, cropping is applied relative to the current pad format. The pad format represents the
image size as received by the sub-device from the previous block in the pipeline, and the crop rectangle
represents the sub-image that will be transmitted further inside the sub-device for processing.
The scaling operation changes the size of the image by scaling it to new dimensions. The scaling ratio isn’t
specified explicitly, but is implied from the original and scaled image sizes. Both sizes are represented by
struct v4l2_rect.
Scaling support is optional. When supported by a subdev, the crop rectangle on the subdev’s
sink pad is scaled to the size configured using the VIDIOC_SUBDEV_S_SELECTION IOCTL using
V4L2_SEL_TGT_COMPOSE selection target on the same pad. If the subdev supports scaling but not com-
posing, the top and left values are not used and must always be set to zero.
On source pads, cropping is similar to sink pads, with the exception that the source size from which the
cropping is performed, is the COMPOSE rectangle on the sink pad. In both sink and source pads, the crop
rectangle must be entirely contained inside the source image size for the crop operation.
The drivers should always use the closest possible rectangle the user requests on all selection targets,
unless specifically told otherwise. V4L2_SEL_FLAG_GE and V4L2_SEL_FLAG_LE flags may be used to round
the image size either up or down. Selection flags

Types of selection targets

Actual targets

Actual targets (without a postfix) reflect the actual hardware configuration at any point of time. There is
a BOUNDS target corresponding to every actual target.

BOUNDS targets

BOUNDS targets is the smallest rectangle that contains all valid actual rectangles. It may not be possible
to set the actual rectangle as large as the BOUNDS rectangle, however. This may be because e.g. a
sensor’s pixel array is not rectangular but cross-shaped or round. The maximum size may also be smaller
than the BOUNDS rectangle.

Order of configuration and format propagation

Inside subdevs, the order of image processing steps will always be from the sink pad towards the source
pad. This is also reflected in the order in which the configuration must be performed by the user: the
changes made will be propagated to any subsequent stages. If this behaviour is not desired, the user
must set V4L2_SEL_FLAG_KEEP_CONFIG flag. This flag causes no propagation of the changes are allowed
in any circumstances. This may also cause the accessed rectangle to be adjusted by the driver, depending
on the properties of the underlying hardware.
The coordinates to a step always refer to the actual size of the previous step. The exception to this rule
is the sink compose rectangle, which refers to the sink compose bounds rectangle — if it is supported by
the hardware.

1. Sink pad format. The user configures the sink pad format. This format defines the parameters of the
image the entity receives through the pad for further processing.

2. Sink pad actual crop selection. The sink pad crop defines the crop performed to the sink pad format.

156 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

3. Sink pad actual compose selection. The size of the sink pad compose rectangle defines the scaling
ratio compared to the size of the sink pad crop rectangle. The location of the compose rectangle
specifies the location of the actual sink compose rectangle in the sink compose bounds rectangle.

4. Source pad actual crop selection. Crop on the source pad defines crop performed to the image in the
sink compose bounds rectangle.

5. Source pad format. The source pad format defines the output pixel format of the subdev, as well
as the other parameters with the exception of the image width and height. Width and height are
defined by the size of the source pad actual crop selection.

Accessing any of the above rectangles not supported by the subdev will return EINVAL. Any rectangle
referring to a previous unsupported rectangle coordinates will instead refer to the previous supported
rectangle. For example, if sink crop is not supported, the compose selection will refer to the sink pad
format dimensions instead.

Fig. 1.12: Figure 4.5. Image processing in subdevs: simple crop example

In the above example, the subdev supports cropping on its sink pad. To configure it, the user sets the
media bus format on the subdev’s sink pad. Now the actual crop rectangle can be set on the sink pad —
the location and size of this rectangle reflect the location and size of a rectangle to be cropped from the
sink format. The size of the sink crop rectangle will also be the size of the format of the subdev’s source
pad.

Fig. 1.13: Figure 4.6. Image processing in subdevs: scaling with multiple sources

In this example, the subdev is capable of first cropping, then scaling and finally cropping for two source
pads individually from the resulting scaled image. The location of the scaled image in the cropped image
is ignored in sink compose target. Both of the locations of the source crop rectangles refer to the sink
scaling rectangle, independently cropping an area at location specified by the source crop rectangle from
it.
The subdev driver supports two sink pads and two source pads. The images from both of the sink pads
are individually cropped, then scaled and further composed on the composition bounds rectangle. From
that, two independent streams are cropped and sent out of the subdev from the source pads.

1.2. Part I - Video for Linux API 157

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Fig. 1.14: Figure 4.7. Image processing in subdevs: scaling and composition with multiple
sinks and sources

Media Bus Formats

v4l2_mbus_framefmt

Table 1.43: struct v4l2_mbus_framefmt
__u32 width Image width, in pixels.
__u32 height Image height, in pixels.
__u32 code Format code, from enum v4l2_mbus_pixelcode .
__u32 field Field order, from enum v4l2_field. See Field

Order for details.
__u32 colorspace Image colorspace, from enum v4l2_colorspace.

See Colorspaces for details.
enum
v4l2_ycbcr_encoding

ycbcr_enc This information supplements the colorspace
and must be set by the driver for capture streams
and by the application for output streams, see
Colorspaces .

enum
v4l2_quantization

quantization This information supplements the colorspace
and must be set by the driver for capture streams
and by the application for output streams, see
Colorspaces .

enum v4l2_xfer_func xfer_func This information supplements the colorspace
and must be set by the driver for capture streams
and by the application for output streams, see
Colorspaces .

__u16 reserved[11] Reserved for future extensions. Applications and
drivers must set the array to zero.

Media Bus Pixel Codes

The media bus pixel codes describe image formats as flowing over physical busses (both between separate
physical components and inside SoC devices). This should not be confused with the V4L2 pixel formats
that describe, using four character codes, image formats as stored in memory.
While there is a relationship between image formats on busses and image formats in memory (a raw
Bayer image won’t be magically converted to JPEG just by storing it to memory), there is no one-to-one
correspondance between them.

158 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Packed RGB Formats

Those formats transfer pixel data as red, green and blue components. The format code is made of the
following information.

• The red, green and blue components order code, as encoded in a pixel sample. Possible values are
RGB and BGR.

• The number of bits per component, for each component. The values can be different for all compo-
nents. Common values are 555 and 565.

• The number of bus samples per pixel. Pixels that are wider than the bus width must be transferred
in multiple samples. Common values are 1 and 2.

• The bus width.
• For formats where the total number of bits per pixel is smaller than the number of bus samples per

pixel times the bus width, a padding value stating if the bytes are padded in their most high order
bits (PADHI) or low order bits (PADLO). A “C” prefix is used for component-wise padding in the most
high order bits (CPADHI) or low order bits (CPADLO) of each separate component.

• For formats where the number of bus samples per pixel is larger than 1, an endianness value stating
if the pixel is transferred MSB first (BE) or LSB first (LE).

For instance, a format where pixels are encoded as 5-bits red, 5-bits green and 5-bit blue values padded
on the high bit, transferred as 2 8-bit samples per pixel with the most significant bits (padding, red and
half of the green value) transferred first will be named MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE.
The following tables list existing packed RGB formats.

Table 1.44: RGB formats

Identifier Code Data organization
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_RGB444_1X12
0x1016 r3 r2 r1 r0 g3 g2 g1 g0 b3 b2 b1 b0

MEDIA_BUS_FMT_RGB444_2X8_PADHI_BE
0x1001

0 0 0 0
r3 r2 r1 r0

g3 g2 g1 g0 b3 b2 b1 b0
MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE

0x1002 g3 g2 g1 g0 b3 b2 b1 b0
0 0 0 0 r3 r2 r1 r0

MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE
0x1003

0
r4 r3 r2 r1 r0 g4 g3

g2 g1 g0 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE

0x1004 g2 g1 g0 b4 b3 b2 b1 b0
0 r4 r3 r2 r1 r0 g4 g3

MEDIA_BUS_FMT_RGB565_1X16
0x1017 r4 r3 r2 r1 r0 g5 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_BGR565_2X8_BE
0x1005 b4 b3 b2 b1 b0 g5 g4 g3

g2 g1 g0 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_BGR565_2X8_LE

0x1006 g2 g1 g0 r4 r3 r2 r1 r0
b4 b3 b2 b1 b0 g5 g4 g3

MEDIA_BUS_FMT_RGB565_2X8_BE
0x1007 r4 r3 r2 r1 r0 g5 g4 g3

g2 g1 g0 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_RGB565_2X8_LE

0x1008 g2 g1 g0 b4 b3 b2 b1 b0
r4 r3 r2 r1 r0 g5 g4 g3

MEDIA_BUS_FMT_RGB666_1X18
0x1009 r5 r4 r3 r2 r1 r0 g5 g4 g3 g2 g1 g0 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_RBG888_1X24 0x100e
r7 r6 r5 r4 r3 r2 r1 r0 b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0

MEDIA_BUS_FMT_RGB666_1X24_CPADHI
0x1015

0 0
r5 r4 r3 r2 r1 r0

0 0
g5 g4 g3 g2 g1 g0

0 0
b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_BGR888_1X24
0x1013 b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0

MEDIA_BUS_FMT_GBR888_1X24
0x1014 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0 r7 r6 r5 r4 r3 r2 r1 r0

MEDIA_BUS_FMT_RGB888_1X24 0x100a
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_RGB888_2X12_BE
0x100b r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4

g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_RGB888_2X12_LE 0x100c

g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4

MEDIA_BUS_FMT_ARGB888_1X32
0x100d a7 a6 a5 a4 a3 a2 a1 a0 r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_RGB888_1X32_PADHI 0x100f 0 0 0 0 0 0 0 0
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_RGB101010_1X30
0x1018

0 0
r9 r8 r7 r6 r5 r4 r3 r2 r1 r0 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

The following table list existing packed 36bit wide RGB formats.

1.2. Part I - Video for Linux API 159

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.45: 36bit RGB formats
Identifier Code Data organization

Bit 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_RGB121212_1X36 0x1019 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0 g11 g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

The following table list existing packed 48bit wide RGB formats.

Table 1.46: 48bit RGB formats
Identifier Code Data organization

Bit 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_RGB161616_1X48 0x101a r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0
g15 g14 g13 g12 g11 g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

On LVDS buses, usually each sample is transferred serialized in seven time slots per pixel clock, on three
(18-bit) or four (24-bit) differential data pairs at the same time. The remaining bits are used for control
signals as defined by SPWG/PSWG/VESA or JEIDA standards. The 24-bit RGB format serialized in seven time
slots on four lanes using JEIDA defined bit mapping will be named MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA,
for example.

Table 1.47: LVDS RGB formats
Identifier Code Data organization

Timeslot Lane 3 2 1 0

MEDIA_BUS_FMT_RGB666_1X7X3_SPWG 0x1010 0 d b1 g0
1 d b0 r5
2 d g5 r4
3 b5 g4 r3
4 b4 g3 r2
5 b3 g2 r1
6 b2 g1 r0

MEDIA_BUS_FMT_RGB888_1X7X4_SPWG 0x1011 0 d d b1 g0
1 b7 d b0 r5
2 b6 d g5 r4
3 g7 b5 g4 r3
4 g6 b4 g3 r2
5 r7 b3 g2 r1
6 r6 b2 g1 r0

MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA 0x1012 0 d d b3 g2
1 b1 d b2 r7
2 b0 d g7 r6
3 g1 b7 g6 r5
4 g0 b6 g5 r4
5 r1 b5 g4 r3
6 r0 b4 g3 r2

Bayer Formats

Those formats transfer pixel data as red, green and blue components. The format code is made of the
following information.

• The red, green and blue components order code, as encoded in a pixel sample. The possible values
are shown in Figure 4.8 Bayer Patterns .

• The number of bits per pixel component. All components are transferred on the same number of
bits. Common values are 8, 10 and 12.

• The compression (optional). If the pixel components are ALAW- or DPCM-compressed, a mention of
the compression scheme and the number of bits per compressed pixel component.

• The number of bus samples per pixel. Pixels that are wider than the bus width must be transferred
in multiple samples. Common values are 1 and 2.

• The bus width.
• For formats where the total number of bits per pixel is smaller than the number of bus samples per

pixel times the bus width, a padding value stating if the bytes are padded in their most high order
bits (PADHI) or low order bits (PADLO).

• For formats where the number of bus samples per pixel is larger than 1, an endianness value stating
if the pixel is transferred MSB first (BE) or LSB first (LE).

160 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

For instance, a format with uncompressed 10-bit Bayer components arranged in a red, green, green, blue
pattern transferred as 2 8-bit samples per pixel with the least significant bits transferred first will be named
MEDIA_BUS_FMT_SRGGB10_2X8_PADHI_LE.

Fig. 1.15: Figure 4.8 Bayer Patterns

The following table lists existing packed Bayer formats. The data organization is given as an example for
the first pixel only.

Table 1.48: Bayer Formats

Identifier Code Data organization
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_SBGGR8_1X8
0x3001 b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_SGBRG8_1X8
0x3013 g7 g6 g5 g4 g3 g2 g1 g0

MEDIA_BUS_FMT_SGRBG8_1X8
0x3002 g7 g6 g5 g4 g3 g2 g1 g0

MEDIA_BUS_FMT_SRGGB8_1X8
0x3014 r7 r6 r5 r4 r3 r2 r1 r0

MEDIA_BUS_FMT_SBGGR10_ALAW8_1X8
0x3015 b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_SGBRG10_ALAW8_1X8
0x3016 g7 g6 g5 g4 g3 g2 g1 g0

MEDIA_BUS_FMT_SGRBG10_ALAW8_1X8
0x3017 g7 g6 g5 g4 g3 g2 g1 g0

MEDIA_BUS_FMT_SRGGB10_ALAW8_1X8
0x3018 r7 r6 r5 r4 r3 r2 r1 r0

MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8
0x300b b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8 0x300c
g7 g6 g5 g4 g3 g2 g1 g0

MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8
0x3009 g7 g6 g5 g4 g3 g2 g1 g0

MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8
0x300d r7 r6 r5 r4 r3 r2 r1 r0

MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_BE
0x3003

0 0 0 0 0 0
b9 b8

b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_LE

0x3004 b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0 b9 b8

MEDIA_BUS_FMT_SBGGR10_2X8_PADLO_BE
0x3005 b9 b8 b7 b6 b5 b4 b3 b2

b1 b0 0 0 0 0 0 0
MEDIA_BUS_FMT_SBGGR10_2X8_PADLO_LE

0x3006 b1 b0
0 0 0 0 0 0

b9 b8 b7 b6 b5 b4 b3 b2
MEDIA_BUS_FMT_SBGGR10_1X10

0x3007 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG10_1X10 0x300e

g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG10_1X10 0x300a

g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB10_1X10 0x300f

r9 r8 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR12_1X12

0x3008 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG12_1X12

0x3010 g11 g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG12_1X12

0x3011 g11 g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB12_1X12

0x3012 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR14_1X14

0x3019 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG14_1X14 0x301a

g13 g12 g11 g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG14_1X14

0x301b g13 g12 g11 g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB14_1X14 0x301c

r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR16_1X16

0x301d b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG16_1X16 0x301e

g15 g14 g13 g12 g11 g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG16_1X16 0x301f

g15 g14 g13 g12 g11 g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
Continued on next page

1.2. Part I - Video for Linux API 161

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.48 – continued from previous page
Identifier Code Data organization

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEDIA_BUS_FMT_SRGGB16_1X16

0x3020 r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

Packed YUV Formats

Those data formats transfer pixel data as (possibly downsampled) Y, U and V components. Some formats
include dummy bits in some of their samples and are collectively referred to as “YDYC” (Y-Dummy-Y-
Chroma) formats. One cannot rely on the values of these dummy bits as those are undefined.
The format code is made of the following information.

• The Y, U and V components order code, as transferred on the bus. Possible values are YUYV, UYVY,
YVYU and VYUY for formats with no dummy bit, and YDYUYDYV, YDYVYDYU, YUYDYVYD and YVYDYUYD
for YDYC formats.

• The number of bits per pixel component. All components are transferred on the same number of
bits. Common values are 8, 10 and 12.

• The number of bus samples per pixel. Pixels that are wider than the bus width must be transferred
in multiple samples. Common values are 0.5 (encoded as 0_5; in this case two pixels are transferred
per bus sample), 1, 1.5 (encoded as 1_5) and 2.

• The bus width. When the bus width is larger than the number of bits per pixel component, several
components are packed in a single bus sample. The components are ordered as specified by the
order code, with components on the left of the code transferred in the high order bits. Common
values are 8 and 16.

For instance, a format where pixels are encoded as 8-bit YUV values downsampled to 4:2:2 and transferred
as 2 8-bit bus samples per pixel in the U, Y, V, Y order will be named MEDIA_BUS_FMT_UYVY8_2X8.
YUV Formats lists existing packed YUV formats and describes the organization of each pixel data in each
sample. When a format pattern is split across multiple samples each of the samples in the pattern is
described.
The role of each bit transferred over the bus is identified by one of the following codes.

• yx for luma component bit number x
• ux for blue chroma component bit number x
• vx for red chroma component bit number x
• ax for alpha component bit number x
• for non-available bits (for positions higher than the bus width)
• d for dummy bits

Table 1.49: YUV Formats

Identifier Code Data organization
Bit 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_Y8_1X8
0x2001 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_UV8_1X8
0x2015 u7 u6 u5 u4 u3 u2 u1 u0

v7 v6 v5 v4 v3 v2 v1 v0
MEDIA_BUS_FMT_UYVY8_1_5X8

0x2002 u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY8_1_5X8
0x2003 v7 v6 v5 v4 v3 v2 v1 v0

y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV8_1_5X8
0x2004 y7 y6 y5 y4 y3 y2 y1 y0

y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0

Continued on next page

162 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.49 – continued from previous page
Identifier Code Data organization

Bit 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU8_1_5X8
0x2005 y7 y6 y5 y4 y3 y2 y1 y0

y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_UYVY8_2X8
0x2006 u7 u6 u5 u4 u3 u2 u1 u0

y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY8_2X8
0x2007 v7 v6 v5 v4 v3 v2 v1 v0

y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV8_2X8
0x2008 y7 y6 y5 y4 y3 y2 y1 y0

u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU8_2X8
0x2009 y7 y6 y5 y4 y3 y2 y1 y0

v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_Y10_1X10 0x200a
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_UYVY10_2X10
0x2018 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY10_2X10
0x2019 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV10_2X10
0x200b y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU10_2X10 0x200c
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_Y12_1X12
0x2013 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_UYVY12_2X12 0x201c
u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY12_2X12
0x201d v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV12_2X12 0x201e
y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU12_2X12 0x201f
y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_UYVY8_1X16 0x200f
u7 u6 u5 u4 u3 u2 u1 u0 y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY8_1X16
0x2010 v7 v6 v5 v4 v3 v2 v1 v0 y7 y6 y5 y4 y3 y2 y1 y0

u7 u6 u5 u4 u3 u2 u1 u0 y7 y6 y5 y4 y3 y2 y1 y0
MEDIA_BUS_FMT_YUYV8_1X16

0x2011 y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU8_1X16
0x2012 y7 y6 y5 y4 y3 y2 y1 y0 v7 v6 v5 v4 v3 v2 v1 v0

y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0
MEDIA_BUS_FMT_YDYUYDYV8_1X16

0x2014 y7 y6 y5 y4 y3 y2 y1 y0
d d d d d d d d

y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0 d d d d d d d d
y7 y6 y5 y4 y3 y2 y1 y0 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_UYVY10_1X20 0x201a
u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY10_1X20
0x201b v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
MEDIA_BUS_FMT_YUYV10_1X20

0x200d y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU10_1X20 0x200e
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_VUY8_1X24 0x201a
v7 v6 v5 v4 v3 v2 v1 v0 u7 u6 u5 u4 u3 u2 u1 u0 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUV8_1X24
0x2025 y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0 v7 v6 v5 v4 v3 v2 v1 v0

Continued on next page

1.2. Part I - Video for Linux API 163

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.49 – continued from previous page
Identifier Code Data organization

Bit 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEDIA_BUS_FMT_UYYVYY8_0_5X24

0x2026 u7 u6 u5 u4 u3 u2 u1 u0 y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0 y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_UYVY12_1X24
0x2020 u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
MEDIA_BUS_FMT_VYUY12_1X24

0x2021 v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV12_1X24
0x2022 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
MEDIA_BUS_FMT_YVYU12_1X24

0x2023 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_YUV10_1X30
0x2016 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_UYYVYY10_0_5X30
0x2027 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
MEDIA_BUS_FMT_AYUV8_1X32

0x2017 a7 a6 a5 a4 a3 a2 a1 a0 y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0 v7 v6 v5 v4 v3 v2 v1 v0

The following table list existing packed 36bit wide YUV formats.

Table 1.50: 36bit YUV Formats
Identifier Code Data organization

Bit 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_UYYVYY12_0_5X36 0x2028 u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUV12_1X36 0x2029 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

The following table list existing packed 48bit wide YUV formats.

Table 1.51: 48bit YUV Formats
Identifier Code Data organization

Bit 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_YUV16_1X48 0x202a y15 y14 y13 y12 y11 y10 y8 y8 y7 y6 y5 y4 y3 y2 y1 y0
u15 u14 u13 u12 u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 v15 v14 v13 v12 v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_UYYVYY16_0_5X48 0x202b u15 u14 u13 u12 u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y15 y14 y13 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y15 y14 y13 y12 y11 y10 y8 y8 y7 y6 y5 y4 y3 y2 y1 y0

v15 v14 v13 v12 v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y15 y14 y13 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y15 y14 y13 y12 y11 y10 y8 y8 y7 y6 y5 y4 y3 y2 y1 y0

HSV/HSL Formats

Those formats transfer pixel data as RGB values in a cylindrical-coordinate system using Hue-Saturation-
Value or Hue-Saturation-Lightness components. The format code is made of the following information.

• The hue, saturation, value or lightness and optional alpha components order code, as encoded in a
pixel sample. The only currently supported value is AHSV.

• The number of bits per component, for each component. The values can be different for all compo-
nents. The only currently supported value is 8888.

• The number of bus samples per pixel. Pixels that are wider than the bus width must be transferred
in multiple samples. The only currently supported value is 1.

• The bus width.
• For formats where the total number of bits per pixel is smaller than the number of bus samples per

pixel times the bus width, a padding value stating if the bytes are padded in their most high order
bits (PADHI) or low order bits (PADLO).

• For formats where the number of bus samples per pixel is larger than 1, an endianness value stating
if the pixel is transferred MSB first (BE) or LSB first (LE).

The following table lists existing HSV/HSL formats.

Table 1.52: HSV/HSL formats
Identifier Code Data organization

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_AHSV8888_1X32 0x6001 a7 a6 a5 a4 a3 a2 a1 a0 h7 h6 h5 h4 h3 h2 h1 h0 s7 s6 s5 s4 s3 s2 s1 s0 v7 v6 v5 v4 v3 v2 v1 v0

164 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

JPEG Compressed Formats

Those data formats consist of an ordered sequence of 8-bit bytes obtained from JPEG compression process.
Additionally to the _JPEG postfix the format code is made of the following information.

• The number of bus samples per entropy encoded byte.
• The bus width.

For instance, for a JPEG baseline process and an 8-bit bus width the format will be named ME-
DIA_BUS_FMT_JPEG_1X8.
The following table lists existing JPEG compressed formats.

Table 1.53: JPEG Formats
Identifier Code Remarks

MEDIA_BUS_FMT_JPEG_1X8 0x4001 Besides of its usage for the parallel bus this format is recom-
mended for transmission of JPEG data over MIPI CSI bus using
the User Defined 8-bit Data types.

Vendor and Device Specific Formats

This section lists complex data formats that are either vendor or device specific.
The following table lists the existing vendor and device specific formats.

Table 1.54: Vendor and device specific formats
Identifier Code Comments

MEDIA_BUS_FMT_S5C_UYVY_JPEG_1X8 0x5001 Interleaved raw UYVY and JPEG image format with
embedded meta-data used by Samsung S3C73MX
camera sensors.

Metadata Interface

Metadata refers to any non-image data that supplements video frames with additional information. This
may include statistics computed over the image or frame capture parameters supplied by the image
source. This interface is intended for transfer of metadata to userspace and control of that operation.
The metadata interface is implemented on video capture device nodes. The device can be dedicated to
metadata or can implement both video and metadata capture as specified in its reported capabilities.

Querying Capabilities

Device nodes supporting the metadata interface set the V4L2_CAP_META_CAPTURE flag in the device_caps
field of the v4l2_capability structure returned by the VIDIOC_QUERYCAP() ioctl. That flag means the
device can capture metadata to memory.
At least one of the read/write or streaming I/O methods must be supported.

Data Format Negotiation

The metadata device uses the Data Formats ioctls to select the capture format. The metadata buffer
content format is bound to that selected format. In addition to the basic Data Formats ioctls, the VID-
IOC_ENUM_FMT() ioctl must be supported as well.

1.2. Part I - Video for Linux API 165

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

To use the Data Formats ioctls applications set the type field of the v4l2_format structure to
V4L2_BUF_TYPE_META_CAPTURE and use the v4l2_meta_format meta member of the fmt union as needed
per the desired operation. Both drivers and applications must set the remainder of the v4l2_format
structure to 0.

Table 1.55: struct v4l2_meta_format
__u32 dataformat The data format, set by the application. This is a little endian four character

code . V4L2 defines metadata formats in Metadata Formats .
__u32 buffersize Maximum buffer size in bytes required for data. The value is set by the driver.

1.2.5 Libv4l Userspace Library

Introduction

libv4l is a collection of libraries which adds a thin abstraction layer on top of video4linux2 devices. The
purpose of this (thin) layer is to make it easy for application writers to support a wide variety of devices
without having to write separate code for different devices in the same class.
An example of using libv4l is provided by v4l2grab .
libv4l consists of 3 different libraries:

libv4lconvert

libv4lconvert is a library that converts several different pixelformats found in V4L2 drivers into a few
common RGB and YUY formats.
It currently accepts the following V4L2 driver formats: V4L2_PIX_FMT_BGR24 , V4L2_PIX_FMT_HM12
, V4L2_PIX_FMT_JPEG , V4L2_PIX_FMT_MJPEG , V4L2_PIX_FMT_MR97310A , V4L2_PIX_FMT_OV511
, V4L2_PIX_FMT_OV518 , V4L2_PIX_FMT_PAC207 , V4L2_PIX_FMT_PJPG , V4L2_PIX_FMT_RGB24 ,
V4L2_PIX_FMT_SBGGR8 , V4L2_PIX_FMT_SGBRG8 , V4L2_PIX_FMT_SGRBG8 , V4L2_PIX_FMT_SN9C10X
, V4L2_PIX_FMT_SN9C20X_I420 , V4L2_PIX_FMT_SPCA501 , V4L2_PIX_FMT_SPCA505 ,
V4L2_PIX_FMT_SPCA508 , V4L2_PIX_FMT_SPCA561 , V4L2_PIX_FMT_SQ905C , V4L2_PIX_FMT_SRGGB8
, V4L2_PIX_FMT_UYVY , V4L2_PIX_FMT_YUV420 , V4L2_PIX_FMT_YUYV , V4L2_PIX_FMT_YVU420 , and
V4L2_PIX_FMT_YVYU .
Later on libv4lconvert was expanded to also be able to do various video processing functions to im-
prove webcam video quality. The video processing is split in to 2 parts: libv4lconvert/control and
libv4lconvert/processing.
The control part is used to offer video controls which can be used to control the video processing functions
made available by libv4lconvert/processing. These controls are stored application wide (until reboot) by
using a persistent shared memory object.
libv4lconvert/processing offers the actual video processing functionality.

libv4l1

This library offers functions that can be used to quickly make v4l1 applications work with v4l2 devices.
These functions work exactly like the normal open/close/etc, except that libv4l1 does full emulation of the
v4l1 api on top of v4l2 drivers, in case of v4l1 drivers it will just pass calls through.
Since those functions are emulations of the old V4L1 API, it shouldn’t be used for new applications.

166 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

libv4l2

This library should be used for all modern V4L2 applications.
It provides handles to call V4L2 open/ioctl/close/poll methods. Instead of just providing the raw output of
the device, it enhances the calls in the sense that it will use libv4lconvert to provide more video formats
and to enhance the image quality.
In most cases, libv4l2 just passes the calls directly through to the v4l2 driver, intercepting
the calls to VIDIOC_TRY_FMT , VIDIOC_G_FMT , VIDIOC_S_FMT , VIDIOC_ENUM_FRAMESIZES
and VIDIOC_ENUM_FRAMEINTERVALS in order to emulate the formats V4L2_PIX_FMT_BGR24 ,
V4L2_PIX_FMT_RGB24 , V4L2_PIX_FMT_YUV420 , and V4L2_PIX_FMT_YVU420 , if they aren’t available
in the driver. VIDIOC_ENUM_FMT keeps enumerating the hardware supported formats, plus the emu-
lated formats offered by libv4l at the end.

Libv4l device control functions

The common file operation methods are provided by libv4l.
Those functions operate just like the gcc function dup() and V4L2 functions open(), close(), ioctl(),
read(), mmap() and munmap():
int v4l2_open(const char *file, int oflag, ...)

operates like the open() function.
int v4l2_close(int fd)

operates like the close() function.
int v4l2_dup(int fd)

operates like the libc dup() function, duplicating a file handler.
int v4l2_ioctl(int fd, unsigned long int request, ...)

operates like the ioctl() function.
int v4l2_read(int fd, void* buffer, size_t n)

operates like the read() function.
void v4l2_mmap(void *start, size_t length, int prot, int flags, int fd, int64_t offset);

operates like the munmap() function.
int v4l2_munmap(void *_start, size_t length);

operates like the munmap() function.
Those functions provide additional control:
int v4l2_fd_open(int fd, int v4l2_flags)

opens an already opened fd for further use through v4l2lib and possibly modify libv4l2’s
default behavior through the v4l2_flags argument. Currently, v4l2_flags can be
V4L2_DISABLE_CONVERSION, to disable format conversion.

int v4l2_set_control(int fd, int cid, int value)
This function takes a value of 0 - 65535, and then scales that range to the actual range of the given
v4l control id, and then if the cid exists and is not locked sets the cid to the scaled value.

int v4l2_get_control(int fd, int cid)
This function returns a value of 0 - 65535, scaled to from the actual range of the given v4l control
id. when the cid does not exist, could not be accessed for some reason, or some error occurred 0 is
returned.

v4l1compat.so wrapper library

This library intercepts calls to open(), close(), ioctl(), mmap() and munmap() operations and redirects
them to the libv4l counterparts, by using LD_PRELOAD=/usr/lib/v4l1compat.so. It also emulates V4L1

1.2. Part I - Video for Linux API 167

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

calls via V4L2 API.
It allows usage of binary legacy applications that still don’t use libv4l.

1.2.6 Changes

The following chapters document the evolution of the V4L2 API, errata or extensions. They are also
intended to help application and driver writers to port or update their code.

Differences between V4L and V4L2

The Video For Linux API was first introduced in Linux 2.1 to unify and replace various TV and radio device
related interfaces, developed independently by driver writers in prior years. Starting with Linux 2.5 the
much improved V4L2 API replaces the V4L API. The support for the old V4L calls were removed from Kernel,
but the library Libv4l Userspace Library supports the conversion of a V4L API system call into a V4L2
one.

Opening and Closing Devices

For compatibility reasons the character device file names recommended for V4L2 video capture, overlay,
radio and raw vbi capture devices did not change from those used by V4L. They are listed in Interfaces
and below in V4L Device Types, Names and Numbers .
The teletext devices (minor range 192-223) have been removed in V4L2 and no longer exist. There is no
hardware available anymore for handling pure teletext. Instead raw or sliced VBI is used.
The V4L videodev module automatically assigns minor numbers to drivers in load order, depending on
the registered device type. We recommend that V4L2 drivers by default register devices with the same
numbers, but the system administrator can assign arbitrary minor numbers using driver module options.
The major device number remains 81.

Table 1.56: V4L Device Types, Names and Numbers
Device Type File Name Minor

Numbers
Video capture and
overlay

/dev/video and /dev/bttv0 1, /dev/video0 to
/dev/video63

0-63

Radio receiver /dev/radio 2, /dev/radio0 to /dev/radio63 64-127
Raw VBI capture /dev/vbi, /dev/vbi0 to /dev/vbi31 224-255
V4L prohibits (or used to prohibit) multiple opens of a device file. V4L2 drivers may support multiple
opens, see Opening and Closing Devices for details and consequences.
V4L drivers respond to V4L2 ioctls with an EINVAL error code.

Querying Capabilities

The V4L VIDIOCGCAP ioctl is equivalent to V4L2’s ioctl VIDIOC_QUERYCAP .
The name field in struct video_capability became card in struct v4l2_capability, type was replaced
by capabilities. Note V4L2 does not distinguish between device types like this, better think of basic
video input, video output and radio devices supporting a set of related functions like video capturing,
video overlay and VBI capturing. See Opening and Closing Devices for an introduction.

1 According to Documentation/admin-guide/devices.rst these should be symbolic links to /dev/video0. Note the original bttv
interface is not compatible with V4L or V4L2.

2 According to Documentation/admin-guide/devices.rst a symbolic link to /dev/radio0.

168 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct video_capability
type

struct v4l2_capability capabili-
ties flags

Purpose

VID_TYPE_CAPTURE V4L2_CAP_VIDEO_CAPTURE The video capture interface is
supported.

VID_TYPE_TUNER V4L2_CAP_TUNER The device has a tuner or mod-
ulator .

VID_TYPE_TELETEXT V4L2_CAP_VBI_CAPTURE The raw VBI capture interface
is supported.

VID_TYPE_OVERLAY V4L2_CAP_VIDEO_OVERLAY The video overlay interface is
supported.

VID_TYPE_CHROMAKEY V4L2_FBUF_CAP_CHROMAKEY
in field capability of struct
v4l2_framebuffer

Whether chromakey overlay is
supported. For more informa-
tion on overlay see Video Over-
lay Interface .

VID_TYPE_CLIPPING V4L2_FBUF_CAP_LIST_CLIPPING and
V4L2_FBUF_CAP_BITMAP_CLIPPING
in field capability of struct
v4l2_framebuffer

Whether clipping the overlaid
image is supported, see Video
Overlay Interface .

VID_TYPE_FRAMERAM V4L2_FBUF_CAP_EXTERNOVERLAY not
set in field capability of struct
v4l2_framebuffer

Whether overlay overwrites
frame buffer memory, see
Video Overlay Interface .

VID_TYPE_SCALES - This flag indicates if the hard-
ware can scale images. The
V4L2 API implies the scale fac-
tor by setting the cropping di-
mensions and image size with
the VIDIOC_S_CROP and VID-
IOC_S_FMT ioctl, respectively.
The driver returns the closest
sizes possible. For more infor-
mation on cropping and scaling
see Image Cropping, Insertion
and Scaling .

VID_TYPE_MONOCHROME - Applications can enumer-
ate the supported image
formats with the ioctl VID-
IOC_ENUM_FMT ioctl to de-
termine if the device supports
grey scale capturing only. For
more information on image
formats see Image Formats .

VID_TYPE_SUBCAPTURE - Applications can call the VID-
IOC_G_CROP ioctl to determine
if the device supports captur-
ing a subsection of the full pic-
ture (“cropping” in V4L2). If
not, the ioctl returns the EIN-
VAL error code. For more infor-
mation on cropping and scaling
see Image Cropping, Insertion
and Scaling .

Continued on next page

1.2. Part I - Video for Linux API 169

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.57 – continued from previous page
struct video_capability
type

struct v4l2_capability capabili-
ties flags

Purpose

VID_TYPE_MPEG_DECODER - Applications can enumer-
ate the supported image
formats with the ioctl VID-
IOC_ENUM_FMT ioctl to de-
termine if the device supports
MPEG streams.

VID_TYPE_MPEG_ENCODER - See above.
VID_TYPE_MJPEG_DECODER - See above.
VID_TYPE_MJPEG_ENCODER - See above.

The audios field was replaced by capabilities flag V4L2_CAP_AUDIO, indicating if the device has any
audio inputs or outputs. To determine their number applications can enumerate audio inputs with the
VIDIOC_G_AUDIO ioctl. The audio ioctls are described in Audio Inputs and Outputs .
The maxwidth, maxheight, minwidth and minheight fields were removed. Calling the VIDIOC_S_FMT or
VIDIOC_TRY_FMT ioctl with the desired dimensions returns the closest size possible, taking into account
the current video standard, cropping and scaling limitations.

Video Sources

V4L provides the VIDIOCGCHAN and VIDIOCSCHAN ioctl using struct video_channel to enumerate the video
inputs of a V4L device. The equivalent V4L2 ioctls are ioctl VIDIOC_ENUMINPUT , VIDIOC_G_INPUT and
VIDIOC_S_INPUT using struct v4l2_input as discussed in Video Inputs and Outputs .
The channel field counting inputs was renamed to index, the video input types were renamed as follows:
struct video_channel type struct v4l2_input type
VIDEO_TYPE_TV V4L2_INPUT_TYPE_TUNER
VIDEO_TYPE_CAMERA V4L2_INPUT_TYPE_CAMERA

Unlike the tuners field expressing the number of tuners of this input, V4L2 assumes each video input is
connected to at most one tuner. However a tuner can have more than one input, i. e. RF connectors,
and a device can have multiple tuners. The index number of the tuner associated with the input, if any, is
stored in field tuner of struct v4l2_input. Enumeration of tuners is discussed in Tuners and Modulators
.
The redundant VIDEO_VC_TUNER flag was dropped. Video inputs associated with a tuner are of type
V4L2_INPUT_TYPE_TUNER. The VIDEO_VC_AUDIO flag was replaced by the audioset field. V4L2 consid-
ers devices with up to 32 audio inputs. Each set bit in the audioset field represents one audio input this
video input combines with. For information about audio inputs and how to switch between them see
Audio Inputs and Outputs .
The norm field describing the supported video standards was replaced by std. The V4L specification
mentions a flag VIDEO_VC_NORM indicating whether the standard can be changed. This flag was a later
addition together with the norm field and has been removed in the meantime. V4L2 has a similar, albeit
more comprehensive approach to video standards, see Video Standards for more information.

Tuning

The V4L VIDIOCGTUNER and VIDIOCSTUNER ioctl and struct video_tuner can be used to enumerate the
tuners of a V4L TV or radio device. The equivalent V4L2 ioctls are VIDIOC_G_TUNER and VIDIOC_S_TUNER
using struct v4l2_tuner. Tuners are covered in Tuners and Modulators .
The tuner field counting tuners was renamed to index. The fields name, rangelow and rangehigh re-
mained unchanged.

170 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The VIDEO_TUNER_PAL, VIDEO_TUNER_NTSC and VIDEO_TUNER_SECAM flags indicating the supported video
standards were dropped. This information is now contained in the associated struct v4l2_input. No
replacement exists for the VIDEO_TUNER_NORM flag indicating whether the video standard can be switched.
The mode field to select a different video standard was replaced by a whole new set of ioctls and structures
described in Video Standards . Due to its ubiquity it should be mentioned the BTTV driver supports
several standards in addition to the regular VIDEO_MODE_PAL (0), VIDEO_MODE_NTSC, VIDEO_MODE_SECAM
and VIDEO_MODE_AUTO (3). Namely N/PAL Argentina, M/PAL, N/PAL, and NTSC Japan with numbers 3-6
(sic).
The VIDEO_TUNER_STEREO_ON flag indicating stereo reception became V4L2_TUNER_SUB_STEREO in field
rxsubchans. This field also permits the detection of monaural and bilingual audio, see the definition
of struct v4l2_tuner for details. Presently no replacement exists for the VIDEO_TUNER_RDS_ON and
VIDEO_TUNER_MBS_ON flags.
The VIDEO_TUNER_LOW flag was renamed to V4L2_TUNER_CAP_LOW in the struct v4l2_tuner capability
field.
The VIDIOCGFREQ and VIDIOCSFREQ ioctl to change the tuner frequency where renamed to VID-
IOC_G_FREQUENCY and VIDIOC_S_FREQUENCY . They take a pointer to a struct v4l2_frequency instead
of an unsigned long integer.

Image Properties

V4L2 has no equivalent of the VIDIOCGPICT and VIDIOCSPICT ioctl and struct video_picture. The
following fields where replaced by V4L2 controls accessible with the ioctls VIDIOC_QUERYCTRL, VID-
IOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU , VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls:
struct video_picture V4L2 Control ID
brightness V4L2_CID_BRIGHTNESS
hue V4L2_CID_HUE
colour V4L2_CID_SATURATION
contrast V4L2_CID_CONTRAST
whiteness V4L2_CID_WHITENESS

The V4L picture controls are assumed to range from 0 to 65535 with no particular reset value. The
V4L2 API permits arbitrary limits and defaults which can be queried with the ioctls VIDIOC_QUERYCTRL,
VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU ioctl. For general information about controls see
User Controls .
The depth (average number of bits per pixel) of a video image is implied by the selected image format.
V4L2 does not explicitly provide such information assuming applications recognizing the format are aware
of the image depth and others need not know. The palette field moved into the struct v4l2_pix_format:

1.2. Part I - Video for Linux API 171

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct video_picture palette struct v4l2_pix_format pixfmt
VIDEO_PALETTE_GREY V4L2_PIX_FMT_GREY
VIDEO_PALETTE_HI240 V4L2_PIX_FMT_HI240 3

VIDEO_PALETTE_RGB565 V4L2_PIX_FMT_RGB565
VIDEO_PALETTE_RGB555 V4L2_PIX_FMT_RGB555
VIDEO_PALETTE_RGB24 V4L2_PIX_FMT_BGR24
VIDEO_PALETTE_RGB32 V4L2_PIX_FMT_BGR32 4

VIDEO_PALETTE_YUV422 V4L2_PIX_FMT_YUYV
VIDEO_PALETTE_YUYV 5 V4L2_PIX_FMT_YUYV
VIDEO_PALETTE_UYVY V4L2_PIX_FMT_UYVY
VIDEO_PALETTE_YUV420 None
VIDEO_PALETTE_YUV411 V4L2_PIX_FMT_Y41P 6

VIDEO_PALETTE_RAW None 7

VIDEO_PALETTE_YUV422P V4L2_PIX_FMT_YUV422P
VIDEO_PALETTE_YUV411P V4L2_PIX_FMT_YUV411P 8

VIDEO_PALETTE_YUV420P V4L2_PIX_FMT_YVU420
VIDEO_PALETTE_YUV410P V4L2_PIX_FMT_YVU410

V4L2 image formats are defined in Image Formats . The image format can be selected with the VID-
IOC_S_FMT ioctl.

Audio

The VIDIOCGAUDIO and VIDIOCSAUDIO ioctl and struct video_audio are used to enumerate the audio
inputs of a V4L device. The equivalent V4L2 ioctls are VIDIOC_G_AUDIO and VIDIOC_S_AUDIO using
struct v4l2_audio as discussed in Audio Inputs and Outputs .
The audio “channel number” field counting audio inputs was renamed to index.
On VIDIOCSAUDIO the mode field selects one of the VIDEO_SOUND_MONO, VIDEO_SOUND_STEREO,
VIDEO_SOUND_LANG1 or VIDEO_SOUND_LANG2 audio demodulation modes. When the current audio stan-
dard is BTSC VIDEO_SOUND_LANG2 refers to SAP and VIDEO_SOUND_LANG1 is meaningless. Also undocu-
mented in the V4L specification, there is no way to query the selected mode. On VIDIOCGAUDIO the driver
returns the actually received audio programmes in this field. In the V4L2 API this information is stored
in the struct v4l2_tuner rxsubchans and audmode fields, respectively. See Tuners and Modulators for
more information on tuners. Related to audio modes struct v4l2_audio also reports if this is a mono or
stereo input, regardless if the source is a tuner.
The following fields where replaced by V4L2 controls accessible with the ioctls VIDIOC_QUERYCTRL, VID-
IOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU , VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls:
struct video_audio V4L2 Control ID
volume V4L2_CID_AUDIO_VOLUME
bass V4L2_CID_AUDIO_BASS
treble V4L2_CID_AUDIO_TREBLE
balance V4L2_CID_AUDIO_BALANCE

To determine which of these controls are supported by a driver V4L provides the flags
VIDEO_AUDIO_VOLUME, VIDEO_AUDIO_BASS, VIDEO_AUDIO_TREBLE and VIDEO_AUDIO_BALANCE. In the V4L2
API the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU ioctl reports if

3 This is a custom format used by the BTTV driver, not one of the V4L2 standard formats.
4 Presumably all V4L RGB formats are little-endian, although some drivers might interpret them according to machine endianness.

V4L2 defines little-endian, big-endian and red/blue swapped variants. For details see RGB Formats .
5 VIDEO_PALETTE_YUV422 and VIDEO_PALETTE_YUYV are the same formats. Some V4L drivers respond to one, some to the other.
6 Not to be confused with V4L2_PIX_FMT_YUV411P, which is a planar format.
7 V4L explains this as: “RAW capture (BT848)”
8 Not to be confused with V4L2_PIX_FMT_Y41P, which is a packed format.

172 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

the respective control is supported. Accordingly the VIDEO_AUDIO_MUTABLE and VIDEO_AUDIO_MUTE flags
where replaced by the boolean V4L2_CID_AUDIO_MUTE control.
All V4L2 controls have a step attribute replacing the struct video_audio step field. The V4L audio controls
are assumed to range from 0 to 65535 with no particular reset value. The V4L2 API permits arbitrary
limits and defaults which can be queried with the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL
and VIDIOC_QUERYMENU ioctl. For general information about controls see User Controls .

Frame Buffer Overlay

The V4L2 ioctls equivalent to VIDIOCGFBUF and VIDIOCSFBUF are VIDIOC_G_FBUF and VIDIOC_S_FBUF .
The base field of struct video_buffer remained unchanged, except V4L2 defines a flag to indicate non-
destructive overlays instead of a NULL pointer. All other fields moved into the struct v4l2_pix_format
fmt substructure of struct v4l2_framebuffer. The depth field was replaced by pixelformat. See RGB
Formats for a list of RGB formats and their respective color depths.
Instead of the special ioctls VIDIOCGWIN and VIDIOCSWIN V4L2 uses the general-purpose data format
negotiation ioctls VIDIOC_G_FMT and VIDIOC_S_FMT . They take a pointer to a struct v4l2_format as
argument. Here the win member of the fmt union is used, a struct v4l2_window.
The x, y, width and height fields of struct video_window moved into struct v4l2_rect substructure
w of struct v4l2_window. The chromakey, clips, and clipcount fields remained unchanged. Struct
video_clip was renamed to struct v4l2_clip, also containing a struct v4l2_rect, but the semantics are
still the same.
The VIDEO_WINDOW_INTERLACE flag was dropped. Instead applications must set the field field to
V4L2_FIELD_ANY or V4L2_FIELD_INTERLACED. The VIDEO_WINDOW_CHROMAKEY flag moved into struct
v4l2_framebuffer, under the new name V4L2_FBUF_FLAG_CHROMAKEY.
In V4L, storing a bitmap pointer in clips and setting clipcount to VIDEO_CLIP_BITMAP (-1) requests
bitmap clipping, using a fixed size bitmap of 1024 × 625 bits. Struct v4l2_window has a separate bitmap
pointer field for this purpose and the bitmap size is determined by w.width and w.height.
The VIDIOCCAPTURE ioctl to enable or disable overlay was renamed to ioctl VIDIOC_OVERLAY .

Cropping

To capture only a subsection of the full picture V4L defines the VIDIOCGCAPTURE and VIDIOCSCAPTURE
ioctls using struct video_capture. The equivalent V4L2 ioctls are VIDIOC_G_CROP and VIDIOC_S_CROP
using struct v4l2_crop, and the related ioctl VIDIOC_CROPCAP ioctl. This is a rather complex matter,

see Image Cropping, Insertion and Scaling for details.
The x, y, width and height fields moved into struct v4l2_rect substructure c of struct v4l2_crop. The
decimation field was dropped. In the V4L2 API the scaling factor is implied by the size of the cropping
rectangle and the size of the captured or overlaid image.
The VIDEO_CAPTURE_ODD and VIDEO_CAPTURE_EVEN flags to capture only the odd or even field, respec-
tively, were replaced by V4L2_FIELD_TOP and V4L2_FIELD_BOTTOM in the field named field of struct
v4l2_pix_format and struct v4l2_window. These structures are used to select a capture or overlay for-
mat with the VIDIOC_S_FMT ioctl.

Reading Images, Memory Mapping

Capturing using the read method

There is no essential difference between reading images from a V4L or V4L2 device using the read()
function, however V4L2 drivers are not required to support this I/O method. Applications can determine
if the function is available with the ioctl VIDIOC_QUERYCAP ioctl. All V4L2 devices exchanging data with
applications must support the select() and poll() functions.

1.2. Part I - Video for Linux API 173

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

To select an image format and size, V4L provides the VIDIOCSPICT and VIDIOCSWIN ioctls. V4L2 uses the
general-purpose data format negotiation ioctls VIDIOC_G_FMT and VIDIOC_S_FMT . They take a pointer
to a struct v4l2_format as argument, here the struct v4l2_pix_format named pix of its fmt union is
used.
For more information about the V4L2 read interface see Read/Write .

Capturing using memory mapping

Applications can read from V4L devices by mapping buffers in device memory, or more often just buffers
allocated in DMA-able system memory, into their address space. This avoids the data copying overhead
of the read method. V4L2 supports memory mapping as well, with a few differences.
V4L V4L2

The image format must be selected before buffers
are allocated, with the VIDIOC_S_FMT ioctl. When
no format is selected the driver may use the last,
possibly by another application requested format.

Applications cannot change the number of buffers.
The it is built into the driver, unless it has a mod-
ule option to change the number when the driver
module is loaded.

The ioctl VIDIOC_REQBUFS ioctl allocates the de-
sired number of buffers, this is a required step in
the initialization sequence.

Drivers map all buffers as one contiguous range
of memory. The VIDIOCGMBUF ioctl is available to
query the number of buffers, the offset of each
buffer from the start of the virtual file, and the
overall amount of memory used, which can be
used as arguments for the mmap() function.

Buffers are individually mapped. The offset and
size of each buffer can be determined with the
ioctl VIDIOC_QUERYBUF ioctl.

The VIDIOCMCAPTURE ioctl prepares a buffer for
capturing. It also determines the image format for
this buffer. The ioctl returns immediately, even-
tually with an EAGAIN error code if no video sig-
nal had been detected. When the driver supports
more than one buffer applications can call the ioctl
multiple times and thus have multiple outstanding
capture requests.
The VIDIOCSYNC ioctl suspends execution until a
particular buffer has been filled.

Drivers maintain an incoming and outgoing queue.
ioctl VIDIOC_QBUF, VIDIOC_DQBUF enqueues

any empty buffer into the incoming queue. Filled
buffers are dequeued from the outgoing queue
with the VIDIOC_DQBUF ioctl. To wait until filled
buffers become available this function, select() or
poll() can be used. The ioctl VIDIOC_STREAMON,
VIDIOC_STREAMOFF ioctl must be called once af-
ter enqueuing one or more buffers to start captur-
ing. Its counterpart VIDIOC_STREAMOFF stops
capturing and dequeues all buffers from both
queues. Applications can query the signal status,
if known, with the ioctl VIDIOC_ENUMINPUT ioctl.

For a more in-depth discussion of memory mapping and examples, see Streaming I/O (Memory Mapping)
.

Reading Raw VBI Data

Originally the V4L API did not specify a raw VBI capture interface, only the device file /dev/vbi was
reserved for this purpose. The only driver supporting this interface was the BTTV driver, de-facto defining
the V4L VBI interface. Reading from the device yields a raw VBI image with the following parameters:

174 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct
v4l2_vbi_format

V4L, BTTV driver

sampling_rate 28636363 Hz NTSC (or any other 525-line standard); 35468950 Hz PAL and SECAM
(625-line standards)

offset ?
samples_per_line 2048
sample_format V4L2_PIX_FMT_GREY. The last four bytes (a machine endianness integer) contain a

frame counter.
start[] 10, 273 NTSC; 22, 335 PAL and SECAM
count[] 16, 16 9

flags 0
Undocumented in the V4L specification, in Linux 2.3 the VIDIOCGVBIFMT and VIDIOCSVBIFMT ioctls using
struct vbi_format were added to determine the VBI image parameters. These ioctls are only partially
compatible with the V4L2 VBI interface specified in Raw VBI Data Interface .
An offset field does not exist, sample_format is supposed to be VIDEO_PALETTE_RAW, equivalent to
V4L2_PIX_FMT_GREY. The remaining fields are probably equivalent to struct v4l2_vbi_format.
Apparently only the Zoran (ZR 36120) driver implements these ioctls. The semantics differ from those
specified for V4L2 in two ways. The parameters are reset on open() and VIDIOCSVBIFMT always returns
an EINVAL error code if the parameters are invalid.

Miscellaneous

V4L2 has no equivalent of the VIDIOCGUNIT ioctl. Applications can find the VBI device associated with a
video capture device (or vice versa) by reopening the device and requesting VBI data. For details see
Opening and Closing Devices .
No replacement exists for VIDIOCKEY, and the V4L functions for microcode programming. A new interface
for MPEG compression and playback devices is documented in Extended Controls .

Changes of the V4L2 API

Soon after the V4L API was added to the kernel it was criticised as too inflexible. In August 1998 Bill
Dirks proposed a number of improvements and began to work on documentation, example drivers and
applications. With the help of other volunteers this eventually became the V4L2 API, not just an extension
but a replacement for the V4L API. However it took another four years and two stable kernel releases until
the new API was finally accepted for inclusion into the kernel in its present form.

Early Versions

1998-08-20: First version.
1998-08-27: The select() function was introduced.
1998-09-10: New video standard interface.
1998-09-18: The VIDIOC_NONCAP ioctl was replaced by the otherwise meaningless O_TRUNC open() flag,
and the aliases O_NONCAP and O_NOIO were defined. Applications can set this flag if they intend to access
controls only, as opposed to capture applications which need exclusive access. The VIDEO_STD_XXX iden-
tifiers are now ordinals instead of flags, and the video_std_construct() helper function takes id and
transmission arguments.
1998-09-28: Revamped video standard. Made video controls individually enumerable.

9 Old driver versions used different values, eventually the custom BTTV_VBISIZE ioctl was added to query the correct values.

1.2. Part I - Video for Linux API 175

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1998-10-02: The id field was removed from struct struct video_standard and the color subcarrier fields
were renamed. The ioctl VIDIOC_QUERYSTD ioctl was renamed to ioctl VIDIOC_ENUMSTD , VID-
IOC_G_INPUT to ioctl VIDIOC_ENUMINPUT . A first draft of the Codec API was released.
1998-11-08: Many minor changes. Most symbols have been renamed. Some material changes to struct
v4l2_capability.
1998-11-12: The read/write directon of some ioctls was misdefined.
1998-11-14: V4L2_PIX_FMT_RGB24 changed to V4L2_PIX_FMT_BGR24, and V4L2_PIX_FMT_RGB32 changed
to V4L2_PIX_FMT_BGR32. Audio controls are now accessible with the VIDIOC_G_CTRL and VIDIOC_S_CTRL
ioctls under names starting with V4L2_CID_AUDIO. The V4L2_MAJOR define was removed from videodev.h
since it was only used once in the videodev kernel module. The YUV422 and YUV411 planar image formats
were added.
1998-11-28: A few ioctl symbols changed. Interfaces for codecs and video output devices were added.
1999-01-14: A raw VBI capture interface was added.
1999-01-19: The VIDIOC_NEXTBUF ioctl was removed.

V4L2 Version 0.16 1999-01-31

1999-01-27: There is now one QBUF ioctl, VIDIOC_QWBUF and VIDIOC_QRBUF are gone. VIDIOC_QBUF
takes a v4l2_buffer as a parameter. Added digital zoom (cropping) controls.

V4L2 Version 0.18 1999-03-16

Added a v4l to V4L2 ioctl compatibility layer to videodev.c. Driver writers, this changes how you implement
your ioctl handler. See the Driver Writer’s Guide. Added some more control id codes.

V4L2 Version 0.19 1999-06-05

1999-03-18: Fill in the category and catname fields of v4l2_queryctrl objects before passing them to the
driver. Required a minor change to the VIDIOC_QUERYCTRL handlers in the sample drivers.
1999-03-31: Better compatibility for v4l memory capture ioctls. Requires changes to drivers to fully
support new compatibility features, see Driver Writer’s Guide and v4l2cap.c. Added new control IDs:
V4L2_CID_HFLIP, _VFLIP. Changed V4L2_PIX_FMT_YUV422P to _YUV422P, and _YUV411P to _YUV411P.
1999-04-04: Added a few more control IDs.
1999-04-07: Added the button control type.
1999-05-02: Fixed a typo in videodev.h, and added the V4L2_CTRL_FLAG_GRAYED (later
V4L2_CTRL_FLAG_GRABBED) flag.
1999-05-20: Definition of VIDIOC_G_CTRL was wrong causing a malfunction of this ioctl.
1999-06-05: Changed the value of V4L2_CID_WHITENESS.

V4L2 Version 0.20 (1999-09-10)

Version 0.20 introduced a number of changes which were not backward compatible with 0.19 and earlier
versions. Purpose of these changes was to simplify the API, while making it more extensible and following
common Linux driver API conventions.

1. Some typos in V4L2_FMT_FLAG symbols were fixed. struct v4l2_clip was changed for compatibility
with v4l. (1999-08-30)

2. V4L2_TUNER_SUB_LANG1 was added. (1999-09-05)

176 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

3. All ioctl() commands that used an integer argument now take a pointer to an integer. Where it makes
sense, ioctls will return the actual new value in the integer pointed to by the argument, a com-
mon convention in the V4L2 API. The affected ioctls are: VIDIOC_PREVIEW, VIDIOC_STREAMON, VID-
IOC_STREAMOFF, VIDIOC_S_FREQ, VIDIOC_S_INPUT, VIDIOC_S_OUTPUT, VIDIOC_S_EFFECT. For exam-
ple

err = ioctl (fd, VIDIOC_XXX, V4L2_XXX);

becomes

int a = V4L2_XXX; err = ioctl(fd, VIDIOC_XXX, &a);

4. All the different get- and set-format commands were swept into one VIDIOC_G_FMT and VID-
IOC_S_FMT ioctl taking a union and a type field selecting the union member as parameter. Purpose
is to simplify the API by eliminating several ioctls and to allow new and driver private data streams
without adding new ioctls.
This change obsoletes the following ioctls: VIDIOC_S_INFMT, VIDIOC_G_INFMT, VIDIOC_S_OUTFMT,
VIDIOC_G_OUTFMT, VIDIOC_S_VBIFMT and VIDIOC_G_VBIFMT. The image format structure struct
v4l2_format was renamed to struct v4l2_pix_format, while struct v4l2_format is now the en-
velopping structure for all format negotiations.

5. Similar to the changes above, the VIDIOC_G_PARM and VIDIOC_S_PARM ioctls were merged with VID-
IOC_G_OUTPARM and VIDIOC_S_OUTPARM. A type field in the new struct v4l2_streamparm selects the
respective union member.
This change obsoletes the VIDIOC_G_OUTPARM and VIDIOC_S_OUTPARM ioctls.

6. Control enumeration was simplified, and two new control flags were introduced and one dropped.
The catname field was replaced by a group field.
Drivers can now flag unsupported and temporarily unavailable controls with
V4L2_CTRL_FLAG_DISABLED and V4L2_CTRL_FLAG_GRABBED respectively. The group name indi-
cates a possibly narrower classification than the category. In other words, there may be multiple
groups within a category. Controls within a group would typically be drawn within a group box.
Controls in different categories might have a greater separation, or may even appear in separate
windows.

7. The struct v4l2_buffer timestamp was changed to a 64 bit integer, containing the sampling or out-
put time of the frame in nanoseconds. Additionally timestamps will be in absolute system time, not
starting from zero at the beginning of a stream. The data type name for timestamps is stamp_t,
defined as a signed 64-bit integer. Output devices should not send a buffer out until the time in
the timestamp field has arrived. I would like to follow SGI’s lead, and adopt a multimedia times-
tamping system like their UST (Unadjusted System Time). See http://web.archive.org/web/*/http:
//reality.sgi.com /cpirazzi_engr/lg/time/intro.html. UST uses timestamps that are 64-bit signed inte-
gers (not struct timeval’s) and given in nanosecond units. The UST clock starts at zero when the
system is booted and runs continuously and uniformly. It takes a little over 292 years for UST to
overflow. There is no way to set the UST clock. The regular Linux time-of-day clock can be changed
periodically, which would cause errors if it were being used for timestamping a multimedia stream. A
real UST style clock will require some support in the kernel that is not there yet. But in anticipation, I
will change the timestamp field to a 64-bit integer, and I will change the v4l2_masterclock_gettime()
function (used only by drivers) to return a 64-bit integer.

8. A sequence field was added to struct v4l2_buffer. The sequence field counts captured frames, it
is ignored by output devices. When a capture driver drops a frame, the sequence number of that
frame is skipped.

V4L2 Version 0.20 incremental changes

1999-12-23: In struct v4l2_vbi_format the reserved1 field became offset. Previously drivers were
required to clear the reserved1 field.

1.2. Part I - Video for Linux API 177

http://web.archive.org/web/*/http://reality.sgi.com
http://web.archive.org/web/*/http://reality.sgi.com

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

2000-01-13: The V4L2_FMT_FLAG_NOT_INTERLACED flag was added.
2000-07-31: The linux/poll.h header is now included by videodev.h for compatibility with the original
videodev.h file.
2000-11-20: V4L2_TYPE_VBI_OUTPUT and V4L2_PIX_FMT_Y41P were added.
2000-11-25: V4L2_TYPE_VBI_INPUT was added.
2000-12-04: A couple typos in symbol names were fixed.
2001-01-18: To avoid namespace conflicts the fourcc macro defined in the videodev.h header file was
renamed to v4l2_fourcc.
2001-01-25: A possible driver-level compatibility problem between the videodev.h file in Linux 2.4.0 and
the videodev.h file included in the videodevX patch was fixed. Users of an earlier version of videodevX
on Linux 2.4.0 should recompile their V4L and V4L2 drivers.
2001-01-26: A possible kernel-level incompatibility between the videodev.h file in the videodevX patch
and the videodev.h file in Linux 2.2.x with devfs patches applied was fixed.
2001-03-02: Certain V4L ioctls which pass data in both direction although they are defined with read-only
parameter, did not work correctly through the backward compatibility layer. [Solution?]
2001-04-13: Big endian 16-bit RGB formats were added.
2001-09-17: New YUV formats and the VIDIOC_G_FREQUENCY and VIDIOC_S_FREQUENCY ioctls were
added. (The old VIDIOC_G_FREQ and VIDIOC_S_FREQ ioctls did not take multiple tuners into account.)
2000-09-18: V4L2_BUF_TYPE_VBI was added. This may break compatibility as the VIDIOC_G_FMT
and VIDIOC_S_FMT ioctls may fail now if the struct struct v4l2_fmt type field does not contain
V4L2_BUF_TYPE_VBI. In the documentation of the struct v4l2_vbi_format offset field the ambiguous
phrase “rising edge” was changed to “leading edge”.

V4L2 Version 0.20 2000-11-23

A number of changes were made to the raw VBI interface.
1. Figures clarifying the line numbering scheme were added to the V4L2 API specification. The start[0]

and start[1] fields no longer count line numbers beginning at zero. Rationale: a) The previous
definition was unclear. b) The start[] values are ordinal numbers. c) There is no point in inventing
a new line numbering scheme. We now use line number as defined by ITU-R, period. Compatibility:
Add one to the start values. Applications depending on the previous semantics may not function
correctly.

2. The restriction “count[0] > 0 and count[1] > 0” has been relaxed to “(count[0] + count[1]) > 0”.
Rationale: Drivers may allocate resources at scan line granularity and some data services are trans-
mitted only on the first field. The comment that both count values will usually be equal is misleading
and pointless and has been removed. This change breaks compatibility with earlier versions: Drivers
may return EINVAL, applications may not function correctly.

3. Drivers are again permitted to return negative (unknown) start values as proposed earlier. Why this
feature was dropped is unclear. This change may break compatibility with applications depending
on the start values being positive. The use of EBUSY and EINVAL error codes with the VIDIOC_S_FMT
ioctl was clarified. The EBUSY error code was finally documented, and the reserved2 field which was
previously mentioned only in the videodev.h header file.

4. New buffer types V4L2_TYPE_VBI_INPUT and V4L2_TYPE_VBI_OUTPUT were added. The former is an
alias for the old V4L2_TYPE_VBI, the latter was missing in the videodev.h file.

V4L2 Version 0.20 2002-07-25

Added sliced VBI interface proposal.

178 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2 in Linux 2.5.46, 2002-10

Around October-November 2002, prior to an announced feature freeze of Linux 2.5, the API was revised,
drawing from experience with V4L2 0.20. This unnamed version was finally merged into Linux 2.5.46.

1. As specified in Related Devices , drivers must make related device functions available under all
minor device numbers.

2. The open() function requires access mode O_RDWR regardless of the device type. All V4L2 drivers ex-
changing data with applications must support the O_NONBLOCK flag. The O_NOIO flag, a V4L2 symbol
which aliased the meaningless O_TRUNC to indicate accesses without data exchange (panel applica-
tions) was dropped. Drivers must stay in “panel mode” until the application attempts to initiate a
data exchange, see Opening and Closing Devices .

3. The struct v4l2_capability changed dramatically. Note that also the size of the structure changed,
which is encoded in the ioctl request code, thus older V4L2 devices will respond with an EINVAL error
code to the new ioctl VIDIOC_QUERYCAP ioctl.
There are new fields to identify the driver, a new RDS device function V4L2_CAP_RDS_CAPTURE,
the V4L2_CAP_AUDIO flag indicates if the device has any audio connectors, another I/O capability
V4L2_CAP_ASYNCIO can be flagged. In response to these changes the type field became a bit
set and was merged into the flags field. V4L2_FLAG_TUNER was renamed to V4L2_CAP_TUNER,
V4L2_CAP_VIDEO_OVERLAY replaced V4L2_FLAG_PREVIEW and V4L2_CAP_VBI_CAPTURE and
V4L2_CAP_VBI_OUTPUT replaced V4L2_FLAG_DATA_SERVICE. V4L2_FLAG_READ and V4L2_FLAG_WRITE
were merged into V4L2_CAP_READWRITE.
The redundant fields inputs, outputs and audios were removed. These properties can be deter-
mined as described in Video Inputs and Outputs and Audio Inputs and Outputs .
The somewhat volatile and therefore barely useful fields maxwidth, maxheight, minwidth, min-
height, maxframerate were removed. This information is available as described in Data Formats
and Video Standards .
V4L2_FLAG_SELECT was removed. We believe the select() function is important enough to
require support of it in all V4L2 drivers exchanging data with applications. The redundant
V4L2_FLAG_MONOCHROME flag was removed, this information is available as described in Data For-
mats .

4. In struct v4l2_input the assoc_audio field and the capability field and its only flag
V4L2_INPUT_CAP_AUDIO was replaced by the new audioset field. Instead of linking one video in-
put to one audio input this field reports all audio inputs this video input combines with.
New fields are tuner (reversing the former link from tuners to video inputs), std and status.
Accordingly struct v4l2_output lost its capability and assoc_audio fields. audioset, modulator
and std where added instead.

5. The struct v4l2_audio field audio was renamed to index, for consistency with other structures.
A new capability flag V4L2_AUDCAP_STEREO was added to indicated if the audio input in question
supports stereo sound. V4L2_AUDCAP_EFFECTS and the corresponding V4L2_AUDMODE flags where
removed. This can be easily implemented using controls. (However the same applies to AVL which
is still there.)
Again for consistency the struct v4l2_audioout field audio was renamed to index.

6. The struct v4l2_tuner input field was replaced by an index field, permitting devices with multiple
tuners. The link between video inputs and tuners is now reversed, inputs point to their tuner. The
std substructure became a simple set (more about this below) and moved into struct v4l2_input.
A type field was added.
Accordingly in struct v4l2_modulator the output was replaced by an index field.
In struct v4l2_frequency the port field was replaced by a tuner field containing the respective tuner
or modulator index number. A tuner type field was added and the reserved field became larger for
future extensions (satellite tuners in particular).

1.2. Part I - Video for Linux API 179

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

7. The idea of completely transparent video standards was dropped. Experience showed that appli-
cations must be able to work with video standards beyond presenting the user a menu. Instead of
enumerating supported standards with an ioctl applications can now refer to standards by v4l2_std_id
and symbols defined in the videodev2.h header file. For details see Video Standards . The
VIDIOC_G_STD and VIDIOC_S_STD now take a pointer to this type as argument. ioctl VID-
IOC_QUERYSTD was added to autodetect the received standard, if the hardware has this capability.
In struct v4l2_standard an index field was added for ioctl VIDIOC_ENUMSTD . A v4l2_std_id field
named id was added as machine readable identifier, also replacing the transmission field. The
misleading framerate field was renamed to frameperiod. The now obsolete colorstandard infor-
mation, originally needed to distguish between variations of standards, were removed.
Struct v4l2_enumstd ceased to be. ioctl VIDIOC_ENUMSTD now takes a pointer to a struct
v4l2_standard directly. The information which standards are supported by a particular video in-
put or output moved into struct v4l2_input and struct v4l2_output fields named std, respectively.

8. The struct v4l2_queryctrl fields category and group did not catch on and/or were not implemented
as expected and therefore removed.

9. The VIDIOC_TRY_FMT ioctl was added to negotiate data formats as with VIDIOC_S_FMT , but without
the overhead of programming the hardware and regardless of I/O in progress.
In struct v4l2_format the fmt union was extended to contain struct v4l2_window. All image format
negotiations are now possible with VIDIOC_G_FMT, VIDIOC_S_FMT and VIDIOC_TRY_FMT; ioctl. The
VIDIOC_G_WIN and VIDIOC_S_WIN ioctls to prepare for a video overlay were removed. The type field
changed to type enum v4l2_buf_type and the buffer type names changed as follows.
Old defines enum v4l2_buf_type
V4L2_BUF_TYPE_CAPTURE V4L2_BUF_TYPE_VIDEO_CAPTURE
V4L2_BUF_TYPE_CODECIN Omitted for now
V4L2_BUF_TYPE_CODECOUT Omitted for now
V4L2_BUF_TYPE_EFFECTSIN Omitted for now
V4L2_BUF_TYPE_EFFECTSIN2 Omitted for now
V4L2_BUF_TYPE_EFFECTSOUT Omitted for now
V4L2_BUF_TYPE_VIDEOOUT V4L2_BUF_TYPE_VIDEO_OUTPUT
- V4L2_BUF_TYPE_VIDEO_OVERLAY
- V4L2_BUF_TYPE_VBI_CAPTURE
- V4L2_BUF_TYPE_VBI_OUTPUT
- V4L2_BUF_TYPE_SLICED_VBI_CAPTURE
- V4L2_BUF_TYPE_SLICED_VBI_OUTPUT
V4L2_BUF_TYPE_PRIVATE_BASE V4L2_BUF_TYPE_PRIVATE (but this is deprecated)

10. In struct v4l2_fmtdesc a enum v4l2_buf_type field named type was added as in struct
v4l2_format. The VIDIOC_ENUM_FBUFFMT ioctl is no longer needed and was removed. These calls
can be replaced by ioctl VIDIOC_ENUM_FMT with type V4L2_BUF_TYPE_VIDEO_OVERLAY.

11. In struct v4l2_pix_format the depth field was removed, assuming applications which recog-
nize the format by its four-character-code already know the color depth, and others do not care
about it. The same rationale lead to the removal of the V4L2_FMT_FLAG_COMPRESSED flag. The
V4L2_FMT_FLAG_SWCONVECOMPRESSED flag was removed because drivers are not supposed to con-
vert images in kernel space. A user library of conversion functions should be provided instead. The
V4L2_FMT_FLAG_BYTESPERLINE flag was redundant. Applications can set the bytesperline field to
zero to get a reasonable default. Since the remaining flags were replaced as well, the flags field
itself was removed.
The interlace flags were replaced by a enum v4l2_field value in a newly added field field.

180 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Old flag enum v4l2_field
V4L2_FMT_FLAG_NOT_INTERLACED ?
V4L2_FMT_FLAG_INTERLACED = V4L2_FMT_FLAG_COMBINED V4L2_FIELD_INTERLACED
V4L2_FMT_FLAG_TOPFIELD = V4L2_FMT_FLAG_ODDFIELD V4L2_FIELD_TOP
V4L2_FMT_FLAG_BOTFIELD = V4L2_FMT_FLAG_EVENFIELD V4L2_FIELD_BOTTOM
- V4L2_FIELD_SEQ_TB
- V4L2_FIELD_SEQ_BT
- V4L2_FIELD_ALTERNATE

The color space flags were replaced by a enum v4l2_colorspace value in a newly added
colorspace field, where one of V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_BT878,
V4L2_COLORSPACE_470_SYSTEM_M or V4L2_COLORSPACE_470_SYSTEM_BG replaces
V4L2_FMT_CS_601YUV.

12. In struct v4l2_requestbuffers the type field was properly defined as enum v4l2_buf_type. Buffer
types changed as mentioned above. A new memory field of type enum v4l2_memory was added
to distinguish between I/O methods using buffers allocated by the driver or the application. See
Input/Output for details.

13. In struct v4l2_buffer the type field was properly defined as enum v4l2_buf_type. Buffer types
changed as mentioned above. A field field of type enum v4l2_field was added to indicate if a
buffer contains a top or bottom field. The old field flags were removed. Since no unadjusted system
time clock was added to the kernel as planned, the timestamp field changed back from type stamp_t,
an unsigned 64 bit integer expressing the sample time in nanoseconds, to struct timeval. With the
addition of a second memory mapping method the offset field moved into union m, and a new memory
field of type enum v4l2_memory was added to distinguish between I/O methods. See Input/Output
for details.
The V4L2_BUF_REQ_CONTIG flag was used by the V4L compatibility layer, after changes to this code it
was no longer needed. The V4L2_BUF_ATTR_DEVICEMEM flag would indicate if the buffer was indeed
allocated in device memory rather than DMA-able system memory. It was barely useful and so was
removed.

14. In struct v4l2_framebuffer the base[3] array anticipating double- and triple-buffering in off-screen
video memory, however without defining a synchronization mechanism, was replaced by a single
pointer. The V4L2_FBUF_CAP_SCALEUP and V4L2_FBUF_CAP_SCALEDOWN flags were removed. Ap-
plications can determine this capability more accurately using the new cropping and scaling in-
terface. The V4L2_FBUF_CAP_CLIPPING flag was replaced by V4L2_FBUF_CAP_LIST_CLIPPING and
V4L2_FBUF_CAP_BITMAP_CLIPPING.

15. In struct v4l2_clip the x, y, width and height field moved into a c substructure of type struct
v4l2_rect. The x and y fields were renamed to left and top, i. e. offsets to a context dependent
origin.

16. In struct v4l2_window the x, y, width and height field moved into a w substructure as above. A field
field of type v4l2_field was added to distinguish between field and frame (interlaced) overlay.

17. The digital zoom interface, including struct struct v4l2_zoomcap, struct struct v4l2_zoom,
V4L2_ZOOM_NONCAP and V4L2_ZOOM_WHILESTREAMING was replaced by a new cropping and scaling
interface. The previously unused struct struct v4l2_cropcap and struct v4l2_crop where redefined
for this purpose. See Image Cropping, Insertion and Scaling for details.

18. In struct v4l2_vbi_format the SAMPLE_FORMAT field now contains a four-character-code as used to
identify video image formats and V4L2_PIX_FMT_GREY replaces the V4L2_VBI_SF_UBYTE define. The
reserved field was extended.

19. In struct v4l2_captureparm the type of the timeperframe field changed from unsigned long to struct
v4l2_fract. This allows the accurate expression of multiples of the NTSC-M frame rate 30000 / 1001.
A new field readbuffers was added to control the driver behaviour in read I/O mode.
Similar changes were made to struct v4l2_outputparm.

20. The struct v4l2_performance and VIDIOC_G_PERF ioctl were dropped. Except when using the
read/write I/O method , which is limited anyway, this information is already available to applications.

1.2. Part I - Video for Linux API 181

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

21. The example transformation from RGB to YCbCr color space in the old V4L2 documentation was
inaccurate, this has been corrected in Image Formats .

V4L2 2003-06-19

1. A new capability flag V4L2_CAP_RADIO was added for radio devices. Prior to this change radio devices
would identify solely by having exactly one tuner whose type field reads V4L2_TUNER_RADIO.

2. An optional driver access priority mechanism was added, see Application Priority for details.
3. The audio input and output interface was found to be incomplete.

Previously the VIDIOC_G_AUDIO ioctl would enumerate the available audio inputs. An ioctl to deter-
mine the current audio input, if more than one combines with the current video input, did not exist.
So VIDIOC_G_AUDIO was renamed to VIDIOC_G_AUDIO_OLD, this ioctl was removed on Kernel 2.6.39.
The ioctl VIDIOC_ENUMAUDIO ioctl was added to enumerate audio inputs, while VIDIOC_G_AUDIO
now reports the current audio input.
The same changes were made to VIDIOC_G_AUDOUT and VIDIOC_ENUMAUDOUT .
Until further the “videodev” module will automatically translate between the old and new ioctls, but
drivers and applications must be updated to successfully compile again.

4. The ioctl VIDIOC_OVERLAY ioctl was incorrectly defined with write-read parameter. It was changed
to write-only, while the write-read version was renamed to VIDIOC_OVERLAY_OLD. The old ioctl was
removed on Kernel 2.6.39. Until further the “videodev” kernel module will automatically translate to
the new version, so drivers must be recompiled, but not applications.

5. Video Overlay Interface incorrectly stated that clipping rectangles define regions where the video
can be seen. Correct is that clipping rectangles define regions where no video shall be displayed and
so the graphics surface can be seen.

6. The VIDIOC_S_PARM and VIDIOC_S_CTRL ioctls were defined with write-only parameter, inconsistent
with other ioctls modifying their argument. They were changed to write-read, while a _OLD suffix
was added to the write-only versions. The old ioctls were removed on Kernel 2.6.39. Drivers and
applications assuming a constant parameter need an update.

V4L2 2003-11-05

1. In RGB Formats the following pixel formats were incorrectly transferred from Bill Dirks’ V4L2 speci-
fication. Descriptions below refer to bytes in memory, in ascending address order.
Symbol In this document prior to revision 0.5 Corrected
V4L2_PIX_FMT_RGB24 B, G, R R, G, B
V4L2_PIX_FMT_BGR24 R, G, B B, G, R
V4L2_PIX_FMT_RGB32 B, G, R, X R, G, B, X
V4L2_PIX_FMT_BGR32 R, G, B, X B, G, R, X
The V4L2_PIX_FMT_BGR24 example was always correct.
In Image Properties the mapping of the V4L VIDEO_PALETTE_RGB24 and VIDEO_PALETTE_RGB32
formats to V4L2 pixel formats was accordingly corrected.

2. Unrelated to the fixes above, drivers may still interpret some V4L2 RGB pixel formats differently.
These issues have yet to be addressed, for details see RGB Formats .

V4L2 in Linux 2.6.6, 2004-05-09

1. The ioctl VIDIOC_CROPCAP ioctl was incorrectly defined with read-only parameter. It is now defined
as write-read ioctl, while the read-only version was renamed to VIDIOC_CROPCAP_OLD. The old ioctl
was removed on Kernel 2.6.39.

182 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2 in Linux 2.6.8

1. A new field input (former reserved[0]) was added to the struct v4l2_buffer structure. Purpose
of this field is to alternate between video inputs (e. g. cameras) in step with the video capturing
process. This function must be enabled with the new V4L2_BUF_FLAG_INPUT flag. The flags field is
no longer read-only.

V4L2 spec erratum 2004-08-01

1. The return value of the V4L2 open() function was incorrectly documented.
2. Audio output ioctls end in -AUDOUT, not -AUDIOOUT.
3. In the Current Audio Input example the VIDIOC_G_AUDIO ioctl took the wrong argument.
4. The documentation of the ioctl VIDIOC_QBUF, VIDIOC_DQBUF and VIDIOC_DQBUF ioctls did not

mention the struct v4l2_buffer memory field. It was also missing from examples. Also on the VID-
IOC_DQBUF page the EIO error code was not documented.

V4L2 in Linux 2.6.14

1. A new sliced VBI interface was added. It is documented in Sliced VBI Data Interface and replaces
the interface first proposed in V4L2 specification 0.8.

V4L2 in Linux 2.6.15

1. The ioctl VIDIOC_LOG_STATUS ioctl was added.
2. New video standards V4L2_STD_NTSC_443, V4L2_STD_SECAM_LC, V4L2_STD_SECAM_DK (a set of SE-

CAM D, K and K1), and V4L2_STD_ATSC (a set of V4L2_STD_ATSC_8_VSB and V4L2_STD_ATSC_16_VSB)
were defined. Note the V4L2_STD_525_60 set now includes V4L2_STD_NTSC_443. See also typedef
v4l2_std_id .

3. The VIDIOC_G_COMP and VIDIOC_S_COMP ioctl were renamed to VIDIOC_G_MPEGCOMP and VID-
IOC_S_MPEGCOMP respectively. Their argument was replaced by a struct v4l2_mpeg_compression
pointer. (The VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP ioctls where removed in Linux 2.6.25.)

V4L2 spec erratum 2005-11-27

The capture example in Video Capture Example called the VIDIOC_S_CROP ioctl without checking if
cropping is supported. In the video standard selection example in Video Standards the VIDIOC_S_STD
call used the wrong argument type.

V4L2 spec erratum 2006-01-10

1. The V4L2_IN_ST_COLOR_KILL flag in struct v4l2_input not only indicates if the color killer is enabled,
but also if it is active. (The color killer disables color decoding when it detects no color in the video
signal to improve the image quality.)

2. VIDIOC_S_PARM is a write-read ioctl, not write-only as stated on its reference page. The ioctl changed
in 2003 as noted above.

1.2. Part I - Video for Linux API 183

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2 spec erratum 2006-02-03

1. In struct v4l2_captureparm and struct v4l2_outputparm the timeperframe field gives the time in
seconds, not microseconds.

V4L2 spec erratum 2006-02-04

1. The clips field in struct v4l2_window must point to an array of struct v4l2_clip, not a linked list,
because drivers ignore the struct struct v4l2_clip. next pointer.

V4L2 in Linux 2.6.17

1. New video standard macros were added: V4L2_STD_NTSC_M_KR (NTSC M South Korea), and
the sets V4L2_STD_MN, V4L2_STD_B, V4L2_STD_GH and V4L2_STD_DK. The V4L2_STD_NTSC and
V4L2_STD_SECAM sets now include V4L2_STD_NTSC_M_KR and V4L2_STD_SECAM_LC respectively.

2. A new V4L2_TUNER_MODE_LANG1_LANG2 was defined to record both languages of a bilingual program.
The use of V4L2_TUNER_MODE_STEREO for this purpose is deprecated now. See the VIDIOC_G_TUNER
section for details.

V4L2 spec erratum 2006-09-23 (Draft 0.15)

1. In various places V4L2_BUF_TYPE_SLICED_VBI_CAPTURE and V4L2_BUF_TYPE_SLICED_VBI_OUTPUT of
the sliced VBI interface were not mentioned along with other buffer types.

2. In VIDIOC_G_AUDIO it was clarified that the struct v4l2_audio mode field is a flags field.
3. ioctl VIDIOC_QUERYCAP did not mention the sliced VBI and radio capability flags.
4. In VIDIOC_G_FREQUENCY it was clarified that applications must initialize the tuner type field of

struct v4l2_frequency before calling VIDIOC_S_FREQUENCY .
5. The reserved array in struct v4l2_requestbuffers has 2 elements, not 32.
6. In Video Output Interface and Raw VBI Data Interface the device file names /dev/vout which never

caught on were replaced by /dev/video.
7. With Linux 2.6.15 the possible range for VBI device minor numbers was extended from 224-239 to

224-255. Accordingly device file names /dev/vbi0 to /dev/vbi31 are possible now.

V4L2 in Linux 2.6.18

1. New ioctls VIDIOC_G_EXT_CTRLS , VIDIOC_S_EXT_CTRLS and VIDIOC_TRY_EXT_CTRLS
were added, a flag to skip unsupported controls with ioctls VIDIOC_QUERYCTRL, VID-

IOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU , new control types V4L2_CTRL_TYPE_INTEGER64
and V4L2_CTRL_TYPE_CTRL_CLASS (v4l2_ctrl_type), and new control flags
V4L2_CTRL_FLAG_READ_ONLY, V4L2_CTRL_FLAG_UPDATE, V4L2_CTRL_FLAG_INACTIVE and
V4L2_CTRL_FLAG_SLIDER (Control Flags). See Extended Controls for details.

V4L2 in Linux 2.6.19

1. In struct v4l2_sliced_vbi_cap a buffer type field was added replacing a reserved field. Note on
architectures where the size of enum types differs from int types the size of the structure changed.
The VIDIOC_G_SLICED_VBI_CAP ioctl was redefined from being read-only to write-read. Applica-
tions must initialize the type field and clear the reserved fields now. These changes may break the
compatibility with older drivers and applications.

184 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

2. The ioctls ioctl VIDIOC_ENUM_FRAMESIZES and ioctl VIDIOC_ENUM_FRAMEINTERVALS were added.
3. A new pixel format V4L2_PIX_FMT_RGB444 (Packed RGB Image Formats) was added.

V4L2 spec erratum 2006-10-12 (Draft 0.17)

1. V4L2_PIX_FMT_HM12 (Reserved Image Formats) is a YUV 4:2:0, not 4:2:2 format.

V4L2 in Linux 2.6.21

1. The videodev2.h header file is now dual licensed under GNU General Public License version two or
later, and under a 3-clause BSD-style license.

V4L2 in Linux 2.6.22

1. Two new field orders V4L2_FIELD_INTERLACED_TB and V4L2_FIELD_INTERLACED_BTwere added. See
v4l2_field for details.

2. Three new clipping/blending methods with a global or straight or inverted local alpha value were
added to the video overlay interface. See the description of the VIDIOC_G_FBUF and VIDIOC_S_FBUF
ioctls for details.
A new global_alpha field was added to v4l2_window, extending the structure. This may break
compatibility with applications using a struct struct v4l2_window directly. However the VID-
IOC_G/S/TRY_FMT ioctls, which take a pointer to a v4l2_format parent structure with padding bytes
at the end, are not affected.

3. The format of the chromakey field in struct v4l2_window changed from “host order RGB32” to a pixel
value in the same format as the framebuffer. This may break compatibility with existing applications.
Drivers supporting the “host order RGB32” format are not known.

V4L2 in Linux 2.6.24

1. The pixel formats V4L2_PIX_FMT_PAL8, V4L2_PIX_FMT_YUV444, V4L2_PIX_FMT_YUV555,
V4L2_PIX_FMT_YUV565 and V4L2_PIX_FMT_YUV32 were added.

V4L2 in Linux 2.6.25

1. The pixel formats V4L2_PIX_FMT_Y16 and V4L2_PIX_FMT_SBGGR16 were added.
2. New controls V4L2_CID_POWER_LINE_FREQUENCY, V4L2_CID_HUE_AUTO,

V4L2_CID_WHITE_BALANCE_TEMPERATURE, V4L2_CID_SHARPNESS and V4L2_CID_BACKLIGHT_COMPENSATION
were added. The controls V4L2_CID_BLACK_LEVEL, V4L2_CID_WHITENESS, V4L2_CID_HCENTER and
V4L2_CID_VCENTER were deprecated.

3. A Camera controls class was added, with the new controls V4L2_CID_EXPOSURE_AUTO,
V4L2_CID_EXPOSURE_ABSOLUTE, V4L2_CID_EXPOSURE_AUTO_PRIORITY, V4L2_CID_PAN_RELATIVE,
V4L2_CID_TILT_RELATIVE, V4L2_CID_PAN_RESET, V4L2_CID_TILT_RESET,
V4L2_CID_PAN_ABSOLUTE, V4L2_CID_TILT_ABSOLUTE, V4L2_CID_FOCUS_ABSOLUTE,
V4L2_CID_FOCUS_RELATIVE and V4L2_CID_FOCUS_AUTO.

4. The VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP ioctls, which were superseded by the extended
controls interface in Linux 2.6.18, where finally removed from the videodev2.h header file.

1.2. Part I - Video for Linux API 185

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2 in Linux 2.6.26

1. The pixel formats V4L2_PIX_FMT_Y16 and V4L2_PIX_FMT_SBGGR16 were added.
2. Added user controls V4L2_CID_CHROMA_AGC and V4L2_CID_COLOR_KILLER.

V4L2 in Linux 2.6.27

1. The ioctl VIDIOC_S_HW_FREQ_SEEK ioctl and the V4L2_CAP_HW_FREQ_SEEK capability were added.
2. The pixel formats V4L2_PIX_FMT_YVYU, V4L2_PIX_FMT_PCA501, V4L2_PIX_FMT_PCA505,

V4L2_PIX_FMT_PCA508, V4L2_PIX_FMT_PCA561, V4L2_PIX_FMT_SGBRG8, V4L2_PIX_FMT_PAC207
and V4L2_PIX_FMT_PJPG were added.

V4L2 in Linux 2.6.28

1. Added V4L2_MPEG_AUDIO_ENCODING_AAC and V4L2_MPEG_AUDIO_ENCODING_AC3 MPEG audio encod-
ings.

2. Added V4L2_MPEG_VIDEO_ENCODING_MPEG_4_AVC MPEG video encoding.
3. The pixel formats V4L2_PIX_FMT_SGRBG10 and V4L2_PIX_FMT_SGRBG10DPCM8 were added.

V4L2 in Linux 2.6.29

1. The VIDIOC_G_CHIP_IDENT ioctl was renamed to VIDIOC_G_CHIP_IDENT_OLD and VID-
IOC_DBG_G_CHIP_IDENT was introduced in its place. The old struct struct v4l2_chip_ident
was renamed to struct v4l2_chip_ident_old.

2. The pixel formats V4L2_PIX_FMT_VYUY, V4L2_PIX_FMT_NV16 and V4L2_PIX_FMT_NV61 were added.
3. Added camera controls V4L2_CID_ZOOM_ABSOLUTE, V4L2_CID_ZOOM_RELATIVE,

V4L2_CID_ZOOM_CONTINUOUS and V4L2_CID_PRIVACY.

V4L2 in Linux 2.6.30

1. New control flag V4L2_CTRL_FLAG_WRITE_ONLY was added.
2. New control V4L2_CID_COLORFX was added.

V4L2 in Linux 2.6.32

1. In order to be easier to compare a V4L2 API and a kernel version, now V4L2 API is numbered using
the Linux Kernel version numeration.

2. Finalized the RDS capture API. See RDS Interface for more information.
3. Added new capabilities for modulators and RDS encoders.
4. Add description for libv4l API.
5. Added support for string controls via new type V4L2_CTRL_TYPE_STRING.
6. Added V4L2_CID_BAND_STOP_FILTER documentation.
7. Added FM Modulator (FM TX) Extended Control Class: V4L2_CTRL_CLASS_FM_TX and their Control IDs.
8. Added FM Receiver (FM RX) Extended Control Class: V4L2_CTRL_CLASS_FM_RX and their Control IDs.
9. Added Remote Controller chapter, describing the default Remote Controller mapping for media de-

vices.

186 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2 in Linux 2.6.33

1. Added support for Digital Video timings in order to support HDTV receivers and transmitters.

V4L2 in Linux 2.6.34

1. Added V4L2_CID_IRIS_ABSOLUTE and V4L2_CID_IRIS_RELATIVE controls to the Camera controls
class .

V4L2 in Linux 2.6.37

1. Remove the vtx (videotext/teletext) API. This API was no longer used and no hardware exists to
verify the API. Nor were any userspace applications found that used it. It was originally scheduled
for removal in 2.6.35.

V4L2 in Linux 2.6.39

1. The old VIDIOC_*_OLD symbols and V4L1 support were removed.
2. Multi-planar API added. Does not affect the compatibility of current drivers and applications. See
multi-planar API for details.

V4L2 in Linux 3.1

1. VIDIOC_QUERYCAP now returns a per-subsystem version instead of a per-driver one.
Standardize an error code for invalid ioctl.
Added V4L2_CTRL_TYPE_BITMASK.

V4L2 in Linux 3.2

1. V4L2_CTRL_FLAG_VOLATILE was added to signal volatile controls to userspace.
2. Add selection API for extended control over cropping and composing. Does not affect the compati-

bility of current drivers and applications. See selection API for details.

V4L2 in Linux 3.3

1. Added V4L2_CID_ALPHA_COMPONENT control to the User controls class .
2. Added the device_caps field to struct v4l2_capabilities and added the new V4L2_CAP_DEVICE_CAPS

capability.

V4L2 in Linux 3.4

1. Added JPEG compression control class .
2. Extended the DV Timings API: ioctl VIDIOC_ENUM_DV_TIMINGS, VIDIOC_SUBDEV_ENUM_DV_TIMINGS

, ioctl VIDIOC_QUERY_DV_TIMINGS and ioctl VIDIOC_DV_TIMINGS_CAP, VID-
IOC_SUBDEV_DV_TIMINGS_CAP .

1.2. Part I - Video for Linux API 187

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2 in Linux 3.5

1. Added integer menus, the new type will be V4L2_CTRL_TYPE_INTEGER_MENU.
2. Added selection API for V4L2 subdev interface: ioctl VIDIOC_SUBDEV_G_SELECTION, VID-
IOC_SUBDEV_S_SELECTION and VIDIOC_SUBDEV_S_SELECTION .

3. Added V4L2_COLORFX_ANTIQUE, V4L2_COLORFX_ART_FREEZE, V4L2_COLORFX_AQUA,
V4L2_COLORFX_SILHOUETTE, V4L2_COLORFX_SOLARIZATION, V4L2_COLORFX_VIVID and
V4L2_COLORFX_ARBITRARY_CBCR menu items to the V4L2_CID_COLORFX control.

4. Added V4L2_CID_COLORFX_CBCR control.
5. Added camera controls V4L2_CID_AUTO_EXPOSURE_BIAS, V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE,

V4L2_CID_IMAGE_STABILIZATION, V4L2_CID_ISO_SENSITIVITY, V4L2_CID_ISO_SENSITIVITY_AUTO,
V4L2_CID_EXPOSURE_METERING, V4L2_CID_SCENE_MODE, V4L2_CID_3A_LOCK,
V4L2_CID_AUTO_FOCUS_START, V4L2_CID_AUTO_FOCUS_STOP, V4L2_CID_AUTO_FOCUS_STATUS and
V4L2_CID_AUTO_FOCUS_RANGE.

V4L2 in Linux 3.6

1. Replaced input in struct v4l2_buffer by reserved2 and removed V4L2_BUF_FLAG_INPUT.
2. Added V4L2_CAP_VIDEO_M2M and V4L2_CAP_VIDEO_M2M_MPLANE capabilities.
3. Added support for frequency band enumerations: ioctl VIDIOC_ENUM_FREQ_BANDS .

V4L2 in Linux 3.9

1. Added timestamp types to flags field in struct v4l2_buffer. See Buffer Flags .
2. Added V4L2_EVENT_CTRL_CH_RANGE control event changes flag. See Control Changes .

V4L2 in Linux 3.10

1. Removed obsolete and unused DV_PRESET ioctls VIDIOC_G_DV_PRESET, VIDIOC_S_DV_PRESET, VID-
IOC_QUERY_DV_PRESET and VIDIOC_ENUM_DV_PRESET. Remove the related v4l2_input/output capa-
bility flags V4L2_IN_CAP_PRESETS and V4L2_OUT_CAP_PRESETS.

2. Added new debugging ioctl ioctl VIDIOC_DBG_G_CHIP_INFO .

V4L2 in Linux 3.11

1. Remove obsolete VIDIOC_DBG_G_CHIP_IDENT ioctl.

V4L2 in Linux 3.14

1. In struct v4l2_rect, the type of width and height fields changed from _s32 to _u32.

V4L2 in Linux 3.15

1. Added Software Defined Radio (SDR) Interface.

188 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2 in Linux 3.16

1. Added event V4L2_EVENT_SOURCE_CHANGE.

V4L2 in Linux 3.17

1. Extended struct v4l2_pix_format. Added format flags.
2. Added compound control types and VIDIOC_QUERY_EXT_CTRL .

V4L2 in Linux 3.18

1. Added V4L2_CID_PAN_SPEED and V4L2_CID_TILT_SPEED camera controls.

V4L2 in Linux 3.19

1. Rewrote Colorspace chapter, added new enum v4l2_ycbcr_encoding and enum
v4l2_quantization fields to struct v4l2_pix_format, struct v4l2_pix_format_mplane and
struct v4l2_mbus_framefmt.

V4L2 in Linux 4.4

1. Renamed V4L2_TUNER_ADC to V4L2_TUNER_SDR. The use of V4L2_TUNER_ADC is deprecated now.
2. Added V4L2_CID_RF_TUNER_RF_GAIN RF Tuner control.
3. Added transmitter support for Software Defined Radio (SDR) Interface.

Relation of V4L2 to other Linux multimedia APIs

X Video Extension

The X Video Extension (abbreviated XVideo or just Xv) is an extension of the X Window system, imple-
mented for example by the XFree86 project. Its scope is similar to V4L2, an API to video capture and
output devices for X clients. Xv allows applications to display live video in a window, send window con-
tents to a TV output, and capture or output still images in XPixmaps 1. With their implementation XFree86
makes the extension available across many operating systems and architectures.
Because the driver is embedded into the X server Xv has a number of advantages over the V4L2 video
overlay interface . The driver can easily determine the overlay target, i. e. visible graphics memory
or off-screen buffers for a destructive overlay. It can program the RAMDAC for a non-destructive overlay,
scaling or color-keying, or the clipping functions of the video capture hardware, always in sync with drawing
operations or windows moving or changing their stacking order.
To combine the advantages of Xv and V4L a special Xv driver exists in XFree86 and XOrg, just programming
any overlay capable Video4Linux device it finds. To enable it /etc/X11/XF86Config must contain these
lines:

Section "Module"
Load "v4l"

EndSection

1 This is not implemented in XFree86.

1.2. Part I - Video for Linux API 189

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

As of XFree86 4.2 this driver still supports only V4L ioctls, however it should work just fine with all V4L2
devices through the V4L2 backward-compatibility layer. Since V4L2 permits multiple opens it is possible
(if supported by the V4L2 driver) to capture video while an X client requested video overlay. Restrictions
of simultaneous capturing and overlay are discussed in Video Overlay Interface apply.
Only marginally related to V4L2, XFree86 extended Xv to support hardware YUV to RGB conversion and
scaling for faster video playback, and added an interface to MPEG-2 decoding hardware. This API is useful
to display images captured with V4L2 devices.

Digital Video

V4L2 does not support digital terrestrial, cable or satellite broadcast. A separate project aiming at digital
receivers exists. You can find its homepage at https://linuxtv.org. The Linux DVB API has no connection
to the V4L2 API except that drivers for hybrid hardware may support both.

Audio Interfaces

[to do - OSS/ALSA]

Experimental API Elements

The following V4L2 API elements are currently experimental and may change in the future.
• ioctl VIDIOC_DBG_G_REGISTER, VIDIOC_DBG_S_REGISTER and VIDIOC_DBG_S_REGISTER ioctls.
• ioctl VIDIOC_DBG_G_CHIP_INFO ioctl.

Obsolete API Elements

The following V4L2 API elements were superseded by new interfaces and should not be implemented in
new drivers.

• VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP ioctls. Use Extended Controls, Extended Controls .
• VIDIOC_G_DV_PRESET, VIDIOC_S_DV_PRESET, VIDIOC_ENUM_DV_PRESETS and VID-

IOC_QUERY_DV_PRESET ioctls. Use the DV Timings API (Digital Video (DV) Timings).
• VIDIOC_SUBDEV_G_CROP and VIDIOC_SUBDEV_S_CROP ioctls. Use VIDIOC_SUBDEV_G_SELECTION and
VIDIOC_SUBDEV_S_SELECTION, ioctl VIDIOC_SUBDEV_G_SELECTION, VIDIOC_SUBDEV_S_SELECTION
.

1.2.7 Function Reference

V4L2 close()

Name

v4l2-close - Close a V4L2 device

Synopsis

#include <unistd.h>

int close(int fd)

190 Chapter 1. Linux Media Infrastructure userspace API

https://linuxtv.org

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .

Description

Closes the device. Any I/O in progress is terminated and resources associated with the file descriptor are
freed. However data format parameters, current input or output, control values or other properties remain
unchanged.

Return Value

The function returns 0 on success, -1 on failure and the errno is set appropriately. Possible error codes:
EBADF fd is not a valid open file descriptor.

V4L2 ioctl()

Name

v4l2-ioctl - Program a V4L2 device

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp)

Arguments

fd File descriptor returned by open() .
request V4L2 ioctl request code as defined in the videodev2.h header file, for example VID-

IOC_QUERYCAP.
argp Pointer to a function parameter, usually a structure.

Description

The ioctl() function is used to program V4L2 devices. The argument fd must be an open file descriptor.
An ioctl request has encoded in it whether the argument is an input, output or read/write parameter, and
the size of the argument argp in bytes. Macros and defines specifying V4L2 ioctl requests are located in
the videodev2.h header file. Applications should use their own copy, not include the version in the kernel
sources on the system they compile on. All V4L2 ioctl requests, their respective function and parameters
are specified in Function Reference .

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
When an ioctl that takes an output or read/write parameter fails, the parameter remains unmodified.

1.2. Part I - Video for Linux API 191

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ioctl VIDIOC_CREATE_BUFS

Name

VIDIOC_CREATE_BUFS - Create buffers for Memory Mapped or User Pointer or DMA Buffer I/O

Synopsis

int ioctl(int fd, VIDIOC_CREATE_BUFS, struct v4l2_create_buffers *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_create_buffers.

Description

This ioctl is used to create buffers for memory mapped or user pointer or DMA buffer I/O. It can be used
as an alternative or in addition to the ioctl VIDIOC_REQBUFS ioctl, when a tighter control over buffers is
required. This ioctl can be called multiple times to create buffers of different sizes.
To allocate the device buffers applications must initialize the relevant fields of the struct
v4l2_create_buffers structure. The count field must be set to the number of requested buffers, the
memory field specifies the requested I/O method and the reserved array must be zeroed.
The format field specifies the image format that the buffers must be able to handle. The application has
to fill in this struct v4l2_format. Usually this will be done using the VIDIOC_TRY_FMT or VIDIOC_G_FMT
ioctls to ensure that the requested format is supported by the driver. Based on the format’s type field

the requested buffer size (for single-planar) or plane sizes (for multi-planar formats) will be used for the
allocated buffers. The driver may return an error if the size(s) are not supported by the hardware (usually
because they are too small).
The buffers created by this ioctl will have as minimum size the size defined by the format.pix.sizeimage
field (or the corresponding fields for other format types). Usually if the format.pix.sizeimage field is less
than the minimum required for the given format, then an error will be returned since drivers will typically
not allow this. If it is larger, then the value will be used as-is. In other words, the driver may reject the
requested size, but if it is accepted the driver will use it unchanged.
When the ioctl is called with a pointer to this structure the driver will attempt to allocate up to the requested
number of buffers and store the actual number allocated and the starting index in the count and the index
fields respectively. On return count can be smaller than the number requested.
v4l2_create_buffers

192 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.58: struct v4l2_create_buffers
__u32 index The starting buffer index, returned by the driver.
__u32 count The number of buffers requested or granted. If

count == 0, then ioctl VIDIOC_CREATE_BUFS
will set index to the current number of created
buffers, and it will check the validity of memory
and format.type. If those are invalid -1 is re-
turned and errno is set to EINVAL error code, oth-
erwise ioctl VIDIOC_CREATE_BUFS returns 0. It
will never set errno to EBUSY error code in this par-
ticular case.

__u32 memory Applications set this field to V4L2_MEMORY_MMAP,
V4L2_MEMORY_DMABUF or V4L2_MEMORY_USERPTR.
See v4l2_memory

struct v4l2_format format Filled in by the application, preserved by the
driver.

__u32 reserved[8] A place holder for future extensions. Drivers and
applications must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
ENOMEM No memory to allocate buffers for memory mapped I/O.
EINVAL The buffer type (format.type field), requested I/O method (memory) or format (format field) is

not valid.

ioctl VIDIOC_CROPCAP

Name

VIDIOC_CROPCAP - Information about the video cropping and scaling abilities

Synopsis

int ioctl(int fd, VIDIOC_CROPCAP, struct v4l2_cropcap *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_cropcap.

Description

Applications use this function to query the cropping limits, the pixel aspect of images and to calculate scale
factors. They set the type field of a v4l2_cropcap structure to the respective buffer (stream) type and call
the ioctl VIDIOC_CROPCAP ioctl with a pointer to this structure. Drivers fill the rest of the structure. The
results are constant except when switching the video standard. Remember this switch can occur implicit
when switching the video input or output.

1.2. Part I - Video for Linux API 193

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

This ioctl must be implemented for video capture or output devices that support cropping and/or scaling
and/or have non-square pixels, and for overlay devices.
v4l2_cropcap

Table 1.59: struct v4l2_cropcap
__u32 type Type of the data stream, set by the ap-

plication. Only these types are valid
here: V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
and V4L2_BUF_TYPE_VIDEO_OVERLAY. See
v4l2_buf_type and the note above.

struct v4l2_rect bounds Defines the window within capturing or output is
possible, this may exclude for example the hori-
zontal and vertical blanking areas. The cropping
rectangle cannot exceed these limits. Width and
height are defined in pixels, the driver writer is
free to choose origin and units of the coordinate
system in the analog domain.

struct v4l2_rect defrect Default cropping rectangle, it shall cover the
“whole picture”. Assuming pixel aspect 1/1 this
could be for example a 640 × 480 rectangle for
NTSC, a 768 × 576 rectangle for PAL and SECAM
centered over the active picture area. The same
co-ordinate system as for bounds is used.

struct v4l2_fract pixelaspect This is the pixel aspect (y / x) when no scaling is
applied, the ratio of the actual sampling frequency
and the frequency required to get square pixels.
When cropping coordinates refer to square pixels,
the driver sets pixelaspect to 1/1. Other com-
mon values are 54/59 for PAL and SECAM, 11/10
for NTSC sampled according to [ITU BT.601].

Note:

Unfortunately in the case of multiplanar buffer types (V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
and V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) this API was messed up with regards to how the
v4l2_cropcap type field should be filled in. Some drivers only accepted the _MPLANE buffer type
while other drivers only accepted a non-multiplanar buffer type (i.e. without the _MPLANE at the end).
Starting with kernel 4.13 both variations are allowed.

Table 1.60: struct v4l2_rect
__s32 left Horizontal offset of the top, left corner of the rect-

angle, in pixels.
__s32 top Vertical offset of the top, left corner of the rectan-

gle, in pixels.
__u32 width Width of the rectangle, in pixels.
__u32 height Height of the rectangle, in pixels.

194 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_cropcap type is invalid.
ENODATA Cropping is not supported for this input or output.

ioctl VIDIOC_DBG_G_CHIP_INFO

Name

VIDIOC_DBG_G_CHIP_INFO - Identify the chips on a TV card

Synopsis

int ioctl(int fd, VIDIOC_DBG_G_CHIP_INFO, struct v4l2_dbg_chip_info *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_dbg_chip_info.

Description

Note:

This is an Experimental API Elements interface and may change in the future.

For driver debugging purposes this ioctl allows test applications to query the driver about the chips present
on the TV card. Regular applications must not use it. When you found a chip specific bug, please contact
the linux-media mailing list (https://linuxtv.org/lists.php) so it can be fixed.
Additionally the Linux kernel must be compiled with the CONFIG_VIDEO_ADV_DEBUG option to enable this
ioctl.
To query the driver applications must initialize the match.type and match.addr or match.name fields of a
struct v4l2_dbg_chip_info and call ioctl VIDIOC_DBG_G_CHIP_INFO with a pointer to this structure. On
success the driver stores information about the selected chip in the name and flags fields.
When match.type is V4L2_CHIP_MATCH_BRIDGE, match.addr selects the nth bridge ‘chip’ on the TV card.
You can enumerate all chips by starting at zero and incrementing match.addr by one until ioctl VID-
IOC_DBG_G_CHIP_INFO fails with an EINVAL error code. The number zero always selects the bridge chip
itself, e. g. the chip connected to the PCI or USB bus. Non-zero numbers identify specific parts of the
bridge chip such as an AC97 register block.
When match.type is V4L2_CHIP_MATCH_SUBDEV, match.addr selects the nth sub-device. This allows you
to enumerate over all sub-devices.
On success, the name field will contain a chip name and the flags field will con-
tain V4L2_CHIP_FL_READABLE if the driver supports reading registers from the device or
V4L2_CHIP_FL_WRITABLE if the driver supports writing registers to the device.
We recommended the v4l2-dbg utility over calling this ioctl directly. It is available from the LinuxTV v4l-dvb
repository; see https://linuxtv.org/repo/ for access instructions.

1.2. Part I - Video for Linux API 195

https://linuxtv.org/lists.php
https://linuxtv.org/repo/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.61: struct v4l2_dbg_match
__u32 type See Chip Match Types for a list of possible types.
union (anonymous)

__u32 addr Match a chip by this number, inter-
preted according to the type field.

char name[32] Match a chip by this name, interpreted
according to the type field. Currently
unused.

v4l2_dbg_chip_info

Table 1.62: struct v4l2_dbg_chip_info
struct v4l2_dbg_match match How to match the chip, see struct

v4l2_dbg_match .
char name[32] The name of the chip.
__u32 flags Set by the driver. If V4L2_CHIP_FL_READABLE is

set, then the driver supports reading registers
from the device. If V4L2_CHIP_FL_WRITABLE is
set, then it supports writing registers.

__u32 reserved[8] Reserved fields, both application and driver must
set these to 0.

Table 1.63: Chip Match Types
V4L2_CHIP_MATCH_BRIDGE 0 Match the nth chip on the card, zero for the bridge

chip. Does not match sub-devices.
V4L2_CHIP_MATCH_SUBDEV 4 Match the nth sub-device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The match_type is invalid or no device could be matched.

ioctl VIDIOC_DBG_G_REGISTER, VIDIOC_DBG_S_REGISTER

Name

VIDIOC_DBG_G_REGISTER - VIDIOC_DBG_S_REGISTER - Read or write hardware registers

Synopsis

int ioctl(int fd, VIDIOC_DBG_G_REGISTER, struct v4l2_dbg_register *argp)
int ioctl(int fd, VIDIOC_DBG_S_REGISTER, const struct v4l2_dbg_register *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_dbg_register.

196 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Note:

This is an Experimental API Elements interface and may change in the future.

For driver debugging purposes these ioctls allow test applications to access hardware registers directly.
Regular applications must not use them.
Since writing or even reading registers can jeopardize the system security, its stability and damage the
hardware, both ioctls require superuser privileges. Additionally the Linux kernel must be compiled with
the CONFIG_VIDEO_ADV_DEBUG option to enable these ioctls.
To write a register applications must initialize all fields of a struct v4l2_dbg_register except for size
and call VIDIOC_DBG_S_REGISTER with a pointer to this structure. The match.type and match.addr or
match.name fields select a chip on the TV card, the reg field specifies a register number and the val field
the value to be written into the register.
To read a register applications must initialize the match.type, match.addr or match.name and reg fields,
and call VIDIOC_DBG_G_REGISTER with a pointer to this structure. On success the driver stores the register
value in the val field and the size (in bytes) of the value in size.
When match.type is V4L2_CHIP_MATCH_BRIDGE, match.addr selects the nth non-sub-device chip on the
TV card. The number zero always selects the host chip, e. g. the chip connected to the PCI or USB bus.
You can find out which chips are present with the ioctl VIDIOC_DBG_G_CHIP_INFO ioctl.
When match.type is V4L2_CHIP_MATCH_SUBDEV, match.addr selects the nth sub-device.
These ioctls are optional, not all drivers may support them. However when a driver supports these ioctls it
must also support ioctl VIDIOC_DBG_G_CHIP_INFO . Conversely it may support VIDIOC_DBG_G_CHIP_INFO
but not these ioctls.
VIDIOC_DBG_G_REGISTER and VIDIOC_DBG_S_REGISTER were introduced in Linux 2.6.21, but their API was
changed to the one described here in kernel 2.6.29.
We recommended the v4l2-dbg utility over calling these ioctls directly. It is available from the LinuxTV
v4l-dvb repository; see https://linuxtv.org/repo/ for access instructions.
v4l2_dbg_match

Table 1.64: struct v4l2_dbg_match
__u32 type See Chip Match Types for a list of possible types.
union (anonymous)

__u32 addr Match a chip by this number, inter-
preted according to the type field.

char name[32] Match a chip by this name, interpreted
according to the type field. Currently
unused.

v4l2_dbg_register

Table 1.65: struct v4l2_dbg_register
struct v4l2_dbg_match match How to match the chip, see v4l2_dbg_match.
__u32 size The register size in bytes.
__u64 reg A register number.
__u64 val The value read from, or to be written into the register.

1.2. Part I - Video for Linux API 197

https://linuxtv.org/repo/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.66: Chip Match Types
V4L2_CHIP_MATCH_BRIDGE 0 Match the nth chip on the card, zero for the bridge

chip. Does not match sub-devices.
V4L2_CHIP_MATCH_SUBDEV 4 Match the nth sub-device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EPERM Insufficient permissions. Root privileges are required to execute these ioctls.

ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD

Name

VIDIOC_DECODER_CMD - VIDIOC_TRY_DECODER_CMD - Execute an decoder command

Synopsis

int ioctl(int fd, VIDIOC_DECODER_CMD, struct v4l2_decoder_cmd *argp)
int ioctl(int fd, VIDIOC_TRY_DECODER_CMD, struct v4l2_decoder_cmd *argp)

Arguments

fd File descriptor returned by open() .
argp pointer to struct v4l2_decoder_cmd.

Description

These ioctls control an audio/video (usually MPEG-) decoder. VIDIOC_DECODER_CMD sends a command
to the decoder, VIDIOC_TRY_DECODER_CMD can be used to try a command without actually executing it.
To send a command applications must initialize all fields of a struct v4l2_decoder_cmd and call VID-
IOC_DECODER_CMD or VIDIOC_TRY_DECODER_CMD with a pointer to this structure.
The cmd field must contain the command code. Some commands use the flags field for additional infor-
mation.
A write() or ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF call sends an implicit START command to the
decoder if it has not been started yet.
A close() or VIDIOC_STREAMOFF call of a streaming file descriptor sends an implicit immediate STOP
command to the decoder, and all buffered data is discarded.
These ioctls are optional, not all drivers may support them. They were introduced in Linux 3.3.
v4l2_decoder_cmd

Table 1.67: struct v4l2_decoder_cmd

__u32 cmd The decoder command, see Decoder Commands .
Continued on next page

198 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.67 – continued from previous page
__u32 flags Flags to go with the command. If no flags are defined for

this command, drivers and applications must set this field to
zero.

union (anonymous)
struct start Structure containing additional data for the

V4L2_DEC_CMD_START command.
__s32 speed Playback speed and direction. The playback speed is defined

as speed/1000 of the normal speed. So 1000 is normal play-
back. Negative numbers denote reverse playback, so -1000
does reverse playback at normal speed. Speeds -1, 0 and 1
have special meanings: speed 0 is shorthand for 1000 (nor-
mal playback). A speed of 1 steps just one frame forward, a
speed of -1 steps just one frame back.

__u32 format Format restrictions. This field is set by the driver, not the ap-
plication. Possible values are V4L2_DEC_START_FMT_NONE if
there are no format restrictions or V4L2_DEC_START_FMT_GOP
if the decoder operates on full GOPs (Group Of Pictures). This
is usually the case for reverse playback: the decoder needs
full GOPs, which it can then play in reverse order. So to im-
plement reverse playback the application must feed the de-
coder the last GOP in the video file, then the GOP before that,
etc. etc.

struct stop Structure containing additional data for the
V4L2_DEC_CMD_STOP command.

__u64 pts Stop playback at this pts or immediately if the playback is
already past that timestamp. Leave to 0 if you want to stop
after the last frame was decoded.

struct raw
__u32 data[16] Reserved for future extensions. Drivers and applications

must set the array to zero.

1.2. Part I - Video for Linux API 199

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.68: Decoder Commands
V4L2_DEC_CMD_START 0 Start the decoder. When the decoder is already running or

paused, this command will just change the playback speed.
That means that calling V4L2_DEC_CMD_START when the decoder
was paused will not resume the decoder. You have to explic-
itly call V4L2_DEC_CMD_RESUME for that. This command has one
flag: V4L2_DEC_CMD_START_MUTE_AUDIO. If set, then audio will
be muted when playing back at a non-standard speed.

V4L2_DEC_CMD_STOP 1 Stop the decoder. When the decoder is already stopped, this
command does nothing. This command has two flags: if
V4L2_DEC_CMD_STOP_TO_BLACK is set, then the decoder will set
the picture to black after it stopped decoding. Otherwise the
last image will repeat. mem2mem decoders will stop producing
new frames altogether. They will send a V4L2_EVENT_EOS event
when the last frame has been decoded and all frames are ready
to be dequeued and will set the V4L2_BUF_FLAG_LAST buffer flag
on the last buffer of the capture queue to indicate there will
be no new buffers produced to dequeue. This buffer may be
empty, indicated by the driver setting the bytesused field to 0.
Once the V4L2_BUF_FLAG_LAST flag was set, the VIDIOC_DQBUF
ioctl will not block anymore, but return an EPIPE error code. If
V4L2_DEC_CMD_STOP_IMMEDIATELY is set, then the decoder stops
immediately (ignoring the pts value), otherwise it will keep de-
coding until timestamp >= pts or until the last of the pending
data from its internal buffers was decoded.

V4L2_DEC_CMD_PAUSE 2 Pause the decoder. When the decoder has not been started yet,
the driver will return an EPERM error code. When the decoder is
already paused, this command does nothing. This command has
one flag: if V4L2_DEC_CMD_PAUSE_TO_BLACK is set, then set the
decoder output to black when paused.

V4L2_DEC_CMD_RESUME 3 Resume decoding after a PAUSE command. When the decoder
has not been started yet, the driver will return an EPERM error
code. When the decoder is already running, this command does
nothing. No flags are defined for this command.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The cmd field is invalid.
EPERM The application sent a PAUSE or RESUME command when the decoder was not running.

ioctl VIDIOC_DQEVENT

Name

VIDIOC_DQEVENT - Dequeue event

Synopsis

int ioctl(int fd, VIDIOC_DQEVENT, struct v4l2_event *argp)

200 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_event.

Description

Dequeue an event from a video device. No input is required for this ioctl. All the fields of the struct
v4l2_event structure are filled by the driver. The file handle will also receive exceptions which the appli-
cation may get by e.g. using the select system call.
v4l2_event

Table 1.69: struct v4l2_event
__u32 type Type of the event, see Event Types .
union u

struct
v4l2_event_vsync

vsync Event data for event V4L2_EVENT_VSYNC.

struct v4l2_event_ctrl ctrl Event data for event V4L2_EVENT_CTRL.
struct
v4l2_event_frame_sync

frame_sync Event data for event
V4L2_EVENT_FRAME_SYNC.

struct
v4l2_event_motion_det

motion_det Event data for event
V4L2_EVENT_MOTION_DET.

struct
v4l2_event_src_change

src_change Event data for event
V4L2_EVENT_SOURCE_CHANGE.

__u8 data[64] Event data. Defined by the event type. The
union should be used to define easily acces-
sible type for events.

__u32 pending Number of pending events excluding this
one.

__u32 sequence Event sequence number. The sequence
number is incremented for every subscribed
event that takes place. If sequence num-
bers are not contiguous it means that events
have been lost.

struct timespec timestamp Event timestamp. The timestamp has been
taken from the CLOCK_MONOTONIC clock. To
access the same clock outside V4L2, use
clock_gettime().

u32 id The ID associated with the event source. If
the event does not have an associated ID
(this depends on the event type), then this
is 0.

__u32 reserved[8] Reserved for future extensions. Drivers
must set the array to zero.

Table 1.70: Event Types

V4L2_EVENT_ALL 0 All events. V4L2_EVENT_ALL is valid only for VID-
IOC_UNSUBSCRIBE_EVENT for unsubscribing all
events at once.

V4L2_EVENT_VSYNC 1 This event is triggered on the vertical sync. This
event has a struct v4l2_event_vsync associated
with it.

Continued on next page

1.2. Part I - Video for Linux API 201

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.70 – continued from previous page
V4L2_EVENT_EOS 2 This event is triggered when the end of a stream

is reached. This is typically used with MPEG de-
coders to report to the application when the last
of the MPEG stream has been decoded.

V4L2_EVENT_CTRL 3 This event requires that the id matches the con-
trol ID from which you want to receive events. This
event is triggered if the control’s value changes, if
a button control is pressed or if the control’s flags
change. This event has a struct v4l2_event_ctrl
associated with it. This struct contains much of
the same information as struct v4l2_queryctrl
and struct v4l2_control.
If the event is generated due to a call to VID-
IOC_S_CTRL or VIDIOC_S_EXT_CTRLS , then the
event will not be sent to the file handle that called
the ioctl function. This prevents nasty feedback
loops. If you do want to get the event, then set
the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag.
This event type will ensure that no informa-
tion is lost when more events are raised than
there is room internally. In that case the struct
v4l2_event_ctrl of the second-oldest event is
kept, but the changes field of the second-oldest
event is ORed with the changes field of the oldest
event.

V4L2_EVENT_FRAME_SYNC 4 Triggered immediately when the reception of a
frame has begun. This event has a struct
v4l2_event_frame_sync associated with it.
If the hardware needs to be stopped in the case
of a buffer underrun it might not be able to gener-
ate this event. In such cases the frame_sequence
field in struct v4l2_event_frame_sync will not be
incremented. This causes two consecutive frame
sequence numbers to have n times frame interval
in between them.

V4L2_EVENT_SOURCE_CHANGE 5 This event is triggered when a source parameter
change is detected during runtime by the video
device. It can be a runtime resolution change trig-
gered by a video decoder or the format change
happening on an input connector. This event re-
quires that the id matches the input index (when
used with a video device node) or the pad index
(when used with a subdevice node) from which
you want to receive events.
This event has a struct v4l2_event_src_change
associated with it. The changes bitfield denotes
what has changed for the subscribed pad. If mul-
tiple events occurred before application could de-
queue them, then the changes will have the ORed
value of all the events generated.

V4L2_EVENT_MOTION_DET 6 Triggered whenever the motion detection state for
one or more of the regions changes. This event
has a struct v4l2_event_motion_det associated
with it.

V4L2_EVENT_PRIVATE_START 0x08000000 Base event number for driver-private events.

202 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

v4l2_event_vsync

Table 1.71: struct v4l2_event_vsync
__u8 field The upcoming field. See enum v4l2_field.
v4l2_event_ctrl

Table 1.72: struct v4l2_event_ctrl
__u32 changes A bitmask that tells what has changed. See Con-

trol Changes .
__u32 type The type of the control. See enum

v4l2_ctrl_type.
union (anonymous)

__s32 value The 32-bit value of the control for 32-bit control
types. This is 0 for string controls since the value
of a string cannot be passed using ioctl VID-
IOC_DQEVENT .

__s64 value64 The 64-bit value of the control for 64-bit control
types.

__u32 flags The control flags. See Control Flags .
__s32 minimum The minimum value of the control. See struct

v4l2_queryctrl .
__s32 maximum The maximum value of the control. See struct

v4l2_queryctrl .
__s32 step The step value of the control. See struct

v4l2_queryctrl .
__s32 default_value The default value value of the control. See struct

v4l2_queryctrl .
v4l2_event_frame_sync

Table 1.73: struct v4l2_event_frame_sync
__u32 frame_sequence The sequence number of the frame being re-

ceived.
v4l2_event_src_change

Table 1.74: struct v4l2_event_src_change
__u32 changes A bitmask that tells what has changed. See

Source Changes .

v4l2_event_motion_det

1.2. Part I - Video for Linux API 203

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.75: struct v4l2_event_motion_det
__u32 flags Currently only one flag is available: if

V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ is set,
then the frame_sequence field is valid, otherwise
that field should be ignored.

__u32 frame_sequence The sequence number of the frame
being received. Only valid if the
V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ flag was
set.

__u32 region_mask The bitmask of the regions that reported motion.
There is at least one region. If this field is 0,
then no motion was detected at all. If there is no
V4L2_CID_DETECT_MD_REGION_GRID control (see
Detect Control Reference) to assign a different
region to each cell in the motion detection grid,
then that all cells are automatically assigned to
the default region 0.

Table 1.76: Control Changes
V4L2_EVENT_CTRL_CH_VALUE 0x0001 This control event was triggered because

the value of the control changed. Spe-
cial cases: Volatile controls do no gen-
erate this event; If a control has the
V4L2_CTRL_FLAG_EXECUTE_ON_WRITE flag set,
then this event is sent as well, regardless its
value.

V4L2_EVENT_CTRL_CH_FLAGS 0x0002 This control event was triggered because the con-
trol flags changed.

V4L2_EVENT_CTRL_CH_RANGE 0x0004 This control event was triggered because the min-
imum, maximum, step or the default value of the
control changed.

Table 1.77: Source Changes
V4L2_EVENT_SRC_CH_RESOLUTION 0x0001 This event gets triggered when a resolution

change is detected at an input. This can come
from an input connector or from a video decoder.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP

Name

VIDIOC_DV_TIMINGS_CAP - VIDIOC_SUBDEV_DV_TIMINGS_CAP - The capabilities of the Digital Video re-
ceiver/transmitter

Synopsis

int ioctl(int fd, VIDIOC_DV_TIMINGS_CAP, struct v4l2_dv_timings_cap *argp)

204 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int ioctl(int fd, VIDIOC_SUBDEV_DV_TIMINGS_CAP, struct v4l2_dv_timings_cap *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_dv_timings_cap.

Description

To query the capabilities of the DV receiver/transmitter applications initialize the pad field to 0, zero the
reserved array of struct v4l2_dv_timings_cap and call the VIDIOC_DV_TIMINGS_CAP ioctl on a video node
and the driver will fill in the structure.

Note:

Drivers may return different values after switching the video input or output.

When implemented by the driver DV capabilities of subdevices can be queried by calling the VID-
IOC_SUBDEV_DV_TIMINGS_CAP ioctl directly on a subdevice node. The capabilities are specific to inputs
(for DV receivers) or outputs (for DV transmitters), applications must specify the desired pad number in
the struct v4l2_dv_timings_cap pad field and zero the reserved array. Attempts to query capabilities
on a pad that doesn’t support them will return an EINVAL error code.
v4l2_bt_timings_cap

Table 1.78: struct v4l2_bt_timings_cap
__u32 min_width Minimum width of the active video in pixels.
__u32 max_width Maximum width of the active video in pixels.
__u32 min_height Minimum height of the active video in lines.
__u32 max_height Maximum height of the active video in lines.
__u64 min_pixelclock Minimum pixelclock frequency in Hz.
__u64 max_pixelclock Maximum pixelclock frequency in Hz.
__u32 standards The video standard(s) supported by the hardware. See DV BT Timing stan-

dards for a list of standards.
__u32 capabilities Several flags giving more information about the capabilities. See DV BT

Timing capabilities for a description of the flags.
__u32 reserved[16] Reserved for future extensions. Drivers must set the array to zero.

v4l2_dv_timings_cap

1.2. Part I - Video for Linux API 205

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.79: struct v4l2_dv_timings_cap
__u32 type Type of DV timings as listed in DV Timing types .

__u32 pad
Pad number as reported by the media controller API. This field is
only used when operating on a subdevice node. When operating on a
video node applications must set this field to zero.

__u32 reserved[2]
Reserved for future extensions.

Drivers and applications must set the array to zero.

union
struct
v4l2_bt_timings_cap

bt BT.656/1120 timings capabilities of the hardware.

__u32 raw_data[32]

Table 1.80: DV BT Timing capabilities
Flag Description

V4L2_DV_BT_CAP_INTERLACED Interlaced formats are supported.
V4L2_DV_BT_CAP_PROGRESSIVE Progressive formats are supported.
V4L2_DV_BT_CAP_REDUCED_BLANKING CVT/GTF specific: the timings can make use of reduced

blanking (CVT) or the ‘Secondary GTF’ curve (GTF).
V4L2_DV_BT_CAP_CUSTOM Can support non-standard timings, i.e. timings not belong-

ing to the standards set in the standards field.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl VIDIOC_ENCODER_CMD, VIDIOC_TRY_ENCODER_CMD

Name

VIDIOC_ENCODER_CMD - VIDIOC_TRY_ENCODER_CMD - Execute an encoder command

Synopsis

int ioctl(int fd, VIDIOC_ENCODER_CMD, struct v4l2_encoder_cmd *argp)
int ioctl(int fd, VIDIOC_TRY_ENCODER_CMD, struct v4l2_encoder_cmd *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_encoder_cmd.

Description

These ioctls control an audio/video (usually MPEG-) encoder. VIDIOC_ENCODER_CMD sends a command to
the encoder, VIDIOC_TRY_ENCODER_CMD can be used to try a command without actually executing it.

206 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

To send a command applications must initialize all fields of a struct v4l2_encoder_cmd and call VID-
IOC_ENCODER_CMD or VIDIOC_TRY_ENCODER_CMD with a pointer to this structure.
The cmd field must contain the command code. The flags field is currently only used by the STOP com-
mand and contains one bit: If the V4L2_ENC_CMD_STOP_AT_GOP_END flag is set, encoding will continue
until the end of the current Group Of Pictures, otherwise it will stop immediately.
A read() or VIDIOC_STREAMON call sends an implicit START command to the encoder if it has not been
started yet. After a STOP command, read() calls will read the remaining data buffered by the driver.
When the buffer is empty, read() will return zero and the next read() call will restart the encoder.
A close() or VIDIOC_STREAMOFF call of a streaming file descriptor sends an implicit immediate STOP to
the encoder, and all buffered data is discarded.
These ioctls are optional, not all drivers may support them. They were introduced in Linux 2.6.21.
v4l2_encoder_cmd

Table 1.81: struct v4l2_encoder_cmd
__u32 cmd The encoder command, see Encoder Commands

.
__u32 flags Flags to go with the command, see Encoder Com-

mand Flags . If no flags are defined for this com-
mand, drivers and applications must set this field
to zero.

__u32 data[8] Reserved for future extensions. Drivers and appli-
cations must set the array to zero.

Table 1.82: Encoder Commands
V4L2_ENC_CMD_START 0 Start the encoder. When the encoder is already

running or paused, this command does nothing.
No flags are defined for this command.

V4L2_ENC_CMD_STOP 1 Stop the encoder. When the
V4L2_ENC_CMD_STOP_AT_GOP_END flag is set,
encoding will continue until the end of the
current Group Of Pictures, otherwise encoding
will stop immediately. When the encoder is
already stopped, this command does nothing.
mem2mem encoders will send a V4L2_EVENT_EOS
event when the last frame has been encoded
and all frames are ready to be dequeued and
will set the V4L2_BUF_FLAG_LAST buffer flag on
the last buffer of the capture queue to indicate
there will be no new buffers produced to de-
queue. This buffer may be empty, indicated
by the driver setting the bytesused field to 0.
Once the V4L2_BUF_FLAG_LAST flag was set, the
VIDIOC_DQBUF ioctl will not block anymore, but
return an EPIPE error code.

V4L2_ENC_CMD_PAUSE 2 Pause the encoder. When the encoder has not
been started yet, the driver will return an EPERM
error code. When the encoder is already paused,
this command does nothing. No flags are defined
for this command.

V4L2_ENC_CMD_RESUME 3 Resume encoding after a PAUSE command. When
the encoder has not been started yet, the driver
will return an EPERM error code. When the encoder
is already running, this command does nothing.
No flags are defined for this command.

1.2. Part I - Video for Linux API 207

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.83: Encoder Command Flags
V4L2_ENC_CMD_STOP_AT_GOP_END 0x0001 Stop encoding at the end of the current Group Of

Pictures, rather than immediately.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The cmd field is invalid.
EPERM The application sent a PAUSE or RESUME command when the encoder was not running.

ioctl VIDIOC_ENUMAUDIO

Name

VIDIOC_ENUMAUDIO - Enumerate audio inputs

Synopsis

int ioctl(int fd, VIDIOC_ENUMAUDIO, struct v4l2_audio *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_audio.

Description

To query the attributes of an audio input applications initialize the index field and zero out the reserved
array of a struct v4l2_audio and call the ioctl VIDIOC_ENUMAUDIO ioctl with a pointer to this structure.
Drivers fill the rest of the structure or return an EINVAL error code when the index is out of bounds. To
enumerate all audio inputs applications shall begin at index zero, incrementing by one until the driver
returns EINVAL.
See VIDIOC_G_AUDIO for a description of struct v4l2_audio.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The number of the audio input is out of bounds.

ioctl VIDIOC_ENUMAUDOUT

Name

VIDIOC_ENUMAUDOUT - Enumerate audio outputs

208 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, VIDIOC_ENUMAUDOUT, struct v4l2_audioout *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_audioout.

Description

To query the attributes of an audio output applications initialize the index field and zero out the reserved
array of a struct v4l2_audioout and call the VIDIOC_G_AUDOUT ioctl with a pointer to this structure. Drivers
fill the rest of the structure or return an EINVAL error code when the index is out of bounds. To enumerate all
audio outputs applications shall begin at index zero, incrementing by one until the driver returns EINVAL.

Note:

Connectors on a TV card to loop back the received audio signal to a sound card are not audio outputs
in this sense.

See VIDIOC_G_AUDIOout for a description of struct v4l2_audioout.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The number of the audio output is out of bounds.

ioctl VIDIOC_ENUM_DV_TIMINGS, VIDIOC_SUBDEV_ENUM_DV_TIMINGS

Name

VIDIOC_ENUM_DV_TIMINGS - VIDIOC_SUBDEV_ENUM_DV_TIMINGS - Enumerate supported Digital Video
timings

Synopsis

int ioctl(int fd, VIDIOC_ENUM_DV_TIMINGS, struct v4l2_enum_dv_timings *argp)
int ioctl(int fd, VIDIOC_SUBDEV_ENUM_DV_TIMINGS, struct v4l2_enum_dv_timings *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_enum_dv_timings.

1.2. Part I - Video for Linux API 209

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

While some DV receivers or transmitters support a wide range of timings, others support only a limited
number of timings. With this ioctl applications can enumerate a list of known supported timings. Call ioctl
VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP to check if it also supports other standards
or even custom timings that are not in this list.
To query the available timings, applications initialize the index field, set the pad field to 0, zero the
reserved array of struct v4l2_enum_dv_timings and call the VIDIOC_ENUM_DV_TIMINGS ioctl on a video
node with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code
when the index is out of bounds. To enumerate all supported DV timings, applications shall begin at index
zero, incrementing by one until the driver returns EINVAL.

Note:

Drivers may enumerate a different set of DV timings after switching the video input or output.

When implemented by the driver DV timings of subdevices can be queried by calling the VID-
IOC_SUBDEV_ENUM_DV_TIMINGS ioctl directly on a subdevice node. The DV timings are specific to inputs
(for DV receivers) or outputs (for DV transmitters), applications must specify the desired pad number in
the struct v4l2_enum_dv_timings pad field. Attempts to enumerate timings on a pad that doesn’t support
them will return an EINVAL error code.
v4l2_enum_dv_timings

Table 1.84: struct v4l2_enum_dv_timings
__u32 index Number of the DV timings, set by the application.
__u32 pad Pad number as reported by the media controller

API. This field is only used when operating on a
subdevice node. When operating on a video node
applications must set this field to zero.

__u32 reserved[2] Reserved for future extensions. Drivers and appli-
cations must set the array to zero.

struct v4l2_dv_timings timings The timings.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_enum_dv_timings index is out of bounds or the pad number is invalid.
ENODATA Digital video presets are not supported for this input or output.

ioctl VIDIOC_ENUM_FMT

Name

VIDIOC_ENUM_FMT - Enumerate image formats

Synopsis

int ioctl(int fd, VIDIOC_ENUM_FMT, struct v4l2_fmtdesc *argp)

210 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_fmtdesc.

Description

To enumerate image formats applications initialize the type and index field of struct v4l2_fmtdesc and
call the ioctl VIDIOC_ENUM_FMT ioctl with a pointer to this structure. Drivers fill the rest of the structure
or return an EINVAL error code. All formats are enumerable by beginning at index zero and incrementing
by one until EINVAL is returned.

Note:

After switching input or output the list of enumerated image formats may be different.

v4l2_fmtdesc

Table 1.85: struct v4l2_fmtdesc
__u32 index Number of the format in the enumeration, set by

the application. This is in no way related to the
pixelformat field.

__u32 type Type of the data stream, set by the ap-
plication. Only these types are valid
here: V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
and V4L2_BUF_TYPE_VIDEO_OVERLAY. See
v4l2_buf_type.

__u32 flags See Image Format Description Flags
__u8 description[32] Description of the format, a NUL-terminated ASCII

string. This information is intended for the user,
for example: “YUV 4:2:2”.

__u32 pixelformat The image format identifier. This is a four charac-
ter code as computed by the v4l2_fourcc() macro:

#define v4l2_fourcc(a,b,c,d)

(((__u32)(a)<<0)|((__u32)(b)<<8)|((__u32)(c)<<16)|((__u32)(d)<<24))

Several image formats are already defined by this specification in
Image Formats .

Attention:

These codes are not the same as those used
in the Windows world.

__u32 reserved[4] Reserved for future extensions. Drivers must set
the array to zero.

1.2. Part I - Video for Linux API 211

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.86: Image Format Description Flags
V4L2_FMT_FLAG_COMPRESSED 0x0001 This is a compressed format.
V4L2_FMT_FLAG_EMULATED 0x0002 This format is not native to the device but em-

ulated through software (usually libv4l2), where
possible try to use a native format instead for bet-
ter performance.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_fmtdesc type is not supported or the index is out of bounds.

ioctl VIDIOC_ENUM_FRAMESIZES

Name

VIDIOC_ENUM_FRAMESIZES - Enumerate frame sizes

Synopsis

int ioctl(int fd, VIDIOC_ENUM_FRAMESIZES, struct v4l2_frmsizeenum *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_frmsizeenum that contains an index and pixel format and receives a frame

width and height.

Description

This ioctl allows applications to enumerate all frame sizes (i. e. width and height in pixels) that the device
supports for the given pixel format.
The supported pixel formats can be obtained by using the ioctl VIDIOC_ENUM_FMT function.
The return value and the content of the v4l2_frmsizeenum.type field depend on the type of frame sizes
the device supports. Here are the semantics of the function for the different cases:

• Discrete: The function returns success if the given index value (zero-based) is valid. The application
should increase the index by one for each call until EINVAL is returned. The v4l2_frmsizeenum.type
field is set to V4L2_FRMSIZE_TYPE_DISCRETE by the driver. Of the union only the discrete member
is valid.

• Step-wise: The function returns success if the given index value is zero and EINVAL for any other
index value. The v4l2_frmsizeenum.type field is set to V4L2_FRMSIZE_TYPE_STEPWISE by the driver.
Of the union only the stepwise member is valid.

• Continuous: This is a special case of the step-wise type above. The function returns success if the
given index value is zero and EINVAL for any other index value. The v4l2_frmsizeenum.type field
is set to V4L2_FRMSIZE_TYPE_CONTINUOUS by the driver. Of the union only the stepwise member is
valid and the step_width and step_height values are set to 1.

212 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

When the application calls the function with index zero, it must check the type field to determine the type
of frame size enumeration the device supports. Only for the V4L2_FRMSIZE_TYPE_DISCRETE type does it
make sense to increase the index value to receive more frame sizes.

Note:

The order in which the frame sizes are returned has no special meaning. In particular does it not say
anything about potential default format sizes.

Applications can assume that the enumeration data does not change without any interaction from the
application itself. This means that the enumeration data is consistent if the application does not perform
any other ioctl calls while it runs the frame size enumeration.

Structs

In the structs below, IN denotes a value that has to be filled in by the application, OUT denotes values
that the driver fills in. The application should zero out all members except for the IN fields.
v4l2_frmsize_discrete

Table 1.87: struct v4l2_frmsize_discrete
__u32 width Width of the frame [pixel].
__u32 height Height of the frame [pixel].

v4l2_frmsize_stepwise

Table 1.88: struct v4l2_frmsize_stepwise
__u32 min_width Minimum frame width [pixel].
__u32 max_width Maximum frame width [pixel].
__u32 step_width Frame width step size [pixel].
__u32 min_height Minimum frame height [pixel].
__u32 max_height Maximum frame height [pixel].
__u32 step_height Frame height step size [pixel].

v4l2_frmsizeenum

Table 1.89: struct v4l2_frmsizeenum
__u32 index IN: Index of the given frame size in the enu-

meration.
__u32 pixel_format IN: Pixel format for which the frame sizes are

enumerated.
__u32 type OUT: Frame size type the device supports.
union OUT: Frame size with the given index.

struct v4l2_frmsize_discrete discrete
struct v4l2_frmsize_stepwise stepwise

__u32 reserved[2] Reserved space for future use. Must be ze-
roed by drivers and applications.

Enums

v4l2_frmsizetypes

1.2. Part I - Video for Linux API 213

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.90: enum v4l2_frmsizetypes
V4L2_FRMSIZE_TYPE_DISCRETE 1 Discrete frame size.
V4L2_FRMSIZE_TYPE_CONTINUOUS 2 Continuous frame size.
V4L2_FRMSIZE_TYPE_STEPWISE 3 Step-wise defined frame size.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl VIDIOC_ENUM_FRAMEINTERVALS

Name

VIDIOC_ENUM_FRAMEINTERVALS - Enumerate frame intervals

Synopsis

int ioctl(int fd, VIDIOC_ENUM_FRAMEINTERVALS, struct v4l2_frmivalenum *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_frmivalenum that contains a pixel format and size and receives a frame

interval.

Description

This ioctl allows applications to enumerate all frame intervals that the device supports for the given pixel
format and frame size.
The supported pixel formats and frame sizes can be obtained by using the ioctl VIDIOC_ENUM_FMT and
ioctl VIDIOC_ENUM_FRAMESIZES functions.
The return value and the content of the v4l2_frmivalenum.type field depend on the type of frame inter-
vals the device supports. Here are the semantics of the function for the different cases:

• Discrete: The function returns success if the given index value (zero-based) is valid. The application
should increase the index by one for each call until EINVAL is returned. The v4l2_frmivalenum.type
field is set to V4L2_FRMIVAL_TYPE_DISCRETE by the driver. Of the union only the discrete member
is valid.

• Step-wise: The function returns success if the given index value is zero and EINVAL for any other
index value. The v4l2_frmivalenum.type field is set to V4L2_FRMIVAL_TYPE_STEPWISE by the driver.
Of the union only the stepwise member is valid.

• Continuous: This is a special case of the step-wise type above. The function returns success if the
given index value is zero and EINVAL for any other index value. The v4l2_frmivalenum.type field
is set to V4L2_FRMIVAL_TYPE_CONTINUOUS by the driver. Of the union only the stepwise member is
valid and the step value is set to 1.

When the application calls the function with index zero, it must check the type field to determine the type
of frame interval enumeration the device supports. Only for the V4L2_FRMIVAL_TYPE_DISCRETE type does
it make sense to increase the index value to receive more frame intervals.

214 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

The order in which the frame intervals are returned has no special meaning. In particular does it not
say anything about potential default frame intervals.

Applications can assume that the enumeration data does not change without any interaction from the
application itself. This means that the enumeration data is consistent if the application does not perform
any other ioctl calls while it runs the frame interval enumeration.

Note:

Frame intervals and frame rates: The V4L2 API uses frame intervals instead of frame rates. Given
the frame interval the frame rate can be computed as follows:

frame_rate = 1 / frame_interval

Structs

In the structs below, IN denotes a value that has to be filled in by the application, OUT denotes values
that the driver fills in. The application should zero out all members except for the IN fields.
v4l2_frmival_stepwise

Table 1.91: struct v4l2_frmival_stepwise
struct v4l2_fract min Minimum frame interval [s].
struct v4l2_fract max Maximum frame interval [s].
struct v4l2_fract step Frame interval step size [s].

v4l2_frmivalenum

Table 1.92: struct v4l2_frmivalenum
__u32 index IN: Index of the given frame interval in the enumer-

ation.
__u32 pixel_format IN: Pixel format for which the frame intervals are

enumerated.
__u32 width IN: Frame width for which the frame intervals are

enumerated.
__u32 height IN: Frame height for which the frame intervals are

enumerated.
__u32 type OUT: Frame interval type the device supports.
union OUT: Frame interval with the given index.

struct v4l2_fract discrete Frame interval [s].
struct
v4l2_frmival_stepwise

stepwise

__u32 reserved[2] Reserved space for future use. Must be zeroed by
drivers and applications.

Enums

v4l2_frmivaltypes

1.2. Part I - Video for Linux API 215

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.93: enum v4l2_frmivaltypes
V4L2_FRMIVAL_TYPE_DISCRETE 1 Discrete frame interval.
V4L2_FRMIVAL_TYPE_CONTINUOUS 2 Continuous frame interval.
V4L2_FRMIVAL_TYPE_STEPWISE 3 Step-wise defined frame interval.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl VIDIOC_ENUM_FREQ_BANDS

Name

VIDIOC_ENUM_FREQ_BANDS - Enumerate supported frequency bands

Synopsis

int ioctl(int fd, VIDIOC_ENUM_FREQ_BANDS, struct v4l2_frequency_band *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_frequency_band.

Description

Enumerates the frequency bands that a tuner or modulator supports. To do this applications initialize the
tuner, type and index fields, and zero out the reserved array of a struct v4l2_frequency_band and call
the ioctl VIDIOC_ENUM_FREQ_BANDS ioctl with a pointer to this structure.
This ioctl is supported if the V4L2_TUNER_CAP_FREQ_BANDS capability of the corresponding tuner/modulator
is set.
v4l2_frequency_band

216 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.94: struct v4l2_frequency_band

__u32 tuner

The tuner or modulator index number. This is the same value as in
the struct v4l2_input tuner field and
the struct v4l2_tuner index field, or
the struct v4l2_output modulator field
and the struct v4l2_modulator index
field.

__u32 type

The tuner type. This is the same value as in the struct
v4l2_tuner type field. The type must be
set to V4L2_TUNER_RADIO for /dev/radioX device nodes, and
to V4L2_TUNER_ANALOG_TV for all others. Set this field to
V4L2_TUNER_RADIO for modulators (currently only radio
modulators are supported). See v4l2_tuner_type

__u32 index Identifies the frequency band, set by the application.

__u32 capability

The tuner/modulator capability flags for this
frequency band, see Tuner and Modulator Capability Flags . The
V4L2_TUNER_CAP_LOW or V4L2_TUNER_CAP_1HZ capability must
be the same for all frequency bands of the selected
tuner/modulator. So either all bands have that capability set, or
none of them have that capability.

__u32 rangelow

The lowest tunable frequency in units of 62.5 kHz, or
if the capability flag V4L2_TUNER_CAP_LOW is set, in units
of 62.5 Hz, for this frequency band. A 1 Hz unit is used when the
capability flag V4L2_TUNER_CAP_1HZ is set.

__u32 rangehigh

The highest tunable frequency in units of 62.5 kHz,
or if the capability flag V4L2_TUNER_CAP_LOW is set, in
units of 62.5 Hz, for this frequency band. A 1 Hz unit is used
when the capability flag V4L2_TUNER_CAP_1HZ is set.

__u32 modulation

The supported modulation systems of this frequency
band. See Band Modulation Systems .

Note:

Currently only one modulation system per frequency band
is supported. More work will need to be done if multiple
modulation systems are possible. Contact the linux-media
mailing list
(https://linuxtv.org/lists.php)
if you need such functionality.

__u32 reserved[9]
Reserved for future extensions.

Applications and drivers must set the array to zero.

1.2. Part I - Video for Linux API 217

https://linuxtv.org/lists.php

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.95: Band Modulation Systems
V4L2_BAND_MODULATION_VSB 0x02 Vestigial Sideband modulation, used for analog

TV.
V4L2_BAND_MODULATION_FM 0x04 Frequency Modulation, commonly used for analog

radio.
V4L2_BAND_MODULATION_AM 0x08 Amplitude Modulation, commonly used for analog

radio.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The tuner or index is out of bounds or the type field is wrong.

ioctl VIDIOC_ENUMINPUT

Name

VIDIOC_ENUMINPUT - Enumerate video inputs

Synopsis

int ioctl(int fd, VIDIOC_ENUMINPUT, struct v4l2_input *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_input.

Description

To query the attributes of a video input applications initialize the index field of struct v4l2_input and
call the ioctl VIDIOC_ENUMINPUT with a pointer to this structure. Drivers fill the rest of the structure or
return an EINVAL error code when the index is out of bounds. To enumerate all inputs applications shall
begin at index zero, incrementing by one until the driver returns EINVAL.
v4l2_input

218 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.96: struct v4l2_input
__u32 index Identifies the input, set by the application.
__u8 name[32] Name of the video input, a NUL-terminated ASCII

string, for example: “Vin (Composite 2)”. This in-
formation is intended for the user, preferably the
connector label on the device itself.

__u32 type Type of the input, see Input Types .
__u32 audioset Drivers can enumerate up to 32 video and audio

inputs. This field shows which audio inputs were
selectable as audio source if this was the currently
selected video input. It is a bit mask. The LSB
corresponds to audio input 0, the MSB to input 31.
Any number of bits can be set, or none.
When the driver does not enumerate audio in-
puts no bits must be set. Applications shall not
interpret this as lack of audio support. Some
drivers automatically select audio sources and do
not enumerate them since there is no choice any-
way.
For details on audio inputs and how to select the
current input see Audio Inputs and Outputs .

__u32 tuner Capture devices can have zero or more tuners
(RF demodulators). When the type is set to
V4L2_INPUT_TYPE_TUNER this is an RF connector
and this field identifies the tuner. It corresponds
to struct v4l2_tuner field index. For details on
tuners see Tuners and Modulators .

v4l2_std_id std Every video input supports one or more different
video standards. This field is a set of all supported
standards. For details on video standards and how
to switch see Video Standards .

__u32 status This field provides status information about the in-
put. See Input Status Flags for flags. With the
exception of the sensor orientation bits status is
only valid when this is the current input.

__u32 capabilities This field provides capabilities for the input. See
Input capabilities for flags.

__u32 reserved[3] Reserved for future extensions. Drivers must set
the array to zero.

Table 1.97: Input Types
V4L2_INPUT_TYPE_TUNER 1 This input uses a tuner (RF demodulator).
V4L2_INPUT_TYPE_CAMERA 2 Any non-tuner video input, for example Compos-

ite Video, S-Video, HDMI, camera sensor. The
naming as _TYPE_CAMERA is historical, today we
would have called it _TYPE_VIDEO.

V4L2_INPUT_TYPE_TOUCH 3 This input is a touch device for capturing raw
touch data.

1.2. Part I - Video for Linux API 219

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.98: Input Status Flags
General
V4L2_IN_ST_NO_POWER 0x00000001 Attached device is off.
V4L2_IN_ST_NO_SIGNAL 0x00000002
V4L2_IN_ST_NO_COLOR 0x00000004 The hardware supports color decoding, but does not de-

tect color modulation in the signal.
Sensor Orientation
V4L2_IN_ST_HFLIP 0x00000010 The input is connected to a device that produces a signal

that is flipped horizontally and does not correct this before
passing the signal to userspace.

V4L2_IN_ST_VFLIP 0x00000020 The input is connected to a device that produces a signal
that is flipped vertically and does not correct this before
passing the signal to userspace. .. note:: A 180 degree
rotation is the same as HFLIP | VFLIP

Analog Video
V4L2_IN_ST_NO_H_LOCK 0x00000100 No horizontal sync lock.
V4L2_IN_ST_COLOR_KILL 0x00000200 A color killer circuit automatically disables color decoding

when it detects no color modulation. When this flag is set
the color killer is enabled and has shut off color decoding.

V4L2_IN_ST_NO_V_LOCK 0x00000400 No vertical sync lock.
V4L2_IN_ST_NO_STD_LOCK 0x00000800 No standard format lock in case of auto-detection format

by the component.
Digital Video
V4L2_IN_ST_NO_SYNC 0x00010000 No synchronization lock.
V4L2_IN_ST_NO_EQU 0x00020000 No equalizer lock.
V4L2_IN_ST_NO_CARRIER 0x00040000 Carrier recovery failed.
VCR and Set-Top Box
V4L2_IN_ST_MACROVISION 0x01000000 Macrovision is an analog copy prevention system man-

gling the video signal to confuse video recorders. When
this flag is set Macrovision has been detected.

V4L2_IN_ST_NO_ACCESS 0x02000000 Conditional access denied.
V4L2_IN_ST_VTR 0x04000000 VTR time constant. [?]

Table 1.99: Input capabilities
V4L2_IN_CAP_DV_TIMINGS 0x00000002 This input supports setting video timings by using

VIDIOC_S_DV_TIMINGS.
V4L2_IN_CAP_STD 0x00000004 This input supports setting the TV standard by us-

ing VIDIOC_S_STD.
V4L2_IN_CAP_NATIVE_SIZE 0x00000008 This input supports setting the native size using

the V4L2_SEL_TGT_NATIVE_SIZE selection target,
see Common selection definitions .

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_input index is out of bounds.

ioctl VIDIOC_ENUMOUTPUT

Name

VIDIOC_ENUMOUTPUT - Enumerate video outputs

220 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, VIDIOC_ENUMOUTPUT, struct v4l2_output *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_output.

Description

To query the attributes of a video outputs applications initialize the index field of struct v4l2_output and
call the ioctl VIDIOC_ENUMOUTPUT with a pointer to this structure. Drivers fill the rest of the structure or
return an EINVAL error code when the index is out of bounds. To enumerate all outputs applications shall
begin at index zero, incrementing by one until the driver returns EINVAL.
v4l2_output

Table 1.100: struct v4l2_output
__u32 index Identifies the output, set by the application.
__u8 name[32] Name of the video output, a NUL-terminated ASCII

string, for example: “Vout”. This information is in-
tended for the user, preferably the connector label
on the device itself.

__u32 type Type of the output, see Output Type .
__u32 audioset Drivers can enumerate up to 32 video and au-

dio outputs. This field shows which audio out-
puts were selectable as the current output if this
was the currently selected video output. It is a bit
mask. The LSB corresponds to audio output 0, the
MSB to output 31. Any number of bits can be set,
or none.
When the driver does not enumerate audio out-
puts no bits must be set. Applications shall not in-
terpret this as lack of audio support. Drivers may
automatically select audio outputs without enu-
merating them.
For details on audio outputs and how to select the
current output see Audio Inputs and Outputs .

__u32 modulator Output devices can have zero or more
RF modulators. When the type is
V4L2_OUTPUT_TYPE_MODULATOR this is an RF
connector and this field identifies the modulator.
It corresponds to struct v4l2_modulator field
index. For details on modulators see Tuners and
Modulators .

v4l2_std_id std Every video output supports one or more different
video standards. This field is a set of all supported
standards. For details on video standards and how
to switch see Video Standards .

__u32 capabilities This field provides capabilities for the output. See
Output capabilities for flags.

__u32 reserved[3] Reserved for future extensions. Drivers must set
the array to zero.

1.2. Part I - Video for Linux API 221

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.101: Output Type
V4L2_OUTPUT_TYPE_MODULATOR 1 This output is an analog TV modulator.
V4L2_OUTPUT_TYPE_ANALOG 2 Any non-modulator video output, for example

Composite Video, S-Video, HDMI. The naming as
_TYPE_ANALOG is historical, today we would have
called it _TYPE_VIDEO.

V4L2_OUTPUT_TYPE_ANALOGVGAOVERLAY 3 The video output will be copied to a video overlay
.

Table 1.102: Output capabilities
V4L2_OUT_CAP_DV_TIMINGS 0x00000002 This output supports setting video timings by us-

ing VIDIOC_S_DV_TIMINGS.
V4L2_OUT_CAP_STD 0x00000004 This output supports setting the TV standard by

using VIDIOC_S_STD.
V4L2_OUT_CAP_NATIVE_SIZE 0x00000008 This output supports setting the native size using

the V4L2_SEL_TGT_NATIVE_SIZE selection target,
see Common selection definitions .

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_output index is out of bounds.

ioctl VIDIOC_ENUMSTD

Name

VIDIOC_ENUMSTD - Enumerate supported video standards

Synopsis

int ioctl(int fd, VIDIOC_ENUMSTD, struct v4l2_standard *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_standard.

Description

To query the attributes of a video standard, especially a custom (driver defined) one, applications initialize
the index field of struct v4l2_standard and call the ioctl VIDIOC_ENUMSTD ioctl with a pointer to this
structure. Drivers fill the rest of the structure or return an EINVAL error code when the index is out of
bounds. To enumerate all standards applications shall begin at index zero, incrementing by one until the
driver returns EINVAL. Drivers may enumerate a different set of standards after switching the video input
or output. 1

1 The supported standards may overlap and we need an unambiguous set to find the current standard returned by VIDIOC_G_STD
.

222 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

v4l2_standard

Table 1.103: struct v4l2_standard
__u32 index Number of the video standard, set by the applica-

tion.
v4l2_std_id id The bits in this field identify the standard as

one of the common standards listed in typedef
v4l2_std_id , or if bits 32 to 63 are set as custom
standards. Multiple bits can be set if the hard-
ware does not distinguish between these stan-
dards, however separate indices do not indicate
the opposite. The id must be unique. No other
enumerated struct v4l2_standard structure, for
this input or output anyway, can contain the same
set of bits.

__u8 name[24] Name of the standard, a NUL-terminated ASCII
string, for example: “PAL-B/G”, “NTSC Japan”.
This information is intended for the user.

struct v4l2_fract frameperiod The frame period (not field period) is numerator
/ denominator. For example M/NTSC has a frame
period of 1001 / 30000 seconds.

__u32 framelines Total lines per frame including blanking, e. g. 625
for B/PAL.

__u32 reserved[4] Reserved for future extensions. Drivers must set
the array to zero.

v4l2_fract

Table 1.104: struct v4l2_fract
__u32 numerator
__u32 denominator

Table 1.105: typedef v4l2_std_id
__u64 v4l2_std_id This type is a set, each bit representing another

video standard as listed below and in Video Stan-
dards (based on itu470) . The 32 most significant
bits are reserved for custom (driver defined) video
standards.

#define V4L2_STD_PAL_B ((v4l2_std_id)0x00000001)
#define V4L2_STD_PAL_B1 ((v4l2_std_id)0x00000002)
#define V4L2_STD_PAL_G ((v4l2_std_id)0x00000004)
#define V4L2_STD_PAL_H ((v4l2_std_id)0x00000008)
#define V4L2_STD_PAL_I ((v4l2_std_id)0x00000010)
#define V4L2_STD_PAL_D ((v4l2_std_id)0x00000020)
#define V4L2_STD_PAL_D1 ((v4l2_std_id)0x00000040)
#define V4L2_STD_PAL_K ((v4l2_std_id)0x00000080)

#define V4L2_STD_PAL_M ((v4l2_std_id)0x00000100)
#define V4L2_STD_PAL_N ((v4l2_std_id)0x00000200)
#define V4L2_STD_PAL_Nc ((v4l2_std_id)0x00000400)
#define V4L2_STD_PAL_60 ((v4l2_std_id)0x00000800)

V4L2_STD_PAL_60 is a hybrid standard with 525 lines, 60 Hz refresh rate, and PAL color modulation with
a 4.43 MHz color subcarrier. Some PAL video recorders can play back NTSC tapes in this mode for display
on a 50/60 Hz agnostic PAL TV.

1.2. Part I - Video for Linux API 223

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define V4L2_STD_NTSC_M ((v4l2_std_id)0x00001000)
#define V4L2_STD_NTSC_M_JP ((v4l2_std_id)0x00002000)
#define V4L2_STD_NTSC_443 ((v4l2_std_id)0x00004000)

V4L2_STD_NTSC_443 is a hybrid standard with 525 lines, 60 Hz refresh rate, and NTSC color modulation
with a 4.43 MHz color subcarrier.

#define V4L2_STD_NTSC_M_KR ((v4l2_std_id)0x00008000)

#define V4L2_STD_SECAM_B ((v4l2_std_id)0x00010000)
#define V4L2_STD_SECAM_D ((v4l2_std_id)0x00020000)
#define V4L2_STD_SECAM_G ((v4l2_std_id)0x00040000)
#define V4L2_STD_SECAM_H ((v4l2_std_id)0x00080000)
#define V4L2_STD_SECAM_K ((v4l2_std_id)0x00100000)
#define V4L2_STD_SECAM_K1 ((v4l2_std_id)0x00200000)
#define V4L2_STD_SECAM_L ((v4l2_std_id)0x00400000)
#define V4L2_STD_SECAM_LC ((v4l2_std_id)0x00800000)

/* ATSC/HDTV */
#define V4L2_STD_ATSC_8_VSB ((v4l2_std_id)0x01000000)
#define V4L2_STD_ATSC_16_VSB ((v4l2_std_id)0x02000000)

V4L2_STD_ATSC_8_VSB and V4L2_STD_ATSC_16_VSB are U.S. terrestrial digital TV standards. Presently the
V4L2 API does not support digital TV. See also the Linux DVB API at https://linuxtv.org.

#define V4L2_STD_PAL_BG (V4L2_STD_PAL_B |
V4L2_STD_PAL_B1 |
V4L2_STD_PAL_G)

#define V4L2_STD_B (V4L2_STD_PAL_B |
V4L2_STD_PAL_B1 |
V4L2_STD_SECAM_B)

#define V4L2_STD_GH (V4L2_STD_PAL_G |
V4L2_STD_PAL_H |
V4L2_STD_SECAM_G |
V4L2_STD_SECAM_H)

#define V4L2_STD_PAL_DK (V4L2_STD_PAL_D |
V4L2_STD_PAL_D1 |
V4L2_STD_PAL_K)

#define V4L2_STD_PAL (V4L2_STD_PAL_BG |
V4L2_STD_PAL_DK |
V4L2_STD_PAL_H |
V4L2_STD_PAL_I)

#define V4L2_STD_NTSC (V4L2_STD_NTSC_M |
V4L2_STD_NTSC_M_JP |
V4L2_STD_NTSC_M_KR)

#define V4L2_STD_MN (V4L2_STD_PAL_M |
V4L2_STD_PAL_N |
V4L2_STD_PAL_Nc |
V4L2_STD_NTSC)

#define V4L2_STD_SECAM_DK (V4L2_STD_SECAM_D |
V4L2_STD_SECAM_K |
V4L2_STD_SECAM_K1)

#define V4L2_STD_DK (V4L2_STD_PAL_DK |
V4L2_STD_SECAM_DK)

#define V4L2_STD_SECAM (V4L2_STD_SECAM_B |
V4L2_STD_SECAM_G |
V4L2_STD_SECAM_H |
V4L2_STD_SECAM_DK |
V4L2_STD_SECAM_L |
V4L2_STD_SECAM_LC)

224 Chapter 1. Linux Media Infrastructure userspace API

https://linuxtv.org

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define V4L2_STD_525_60 (V4L2_STD_PAL_M |
V4L2_STD_PAL_60 |
V4L2_STD_NTSC |
V4L2_STD_NTSC_443)

#define V4L2_STD_625_50 (V4L2_STD_PAL |
V4L2_STD_PAL_N |
V4L2_STD_PAL_Nc |
V4L2_STD_SECAM)

#define V4L2_STD_UNKNOWN 0
#define V4L2_STD_ALL (V4L2_STD_525_60 |

V4L2_STD_625_50)

Table 1.106: Video Standards (based on ITU BT.470)
Characteristics M/NTSC 2 M/PAL N/PAL 3 B, B1, G/PAL D, D1, K/PAL H/PAL I/PAL B, G/SECAM D,

K/SECAM
K1/SECAM L/SECAM

Frame lines 525 625
Frame period (s) 1001/30000 1/25

Chrominance
sub-carrier
frequency (Hz)

3579545 ± 10 3579611.49 ± 10 4433618.75 ± 5
(3582056.25 ± 5)

4433618.75 ± 5 4433618.75 ± 1
fOR = 4406250 ± 2000,

fOB = 4250000 ± 2000

Nominal radio-
frequency chan-
nel bandwidth
(MHz)

6 6 6 B: 7; B1, G: 8 8 8 8 8 8 8 8

Sound carrier
relative to vi-
sion carrier
(MHz)

4.5 4.5 4.5 5.5 ± 0.001 4 5 6
7

6.5 ± 0.001 5.5 5.9996 ± 0.0005 5.5 ± 0.001 6.5 ± 0.001 6.5 6.5 8

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_standard index is out of bounds.
ENODATA Standard video timings are not supported for this input or output.

ioctl VIDIOC_EXPBUF

Name

VIDIOC_EXPBUF - Export a buffer as a DMABUF file descriptor.

Synopsis

int ioctl(int fd, VIDIOC_EXPBUF, struct v4l2_exportbuffer *argp)
2 Japan uses a standard similar to M/NTSC (V4L2_STD_NTSC_M_JP).
3 The values in brackets apply to the combination N/PAL a.k.a. NC used in Argentina (V4L2_STD_PAL_Nc).
4 In the Federal Republic of Germany, Austria, Italy, the Netherlands, Slovakia and Switzerland a system of two sound carriers is

used, the frequency of the second carrier being 242.1875 kHz above the frequency of the first sound carrier. For stereophonic sound
transmissions a similar system is used in Australia.

5 New Zealand uses a sound carrier displaced 5.4996 ± 0.0005 MHz from the vision carrier.
6 In Denmark, Finland, New Zealand, Sweden and Spain a system of two sound carriers is used. In Iceland, Norway and Poland

the same system is being introduced. The second carrier is 5.85 MHz above the vision carrier and is DQPSK modulated with 728
kbit/s sound and data multiplex. (NICAM system)

7 In the United Kingdom, a system of two sound carriers is used. The second sound carrier is 6.552 MHz above the vision carrier
and is DQPSK modulated with a 728 kbit/s sound and data multiplex able to carry two sound channels. (NICAM system)

8 In France, a digital carrier 5.85 MHz away from the vision carrier may be used in addition to the main sound carrier. It is
modulated in differentially encoded QPSK with a 728 kbit/s sound and data multiplexer capable of carrying two sound channels.
(NICAM system)

1.2. Part I - Video for Linux API 225

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_exportbuffer.

Description

This ioctl is an extension to the memory mapping I/O method, therefore it is available only for
V4L2_MEMORY_MMAP buffers. It can be used to export a buffer as a DMABUF file at any time after buffers
have been allocated with the ioctl VIDIOC_REQBUFS ioctl.
To export a buffer, applications fill struct v4l2_exportbuffer. The type field is set to the same buffer
type as was previously used with struct v4l2_requestbuffers type. Applications must also set the index
field. Valid index numbers range from zero to the number of buffers allocated with ioctl VIDIOC_REQBUFS
(struct v4l2_requestbuffers count) minus one. For the multi-planar API, applications set the plane

field to the index of the plane to be exported. Valid planes range from zero to the maximal number of
valid planes for the currently active format. For the single-planar API, applications must set plane to zero.
Additional flags may be posted in the flags field. Refer to a manual for open() for details. Currently only
O_CLOEXEC, O_RDONLY, O_WRONLY, and O_RDWR are supported. All other fields must be set to zero. In
the case of multi-planar API, every plane is exported separately using multiple ioctl VIDIOC_EXPBUF calls.
After calling ioctl VIDIOC_EXPBUF the fd field will be set by a driver. This is a DMABUF file descriptor. The
application may pass it to other DMABUF-aware devices. Refer to DMABUF importing for details about
importing DMABUF files into V4L2 nodes. It is recommended to close a DMABUF file when it is no longer
used to allow the associated memory to be reclaimed.

Examples

int buffer_export(int v4lfd, enum v4l2_buf_type bt, int index, int *dmafd)
{

struct v4l2_exportbuffer expbuf;

memset(&expbuf, 0, sizeof(expbuf));
expbuf.type = bt;
expbuf.index = index;
if (ioctl(v4lfd, VIDIOC_EXPBUF, &expbuf) == -1) {

perror("VIDIOC_EXPBUF");
return -1;

}

*dmafd = expbuf.fd;

return 0;
}

int buffer_export_mp(int v4lfd, enum v4l2_buf_type bt, int index,
int dmafd[], int n_planes)

{
int i;

for (i = 0; i < n_planes; ++i) {
struct v4l2_exportbuffer expbuf;

memset(&expbuf, 0, sizeof(expbuf));
expbuf.type = bt;
expbuf.index = index;
expbuf.plane = i;
if (ioctl(v4lfd, VIDIOC_EXPBUF, &expbuf) == -1) {

226 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

perror("VIDIOC_EXPBUF");
while (i)

close(dmafd[--i]);
return -1;

}
dmafd[i] = expbuf.fd;

}

return 0;
}

v4l2_exportbuffer

Table 1.107: struct v4l2_exportbuffer
__u32 type Type of the buffer, same as struct v4l2_format

type or struct v4l2_requestbuffers type, set by
the application. See v4l2_buf_type

__u32 index Number of the buffer, set by the application. This
field is only used for memory mapping I/O and
can range from zero to the number of buffers al-
located with the ioctl VIDIOC_REQBUFS and/or
ioctl VIDIOC_CREATE_BUFS ioctls.

__u32 plane Index of the plane to be exported when using the
multi-planar API. Otherwise this value must be set
to zero.

__u32 flags Flags for the newly created file, currently only
O_CLOEXEC, O_RDONLY, O_WRONLY, and O_RDWR are
supported, refer to the manual of open() for more
details.

__s32 fd The DMABUF file descriptor associated with a
buffer. Set by the driver.

__u32 reserved[11] Reserved field for future use. Drivers and applica-
tions must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL A queue is not in MMAP mode or DMABUF exporting is not supported or flags or type or index

or plane fields are invalid.

ioctl VIDIOC_G_AUDIO, VIDIOC_S_AUDIO

Name

VIDIOC_G_AUDIO - VIDIOC_S_AUDIO - Query or select the current audio input and its attributes

Synopsis

int ioctl(int fd, VIDIOC_G_AUDIO, struct v4l2_audio *argp)
int ioctl(int fd, VIDIOC_S_AUDIO, const struct v4l2_audio *argp)

1.2. Part I - Video for Linux API 227

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_audio.

Description

To query the current audio input applications zero out the reserved array of a struct v4l2_audio and call
the VIDIOC_G_AUDIO ioctl with a pointer to this structure. Drivers fill the rest of the structure or return
an EINVAL error code when the device has no audio inputs, or none which combine with the current video
input.
Audio inputs have one writable property, the audio mode. To select the current audio input and change
the audio mode, applications initialize the index and mode fields, and the reserved array of a struct
v4l2_audio structure and call the VIDIOC_S_AUDIO ioctl. Drivers may switch to a different audio mode
if the request cannot be satisfied. However, this is a write-only ioctl, it does not return the actual new
audio mode.
v4l2_audio

Table 1.108: struct v4l2_audio
__u32 index Identifies the audio input, set by the driver or ap-

plication.
__u8 name[32] Name of the audio input, a NUL-terminated ASCII

string, for example: “Line In”. This information
is intended for the user, preferably the connector
label on the device itself.

__u32 capability Audio capability flags, see Audio Capability Flags
.

__u32 mode Audio mode flags set by drivers and applications
(on VIDIOC_S_AUDIO ioctl), see Audio Mode Flags
.

__u32 reserved[2] Reserved for future extensions. Drivers and appli-
cations must set the array to zero.

Table 1.109: Audio Capability Flags
V4L2_AUDCAP_STEREO 0x00001 This is a stereo input. The flag is intended to auto-

matically disable stereo recording etc. when the
signal is always monaural. The API provides no
means to detect if stereo is received, unless the
audio input belongs to a tuner.

V4L2_AUDCAP_AVL 0x00002 Automatic Volume Level mode is supported.

Table 1.110: Audio Mode Flags
V4L2_AUDMODE_AVL 0x00001 AVL mode is on.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL No audio inputs combine with the current video input, or the number of the selected audio input

is out of bounds or it does not combine.

228 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ioctl VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT

Name

VIDIOC_G_AUDOUT - VIDIOC_S_AUDOUT - Query or select the current audio output

Synopsis

int ioctl(int fd, VIDIOC_G_AUDOUT, struct v4l2_audioout *argp)
int ioctl(int fd, VIDIOC_S_AUDOUT, const struct v4l2_audioout *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_audioout.

Description

To query the current audio output applications zero out the reserved array of a struct v4l2_audioout
and call the VIDIOC_G_AUDOUT ioctl with a pointer to this structure. Drivers fill the rest of the structure or
return an EINVAL error code when the device has no audio inputs, or none which combine with the current
video output.
Audio outputs have no writable properties. Nevertheless, to select the current audio output applications
can initialize the index field and reserved array (which in the future may contain writable properties) of
a struct v4l2_audioout structure and call the VIDIOC_S_AUDOUT ioctl. Drivers switch to the requested
output or return the EINVAL error code when the index is out of bounds. This is a write-only ioctl, it does
not return the current audio output attributes as VIDIOC_G_AUDOUT does.

Note:

Connectors on a TV card to loop back the received audio signal to a sound card are not audio outputs
in this sense.

v4l2_audioout

Table 1.111: struct v4l2_audioout
__u32 index Identifies the audio output, set by the driver or

application.
__u8 name[32] Name of the audio output, a NUL-terminated ASCII

string, for example: “Line Out”. This information
is intended for the user, preferably the connector
label on the device itself.

__u32 capability Audio capability flags, none defined yet. Drivers
must set this field to zero.

__u32 mode Audio mode, none defined yet. Drivers and appli-
cations (on VIDIOC_S_AUDOUT) must set this field
to zero.

__u32 reserved[2] Reserved for future extensions. Drivers and appli-
cations must set the array to zero.

1.2. Part I - Video for Linux API 229

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL No audio outputs combine with the current video output, or the number of the selected audio

output is out of bounds or it does not combine.

ioctl VIDIOC_G_CROP, VIDIOC_S_CROP

Name

VIDIOC_G_CROP - VIDIOC_S_CROP - Get or set the current cropping rectangle

Synopsis

int ioctl(int fd, VIDIOC_G_CROP, struct v4l2_crop *argp)
int ioctl(int fd, VIDIOC_S_CROP, const struct v4l2_crop *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_crop.

Description

To query the cropping rectangle size and position applications set the type field of a struct v4l2_crop
structure to the respective buffer (stream) type and call the VIDIOC_G_CROP ioctl with a pointer to this
structure. The driver fills the rest of the structure or returns the EINVAL error code if cropping is not
supported.
To change the cropping rectangle applications initialize the type and struct v4l2_rect substructure named
c of a v4l2_crop structure and call the VIDIOC_S_CROP ioctl with a pointer to this structure.
The driver first adjusts the requested dimensions against hardware limits, i. e. the bounds given by the
capture/output window, and it rounds to the closest possible values of horizontal and vertical offset, width
and height. In particular the driver must round the vertical offset of the cropping rectangle to frame lines
modulo two, such that the field order cannot be confused.
Second the driver adjusts the image size (the opposite rectangle of the scaling process, source or target
depending on the data direction) to the closest size possible while maintaining the current horizontal and
vertical scaling factor.
Finally the driver programs the hardware with the actual cropping and image parameters. VIDIOC_S_CROP
is a write-only ioctl, it does not return the actual parameters. To query them applications must call VID-
IOC_G_CROP and ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT . When the parameters are unsuit-
able the application may modify the cropping or image parameters and repeat the cycle until satisfactory
parameters have been negotiated.
When cropping is not supported then no parameters are changed and VIDIOC_S_CROP returns the EINVAL
error code.
v4l2_crop

230 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.112: struct v4l2_crop
__u32 type Type of the data stream, set by the ap-

plication. Only these types are valid
here: V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
and V4L2_BUF_TYPE_VIDEO_OVERLAY. See
v4l2_buf_type and the note above.

struct v4l2_rect c Cropping rectangle. The same co-ordinate system
as for struct v4l2_cropcap bounds is used.

Note:

Unfortunately in the case of multiplanar buffer types (V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE and
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) this API was messed up with regards to how the v4l2_crop
type field should be filled in. Some drivers only accepted the _MPLANE buffer type while other drivers
only accepted a non-multiplanar buffer type (i.e. without the _MPLANE at the end).
Starting with kernel 4.13 both variations are allowed.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
ENODATA Cropping is not supported for this input or output.

ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL

Name

VIDIOC_G_CTRL - VIDIOC_S_CTRL - Get or set the value of a control

Synopsis

int ioctl(int fd, VIDIOC_G_CTRL, struct v4l2_control *argp)
int ioctl(int fd, VIDIOC_S_CTRL, struct v4l2_control *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_control.

Description

To get the current value of a control applications initialize the id field of a struct v4l2_control and call
the VIDIOC_G_CTRL ioctl with a pointer to this structure. To change the value of a control applications
initialize the id and value fields of a struct v4l2_control and call the VIDIOC_S_CTRL ioctl.

1.2. Part I - Video for Linux API 231

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

When the id is invalid drivers return an EINVAL error code. When the value is out of bounds drivers can
choose to take the closest valid value or return an ERANGE error code, whatever seems more appropriate.
However, VIDIOC_S_CTRL is a write-only ioctl, it does not return the actual new value. If the value is
inappropriate for the control (e.g. if it refers to an unsupported menu index of a menu control), then
EINVAL error code is returned as well.
These ioctls work only with user controls. For other control classes the VIDIOC_G_EXT_CTRLS , VID-
IOC_S_EXT_CTRLS or VIDIOC_TRY_EXT_CTRLS must be used.
v4l2_control

Table 1.113: struct v4l2_control
__u32 id Identifies the control, set by the application.
__s32 value New value or current value.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_control id is invalid or the value is inappropriate for the given control (i.e. if a

menu item is selected that is not supported by the driver according to VIDIOC_QUERYMENU).
ERANGE The struct v4l2_control value is out of bounds.
EBUSY The control is temporarily not changeable, possibly because another applications took over con-

trol of the device function this control belongs to.
EACCES Attempt to set a read-only control or to get a write-only control.

ioctl VIDIOC_G_DV_TIMINGS, VIDIOC_S_DV_TIMINGS

Name

VIDIOC_G_DV_TIMINGS - VIDIOC_S_DV_TIMINGS - VIDIOC_SUBDEV_G_DV_TIMINGS - VID-
IOC_SUBDEV_S_DV_TIMINGS - Get or set DV timings for input or output

Synopsis

int ioctl(int fd, VIDIOC_G_DV_TIMINGS, struct v4l2_dv_timings *argp)
int ioctl(int fd, VIDIOC_S_DV_TIMINGS, struct v4l2_dv_timings *argp)
int ioctl(int fd, VIDIOC_SUBDEV_G_DV_TIMINGS, struct v4l2_dv_timings *argp)
int ioctl(int fd, VIDIOC_SUBDEV_S_DV_TIMINGS, struct v4l2_dv_timings *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_dv_timings.

232 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

To set DV timings for the input or output, applications use the VIDIOC_S_DV_TIMINGS ioctl and to get the
current timings, applications use the VIDIOC_G_DV_TIMINGS ioctl. The detailed timing information is filled
in using the structure struct v4l2_dv_timings. These ioctls take a pointer to the struct v4l2_dv_timings
structure as argument. If the ioctl is not supported or the timing values are not correct, the driver returns
EINVAL error code.
The linux/v4l2-dv-timings.h header can be used to get the timings of the formats in the CEA-861-E
and VESA DMT standards. If the current input or output does not support DV timings (e.g. if ioctl VID-
IOC_ENUMINPUT does not set the V4L2_IN_CAP_DV_TIMINGS flag), then ENODATA error code is returned.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL This ioctl is not supported, or the VIDIOC_S_DV_TIMINGS parameter was unsuitable.
ENODATA Digital video timings are not supported for this input or output.
EBUSY The device is busy and therefore can not change the timings.
v4l2_bt_timings

1.2. Part I - Video for Linux API 233

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.114: struct v4l2_bt_timings
__u32 width Width of the active video in pixels.
__u32 height Height of the active video frame in lines. So for

interlaced formats the height of the active video
in each field is height/2.

__u32 interlaced Progressive (V4L2_DV_PROGRESSIVE) or interlaced
(V4L2_DV_INTERLACED).

__u32 polarities This is a bit mask that defines polarities of
sync signals. bit 0 (V4L2_DV_VSYNC_POS_POL)
is for vertical sync polarity and bit 1
(V4L2_DV_HSYNC_POS_POL) is for horizontal
sync polarity. If the bit is set (1) it is positive
polarity and if is cleared (0), it is negative polarity.

__u64 pixelclock Pixel clock in Hz. Ex. 74.25MHz->74250000
__u32 hfrontporch Horizontal front porch in pixels
__u32 hsync Horizontal sync length in pixels
__u32 hbackporch Horizontal back porch in pixels
__u32 vfrontporch Vertical front porch in lines. For interlaced formats

this refers to the odd field (aka field 1).
__u32 vsync Vertical sync length in lines. For interlaced for-

mats this refers to the odd field (aka field 1).
__u32 vbackporch Vertical back porch in lines. For interlaced formats

this refers to the odd field (aka field 1).
__u32 il_vfrontporch Vertical front porch in lines for the even field (aka

field 2) of interlaced field formats. Must be 0 for
progressive formats.

__u32 il_vsync Vertical sync length in lines for the even field (aka
field 2) of interlaced field formats. Must be 0 for
progressive formats.

__u32 il_vbackporch Vertical back porch in lines for the even field (aka
field 2) of interlaced field formats. Must be 0 for
progressive formats.

__u32 standards The video standard(s) this format belongs to. This
will be filled in by the driver. Applications must set
this to 0. See DV BT Timing standards for a list
of standards.

__u32 flags Several flags giving more information about the
format. See DV BT Timing flags for a description
of the flags.

struct v4l2_fract picture_aspect The picture aspect if the pixels
are not square. Only valid if the
V4L2_DV_FL_HAS_PICTURE_ASPECT flag is set.

__u8 cea861_vic The Video Identification Code according to
the CEA-861 standard. Only valid if the
V4L2_DV_FL_HAS_CEA861_VIC flag is set.

__u8 hdmi_vic The Video Identification Code according
to the HDMI standard. Only valid if the
V4L2_DV_FL_HAS_HDMI_VIC flag is set.

__u8 reserved[46] Reserved for future extensions. Drivers and appli-
cations must set the array to zero.

v4l2_dv_timings

234 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.115: struct v4l2_dv_timings
__u32 type Type of DV timings

as listed in DV Tim-
ing types .

union
struct
v4l2_bt_timings

bt Timings defined by
BT.656/1120 speci-
fications

__u32 reserved[32]

Table 1.116: DV Timing types
Timing type value Description

V4L2_DV_BT_656_1120 0 BT.656/1120 timings

Table 1.117: DV BT Timing standards
Timing standard Description
V4L2_DV_BT_STD_CEA861 The timings follow the CEA-861 Digital TV Profile standard
V4L2_DV_BT_STD_DMT The timings follow the VESA Discrete Monitor Timings standard
V4L2_DV_BT_STD_CVT The timings follow the VESA Coordinated Video Timings standard
V4L2_DV_BT_STD_GTF The timings follow the VESA Generalized Timings Formula standard
V4L2_DV_BT_STD_SDI The timings follow the SDI Timings standard. There are no horizontal

syncs/porches at all in this format. Total blanking timings must be set in
hsync or vsync fields only.

1.2. Part I - Video for Linux API 235

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.118: DV BT Timing flags
Flag Description
V4L2_DV_FL_REDUCED_BLANKING CVT/GTF specific: the timings use reduced blanking (CVT) or

the ‘Secondary GTF’ curve (GTF). In both cases the horizon-
tal and/or vertical blanking intervals are reduced, allowing a
higher resolution over the same bandwidth. This is a read-
only flag, applications must not set this.

V4L2_DV_FL_CAN_REDUCE_FPS CEA-861 specific: set for CEA-861 formats with a framerate
that is a multiple of six. These formats can be optionally
played at 1 / 1.001 speed to be compatible with 60 Hz based
standards such as NTSC and PAL-M that use a framerate of
29.97 frames per second. If the transmitter can’t generate
such frequencies, then the flag will also be cleared. This is
a read-only flag, applications must not set this.

V4L2_DV_FL_REDUCED_FPS CEA-861 specific: only valid for video transmitters, the flag
is cleared by receivers. It is also only valid for formats with
the V4L2_DV_FL_CAN_REDUCE_FPS flag set, for other formats
the flag will be cleared by the driver. If the application sets
this flag, then the pixelclock used to set up the transmitter
is divided by 1.001 to make it compatible with NTSC fram-
erates. If the transmitter can’t generate such frequencies,
then the flag will also be cleared.

V4L2_DV_FL_HALF_LINE Specific to interlaced formats: if set, then the vertical front-
porch of field 1 (aka the odd field) is really one half-line
longer and the vertical backporch of field 2 (aka the even
field) is really one half-line shorter, so each field has exactly
the same number of half-lines. Whether half-lines can be
detected or used depends on the hardware.

V4L2_DV_FL_IS_CE_VIDEO If set, then this is a Consumer Electronics (CE) video format.
Such formats differ from other formats (commonly called IT
formats) in that if R’G’B’ encoding is used then by default the
R’G’B’ values use limited range (i.e. 16-235) as opposed to
full range (i.e. 0-255). All formats defined in CEA-861 except
for the 640x480p59.94 format are CE formats.

V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE Some formats like SMPTE-125M have an interlaced signal
with a odd total height. For these formats, if this flag is set,
the first field has the extra line. Else, it is the second field.

V4L2_DV_FL_HAS_PICTURE_ASPECT If set, then the picture_aspect field is valid. Otherwise as-
sume that the pixels are square, so the picture aspect ratio
is the same as the width to height ratio.

V4L2_DV_FL_HAS_CEA861_VIC If set, then the cea861_vic field is valid and contains the
Video Identification Code as per the CEA-861 standard.

V4L2_DV_FL_HAS_HDMI_VIC If set, then the hdmi_vic field is valid and contains the Video
Identification Code as per the HDMI standard (HDMI Vendor
Specific InfoFrame).

ioctl VIDIOC_G_EDID, VIDIOC_S_EDID, VIDIOC_SUBDEV_G_EDID, VIDIOC_SUBDEV_S_EDID

Name

VIDIOC_G_EDID - VIDIOC_S_EDID - VIDIOC_SUBDEV_G_EDID - VIDIOC_SUBDEV_S_EDID - Get or set the
EDID of a video receiver/transmitter

236 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, VIDIOC_G_EDID, struct v4l2_edid *argp)
int ioctl(int fd, VIDIOC_S_EDID, struct v4l2_edid *argp)
int ioctl(int fd, VIDIOC_SUBDEV_G_EDID, struct v4l2_edid *argp)
int ioctl(int fd, VIDIOC_SUBDEV_S_EDID, struct v4l2_edid *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_edid.

Description

These ioctls can be used to get or set an EDID associated with an input from a receiver or an output of
a transmitter device. They can be used with subdevice nodes (/dev/v4l-subdevX) or with video nodes
(/dev/videoX).
When used with video nodes the pad field represents the input (for video capture devices) or output (for
video output devices) index as is returned by ioctl VIDIOC_ENUMINPUT and ioctl VIDIOC_ENUMOUTPUT
respectively. When used with subdevice nodes the pad field represents the input or output pad of the

subdevice. If there is no EDID support for the given pad value, then the EINVAL error code will be returned.
To get the EDID data the application has to fill in the pad, start_block, blocks and edid fields, zero the
reserved array and call VIDIOC_G_EDID . The current EDID from block start_block and of size blocks
will be placed in the memory edid points to. The edid pointer must point to memory at least blocks *
128 bytes large (the size of one block is 128 bytes).
If there are fewer blocks than specified, then the driver will set blocks to the actual number of blocks. If
there are no EDID blocks available at all, then the error code ENODATA is set.
If blocks have to be retrieved from the sink, then this call will block until they have been read.
If start_block and blocks are both set to 0 when VIDIOC_G_EDID is called, then the driver will set
blocks to the total number of available EDID blocks and it will return 0 without copying any data. This is
an easy way to discover how many EDID blocks there are.

Note:

If there are no EDID blocks available at all, then the driver will set blocks to 0 and it returns 0.

To set the EDID blocks of a receiver the application has to fill in the pad, blocks and edid fields, set
start_block to 0 and zero the reserved array. It is not possible to set part of an EDID, it is always all or
nothing. Setting the EDID data is only valid for receivers as it makes no sense for a transmitter.
The driver assumes that the full EDID is passed in. If there are more EDID blocks than the hardware
can handle then the EDID is not written, but instead the error code E2BIG is set and blocks is set to
the maximum that the hardware supports. If start_block is any value other than 0 then the error code
EINVAL is set.
To disable an EDID you set blocks to 0. Depending on the hardware this will drive the hotplug pin low
and/or block the source from reading the EDID data in some way. In any case, the end result is the same:
the EDID is no longer available.
v4l2_edid

1.2. Part I - Video for Linux API 237

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.119: struct v4l2_edid
__u32 pad Pad for which to get/set the EDID blocks. When

used with a video device node the pad represents
the input or output index as returned by ioctl VID-
IOC_ENUMINPUT and ioctl VIDIOC_ENUMOUTPUT
respectively.

__u32 start_block Read the EDID from starting with this block. Must
be 0 when setting the EDID.

__u32 blocks The number of blocks to get or set. Must be less
or equal to 256 (the maximum number of blocks
as defined by the standard). When you set the
EDID and blocks is 0, then the EDID is disabled
or erased.

__u32 reserved[5] Reserved for future extensions. Applications and
drivers must set the array to zero.

__u8 * edid Pointer to memory that contains the EDID. The
minimum size is blocks * 128.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
ENODATA The EDID data is not available.
E2BIG The EDID data you provided is more than the hardware can handle.

ioctl VIDIOC_G_ENC_INDEX

Name

VIDIOC_G_ENC_INDEX - Get meta data about a compressed video stream

Synopsis

int ioctl(int fd, VIDIOC_G_ENC_INDEX, struct v4l2_enc_idx *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_enc_idx.

Description

The VIDIOC_G_ENC_INDEX ioctl provides meta data about a compressed video stream the same or an-
other application currently reads from the driver, which is useful for random access into the stream without
decoding it.
To read the data applications must call VIDIOC_G_ENC_INDEX with a pointer to a struct v4l2_enc_idx.
On success the driver fills the entry array, stores the number of elements written in the entries field,
and initializes the entries_cap field.

238 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Each element of the entry array contains meta data about one picture. A VIDIOC_G_ENC_INDEX call
reads up to V4L2_ENC_IDX_ENTRIES entries from a driver buffer, which can hold up to entries_cap en-
tries. This number can be lower or higher than V4L2_ENC_IDX_ENTRIES, but not zero. When the appli-
cation fails to read the meta data in time the oldest entries will be lost. When the buffer is empty or no
capturing/encoding is in progress, entries will be zero.
Currently this ioctl is only defined for MPEG-2 program streams and video elementary streams.
v4l2_enc_idx

Table 1.120: struct v4l2_enc_idx
__u32 entries The number of entries the driver stored in the

entry array.
__u32 entries_cap The number of entries the driver can buffer.

Must be greater than zero.
__u32 reserved[4] Reserved for future extensions. Drivers must

set the array to zero.
struct
v4l2_enc_idx_entry

entry[V4L2_ENC_IDX_ENTRIES] Meta data about a compressed video stream.
Each element of the array corresponds to one
picture, sorted in ascending order by their
offset.

v4l2_enc_idx_entry

Table 1.121: struct v4l2_enc_idx_entry
__u64 offset The offset in bytes from the beginning of the com-

pressed video stream to the beginning of this pic-
ture, that is a PES packet header as defined in
ISO 13818-1 or a picture header as defined in
ISO 13818-2 . When the encoder is stopped, the
driver resets the offset to zero.

__u64 pts The 33 bit Presentation Time Stamp of this picture
as defined in ISO 13818-1 .

__u32 length The length of this picture in bytes.
__u32 flags Flags containing the coding type of this picture,

see Index Entry Flags .
__u32 reserved[2] Reserved for future extensions. Drivers must set

the array to zero.

Table 1.122: Index Entry Flags
V4L2_ENC_IDX_FRAME_I 0x00 This is an Intra-coded picture.
V4L2_ENC_IDX_FRAME_P 0x01 This is a Predictive-coded picture.
V4L2_ENC_IDX_FRAME_B 0x02 This is a Bidirectionally predictive-coded picture.
V4L2_ENC_IDX_FRAME_MASK 0x0F AND the flags field with this mask to obtain the

picture coding type.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS, VIDIOC_TRY_EXT_CTRLS

1.2. Part I - Video for Linux API 239

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Name

VIDIOC_G_EXT_CTRLS - VIDIOC_S_EXT_CTRLS - VIDIOC_TRY_EXT_CTRLS - Get or set the value of several
controls, try control values

Synopsis

int ioctl(int fd, VIDIOC_G_EXT_CTRLS, struct v4l2_ext_controls *argp)
int ioctl(int fd, VIDIOC_S_EXT_CTRLS, struct v4l2_ext_controls *argp)
int ioctl(int fd, VIDIOC_TRY_EXT_CTRLS, struct v4l2_ext_controls *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_ext_controls.

Description

These ioctls allow the caller to get or set multiple controls atomically. Control IDs are grouped into control
classes (see Control classes) and all controls in the control array must belong to the same control class.
Applications must always fill in the count, which, controls and reserved fields of struct
v4l2_ext_controls, and initialize the struct v4l2_ext_control array pointed to by the controls fields.
To get the current value of a set of controls applications initialize the id, size and reserved2 fields of
each struct v4l2_ext_control and call the VIDIOC_G_EXT_CTRLS ioctl. String controls controls must
also set the string field. Controls of compound types (V4L2_CTRL_FLAG_HAS_PAYLOAD is set) must set
the ptr field.
If the size is too small to receive the control result (only relevant for pointer-type controls like strings),
then the driver will set size to a valid value and return an ENOSPC error code. You should re-allocate
the memory to this new size and try again. For the string type it is possible that the same issue occurs
again if the string has grown in the meantime. It is recommended to call ioctls VIDIOC_QUERYCTRL,
VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU first and use maximum+1 as the new size value. It
is guaranteed that that is sufficient memory.
N-dimensional arrays are set and retrieved row-by-row. You cannot set a partial array, all elements have
to be set or retrieved. The total size is calculated as elems * elem_size. These values can be obtained
by calling VIDIOC_QUERY_EXT_CTRL .
To change the value of a set of controls applications initialize the id, size, reserved2 and
value/value64/string/ptr fields of each struct v4l2_ext_control and call the VIDIOC_S_EXT_CTRLS
ioctl. The controls will only be set if all control values are valid.
To check if a set of controls have correct values applications initialize the id, size, reserved2 and
value/value64/string/ptr fields of each struct v4l2_ext_control and call the VIDIOC_TRY_EXT_CTRLS
ioctl. It is up to the driver whether wrong values are automatically adjusted to a valid value or if an error
is returned.
When the id or which is invalid drivers return an EINVAL error code. When the value is out of bounds
drivers can choose to take the closest valid value or return an ERANGE error code, whatever seems more
appropriate. In the first case the new value is set in struct v4l2_ext_control. If the new control value is
inappropriate (e.g. the given menu index is not supported by the menu control), then this will also result
in an EINVAL error code error.

240 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The driver will only set/get these controls if all control values are correct. This prevents the situation where
only some of the controls were set/get. Only low-level errors (e. g. a failed i2c command) can still cause
this situation.
v4l2_ext_control

Table 1.123: struct v4l2_ext_control
__u32 id Identifies the control, set by the application.
__u32 size The total size in bytes of the payload of this control. This is nor-

mally 0, but for pointer controls this should be set to the size of the
memory containing the payload, or that will receive the payload. If
VIDIOC_G_EXT_CTRLS finds that this value is less than is required

to store the payload result, then it is set to a value large enough to
store the payload result and ENOSPC is returned.
Note:

For string controls, this size field should not be confused with
the length of the string. This field refers to the size of the mem-
ory that contains the string. The actual length of the string may
well be much smaller.

__u32 reserved2[1] Reserved for future extensions. Drivers and applications must set
the array to zero.

union (anonymous)
__s32 value New value or current value. Valid if this control is not of type

V4L2_CTRL_TYPE_INTEGER64 and V4L2_CTRL_FLAG_HAS_PAYLOAD is
not set.

__s64 value64 New value or current value. Valid if this control is of type
V4L2_CTRL_TYPE_INTEGER64 and V4L2_CTRL_FLAG_HAS_PAYLOAD is
not set.

char * string A pointer to a string. Valid if this control is of type
V4L2_CTRL_TYPE_STRING.

__u8 * p_u8 A pointer to a matrix control of unsigned 8-bit values. Valid if this
control is of type V4L2_CTRL_TYPE_U8.

__u16 * p_u16 A pointer to a matrix control of unsigned 16-bit values. Valid if this
control is of type V4L2_CTRL_TYPE_U16.

__u32 * p_u32 A pointer to a matrix control of unsigned 32-bit values. Valid if this
control is of type V4L2_CTRL_TYPE_U32.

void * ptr A pointer to a compound type which can be an N-
dimensional array and/or a compound type (the con-
trol’s type is >= V4L2_CTRL_COMPOUND_TYPES). Valid if
V4L2_CTRL_FLAG_HAS_PAYLOAD is set for this control.

v4l2_ext_controls

Table 1.124: struct v4l2_ext_controls

union (anonymous)
Continued on next page

1.2. Part I - Video for Linux API 241

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.124 – continued from previous page
__u32 ctrl_class The control class to which all controls be-

long, see Control classes . Drivers that use
a kernel framework for handling controls will
also accept a value of 0 here, meaning that
the controls can belong to any control class.
Whether drivers support this can be tested
by setting ctrl_class to 0 and calling VID-
IOC_TRY_EXT_CTRLS with a count of 0. If that
succeeds, then the driver supports this feature.

__u32 which Which value of the control to get/set/try.
V4L2_CTRL_WHICH_CUR_VAL will return
the current value of the control and
V4L2_CTRL_WHICH_DEF_VAL will return the
default value of the control.
Note:

You can only get the default value of the
control, you cannot set or try it.

For backwards compatibility you can also use
a control class here (see Control classes).
In that case all controls have to belong to
that control class. This usage is deprecated,
instead just use V4L2_CTRL_WHICH_CUR_VAL.
There are some very old drivers that do not
yet support V4L2_CTRL_WHICH_CUR_VAL and
that require a control class here. You can
test for such drivers by setting ctrl_class to
V4L2_CTRL_WHICH_CUR_VAL and calling VID-
IOC_TRY_EXT_CTRLS with a count of 0. If
that fails, then the driver does not support
V4L2_CTRL_WHICH_CUR_VAL.

__u32 count The number of controls in the controls array. May also be zero.
Continued on next page

242 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.124 – continued from previous page

__u32 error_idx

Set by the driver in case of an error. If the error is associated
with a particular control, then error_idx is set to the index
of that control. If the error is not related to a specific
control, or the validation step failed (see below), then
error_idx is set to count. The value is undefined if the
ioctl returned 0 (success).

Before controls are read from/written to hardware a validation
step takes place: this checks if all controls in the list are
valid controls, if no attempt is made to write to a read-only
control or read from a write-only control, and any other up-front
checks that can be done without accessing the hardware. The exact
validations done during this step are driver dependent since some
checks might require hardware access for some devices, thus making
it impossible to do those checks up-front. However, drivers should
make a best-effort to do as many up-front checks as possible.

This check is done to avoid leaving the hardware in an
inconsistent state due to easy-to-avoid problems. But it leads to
another problem: the application needs to know whether an error
came from the validation step (meaning that the hardware was not
touched) or from an error during the actual reading from/writing
to hardware.

The, in hindsight quite poor, solution for that is to set
error_idx to count if the validation failed. This has the
unfortunate side-effect that it is not possible to see which
control failed the validation. If the validation was successful
and the error happened while accessing the hardware, then
error_idx is less than count and only the controls up to
error_idx-1 were read or written correctly, and the state of
the remaining controls is undefined.

Since VIDIOC_TRY_EXT_CTRLS does not access hardware there is
also no need to handle the validation step in this special way, so
error_idx will just be set to the control that failed the
validation step instead of to count. This means that if
VIDIOC_S_EXT_CTRLS fails with error_idx set to count,
then you can call VIDIOC_TRY_EXT_CTRLS to try to discover the
actual control that failed the validation step. Unfortunately,
there is no TRY equivalent for VIDIOC_G_EXT_CTRLS .

__u32 reserved[2]
Reserved for future extensions.

Drivers and applications must set the array to zero.

struct
v4l2_ext_control
*

controls
Pointer to an array of count v4l2_ext_control structures.

Ignored if count equals zero.

1.2. Part I - Video for Linux API 243

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.125: Control classes
V4L2_CTRL_CLASS_USER 0x980000 The class containing user controls. These controls

are described in User Controls . All controls that
can be set using the VIDIOC_S_CTRL and VID-
IOC_G_CTRL ioctl belong to this class.

V4L2_CTRL_CLASS_MPEG 0x990000 The class containing MPEG compression controls.
These controls are described in Codec Control
Reference .

V4L2_CTRL_CLASS_CAMERA 0x9a0000 The class containing camera controls. These con-
trols are described in Camera Control Reference
.

V4L2_CTRL_CLASS_FM_TX 0x9b0000 The class containing FM Transmitter (FM TX) con-
trols. These controls are described in FM Trans-
mitter Control Reference .

V4L2_CTRL_CLASS_FLASH 0x9c0000 The class containing flash device controls. These
controls are described in Flash Control Reference
.

V4L2_CTRL_CLASS_JPEG 0x9d0000 The class containing JPEG compression controls.
These controls are described in JPEG Control Ref-
erence .

V4L2_CTRL_CLASS_IMAGE_SOURCE 0x9e0000 The class containing image source controls.
These controls are described in Image Source
Control Reference .

V4L2_CTRL_CLASS_IMAGE_PROC 0x9f0000 The class containing image processing controls.
These controls are described in Image Process
Control Reference .

V4L2_CTRL_CLASS_FM_RX 0xa10000 The class containing FM Receiver (FM RX) controls.
These controls are described in FM Receiver Con-
trol Reference .

V4L2_CTRL_CLASS_RF_TUNER 0xa20000 The class containing RF tuner controls. These con-
trols are described in RF Tuner Control Reference
.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_ext_control id is invalid, the struct v4l2_ext_controls which is invalid, or

the struct v4l2_ext_control value was inappropriate (e.g. the given menu index is not sup-
ported by the driver). This error code is also returned by the VIDIOC_S_EXT_CTRLS and VID-
IOC_TRY_EXT_CTRLS ioctls if two or more control values are in conflict.

ERANGE The struct v4l2_ext_control value is out of bounds.
EBUSY The control is temporarily not changeable, possibly because another applications took over con-

trol of the device function this control belongs to.
ENOSPC The space reserved for the control’s payload is insufficient. The field size is set to a value that

is enough to store the payload and this error code is returned.
EACCES Attempt to try or set a read-only control or to get a write-only control.

ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF

244 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Name

VIDIOC_G_FBUF - VIDIOC_S_FBUF - Get or set frame buffer overlay parameters

Synopsis

int ioctl(int fd, VIDIOC_G_FBUF, struct v4l2_framebuffer *argp)
int ioctl(int fd, VIDIOC_S_FBUF, const struct v4l2_framebuffer *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_framebuffer.

Description

Applications can use the VIDIOC_G_FBUF and VIDIOC_S_FBUF ioctl to get and set the framebuffer
parameters for a Video Overlay or Video Output Overlay (OSD). The type of overlay is implied by the
device type (capture or output device) and can be determined with the ioctl VIDIOC_QUERYCAP ioctl.
One /dev/videoN device must not support both kinds of overlay.
The V4L2 API distinguishes destructive and non-destructive overlays. A destructive overlay copies cap-
tured video images into the video memory of a graphics card. A non-destructive overlay blends video im-
ages into a VGA signal or graphics into a video signal. Video Output Overlays are always non-destructive.
To get the current parameters applications call the VIDIOC_G_FBUF ioctl with a pointer to a struct
v4l2_framebuffer structure. The driver fills all fields of the structure or returns an EINVAL error code
when overlays are not supported.
To set the parameters for a Video Output Overlay, applications must initialize the flags field of a struct
struct v4l2_framebuffer. Since the framebuffer is implemented on the TV card all other parameters are
determined by the driver. When an application calls VIDIOC_S_FBUF with a pointer to this structure, the
driver prepares for the overlay and returns the framebuffer parameters as VIDIOC_G_FBUF does, or it
returns an error code.
To set the parameters for a non-destructive Video Overlay, applications must initialize the flags field,
the fmt substructure, and call VIDIOC_S_FBUF . Again the driver prepares for the overlay and returns the
framebuffer parameters as VIDIOC_G_FBUF does, or it returns an error code.
For a destructive Video Overlay applications must additionally provide a base address. Setting up a DMA to
a random memory location can jeopardize the system security, its stability or even damage the hardware,
therefore only the superuser can set the parameters for a destructive video overlay.
v4l2_framebuffer

Table 1.126: struct v4l2_framebuffer

__u32 capability Overlay capability flags set by the
driver, see Frame Buffer Capability
Flags .

__u32 flags Overlay control flags set by application
and driver, see Frame Buffer Flags

void * base Physical base address of the frame-
buffer, that is the address of the pixel
in the top left corner of the framebuffer.
1

Continued on next page

1.2. Part I - Video for Linux API 245

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.126 – continued from previous page
This field is irrelevant to non-destructive
Video Overlays. For destructive Video
Overlays applications must provide a
base address. The driver may accept
only base addresses which are a mul-
tiple of two, four or eight bytes. For
Video Output Overlays the driver must
return a valid base address, so applica-
tions can find the corresponding Linux
framebuffer device (see Video Output
Overlay Interface).

struct fmt Layout of the frame buffer.
__u32 width Width of the frame buffer in pixels.
__u32 height Height of the frame buffer in pixels.
__u32 pixelformat The pixel format of the framebuffer.

For non-destructive Video Overlays this
field only defines a format for the struct
v4l2_window chromakey field.
For destructive Video Overlays applica-
tions must initialize this field. For Video
Output Overlays the driver must return
a valid format.
Usually this is an RGB format (for
example V4L2_PIX_FMT_RGB565)
but YUV formats (only packed YUV
formats when chroma keying is used,
not including V4L2_PIX_FMT_YUYV
and V4L2_PIX_FMT_UYVY) and the
V4L2_PIX_FMT_PAL8 format are also
permitted. The behavior of the driver
when an application requests a com-
pressed format is undefined. See
Image Formats for information on pixel
formats.

enum v4l2_field field Drivers and applications shall ignore
this field. If applicable, the field or-
der is selected with the VIDIOC_S_FMT
ioctl, using the field field of struct
v4l2_window.

__u32 bytesperline Distance in bytes between the leftmost
pixels in two adjacent lines.

Continued on next page

246 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.126 – continued from previous page
This field is irrelevant to non-destructive Video Overlays.

For destructive Video Overlays both applications and drivers can
set this field to request padding bytes at the end of each line.
Drivers however may ignore the requested value, returning
width times bytes-per-pixel or a larger value required by the
hardware. That implies applications can just set this field to
zero to get a reasonable default.

For Video Output Overlays the driver must return a valid value.

Video hardware may access padding bytes, therefore they must
reside in accessible memory. Consider for example the case where
padding bytes after the last line of an image cross a system page
boundary. Capture devices may write padding bytes, the value is
undefined. Output devices ignore the contents of padding bytes.

When the image format is planar the bytesperline value ap-
plies
to the first plane and is divided by the same factor as the
width field for the other planes. For example the Cb and Cr
planes of a YUV 4:2:0 image have half as many padding bytes
following each line as the Y plane. To avoid ambiguities drivers
must return a bytesperline value rounded up to a multiple of
the scale factor.

__u32 sizeimage This field is irrelevant to non-destructive
Video Overlays. For destructive Video
Overlays applications must initialize this
field. For Video Output Overlays the
driver must return a valid format.
Together with base it defines the frame-
buffer memory accessible by the driver.

enum
v4l2_colorspace

colorspace This information supplements the pix-
elformat and must be set by the driver,
see Colorspaces .

__u32 priv Reserved. Drivers and applications
must set this field to zero.

1 A physical base address may not suit all platforms. GK notes in theory we should pass something like PCI device + memory
region + offset instead. If you encounter problems please discuss on the linux-media mailing list: https://linuxtv.org/lists.php.

1.2. Part I - Video for Linux API 247

https://linuxtv.org/lists.php

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.127: Frame Buffer Capability Flags
V4L2_FBUF_CAP_EXTERNOVERLAY 0x0001 The device is capable of non-destructive over-

lays. When the driver clears this flag, only de-
structive overlays are supported. There are no
drivers yet which support both destructive and
non-destructive overlays. Video Output Overlays
are in practice always non-destructive.

V4L2_FBUF_CAP_CHROMAKEY 0x0002 The device supports clipping by chroma-keying
the images. That is, image pixels replace pixels
in the VGA or video signal only where the latter
assume a certain color. Chroma-keying makes no
sense for destructive overlays.

V4L2_FBUF_CAP_LIST_CLIPPING 0x0004 The device supports clipping using a list of clip
rectangles.

V4L2_FBUF_CAP_BITMAP_CLIPPING 0x0008 The device supports clipping using a bit mask.
V4L2_FBUF_CAP_LOCAL_ALPHA 0x0010 The device supports clipping/blending using the

alpha channel of the framebuffer or VGA signal.
Alpha blending makes no sense for destructive
overlays.

V4L2_FBUF_CAP_GLOBAL_ALPHA 0x0020 The device supports alpha blending using a global
alpha value. Alpha blending makes no sense for
destructive overlays.

V4L2_FBUF_CAP_LOCAL_INV_ALPHA 0x0040 The device supports clipping/blending using the
inverted alpha channel of the framebuffer or VGA
signal. Alpha blending makes no sense for de-
structive overlays.

V4L2_FBUF_CAP_SRC_CHROMAKEY 0x0080 The device supports Source Chroma-keying.
Video pixels with the chroma-key colors are re-
placed by framebuffer pixels, which is exactly op-
posite of V4L2_FBUF_CAP_CHROMAKEY

Table 1.128: Frame Buffer Flags

V4L2_FBUF_FLAG_PRIMARY 0x0001 The framebuffer is the primary graphics surface.
In other words, the overlay is destructive. This
flag is typically set by any driver that doesn’t
have the V4L2_FBUF_CAP_EXTERNOVERLAY capa-
bility and it is cleared otherwise.

V4L2_FBUF_FLAG_OVERLAY 0x0002 If this flag is set for a video capture device, then
the driver will set the initial overlay size to cover
the full framebuffer size, otherwise the existing
overlay size (as set by VIDIOC_S_FMT) will be
used. Only one video capture driver (bttv) sup-
ports this flag. The use of this flag for capture
devices is deprecated. There is no way to detect
which drivers support this flag, so the only reli-
able method of setting the overlay size is through
VIDIOC_S_FMT . If this flag is set for a video out-

put device, then the video output overlay window
is relative to the top-left corner of the framebuffer
and restricted to the size of the framebuffer. If it
is cleared, then the video output overlay window
is relative to the video output display.

Continued on next page

248 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.128 – continued from previous page
V4L2_FBUF_FLAG_CHROMAKEY 0x0004 Use chroma-keying. The chroma-key color is

determined by the chromakey field of struct
v4l2_window and negotiated with the VID-
IOC_S_FMT ioctl, see Video Overlay Interface and
Video Output Overlay Interface .

There are no flags to enable clipping using a list of
clip rectangles or a bitmap. These methods are negotiated with the
VIDIOC_S_FMT ioctl, see Video Overlay Interface
and Video Output Overlay Interface .

V4L2_FBUF_FLAG_LOCAL_ALPHA 0x0008 Use the alpha channel of the framebuffer to clip or
blend framebuffer pixels with video images. The
blend function is: output = framebuffer pixel * al-
pha + video pixel * (1 - alpha). The actual alpha
depth depends on the framebuffer pixel format.

V4L2_FBUF_FLAG_GLOBAL_ALPHA 0x0010 Use a global alpha value to blend the framebuffer
with video images. The blend function is: output
= (framebuffer pixel * alpha + video pixel * (255
- alpha)) / 255. The alpha value is determined
by the global_alpha field of struct v4l2_window
and negotiated with the VIDIOC_S_FMT ioctl, see
Video Overlay Interface and Video Output Over-
lay Interface .

V4L2_FBUF_FLAG_LOCAL_INV_ALPHA 0x0020 Like V4L2_FBUF_FLAG_LOCAL_ALPHA, use the al-
pha channel of the framebuffer to clip or blend
framebuffer pixels with video images, but with an
inverted alpha value. The blend function is: out-
put = framebuffer pixel * (1 - alpha) + video pixel
* alpha. The actual alpha depth depends on the
framebuffer pixel format.

V4L2_FBUF_FLAG_SRC_CHROMAKEY 0x0040 Use source chroma-keying. The source chroma-
key color is determined by the chromakey field of
struct v4l2_window and negotiated with the VID-
IOC_S_FMT ioctl, see Video Overlay Interface and
Video Output Overlay Interface . Both chroma-

keying are mutual exclusive to each other, so
same chromakey field of struct v4l2_window is be-
ing used.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EPERM VIDIOC_S_FBUF can only be called by a privileged user to negotiate the parameters for a de-

structive overlay.
EINVAL The VIDIOC_S_FBUF parameters are unsuitable.

ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT

Name

VIDIOC_G_FMT - VIDIOC_S_FMT - VIDIOC_TRY_FMT - Get or set the data format, try a format

1.2. Part I - Video for Linux API 249

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, VIDIOC_G_FMT, struct v4l2_format *argp)
int ioctl(int fd, VIDIOC_S_FMT, struct v4l2_format *argp)
int ioctl(int fd, VIDIOC_TRY_FMT, struct v4l2_format *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_format.

Description

These ioctls are used to negotiate the format of data (typically image format) exchanged between driver
and application.
To query the current parameters applications set the type field of a struct v4l2_format to the respec-
tive buffer (stream) type. For example video capture devices use V4L2_BUF_TYPE_VIDEO_CAPTURE or
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE. When the application calls the VIDIOC_G_FMT ioctl with a
pointer to this structure the driver fills the respective member of the fmt union. In case of video capture
devices that is either the struct v4l2_pix_format pix or the struct v4l2_pix_format_mplane pix_mp
member. When the requested buffer type is not supported drivers return an EINVAL error code.
To change the current format parameters applications initialize the type field and all fields of the respective
fmt union member. For details see the documentation of the various devices types in Interfaces . Good
practice is to query the current parameters first, and to modify only those parameters not suitable for the
application. When the application calls the VIDIOC_S_FMT ioctl with a pointer to a struct v4l2_format
structure the driver checks and adjusts the parameters against hardware abilities. Drivers should not
return an error code unless the type field is invalid, this is a mechanism to fathom device capabilities and to
approach parameters acceptable for both the application and driver. On success the driver may program
the hardware, allocate resources and generally prepare for data exchange. Finally the VIDIOC_S_FMT ioctl
returns the current format parameters as VIDIOC_G_FMT does. Very simple, inflexible devices may even
ignore all input and always return the default parameters. However all V4L2 devices exchanging data
with the application must implement the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl. When the requested
buffer type is not supported drivers return an EINVAL error code on a VIDIOC_S_FMT attempt. When I/O is
already in progress or the resource is not available for other reasons drivers return the EBUSY error code.
The VIDIOC_TRY_FMT ioctl is equivalent to VIDIOC_S_FMT with one exception: it does not change driver
state. It can also be called at any time, never returning EBUSY. This function is provided to negotiate pa-
rameters, to learn about hardware limitations, without disabling I/O or possibly time consuming hardware
preparations. Although strongly recommended drivers are not required to implement this ioctl.
The format as returned by VIDIOC_TRY_FMT must be identical to what VIDIOC_S_FMT returns for the
same input or output.
v4l2_format

250 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.129: struct v4l2_format
__u32 type Type of the data stream, see v4l2_buf_type.
union fmt

struct v4l2_pix_format pix Definition of an image format, see Image For-
mats , used by video capture and output devices.

struct
v4l2_pix_format_mplane

pix_mp Definition of an image format, see Image For-
mats , used by video capture and output devices
that support the multi-planar version of the API .

struct v4l2_window win Definition of an overlaid image, see Video Over-
lay Interface , used by video overlay devices.

struct v4l2_vbi_format vbi Raw VBI capture or output parameters. This is
discussed in more detail in Raw VBI Data Inter-
face . Used by raw VBI capture and output de-
vices.

struct
v4l2_sliced_vbi_format

sliced Sliced VBI capture or output parameters. See
Sliced VBI Data Interface for details. Used by
sliced VBI capture and output devices.

struct v4l2_sdr_format sdr Definition of a data format, see Image Formats ,
used by SDR capture and output devices.

__u8 raw_data[200] Place holder for future extensions.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_format type field is invalid or the requested buffer type not supported.
EBUSY The device is busy and cannot change the format. This could be because or the device is stream-

ing or buffers are allocated or queued to the driver. Relevant for VIDIOC_S_FMT only.

ioctl VIDIOC_G_FREQUENCY, VIDIOC_S_FREQUENCY

Name

VIDIOC_G_FREQUENCY - VIDIOC_S_FREQUENCY - Get or set tuner or modulator radio frequency

Synopsis

int ioctl(int fd, VIDIOC_G_FREQUENCY, struct v4l2_frequency *argp)
int ioctl(int fd, VIDIOC_S_FREQUENCY, const struct v4l2_frequency *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_frequency.

Description

To get the current tuner or modulator radio frequency applications set the tuner field of a struct
v4l2_frequency to the respective tuner or modulator number (only input devices have tuners, only out-

1.2. Part I - Video for Linux API 251

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

put devices have modulators), zero out the reserved array and call the VIDIOC_G_FREQUENCY ioctl with
a pointer to this structure. The driver stores the current frequency in the frequency field.
To change the current tuner or modulator radio frequency applications initialize the tuner, type and
frequency fields, and the reserved array of a struct v4l2_frequency and call the VIDIOC_S_FREQUENCY
ioctl with a pointer to this structure. When the requested frequency is not possible the driver assumes

the closest possible value. However VIDIOC_S_FREQUENCY is a write-only ioctl, it does not return the
actual new frequency.
v4l2_frequency

Table 1.130: struct v4l2_frequency
__u32 tuner The tuner or modulator index number. This is the

same value as in the struct v4l2_input tuner
field and the struct v4l2_tuner index field, or
the struct v4l2_output modulator field and the
struct v4l2_modulator index field.

__u32 type The tuner type. This is the same value as in the
struct v4l2_tuner type field. The type must be
set to V4L2_TUNER_RADIO for /dev/radioX device
nodes, and to V4L2_TUNER_ANALOG_TV for all oth-
ers. Set this field to V4L2_TUNER_RADIO for mod-
ulators (currently only radio modulators are sup-
ported). See v4l2_tuner_type

__u32 frequency Tuning frequency in units of 62.5 kHz, or if the
struct v4l2_tuner or struct v4l2_modulator ca-
pability flag V4L2_TUNER_CAP_LOW is set, in
units of 62.5 Hz. A 1 Hz unit is used when the
capability flag V4L2_TUNER_CAP_1HZ is set.

__u32 reserved[8] Reserved for future extensions. Drivers and appli-
cations must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The tuner index is out of bounds or the value in the type field is wrong.
EBUSY A hardware seek is in progress.

ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT

Name

VIDIOC_G_INPUT - VIDIOC_S_INPUT - Query or select the current video input

Synopsis

int ioctl(int fd, VIDIOC_G_INPUT, int *argp)
int ioctl(int fd, VIDIOC_S_INPUT, int *argp)

252 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
argp Pointer an integer with input index.

Description

To query the current video input applications call the VIDIOC_G_INPUT ioctl with a pointer to an integer
where the driver stores the number of the input, as in the struct v4l2_input index field. This ioctl will
fail only when there are no video inputs, returning EINVAL.
To select a video input applications store the number of the desired input in an integer and call the
VIDIOC_S_INPUT ioctl with a pointer to this integer. Side effects are possible. For example inputs may
support different video standards, so the driver may implicitly switch the current standard. Because of
these possible side effects applications must select an input before querying or negotiating any other
parameters.
Information about video inputs is available using the ioctl VIDIOC_ENUMINPUT ioctl.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The number of the video input is out of bounds.

ioctl VIDIOC_G_JPEGCOMP, VIDIOC_S_JPEGCOMP

Name

VIDIOC_G_JPEGCOMP - VIDIOC_S_JPEGCOMP

Synopsis

int ioctl(int fd, VIDIOC_G_JPEGCOMP, v4l2_jpegcompression *argp)
int ioctl(int fd, VIDIOC_S_JPEGCOMP, const v4l2_jpegcompression *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_jpegcompression.

Description

These ioctls are deprecated. New drivers and applications should use JPEG class controls for image
quality and JPEG markers control.
[to do]
Ronald Bultje elaborates:

1.2. Part I - Video for Linux API 253

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

APP is some application-specific information. The application can set it itself, and it’ll be stored in the
JPEG-encoded fields (eg; interlacing information for in an AVI or so). COM is the same, but it’s comments,
like ‘encoded by me’ or so.
jpeg_markers describes whether the huffman tables, quantization tables and the restart interval informa-
tion (all JPEG-specific stuff) should be stored in the JPEG-encoded fields. These define how the JPEG field
is encoded. If you omit them, applications assume you’ve used standard encoding. You usually do want
to add them.
v4l2_jpegcompression

Table 1.131: struct v4l2_jpegcompression
int quality Deprecated. If V4L2_CID_JPEG_COMPRESSION_QUALITY control is exposed

by a driver applications should use it instead and ignore this field.
int APPn
int APP_len
char APP_data[60]
int COM_len
char COM_data[60]
__u32 jpeg_markers See JPEG Markers Flags . Deprecated. If V4L2_CID_JPEG_ACTIVE_MARKER

control is exposed by a driver applications should use it instead and ignore
this field.

Table 1.132: JPEG Markers Flags
V4L2_JPEG_MARKER_DHT (1<<3) Define Huffman Tables
V4L2_JPEG_MARKER_DQT (1<<4) Define Quantization Tables
V4L2_JPEG_MARKER_DRI (1<<5) Define Restart Interval
V4L2_JPEG_MARKER_COM (1<<6) Comment segment
V4L2_JPEG_MARKER_APP (1<<7) App segment, driver will always use APP0

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl VIDIOC_G_MODULATOR, VIDIOC_S_MODULATOR

Name

VIDIOC_G_MODULATOR - VIDIOC_S_MODULATOR - Get or set modulator attributes

Synopsis

int ioctl(int fd, VIDIOC_G_MODULATOR, struct v4l2_modulator *argp)
int ioctl(int fd, VIDIOC_S_MODULATOR, const struct v4l2_modulator *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_modulator.

254 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

To query the attributes of a modulator applications initialize the index field and zero out the reserved
array of a struct v4l2_modulator and call the VIDIOC_G_MODULATOR ioctl with a pointer to this structure.
Drivers fill the rest of the structure or return an EINVAL error code when the index is out of bounds. To
enumerate all modulators applications shall begin at index zero, incrementing by one until the driver
returns EINVAL.
Modulators have two writable properties, an audio modulation set and the radio frequency. To change the
modulated audio subprograms, applications initialize the index and txsubchans fields and the reserved
array and call the VIDIOC_S_MODULATOR ioctl. Drivers may choose a different audio modulation if
the request cannot be satisfied. However this is a write-only ioctl, it does not return the actual audio
modulation selected.
SDR specific modulator types are V4L2_TUNER_SDR and V4L2_TUNER_RF. For SDR devices txsubchans

field must be initialized to zero. The term ‘modulator’ means SDR transmitter in this context.
To change the radio frequency the VIDIOC_S_FREQUENCY ioctl is available.
v4l2_modulator

1.2. Part I - Video for Linux API 255

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.133: struct v4l2_modulator
__u32 index Identifies the modulator, set by the application.

__u8 name[32]
Name of the modulator, a NUL-terminated ASCII string.

This information is intended for the user.

__u32 capability

Modulator capability flags. No flags are defined for this field,
the tuner flags in struct v4l2_tuner are
used accordingly. The audio flags indicate the ability to encode
audio subprograms. They will not change for example with the
current video standard.

__u32 rangelow

The lowest tunable frequency in units of 62.5 KHz, or if the
capability flag V4L2_TUNER_CAP_LOW is set, in units of
62.5 Hz, or if the capability flag V4L2_TUNER_CAP_1HZ is
set, in units of 1 Hz.

__u32 rangehigh

The highest tunable frequency in units of 62.5 KHz, or if the
capability flag V4L2_TUNER_CAP_LOW is set, in units of
62.5 Hz, or if the capability flag V4L2_TUNER_CAP_1HZ is
set, in units of 1 Hz.

__u32 txsubchans

With this field applications can determine how audio sub-carriers
shall be modulated. It contains a set of flags as defined in
Modulator Audio Transmission Flags .

Note:

The tuner rxsubchans flags are reused, but the
semantics are different. Video output devices
are assumed to have an analog or PCM audio input with 1-3
channels. The txsubchans flags select one or more channels
for modulation, together with some audio subprogram indicator,
for example, a stereo pilot tone.

__u32 type Type of the modulator, see v4l2_tuner_type.

__u32 reserved[3]
Reserved for future extensions.

Drivers and applications must set the array to zero.

256 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.134: Modulator Audio Transmission Flags
V4L2_TUNER_SUB_MONO 0x0001 Modulate channel 1 as mono audio, when

the input has more channels, a down-mix
of channel 1 and 2. This flag does not
combine with V4L2_TUNER_SUB_STEREO or
V4L2_TUNER_SUB_LANG1.

V4L2_TUNER_SUB_STEREO 0x0002 Modulate channel 1 and 2 as left and right chan-
nel of a stereo audio signal. When the in-
put has only one channel or two channels and
V4L2_TUNER_SUB_SAP is also set, channel 1 is
encoded as left and right channel. This flag
does not combine with V4L2_TUNER_SUB_MONO or
V4L2_TUNER_SUB_LANG1. When the driver does
not support stereo audio it shall fall back to mono.

V4L2_TUNER_SUB_LANG1 0x0008 Modulate channel 1 and 2 as primary and
secondary language of a bilingual audio sig-
nal. When the input has only one channel it
is used for both languages. It is not possi-
ble to encode the primary or secondary lan-
guage only. This flag does not combine with
V4L2_TUNER_SUB_MONO, V4L2_TUNER_SUB_STEREO
or V4L2_TUNER_SUB_SAP. If the hardware does not
support the respective audio matrix, or the cur-
rent video standard does not permit bilingual au-
dio the VIDIOC_S_MODULATOR ioctl shall return
an EINVAL error code and the driver shall fall back
to mono or stereo mode.

V4L2_TUNER_SUB_LANG2 0x0004 Same effect as V4L2_TUNER_SUB_SAP.
V4L2_TUNER_SUB_SAP 0x0004 When combined with V4L2_TUNER_SUB_MONO the

first channel is encoded as mono audio, the last
channel as Second Audio Program. When the in-
put has only one channel it is used for both au-
dio tracks. When the input has three channels
the mono track is a down-mix of channel 1 and
2. When combined with V4L2_TUNER_SUB_STEREO
channel 1 and 2 are encoded as left and right
stereo audio, channel 3 as Second Audio Program.
When the input has only two channels, the first
is encoded as left and right channel and the sec-
ond as SAP. When the input has only one chan-
nel it is used for all audio tracks. It is not possi-
ble to encode a Second Audio Program only. This
flag must combine with V4L2_TUNER_SUB_MONO or
V4L2_TUNER_SUB_STEREO. If the hardware does
not support the respective audio matrix, or the
current video standard does not permit SAP the
VIDIOC_S_MODULATOR ioctl shall return an EIN-
VAL error code and driver shall fall back to mono
or stereo mode.

V4L2_TUNER_SUB_RDS 0x0010 Enable the RDS encoder for a radio FM transmitter.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

1.2. Part I - Video for Linux API 257

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

EINVAL The struct v4l2_modulator index is out of bounds.

ioctl VIDIOC_G_OUTPUT, VIDIOC_S_OUTPUT

Name

VIDIOC_G_OUTPUT - VIDIOC_S_OUTPUT - Query or select the current video output

Synopsis

int ioctl(int fd, VIDIOC_G_OUTPUT, int *argp)
int ioctl(int fd, VIDIOC_S_OUTPUT, int *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to an integer with output index.

Description

To query the current video output applications call the VIDIOC_G_OUTPUT ioctl with a pointer to an integer
where the driver stores the number of the output, as in the struct v4l2_output index field. This ioctl will
fail only when there are no video outputs, returning the EINVAL error code.
To select a video output applications store the number of the desired output in an integer and call the
VIDIOC_S_OUTPUT ioctl with a pointer to this integer. Side effects are possible. For example outputs

may support different video standards, so the driver may implicitly switch the current standard. standard.
Because of these possible side effects applications must select an output before querying or negotiating
any other parameters.
Information about video outputs is available using the ioctl VIDIOC_ENUMOUTPUT ioctl.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The number of the video output is out of bounds, or there are no video outputs at all.

ioctl VIDIOC_G_PARM, VIDIOC_S_PARM

Name

VIDIOC_G_PARM - VIDIOC_S_PARM - Get or set streaming parameters

Synopsis

int ioctl(int fd, VIDIOC_G_PARM, v4l2_streamparm *argp)
int ioctl(int fd, VIDIOC_S_PARM, v4l2_streamparm *argp)

258 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_streamparm.

Description

The current video standard determines a nominal number of frames per second. If less than this number
of frames is to be captured or output, applications can request frame skipping or duplicating on the driver
side. This is especially useful when using the read() or write() , which are not augmented by timestamps
or sequence counters, and to avoid unnecessary data copying.
Further these ioctls can be used to determine the number of buffers used internally by a driver in read/write
mode. For implications see the section discussing the read() function.
To get and set the streaming parameters applications call the VIDIOC_G_PARM and VIDIOC_S_PARM ioctl,
respectively. They take a pointer to a struct v4l2_streamparm which contains a union holding separate
parameters for input and output devices.
v4l2_streamparm

Table 1.135: struct v4l2_streamparm
__u32 type The buffer (stream) type, same as struct

v4l2_format type, set by the applica-
tion. See v4l2_buf_type

union parm
struct
v4l2_captureparm

capture Parameters for capture de-
vices, used when type is
V4L2_BUF_TYPE_VIDEO_CAPTURE.

struct
v4l2_outputparm

output Parameters for output de-
vices, used when type is
V4L2_BUF_TYPE_VIDEO_OUTPUT.

__u8 raw_data[200] A place holder for future extensions.
v4l2_captureparm

1.2. Part I - Video for Linux API 259

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.136: struct v4l2_captureparm
__u32 capability See Streaming Parameters Capabilites .
__u32 capturemode Set by drivers and applications, see Capture Pa-

rameters Flags .
struct v4l2_fract timeperframe This is the desired period between successive

frames captured by the driver, in seconds. The
field is intended to skip frames on the driver side,
saving I/O bandwidth.
Applications store here the desired frame period,
drivers return the actual frame period, which must
be greater or equal to the nominal frame period
determined by the current video standard (struct
v4l2_standard frameperiod field). Changing the
video standard (also implicitly by switching the
video input) may reset this parameter to the nom-
inal frame period. To reset manually applications
can just set this field to zero.
Drivers support this function only when they set
the V4L2_CAP_TIMEPERFRAME flag in the capabil-
ity field.

__u32 extendedmode Custom (driver specific) streaming parameters.
When unused, applications and drivers must set
this field to zero. Applications using this field
should check the driver name and version, see
Querying Capabilities .

__u32 readbuffers Applications set this field to the desired num-
ber of buffers used internally by the driver in
read() mode. Drivers return the actual number
of buffers. When an application requests zero
buffers, drivers should just return the current set-
ting rather than the minimum or an error code.
For details see Read/Write .

__u32 reserved[4] Reserved for future extensions. Drivers and appli-
cations must set the array to zero.

v4l2_outputparm

260 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.137: struct v4l2_outputparm
__u32 capability See Streaming Parameters Capabilites .
__u32 outputmode Set by drivers and applications, see Capture Pa-

rameters Flags .
struct v4l2_fract timeperframe This is the desired period between successive

frames output by the driver, in seconds.
The field is intended to repeat frames on the driver side in
write() mode (in streaming mode timestamps
can be used to throttle the output), saving I/O bandwidth.

Applications store here the desired frame period, drivers re-
turn
the actual frame period, which must be greater or equal to the
nominal frame period determined by the current video standard
(struct v4l2_standard frameperiod
field). Changing the video standard (also implicitly by switching
the video output) may reset this parameter to the nominal frame
period. To reset manually applications can just set this field to
zero.

Drivers support this function only when they set the
V4L2_CAP_TIMEPERFRAME flag in the capability field.

__u32 extendedmode Custom (driver specific) streaming parameters.
When unused, applications and drivers must set
this field to zero. Applications using this field
should check the driver name and version, see
Querying Capabilities .

__u32 writebuffers Applications set this field to the desired num-
ber of buffers used internally by the driver in
write() mode. Drivers return the actual num-
ber of buffers. When an application requests zero
buffers, drivers should just return the current set-
ting rather than the minimum or an error code.
For details see Read/Write .

__u32 reserved[4] Reserved for future extensions. Drivers and appli-
cations must set the array to zero.

Table 1.138: Streaming Parameters Capabilites
V4L2_CAP_TIMEPERFRAME 0x1000 The frame skipping/repeating controlled by the

timeperframe field is supported.

1.2. Part I - Video for Linux API 261

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.139: Capture Parameters Flags
V4L2_MODE_HIGHQUALITY 0x0001 High quality imaging mode. High quality mode

is intended for still imaging applications. The
idea is to get the best possible image quality that
the hardware can deliver. It is not defined how
the driver writer may achieve that; it will depend
on the hardware and the ingenuity of the driver
writer. High quality mode is a different mode from
the regular motion video capture modes. In high
quality mode:

• The driver may be able to capture higher res-
olutions than for motion capture.

• The driver may support fewer pixel formats
than motion capture (eg; true color).

• The driver may capture and arithmetically
combine multiple successive fields or frames
to remove color edge artifacts and reduce
the noise in the video data.

• The driver may capture images in slices like a
scanner in order to handle larger format im-
ages than would otherwise be possible.

• An image capture operation may be signifi-
cantly slower than motion capture.

• Moving objects in the image might have ex-
cessive motion blur.

• Capture might only work through the read()
call.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY

Name

VIDIOC_G_PRIORITY - VIDIOC_S_PRIORITY - Query or request the access priority associated with a file
descriptor

Synopsis

int ioctl(int fd, VIDIOC_G_PRIORITY, enum v4l2_priority *argp)

int ioctl(int fd, VIDIOC_S_PRIORITY, const enum v4l2_priority *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to an enum v4l2_priority type.

262 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

To query the current access priority applications call the VIDIOC_G_PRIORITY ioctl with a pointer to an
enum v4l2_priority variable where the driver stores the current priority.
To request an access priority applications store the desired priority in an enum v4l2_priority variable and
call VIDIOC_S_PRIORITY ioctl with a pointer to this variable.
v4l2_priority

Table 1.140: enum v4l2_priority
V4L2_PRIORITY_UNSET 0
V4L2_PRIORITY_BACKGROUND 1 Lowest priority, usually applications running in

background, for example monitoring VBI trans-
missions. A proxy application running in user
space will be necessary if multiple applications
want to read from a device at this priority.

V4L2_PRIORITY_INTERACTIVE 2
V4L2_PRIORITY_DEFAULT 2 Medium priority, usually applications started and

interactively controlled by the user. For example
TV viewers, Teletext browsers, or just “panel” ap-
plications to change the channel or video controls.
This is the default priority unless an application re-
quests another.

V4L2_PRIORITY_RECORD 3 Highest priority. Only one file descriptor can have
this priority, it blocks any other fd from chang-
ing device properties. Usually applications which
must not be interrupted, like video recording.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The requested priority value is invalid.
EBUSY Another application already requested higher priority.

ioctl VIDIOC_G_SELECTION, VIDIOC_S_SELECTION

Name

VIDIOC_G_SELECTION - VIDIOC_S_SELECTION - Get or set one of the selection rectangles

Synopsis

int ioctl(int fd, VIDIOC_G_SELECTION, struct v4l2_selection *argp)
int ioctl(int fd, VIDIOC_S_SELECTION, struct v4l2_selection *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_selection.

1.2. Part I - Video for Linux API 263

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

The ioctls are used to query and configure selection rectangles.
To query the cropping (composing) rectangle set struct v4l2_selection type field to the respective buffer
type. The next step is setting the value of struct v4l2_selection target field to V4L2_SEL_TGT_CROP
(V4L2_SEL_TGT_COMPOSE). Please refer to table Common selection definitions or API for cropping, com-
posing and scaling for additional targets. The flags and reserved fields of struct v4l2_selection are
ignored and they must be filled with zeros. The driver fills the rest of the structure or returns EINVAL error
code if incorrect buffer type or target was used. If cropping (composing) is not supported then the active
rectangle is not mutable and it is always equal to the bounds rectangle. Finally, the struct v4l2_rect r
rectangle is filled with the current cropping (composing) coordinates. The coordinates are expressed in
driver-dependent units. The only exception are rectangles for images in raw formats, whose coordinates
are always expressed in pixels.
To change the cropping (composing) rectangle set the struct v4l2_selection type field to the respective
buffer type. The next step is setting the value of struct v4l2_selection target to V4L2_SEL_TGT_CROP
(V4L2_SEL_TGT_COMPOSE). Please refer to table Common selection definitions or API for cropping, com-
posing and scaling for additional targets. The struct v4l2_rect r rectangle need to be set to the desired
active area. Field struct v4l2_selection reserved is ignored and must be filled with zeros. The driver
may adjust coordinates of the requested rectangle. An application may introduce constraints to control
rounding behaviour. The struct v4l2_selection flags field must be set to one of the following:

• 0 - The driver can adjust the rectangle size freely and shall choose a crop/compose rectangle as close
as possible to the requested one.

• V4L2_SEL_FLAG_GE - The driver is not allowed to shrink the rectangle. The original rectangle must
lay inside the adjusted one.

• V4L2_SEL_FLAG_LE - The driver is not allowed to enlarge the rectangle. The adjusted rectangle must
lay inside the original one.

• V4L2_SEL_FLAG_GE | V4L2_SEL_FLAG_LE - The driver must choose the size exactly the same as in
the requested rectangle.

Please refer to Size adjustments with constraint flags. .
The driver may have to adjusts the requested dimensions against hardware limits and other parts as the
pipeline, i.e. the bounds given by the capture/output window or TV display. The closest possible values
of horizontal and vertical offset and sizes are chosen according to following priority:

1. Satisfy constraints from struct v4l2_selection flags.
2. Adjust width, height, left, and top to hardware limits and alignments.
3. Keep center of adjusted rectangle as close as possible to the original one.
4. Keep width and height as close as possible to original ones.
5. Keep horizontal and vertical offset as close as possible to original ones.

On success the struct v4l2_rect r field contains the adjusted rectangle. When the parameters are unsuit-
able the application may modify the cropping (composing) or image parameters and repeat the cycle until
satisfactory parameters have been negotiated. If constraints flags have to be violated at then ERANGE is
returned. The error indicates that there exist no rectangle that satisfies the constraints.
Selection targets and flags are documented in Common selection definitions .
v4l2_selection

264 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Fig. 1.16: Size adjustments with constraint flags.
Behaviour of rectangle adjustment for different constraint flags.

Table 1.141: struct v4l2_selection
__u32 type Type of the buffer (from enum v4l2_buf_type).
__u32 target Used to select between cropping and composing

rectangles .
__u32 flags Flags controlling the selection rectangle adjust-

ments, refer to selection flags .
struct v4l2_rect r The selection rectangle.
__u32 reserved[9] Reserved fields for future use. Drivers and appli-

cations must zero this array.

Note:

Unfortunately in the case of multiplanar buffer types (V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
and V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) this API was messed up with regards to how the
v4l2_selection type field should be filled in. Some drivers only accepted the _MPLANE buffer type
while other drivers only accepted a non-multiplanar buffer type (i.e. without the _MPLANE at the end).
Starting with kernel 4.13 both variations are allowed.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL Given buffer type type or the selection target target is not supported, or the flags argument

1.2. Part I - Video for Linux API 265

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

is not valid.
ERANGE It is not possible to adjust struct v4l2_rect r rectangle to satisfy all constraints given in the

flags argument.
ENODATA Selection is not supported for this input or output.
EBUSY It is not possible to apply change of the selection rectangle at the moment. Usually because

streaming is in progress.

ioctl VIDIOC_G_SLICED_VBI_CAP

Name

VIDIOC_G_SLICED_VBI_CAP - Query sliced VBI capabilities

Synopsis

int ioctl(int fd, VIDIOC_G_SLICED_VBI_CAP, struct v4l2_sliced_vbi_cap *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_sliced_vbi_cap.

Description

To find out which data services are supported by a sliced VBI capture or output device, applications
initialize the type field of a struct v4l2_sliced_vbi_cap, clear the reserved array and call the VID-
IOC_G_SLICED_VBI_CAP ioctl. The driver fills in the remaining fields or returns an EINVAL error code if the
sliced VBI API is unsupported or type is invalid.

Note:

The type field was added, and the ioctl changed from read-only to write-read, in Linux 2.6.19.

v4l2_sliced_vbi_cap

266 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.142: struct v4l2_sliced_vbi_cap

__u16 service_set
A set of all data services supported by the driver.

Equal to the union of all elements of the service_lines array.

__u16 service_lines[2][24]

Each element of this array contains a set of data
services the hardware can look for or insert into a particular
scan line. Data services are defined in Sliced VBI services .
Array indices map to ITU-R line numbers1 as follows:

Element 525 line systems 625 line systems
service_lines[0][1] 1 1
service_lines[0][23] 23 23
service_lines[1][1] 264 314
service_lines[1][23] 286 336

The number of VBI lines the hardware can capture or
output per frame, or the number of services it can identify on a
given line may be limited. For example on PAL line 16 the hardware
may be able to look for a VPS or Teletext signal, but not both at
the same time. Applications can learn about these limits using the
VIDIOC_S_FMT ioctl as described in
Sliced VBI Data Interface .

Drivers must set service_lines [0][0] and service_lines[1][0] to zero.

__u32 type
Type of the data stream, see v4l2_buf_type. Should be
V4L2_BUF_TYPE_SLICED_VBI_CAPTURE or
V4L2_BUF_TYPE_SLICED_VBI_OUTPUT.

__u32 reserved[3]
This array is reserved for future extensions.

Applications and drivers must set it to zero.

Table 1.143: Sliced VBI services
Symbol Value Reference Lines, usually Payload
V4L2_SLICED_TELETEXT_B
(Teletext System B)

0x0001 ETS 300 706 ,
ITU BT.653

PAL/SECAM line
7-22, 320-335
(second field
7-22)

Last 42 of the 45 byte Teletext packet, that is without clock run-in
and framing code, lsb first transmitted.

V4L2_SLICED_VPS 0x0400 ETS 300 231 PAL line 16 Byte number 3 to 15 according to Figure 9 of ETS 300 231, lsb
first transmitted.

V4L2_SLICED_CAPTION_525 0x1000 CEA 608-E NTSC line 21,
284 (second
field 21)

Two bytes in transmission order, including parity bit, lsb first trans-
mitted.

V4L2_SLICED_WSS_625 0x4000 EN 300 294 ,
ITU BT.1119

PAL/SECAM line
23 Byte 0 1

msb lsb msb lsb
Bit 7 6 5 4 3 2 1 0 x x 13 12 11 10 9

V4L2_SLICED_VBI_525 0x1000 Set of services applicable to 525 line systems.
V4L2_SLICED_VBI_625 0x4401 Set of services applicable to 625 line systems.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

1 See also Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line numbering .

1.2. Part I - Video for Linux API 267

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

EINVAL The value in the type field is wrong.

ioctl VIDIOC_G_STD, VIDIOC_S_STD

Name

VIDIOC_G_STD - VIDIOC_S_STD - Query or select the video standard of the current input

Synopsis

int ioctl(int fd, VIDIOC_G_STD, v4l2_std_id *argp)
int ioctl(int fd, VIDIOC_S_STD, const v4l2_std_id *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to v4l2_std_id.

Description

To query and select the current video standard applications use the VIDIOC_G_STD and VIDIOC_S_STD
ioctls which take a pointer to a v4l2_std_id type as argument. VIDIOC_G_STD can return a single flag or
a set of flags as in struct v4l2_standard field id. The flags must be unambiguous such that they appear
in only one enumerated struct v4l2_standard structure.
VIDIOC_S_STD accepts one or more flags, being a write-only ioctl it does not return the actual new

standard as VIDIOC_G_STD does. When no flags are given or the current input does not support the
requested standard the driver returns an EINVAL error code. When the standard set is ambiguous drivers
may return EINVAL or choose any of the requested standards. If the current input or output does not
support standard video timings (e.g. if ioctl VIDIOC_ENUMINPUT does not set the V4L2_IN_CAP_STD
flag), then ENODATA error code is returned.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The VIDIOC_S_STD parameter was unsuitable.
ENODATA Standard video timings are not supported for this input or output.

ioctl VIDIOC_G_TUNER, VIDIOC_S_TUNER

Name

VIDIOC_G_TUNER - VIDIOC_S_TUNER - Get or set tuner attributes

Synopsis

int ioctl(int fd, VIDIOC_G_TUNER, struct v4l2_tuner *argp)
int ioctl(int fd, VIDIOC_S_TUNER, const struct v4l2_tuner *argp)

268 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_tuner.

Description

To query the attributes of a tuner applications initialize the index field and zero out the reserved array
of a struct v4l2_tuner and call the VIDIOC_G_TUNER ioctl with a pointer to this structure. Drivers fill the
rest of the structure or return an EINVAL error code when the index is out of bounds. To enumerate all
tuners applications shall begin at index zero, incrementing by one until the driver returns EINVAL.
Tuners have two writable properties, the audio mode and the radio frequency. To change the audio mode,
applications initialize the index, audmode and reserved fields and call the VIDIOC_S_TUNER ioctl. This
will not change the current tuner, which is determined by the current video input. Drivers may choose a
different audio mode if the requested mode is invalid or unsupported. Since this is a write-only ioctl, it
does not return the actually selected audio mode.
SDR specific tuner types are V4L2_TUNER_SDR and V4L2_TUNER_RF. For SDR devices audmode field must

be initialized to zero. The term ‘tuner’ means SDR receiver in this context.
To change the radio frequency the VIDIOC_S_FREQUENCY ioctl is available.

v4l2_tuner

Table 1.144: struct v4l2_tuner

__u32 index Identifies the tuner, set by the application.

__u8 name[32]
Name of the tuner, a NUL-terminated ASCII string.

This information is intended for the user.

__u32 type Type of the tuner, see v4l2_tuner_type.

__u32 capability

Tuner capability flags, see Tuner and Modulator Capability Flags . Audio flags
indicate the ability to decode audio subprograms. They will not
change, for example with the current video standard.

When the structure refers to a radio tuner the
V4L2_TUNER_CAP_LANG1, V4L2_TUNER_CAP_LANG2 and
V4L2_TUNER_CAP_NORM flags can’t be used.

If multiple frequency bands are supported, then capability is
the union of all capability fields of each struct
v4l2_frequency_band.

__u32 rangelow

The lowest tunable frequency in units of 62.5 kHz, or
if the capability flag V4L2_TUNER_CAP_LOW is set, in units
of 62.5 Hz, or if the capability flag V4L2_TUNER_CAP_1HZ
is set, in units of 1 Hz. If multiple frequency bands are
supported, then rangelow is the lowest frequency of all the
frequency bands.

Continued on next page

1.2. Part I - Video for Linux API 269

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.144 – continued from previous page

__u32 rangehigh

The highest tunable frequency in units of 62.5 kHz,
or if the capability flag V4L2_TUNER_CAP_LOW is set, in
units of 62.5 Hz, or if the capability flag
V4L2_TUNER_CAP_1HZ is set, in units of 1 Hz. If multiple
frequency bands are supported, then rangehigh is the highest
frequency of all the frequency bands.

__u32 rxsubchans

Some tuners or audio decoders can determine the received audio
subprograms by analyzing audio carriers, pilot tones or other
indicators. To pass this information drivers set flags defined in
Tuner Audio Reception Flags in this field. For example:

V4L2_TUNER_SUB_MONO receiving mono audio
STEREO | SAP receiving stereo audio and a sec-

ondary audio program
MONO | STEREO receiving mono or stereo audio, the

hardware cannot distinguish
LANG1 | LANG2 receiving bilingual audio
MONO | STEREO | LANG1 | LANG2 receiving mono, stereo or bilingual

audio
When the V4L2_TUNER_CAP_STEREO, _LANG1, _LANG2 or
_SAP flag is cleared in the capability field, the
corresponding V4L2_TUNER_SUB_ flag must not be set here.

This field is valid only if this is the tuner of the current video
input, or when the structure refers to a radio tuner.

__u32 audmode

The selected audio mode, see Tuner Audio Modes for valid
values. The audio mode does not affect audio subprogram detection,
and like a User Controls it does not automatically
change unless the requested mode is invalid or unsupported. See
Tuner Audio Matrix for possible results when the selected and
received audio programs do not match.

Currently this is the only field of struct
struct v4l2_tuner applications can change.

__u32 signal
The signal strength if known.

Ranging from 0 to 65535. Higher values indicate a better signal.

__s32 afc

Automatic frequency control.

When the afc value is negative, the frequency is too
low, when positive too high.

__u32 reserved[4]
Reserved for future extensions.

Drivers and applications must set the array to zero.

v4l2_tuner_type

270 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.145: enum v4l2_tuner_type
V4L2_TUNER_RADIO 1 Tuner supports radio
V4L2_TUNER_ANALOG_TV 2 Tuner supports analog TV
V4L2_TUNER_SDR 4 Tuner controls the A/D and/or D/A block of a Soft-

ware Digital Radio (SDR)
V4L2_TUNER_RF 5 Tuner controls the RF part of a Software Digital Ra-

dio (SDR)

Table 1.146: Tuner and Modulator Capability Flags

V4L2_TUNER_CAP_LOW 0x0001 When set, tuning frequencies are expressed in
units of 62.5 Hz instead of 62.5 kHz.

V4L2_TUNER_CAP_NORM 0x0002 This is a multi-standard tuner; the video standard
can or must be switched. (B/G PAL tuners for ex-
ample are typically not considered multi-standard
because the video standard is automatically de-
termined from the frequency band.) The set of
supported video standards is available from the
struct v4l2_input pointing to this tuner, see the
description of ioctl ioctl VIDIOC_ENUMINPUT for
details. Only V4L2_TUNER_ANALOG_TV tuners can
have this capability.

V4L2_TUNER_CAP_HWSEEK_BOUNDED 0x0004 If set, then this tuner supports the hardware seek
functionality where the seek stops when it reaches
the end of the frequency range.

V4L2_TUNER_CAP_HWSEEK_WRAP 0x0008 If set, then this tuner supports the hardware seek
functionality where the seek wraps around when
it reaches the end of the frequency range.

V4L2_TUNER_CAP_STEREO 0x0010 Stereo audio reception is supported.
V4L2_TUNER_CAP_LANG1 0x0040 Reception of the primary language of a bilingual

audio program is supported. Bilingual audio is
a feature of two-channel systems, transmitting
the primary language monaural on the main au-
dio carrier and a secondary language monaural
on a second carrier. Only V4L2_TUNER_ANALOG_TV
tuners can have this capability.

V4L2_TUNER_CAP_LANG2 0x0020 Reception of the secondary language of a
bilingual audio program is supported. Only
V4L2_TUNER_ANALOG_TV tuners can have this ca-
pability.

Continued on next page

1.2. Part I - Video for Linux API 271

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.146 – continued from previous page
V4L2_TUNER_CAP_SAP 0x0020 Reception of a secondary audio program is sup-

ported. This is a feature of the BTSC system which
accompanies the NTSC video standard. Two audio
carriers are available for mono or stereo transmis-
sions of a primary language, and an independent
third carrier for a monaural secondary language.
Only V4L2_TUNER_ANALOG_TV tuners can have this
capability.
Note:

The V4L2_TUNER_CAP_LANG2 and
V4L2_TUNER_CAP_SAP flags are synonyms.
V4L2_TUNER_CAP_SAP applies when the tuner
supports the V4L2_STD_NTSC_M video stan-
dard.

V4L2_TUNER_CAP_RDS 0x0080 RDS capture is supported. This capability is only
valid for radio tuners.

V4L2_TUNER_CAP_RDS_BLOCK_IO 0x0100 The RDS data is passed as unparsed RDS blocks.
V4L2_TUNER_CAP_RDS_CONTROLS 0x0200 The RDS data is parsed by the hardware and set

via controls.
V4L2_TUNER_CAP_FREQ_BANDS 0x0400 The ioctl VIDIOC_ENUM_FREQ_BANDS ioctl can

be used to enumerate the available frequency
bands.

V4L2_TUNER_CAP_HWSEEK_PROG_LIM 0x0800 The range to search when using the hardware
seek functionality is programmable, see ioctl VID-
IOC_S_HW_FREQ_SEEK for details.

V4L2_TUNER_CAP_1HZ 0x1000 When set, tuning frequencies are expressed in
units of 1 Hz instead of 62.5 kHz.

Table 1.147: Tuner Audio Reception Flags
V4L2_TUNER_SUB_MONO 0x0001 The tuner receives a mono audio signal.
V4L2_TUNER_SUB_STEREO 0x0002 The tuner receives a stereo audio signal.
V4L2_TUNER_SUB_LANG1 0x0008 The tuner receives the primary language of

a bilingual audio signal. Drivers must clear
this flag when the current video standard is
V4L2_STD_NTSC_M.

V4L2_TUNER_SUB_LANG2 0x0004 The tuner receives the secondary language of
a bilingual audio signal (or a second audio pro-
gram).

V4L2_TUNER_SUB_SAP 0x0004 The tuner receives a Second Audio Program.
Note:

The V4L2_TUNER_SUB_LANG2 and
V4L2_TUNER_SUB_SAP flags are syn-
onyms. The V4L2_TUNER_SUB_SAP flag
applies when the current video standard
is V4L2_STD_NTSC_M.

V4L2_TUNER_SUB_RDS 0x0010 The tuner receives an RDS channel.

272 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.148: Tuner Audio Modes
V4L2_TUNER_MODE_MONO 0 Play mono audio. When the tuner receives a

stereo signal this a down-mix of the left and right
channel. When the tuner receives a bilingual
or SAP signal this mode selects the primary lan-
guage.

V4L2_TUNER_MODE_STEREO 1 Play stereo audio. When the tuner receives bilin-
gual audio it may play different languages on the
left and right channel or the primary language is
played on both channels.
Playing different languages in this mode is dep-
recated. New drivers should do this only in
MODE_LANG1_LANG2.
When the tuner receives no stereo signal or does
not support stereo reception the driver shall fall
back to MODE_MONO.

V4L2_TUNER_MODE_LANG1 3 Play the primary language, mono or stereo.
Only V4L2_TUNER_ANALOG_TV tuners support this
mode.

V4L2_TUNER_MODE_LANG2 2 Play the secondary language, mono. When
the tuner receives no bilingual audio or SAP,
or their reception is not supported the driver
shall fall back to mono or stereo mode. Only
V4L2_TUNER_ANALOG_TV tuners support this
mode.

V4L2_TUNER_MODE_SAP 2 Play the Second Audio Program. When the
tuner receives no bilingual audio or SAP, or
their reception is not supported the driver
shall fall back to mono or stereo mode. Only
V4L2_TUNER_ANALOG_TV tuners support this
mode.
Note:

The V4L2_TUNER_MODE_LANG2 and
V4L2_TUNER_MODE_SAP are synonyms.

V4L2_TUNER_MODE_LANG1_LANG2 4 Play the primary language on the left channel,
the secondary language on the right channel.
When the tuner receives no bilingual audio or
SAP, it shall fall back to MODE_LANG1 or MODE_MONO.
Only V4L2_TUNER_ANALOG_TV tuners support this
mode.

Table 1.149: Tuner Audio Matrix
Selected V4L2_TUNER_MODE_

Received
V4L2_TUNER_SUB_

MONO STEREO LANG1 LANG2 = SAP LANG1_LANG21

MONO Mono Mono/Mono Mono Mono Mono/Mono
MONO | SAP Mono Mono/Mono Mono SAP Mono/SAP (preferred)

or Mono/Mono
STEREO L+R L/R Stereo L/R (preferred)

or Mono L+R
Stereo L/R (preferred)
or Mono L+R

L/R (preferred) or
L+R/L+R

STEREO |
SAP

L+R L/R Stereo L/R (preferred)
or Mono L+R

SAP L+R/SAP (preferred) or
L/R or L+R/L+R

LANG1 |
LANG2

Language 1 Lang1/Lang2 (depre-
cated2) or Lang1/Lang1

Language 1 Language 2 Lang1/Lang2 (pre-
ferred) or Lang1/Lang1

1 This mode has been added in Linux 2.6.17 and may not be supported by older drivers.
2 Playback of both languages in MODE_STEREO is deprecated. In the future drivers should produce only the primary language in

1.2. Part I - Video for Linux API 273

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_tuner index is out of bounds.

ioctl VIDIOC_LOG_STATUS

Name

VIDIOC_LOG_STATUS - Log driver status information

Synopsis

int ioctl(int fd, VIDIOC_LOG_STATUS)

Arguments

fd File descriptor returned by open() .

Description

As the video/audio devices become more complicated it becomes harder to debug problems. When this
ioctl is called the driver will output the current device status to the kernel log. This is particular useful
when dealing with problems like no sound, no video and incorrectly tuned channels. Also many modern
devices autodetect video and audio standards and this ioctl will report what the device thinks what the
standard is. Mismatches may give an indication where the problem is.
This ioctl is optional and not all drivers support it. It was introduced in Linux 2.6.15.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl VIDIOC_OVERLAY

Name

VIDIOC_OVERLAY - Start or stop video overlay

Synopsis

int ioctl(int fd, VIDIOC_OVERLAY, const int *argp)
this mode. Applications should request MODE_LANG1_LANG2 to record both languages or a stereo signal.

274 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
argp Pointer to an integer.

Description

This ioctl is part of the video overlay I/O method. Applications call ioctl VIDIOC_OVERLAY to start or stop
the overlay. It takes a pointer to an integer which must be set to zero by the application to stop overlay,
to one to start.
Drivers do not support ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF or VIDIOC_STREAMOFF with
V4L2_BUF_TYPE_VIDEO_OVERLAY.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The overlay parameters have not been set up. See Video Overlay Interface for the necessary

steps.

ioctl VIDIOC_PREPARE_BUF

Name

VIDIOC_PREPARE_BUF - Prepare a buffer for I/O

Synopsis

int ioctl(int fd, VIDIOC_PREPARE_BUF, struct v4l2_buffer *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_buffer.

Description

Applications can optionally call the ioctl VIDIOC_PREPARE_BUF ioctl to pass ownership of the buffer to the
driver before actually enqueuing it, using the ioctl VIDIOC_QBUF, VIDIOC_DQBUF ioctl, and to prepare it
for future I/O. Such preparations may include cache invalidation or cleaning. Performing them in advance
saves time during the actual I/O. In case such cache operations are not required, the application can
use one of V4L2_BUF_FLAG_NO_CACHE_INVALIDATE and V4L2_BUF_FLAG_NO_CACHE_CLEAN flags to skip the
respective step.
The struct v4l2_buffer structure is specified in Buffers .

1.2. Part I - Video for Linux API 275

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EBUSY File I/O is in progress.
EINVAL The buffer type is not supported, or the index is out of bounds, or no buffers have been allocated

yet, or the userptr or length are invalid.

ioctl VIDIOC_QBUF, VIDIOC_DQBUF

Name

VIDIOC_QBUF - VIDIOC_DQBUF - Exchange a buffer with the driver

Synopsis

int ioctl(int fd, VIDIOC_QBUF, struct v4l2_buffer *argp)
int ioctl(int fd, VIDIOC_DQBUF, struct v4l2_buffer *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_buffer.

Description

Applications call the VIDIOC_QBUF ioctl to enqueue an empty (capturing) or filled (output) buffer in the
driver’s incoming queue. The semantics depend on the selected I/O method.
To enqueue a buffer applications set the type field of a struct v4l2_buffer to the same buffer type
as was previously used with struct v4l2_format type and struct v4l2_requestbuffers type. Appli-
cations must also set the index field. Valid index numbers range from zero to the number of buffers
allocated with ioctl VIDIOC_REQBUFS (struct v4l2_requestbuffers count) minus one. The contents
of the struct v4l2_buffer returned by a ioctl VIDIOC_QUERYBUF ioctl will do as well. When the buffer
is intended for output (type is V4L2_BUF_TYPE_VIDEO_OUTPUT, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE,
or V4L2_BUF_TYPE_VBI_OUTPUT) applications must also initialize the bytesused, field and timestamp
fields, see Buffers for details. Applications must also set flags to 0. The reserved2 and reserved fields
must be set to 0. When using the multi-planar API , the m.planes field must contain a userspace pointer
to a filled-in array of struct v4l2_plane and the length field must be set to the number of elements in
that array.
To enqueue a memory mapped buffer applications set the memory field to V4L2_MEMORY_MMAP. When
VIDIOC_QBUF is called with a pointer to this structure the driver sets the V4L2_BUF_FLAG_MAPPED and
V4L2_BUF_FLAG_QUEUED flags and clears the V4L2_BUF_FLAG_DONE flag in the flags field, or it returns an
EINVAL error code.
To enqueue a user pointer buffer applications set the memory field to V4L2_MEMORY_USERPTR, the
m.userptr field to the address of the buffer and length to its size. When the multi-planar API is used,
m.userptr and length members of the passed array of struct v4l2_plane have to be used instead. When
VIDIOC_QBUF is called with a pointer to this structure the driver sets the V4L2_BUF_FLAG_QUEUED flag and
clears the V4L2_BUF_FLAG_MAPPED and V4L2_BUF_FLAG_DONE flags in the flags field, or it returns an error
code. This ioctl locks the memory pages of the buffer in physical memory, they cannot be swapped out

276 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

to disk. Buffers remain locked until dequeued, until the VIDIOC_STREAMOFF or ioctl VIDIOC_REQBUFS
ioctl is called, or until the device is closed.
To enqueue a DMABUF buffer applications set the memory field to V4L2_MEMORY_DMABUF and the m.fd field
to a file descriptor associated with a DMABUF buffer. When the multi-planar API is used the m.fd fields of
the passed array of struct v4l2_plane have to be used instead. When VIDIOC_QBUF is called with a pointer
to this structure the driver sets the V4L2_BUF_FLAG_QUEUED flag and clears the V4L2_BUF_FLAG_MAPPED
and V4L2_BUF_FLAG_DONE flags in the flags field, or it returns an error code. This ioctl locks the buffer.
Locking a buffer means passing it to a driver for a hardware access (usually DMA). If an application ac-
cesses (reads/writes) a locked buffer then the result is undefined. Buffers remain locked until dequeued,
until the VIDIOC_STREAMOFF or ioctl VIDIOC_REQBUFS ioctl is called, or until the device is closed.
Applications call the VIDIOC_DQBUF ioctl to dequeue a filled (capturing) or displayed (output) buffer from
the driver’s outgoing queue. They just set the type, memory and reserved fields of a struct v4l2_buffer
as above, when VIDIOC_DQBUF is called with a pointer to this structure the driver fills the remaining fields
or returns an error code. The driver may also set V4L2_BUF_FLAG_ERROR in the flags field. It indicates
a non-critical (recoverable) streaming error. In such case the application may continue as normal, but
should be aware that data in the dequeued buffer might be corrupted. When using the multi-planar API,
the planes array must be passed in as well.
By default VIDIOC_DQBUF blocks when no buffer is in the outgoing queue. When the O_NONBLOCK flag was
given to the open() function, VIDIOC_DQBUF returns immediately with an EAGAIN error code when no
buffer is available.
The struct v4l2_buffer structure is specified in Buffers .

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EAGAIN Non-blocking I/O has been selected using O_NONBLOCK and no buffer was in the outgoing queue.
EINVAL The buffer type is not supported, or the index is out of bounds, or no buffers have been allocated

yet, or the userptr or length are invalid.
EIO VIDIOC_DQBUF failed due to an internal error. Can also indicate temporary problems like signal loss.

Note:

The driver might dequeue an (empty) buffer despite returning an error, or even stop capturing.
Reusing such buffer may be unsafe though and its details (e.g. index) may not be returned either.
It is recommended that drivers indicate recoverable errors by setting the V4L2_BUF_FLAG_ERROR
and returning 0 instead. In that case the application should be able to safely reuse the buffer and
continue streaming.

EPIPE VIDIOC_DQBUF returns this on an empty capture queue for mem2mem codecs if a buffer with the
V4L2_BUF_FLAG_LAST was already dequeued and no new buffers are expected to become available.

ioctl VIDIOC_QUERYBUF

Name

VIDIOC_QUERYBUF - Query the status of a buffer

Synopsis

int ioctl(int fd, VIDIOC_QUERYBUF, struct v4l2_buffer *argp)

1.2. Part I - Video for Linux API 277

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_buffer.

Description

This ioctl is part of the streaming I/O method. It can be used to query the status of a buffer at any time
after buffers have been allocated with the ioctl VIDIOC_REQBUFS ioctl.
Applications set the type field of a struct v4l2_buffer to the same buffer type as was previously used
with struct v4l2_format type and struct v4l2_requestbuffers type, and the index field. Valid in-
dex numbers range from zero to the number of buffers allocated with ioctl VIDIOC_REQBUFS (struct
v4l2_requestbuffers count) minus one. The reserved and reserved2 fields must be set to 0. When
using the multi-planar API , the m.planes field must contain a userspace pointer to an array of struct
v4l2_plane and the length field has to be set to the number of elements in that array. After calling
ioctl VIDIOC_QUERYBUF with a pointer to this structure drivers return an error code or fill the rest of the
structure.
In the flags field the V4L2_BUF_FLAG_MAPPED, V4L2_BUF_FLAG_PREPARED, V4L2_BUF_FLAG_QUEUED and
V4L2_BUF_FLAG_DONE flags will be valid. The memory field will be set to the current I/O method. For the
single-planar API, the m.offset contains the offset of the buffer from the start of the device memory,
the length field its size. For the multi-planar API, fields m.mem_offset and length in the m.planes array
elements will be used instead and the length field of struct v4l2_buffer is set to the number of filled-in
array elements. The driver may or may not set the remaining fields and flags, they are meaningless in
this context.
The struct v4l2_buffer structure is specified in Buffers .

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The buffer type is not supported, or the index is out of bounds.

ioctl VIDIOC_QUERYCAP

Name

VIDIOC_QUERYCAP - Query device capabilities

Synopsis

int ioctl(int fd, VIDIOC_QUERYCAP, struct v4l2_capability *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_capability.

278 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

All V4L2 devices support the VIDIOC_QUERYCAP ioctl. It is used to identify kernel devices compatible with
this specification and to obtain information about driver and hardware capabilities. The ioctl takes a
pointer to a struct v4l2_capability which is filled by the driver. When the driver is not compatible with
this specification the ioctl returns an EINVAL error code.
v4l2_capability

1.2. Part I - Video for Linux API 279

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.150: struct v4l2_capability
__u8 driver[16] Name of the driver, a unique NUL-terminated ASCII string. For example:

“bttv”. Driver specific applications can use this information to verify the
driver identity. It is also useful to work around known bugs, or to identify
drivers in error reports.
Storing strings in fixed sized arrays is bad practice but unavoidable here.
Drivers and applications should take precautions to never read or write
beyond the end of the array and to make sure the strings are properly
NUL-terminated.

__u8 card[32] Name of the device, a NUL-terminated UTF-8 string. For example: “Yoyo-
dyne TV/FM”. One driver may support different brands or models of video
hardware. This information is intended for users, for example in a menu
of available devices. Since multiple TV cards of the same brand may be
installed which are supported by the same driver, this name should be
combined with the character device file name (e. g. /dev/video2) or the
bus_info string to avoid ambiguities.

__u8 bus_info[32] Location of the device in the system, a NUL-terminated ASCII string. For ex-
ample: “PCI:0000:05:06.0”. This information is intended for users, to dis-
tinguish multiple identical devices. If no such information is available the
field must simply count the devices controlled by the driver (“platform:vivi-
000”). The bus_info must start with “PCI:” for PCI boards, “PCIe:” for PCI
Express boards, “usb-” for USB devices, “I2C:” for i2c devices, “ISA:” for
ISA devices, “parport” for parallel port devices and “platform:” for platform
devices.

__u32 version Version number of the driver.
Starting with kernel 3.1, the version reported is provided by the V4L2 sub-
system following the kernel numbering scheme. However, it may not al-
ways return the same version as the kernel if, for example, a stable or
distribution-modified kernel uses the V4L2 stack from a newer kernel.
The version number is formatted using the KERNEL_VERSION() macro. For
example if the media stack corresponds to the V4L2 version shipped with
Kernel 4.14, it would be equivalent to:

#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))

__u32 version = KERNEL_VERSION(4, 14, 0);

printf ("Version: %u.%u.%u\\n",

(version >> 16) & 0xFF, (version >> 8) & 0xFF, version & 0xFF);

__u32 capabilities Available capabilities of the physical device as a whole, see Device Ca-
pabilities Flags . The same physical device can export multiple devices in
/dev (e.g. /dev/videoX, /dev/vbiY and /dev/radioZ). The capabilities field
should contain a union of all capabilities available around the several V4L2
devices exported to userspace. For all those devices the capabilities
field returns the same set of capabilities. This allows applications to open
just one of the devices (typically the video device) and discover whether
video, vbi and/or radio are also supported.

__u32 device_caps Device capabilities of the opened device, see Device Capabilities Flags .
Should contain the available capabilities of that specific device node. So,
for example, device_caps of a radio device will only contain radio related
capabilities and no video or vbi capabilities. This field is only set if the
capabilities field contains the V4L2_CAP_DEVICE_CAPS capability. Only
the capabilities field can have the V4L2_CAP_DEVICE_CAPS capability,
device_caps will never set V4L2_CAP_DEVICE_CAPS.

__u32 reserved[3] Reserved for future extensions. Drivers must set this array to zero.

280 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.151: Device Capabilities Flags

V4L2_CAP_VIDEO_CAPTURE 0x00000001 The device supports the single-planar API through
the Video Capture interface.

V4L2_CAP_VIDEO_CAPTURE_MPLANE 0x00001000 The device supports the multi-planar API through
the Video Capture interface.

V4L2_CAP_VIDEO_OUTPUT 0x00000002 The device supports the single-planar API through
the Video Output interface.

V4L2_CAP_VIDEO_OUTPUT_MPLANE 0x00002000 The device supports the multi-planar API through
the Video Output interface.

V4L2_CAP_VIDEO_M2M 0x00004000 The device supports the single-planar API through
the Video Memory-To-Memory interface.

V4L2_CAP_VIDEO_M2M_MPLANE 0x00008000 The device supports the multi-planar API through
the Video Memory-To-Memory interface.

V4L2_CAP_VIDEO_OVERLAY 0x00000004 The device supports the Video Overlay interface.
A video overlay device typically stores captured
images directly in the video memory of a graphics
card, with hardware clipping and scaling.

V4L2_CAP_VBI_CAPTURE 0x00000010 The device supports the Raw VBI Capture inter-
face, providing Teletext and Closed Caption data.

V4L2_CAP_VBI_OUTPUT 0x00000020 The device supports the Raw VBI Output inter-
face.

V4L2_CAP_SLICED_VBI_CAPTURE 0x00000040 The device supports the Sliced VBI Capture in-
terface.

V4L2_CAP_SLICED_VBI_OUTPUT 0x00000080 The device supports the Sliced VBI Output inter-
face.

V4L2_CAP_RDS_CAPTURE 0x00000100 The device supports the RDS capture interface.
V4L2_CAP_VIDEO_OUTPUT_OVERLAY 0x00000200 The device supports the Video Output Overlay

(OSD) interface. Unlike the Video Overlay inter-
face, this is a secondary function of video output
devices and overlays an image onto an outgoing
video signal. When the driver sets this flag, it
must clear the V4L2_CAP_VIDEO_OVERLAY flag and
vice versa. 1

V4L2_CAP_HW_FREQ_SEEK 0x00000400 The device supports the ioctl VID-
IOC_S_HW_FREQ_SEEK ioctl for hardware
frequency seeking.

V4L2_CAP_RDS_OUTPUT 0x00000800 The device supports the RDS output interface.
V4L2_CAP_TUNER 0x00010000 The device has some sort of tuner to receive RF-

modulated video signals. For more information
about tuner programming see Tuners and Mod-
ulators .

V4L2_CAP_AUDIO 0x00020000 The device has audio inputs or outputs. It may or
may not support audio recording or playback, in
PCM or compressed formats. PCM audio support
must be implemented as ALSA or OSS interface.
For more information on audio inputs and outputs
see Audio Inputs and Outputs .

V4L2_CAP_RADIO 0x00040000 This is a radio receiver.
V4L2_CAP_MODULATOR 0x00080000 The device has some sort of modulator to emit

RF-modulated video/audio signals. For more infor-
mation about modulator programming see Tuners
and Modulators .

V4L2_CAP_SDR_CAPTURE 0x00100000 The device supports the SDR Capture interface.
V4L2_CAP_EXT_PIX_FORMAT 0x00200000 The device supports the struct v4l2_pix_format

extended fields.
Continued on next page

1.2. Part I - Video for Linux API 281

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.151 – continued from previous page
V4L2_CAP_SDR_OUTPUT 0x00400000 The device supports the SDR Output interface.
V4L2_CAP_META_CAPTURE 0x00800000 The device supports the Metadata Interface cap-

ture interface.
V4L2_CAP_READWRITE 0x01000000 The device supports the read() and/or write()

I/O methods.
V4L2_CAP_ASYNCIO 0x02000000 The device supports the asynchronous I/O meth-

ods.
V4L2_CAP_STREAMING 0x04000000 The device supports the streaming I/O method.
V4L2_CAP_TOUCH 0x10000000 This is a touch device.
V4L2_CAP_DEVICE_CAPS 0x80000000 The driver fills the device_caps field. This capa-

bility can only appear in the capabilities field
and never in the device_caps field.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU

Name

VIDIOC_QUERYCTRL - VIDIOC_QUERY_EXT_CTRL - VIDIOC_QUERYMENU - Enumerate controls and menu
control items

Synopsis

int ioctl(int fd, int VIDIOC_QUERYCTRL, struct v4l2_queryctrl *argp)
int ioctl(int fd, VIDIOC_QUERY_EXT_CTRL, struct v4l2_query_ext_ctrl *argp)
int ioctl(int fd, VIDIOC_QUERYMENU, struct v4l2_querymenu *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_queryctl, v4l2_query_ext_ctrl or :c:type‘v4l2_querymenu‘ (depending on

the ioctl).

Description

To query the attributes of a control applications set the id field of a struct v4l2_queryctrl and call the
VIDIOC_QUERYCTRL ioctl with a pointer to this structure. The driver fills the rest of the structure or returns
an EINVAL error code when the id is invalid.
It is possible to enumerate controls by calling VIDIOC_QUERYCTRL with successive id values starting from
V4L2_CID_BASE up to and exclusive V4L2_CID_LASTP1. Drivers may return EINVAL if a control in this
range is not supported. Further applications can enumerate private controls, which are not defined in this
specification, by starting at V4L2_CID_PRIVATE_BASE and incrementing id until the driver returns EINVAL.

1 The struct v4l2_framebuffer lacks an enum v4l2_buf_type field, therefore the type of overlay is implied by the driver capa-
bilities.

282 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

In both cases, when the driver sets the V4L2_CTRL_FLAG_DISABLED flag in the flags field this control is
permanently disabled and should be ignored by the application. 1

When the application ORs id with V4L2_CTRL_FLAG_NEXT_CTRL the driver returns the next supported non-
compound control, or EINVAL if there is none. In addition, the V4L2_CTRL_FLAG_NEXT_COMPOUND flag can
be specified to enumerate all compound controls (i.e. controls with type ≥ V4L2_CTRL_COMPOUND_TYPES
and/or array control, in other words controls that contain more than one value). Specify both
V4L2_CTRL_FLAG_NEXT_CTRL and V4L2_CTRL_FLAG_NEXT_COMPOUND in order to enumerate all controls,
compound or not. Drivers which do not support these flags yet always return EINVAL.
The VIDIOC_QUERY_EXT_CTRL ioctl was introduced in order to better support controls that can use com-
pound types, and to expose additional control information that cannot be returned in struct v4l2_queryctrl
since that structure is full.
VIDIOC_QUERY_EXT_CTRL is used in the same way as VIDIOC_QUERYCTRL, except that the reserved array
must be zeroed as well.
Additional information is required for menu controls: the names of the menu items. To query them appli-
cations set the id and index fields of struct v4l2_querymenu and call the VIDIOC_QUERYMENU ioctl with a
pointer to this structure. The driver fills the rest of the structure or returns an EINVAL error code when the
id or index is invalid. Menu items are enumerated by calling VIDIOC_QUERYMENU with successive index
values from struct v4l2_queryctrl minimum to maximum, inclusive.

Note:

It is possible for VIDIOC_QUERYMENU to return an EINVAL error code for some indices between minimum
and maximum. In that case that particular menu item is not supported by this driver. Also note that the
minimum value is not necessarily 0.

See also the examples in User Controls .

Table 1.152: struct v4l2_queryctrl

__u32 id Identifies the control, set by the application. See Control IDs for pre-
defined IDs. When the ID is ORed with V4L2_CTRL_FLAG_NEXT_CTRL the
driver clears the flag and returns the first control with a higher ID. Drivers
which do not support this flag yet always return an EINVAL error code.

__u32 type Type of control, see v4l2_ctrl_type.
__u8 name[32] Name of the control, a NUL-terminated ASCII string. This information is

intended for the user.
__s32 minimum Minimum value, inclusive. This field gives a lower bound for the control.

See enum v4l2_ctrl_type how the minimum value is to be used for
each possible control type. Note that this a signed 32-bit value.

__s32 maximum Maximum value, inclusive. This field gives an upper bound for the con-
trol. See enum v4l2_ctrl_type how the maximum value is to be used
for each possible control type. Note that this a signed 32-bit value.

Continued on next page

1 V4L2_CTRL_FLAG_DISABLED was intended for two purposes: Drivers can skip predefined controls not supported by the hardware
(although returning EINVAL would do as well), or disable predefined and private controls after hardware detection without the trouble
of reordering control arrays and indices (EINVAL cannot be used to skip private controls because it would prematurely end the
enumeration).

1.2. Part I - Video for Linux API 283

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.152 – continued from previous page
__s32 step This field gives a step size for the control. See enum v4l2_ctrl_type

how the step value is to be used for each possible control type. Note that
this an unsigned 32-bit value.
Generally drivers should not scale hardware control values. It may be
necessary for example when the name or id imply a particular unit and the
hardware actually accepts only multiples of said unit. If so, drivers must
take care values are properly rounded when scaling, such that errors will
not accumulate on repeated read-write cycles.
This field gives the smallest change of an integer control actually affect-
ing hardware. Often the information is needed when the user can change
controls by keyboard or GUI buttons, rather than a slider. When for ex-
ample a hardware register accepts values 0-511 and the driver reports
0-65535, step should be 128.
Note that although signed, the step value is supposed to be always pos-
itive.

__s32 default_value The default value of a V4L2_CTRL_TYPE_INTEGER, _BOOLEAN, _BITMASK,
_MENU or _INTEGER_MENU control. Not valid for other types of controls.
Note:

Drivers reset controls to their default value only when the driver is
first loaded, never afterwards.

__u32 flags Control flags, see Control Flags .
__u32 reserved[2] Reserved for future extensions. Drivers must set the array to zero.

Table 1.153: struct v4l2_query_ext_ctrl

__u32 id Identifies the control, set by the application. See Con-
trol IDs for predefined IDs. When the ID is ORed with
V4L2_CTRL_FLAG_NEXT_CTRL the driver clears the flag and re-
turns the first non-compound control with a higher ID. When
the ID is ORed with V4L2_CTRL_FLAG_NEXT_COMPOUND the driver
clears the flag and returns the first compound control with a
higher ID. Set both to get the first control (compound or not) with
a higher ID.

__u32 type Type of control, see v4l2_ctrl_type.
char name[32] Name of the control, a NUL-terminated ASCII string. This infor-

mation is intended for the user.
__s64 minimum Minimum value, inclusive. This field gives a lower bound for the

control. See enum v4l2_ctrl_type how the minimum value is
to be used for each possible control type. Note that this a signed
64-bit value.

__s64 maximum Maximum value, inclusive. This field gives an upper bound for
the control. See enum v4l2_ctrl_type how the maximum value
is to be used for each possible control type. Note that this a
signed 64-bit value.

Continued on next page

284 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.153 – continued from previous page
__u64 step This field gives a step size for the control. See enum

v4l2_ctrl_type how the step value is to be used for each pos-
sible control type. Note that this an unsigned 64-bit value.
Generally drivers should not scale hardware control values. It
may be necessary for example when the name or id imply a
particular unit and the hardware actually accepts only multiples
of said unit. If so, drivers must take care values are properly
rounded when scaling, such that errors will not accumulate on
repeated read-write cycles.
This field gives the smallest change of an integer control actually
affecting hardware. Often the information is needed when the
user can change controls by keyboard or GUI buttons, rather than
a slider. When for example a hardware register accepts values
0-511 and the driver reports 0-65535, step should be 128.

__s64 default_value The default value of a V4L2_CTRL_TYPE_INTEGER, _INTEGER64,
_BOOLEAN, _BITMASK, _MENU, _INTEGER_MENU, _U8 or _U16 con-
trol. Not valid for other types of controls.
Note:

Drivers reset controls to their default value only when the
driver is first loaded, never afterwards.

__u32 flags Control flags, see Control Flags .
__u32 elem_size The size in bytes of a single element of the array. Given a char

pointer p to a 3-dimensional array you can find the position of
cell (z,y,x) as follows: p + ((z * dims[1] + y) * dims[0]
+ x) * elem_size. elem_size is always valid, also when the
control isn’t an array. For string controls elem_size is equal to
maximum + 1.

__u32 elems The number of elements in the N-dimensional array. If this control
is not an array, then elems is 1. The elems field can never be 0.

__u32 nr_of_dims The number of dimension in the N-dimensional array. If this con-
trol is not an array, then this field is 0.

__u32 dims[V4L2_CTRL_MAX_DIMS] The size of each dimension. The first nr_of_dims elements of
this array must be non-zero, all remaining elements must be zero.

__u32 reserved[32] Reserved for future extensions. Applications and drivers must
set the array to zero.

Table 1.154: struct v4l2_querymenu
__u32 id Identifies the control, set by the application from the respective struct

v4l2_queryctrl id.
__u32 index Index of the menu item, starting at zero, set by the application.
union

__u8 name[32] Name of the menu item, a NUL-terminated ASCII string. This information
is intended for the user. This field is valid for V4L2_CTRL_TYPE_MENU type
controls.

__s64 value Value of the integer menu item. This field is valid for
V4L2_CTRL_TYPE_INTEGER_MENU type controls.

__u32 reserved Reserved for future extensions. Drivers must set the array to zero.
v4l2_ctrl_type

1.2. Part I - Video for Linux API 285

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.155: enum v4l2_ctrl_type

Type minimum step maximumDescription
V4L2_CTRL_TYPE_INTEGER any any any An integer-valued control ranging from

minimum to maximum inclusive. The
step value indicates the increment be-
tween values.

V4L2_CTRL_TYPE_BOOLEAN 0 1 1 A boolean-valued control. Zero corre-
sponds to “disabled”, and one means
“enabled”.

V4L2_CTRL_TYPE_MENU ≥ 0 1 N-1 The control has a menu of N choices.
The names of the menu items
can be enumerated with the VID-
IOC_QUERYMENU ioctl.

V4L2_CTRL_TYPE_INTEGER_MENU ≥ 0 1 N-1 The control has a menu of N choices.
The values of the menu items
can be enumerated with the VID-
IOC_QUERYMENU ioctl. This is similar
to V4L2_CTRL_TYPE_MENU except that
instead of strings, the menu items are
signed 64-bit integers.

V4L2_CTRL_TYPE_BITMASK 0 n/a any A bitmask field. The maximum value is
the set of bits that can be used, all other
bits are to be 0. The maximum value is
interpreted as a __u32, allowing the use
of bit 31 in the bitmask.

V4L2_CTRL_TYPE_BUTTON 0 0 0 A control which performs an action
when set. Drivers must ignore the
value passed with VIDIOC_S_CTRL and
return an EINVAL error code on a VID-
IOC_G_CTRL attempt.

V4L2_CTRL_TYPE_INTEGER64 any any any A 64-bit integer valued control. Mini-
mum, maximum and step size cannot
be queried using VIDIOC_QUERYCTRL.
Only VIDIOC_QUERY_EXT_CTRL can re-
trieve the 64-bit min/max/step values,
they should be interpreted as n/a when
using VIDIOC_QUERYCTRL.

V4L2_CTRL_TYPE_STRING ≥ 0 ≥ 1 ≥ 0 The minimum and maximum string
lengths. The step size means that
the string must be (minimum + N *
step) characters long for N ≥ 0. These
lengths do not include the terminat-
ing zero, so in order to pass a string
of length 8 to VIDIOC_S_EXT_CTRLS

you need to set the size field of
struct v4l2_ext_control to 9. For
VIDIOC_G_EXT_CTRLS you can set the
size field to maximum + 1. Which char-
acter encoding is used will depend on
the string control itself and should be
part of the control documentation.

Continued on next page

286 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.155 – continued from previous page
Type minimum step maximumDescription
V4L2_CTRL_TYPE_CTRL_CLASS n/a n/a n/a This is not a control. When VID-

IOC_QUERYCTRL is called with a control
ID equal to a control class code (see
Control classes) + 1, the ioctl returns
the name of the control class and this
control type. Older drivers which do not
support this feature return an EINVAL
error code.

V4L2_CTRL_TYPE_U8 any any any An unsigned 8-bit valued control rang-
ing from minimum to maximum inclu-
sive. The step value indicates the in-
crement between values.

V4L2_CTRL_TYPE_U16 any any any An unsigned 16-bit valued control rang-
ing from minimum to maximum inclu-
sive. The step value indicates the in-
crement between values.

V4L2_CTRL_TYPE_U32 any any any An unsigned 32-bit valued control rang-
ing from minimum to maximum inclu-
sive. The step value indicates the in-
crement between values.

Table 1.156: Control Flags

V4L2_CTRL_FLAG_DISABLED 0x0001 This control is permanently disabled and should
be ignored by the application. Any attempt to
change the control will result in an EINVAL error
code.

V4L2_CTRL_FLAG_GRABBED 0x0002 This control is temporarily unchangeable, for ex-
ample because another application took over con-
trol of the respective resource. Such controls may
be displayed specially in a user interface. At-
tempts to change the control may result in an
EBUSY error code.

V4L2_CTRL_FLAG_READ_ONLY 0x0004 This control is permanently readable only. Any at-
tempt to change the control will result in an EIN-
VAL error code.

V4L2_CTRL_FLAG_UPDATE 0x0008 A hint that changing this control may affect the
value of other controls within the same control
class. Applications should update their user in-
terface accordingly.

V4L2_CTRL_FLAG_INACTIVE 0x0010 This control is not applicable to the current config-
uration and should be displayed accordingly in a
user interface. For example the flag may be set on
a MPEG audio level 2 bitrate control when MPEG
audio encoding level 1 was selected with another
control.

V4L2_CTRL_FLAG_SLIDER 0x0020 A hint that this control is best represented as a
slider-like element in a user interface.

Continued on next page

1.2. Part I - Video for Linux API 287

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.156 – continued from previous page
V4L2_CTRL_FLAG_WRITE_ONLY 0x0040 This control is permanently writable only. Any at-

tempt to read the control will result in an EACCES
error code error code. This flag is typically present
for relative controls or action controls where writ-
ing a value will cause the device to carry out a
given action (e. g. motor control) but no mean-
ingful value can be returned.

V4L2_CTRL_FLAG_VOLATILE 0x0080 This control is volatile, which means that the value
of the control changes continuously. A typical ex-
ample would be the current gain value if the de-
vice is in auto-gain mode. In such a case the hard-
ware calculates the gain value based on the light-
ing conditions which can change over time.
Note:

Setting a new value for a volatile
control will be ignored unless
V4L2_CTRL_FLAG_EXECUTE_ON_WRITE
is also set. Setting a new value for

a volatile control will never trigger a
V4L2_EVENT_CTRL_CH_VALUE event.

V4L2_CTRL_FLAG_HAS_PAYLOAD 0x0100 This control has a pointer type, so its value has
to be accessed using one of the pointer fields of
struct v4l2_ext_control. This flag is set for con-
trols that are an array, string, or have a compound
type. In all cases you have to set a pointer to
memory containing the payload of the control.

V4L2_CTRL_FLAG_EXECUTE_ON_WRITE 0x0200 The value provided to the control will be prop-
agated to the driver even if it remains constant.
This is required when the control represents an
action on the hardware. For example: clearing an
error flag or triggering the flash. All the controls of
the type V4L2_CTRL_TYPE_BUTTON have this flag
set.

V4L2_CTRL_FLAG_MODIFY_LAYOUT 0x0400 Changing this control value may modify the lay-
out of the buffer (for video devices) or the media
bus format (for sub-devices).
A typical example would be the V4L2_CID_ROTATE
control.
Note that typically controls with this flag will
also set the V4L2_CTRL_FLAG_GRABBED flag when
buffers are allocated or streaming is in progress
since most drivers do not support changing the
format in that case.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_queryctrl id is invalid. The struct v4l2_querymenu id is invalid or index is out

of range (less than minimum or greater than maximum) or this particular menu item is not supported
by the driver.

EACCES An attempt was made to read a write-only control.

288 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ioctl VIDIOC_QUERY_DV_TIMINGS

Name

VIDIOC_QUERY_DV_TIMINGS - VIDIOC_SUBDEV_QUERY_DV_TIMINGS - Sense the DV preset received by the
current input

Synopsis

int ioctl(int fd, VIDIOC_QUERY_DV_TIMINGS, struct v4l2_dv_timings *argp)
int ioctl(int fd, VIDIOC_SUBDEV_QUERY_DV_TIMINGS, struct v4l2_dv_timings *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_dv_timings.

Description

The hardware may be able to detect the current DV timings automatically, similar to sensing the video
standard. To do so, applications call ioctl VIDIOC_QUERY_DV_TIMINGS with a pointer to a struct
v4l2_dv_timings. Once the hardware detects the timings, it will fill in the timings structure.

Note:

Drivers shall not switch timings automatically if new timings are detected. Instead, drivers should
send the V4L2_EVENT_SOURCE_CHANGE event (if they support this) and expect that userspace will take
action by calling ioctl VIDIOC_QUERY_DV_TIMINGS . The reason is that new timings usually mean
different buffer sizes as well, and you cannot change buffer sizes on the fly. In general, applications
that receive the Source Change event will have to call ioctl VIDIOC_QUERY_DV_TIMINGS , and if the
detected timings are valid they will have to stop streaming, set the new timings, allocate new buffers
and start streaming again.

If the timings could not be detected because there was no signal, then ENOLINK is returned. If a signal was
detected, but it was unstable and the receiver could not lock to the signal, then ENOLCK is returned. If the
receiver could lock to the signal, but the format is unsupported (e.g. because the pixelclock is out of range
of the hardware capabilities), then the driver fills in whatever timings it could find and returns ERANGE. In
that case the application can call ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP to
compare the found timings with the hardware’s capabilities in order to give more precise feedback to the
user.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
ENODATA Digital video timings are not supported for this input or output.
ENOLINK No timings could be detected because no signal was found.
ENOLCK The signal was unstable and the hardware could not lock on to it.
ERANGE Timings were found, but they are out of range of the hardware capabilities.

1.2. Part I - Video for Linux API 289

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ioctl VIDIOC_QUERYSTD

Name

VIDIOC_QUERYSTD - Sense the video standard received by the current input

Synopsis

int ioctl(int fd, VIDIOC_QUERYSTD, v4l2_std_id *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to v4l2_std_id.

Description

The hardware may be able to detect the current video standard automatically. To do so, applications call
ioctl VIDIOC_QUERYSTD with a pointer to a v4l2_std_id type. The driver stores here a set of candidates,
this can be a single flag or a set of supported standards if for example the hardware can only distinguish
between 50 and 60 Hz systems. If no signal was detected, then the driver will return V4L2_STD_UNKNOWN.
When detection is not possible or fails, the set must contain all standards supported by the current video
input or output.

Note:

Drivers shall not switch the video standard automatically if a new video standard is detected. In-
stead, drivers should send the V4L2_EVENT_SOURCE_CHANGE event (if they support this) and expect
that userspace will take action by calling ioctl VIDIOC_QUERYSTD . The reason is that a new video
standard can mean different buffer sizes as well, and you cannot change buffer sizes on the fly. In
general, applications that receive the Source Change event will have to call ioctl VIDIOC_QUERYSTD
, and if the detected video standard is valid they will have to stop streaming, set the new standard,
allocate new buffers and start streaming again.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
ENODATA Standard video timings are not supported for this input or output.

ioctl VIDIOC_REQBUFS

Name

VIDIOC_REQBUFS - Initiate Memory Mapping, User Pointer I/O or DMA buffer I/O

Synopsis

int ioctl(int fd, VIDIOC_REQBUFS, struct v4l2_requestbuffers *argp)

290 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_requestbuffers.

Description

This ioctl is used to initiate memory mapped , user pointer or DMABUF based I/O. Memory mapped
buffers are located in device memory and must be allocated with this ioctl before they can be mapped
into the application’s address space. User buffers are allocated by applications themselves, and this ioctl
is merely used to switch the driver into user pointer I/O mode and to setup some internal structures. Sim-
ilarly, DMABUF buffers are allocated by applications through a device driver, and this ioctl only configures
the driver into DMABUF I/O mode without performing any direct allocation.
To allocate device buffers applications initialize all fields of the struct v4l2_requestbuffers structure.
They set the type field to the respective stream or buffer type, the count field to the desired number of
buffers, memory must be set to the requested I/O method and the reserved array must be zeroed. When
the ioctl is called with a pointer to this structure the driver will attempt to allocate the requested number
of buffers and it stores the actual number allocated in the count field. It can be smaller than the number
requested, even zero, when the driver runs out of free memory. A larger number is also possible when the
driver requires more buffers to function correctly. For example video output requires at least two buffers,
one displayed and one filled by the application.
When the I/O method is not supported the ioctl returns an EINVAL error code.
Applications can call ioctl VIDIOC_REQBUFS again to change the number of buffers, however this cannot
succeed when any buffers are still mapped. A count value of zero frees all buffers, after aborting or
finishing any DMA in progress, an implicit VIDIOC_STREAMOFF .
v4l2_requestbuffers

Table 1.157: struct v4l2_requestbuffers
__u32 count The number of buffers requested or granted.
__u32 type Type of the stream or buffers, this is the same

as the struct v4l2_format type field. See
v4l2_buf_type for valid values.

__u32 memory Applications set this field to V4L2_MEMORY_MMAP,
V4L2_MEMORY_DMABUF or V4L2_MEMORY_USERPTR.
See v4l2_memory.

__u32 reserved[2] A place holder for future extensions. Drivers and
applications must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The buffer type (type field) or the requested I/O method (memory) is not supported.

ioctl VIDIOC_S_HW_FREQ_SEEK

Name

VIDIOC_S_HW_FREQ_SEEK - Perform a hardware frequency seek

1.2. Part I - Video for Linux API 291

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, VIDIOC_S_HW_FREQ_SEEK, struct v4l2_hw_freq_seek *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_hw_freq_seek.

Description

Start a hardware frequency seek from the current frequency. To do this applications initialize the tuner,
type, seek_upward, wrap_around, spacing, rangelow and rangehigh fields, and zero out the reserved
array of a struct v4l2_hw_freq_seek and call the VIDIOC_S_HW_FREQ_SEEK ioctl with a pointer to this
structure.
The rangelow and rangehigh fields can be set to a non-zero value to tell the driver to search a specific
band. If the struct v4l2_tuner capability field has the V4L2_TUNER_CAP_HWSEEK_PROG_LIM flag set,
these values must fall within one of the bands returned by ioctl VIDIOC_ENUM_FREQ_BANDS . If the
V4L2_TUNER_CAP_HWSEEK_PROG_LIM flag is not set, then these values must exactly match those of one of
the bands returned by ioctl VIDIOC_ENUM_FREQ_BANDS . If the current frequency of the tuner does not
fall within the selected band it will be clamped to fit in the band before the seek is started.
If an error is returned, then the original frequency will be restored.
This ioctl is supported if the V4L2_CAP_HW_FREQ_SEEK capability is set.
If this ioctl is called from a non-blocking filehandle, then EAGAIN error code is returned and no seek takes
place.
v4l2_hw_freq_seek

292 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.158: struct v4l2_hw_freq_seek
__u32 tuner The tuner index number. This is the same value

as in the struct v4l2_input tuner field and the
struct v4l2_tuner index field.

__u32 type The tuner type. This is the same value as
in the struct v4l2_tuner type field. See
v4l2_tuner_type

__u32 seek_upward If non-zero, seek upward from the current fre-
quency, else seek downward.

__u32 wrap_around If non-zero, wrap around when at the end of the
frequency range, else stop seeking. The struct
v4l2_tuner capability field will tell you what
the hardware supports.

__u32 spacing If non-zero, defines the hardware seek resolution
in Hz. The driver selects the nearest value that
is supported by the device. If spacing is zero a
reasonable default value is used.

__u32 rangelow If non-zero, the lowest tunable frequency of
the band to search in units of 62.5 kHz, or if
the struct v4l2_tuner capability field has the
V4L2_TUNER_CAP_LOW flag set, in units of 62.5 Hz
or if the struct v4l2_tuner capability field has
the V4L2_TUNER_CAP_1HZ flag set, in units of 1 Hz.
If rangelow is zero a reasonable default value is
used.

__u32 rangehigh If non-zero, the highest tunable frequency of
the band to search in units of 62.5 kHz, or if
the struct v4l2_tuner capability field has the
V4L2_TUNER_CAP_LOW flag set, in units of 62.5 Hz
or if the struct v4l2_tuner capability field has
the V4L2_TUNER_CAP_1HZ flag set, in units of 1 Hz.
If rangehigh is zero a reasonable default value is
used.

__u32 reserved[5] Reserved for future extensions. Applications must
set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The tuner index is out of bounds, the wrap_around value is not supported or one of the values

in the type, rangelow or rangehigh fields is wrong.
EAGAIN Attempted to call VIDIOC_S_HW_FREQ_SEEK with the filehandle in non-blocking mode.
ENODATA The hardware seek found no channels.
EBUSY Another hardware seek is already in progress.

ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF

Name

VIDIOC_STREAMON - VIDIOC_STREAMOFF - Start or stop streaming I/O

1.2. Part I - Video for Linux API 293

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, VIDIOC_STREAMON, const int *argp)
int ioctl(int fd, VIDIOC_STREAMOFF, const int *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to an integer.

Description

The VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctl start and stop the capture or output process during
streaming (memory mapping , user pointer or DMABUF) I/O.
Capture hardware is disabled and no input buffers are filled (if there are any empty buffers in the incom-
ing queue) until VIDIOC_STREAMON has been called. Output hardware is disabled and no video signal is
produced until VIDIOC_STREAMON has been called. The ioctl will succeed when at least one output buffer
is in the incoming queue.
Memory-to-memory devices will not start until VIDIOC_STREAMON has been called for both the capture and
output stream types.
If VIDIOC_STREAMON fails then any already queued buffers will remain queued.
The VIDIOC_STREAMOFF ioctl, apart of aborting or finishing any DMA in progress, unlocks any user pointer
buffers locked in physical memory, and it removes all buffers from the incoming and outgoing queues.
That means all images captured but not dequeued yet will be lost, likewise all images enqueued for output
but not transmitted yet. I/O returns to the same state as after calling ioctl VIDIOC_REQBUFS and can be
restarted accordingly.
If buffers have been queued with ioctl VIDIOC_QBUF, VIDIOC_DQBUF and VIDIOC_STREAMOFF is called
without ever having called VIDIOC_STREAMON, then those queued buffers will also be removed from the
incoming queue and all are returned to the same state as after calling ioctl VIDIOC_REQBUFS and can
be restarted accordingly.
Both ioctls take a pointer to an integer, the desired buffer or stream type. This is the same as struct
v4l2_requestbuffers type.
If VIDIOC_STREAMON is called when streaming is already in progress, or if VIDIOC_STREAMOFF is called
when streaming is already stopped, then 0 is returned. Nothing happens in the case of VIDIOC_STREAMON,
but VIDIOC_STREAMOFF will return queued buffers to their starting state as mentioned above.

Note:

Applications can be preempted for unknown periods right before or after the VIDIOC_STREAMON or
VIDIOC_STREAMOFF calls, there is no notion of starting or stopping “now”. Buffer timestamps can be
used to synchronize with other events.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The buffer type is not supported, or no buffers have been allocated (memory mapping) or en-

queued (output) yet.

294 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

EPIPE The driver implements pad-level format configuration and the pipeline configuration is invalid.
ENOLINK The driver implements Media Controller interface and the pipeline link configuration is invalid.

ioctl VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL

Name

VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL - Enumerate frame intervals

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL, struct v4l2_subdev_frame_interval_enum
* argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_subdev_frame_interval_enum.

Description

This ioctl lets applications enumerate available frame intervals on a given sub-device pad. Frame intervals
only makes sense for sub-devices that can control the frame period on their own. This includes, for
instance, image sensors and TV tuners.
For the common use case of image sensors, the frame intervals available on the sub-device output pad
depend on the frame format and size on the same pad. Applications must thus specify the desired format
and size when enumerating frame intervals.
To enumerate frame intervals applications initialize the index, pad, which, code, width and height fields
of struct v4l2_subdev_frame_interval_enum and call the ioctl VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL
ioctl with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code

if one of the input fields is invalid. All frame intervals are enumerable by beginning at index zero and
incrementing by one until EINVAL is returned.
Available frame intervals may depend on the current ‘try’ formats at other pads of the sub-device, as
well as on the current active links. See ioctl VIDIOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT for more
information about the try formats.
Sub-devices that support the frame interval enumeration ioctl should implemented it on a single pad only.
Its behaviour when supported on multiple pads of the same sub-device is not defined.
v4l2_subdev_frame_interval_enum

1.2. Part I - Video for Linux API 295

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.159: struct v4l2_subdev_frame_interval_enum
__u32 index Number of the format in the enumeration, set by

the application.
__u32 pad Pad number as reported by the media controller

API.
__u32 code The media bus format code, as defined in Media

Bus Formats .
__u32 width Frame width, in pixels.
__u32 height Frame height, in pixels.
struct v4l2_fract interval Period, in seconds, between consecutive video

frames.
__u32 which Frame intervals to be enumerated, from enum

v4l2_subdev_format_whence .
__u32 reserved[8] Reserved for future extensions. Applications and

drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_subdev_frame_interval_enum pad references a non-existing pad, one of the

code, width or height fields are invalid for the given pad or the index field is out of bounds.

ioctl VIDIOC_SUBDEV_ENUM_FRAME_SIZE

Name

VIDIOC_SUBDEV_ENUM_FRAME_SIZE - Enumerate media bus frame sizes

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_ENUM_FRAME_SIZE, struct v4l2_subdev_frame_size_enum * argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_subdev_frame_size_enum.

Description

This ioctl allows applications to enumerate all frame sizes supported by a sub-device on the given
pad for the given media bus format. Supported formats can be retrieved with the ioctl VID-
IOC_SUBDEV_ENUM_MBUS_CODE ioctl.
To enumerate frame sizes applications initialize the pad, which , code and index fields of the struct
v4l2_subdev_mbus_code_enum and call the ioctl VIDIOC_SUBDEV_ENUM_FRAME_SIZE ioctl with a pointer
to the structure. Drivers fill the minimum and maximum frame sizes or return an EINVAL error code if one
of the input parameters is invalid.
Sub-devices that only support discrete frame sizes (such as most sensors) will return one or more frame
sizes with identical minimum and maximum values.

296 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Not all possible sizes in given [minimum, maximum] ranges need to be supported. For instance, a scaler
that uses a fixed-point scaling ratio might not be able to produce every frame size between the minimum
and maximum values. Applications must use the VIDIOC_SUBDEV_S_FMT ioctl to try the sub-device for
an exact supported frame size.
Available frame sizes may depend on the current ‘try’ formats at other pads of the sub-device, as well
as on the current active links and the current values of V4L2 controls. See ioctl VIDIOC_SUBDEV_G_FMT,
VIDIOC_SUBDEV_S_FMT for more information about try formats.
v4l2_subdev_frame_size_enum

Table 1.160: struct v4l2_subdev_frame_size_enum
__u32 index Number of the format in the enumeration, set by

the application.
__u32 pad Pad number as reported by the media controller

API.
__u32 code The media bus format code, as defined in Media

Bus Formats .
__u32 min_width Minimum frame width, in pixels.
__u32 max_width Maximum frame width, in pixels.
__u32 min_height Minimum frame height, in pixels.
__u32 max_height Maximum frame height, in pixels.
__u32 which Frame sizes to be enumerated, from enum

v4l2_subdev_format_whence .
__u32 reserved[8] Reserved for future extensions. Applications and

drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_subdev_frame_size_enum pad references a non-existing pad, the code is invalid

for the given pad or the index field is out of bounds.

ioctl VIDIOC_SUBDEV_ENUM_MBUS_CODE

Name

VIDIOC_SUBDEV_ENUM_MBUS_CODE - Enumerate media bus formats

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_ENUM_MBUS_CODE, struct v4l2_subdev_mbus_code_enum
* argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_subdev_mbus_code_enum.

1.2. Part I - Video for Linux API 297

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

To enumerate media bus formats available at a given sub-device pad applications initialize the
pad, which and index fields of struct v4l2_subdev_mbus_code_enum and call the ioctl VID-
IOC_SUBDEV_ENUM_MBUS_CODE ioctl with a pointer to this structure. Drivers fill the rest of the structure
or return an EINVAL error code if either the pad or index are invalid. All media bus formats are enumerable
by beginning at index zero and incrementing by one until EINVAL is returned.
Available media bus formats may depend on the current ‘try’ formats at other pads of the sub-device, as
well as on the current active links. See ioctl VIDIOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT for more
information about the try formats.
v4l2_subdev_mbus_code_enum

Table 1.161: struct v4l2_subdev_mbus_code_enum
__u32 pad Pad number as reported by the media controller

API.
__u32 index Number of the format in the enumeration, set by

the application.
__u32 code The media bus format code, as defined in Media

Bus Formats .
__u32 which Media bus format codes to be enumerated, from

enum v4l2_subdev_format_whence .
__u32 reserved[8] Reserved for future extensions. Applications and

drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct v4l2_subdev_mbus_code_enum pad references a non-existing pad, or the index field

is out of bounds.

ioctl VIDIOC_SUBDEV_G_CROP, VIDIOC_SUBDEV_S_CROP

Name

VIDIOC_SUBDEV_G_CROP - VIDIOC_SUBDEV_S_CROP - Get or set the crop rectangle on a subdev pad

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_G_CROP, struct v4l2_subdev_crop *argp)
int ioctl(int fd, VIDIOC_SUBDEV_S_CROP, const struct v4l2_subdev_crop *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_subdev_crop.

298 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Note:

This is an Obsolete API Elements interface and may be removed in the future. It is superseded by
the selection API .

To retrieve the current crop rectangle applications set the pad field of a struct v4l2_subdev_crop to the
desired pad number as reported by the media API and the which field to V4L2_SUBDEV_FORMAT_ACTIVE.
They then call the VIDIOC_SUBDEV_G_CROP ioctl with a pointer to this structure. The driver fills the mem-
bers of the rect field or returns EINVAL error code if the input arguments are invalid, or if cropping is not
supported on the given pad.
To change the current crop rectangle applications set both the pad and which fields and all members of
the rect field. They then call the VIDIOC_SUBDEV_S_CROP ioctl with a pointer to this structure. The driver
verifies the requested crop rectangle, adjusts it based on the hardware capabilities and configures the
device. Upon return the struct v4l2_subdev_crop contains the current format as would be returned by a
VIDIOC_SUBDEV_G_CROP call.
Applications can query the device capabilities by setting the which to V4L2_SUBDEV_FORMAT_TRY. When
set, ‘try’ crop rectangles are not applied to the device by the driver, but are mangled exactly as active
crop rectangles and stored in the sub-device file handle. Two applications querying the same sub-device
would thus not interact with each other.
Drivers must not return an error solely because the requested crop rectangle doesn’t match the device
capabilities. They must instead modify the rectangle to match what the hardware can provide. The
modified format should be as close as possible to the original request.
v4l2_subdev_crop

Table 1.162: struct v4l2_subdev_crop
__u32 pad Pad number as reported by the media framework.
__u32 which Crop rectangle to get or set, from enum

v4l2_subdev_format_whence .
struct v4l2_rect rect Crop rectangle boundaries, in pixels.
__u32 reserved[8] Reserved for future extensions. Applications and

drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EBUSY The crop rectangle can’t be changed because the pad is currently busy. This can be caused, for

instance, by an active video stream on the pad. The ioctl must not be retried without performing
another action to fix the problem first. Only returned by VIDIOC_SUBDEV_S_CROP

EINVAL The struct v4l2_subdev_crop pad references a non-existing pad, the which field references a
non-existing format, or cropping is not supported on the given subdev pad.

ioctl VIDIOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT

Name

VIDIOC_SUBDEV_G_FMT - VIDIOC_SUBDEV_S_FMT - Get or set the data format on a subdev pad

1.2. Part I - Video for Linux API 299

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_G_FMT, struct v4l2_subdev_format *argp)
int ioctl(int fd, VIDIOC_SUBDEV_S_FMT, struct v4l2_subdev_format *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_subdev_format.

Description

These ioctls are used to negotiate the frame format at specific subdev pads in the image pipeline.
To retrieve the current format applications set the pad field of a struct v4l2_subdev_format to the desired
pad number as reported by the media API and the which field to V4L2_SUBDEV_FORMAT_ACTIVE. When
they call the VIDIOC_SUBDEV_G_FMT ioctl with a pointer to this structure the driver fills the members of
the format field.
To change the current format applications set both the pad and which fields and all members of the format
field. When they call the VIDIOC_SUBDEV_S_FMT ioctl with a pointer to this structure the driver verifies the
requested format, adjusts it based on the hardware capabilities and configures the device. Upon return the
struct v4l2_subdev_format contains the current format as would be returned by a VIDIOC_SUBDEV_G_FMT
call.
Applications can query the device capabilities by setting the which to V4L2_SUBDEV_FORMAT_TRY. When
set, ‘try’ formats are not applied to the device by the driver, but are changed exactly as active formats
and stored in the sub-device file handle. Two applications querying the same sub-device would thus not
interact with each other.
For instance, to try a format at the output pad of a sub-device, applications would first set the try format
at the sub-device input with the VIDIOC_SUBDEV_S_FMT ioctl. They would then either retrieve the default
format at the output pad with the VIDIOC_SUBDEV_G_FMT ioctl, or set the desired output pad format with
the VIDIOC_SUBDEV_S_FMT ioctl and check the returned value.
Try formats do not depend on active formats, but can depend on the current links configuration or sub-
device controls value. For instance, a low-pass noise filter might crop pixels at the frame boundaries,
modifying its output frame size.
Drivers must not return an error solely because the requested format doesn’t match the device capabili-
ties. They must instead modify the format to match what the hardware can provide. The modified format
should be as close as possible to the original request.
v4l2_subdev_format

Table 1.163: struct v4l2_subdev_format
__u32 pad Pad number as reported by the media controller

API.
__u32 which Format to modified, from enum

v4l2_subdev_format_whence .
struct
v4l2_mbus_framefmt

format Definition of an image format, see
v4l2_mbus_framefmt for details.

__u32 reserved[8] Reserved for future extensions. Applications and
drivers must set the array to zero.

300 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.164: enum v4l2_subdev_format_whence
V4L2_SUBDEV_FORMAT_TRY 0 Try formats, used for querying device capabilities.
V4L2_SUBDEV_FORMAT_ACTIVE 1 Active formats, applied to the hardware.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EBUSY The format can’t be changed because the pad is currently busy. This can be caused, for instance,

by an active video stream on the pad. The ioctl must not be retried without performing another
action to fix the problem first. Only returned by VIDIOC_SUBDEV_S_FMT

EINVAL The struct v4l2_subdev_format pad references a non-existing pad, or the which field references
a non-existing format.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl VIDIOC_SUBDEV_G_FRAME_INTERVAL, VIDIOC_SUBDEV_S_FRAME_INTERVAL

Name

VIDIOC_SUBDEV_G_FRAME_INTERVAL - VIDIOC_SUBDEV_S_FRAME_INTERVAL - Get or set the frame interval
on a subdev pad

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_G_FRAME_INTERVAL, struct v4l2_subdev_frame_interval *argp)
int ioctl(int fd, VIDIOC_SUBDEV_S_FRAME_INTERVAL, struct v4l2_subdev_frame_interval *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_subdev_frame_interval.

Description

These ioctls are used to get and set the frame interval at specific subdev pads in the image pipeline. The
frame interval only makes sense for sub-devices that can control the frame period on their own. This
includes, for instance, image sensors and TV tuners. Sub-devices that don’t support frame intervals must
not implement these ioctls.
To retrieve the current frame interval applications set the pad field of a struct
v4l2_subdev_frame_interval to the desired pad number as reported by the media controller API.
When they call the VIDIOC_SUBDEV_G_FRAME_INTERVAL ioctl with a pointer to this structure the driver
fills the members of the interval field.
To change the current frame interval applications set both the pad field and all members of the interval
field. When they call the VIDIOC_SUBDEV_S_FRAME_INTERVAL ioctl with a pointer to this structure the driver
verifies the requested interval, adjusts it based on the hardware capabilities and configures the device.

1.2. Part I - Video for Linux API 301

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Upon return the struct v4l2_subdev_frame_interval contains the current frame interval as would be
returned by a VIDIOC_SUBDEV_G_FRAME_INTERVAL call.
Drivers must not return an error solely because the requested interval doesn’t match the device capa-
bilities. They must instead modify the interval to match what the hardware can provide. The modified
interval should be as close as possible to the original request.
Sub-devices that support the frame interval ioctls should implement them on a single pad only. Their
behaviour when supported on multiple pads of the same sub-device is not defined.
v4l2_subdev_frame_interval

Table 1.165: struct v4l2_subdev_frame_interval
__u32 pad Pad number as reported by the media controller

API.
struct v4l2_fract interval Period, in seconds, between consecutive video

frames.
__u32 reserved[9] Reserved for future extensions. Applications and

drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EBUSY The frame interval can’t be changed because the pad is currently busy. This can be caused, for

instance, by an active video stream on the pad. The ioctl must not be retried without performing
another action to fix the problem first. Only returned by VIDIOC_SUBDEV_S_FRAME_INTERVAL

EINVAL The struct v4l2_subdev_frame_interval pad references a non-existing pad, or the pad doesn’t
support frame intervals.

ioctl VIDIOC_SUBDEV_G_SELECTION, VIDIOC_SUBDEV_S_SELECTION

Name

VIDIOC_SUBDEV_G_SELECTION - VIDIOC_SUBDEV_S_SELECTION - Get or set selection rectangles on a sub-
dev pad

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_G_SELECTION, struct v4l2_subdev_selection *argp)
int ioctl(int fd, VIDIOC_SUBDEV_S_SELECTION, struct v4l2_subdev_selection *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_subdev_selection.

Description

The selections are used to configure various image processing functionality performed by the subdevs
which affect the image size. This currently includes cropping, scaling and composition.

302 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The selection API replaces the old subdev crop API . All the function of the crop API, and more, are
supported by the selections API.
See Sub-device Interface for more information on how each selection target affects the image processing
pipeline inside the subdevice.

Types of selection targets

There are two types of selection targets: actual and bounds. The actual targets are the targets which
configure the hardware. The BOUNDS target will return a rectangle that contain all possible actual rect-
angles.

Discovering supported features

To discover which targets are supported, the user can perform VIDIOC_SUBDEV_G_SELECTION on them.
Any unsupported target will return EINVAL.
Selection targets and flags are documented in Common selection definitions .
v4l2_subdev_selection

Table 1.166: struct v4l2_subdev_selection
__u32 which Active or try selection, from enum

v4l2_subdev_format_whence .
__u32 pad Pad number as reported by the media framework.
__u32 target Target selection rectangle. See Common selec-

tion definitions .
__u32 flags Flags. See Selection flags .
struct v4l2_rect r Selection rectangle, in pixels.
__u32 reserved[8] Reserved for future extensions. Applications and

drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EBUSY The selection rectangle can’t be changed because the pad is currently busy. This can be caused,

for instance, by an active video stream on the pad. The ioctl must not be retried without performing
another action to fix the problem first. Only returned by VIDIOC_SUBDEV_S_SELECTION

EINVAL The struct v4l2_subdev_selection pad references a non-existing pad, the which field references
a non-existing format, or the selection target is not supported on the given subdev pad.

ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT

Name

VIDIOC_SUBSCRIBE_EVENT - VIDIOC_UNSUBSCRIBE_EVENT - Subscribe or unsubscribe event

Synopsis

int ioctl(int fd, VIDIOC_SUBSCRIBE_EVENT, struct v4l2_event_subscription *argp)
int ioctl(int fd, VIDIOC_UNSUBSCRIBE_EVENT, struct v4l2_event_subscription *argp)

1.2. Part I - Video for Linux API 303

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
argp Pointer to struct v4l2_event_subscription.

Description

Subscribe or unsubscribe V4L2 event. Subscribed events are dequeued by using the ioctl VID-
IOC_DQEVENT ioctl.
v4l2_event_subscription

Table 1.167: struct v4l2_event_subscription
__u32 type Type of the event, see Event Types .

Note:

V4L2_EVENT_ALL can be used with VID-
IOC_UNSUBSCRIBE_EVENT for unsubscribing
all events at once.

__u32 id ID of the event source. If there is no ID associated
with the event source, then set this to 0. Whether
or not an event needs an ID depends on the event
type.

__u32 flags Event flags, see Event Flags .
__u32 reserved[5] Reserved for future extensions. Drivers and appli-

cations must set the array to zero.

Table 1.168: Event Flags
V4L2_EVENT_SUB_FL_SEND_INITIAL 0x0001 When this event is subscribed an initial event will

be sent containing the current status. This only
makes sense for events that are triggered by a
status change such as V4L2_EVENT_CTRL. Other
events will ignore this flag.

V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK 0x0002 If set, then events directly caused by an ioctl
will also be sent to the filehandle that called that
ioctl. For example, changing a control using VID-
IOC_S_CTRL will cause a V4L2_EVENT_CTRL to
be sent back to that same filehandle. Normally
such events are suppressed to prevent feedback
loops where an application changes a control to
a one value and then another, and then receives
an event telling it that that control has changed
to the first value.
Since it can’t tell whether that event was caused
by another application or by the VIDIOC_S_CTRL
call it is hard to decide whether to set the control
to the value in the event, or ignore it.
Think carefully when you set this flag so you
won’t get into situations like that.

304 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

V4L2 mmap()

Name

v4l2-mmap - Map device memory into application address space

Synopsis

#include <unistd.h>
#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset)

Arguments

start Map the buffer to this address in the application’s address space. When the MAP_FIXED flag is
specified, start must be a multiple of the pagesize and mmap will fail when the specified address
cannot be used. Use of this option is discouraged; applications should just specify a NULL pointer
here.

length Length of the memory area to map. This must be the same value as returned by the driver in
the struct v4l2_buffer length field for the single-planar API, and the same value as returned by the
driver in the struct v4l2_plane length field for the multi-planar API.

prot The prot argument describes the desired memory protection. Regardless of the device type and
the direction of data exchange it should be set to PROT_READ | PROT_WRITE, permitting read and write
access to image buffers. Drivers should support at least this combination of flags.

Note:

1. The Linux videobuf kernel module, which is used by some drivers supports only PROT_READ |
PROT_WRITE. When the driver does not support the desired protection, the mmap() function
fails.

2. Device memory accesses (e. g. the memory on a graphics card with video capturing hard-
ware) may incur a performance penalty compared to main memory accesses, or reads may
be significantly slower than writes or vice versa. Other I/O methods may be more efficient
in such case.

flags The flags parameter specifies the type of the mapped object, mapping options and whether mod-
ifications made to the mapped copy of the page are private to the process or are to be shared with
other references.
MAP_FIXED requests that the driver selects no other address than the one specified. If the specified
address cannot be used, mmap() will fail. If MAP_FIXED is specified, start must be a multiple of the
pagesize. Use of this option is discouraged.
One of the MAP_SHARED or MAP_PRIVATE flags must be set. MAP_SHARED allows applications to share
the mapped memory with other (e. g. child-) processes.

1.2. Part I - Video for Linux API 305

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

The Linux videobuf module which is used by some drivers supports only MAP_SHARED.
MAP_PRIVATE requests copy-on-write semantics. V4L2 applications should not set the
MAP_PRIVATE, MAP_DENYWRITE, MAP_EXECUTABLE or MAP_ANON flags.

fd File descriptor returned by open() .
offset Offset of the buffer in device memory. This must be the same value as returned by the driver in

the struct v4l2_buffer m union offset field for the single-planar API, and the same value as returned
by the driver in the struct v4l2_plane m union mem_offset field for the multi-planar API.

Description

The mmap() function asks to map length bytes starting at offset in the memory of the device specified
by fd into the application address space, preferably at address start. This latter address is a hint only,
and is usually specified as 0.
Suitable length and offset parameters are queried with the ioctl VIDIOC_QUERYBUF ioctl. Buffers must
be allocated with the ioctl VIDIOC_REQBUFS ioctl before they can be queried.
To unmap buffers the munmap() function is used.

Return Value

On success mmap() returns a pointer to the mapped buffer. On error MAP_FAILED (-1) is returned, and
the errno variable is set appropriately. Possible error codes are:
EBADF fd is not a valid file descriptor.
EACCES fd is not open for reading and writing.
EINVAL The start or length or offset are not suitable. (E. g. they are too large, or not aligned on a

PAGESIZE boundary.)
The flags or prot value is not supported.
No buffers have been allocated with the ioctl VIDIOC_REQBUFS ioctl.

ENOMEM Not enough physical or virtual memory was available to complete the request.

V4L2 munmap()

Name

v4l2-munmap - Unmap device memory

Synopsis

#include <unistd.h>
#include <sys/mman.h>

int munmap(void *start, size_t length)

306 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

start Address of the mapped buffer as returned by the mmap() function.
length Length of the mapped buffer. This must be the same value as given to mmap() and returned

by the driver in the struct v4l2_buffer length field for the single-planar API and in the struct
v4l2_plane length field for the multi-planar API.

Description

Unmaps a previously with the mmap() function mapped buffer and frees it, if possible.

Return Value

On success munmap() returns 0, on failure -1 and the errno variable is set appropriately:
EINVAL The start or length is incorrect, or no buffers have been mapped yet.

V4L2 open()

Name

v4l2-open - Open a V4L2 device

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.
flags Open flags. Access mode must be O_RDWR. This is just a technicality, input devices still support

only reading and output devices only writing.
When the O_NONBLOCK flag is given, the read() function and the VIDIOC_DQBUF ioctl will return
the EAGAIN error code when no data is available or no buffer is in the driver outgoing queue, oth-
erwise these functions block until data becomes available. All V4L2 drivers exchanging data with
applications must support the O_NONBLOCK flag.
Other flags have no effect.

Description

To open a V4L2 device applications call open() with the desired device name. This function has no side
effects; all data format parameters, current input or output, control values or other properties remain
unchanged. At the first open() call after loading the driver they will be reset to default values, drivers
are never in an undefined state.

1.2. Part I - Video for Linux API 307

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success open() returns the new file descriptor. On error -1 is returned, and the errno variable is set
appropriately. Possible error codes are:
EACCES The caller has no permission to access the device.
EBUSY The driver does not support multiple opens and the device is already in use.
ENXIO No device corresponding to this device special file exists.
ENOMEM Not enough kernel memory was available to complete the request.
EMFILE The process already has the maximum number of files open.
ENFILE The limit on the total number of files open on the system has been reached.

V4L2 poll()

Name

v4l2-poll - Wait for some event on a file descriptor

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout)

Arguments

Description

With the poll() function applications can suspend execution until the driver has captured data or is ready
to accept data for output.
When streaming I/O has been negotiated this function waits until a buffer has been filled by the capture
device and can be dequeued with the VIDIOC_DQBUF ioctl. For output devices this function waits until
the device is ready to accept a new buffer to be queued up with the ioctl VIDIOC_QBUF, VIDIOC_DQBUF
ioctl for display. When buffers are already in the outgoing queue of the driver (capture) or the incoming

queue isn’t full (display) the function returns immediately.
On success poll() returns the number of file descriptors that have been selected (that is, file descriptors
for which the revents field of the respective struct pollfd() structure is non-zero). Capture devices set
the POLLIN and POLLRDNORM flags in the revents field, output devices the POLLOUT and POLLWRNORM flags.
When the function timed out it returns a value of zero, on failure it returns -1 and the errno variable is set
appropriately. When the application did not call ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF the poll()
function succeeds, but sets the POLLERR flag in the revents field. When the application has called ioctl
VIDIOC_STREAMON, VIDIOC_STREAMOFF for a capture device but hasn’t yet called ioctl VIDIOC_QBUF,
VIDIOC_DQBUF , the poll() function succeeds and sets the POLLERR flag in the revents field. For output
devices this same situation will cause poll() to succeed as well, but it sets the POLLOUT and POLLWRNORM
flags in the revents field.
If an event occurred (see ioctl VIDIOC_DQEVENT) then POLLPRI will be set in the revents field and poll()
will return.
When use of the read() function has been negotiated and the driver does not capture yet, the poll()
function starts capturing. When that fails it returns a POLLERR as above. Otherwise it waits until data has

308 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

been captured and can be read. When the driver captures continuously (as opposed to, for example, still
images) the function may return immediately.
When use of the write() function has been negotiated and the driver does not stream yet, the poll()
function starts streaming. When that fails it returns a POLLERR as above. Otherwise it waits until the

driver is ready for a non-blocking write() call.
If the caller is only interested in events (just POLLPRI is set in the events field), then poll() will not start
streaming if the driver does not stream yet. This makes it possible to just poll for events and not for
buffers.
All drivers implementing the read() or write() function or streaming I/O must also support the poll()
function.
For more details see the poll() manual page.

Return Value

On success, poll() returns the number structures which have non-zero revents fields, or zero if the call
timed out. On error -1 is returned, and the errno variable is set appropriately:
EBADF One or more of the ufds members specify an invalid file descriptor.
EBUSY The driver does not support multiple read or write streams and the device is already in use.
EFAULT ufds references an inaccessible memory area.
EINTR The call was interrupted by a signal.
EINVAL The nfds argument is greater than OPEN_MAX.

V4L2 read()

Name

v4l2-read - Read from a V4L2 device

Synopsis

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open() .
buf Buffer to be filled
count Max number of bytes to read

Description

read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf. The
layout of the data in the buffer is discussed in the respective device interface section, see ##. If count
is zero, read() returns zero and has no other results. If count is greater than SSIZE_MAX, the result is
unspecified. Regardless of the count value each read() call will provide at most one frame (two fields)
worth of data.

1.2. Part I - Video for Linux API 309

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

By default read() blocks until data becomes available. When the O_NONBLOCK flag was given to the
open() function it returns immediately with an EAGAIN error code when no data is available. The select()
or poll() functions can always be used to suspend execution until data becomes available. All drivers

supporting the read() function must also support select() and poll() .
Drivers can implement read functionality in different ways, using a single or multiple buffers and discarding
the oldest or newest frames once the internal buffers are filled.
read() never returns a “snapshot” of a buffer being filled. Using a single buffer the driver will stop

capturing when the application starts reading the buffer until the read is finished. Thus only the period
of the vertical blanking interval is available for reading, or the capture rate must fall below the nominal
frame rate of the video standard.
The behavior of read() when called during the active picture period or the vertical blanking separating
the top and bottom field depends on the discarding policy. A driver discarding the oldest frames keeps
capturing into an internal buffer, continuously overwriting the previously, not read frame, and returns the
frame being received at the time of the read() call as soon as it is complete.
A driver discarding the newest frames stops capturing until the next read() call. The frame being received
at read() time is discarded, returning the following frame instead. Again this implies a reduction of the
capture rate to one half or less of the nominal frame rate. An example of this model is the video read
mode of the bttv driver, initiating a DMA to user memory when read() is called and returning when the
DMA finished.
In the multiple buffer model drivers maintain a ring of internal buffers, automatically advancing to the next
free buffer. This allows continuous capturing when the application can empty the buffers fast enough.
Again, the behavior when the driver runs out of free buffers depends on the discarding policy.
Applications can get and set the number of buffers used internally by the driver with the VIDIOC_G_PARM
and VIDIOC_S_PARM ioctls. They are optional, however. The discarding policy is not reported and cannot
be changed. For minimum requirements see Interfaces .

Return Value

On success, the number of bytes read is returned. It is not an error if this number is smaller than the
number of bytes requested, or the amount of data required for one frame. This may happen for example
because read() was interrupted by a signal. On error, -1 is returned, and the errno variable is set
appropriately. In this case the next read will start at the beginning of a new frame. Possible error codes
are:
EAGAIN Non-blocking I/O has been selected using O_NONBLOCK and no data was immediately available

for reading.
EBADF fd is not a valid file descriptor or is not open for reading, or the process already has the maximum

number of files open.
EBUSY The driver does not support multiple read streams and the device is already in use.
EFAULT buf references an inaccessible memory area.
EINTR The call was interrupted by a signal before any data was read.
EIO I/O error. This indicates some hardware problem or a failure to communicate with a remote device

(USB camera etc.).
EINVAL The read() function is not supported by this driver, not on this device, or generally not on this

type of device.

V4L2 select()

Name

v4l2-select - Synchronous I/O multiplexing

310 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout)

Arguments

nfds The highest-numbered file descriptor in any of the three sets, plus 1.
readfds File descriptions to be watched if a read() call won’t block.
writefds File descriptions to be watched if a write() won’t block.
exceptfds File descriptions to be watched for V4L2 events.
timeout Maximum time to wait.

Description

With the select() function applications can suspend execution until the driver has captured data or is
ready to accept data for output.
When streaming I/O has been negotiated this function waits until a buffer has been filled or displayed and
can be dequeued with the VIDIOC_DQBUF ioctl. When buffers are already in the outgoing queue of the
driver the function returns immediately.
On success select() returns the total number of bits set in struct fd_set(). When the function timed out
it returns a value of zero. On failure it returns -1 and the errno variable is set appropriately. When the ap-
plication did not call ioctl VIDIOC_QBUF, VIDIOC_DQBUF or ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF
yet the select() function succeeds, setting the bit of the file descriptor in readfds or writefds, but sub-
sequent VIDIOC_DQBUF calls will fail. 1

When use of the read() function has been negotiated and the driver does not capture yet, the select()
function starts capturing. When that fails, select() returns successful and a subsequent read() call,

which also attempts to start capturing, will return an appropriate error code. When the driver captures
continuously (as opposed to, for example, still images) and data is already available the select() function
returns immediately.
When use of the write() function has been negotiated the select() function just waits until the driver is
ready for a non-blocking write() call.
All drivers implementing the read() or write() function or streaming I/O must also support the select()
function.
For more details see the select() manual page.

Return Value

On success, select() returns the number of descriptors contained in the three returned descriptor sets,
which will be zero if the timeout expired. On error -1 is returned, and the errno variable is set appropri-
ately; the sets and timeout are undefined. Possible error codes are:
EBADF One or more of the file descriptor sets specified a file descriptor that is not open.
EBUSY The driver does not support multiple read or write streams and the device is already in use.
EFAULT The readfds, writefds, exceptfds or timeout pointer references an inaccessible memory area.

1 The Linux kernel implements select() like the poll() function, but select() cannot return a POLLERR.

1.2. Part I - Video for Linux API 311

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

EINTR The call was interrupted by a signal.
EINVAL The nfds argument is less than zero or greater than FD_SETSIZE.

V4L2 write()

Name

v4l2-write - Write to a V4L2 device

Synopsis

#include <unistd.h>

ssize_t write(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open() .
buf Buffer with data to be written
count Number of bytes at the buffer

Description

write() writes up to count bytes to the device referenced by the file descriptor fd from the buffer starting
at buf. When the hardware outputs are not active yet, this function enables them. When count is zero,
write() returns 0 without any other effect.
When the application does not provide more data in time, the previous video frame, raw VBI image, sliced
VPS or WSS data is displayed again. Sliced Teletext or Closed Caption data is not repeated, the driver
inserts a blank line instead.

Return Value

On success, the number of bytes written are returned. Zero indicates nothing was written. On error, -1 is
returned, and the errno variable is set appropriately. In this case the next write will start at the beginning
of a new frame. Possible error codes are:
EAGAIN Non-blocking I/O has been selected using the O_NONBLOCK flag and no buffer space was

available to write the data immediately.
EBADF fd is not a valid file descriptor or is not open for writing.
EBUSY The driver does not support multiple write streams and the device is already in use.
EFAULT buf references an inaccessible memory area.
EINTR The call was interrupted by a signal before any data was written.
EIO I/O error. This indicates some hardware problem.
EINVAL The write() function is not supported by this driver, not on this device, or generally not on this

type of device.

312 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1.2.8 Common definitions for V4L2 and V4L2 subdev interfaces

Common selection definitions

While the V4L2 selection API and V4L2 subdev selection APIs are very similar, there’s one fundamental
difference between the two. On sub-device API, the selection rectangle refers to the media bus format,
and is bound to a sub-device’s pad. On the V4L2 interface the selection rectangles refer to the in-memory
pixel format.
This section defines the common definitions of the selection interfaces on the two APIs.

Selection targets

The precise meaning of the selection targets may be dependent on which of the two interfaces they are
used.

Table 1.169: Selection target definitions
Target name id Definition Valid

for
V4L2

Valid
for
V4L2
subdev

V4L2_SEL_TGT_CROP 0x0000 Crop rectangle. Defines the cropped area. Yes Yes
V4L2_SEL_TGT_CROP_DEFAULT 0x0001 Suggested cropping rectangle that covers

the “whole picture”.
Yes No

V4L2_SEL_TGT_CROP_BOUNDS 0x0002 Bounds of the crop rectangle. All valid crop
rectangles fit inside the crop bounds rect-
angle.

Yes Yes

V4L2_SEL_TGT_NATIVE_SIZE 0x0003 The native size of the device, e.g. a sen-
sor’s pixel array. left and top fields
are zero for this target. Setting the na-
tive size will generally only make sense
for memory to memory devices where
the software can create a canvas of a
given size in which for example a video
frame can be composed. In that case
V4L2_SEL_TGT_NATIVE_SIZE can be used
to configure the size of that canvas.

Yes Yes

V4L2_SEL_TGT_COMPOSE 0x0100 Compose rectangle. Used to configure
scaling and composition.

Yes Yes

V4L2_SEL_TGT_COMPOSE_DEFAULT 0x0101 Suggested composition rectangle that
covers the “whole picture”.

Yes No

V4L2_SEL_TGT_COMPOSE_BOUNDS 0x0102 Bounds of the compose rectangle. All valid
compose rectangles fit inside the compose
bounds rectangle.

Yes Yes

V4L2_SEL_TGT_COMPOSE_PADDED 0x0103 The active area and all padding pixels that
are inserted or modified by hardware.

Yes No

1.2. Part I - Video for Linux API 313

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Selection flags

Table 1.170: Selection flag definitions
Flag name id Definition Valid

for
V4L2

Valid for
V4L2
subdev

V4L2_SEL_FLAG_GE (1 << 0) Suggest the driver it should choose
greater or equal rectangle (in size)
than was requested. Albeit the
driver may choose a lesser size, it
will only do so due to hardware
limitations. Without this flag (and
V4L2_SEL_FLAG_LE) the behaviour is
to choose the closest possible rectan-
gle.

Yes Yes

V4L2_SEL_FLAG_LE (1 << 1) Suggest the driver it should choose
lesser or equal rectangle (in size)
than was requested. Albeit the driver
may choose a greater size, it will only
do so due to hardware limitations.

Yes Yes

V4L2_SEL_FLAG_KEEP_CONFIG (1 << 2) The configuration must not be prop-
agated to any further processing
steps. If this flag is not given,
the configuration is propagated in-
side the subdevice to all further pro-
cessing steps.

No Yes

1.2.9 Video For Linux Two Header File

videodev2.h

/*
* Video for Linux Two header file
*
* Copyright (C) 1999-2012 the contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Alternatively you can redistribute this file under the terms of the
* BSD license as stated below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright

314 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. The names of its contributors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Header file for v4l or V4L2 drivers and applications
* with public API.
* All kernel-specific stuff were moved to media/v4l2-dev.h, so
* no #if __KERNEL tests are allowed here
*
* See https://linuxtv.org for more info
*
* Author: Bill Dirks <bill@thedirks.org>
* Justin Schoeman
* Hans Verkuil <hverkuil@xs4all.nl>
* et al.
*/

#ifndef _UAPI__LINUX_VIDEODEV2_H
#define _UAPI__LINUX_VIDEODEV2_H

#ifndef __KERNEL__
#include <sys/time.h>
#endif
#include <linux/compiler.h>
#include <linux/ioctl.h>
#include <linux/types.h>
#include <linux/v4l2-common.h>
#include <linux/v4l2-controls.h>

/*
* Common stuff for both V4L1 and V4L2
* Moved from videodev.h
*/

#define VIDEO_MAX_FRAME 32
#define VIDEO_MAX_PLANES 8

/*
* M I S C E L L A N E O U S
*/

/* Four-character-code (FOURCC) */
#define v4l2_fourcc(a, b, c, d)\

((__u32)(a) | ((__u32)(b) << 8) | ((__u32)(c) << 16) | ((__u32)(d) << 24))
#define v4l2_fourcc_be(a, b, c, d) (v4l2_fourcc(a, b, c, d) | (1 << 31))

1.2. Part I - Video for Linux API 315

mailto:bill@thedirks.org
mailto:hverkuil@xs4all.nl

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/*
* E N U M S
*/

enum v4l2_field
{

V4L2_FIELD_ANY
= 0, /* driver can choose from none,

top, bottom, interlaced
depending on whatever it thinks
is approximate ... */

V4L2_FIELD_NONE
= 1, /* this device has no fields ... */

V4L2_FIELD_TOP
= 2, /* top field only */

V4L2_FIELD_BOTTOM
= 3, /* bottom field only */
V4L2_FIELD_INTERLACED

= 4, /* both fields interlaced */
V4L2_FIELD_SEQ_TB

= 5, /* both fields sequential into one
buffer, top-bottom order */

V4L2_FIELD_SEQ_BT
= 6, /* same as above + bottom-top order */
V4L2_FIELD_ALTERNATE

= 7, /* both fields alternating into
separate buffers */

V4L2_FIELD_INTERLACED_TB
= 8, /* both fields interlaced, top field

first and the top field is
transmitted first */

V4L2_FIELD_INTERLACED_BT
= 9, /* both fields interlaced, top field

first and the bottom field is
transmitted first */

};
#define V4L2_FIELD_HAS_TOP(field) \

((field) == V4L2_FIELD_TOP
||\

(field) == V4L2_FIELD_INTERLACED
||\

(field) == V4L2_FIELD_INTERLACED_TB
||\

(field) == V4L2_FIELD_INTERLACED_BT
||\

(field) == V4L2_FIELD_SEQ_TB
||\

(field) == V4L2_FIELD_SEQ_BT
)
#define V4L2_FIELD_HAS_BOTTOM(field) \

((field) == V4L2_FIELD_BOTTOM
||\

(field) == V4L2_FIELD_INTERLACED
||\

(field) == V4L2_FIELD_INTERLACED_TB
||\

(field) == V4L2_FIELD_INTERLACED_BT
||\

316 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

(field) == V4L2_FIELD_SEQ_TB
||\

(field) == V4L2_FIELD_SEQ_BT
)
#define V4L2_FIELD_HAS_BOTH(field) \

((field) == V4L2_FIELD_INTERLACED
||\

(field) == V4L2_FIELD_INTERLACED_TB
||\

(field) == V4L2_FIELD_INTERLACED_BT
||\

(field) == V4L2_FIELD_SEQ_TB
||\

(field) == V4L2_FIELD_SEQ_BT
)
#define V4L2_FIELD_HAS_T_OR_B(field) \

((field) == V4L2_FIELD_BOTTOM
||\

(field) == V4L2_FIELD_TOP
||\

(field) == V4L2_FIELD_ALTERNATE
)

enum v4l2_buf_type
{

V4L2_BUF_TYPE_VIDEO_CAPTURE
= 1,
V4L2_BUF_TYPE_VIDEO_OUTPUT
= 2,
V4L2_BUF_TYPE_VIDEO_OVERLAY

= 3,
V4L2_BUF_TYPE_VBI_CAPTURE
= 4,

V4L2_BUF_TYPE_VBI_OUTPUT
= 5,

V4L2_BUF_TYPE_SLICED_VBI_CAPTURE
= 6,

V4L2_BUF_TYPE_SLICED_VBI_OUTPUT
= 7,

V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY
= 8,

V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
= 9,

V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
= 10,

V4L2_BUF_TYPE_SDR_CAPTURE
= 11,

V4L2_BUF_TYPE_SDR_OUTPUT
= 12,

V4L2_BUF_TYPE_META_CAPTURE
= 13,

/* Deprecated, do not use */
V4L2_BUF_TYPE_PRIVATE = 0x80,

};

#define V4L2_TYPE_IS_MULTIPLANAR(type) \
((type) == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE

\

1.2. Part I - Video for Linux API 317

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

|| (type) == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
)

#define V4L2_TYPE_IS_OUTPUT(type) \
((type) == V4L2_BUF_TYPE_VIDEO_OUTPUT

\
|| (type) == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
\
|| (type) == V4L2_BUF_TYPE_VIDEO_OVERLAY

\
|| (type) == V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY

\
|| (type) == V4L2_BUF_TYPE_VBI_OUTPUT

\
|| (type) == V4L2_BUF_TYPE_SLICED_VBI_OUTPUT

\
|| (type) == V4L2_BUF_TYPE_SDR_OUTPUT

)

enum v4l2_tuner_type
{

V4L2_TUNER_RADIO
= 1,

V4L2_TUNER_ANALOG_TV
= 2,

V4L2_TUNER_DIGITAL_TV = 3,
V4L2_TUNER_SDR

= 4,
V4L2_TUNER_RF

= 5,
};

/* Deprecated, do not use */
#define V4L2_TUNER_ADC V4L2_TUNER_SDR

enum v4l2_memory
{

V4L2_MEMORY_MMAP
= 1,

V4L2_MEMORY_USERPTR
= 2,

V4L2_MEMORY_OVERLAY
= 3,

V4L2_MEMORY_DMABUF
= 4,

};

/* see also http://vektor.theorem.ca/graphics/ycbcr/ */
enum v4l2_colorspace
{

/*
* Default colorspace, i.e. let the driver figure it out.
* Can only be used with video capture.
*/
V4L2_COLORSPACE_DEFAULT

= 0,

318 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* SMPTE 170M: used for broadcast NTSC/PAL SDTV */
V4L2_COLORSPACE_SMPTE170M

= 1,

/* Obsolete pre-1998 SMPTE 240M HDTV standard, superseded by Rec 709 */
V4L2_COLORSPACE_SMPTE240M

= 2,

/* Rec.709: used for HDTV */
V4L2_COLORSPACE_REC709

= 3,

/*
* Deprecated, do not use. No driver will ever return this. This was
* based on a misunderstanding of the bt878 datasheet.
*/

V4L2_COLORSPACE_BT878 = 4,

/*
* NTSC 1953 colorspace. This only makes sense when dealing with
* really, really old NTSC recordings. Superseded by SMPTE 170M.
*/
V4L2_COLORSPACE_470_SYSTEM_M

= 5,

/*
* EBU Tech 3213 PAL/SECAM colorspace. This only makes sense when
* dealing with really old PAL/SECAM recordings. Superseded by
* SMPTE 170M.
*/
V4L2_COLORSPACE_470_SYSTEM_BG

= 6,

/*
* Effectively shorthand for V4L2_COLORSPACE_SRGB

, V4L2_YCBCR_ENC_601

* and V4L2_QUANTIZATION_FULL_RANGE. To be used for (Motion-)JPEG.
*/
V4L2_COLORSPACE_JPEG
= 7,

/* For RGB colorspaces such as produces by most webcams. */
V4L2_COLORSPACE_SRGB
= 8,

/* AdobeRGB colorspace */
V4L2_COLORSPACE_ADOBERGB

= 9,

/* BT.2020 colorspace, used for UHDTV. */
V4L2_COLORSPACE_BT2020

= 10,

/* Raw colorspace: for RAW unprocessed images */
V4L2_COLORSPACE_RAW
= 11,

1.2. Part I - Video for Linux API 319

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* DCI-P3 colorspace, used by cinema projectors */
V4L2_COLORSPACE_DCI_P3

= 12,
};

/*
* Determine how COLORSPACE_DEFAULT should map to a proper colorspace.
* This depends on whether this is a SDTV image (use SMPTE 170M), an
* HDTV image (use Rec. 709), or something else (use sRGB).
*/

#define V4L2_MAP_COLORSPACE_DEFAULT(is_sdtv, is_hdtv) \
((is_sdtv) ? V4L2_COLORSPACE_SMPTE170M

: \
((is_hdtv) ? V4L2_COLORSPACE_REC709

: V4L2_COLORSPACE_SRGB
))

enum v4l2_xfer_func
{

/*
* Mapping of V4L2_XFER_FUNC_DEFAULT

to actual transfer functions
* for the various colorspaces:
*
* V4L2_COLORSPACE_SMPTE170M

, V4L2_COLORSPACE_470_SYSTEM_M
,

* V4L2_COLORSPACE_470_SYSTEM_BG
, V4L2_COLORSPACE_REC709
and

* V4L2_COLORSPACE_BT2020
: V4L2_XFER_FUNC_709

*
* V4L2_COLORSPACE_SRGB

, V4L2_COLORSPACE_JPEG
: V4L2_XFER_FUNC_SRGB

*
* V4L2_COLORSPACE_ADOBERGB

: V4L2_XFER_FUNC_ADOBERGB

*
* V4L2_COLORSPACE_SMPTE240M

: V4L2_XFER_FUNC_SMPTE240M

*
* V4L2_COLORSPACE_RAW

: V4L2_XFER_FUNC_NONE

*
* V4L2_COLORSPACE_DCI_P3

: V4L2_XFER_FUNC_DCI_P3

*/
V4L2_XFER_FUNC_DEFAULT

= 0,
V4L2_XFER_FUNC_709

320 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

= 1,
V4L2_XFER_FUNC_SRGB

= 2,
V4L2_XFER_FUNC_ADOBERGB

= 3,
V4L2_XFER_FUNC_SMPTE240M

= 4,
V4L2_XFER_FUNC_NONE

= 5,
V4L2_XFER_FUNC_DCI_P3

= 6,
V4L2_XFER_FUNC_SMPTE2084

= 7,
};

/*
* Determine how XFER_FUNC_DEFAULT should map to a proper transfer function.
* This depends on the colorspace.
*/

#define V4L2_MAP_XFER_FUNC_DEFAULT(colsp) \
((colsp) == V4L2_COLORSPACE_ADOBERGB

? V4L2_XFER_FUNC_ADOBERGB
: \

((colsp) == V4L2_COLORSPACE_SMPTE240M
? V4L2_XFER_FUNC_SMPTE240M
: \

((colsp) == V4L2_COLORSPACE_DCI_P3
? V4L2_XFER_FUNC_DCI_P3
: \

((colsp) == V4L2_COLORSPACE_RAW
? V4L2_XFER_FUNC_NONE
: \

((colsp) == V4L2_COLORSPACE_SRGB
|| (colsp) == V4L2_COLORSPACE_JPEG
? \

V4L2_XFER_FUNC_SRGB
: V4L2_XFER_FUNC_709

)))))

enum v4l2_ycbcr_encoding
{

/*
* Mapping of V4L2_YCBCR_ENC_DEFAULT

to actual encodings for the
* various colorspaces:
*
* V4L2_COLORSPACE_SMPTE170M

, V4L2_COLORSPACE_470_SYSTEM_M
,

* V4L2_COLORSPACE_470_SYSTEM_BG
, V4L2_COLORSPACE_SRGB
,

* V4L2_COLORSPACE_ADOBERGB
and V4L2_COLORSPACE_JPEG

: V4L2_YCBCR_ENC_601

*
* V4L2_COLORSPACE_REC709

1.2. Part I - Video for Linux API 321

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

and V4L2_COLORSPACE_DCI_P3
: V4L2_YCBCR_ENC_709

*
* V4L2_COLORSPACE_BT2020

: V4L2_YCBCR_ENC_BT2020

*
* V4L2_COLORSPACE_SMPTE240M

: V4L2_YCBCR_ENC_SMPTE240M

*/
V4L2_YCBCR_ENC_DEFAULT

= 0,

/* ITU-R 601 -- SDTV */
V4L2_YCBCR_ENC_601

= 1,

/* Rec. 709 -- HDTV */
V4L2_YCBCR_ENC_709

= 2,

/* ITU-R 601/EN 61966-2-4 Extended Gamut -- SDTV */
V4L2_YCBCR_ENC_XV601
= 3,

/* Rec. 709/EN 61966-2-4 Extended Gamut -- HDTV */
V4L2_YCBCR_ENC_XV709
= 4,

#ifndef __KERNEL__
/*
* sYCC (Y'CbCr encoding of sRGB), identical to ENC_601. It was added
* originally due to a misunderstanding of the sYCC standard. It should
* not be used, instead use V4L2_YCBCR_ENC_601.
*/
V4L2_YCBCR_ENC_SYCC
= 5,

#endif

/* BT.2020 Non-constant Luminance Y'CbCr */
V4L2_YCBCR_ENC_BT2020
= 6,

/* BT.2020 Constant Luminance Y'CbcCrc */
V4L2_YCBCR_ENC_BT2020_CONST_LUM

= 7,

/* SMPTE 240M -- Obsolete HDTV */
V4L2_YCBCR_ENC_SMPTE240M

= 8,
};

/*
* enum v4l2_hsv_encoding
values should not collide with the ones from
* enum v4l2_ycbcr_encoding.

322 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

*/
enum v4l2_hsv_encoding
{

/* Hue mapped to 0 - 179 */
V4L2_HSV_ENC_180

= 128,

/* Hue mapped to 0-255 */
V4L2_HSV_ENC_256

= 129,
};

/*
* Determine how YCBCR_ENC_DEFAULT should map to a proper Y'CbCr encoding.
* This depends on the colorspace.
*/

#define V4L2_MAP_YCBCR_ENC_DEFAULT(colsp) \
(((colsp) == V4L2_COLORSPACE_REC709

|| \
(colsp) == V4L2_COLORSPACE_DCI_P3

) ? V4L2_YCBCR_ENC_709
: \

((colsp) == V4L2_COLORSPACE_BT2020
? V4L2_YCBCR_ENC_BT2020
: \

((colsp) == V4L2_COLORSPACE_SMPTE240M
? V4L2_YCBCR_ENC_SMPTE240M
: \

V4L2_YCBCR_ENC_601
)))

enum v4l2_quantization
{

/*
* The default for R'G'B' quantization is always full range, except
* for the BT2020 colorspace. For Y'CbCr the quantization is always
* limited range, except for COLORSPACE_JPEG: this is full range.
*/
V4L2_QUANTIZATION_DEFAULT

= 0,
V4L2_QUANTIZATION_FULL_RANGE

= 1,
V4L2_QUANTIZATION_LIM_RANGE

= 2,
};

/*
* Determine how QUANTIZATION_DEFAULT should map to a proper quantization.
* This depends on whether the image is RGB or not, the colorspace and the
* Y'CbCr encoding.
*/

#define V4L2_MAP_QUANTIZATION_DEFAULT(is_rgb_or_hsv, colsp, ycbcr_enc) \
(((is_rgb_or_hsv) && (colsp) == V4L2_COLORSPACE_BT2020

) ? \
V4L2_QUANTIZATION_LIM_RANGE

: \
(((is_rgb_or_hsv) || (colsp) == V4L2_COLORSPACE_JPEG

1.2. Part I - Video for Linux API 323

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

) ? \
V4L2_QUANTIZATION_FULL_RANGE

: V4L2_QUANTIZATION_LIM_RANGE
))

enum v4l2_priority
{

V4L2_PRIORITY_UNSET
= 0, /* not initialized */

V4L2_PRIORITY_BACKGROUND
= 1,

V4L2_PRIORITY_INTERACTIVE
= 2,

V4L2_PRIORITY_RECORD
= 3,

V4L2_PRIORITY_DEFAULT
= V4L2_PRIORITY_INTERACTIVE

,
};

struct v4l2_rect
{

__s32 left;
__s32 top;
__u32 width;
__u32 height;

};

struct v4l2_fract
{

__u32 numerator;
__u32 denominator;

};

/**
* struct v4l2_capability

- Describes V4L2 device caps returned by VIDIOC_QUERYCAP
*
* @driver: name of the driver module (e.g. ``bttv'')
* @card: name of the card (e.g. ``Hauppauge WinTV'')
* @bus_info: name of the bus (e.g. ``PCI:'' + pci_name(pci_dev))
* @version: KERNEL_VERSION
* @capabilities: capabilities of the physical device as a whole
* @device_caps: capabilities accessed via this particular device (node)
* @reserved: reserved fields for future extensions
*/

struct v4l2_capability
{

__u8 driver[16];
__u8 card[32];
__u8 bus_info[32];
__u32 version;
__u32 capabilities;
__u32 device_caps;
__u32 reserved[3];

};

/* Values for `capabilities' field */

324 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define V4L2_CAP_VIDEO_CAPTURE 0x00000001 /* Is a video capture device */
#define V4L2_CAP_VIDEO_OUTPUT 0x00000002 /* Is a video output device */
#define V4L2_CAP_VIDEO_OVERLAY 0x00000004 /* Can do video overlay */
#define V4L2_CAP_VBI_CAPTURE 0x00000010 /* Is a raw VBI capture device */
#define V4L2_CAP_VBI_OUTPUT 0x00000020 /* Is a raw VBI output device */
#define V4L2_CAP_SLICED_VBI_CAPTURE 0x00000040 /* Is a sliced VBI capture de-
vice */
#define V4L2_CAP_SLICED_VBI_OUTPUT 0x00000080 /* Is a sliced VBI output de-
vice */
#define V4L2_CAP_RDS_CAPTURE 0x00000100 /* RDS data capture */
#define V4L2_CAP_VIDEO_OUTPUT_OVERLAY 0x00000200 /* Can do video output overlay */
#define V4L2_CAP_HW_FREQ_SEEK 0x00000400 /* Can do hardware fre-
quency seek */
#define V4L2_CAP_RDS_OUTPUT 0x00000800 /* Is an RDS encoder */

/* Is a video capture device that supports multiplanar formats */
#define V4L2_CAP_VIDEO_CAPTURE_MPLANE 0x00001000
/* Is a video output device that supports multiplanar formats */
#define V4L2_CAP_VIDEO_OUTPUT_MPLANE 0x00002000
/* Is a video mem-to-mem device that supports multiplanar formats */
#define V4L2_CAP_VIDEO_M2M_MPLANE 0x00004000
/* Is a video mem-to-mem device */
#define V4L2_CAP_VIDEO_M2M 0x00008000

#define V4L2_CAP_TUNER 0x00010000 /* has a tuner */
#define V4L2_CAP_AUDIO 0x00020000 /* has audio support */
#define V4L2_CAP_RADIO 0x00040000 /* is a radio device */
#define V4L2_CAP_MODULATOR 0x00080000 /* has a modulator */

#define V4L2_CAP_SDR_CAPTURE 0x00100000 /* Is a SDR capture device */
#define V4L2_CAP_EXT_PIX_FORMAT 0x00200000 /* Supports the ex-
tended pixel format */
#define V4L2_CAP_SDR_OUTPUT 0x00400000 /* Is a SDR output device */
#define V4L2_CAP_META_CAPTURE 0x00800000 /* Is a metadata capture de-
vice */

#define V4L2_CAP_READWRITE 0x01000000 /* read/write systemcalls */
#define V4L2_CAP_ASYNCIO 0x02000000 /* async I/O */
#define V4L2_CAP_STREAMING 0x04000000 /* streaming I/O ioctls */

#define V4L2_CAP_TOUCH 0x10000000 /* Is a touch device */

#define V4L2_CAP_DEVICE_CAPS 0x80000000 /* sets device capabili-
ties field */

/*
* V I D E O I M A G E F O R M A T
*/

struct v4l2_pix_format
{

__u32 width;
__u32 height;
__u32 pixelformat;
__u32 field; /* enum v4l2_field

*/
__u32 bytesperline; /* for padding, zero if unused */
__u32 sizeimage;
__u32 colorspace; /* enum v4l2_colorspace

1.2. Part I - Video for Linux API 325

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

*/
__u32 priv; /* private data, depends on pixelfor-

mat */
__u32 flags; /* format flags (V4L2_PIX_FMT_FLAG_*) */
union {

/* enum v4l2_ycbcr_encoding
*/

__u32 ycbcr_enc;
/* enum v4l2_hsv_encoding

*/
__u32 hsv_enc;

};
__u32 quantization; /* enum v4l2_quantization

*/
__u32 xfer_func; /* enum v4l2_xfer_func

*/
};

/* Pixel format FOURCC depth Description */

/* RGB formats */
#define V4L2_PIX_FMT_RGB332 v4l2_fourcc(`R', `G', `B', `1') /* 8 RGB-3-3-2 */
#define V4L2_PIX_FMT_RGB444 v4l2_fourcc(`R', `4', `4', `4') /* 16 xxxxrrrr gggg-
bbbb */
#define V4L2_PIX_FMT_ARGB444 v4l2_fourcc(`A', `R', `1', `2') /* 16 aaaarrrr gggg-
bbbb */
#define V4L2_PIX_FMT_XRGB444 v4l2_fourcc(`X', `R', `1', `2') /* 16 xxxxrrrr gggg-
bbbb */
#define V4L2_PIX_FMT_RGB555 v4l2_fourcc(`R', `G', `B', `O') /* 16 RGB-5-5-5 */
#define V4L2_PIX_FMT_ARGB555 v4l2_fourcc(`A', `R', `1', `5') /* 16 ARGB-1-5-5-5 */
#define V4L2_PIX_FMT_XRGB555 v4l2_fourcc(`X', `R', `1', `5') /* 16 XRGB-1-5-5-5 */
#define V4L2_PIX_FMT_RGB565 v4l2_fourcc(`R', `G', `B', `P') /* 16 RGB-5-6-5 */
#define V4L2_PIX_FMT_RGB555X v4l2_fourcc(`R', `G', `B', `Q') /* 16 RGB-5-5-5 BE */
#define V4L2_PIX_FMT_ARGB555X v4l2_fourcc_be(`A', `R', `1', `5') /* 16 ARGB-5-5-
5 BE */
#define V4L2_PIX_FMT_XRGB555X v4l2_fourcc_be(`X', `R', `1', `5') /* 16 XRGB-5-5-
5 BE */
#define V4L2_PIX_FMT_RGB565X v4l2_fourcc(`R', `G', `B', `R') /* 16 RGB-5-6-5 BE */
#define V4L2_PIX_FMT_BGR666 v4l2_fourcc(`B', `G', `R', `H') /* 18 BGR-6-6-6 */
#define V4L2_PIX_FMT_BGR24 v4l2_fourcc(`B', `G', `R', `3') /* 24 BGR-8-8-8 */
#define V4L2_PIX_FMT_RGB24 v4l2_fourcc(`R', `G', `B', `3') /* 24 RGB-8-8-8 */
#define V4L2_PIX_FMT_BGR32 v4l2_fourcc(`B', `G', `R', `4') /* 32 BGR-8-8-8-8 */
#define V4L2_PIX_FMT_ABGR32 v4l2_fourcc(`A', `R', `2', `4') /* 32 BGRA-8-8-8-8 */
#define V4L2_PIX_FMT_XBGR32 v4l2_fourcc(`X', `R', `2', `4') /* 32 BGRX-8-8-8-8 */
#define V4L2_PIX_FMT_RGB32 v4l2_fourcc(`R', `G', `B', `4') /* 32 RGB-8-8-8-8 */
#define V4L2_PIX_FMT_ARGB32 v4l2_fourcc(`B', `A', `2', `4') /* 32 ARGB-8-8-8-8 */
#define V4L2_PIX_FMT_XRGB32 v4l2_fourcc(`B', `X', `2', `4') /* 32 XRGB-8-8-8-8 */

/* Grey formats */
#define V4L2_PIX_FMT_GREY v4l2_fourcc(`G', `R', `E', `Y') /* 8 Greyscale */
#define V4L2_PIX_FMT_Y4 v4l2_fourcc(`Y', `0', `4', ` `) /* 4 Greyscale */
#define V4L2_PIX_FMT_Y6 v4l2_fourcc(`Y', `0', `6', ` `) /* 6 Greyscale */
#define V4L2_PIX_FMT_Y10 v4l2_fourcc(`Y', `1', `0', ` `) /* 10 Greyscale */
#define V4L2_PIX_FMT_Y12 v4l2_fourcc(`Y', `1', `2', ` `) /* 12 Greyscale */
#define V4L2_PIX_FMT_Y16 v4l2_fourcc(`Y', `1', `6', ` `) /* 16 Greyscale */
#define V4L2_PIX_FMT_Y16_BE v4l2_fourcc_be(`Y', `1', `6', ` `) /* 16 Greyscale BE */

/* Grey bit-packed formats */

326 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define V4L2_PIX_FMT_Y10BPACK v4l2_fourcc(`Y', `1', `0', `B') /* 10 Greyscale bit-
packed */

/* Palette formats */
#define V4L2_PIX_FMT_PAL8 v4l2_fourcc(`P', `A', `L', `8') /* 8 8-bit palette */

/* Chrominance formats */
#define V4L2_PIX_FMT_UV8 v4l2_fourcc(`U', `V', `8', ` `) /* 8 UV 4:4 */

/* Luminance+Chrominance formats */
#define V4L2_PIX_FMT_YUYV v4l2_fourcc(`Y', `U', `Y', `V') /* 16 YUV 4:2:2 */
#define V4L2_PIX_FMT_YYUV v4l2_fourcc(`Y', `Y', `U', `V') /* 16 YUV 4:2:2 */
#define V4L2_PIX_FMT_YVYU v4l2_fourcc(`Y', `V', `Y', `U') /* 16 YVU 4:2:2 */
#define V4L2_PIX_FMT_UYVY v4l2_fourcc(`U', `Y', `V', `Y') /* 16 YUV 4:2:2 */
#define V4L2_PIX_FMT_VYUY v4l2_fourcc(`V', `Y', `U', `Y') /* 16 YUV 4:2:2 */
#define V4L2_PIX_FMT_Y41P v4l2_fourcc(`Y', `4', `1', `P') /* 12 YUV 4:1:1 */
#define V4L2_PIX_FMT_YUV444 v4l2_fourcc(`Y', `4', `4', `4') /* 16 xxxxyyyy uuu-
uvvvv */
#define V4L2_PIX_FMT_YUV555 v4l2_fourcc(`Y', `U', `V', `O') /* 16 YUV-5-5-5 */
#define V4L2_PIX_FMT_YUV565 v4l2_fourcc(`Y', `U', `V', `P') /* 16 YUV-5-6-5 */
#define V4L2_PIX_FMT_YUV32 v4l2_fourcc(`Y', `U', `V', `4') /* 32 YUV-8-8-8-8 */
#define V4L2_PIX_FMT_HI240 v4l2_fourcc(`H', `I', `2', `4') /* 8 8-bit color */
#define V4L2_PIX_FMT_HM12 v4l2_fourcc(`H', `M', `1', `2') /* 8 YUV 4:2:0 16x16 mac-
roblocks */
#define V4L2_PIX_FMT_M420 v4l2_fourcc(`M', `4', `2', `0') /* 12 YUV 4:2:0 2 lines y, 1 line uv in-
terleaved */

/* two planes -- one Y, one Cr + Cb interleaved */
#define V4L2_PIX_FMT_NV12 v4l2_fourcc(`N', `V', `1', `2') /* 12 Y/CbCr 4:2:0 */
#define V4L2_PIX_FMT_NV21 v4l2_fourcc(`N', `V', `2', `1') /* 12 Y/CrCb 4:2:0 */
#define V4L2_PIX_FMT_NV16 v4l2_fourcc(`N', `V', `1', `6') /* 16 Y/CbCr 4:2:2 */
#define V4L2_PIX_FMT_NV61 v4l2_fourcc(`N', `V', `6', `1') /* 16 Y/CrCb 4:2:2 */
#define V4L2_PIX_FMT_NV24 v4l2_fourcc(`N', `V', `2', `4') /* 24 Y/CbCr 4:4:4 */
#define V4L2_PIX_FMT_NV42 v4l2_fourcc(`N', `V', `4', `2') /* 24 Y/CrCb 4:4:4 */

/* two non contiguous planes - one Y, one Cr + Cb interleaved */
#define V4L2_PIX_FMT_NV12M v4l2_fourcc(`N', `M', `1', `2') /* 12 Y/CbCr 4:2:0 */
#define V4L2_PIX_FMT_NV21M v4l2_fourcc(`N', `M', `2', `1') /* 21 Y/CrCb 4:2:0 */
#define V4L2_PIX_FMT_NV16M v4l2_fourcc(`N', `M', `1', `6') /* 16 Y/CbCr 4:2:2 */
#define V4L2_PIX_FMT_NV61M v4l2_fourcc(`N', `M', `6', `1') /* 16 Y/CrCb 4:2:2 */
#define V4L2_PIX_FMT_NV12MT v4l2_fourcc(`T', `M', `1', `2') /* 12 Y/CbCr 4:2:0 64x32 mac-
roblocks */
#define V4L2_PIX_FMT_NV12MT_16X16 v4l2_fourcc(`V', `M', `1', `2') /* 12 Y/CbCr 4:2:0 16x16 mac-
roblocks */

/* three planes - Y Cb, Cr */
#define V4L2_PIX_FMT_YUV410 v4l2_fourcc(`Y', `U', `V', `9') /* 9 YUV 4:1:0 */
#define V4L2_PIX_FMT_YVU410 v4l2_fourcc(`Y', `V', `U', `9') /* 9 YVU 4:1:0 */
#define V4L2_PIX_FMT_YUV411P v4l2_fourcc(`4', `1', `1', `P') /* 12 YVU411 planar */
#define V4L2_PIX_FMT_YUV420 v4l2_fourcc(`Y', `U', `1', `2') /* 12 YUV 4:2:0 */
#define V4L2_PIX_FMT_YVU420 v4l2_fourcc(`Y', `V', `1', `2') /* 12 YVU 4:2:0 */
#define V4L2_PIX_FMT_YUV422P v4l2_fourcc(`4', `2', `2', `P') /* 16 YVU422 planar */

/* three non contiguous planes - Y, Cb, Cr */
#define V4L2_PIX_FMT_YUV420M v4l2_fourcc(`Y', `M', `1', `2') /* 12 YUV420 planar */
#define V4L2_PIX_FMT_YVU420M v4l2_fourcc(`Y', `M', `2', `1') /* 12 YVU420 planar */
#define V4L2_PIX_FMT_YUV422M v4l2_fourcc(`Y', `M', `1', `6') /* 16 YUV422 planar */
#define V4L2_PIX_FMT_YVU422M v4l2_fourcc(`Y', `M', `6', `1') /* 16 YVU422 planar */

1.2. Part I - Video for Linux API 327

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define V4L2_PIX_FMT_YUV444M v4l2_fourcc(`Y', `M', `2', `4') /* 24 YUV444 planar */
#define V4L2_PIX_FMT_YVU444M v4l2_fourcc(`Y', `M', `4', `2') /* 24 YVU444 planar */

/* Bayer formats - see http://www.siliconimaging.com/RGB%20Bayer.htm */
#define V4L2_PIX_FMT_SBGGR8 v4l2_fourcc(`B', `A', `8', `1') /* 8 BGBG.. GRGR.. */
#define V4L2_PIX_FMT_SGBRG8 v4l2_fourcc(`G', `B', `R', `G') /* 8 GBGB.. RGRG.. */
#define V4L2_PIX_FMT_SGRBG8 v4l2_fourcc(`G', `R', `B', `G') /* 8 GRGR.. BGBG.. */
#define V4L2_PIX_FMT_SRGGB8 v4l2_fourcc(`R', `G', `G', `B') /* 8 RGRG.. GBGB.. */
#define V4L2_PIX_FMT_SBGGR10 v4l2_fourcc(`B', `G', `1', `0') /* 10 BGBG.. GRGR.. */
#define V4L2_PIX_FMT_SGBRG10 v4l2_fourcc(`G', `B', `1', `0') /* 10 GBGB.. RGRG.. */
#define V4L2_PIX_FMT_SGRBG10 v4l2_fourcc(`B', `A', `1', `0') /* 10 GRGR.. BGBG.. */
#define V4L2_PIX_FMT_SRGGB10 v4l2_fourcc(`R', `G', `1', `0') /* 10 RGRG.. GBGB.. */

/* 10bit raw bayer packed, 5 bytes for every 4 pixels */
#define V4L2_PIX_FMT_SBGGR10P v4l2_fourcc(`p', `B', `A', `A')
#define V4L2_PIX_FMT_SGBRG10P v4l2_fourcc(`p', `G', `A', `A')
#define V4L2_PIX_FMT_SGRBG10P v4l2_fourcc(`p', `g', `A', `A')
#define V4L2_PIX_FMT_SRGGB10P v4l2_fourcc(`p', `R', `A', `A')

/* 10bit raw bayer a-law compressed to 8 bits */
#define V4L2_PIX_FMT_SBGGR10ALAW8 v4l2_fourcc(`a', `B', `A', `8')
#define V4L2_PIX_FMT_SGBRG10ALAW8 v4l2_fourcc(`a', `G', `A', `8')
#define V4L2_PIX_FMT_SGRBG10ALAW8 v4l2_fourcc(`a', `g', `A', `8')
#define V4L2_PIX_FMT_SRGGB10ALAW8 v4l2_fourcc(`a', `R', `A', `8')

/* 10bit raw bayer DPCM compressed to 8 bits */
#define V4L2_PIX_FMT_SBGGR10DPCM8 v4l2_fourcc(`b', `B', `A', `8')
#define V4L2_PIX_FMT_SGBRG10DPCM8 v4l2_fourcc(`b', `G', `A', `8')
#define V4L2_PIX_FMT_SGRBG10DPCM8 v4l2_fourcc(`B', `D', `1', `0')
#define V4L2_PIX_FMT_SRGGB10DPCM8 v4l2_fourcc(`b', `R', `A', `8')
#define V4L2_PIX_FMT_SBGGR12 v4l2_fourcc(`B', `G', `1', `2') /* 12 BGBG.. GRGR.. */
#define V4L2_PIX_FMT_SGBRG12 v4l2_fourcc(`G', `B', `1', `2') /* 12 GBGB.. RGRG.. */
#define V4L2_PIX_FMT_SGRBG12 v4l2_fourcc(`B', `A', `1', `2') /* 12 GRGR.. BGBG.. */
#define V4L2_PIX_FMT_SRGGB12 v4l2_fourcc(`R', `G', `1', `2') /* 12 RGRG.. GBGB.. */

/* 12bit raw bayer packed, 6 bytes for every 4 pixels */
#define V4L2_PIX_FMT_SBGGR12P v4l2_fourcc(`p', `B', `C', `C')
#define V4L2_PIX_FMT_SGBRG12P v4l2_fourcc(`p', `G', `C', `C')
#define V4L2_PIX_FMT_SGRBG12P v4l2_fourcc(`p', `g', `C', `C')
#define V4L2_PIX_FMT_SRGGB12P v4l2_fourcc(`p', `R', `C', `C')
#define V4L2_PIX_FMT_SBGGR16 v4l2_fourcc(`B', `Y', `R', `2') /* 16 BGBG.. GRGR.. */
#define V4L2_PIX_FMT_SGBRG16 v4l2_fourcc(`G', `B', `1', `6') /* 16 GBGB.. RGRG.. */
#define V4L2_PIX_FMT_SGRBG16 v4l2_fourcc(`G', `R', `1', `6') /* 16 GRGR.. BGBG.. */
#define V4L2_PIX_FMT_SRGGB16 v4l2_fourcc(`R', `G', `1', `6') /* 16 RGRG.. GBGB.. */

/* HSV formats */
#define V4L2_PIX_FMT_HSV24 v4l2_fourcc(`H', `S', `V', `3')
#define V4L2_PIX_FMT_HSV32 v4l2_fourcc(`H', `S', `V', `4')

/* compressed formats */
#define V4L2_PIX_FMT_MJPEG v4l2_fourcc(`M', `J', `P', `G') /* Motion-JPEG */
#define V4L2_PIX_FMT_JPEG v4l2_fourcc(`J', `P', `E', `G') /* JFIF JPEG */
#define V4L2_PIX_FMT_DV v4l2_fourcc(`d', `v', `s', `d') /* 1394 */
#define V4L2_PIX_FMT_MPEG v4l2_fourcc(`M', `P', `E', `G') /* MPEG-1/2/4 Multi-
plexed */
#define V4L2_PIX_FMT_H264 v4l2_fourcc(`H', `2', `6', `4') /* H264 with start codes */
#define V4L2_PIX_FMT_H264_NO_SC v4l2_fourcc(`A', `V', `C', `1') /* H264 with-
out start codes */
#define V4L2_PIX_FMT_H264_MVC v4l2_fourcc(`M', `2', `6', `4') /* H264 MVC */
#define V4L2_PIX_FMT_H263 v4l2_fourcc(`H', `2', `6', `3') /* H263 */
#define V4L2_PIX_FMT_MPEG1 v4l2_fourcc(`M', `P', `G', `1') /* MPEG-1 ES */
#define V4L2_PIX_FMT_MPEG2 v4l2_fourcc(`M', `P', `G', `2') /* MPEG-2 ES */

328 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define V4L2_PIX_FMT_MPEG4 v4l2_fourcc(`M', `P', `G', `4') /* MPEG-4 part 2 ES */
#define V4L2_PIX_FMT_XVID v4l2_fourcc(`X', `V', `I', `D') /* Xvid */
#define V4L2_PIX_FMT_VC1_ANNEX_G v4l2_fourcc(`V', `C', `1', `G') /* SMPTE 421M An-
nex G compliant stream */
#define V4L2_PIX_FMT_VC1_ANNEX_L v4l2_fourcc(`V', `C', `1', `L') /* SMPTE 421M An-
nex L compliant stream */
#define V4L2_PIX_FMT_VP8 v4l2_fourcc(`V', `P', `8', `0') /* VP8 */
#define V4L2_PIX_FMT_VP9 v4l2_fourcc(`V', `P', `9', `0') /* VP9 */

/* Vendor-specific formats */
#define V4L2_PIX_FMT_CPIA1 v4l2_fourcc(`C', `P', `I', `A') /* cpia1 YUV */
#define V4L2_PIX_FMT_WNVA v4l2_fourcc(`W', `N', `V', `A') /* Winnov hw com-
press */
#define V4L2_PIX_FMT_SN9C10X v4l2_fourcc(`S', `9', `1', `0') /* SN9C10x compres-
sion */
#define V4L2_PIX_FMT_SN9C20X_I420 v4l2_fourcc(`S', `9', `2', `0') /* SN9C20x YUV 4:2:0 */
#define V4L2_PIX_FMT_PWC1 v4l2_fourcc(`P', `W', `C', `1') /* pwc older webcam */
#define V4L2_PIX_FMT_PWC2 v4l2_fourcc(`P', `W', `C', `2') /* pwc newer webcam */
#define V4L2_PIX_FMT_ET61X251 v4l2_fourcc(`E', `6', `2', `5') /* ET61X251 compres-
sion */
#define V4L2_PIX_FMT_SPCA501 v4l2_fourcc(`S', `5', `0', `1') /* YUYV per line */
#define V4L2_PIX_FMT_SPCA505 v4l2_fourcc(`S', `5', `0', `5') /* YYUV per line */
#define V4L2_PIX_FMT_SPCA508 v4l2_fourcc(`S', `5', `0', `8') /* YUVY per line */
#define V4L2_PIX_FMT_SPCA561 v4l2_fourcc(`S', `5', `6', `1') /* com-
pressed GBRG bayer */
#define V4L2_PIX_FMT_PAC207 v4l2_fourcc(`P', `2', `0', `7') /* com-
pressed BGGR bayer */
#define V4L2_PIX_FMT_MR97310A v4l2_fourcc(`M', `3', `1', `0') /* com-
pressed BGGR bayer */
#define V4L2_PIX_FMT_JL2005BCD v4l2_fourcc(`J', `L', `2', `0') /* com-
pressed RGGB bayer */
#define V4L2_PIX_FMT_SN9C2028 v4l2_fourcc(`S', `O', `N', `X') /* com-
pressed GBRG bayer */
#define V4L2_PIX_FMT_SQ905C v4l2_fourcc(`9', `0', `5', `C') /* com-
pressed RGGB bayer */
#define V4L2_PIX_FMT_PJPG v4l2_fourcc(`P', `J', `P', `G') /* Pixart 73xx JPEG */
#define V4L2_PIX_FMT_OV511 v4l2_fourcc(`O', `5', `1', `1') /* ov511 JPEG */
#define V4L2_PIX_FMT_OV518 v4l2_fourcc(`O', `5', `1', `8') /* ov518 JPEG */
#define V4L2_PIX_FMT_STV0680 v4l2_fourcc(`S', `6', `8', `0') /* stv0680 bayer */
#define V4L2_PIX_FMT_TM6000 v4l2_fourcc(`T', `M', `6', `0') /* tm5600/tm60x0 */
#define V4L2_PIX_FMT_CIT_YYVYUY v4l2_fourcc(`C', `I', `T', `V') /* one line of Y then 1 line of VYUY */
#define V4L2_PIX_FMT_KONICA420 v4l2_fourcc(`K', `O', `N', `I') /* YUV420 pla-
nar in blocks of 256 pixels */
#define V4L2_PIX_FMT_JPGL v4l2_fourcc(`J', `P', `G', `L') /* JPEG-Lite */
#define V4L2_PIX_FMT_SE401 v4l2_fourcc(`S', `4', `0', `1') /* se401 janggu com-
pressed rgb */
#define V4L2_PIX_FMT_S5C_UYVY_JPG v4l2_fourcc(`S', `5', `C', `I') /* S5C73M3 inter-
leaved UYVY/JPEG */
#define V4L2_PIX_FMT_Y8I v4l2_fourcc(`Y', `8', `I', ` `) /* Greyscale 8-
bit L/R interleaved */
#define V4L2_PIX_FMT_Y12I v4l2_fourcc(`Y', `1', `2', `I') /* Greyscale 12-
bit L/R interleaved */
#define V4L2_PIX_FMT_Z16 v4l2_fourcc(`Z', `1', `6', ` `) /* Depth data 16-bit */
#define V4L2_PIX_FMT_MT21C v4l2_fourcc(`M', `T', `2', `1') /* Mediatek com-
pressed block mode */
#define V4L2_PIX_FMT_INZI v4l2_fourcc(`I', `N', `Z', `I') /* Intel Pla-
nar Greyscale 10-bit and Depth 16-bit */

1.2. Part I - Video for Linux API 329

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* SDR formats - used only for Software Defined Radio devices */
#define V4L2_SDR_FMT_CU8 v4l2_fourcc(`C', `U', `0', `8') /* IQ u8 */
#define V4L2_SDR_FMT_CU16LE v4l2_fourcc(`C', `U', `1', `6') /* IQ u16le */
#define V4L2_SDR_FMT_CS8 v4l2_fourcc(`C', `S', `0', `8') /* complex s8 */
#define V4L2_SDR_FMT_CS14LE v4l2_fourcc(`C', `S', `1', `4') /* complex s14le */
#define V4L2_SDR_FMT_RU12LE v4l2_fourcc(`R', `U', `1', `2') /* real u12le */
#define V4L2_SDR_FMT_PCU16BE v4l2_fourcc(`P', `C', `1', `6') /* planar com-
plex u16be */
#define V4L2_SDR_FMT_PCU18BE v4l2_fourcc(`P', `C', `1', `8') /* planar com-
plex u18be */
#define V4L2_SDR_FMT_PCU20BE v4l2_fourcc(`P', `C', `2', `0') /* planar com-
plex u20be */

/* Touch formats - used for Touch devices */
#define V4L2_TCH_FMT_DELTA_TD16 v4l2_fourcc(`T', `D', `1', `6') /* 16-
bit signed deltas */
#define V4L2_TCH_FMT_DELTA_TD08 v4l2_fourcc(`T', `D', `0', `8') /* 8-
bit signed deltas */
#define V4L2_TCH_FMT_TU16 v4l2_fourcc(`T', `U', `1', `6') /* 16-bit un-
signed touch data */
#define V4L2_TCH_FMT_TU08 v4l2_fourcc(`T', `U', `0', `8') /* 8-bit un-
signed touch data */

/* Meta-data formats */
#define V4L2_META_FMT_VSP1_HGO v4l2_fourcc(`V', `S', `P', `H') /* R-Car VSP1 1-
D Histogram */
#define V4L2_META_FMT_VSP1_HGT v4l2_fourcc(`V', `S', `P', `T') /* R-Car VSP1 2-
D Histogram */

/* priv field value to indicates that subsequent fields are valid. */
#define V4L2_PIX_FMT_PRIV_MAGIC

0xfeedcafe

/* Flags */
#define V4L2_PIX_FMT_FLAG_PREMUL_ALPHA 0x00000001

/*
* F O R M A T E N U M E R A T I O N
*/

struct v4l2_fmtdesc
{

__u32 index; /* Format number */
__u32 type; /* enum v4l2_buf_type

*/
__u32 flags;
__u8 description[32]; /* Description string */
__u32 pixelformat; /* Format fourcc */
__u32 reserved[4];

};

#define V4L2_FMT_FLAG_COMPRESSED 0x0001
#define V4L2_FMT_FLAG_EMULATED 0x0002

/* Frame Size and frame rate enumeration */
/*
* F R A M E S I Z E E N U M E R A T I O N
*/

enum v4l2_frmsizetypes

330 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

{
V4L2_FRMSIZE_TYPE_DISCRETE

= 1,
V4L2_FRMSIZE_TYPE_CONTINUOUS

= 2,
V4L2_FRMSIZE_TYPE_STEPWISE

= 3,
};

struct v4l2_frmsize_discrete
{

__u32 width; /* Frame width [pixel] */
__u32 height; /* Frame height [pixel] */

};

struct v4l2_frmsize_stepwise
{

__u32 min_width; /* Minimum frame width [pixel] */
__u32 max_width; /* Maximum frame width [pixel] */
__u32 step_width; /* Frame width step size [pixel] */
__u32 min_height; /* Minimum frame height [pixel] */
__u32 max_height; /* Maximum frame height [pixel] */
__u32 step_height; /* Frame height step size [pixel] */

};

struct v4l2_frmsizeenum
{

__u32 index; /* Frame size number */
__u32 pixel_format; /* Pixel format */
__u32 type; /* Frame size type the device sup-

ports. */

union { /* Frame size */
struct v4l2_frmsize_discrete

discrete;
struct v4l2_frmsize_stepwise

stepwise;
};

__u32 reserved[2]; /* Reserved space for future use */
};

/*
* F R A M E R A T E E N U M E R A T I O N
*/

enum v4l2_frmivaltypes
{

V4L2_FRMIVAL_TYPE_DISCRETE
= 1,

V4L2_FRMIVAL_TYPE_CONTINUOUS
= 2,

V4L2_FRMIVAL_TYPE_STEPWISE
= 3,

};

struct v4l2_frmival_stepwise
{

struct v4l2_fract

1.2. Part I - Video for Linux API 331

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

min; /* Minimum frame interval [s] */
struct v4l2_fract

max; /* Maximum frame interval [s] */
struct v4l2_fract

step; /* Frame interval step size [s] */
};

struct v4l2_frmivalenum
{

__u32 index; /* Frame format index */
__u32 pixel_format; /* Pixel format */
__u32 width; /* Frame width */
__u32 height; /* Frame height */
__u32 type; /* Frame interval type the device sup-

ports. */

union { /* Frame interval */
struct v4l2_fract

discrete;
struct v4l2_frmival_stepwise

stepwise;
};

__u32 reserved[2]; /* Reserved space for future use */
};

/*
* T I M E C O D E
*/

struct v4l2_timecode
{

__u32 type;
__u32 flags;
__u8 frames;
__u8 seconds;
__u8 minutes;
__u8 hours;
__u8 userbits[4];

};

/* Type */
#define V4L2_TC_TYPE_24FPS 1
#define V4L2_TC_TYPE_25FPS 2
#define V4L2_TC_TYPE_30FPS 3
#define V4L2_TC_TYPE_50FPS 4
#define V4L2_TC_TYPE_60FPS 5

/* Flags */
#define V4L2_TC_FLAG_DROPFRAME 0x0001 /* ``drop-frame'' mode */
#define V4L2_TC_FLAG_COLORFRAME 0x0002
#define V4L2_TC_USERBITS_field 0x000C
#define V4L2_TC_USERBITS_USERDEFINED 0x0000
#define V4L2_TC_USERBITS_8BITCHARS 0x0008
/* The above is based on SMPTE timecodes */

struct v4l2_jpegcompression
{

int quality;

332 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int APPn; /* Number of APP segment to be written,
* must be 0..15 */

int APP_len; /* Length of data in JPEG APPn segment */
char APP_data[60]; /* Data in the JPEG APPn segment. */

int COM_len; /* Length of data in JPEG COM segment */
char COM_data[60]; /* Data in JPEG COM segment */

__u32 jpeg_markers; /* Which markers should go into the JPEG
* output. Unless you exactly know what
* you do, leave them untouched.
* Including less markers will make the
* resulting code smaller, but there will
* be fewer applications which can read it.
* The presence of the APP and COM marker
* is influenced by APP_len and COM_len
* ONLY, not by this property! */

#define V4L2_JPEG_MARKER_DHT (1<<3) /* Define Huffman Tables */
#define V4L2_JPEG_MARKER_DQT (1<<4) /* Define Quantization Tables */
#define V4L2_JPEG_MARKER_DRI (1<<5) /* Define Restart Interval */
#define V4L2_JPEG_MARKER_COM (1<<6) /* Comment segment */
#define V4L2_JPEG_MARKER_APP (1<<7) /* App segment, driver will

* always use APP0 */
};

/*
* M E M O R Y - M A P P I N G B U F F E R S
*/

struct v4l2_requestbuffers
{

__u32 count;
__u32 type; /* enum v4l2_buf_type

*/
__u32 memory; /* enum v4l2_memory

*/
__u32 reserved[2];

};

/**
* struct v4l2_plane
- plane info for multi-planar buffers
* @bytesused: number of bytes occupied by data in the plane (payload)
* @length: size of this plane (NOT the payload) in bytes
* @mem_offset: when memory in the associated struct v4l2_buffer
is
* V4L2_MEMORY_MMAP

, equals the offset from the start of
* the device memory for this plane (or is a ``cookie'' that
* should be passed to mmap() called on the video node)
* @userptr: when memory is V4L2_MEMORY_USERPTR

, a userspace pointer
* pointing to this plane
* @fd: when memory is V4L2_MEMORY_DMABUF

, a userspace file
* descriptor associated with this plane
* @data_offset: offset in the plane to the start of data; usually 0,

1.2. Part I - Video for Linux API 333

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* unless there is a header in front of the data
*
* Multi-planar buffers consist of one or more planes, e.g. an YCbCr buffer
* with two planes can have one plane for Y, and another for interleaved CbCr
* components. Each plane can reside in a separate memory buffer, or even in
* a completely separate memory node (e.g. in embedded devices).
*/

struct v4l2_plane
{

__u32 bytesused;
__u32 length;
union {

__u32 mem_offset;
unsigned long userptr;
__s32 fd;

} m;
__u32 data_offset;
__u32 reserved[11];

};

/**
* struct v4l2_buffer
- video buffer info
* @index: id number of the buffer
* @type: enum v4l2_buf_type

; buffer type (type == *_MPLANE for
* multiplanar buffers);
* @bytesused: number of bytes occupied by data in the buffer (payload);
* unused (set to 0) for multiplanar buffers
* @flags: buffer informational flags
* @field: enum v4l2_field

; field order of the image in the buffer
* @timestamp: frame timestamp
* @timecode: frame timecode
* @sequence: sequence count of this frame
* @memory: enum v4l2_memory

; the method, in which the actual video data is
* passed
* @offset: for non-multiplanar buffers with memory == V4L2_MEMORY_MMAP

;
* offset from the start of the device memory for this plane,
* (or a ``cookie'' that should be passed to mmap() as offset)
* @userptr: for non-multiplanar buffers with memory == V4L2_MEMORY_USERPTR

;
* a userspace pointer pointing to this buffer
* @fd: for non-multiplanar buffers with memory == V4L2_MEMORY_DMABUF

;
* a userspace file descriptor associated with this buffer
* @planes: for multiplanar buffers; userspace pointer to the array of plane
* info structs for this buffer
* @length: size in bytes of the buffer (NOT its payload) for single-plane
* buffers (when type != *_MPLANE); number of elements in the
* planes array for multi-plane buffers
*
* Contains data exchanged by application and driver using one of the Streaming
* I/O methods.
*/

struct v4l2_buffer

334 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

{
__u32 index;
__u32 type;
__u32 bytesused;
__u32 flags;
__u32 field;
struct timeval timestamp;
struct v4l2_timecode

timecode;
__u32 sequence;

/* memory location */
__u32 memory;
union {

__u32 offset;
unsigned long userptr;
struct v4l2_plane

*planes;
__s32 fd;

} m;
__u32 length;
__u32 reserved2;
__u32 reserved;

};

/* Flags for `flags' field */
/* Buffer is mapped (flag) */
#define V4L2_BUF_FLAG_MAPPED 0x00000001
/* Buffer is queued for processing */
#define V4L2_BUF_FLAG_QUEUED 0x00000002
/* Buffer is ready */
#define V4L2_BUF_FLAG_DONE 0x00000004
/* Image is a keyframe (I-frame) */
#define V4L2_BUF_FLAG_KEYFRAME 0x00000008
/* Image is a P-frame */
#define V4L2_BUF_FLAG_PFRAME 0x00000010
/* Image is a B-frame */
#define V4L2_BUF_FLAG_BFRAME 0x00000020
/* Buffer is ready, but the data contained within is corrupted. */
#define V4L2_BUF_FLAG_ERROR 0x00000040
/* timecode field is valid */
#define V4L2_BUF_FLAG_TIMECODE 0x00000100
/* Buffer is prepared for queuing */
#define V4L2_BUF_FLAG_PREPARED 0x00000400
/* Cache handling flags */
#define V4L2_BUF_FLAG_NO_CACHE_INVALIDATE 0x00000800
#define V4L2_BUF_FLAG_NO_CACHE_CLEAN 0x00001000
/* Timestamp type */
#define V4L2_BUF_FLAG_TIMESTAMP_MASK 0x0000e000
#define V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN 0x00000000
#define V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC 0x00002000
#define V4L2_BUF_FLAG_TIMESTAMP_COPY 0x00004000
/* Timestamp sources. */
#define V4L2_BUF_FLAG_TSTAMP_SRC_MASK 0x00070000
#define V4L2_BUF_FLAG_TSTAMP_SRC_EOF 0x00000000
#define V4L2_BUF_FLAG_TSTAMP_SRC_SOE 0x00010000
/* mem2mem encoder/decoder */
#define V4L2_BUF_FLAG_LAST 0x00100000

1.2. Part I - Video for Linux API 335

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/**
* struct v4l2_exportbuffer
- export of video buffer as DMABUF file descriptor
*
* @index: id number of the buffer
* @type: enum v4l2_buf_type

; buffer type (type == *_MPLANE for
* multiplanar buffers);
* @plane: index of the plane to be exported, 0 for single plane queues
* @flags: flags for newly created file, currently only O_CLOEXEC is
* supported, refer to manual of open syscall for more details
* @fd: file descriptor associated with DMABUF (set by driver)
*
* Contains data used for exporting a video buffer as DMABUF file descriptor.
* The buffer is identified by a `cookie' returned by VIDIOC_QUERYBUF
* (identical to the cookie used to mmap() the buffer to userspace). All
* reserved fields must be set to zero. The field reserved0 is expected to
* become a structure `type' allowing an alternative layout of the structure
* content. Therefore this field should not be used for any other extensions.
*/

struct v4l2_exportbuffer
{

__u32 type; /* enum v4l2_buf_type
*/

__u32 index;
__u32 plane;
__u32 flags;
__s32 fd;
__u32 reserved[11];

};

/*
* O V E R L A Y P R E V I E W
*/

struct v4l2_framebuffer
{

__u32 capability;
__u32 flags;

/* FIXME: in theory we should pass something like PCI device + memory
* region + offset instead of some physical address */

void *base;
struct {

__u32 width;
__u32 height;
__u32 pixelformat;
__u32 field; /* enum v4l2_field

*/
__u32 bytesperline; /* for padding, zero if unused */
__u32 sizeimage;
__u32 colorspace; /* enum v4l2_colorspace

*/
__u32 priv; /* reserved field, set to 0 */

} fmt;
};
/* Flags for the `capability' field. Read only */
#define V4L2_FBUF_CAP_EXTERNOVERLAY 0x0001
#define V4L2_FBUF_CAP_CHROMAKEY 0x0002

336 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define V4L2_FBUF_CAP_LIST_CLIPPING 0x0004
#define V4L2_FBUF_CAP_BITMAP_CLIPPING 0x0008
#define V4L2_FBUF_CAP_LOCAL_ALPHA 0x0010
#define V4L2_FBUF_CAP_GLOBAL_ALPHA 0x0020
#define V4L2_FBUF_CAP_LOCAL_INV_ALPHA 0x0040
#define V4L2_FBUF_CAP_SRC_CHROMAKEY 0x0080
/* Flags for the `flags' field. */
#define V4L2_FBUF_FLAG_PRIMARY 0x0001
#define V4L2_FBUF_FLAG_OVERLAY 0x0002
#define V4L2_FBUF_FLAG_CHROMAKEY 0x0004
#define V4L2_FBUF_FLAG_LOCAL_ALPHA 0x0008
#define V4L2_FBUF_FLAG_GLOBAL_ALPHA 0x0010
#define V4L2_FBUF_FLAG_LOCAL_INV_ALPHA 0x0020
#define V4L2_FBUF_FLAG_SRC_CHROMAKEY 0x0040

struct v4l2_clip
{

struct v4l2_rect
c;
struct v4l2_clip
__user *next;

};

struct v4l2_window
{

struct v4l2_rect
w;
__u32 field; /* enum v4l2_field

*/
__u32 chromakey;
struct v4l2_clip
__user *clips;
__u32 clipcount;
void __user *bitmap;
__u8 global_alpha;

};

/*
* C A P T U R E P A R A M E T E R S
*/

struct v4l2_captureparm
{

__u32 capability; /* Supported modes */
__u32 capturemode; /* Current mode */
struct v4l2_fract

timeperframe; /* Time per frame in seconds */
__u32 extendedmode; /* Driver-specific extensions */
__u32 readbuffers; /* # of buffers for read */
__u32 reserved[4];

};

/* Flags for `capability' and `capturemode' fields */
#define V4L2_MODE_HIGHQUALITY 0x0001 /* High quality imaging mode */
#define V4L2_CAP_TIMEPERFRAME

0x1000 /* timeperframe field is supported */

struct v4l2_outputparm
{

1.2. Part I - Video for Linux API 337

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

__u32 capability; /* Supported modes */
__u32 outputmode; /* Current mode */
struct v4l2_fract

timeperframe; /* Time per frame in seconds */
__u32 extendedmode; /* Driver-specific extensions */
__u32 writebuffers; /* # of buffers for write */
__u32 reserved[4];

};

/*
* I N P U T I M A G E C R O P P I N G
*/

struct v4l2_cropcap
{

__u32 type; /* enum v4l2_buf_type
*/

struct v4l2_rect
bounds;
struct v4l2_rect
defrect;
struct v4l2_fract

pixelaspect;
};

struct v4l2_crop
{

__u32 type; /* enum v4l2_buf_type
*/

struct v4l2_rect
c;

};

/**
* struct v4l2_selection
- selection info
* @type: buffer type (do not use *_MPLANE types)
* @target: Selection target, used to choose one of possible rectangles;
* defined in v4l2-common.h; V4L2_SEL_TGT_* .
* @flags: constraints flags, defined in v4l2-common.h; V4L2_SEL_FLAG_*.
* @r: coordinates of selection window
* @reserved: for future use, rounds structure size to 64 bytes, set to zero
*
* Hardware may use multiple helper windows to process a video stream.
* The structure is used to exchange this selection areas between
* an application and a driver.
*/

struct v4l2_selection
{

__u32 type;
__u32 target;
__u32 flags;
struct v4l2_rect
r;
__u32 reserved[9];

};

/*
* A N A L O G V I D E O S T A N D A R D

338 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

*/

typedef __u64 v4l2_std_id;

/* one bit for each */
#define V4L2_STD_PAL_B ((v4l2_std_id)0x00000001)
#define V4L2_STD_PAL_B1 ((v4l2_std_id)0x00000002)
#define V4L2_STD_PAL_G ((v4l2_std_id)0x00000004)
#define V4L2_STD_PAL_H ((v4l2_std_id)0x00000008)
#define V4L2_STD_PAL_I ((v4l2_std_id)0x00000010)
#define V4L2_STD_PAL_D ((v4l2_std_id)0x00000020)
#define V4L2_STD_PAL_D1 ((v4l2_std_id)0x00000040)
#define V4L2_STD_PAL_K ((v4l2_std_id)0x00000080)

#define V4L2_STD_PAL_M ((v4l2_std_id)0x00000100)
#define V4L2_STD_PAL_N ((v4l2_std_id)0x00000200)
#define V4L2_STD_PAL_Nc ((v4l2_std_id)0x00000400)
#define V4L2_STD_PAL_60 ((v4l2_std_id)0x00000800)

#define V4L2_STD_NTSC_M ((v4l2_std_id)0x00001000) /* BTSC */
#define V4L2_STD_NTSC_M_JP ((v4l2_std_id)0x00002000) /* EIA-J */
#define V4L2_STD_NTSC_443 ((v4l2_std_id)0x00004000)
#define V4L2_STD_NTSC_M_KR ((v4l2_std_id)0x00008000) /* FM A2 */

#define V4L2_STD_SECAM_B ((v4l2_std_id)0x00010000)
#define V4L2_STD_SECAM_D ((v4l2_std_id)0x00020000)
#define V4L2_STD_SECAM_G ((v4l2_std_id)0x00040000)
#define V4L2_STD_SECAM_H ((v4l2_std_id)0x00080000)
#define V4L2_STD_SECAM_K ((v4l2_std_id)0x00100000)
#define V4L2_STD_SECAM_K1 ((v4l2_std_id)0x00200000)
#define V4L2_STD_SECAM_L ((v4l2_std_id)0x00400000)
#define V4L2_STD_SECAM_LC ((v4l2_std_id)0x00800000)

/* ATSC/HDTV */
#define V4L2_STD_ATSC_8_VSB ((v4l2_std_id)0x01000000)
#define V4L2_STD_ATSC_16_VSB ((v4l2_std_id)0x02000000)

/* FIXME:
Although std_id is 64 bits, there is an issue on PPC32 architecture that
makes switch(__u64) to break. So, there's a hack on v4l2-common.c rounding
this value to 32 bits.
As, currently, the max value is for V4L2_STD_ATSC_16_VSB (30 bits wide),
it should work fine. However, if needed to add more than two standards,
v4l2-common.c should be fixed.

*/

/*
* Some macros to merge video standards in order to make live easier for the
* drivers and V4L2 applications
*/

/*
* ``Common'' NTSC/M - It should be noticed that V4L2_STD_NTSC_443 is
* Missing here.
*/

#define V4L2_STD_NTSC (V4L2_STD_NTSC_M |\
V4L2_STD_NTSC_M_JP |\
V4L2_STD_NTSC_M_KR)

1.2. Part I - Video for Linux API 339

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* Secam macros */
#define V4L2_STD_SECAM_DK (V4L2_STD_SECAM_D |\

V4L2_STD_SECAM_K |\
V4L2_STD_SECAM_K1)

/* All Secam Standards */
#define V4L2_STD_SECAM (V4L2_STD_SECAM_B |\

V4L2_STD_SECAM_G |\
V4L2_STD_SECAM_H |\
V4L2_STD_SECAM_DK |\
V4L2_STD_SECAM_L |\
V4L2_STD_SECAM_LC)

/* PAL macros */
#define V4L2_STD_PAL_BG (V4L2_STD_PAL_B |\

V4L2_STD_PAL_B1 |\
V4L2_STD_PAL_G)

#define V4L2_STD_PAL_DK (V4L2_STD_PAL_D |\
V4L2_STD_PAL_D1 |\
V4L2_STD_PAL_K)

/*
* ``Common'' PAL - This macro is there to be compatible with the old
* V4L1 concept of ``PAL'': /BGDKHI.
* Several PAL standards are missing here: /M, /N and /Nc
*/

#define V4L2_STD_PAL (V4L2_STD_PAL_BG |\
V4L2_STD_PAL_DK |\
V4L2_STD_PAL_H |\
V4L2_STD_PAL_I)

/* Chroma ``agnostic'' standards */
#define V4L2_STD_B (V4L2_STD_PAL_B |\

V4L2_STD_PAL_B1 |\
V4L2_STD_SECAM_B)

#define V4L2_STD_G (V4L2_STD_PAL_G |\
V4L2_STD_SECAM_G)

#define V4L2_STD_H (V4L2_STD_PAL_H |\
V4L2_STD_SECAM_H)

#define V4L2_STD_L (V4L2_STD_SECAM_L |\
V4L2_STD_SECAM_LC)

#define V4L2_STD_GH (V4L2_STD_G |\
V4L2_STD_H)

#define V4L2_STD_DK (V4L2_STD_PAL_DK |\
V4L2_STD_SECAM_DK)

#define V4L2_STD_BG (V4L2_STD_B |\
V4L2_STD_G)

#define V4L2_STD_MN (V4L2_STD_PAL_M |\
V4L2_STD_PAL_N |\
V4L2_STD_PAL_Nc |\
V4L2_STD_NTSC)

/* Standards where MTS/BTSC stereo could be found */
#define V4L2_STD_MTS (V4L2_STD_NTSC_M |\

V4L2_STD_PAL_M |\
V4L2_STD_PAL_N |\
V4L2_STD_PAL_Nc)

/* Standards for Countries with 60Hz Line frequency */
#define V4L2_STD_525_60 (V4L2_STD_PAL_M |\

V4L2_STD_PAL_60 |\
V4L2_STD_NTSC |\

340 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_STD_NTSC_443)
/* Standards for Countries with 50Hz Line frequency */
#define V4L2_STD_625_50 (V4L2_STD_PAL |\

V4L2_STD_PAL_N |\
V4L2_STD_PAL_Nc |\
V4L2_STD_SECAM)

#define V4L2_STD_ATSC (V4L2_STD_ATSC_8_VSB |\
V4L2_STD_ATSC_16_VSB)

/* Macros with none and all analog standards */
#define V4L2_STD_UNKNOWN 0
#define V4L2_STD_ALL (V4L2_STD_525_60 |\

V4L2_STD_625_50)

struct v4l2_standard
{

__u32 index;
v4l2_std_id id;
__u8 name[24];
struct v4l2_fract

frameperiod; /* Frames, not fields */
__u32 framelines;
__u32 reserved[4];

};

/*
* D V B T T I M I N G S
*/

/** struct v4l2_bt_timings
- BT.656/BT.1120 timing data
* @width: total width of the active video in pixels
* @height: total height of the active video in lines
* @interlaced: Interlaced or progressive
* @polarities: Positive or negative polarities
* @pixelclock: Pixel clock in HZ. Ex. 74.25MHz->74250000
* @hfrontporch:Horizontal front porch in pixels
* @hsync: Horizontal Sync length in pixels
* @hbackporch: Horizontal back porch in pixels
* @vfrontporch:Vertical front porch in lines
* @vsync: Vertical Sync length in lines
* @vbackporch: Vertical back porch in lines
* @il_vfrontporch:Vertical front porch for the even field
* (aka field 2) of interlaced field formats
* @il_vsync: Vertical Sync length for the even field
* (aka field 2) of interlaced field formats
* @il_vbackporch:Vertical back porch for the even field
* (aka field 2) of interlaced field formats
* @standards: Standards the timing belongs to
* @flags: Flags
* @picture_aspect: The picture aspect ratio (hor/vert).
* @cea861_vic: VIC code as per the CEA-861 standard.
* @hdmi_vic: VIC code as per the HDMI standard.
* @reserved: Reserved fields, must be zeroed.
*
* A note regarding vertical interlaced timings: height refers to the total
* height of the active video frame (= two fields). The blanking timings refer
* to the blanking of each field. So the height of the total frame is

1.2. Part I - Video for Linux API 341

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* calculated as follows:
*
* tot_height = height + vfrontporch + vsync + vbackporch +
* il_vfrontporch + il_vsync + il_vbackporch
*
* The active height of each field is height / 2.
*/

struct v4l2_bt_timings
{

__u32 width;
__u32 height;
__u32 interlaced;
__u32 polarities;
__u64 pixelclock;
__u32 hfrontporch;
__u32 hsync;
__u32 hbackporch;
__u32 vfrontporch;
__u32 vsync;
__u32 vbackporch;
__u32 il_vfrontporch;
__u32 il_vsync;
__u32 il_vbackporch;
__u32 standards;
__u32 flags;
struct v4l2_fract

picture_aspect;
__u8 cea861_vic;
__u8 hdmi_vic;
__u8 reserved[46];

} __attribute__ ((packed));

/* Interlaced or progressive format */
#define V4L2_DV_PROGRESSIVE

0
#define V4L2_DV_INTERLACED

1

/* Polarities. If bit is not set, it is assumed to be negative polarity */
#define V4L2_DV_VSYNC_POS_POL

0x00000001
#define V4L2_DV_HSYNC_POS_POL

0x00000002

/* Timings standards */
#define V4L2_DV_BT_STD_CEA861 (1 << 0) /* CEA-861 Digital TV Profile */
#define V4L2_DV_BT_STD_DMT (1 << 1) /* VESA Discrete Monitor Timings */
#define V4L2_DV_BT_STD_CVT (1 << 2) /* VESA Coordinated Video Timings */
#define V4L2_DV_BT_STD_GTF (1 << 3) /* VESA Generalized Timings Formula */
#define V4L2_DV_BT_STD_SDI (1 << 4) /* SDI Timings */

/* Flags */

/*
* CVT/GTF specific: timing uses reduced blanking (CVT) or the `Secondary
* GTF' curve (GTF). In both cases the horizontal and/or vertical blanking
* intervals are reduced, allowing a higher resolution over the same
* bandwidth. This is a read-only flag.

342 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

*/
#define V4L2_DV_FL_REDUCED_BLANKING (1 << 0)
/*
* CEA-861 specific: set for CEA-861 formats with a framerate of a multiple
* of six. These formats can be optionally played at 1 / 1.001 speed.
* This is a read-only flag.
*/

#define V4L2_DV_FL_CAN_REDUCE_FPS (1 << 1)
/*
* CEA-861 specific: only valid for video transmitters, the flag is cleared
* by receivers.
* If the framerate of the format is a multiple of six, then the pixelclock
* used to set up the transmitter is divided by 1.001 to make it compatible
* with 60 Hz based standards such as NTSC and PAL-M that use a framerate of
* 29.97 Hz. Otherwise this flag is cleared. If the transmitter can't generate
* such frequencies, then the flag will also be cleared.
*/

#define V4L2_DV_FL_REDUCED_FPS (1 << 2)
/*
* Specific to interlaced formats: if set, then field 1 is really one half-line
* longer and field 2 is really one half-line shorter, so each field has
* exactly the same number of half-lines. Whether half-lines can be detected
* or used depends on the hardware.
*/

#define V4L2_DV_FL_HALF_LINE (1 << 3)
/*
* If set, then this is a Consumer Electronics (CE) video format. Such formats
* differ from other formats (commonly called IT formats) in that if RGB
* encoding is used then by default the RGB values use limited range (i.e.
* use the range 16-235) as opposed to 0-255. All formats defined in CEA-861
* except for the 640x480 format are CE formats.
*/

#define V4L2_DV_FL_IS_CE_VIDEO (1 << 4)
/* Some formats like SMPTE-125M have an interlaced signal with a odd
* total height. For these formats, if this flag is set, the first
* field has the extra line. If not, it is the second field.
*/

#define V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE (1 << 5)
/*
* If set, then the picture_aspect field is valid. Otherwise assume that the
* pixels are square, so the picture aspect ratio is the same as the width to
* height ratio.
*/

#define V4L2_DV_FL_HAS_PICTURE_ASPECT (1 << 6)
/*
* If set, then the cea861_vic field is valid and contains the Video
* Identification Code as per the CEA-861 standard.
*/

#define V4L2_DV_FL_HAS_CEA861_VIC (1 << 7)
/*
* If set, then the hdmi_vic field is valid and contains the Video
* Identification Code as per the HDMI standard (HDMI Vendor Specific
* InfoFrame).
*/

#define V4L2_DV_FL_HAS_HDMI_VIC (1 << 8)

/* A few useful defines to calculate the total blanking and frame sizes */
#define V4L2_DV_BT_BLANKING_WIDTH(bt) \

1.2. Part I - Video for Linux API 343

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

((bt)->hfrontporch + (bt)->hsync + (bt)->hbackporch)
#define V4L2_DV_BT_FRAME_WIDTH(bt) \

((bt)->width + V4L2_DV_BT_BLANKING_WIDTH(bt))
#define V4L2_DV_BT_BLANKING_HEIGHT(bt) \

((bt)->vfrontporch + (bt)->vsync + (bt)->vbackporch + \
(bt)->il_vfrontporch + (bt)->il_vsync + (bt)->il_vbackporch)

#define V4L2_DV_BT_FRAME_HEIGHT(bt) \
((bt)->height + V4L2_DV_BT_BLANKING_HEIGHT(bt))

/** struct v4l2_dv_timings
- DV timings
* @type: the type of the timings
* @bt: BT656/1120 timings
*/

struct v4l2_dv_timings
{

__u32 type;
union {

struct v4l2_bt_timings
bt;

__u32 reserved[32];
};

} __attribute__ ((packed));

/* Values for the type field */
#define V4L2_DV_BT_656_1120 0 /* BT.656/1120 timing type */

/** struct v4l2_enum_dv_timings
- DV timings enumeration
* @index: enumeration index
* @pad: the pad number for which to enumerate timings (used with
* v4l-subdev nodes only)
* @reserved: must be zeroed
* @timings: the timings for the given index
*/

struct v4l2_enum_dv_timings
{

__u32 index;
__u32 pad;
__u32 reserved[2];
struct v4l2_dv_timings

timings;
};

/** struct v4l2_bt_timings_cap
- BT.656/BT.1120 timing capabilities
* @min_width: width in pixels
* @max_width: width in pixels
* @min_height: height in lines
* @max_height: height in lines
* @min_pixelclock: Pixel clock in HZ. Ex. 74.25MHz->74250000
* @max_pixelclock: Pixel clock in HZ. Ex. 74.25MHz->74250000
* @standards: Supported standards
* @capabilities: Supported capabilities
* @reserved: Must be zeroed
*/

struct v4l2_bt_timings_cap
{

344 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

__u32 min_width;
__u32 max_width;
__u32 min_height;
__u32 max_height;
__u64 min_pixelclock;
__u64 max_pixelclock;
__u32 standards;
__u32 capabilities;
__u32 reserved[16];

} __attribute__ ((packed));

/* Supports interlaced formats */
#define V4L2_DV_BT_CAP_INTERLACED (1 << 0)
/* Supports progressive formats */
#define V4L2_DV_BT_CAP_PROGRESSIVE (1 << 1)
/* Supports CVT/GTF reduced blanking */
#define V4L2_DV_BT_CAP_REDUCED_BLANKING (1 << 2)
/* Supports custom formats */
#define V4L2_DV_BT_CAP_CUSTOM (1 << 3)

/** struct v4l2_dv_timings_cap
- DV timings capabilities
* @type: the type of the timings (same as in struct v4l2_dv_timings

)
* @pad: the pad number for which to query capabilities (used with
* v4l-subdev nodes only)
* @bt: the BT656/1120 timings capabilities
*/

struct v4l2_dv_timings_cap
{

__u32 type;
__u32 pad;
__u32 reserved[2];
union {

struct v4l2_bt_timings_cap
bt;

__u32 raw_data[32];
};

};

/*
* V I D E O I N P U T S
*/

struct v4l2_input
{

__u32 index; /* Which input */
__u8 name[32]; /* Label */
__u32 type; /* Type of input */
__u32 audioset; /* Associated audios (bitfield) */
__u32 tuner; /* enum v4l2_tuner_type

*/
v4l2_std_id std;
__u32 status;
__u32 capabilities;
__u32 reserved[3];

};

/* Values for the `type' field */

1.2. Part I - Video for Linux API 345

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define V4L2_INPUT_TYPE_TUNER 1
#define V4L2_INPUT_TYPE_CAMERA 2
#define V4L2_INPUT_TYPE_TOUCH 3

/* field `status' - general */
#define V4L2_IN_ST_NO_POWER 0x00000001 /* Attached device is off */
#define V4L2_IN_ST_NO_SIGNAL 0x00000002
#define V4L2_IN_ST_NO_COLOR 0x00000004

/* field `status' - sensor orientation */
/* If sensor is mounted upside down set both bits */
#define V4L2_IN_ST_HFLIP 0x00000010 /* Frames are flipped horizontally */
#define V4L2_IN_ST_VFLIP 0x00000020 /* Frames are flipped vertically */

/* field `status' - analog */
#define V4L2_IN_ST_NO_H_LOCK 0x00000100 /* No horizontal sync lock */
#define V4L2_IN_ST_COLOR_KILL 0x00000200 /* Color killer is active */
#define V4L2_IN_ST_NO_V_LOCK 0x00000400 /* No vertical sync lock */
#define V4L2_IN_ST_NO_STD_LOCK 0x00000800 /* No standard format lock */

/* field `status' - digital */
#define V4L2_IN_ST_NO_SYNC 0x00010000 /* No synchronization lock */
#define V4L2_IN_ST_NO_EQU 0x00020000 /* No equalizer lock */
#define V4L2_IN_ST_NO_CARRIER 0x00040000 /* Carrier recovery failed */

/* field `status' - VCR and set-top box */
#define V4L2_IN_ST_MACROVISION 0x01000000 /* Macrovision detected */
#define V4L2_IN_ST_NO_ACCESS 0x02000000 /* Conditional access denied */
#define V4L2_IN_ST_VTR 0x04000000 /* VTR time constant */

/* capabilities flags */
#define V4L2_IN_CAP_DV_TIMINGS 0x00000002 /* Supports S_DV_TIMINGS */
#define V4L2_IN_CAP_CUSTOM_TIMINGS V4L2_IN_CAP_DV_TIMINGS /* For compatibil-
ity */
#define V4L2_IN_CAP_STD 0x00000004 /* Supports S_STD */
#define V4L2_IN_CAP_NATIVE_SIZE 0x00000008 /* Supports setting native size */

/*
* V I D E O O U T P U T S
*/

struct v4l2_output
{

__u32 index; /* Which output */
__u8 name[32]; /* Label */
__u32 type; /* Type of output */
__u32 audioset; /* Associated audios (bitfield) */
__u32 modulator; /* Associated modulator */
v4l2_std_id std;
__u32 capabilities;
__u32 reserved[3];

};
/* Values for the `type' field */
#define V4L2_OUTPUT_TYPE_MODULATOR 1
#define V4L2_OUTPUT_TYPE_ANALOG 2
#define V4L2_OUTPUT_TYPE_ANALOGVGAOVERLAY 3

/* capabilities flags */
#define V4L2_OUT_CAP_DV_TIMINGS 0x00000002 /* Supports S_DV_TIMINGS */

346 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define V4L2_OUT_CAP_CUSTOM_TIMINGS V4L2_OUT_CAP_DV_TIMINGS /* For compatibil-
ity */
#define V4L2_OUT_CAP_STD 0x00000004 /* Supports S_STD */
#define V4L2_OUT_CAP_NATIVE_SIZE 0x00000008 /* Supports setting native size */

/*
* C O N T R O L S
*/

struct v4l2_control
{

__u32 id;
__s32 value;

};

struct v4l2_ext_control
{

__u32 id;
__u32 size;
__u32 reserved2[1];
union {

__s32 value;
__s64 value64;
char __user *string;
__u8 __user *p_u8;
__u16 __user *p_u16;
__u32 __user *p_u32;
void __user *ptr;

};
} __attribute__ ((packed));

struct v4l2_ext_controls
{

union {
#ifndef __KERNEL__

__u32 ctrl_class;
#endif

__u32 which;
};
__u32 count;
__u32 error_idx;
__u32 reserved[2];
struct v4l2_ext_control

*controls;
};

#define V4L2_CTRL_ID_MASK (0x0fffffff)
#ifndef __KERNEL__
#define V4L2_CTRL_ID2CLASS(id) ((id) & 0x0fff0000UL)
#endif
#define V4L2_CTRL_ID2WHICH(id) ((id) & 0x0fff0000UL)
#define V4L2_CTRL_DRIVER_PRIV(id) (((id) & 0xffff) >= 0x1000)
#define V4L2_CTRL_MAX_DIMS (4)
#define V4L2_CTRL_WHICH_CUR_VAL 0
#define V4L2_CTRL_WHICH_DEF_VAL 0x0f000000

enum v4l2_ctrl_type
{

V4L2_CTRL_TYPE_INTEGER

1.2. Part I - Video for Linux API 347

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

= 1,
V4L2_CTRL_TYPE_BOOLEAN

= 2,
V4L2_CTRL_TYPE_MENU
= 3,

V4L2_CTRL_TYPE_BUTTON
= 4,
V4L2_CTRL_TYPE_INTEGER64

= 5,
V4L2_CTRL_TYPE_CTRL_CLASS

= 6,
V4L2_CTRL_TYPE_STRING

= 7,
V4L2_CTRL_TYPE_BITMASK

= 8,
V4L2_CTRL_TYPE_INTEGER_MENU

= 9,

/* Compound types are >= 0x0100 */
V4L2_CTRL_COMPOUND_TYPES = 0x0100,
V4L2_CTRL_TYPE_U8

= 0x0100,
V4L2_CTRL_TYPE_U16
= 0x0101,

V4L2_CTRL_TYPE_U32
= 0x0102,

};

/* Used in the VIDIOC_QUERYCTRL ioctl for querying controls */
struct v4l2_queryctrl
{

__u32 id;
__u32 type; /* enum v4l2_ctrl_type

*/
__u8 name[32]; /* Whatever */
__s32 minimum; /* Note signedness */
__s32 maximum;
__s32 step;
__s32 default_value;
__u32 flags;
__u32 reserved[2];

};

/* Used in the VIDIOC_QUERY_EXT_CTRL ioctl for querying extended controls */
struct v4l2_query_ext_ctrl
{

__u32 id;
__u32 type;
char name[32];
__s64 minimum;
__s64 maximum;
__u64 step;
__s64 default_value;
__u32 flags;
__u32 elem_size;
__u32 elems;
__u32 nr_of_dims;
__u32 dims[V4L2_CTRL_MAX_DIMS];

348 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

__u32 reserved[32];
};

/* Used in the VIDIOC_QUERYMENU ioctl for querying menu items */
struct v4l2_querymenu
{

__u32 id;
__u32 index;
union {

__u8 name[32]; /* Whatever */
__s64 value;

};
__u32 reserved;

} __attribute__ ((packed));

/* Control flags */
#define V4L2_CTRL_FLAG_DISABLED 0x0001
#define V4L2_CTRL_FLAG_GRABBED 0x0002
#define V4L2_CTRL_FLAG_READ_ONLY 0x0004
#define V4L2_CTRL_FLAG_UPDATE 0x0008
#define V4L2_CTRL_FLAG_INACTIVE 0x0010
#define V4L2_CTRL_FLAG_SLIDER 0x0020
#define V4L2_CTRL_FLAG_WRITE_ONLY 0x0040
#define V4L2_CTRL_FLAG_VOLATILE 0x0080
#define V4L2_CTRL_FLAG_HAS_PAYLOAD 0x0100
#define V4L2_CTRL_FLAG_EXECUTE_ON_WRITE 0x0200
#define V4L2_CTRL_FLAG_MODIFY_LAYOUT 0x0400

/* Query flags, to be ORed with the control ID */
#define V4L2_CTRL_FLAG_NEXT_CTRL 0x80000000
#define V4L2_CTRL_FLAG_NEXT_COMPOUND 0x40000000

/* User-class control IDs defined by V4L2 */
#define V4L2_CID_MAX_CTRLS 1024
/* IDs reserved for driver specific controls */
#define V4L2_CID_PRIVATE_BASE 0x08000000

/*
* T U N I N G
*/

struct v4l2_tuner
{

__u32 index;
__u8 name[32];
__u32 type; /* enum v4l2_tuner_type

*/
__u32 capability;
__u32 rangelow;
__u32 rangehigh;
__u32 rxsubchans;
__u32 audmode;
__s32 signal;
__s32 afc;
__u32 reserved[4];

};

struct v4l2_modulator
{

1.2. Part I - Video for Linux API 349

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

__u32 index;
__u8 name[32];
__u32 capability;
__u32 rangelow;
__u32 rangehigh;
__u32 txsubchans;
__u32 type; /* enum v4l2_tuner_type

*/
__u32 reserved[3];

};

/* Flags for the `capability' field */
#define V4L2_TUNER_CAP_LOW 0x0001
#define V4L2_TUNER_CAP_NORM 0x0002
#define V4L2_TUNER_CAP_HWSEEK_BOUNDED 0x0004
#define V4L2_TUNER_CAP_HWSEEK_WRAP 0x0008
#define V4L2_TUNER_CAP_STEREO 0x0010
#define V4L2_TUNER_CAP_LANG2 0x0020
#define V4L2_TUNER_CAP_SAP 0x0020
#define V4L2_TUNER_CAP_LANG1 0x0040
#define V4L2_TUNER_CAP_RDS 0x0080
#define V4L2_TUNER_CAP_RDS_BLOCK_IO 0x0100
#define V4L2_TUNER_CAP_RDS_CONTROLS 0x0200
#define V4L2_TUNER_CAP_FREQ_BANDS 0x0400
#define V4L2_TUNER_CAP_HWSEEK_PROG_LIM 0x0800
#define V4L2_TUNER_CAP_1HZ 0x1000

/* Flags for the `rxsubchans' field */
#define V4L2_TUNER_SUB_MONO 0x0001
#define V4L2_TUNER_SUB_STEREO 0x0002
#define V4L2_TUNER_SUB_LANG2 0x0004
#define V4L2_TUNER_SUB_SAP 0x0004
#define V4L2_TUNER_SUB_LANG1 0x0008
#define V4L2_TUNER_SUB_RDS 0x0010

/* Values for the `audmode' field */
#define V4L2_TUNER_MODE_MONO 0x0000
#define V4L2_TUNER_MODE_STEREO 0x0001
#define V4L2_TUNER_MODE_LANG2 0x0002
#define V4L2_TUNER_MODE_SAP 0x0002
#define V4L2_TUNER_MODE_LANG1 0x0003
#define V4L2_TUNER_MODE_LANG1_LANG2 0x0004

struct v4l2_frequency
{

__u32 tuner;
__u32 type; /* enum v4l2_tuner_type

*/
__u32 frequency;
__u32 reserved[8];

};

#define V4L2_BAND_MODULATION_VSB (1 << 1)
#define V4L2_BAND_MODULATION_FM (1 << 2)
#define V4L2_BAND_MODULATION_AM (1 << 3)

struct v4l2_frequency_band
{

350 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

__u32 tuner;
__u32 type; /* enum v4l2_tuner_type

*/
__u32 index;
__u32 capability;
__u32 rangelow;
__u32 rangehigh;
__u32 modulation;
__u32 reserved[9];

};

struct v4l2_hw_freq_seek
{

__u32 tuner;
__u32 type; /* enum v4l2_tuner_type

*/
__u32 seek_upward;
__u32 wrap_around;
__u32 spacing;
__u32 rangelow;
__u32 rangehigh;
__u32 reserved[5];

};

/*
* R D S
*/

struct v4l2_rds_data
{

__u8 lsb;
__u8 msb;
__u8 block;

} __attribute__ ((packed));

#define V4L2_RDS_BLOCK_MSK 0x7
#define V4L2_RDS_BLOCK_A 0
#define V4L2_RDS_BLOCK_B 1
#define V4L2_RDS_BLOCK_C 2
#define V4L2_RDS_BLOCK_D 3
#define V4L2_RDS_BLOCK_C_ALT 4
#define V4L2_RDS_BLOCK_INVALID 7

#define V4L2_RDS_BLOCK_CORRECTED 0x40
#define V4L2_RDS_BLOCK_ERROR 0x80

/*
* A U D I O
*/

struct v4l2_audio
{

__u32 index;
__u8 name[32];
__u32 capability;
__u32 mode;
__u32 reserved[2];

};

1.2. Part I - Video for Linux API 351

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* Flags for the `capability' field */
#define V4L2_AUDCAP_STEREO 0x00001
#define V4L2_AUDCAP_AVL 0x00002

/* Flags for the `mode' field */
#define V4L2_AUDMODE_AVL 0x00001

struct v4l2_audioout
{

__u32 index;
__u8 name[32];
__u32 capability;
__u32 mode;
__u32 reserved[2];

};

/*
* M P E G S E R V I C E S
*/

#if 1
#define V4L2_ENC_IDX_FRAME_I

(0)
#define V4L2_ENC_IDX_FRAME_P

(1)
#define V4L2_ENC_IDX_FRAME_B

(2)
#define V4L2_ENC_IDX_FRAME_MASK
(0xf)

struct v4l2_enc_idx_entry
{

__u64 offset;
__u64 pts;
__u32 length;
__u32 flags;
__u32 reserved[2];

};

#define V4L2_ENC_IDX_ENTRIES
(64)

struct v4l2_enc_idx
{

__u32 entries;
__u32 entries_cap;
__u32 reserved[4];
struct v4l2_enc_idx_entry

entry[V4L2_ENC_IDX_ENTRIES];
};

#define V4L2_ENC_CMD_START (0)
#define V4L2_ENC_CMD_STOP (1)
#define V4L2_ENC_CMD_PAUSE (2)
#define V4L2_ENC_CMD_RESUME (3)

/* Flags for V4L2_ENC_CMD_STOP */
#define V4L2_ENC_CMD_STOP_AT_GOP_END (1 << 0)

struct v4l2_encoder_cmd

352 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

{
__u32 cmd;
__u32 flags;
union {

struct {
__u32 data[8];

} raw;
};

};

/* Decoder commands */
#define V4L2_DEC_CMD_START (0)
#define V4L2_DEC_CMD_STOP (1)
#define V4L2_DEC_CMD_PAUSE (2)
#define V4L2_DEC_CMD_RESUME (3)

/* Flags for V4L2_DEC_CMD_START */
#define V4L2_DEC_CMD_START_MUTE_AUDIO (1 << 0)

/* Flags for V4L2_DEC_CMD_PAUSE */
#define V4L2_DEC_CMD_PAUSE_TO_BLACK (1 << 0)

/* Flags for V4L2_DEC_CMD_STOP */
#define V4L2_DEC_CMD_STOP_TO_BLACK (1 << 0)
#define V4L2_DEC_CMD_STOP_IMMEDIATELY (1 << 1)

/* Play format requirements (returned by the driver): */

/* The decoder has no special format requirements */
#define V4L2_DEC_START_FMT_NONE (0)
/* The decoder requires full GOPs */
#define V4L2_DEC_START_FMT_GOP (1)

/* The structure must be zeroed before use by the application
This ensures it can be extended safely in the future. */

struct v4l2_decoder_cmd
{

__u32 cmd;
__u32 flags;
union {

struct {
__u64 pts;

} stop;

struct {
/* 0 or 1000 specifies normal speed,

1 specifies forward single stepping,
-1 specifies backward single stepping,
>1: playback at speed/1000 of the normal speed,
<-1: reverse playback at (-speed/1000) of the nor-

mal speed. */
__s32 speed;
__u32 format;

} start;

struct {
__u32 data[16];

} raw;

1.2. Part I - Video for Linux API 353

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

};
};
#endif

/*
* D A T A S E R V I C E S (V B I)
*
* Data services API by Michael Schimek
*/

/* Raw VBI */
struct v4l2_vbi_format
{

__u32 sampling_rate; /* in 1 Hz */
__u32 offset;
__u32 samples_per_line;
__u32 sample_format; /* V4L2_PIX_FMT_* */
__s32 start[2];
__u32 count[2];
__u32 flags; /* V4L2_VBI_* */
__u32 reserved[2]; /* must be zero */

};

/* VBI flags */
#define V4L2_VBI_UNSYNC (1 << 0)
#define V4L2_VBI_INTERLACED (1 << 1)

/* ITU-R start lines for each field */
#define V4L2_VBI_ITU_525_F1_START
(1)

#define V4L2_VBI_ITU_525_F2_START
(264)

#define V4L2_VBI_ITU_625_F1_START
(1)

#define V4L2_VBI_ITU_625_F2_START
(314)

/* Sliced VBI
*
* This implements is a proposal V4L2 API to allow SLICED VBI
* required for some hardware encoders. It should change without
* notice in the definitive implementation.
*/

struct v4l2_sliced_vbi_format
{

__u16 service_set;
/* service_lines[0][...] specifies lines 0-23 (1-23 used) of the first field

service_lines[1][...] specifies lines 0-23 (1-23 used) of the second field
(equals frame lines 313-336 for 625 line video
standards, 263-286 for 525 line standards) */

__u16 service_lines[2][24];
__u32 io_size;
__u32 reserved[2]; /* must be zero */

};

/* Teletext World System Teletext
(WST), defined on ITU-R BT.653-2 */

354 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define V4L2_SLICED_TELETEXT_B (0x0001)
/* Video Program System, defined on ETS 300 231*/
#define V4L2_SLICED_VPS (0x0400)
/* Closed Caption, defined on EIA-608 */
#define V4L2_SLICED_CAPTION_525 (0x1000)
/* Wide Screen System, defined on ITU-R BT1119.1 */
#define V4L2_SLICED_WSS_625 (0x4000)

#define V4L2_SLICED_VBI_525 (V4L2_SLICED_CAPTION_525)
#define V4L2_SLICED_VBI_625 (V4L2_SLICED_TELETEXT_B | V4L2_SLICED_VPS
| V4L2_SLICED_WSS_625)

struct v4l2_sliced_vbi_cap
{

__u16 service_set;
/* service_lines[0][...] specifies lines 0-23 (1-23 used) of the first field

service_lines[1][...] specifies lines 0-23 (1-23 used) of the second field
(equals frame lines 313-336 for 625 line video
standards, 263-286 for 525 line standards) */

__u16 service_lines[2][24];
__u32 type; /* enum v4l2_buf_type

*/
__u32 reserved[3]; /* must be 0 */

};

struct v4l2_sliced_vbi_data
{

__u32 id;
__u32 field; /* 0: first field, 1: second field */
__u32 line; /* 1-23 */
__u32 reserved; /* must be 0 */
__u8 data[48];

};

/*
* Sliced VBI data inserted into MPEG Streams
*/

/*
* V4L2_MPEG_STREAM_VBI_FMT_IVTV:
*
* Structure of payload contained in an MPEG 2 Private Stream 1 PES Packet in an
* MPEG-2 Program Pack that contains V4L2_MPEG_STREAM_VBI_FMT_IVTV Sliced VBI
* data
*
* Note, the MPEG-2 Program Pack and Private Stream 1 PES packet header
* definitions are not included here. See the MPEG-2 specifications for details
* on these headers.
*/

/* Line type IDs */
#define V4L2_MPEG_VBI_IVTV_TELETEXT_B (1)
#define V4L2_MPEG_VBI_IVTV_CAPTION_525 (4)
#define V4L2_MPEG_VBI_IVTV_WSS_625 (5)
#define V4L2_MPEG_VBI_IVTV_VPS (7)

struct v4l2_mpeg_vbi_itv0_line
{

1.2. Part I - Video for Linux API 355

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

__u8 id; /* One of V4L2_MPEG_VBI_IVTV_* above */
__u8 data[42]; /* Sliced VBI data for the line */

} __attribute__ ((packed));

struct v4l2_mpeg_vbi_itv0
{

__le32 linemask[2]; /* Bitmasks of VBI service lines present */
struct v4l2_mpeg_vbi_itv0_line

line[35];
} __attribute__ ((packed));

struct v4l2_mpeg_vbi_ITV0
{

struct v4l2_mpeg_vbi_itv0_line
line[36];

} __attribute__ ((packed));

#define V4L2_MPEG_VBI_IVTV_MAGIC0 ``itv0''
#define V4L2_MPEG_VBI_IVTV_MAGIC1 ``ITV0''

struct v4l2_mpeg_vbi_fmt_ivtv
{

__u8 magic[4];
union {

struct v4l2_mpeg_vbi_itv0
itv0;

struct v4l2_mpeg_vbi_ITV0
ITV0;

};
} __attribute__ ((packed));

/*
* A G G R E G A T E S T R U C T U R E S
*/

/**
* struct v4l2_plane_pix_format
- additional, per-plane format definition
* @sizeimage: maximum size in bytes required for data, for which
* this plane will be used
* @bytesperline: distance in bytes between the leftmost pixels in two
* adjacent lines
*/

struct v4l2_plane_pix_format
{

__u32 sizeimage;
__u32 bytesperline;
__u16 reserved[6];

} __attribute__ ((packed));

/**
* struct v4l2_pix_format_mplane
- multiplanar format definition
* @width: image width in pixels
* @height: image height in pixels
* @pixelformat: little endian four character code (fourcc)
* @field: enum v4l2_field

; field order (for interlaced video)

356 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* @colorspace: enum v4l2_colorspace
; supplemental to pixelformat
* @plane_fmt: per-plane information
* @num_planes: number of planes for this format
* @flags: format flags (V4L2_PIX_FMT_FLAG_*)
* @ycbcr_enc: enum v4l2_ycbcr_encoding

, Y'CbCr encoding
* @quantization: enum v4l2_quantization

, colorspace quantization
* @xfer_func: enum v4l2_xfer_func

, colorspace transfer function
*/

struct v4l2_pix_format_mplane
{

__u32 width;
__u32 height;
__u32 pixelformat;
__u32 field;
__u32 colorspace;

struct v4l2_plane_pix_format
plane_fmt[VIDEO_MAX_PLANES];

__u8 num_planes;
__u8 flags;
union {

__u8 ycbcr_enc;
__u8 hsv_enc;

};
__u8 quantization;
__u8 xfer_func;
__u8 reserved[7];

} __attribute__ ((packed));

/**
* struct v4l2_sdr_format
- SDR format definition
* @pixelformat: little endian four character code (fourcc)
* @buffersize: maximum size in bytes required for data
*/

struct v4l2_sdr_format
{

__u32 pixelformat;
__u32 buffersize;
__u8 reserved[24];

} __attribute__ ((packed));

/**
* struct v4l2_meta_format
- metadata format definition
* @dataformat: little endian four character code (fourcc)
* @buffersize: maximum size in bytes required for data
*/

struct v4l2_meta_format
{

__u32 dataformat;
__u32 buffersize;

} __attribute__ ((packed));

1.2. Part I - Video for Linux API 357

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/**
* struct v4l2_format
- stream data format
* @type: enum v4l2_buf_type

; type of the data stream
* @pix: definition of an image format
* @pix_mp: definition of a multiplanar image format
* @win: definition of an overlaid image
* @vbi: raw VBI capture or output parameters
* @sliced: sliced VBI capture or output parameters
* @raw_data: placeholder for future extensions and custom formats
*/

struct v4l2_format
{

__u32 type;
union {

struct v4l2_pix_format
pix; /* V4L2_BUF_TYPE_VIDEO_CAPTURE

*/
struct v4l2_pix_format_mplane

pix_mp; /* V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
*/

struct v4l2_window
win; /* V4L2_BUF_TYPE_VIDEO_OVERLAY

*/
struct v4l2_vbi_format

vbi; /* V4L2_BUF_TYPE_VBI_CAPTURE
*/

struct v4l2_sliced_vbi_format
sliced; /* V4L2_BUF_TYPE_SLICED_VBI_CAPTURE

*/
struct v4l2_sdr_format

sdr; /* V4L2_BUF_TYPE_SDR_CAPTURE
*/

struct v4l2_meta_format
meta; /* V4L2_BUF_TYPE_META_CAPTURE

*/
__u8 raw_data[200]; /* user-defined */

} fmt;
};

/* Stream type-dependent parameters
*/

struct v4l2_streamparm
{

__u32 type; /* enum v4l2_buf_type
*/

union {
struct v4l2_captureparm

capture;
struct v4l2_outputparm

output;
__u8 raw_data[200]; /* user-defined */

} parm;
};

/*
* E V E N T S

358 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

*/

#define V4L2_EVENT_ALL 0
#define V4L2_EVENT_VSYNC 1
#define V4L2_EVENT_EOS 2
#define V4L2_EVENT_CTRL 3
#define V4L2_EVENT_FRAME_SYNC 4
#define V4L2_EVENT_SOURCE_CHANGE 5
#define V4L2_EVENT_MOTION_DET 6
#define V4L2_EVENT_PRIVATE_START 0x08000000

/* Payload for V4L2_EVENT_VSYNC */
struct v4l2_event_vsync
{

/* Can be V4L2_FIELD_ANY
, _NONE, _TOP or _BOTTOM */

__u8 field;
} __attribute__ ((packed));

/* Payload for V4L2_EVENT_CTRL */
#define V4L2_EVENT_CTRL_CH_VALUE (1 << 0)
#define V4L2_EVENT_CTRL_CH_FLAGS (1 << 1)
#define V4L2_EVENT_CTRL_CH_RANGE (1 << 2)

struct v4l2_event_ctrl
{

__u32 changes;
__u32 type;
union {

__s32 value;
__s64 value64;

};
__u32 flags;
__s32 minimum;
__s32 maximum;
__s32 step;
__s32 default_value;

};

struct v4l2_event_frame_sync
{

__u32 frame_sequence;
};

#define V4L2_EVENT_SRC_CH_RESOLUTION (1 << 0)

struct v4l2_event_src_change
{

__u32 changes;
};

#define V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ
(1 << 0)

/**
* struct v4l2_event_motion_det
- motion detection event
* @flags: if V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ

1.2. Part I - Video for Linux API 359

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

is set, then the
* frame_sequence field is valid.
* @frame_sequence: the frame sequence number associated with this event.
* @region_mask: which regions detected motion.
*/

struct v4l2_event_motion_det
{

__u32 flags;
__u32 frame_sequence;
__u32 region_mask;

};

struct v4l2_event
{

__u32 type;
union {

struct v4l2_event_vsync
vsync;

struct v4l2_event_ctrl
ctrl;

struct v4l2_event_frame_sync
frame_sync;

struct v4l2_event_src_change
src_change;

struct v4l2_event_motion_det
motion_det;

__u8 data[64];
} u;
__u32 pending;
__u32 sequence;
struct timespec timestamp;
__u32 id;
__u32 reserved[8];

};

#define V4L2_EVENT_SUB_FL_SEND_INITIAL (1 << 0)
#define V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK (1 << 1)

struct v4l2_event_subscription
{

__u32 type;
__u32 id;
__u32 flags;
__u32 reserved[5];

};

/*
* A D V A N C E D D E B U G G I N G
*
* NOTE: EXPERIMENTAL API, NEVER RELY ON THIS IN APPLICATIONS!
* FOR DEBUGGING, TESTING AND INTERNAL USE ONLY!
*/

/* VIDIOC_DBG_G_REGISTER and VIDIOC_DBG_S_REGISTER */

#define V4L2_CHIP_MATCH_BRIDGE 0 /* Match against chip ID on the bridge (0 for the bridge) */
#define V4L2_CHIP_MATCH_SUBDEV 4 /* Match against subdev index */

360 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* The following four defines are no longer in use */
#define V4L2_CHIP_MATCH_HOST V4L2_CHIP_MATCH_BRIDGE
#define V4L2_CHIP_MATCH_I2C_DRIVER 1 /* Match against I2C driver name */
#define V4L2_CHIP_MATCH_I2C_ADDR 2 /* Match against I2C 7-bit address */
#define V4L2_CHIP_MATCH_AC97 3 /* Match against ancillary AC97 chip */

struct v4l2_dbg_match
{

__u32 type; /* Match type */
union { /* Match this chip, meaning determined by type */

__u32 addr;
char name[32];

};
} __attribute__ ((packed));

struct v4l2_dbg_register
{

struct v4l2_dbg_match
match;

__u32 size; /* register size in bytes */
__u64 reg;
__u64 val;

} __attribute__ ((packed));

#define V4L2_CHIP_FL_READABLE (1 << 0)
#define V4L2_CHIP_FL_WRITABLE (1 << 1)

/* VIDIOC_DBG_G_CHIP_INFO */
struct v4l2_dbg_chip_info
{

struct v4l2_dbg_match
match;

char name[32];
__u32 flags;
__u32 reserved[32];

} __attribute__ ((packed));

/**
* struct v4l2_create_buffers
- VIDIOC_CREATE_BUFS argument
* @index: on return, index of the first created buffer
* @count: entry: number of requested buffers,
* return: number of created buffers
* @memory: enum v4l2_memory

; buffer memory type
* @format: frame format, for which buffers are requested
* @reserved: future extensions
*/

struct v4l2_create_buffers
{

__u32 index;
__u32 count;
__u32 memory;
struct v4l2_format

format;
__u32 reserved[8];

};

1.2. Part I - Video for Linux API 361

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/*
* I O C T L C O D E S F O R V I D E O D E V I C E S
*
*/

#define VIDIOC_QUERYCAP _IOR(`V', 0, struct v4l2_capability
)
#define VIDIOC_RESERVED _IO(`V', 1)
#define VIDIOC_ENUM_FMT _IOWR(`V', 2, struct v4l2_fmtdesc
)
#define VIDIOC_G_FMT _IOWR(`V', 4, struct v4l2_format
)
#define VIDIOC_S_FMT _IOWR(`V', 5, struct v4l2_format
)
#define VIDIOC_REQBUFS _IOWR(`V', 8, struct v4l2_requestbuffers
)
#define VIDIOC_QUERYBUF _IOWR(`V', 9, struct v4l2_buffer
)
#define VIDIOC_G_FBUF _IOR(`V', 10, struct v4l2_framebuffer
)
#define VIDIOC_S_FBUF _IOW(`V', 11, struct v4l2_framebuffer
)
#define VIDIOC_OVERLAY _IOW(`V', 14, int)
#define VIDIOC_QBUF _IOWR(`V', 15, struct v4l2_buffer
)
#define VIDIOC_EXPBUF _IOWR(`V', 16, struct v4l2_exportbuffer
)
#define VIDIOC_DQBUF _IOWR(`V', 17, struct v4l2_buffer
)
#define VIDIOC_STREAMON _IOW(`V', 18, int)
#define VIDIOC_STREAMOFF _IOW(`V', 19, int)
#define VIDIOC_G_PARM _IOWR(`V', 21, struct v4l2_streamparm
)
#define VIDIOC_S_PARM _IOWR(`V', 22, struct v4l2_streamparm
)
#define VIDIOC_G_STD _IOR(`V', 23, v4l2_std_id)
#define VIDIOC_S_STD _IOW(`V', 24, v4l2_std_id)
#define VIDIOC_ENUMSTD _IOWR(`V', 25, struct v4l2_standard
)
#define VIDIOC_ENUMINPUT _IOWR(`V', 26, struct v4l2_input
)
#define VIDIOC_G_CTRL _IOWR(`V', 27, struct v4l2_control
)
#define VIDIOC_S_CTRL _IOWR(`V', 28, struct v4l2_control
)
#define VIDIOC_G_TUNER _IOWR(`V', 29, struct v4l2_tuner
)
#define VIDIOC_S_TUNER _IOW(`V', 30, struct v4l2_tuner
)
#define VIDIOC_G_AUDIO _IOR(`V', 33, struct v4l2_audio
)
#define VIDIOC_S_AUDIO _IOW(`V', 34, struct v4l2_audio
)
#define VIDIOC_QUERYCTRL _IOWR(`V', 36, struct v4l2_queryctrl
)
#define VIDIOC_QUERYMENU _IOWR(`V', 37, struct v4l2_querymenu
)
#define VIDIOC_G_INPUT _IOR(`V', 38, int)
#define VIDIOC_S_INPUT _IOWR(`V', 39, int)

362 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define VIDIOC_G_EDID _IOWR(`V', 40, struct v4l2_edid)
#define VIDIOC_S_EDID _IOWR(`V', 41, struct v4l2_edid)
#define VIDIOC_G_OUTPUT _IOR(`V', 46, int)
#define VIDIOC_S_OUTPUT _IOWR(`V', 47, int)
#define VIDIOC_ENUMOUTPUT _IOWR(`V', 48, struct v4l2_output
)
#define VIDIOC_G_AUDOUT _IOR(`V', 49, struct v4l2_audioout
)
#define VIDIOC_S_AUDOUT _IOW(`V', 50, struct v4l2_audioout
)
#define VIDIOC_G_MODULATOR _IOWR(`V', 54, struct v4l2_modulator
)
#define VIDIOC_S_MODULATOR _IOW(`V', 55, struct v4l2_modulator
)
#define VIDIOC_G_FREQUENCY _IOWR(`V', 56, struct v4l2_frequency
)
#define VIDIOC_S_FREQUENCY _IOW(`V', 57, struct v4l2_frequency
)
#define VIDIOC_CROPCAP _IOWR(`V', 58, struct v4l2_cropcap
)
#define VIDIOC_G_CROP _IOWR(`V', 59, struct v4l2_crop
)
#define VIDIOC_S_CROP _IOW(`V', 60, struct v4l2_crop
)
#define VIDIOC_G_JPEGCOMP _IOR(`V', 61, struct v4l2_jpegcompression
)
#define VIDIOC_S_JPEGCOMP _IOW(`V', 62, struct v4l2_jpegcompression
)
#define VIDIOC_QUERYSTD _IOR(`V', 63, v4l2_std_id)
#define VIDIOC_TRY_FMT _IOWR(`V', 64, struct v4l2_format
)
#define VIDIOC_ENUMAUDIO _IOWR(`V', 65, struct v4l2_audio
)
#define VIDIOC_ENUMAUDOUT _IOWR(`V', 66, struct v4l2_audioout
)
#define VIDIOC_G_PRIORITY _IOR(`V', 67, __u32) /* enum v4l2_priority
*/

#define VIDIOC_S_PRIORITY _IOW(`V', 68, __u32) /* enum v4l2_priority
*/

#define VIDIOC_G_SLICED_VBI_CAP _IOWR(`V', 69, struct v4l2_sliced_vbi_cap
)
#define VIDIOC_LOG_STATUS _IO(`V', 70)
#define VIDIOC_G_EXT_CTRLS _IOWR(`V', 71, struct v4l2_ext_controls
)
#define VIDIOC_S_EXT_CTRLS _IOWR(`V', 72, struct v4l2_ext_controls
)
#define VIDIOC_TRY_EXT_CTRLS _IOWR(`V', 73, struct v4l2_ext_controls
)
#define VIDIOC_ENUM_FRAMESIZES _IOWR(`V', 74, struct v4l2_frmsizeenum
)
#define VIDIOC_ENUM_FRAMEINTERVALS _IOWR(`V', 75, struct v4l2_frmivalenum
)
#define VIDIOC_G_ENC_INDEX _IOR(`V', 76, struct v4l2_enc_idx
)
#define VIDIOC_ENCODER_CMD _IOWR(`V', 77, struct v4l2_encoder_cmd
)
#define VIDIOC_TRY_ENCODER_CMD _IOWR(`V', 78, struct v4l2_encoder_cmd
)

1.2. Part I - Video for Linux API 363

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/*
* Experimental, meant for debugging, testing and internal use.
* Only implemented if CONFIG_VIDEO_ADV_DEBUG is defined.
* You must be root to use these ioctls. Never use these in applications!
*/

#define VIDIOC_DBG_S_REGISTER _IOW(`V', 79, struct v4l2_dbg_register
)
#define VIDIOC_DBG_G_REGISTER _IOWR(`V', 80, struct v4l2_dbg_register
)

#define VIDIOC_S_HW_FREQ_SEEK _IOW(`V', 82, struct v4l2_hw_freq_seek
)
#define VIDIOC_S_DV_TIMINGS _IOWR(`V', 87, struct v4l2_dv_timings
)
#define VIDIOC_G_DV_TIMINGS _IOWR(`V', 88, struct v4l2_dv_timings
)
#define VIDIOC_DQEVENT _IOR(`V', 89, struct v4l2_event
)
#define VIDIOC_SUBSCRIBE_EVENT _IOW(`V', 90, struct v4l2_event_subscription
)
#define VIDIOC_UNSUBSCRIBE_EVENT _IOW(`V', 91, struct v4l2_event_subscription
)
#define VIDIOC_CREATE_BUFS _IOWR(`V', 92, struct v4l2_create_buffers
)
#define VIDIOC_PREPARE_BUF _IOWR(`V', 93, struct v4l2_buffer
)
#define VIDIOC_G_SELECTION _IOWR(`V', 94, struct v4l2_selection
)
#define VIDIOC_S_SELECTION _IOWR(`V', 95, struct v4l2_selection
)
#define VIDIOC_DECODER_CMD _IOWR(`V', 96, struct v4l2_decoder_cmd
)
#define VIDIOC_TRY_DECODER_CMD _IOWR(`V', 97, struct v4l2_decoder_cmd
)
#define VIDIOC_ENUM_DV_TIMINGS _IOWR(`V', 98, struct v4l2_enum_dv_timings
)
#define VIDIOC_QUERY_DV_TIMINGS _IOR(`V', 99, struct v4l2_dv_timings
)
#define VIDIOC_DV_TIMINGS_CAP _IOWR(`V', 100, struct v4l2_dv_timings_cap
)
#define VIDIOC_ENUM_FREQ_BANDS _IOWR(`V', 101, struct v4l2_frequency_band
)

/*
* Experimental, meant for debugging, testing and internal use.
* Never use this in applications!
*/

#define VIDIOC_DBG_G_CHIP_INFO _IOWR(`V', 102, struct v4l2_dbg_chip_info
)

#define VIDIOC_QUERY_EXT_CTRL _IOWR(`V', 103, struct v4l2_query_ext_ctrl
)

/* Reminder: when adding new ioctls please add support for them to
drivers/media/v4l2-core/v4l2-compat-ioctl32.c as well! */

#define BASE_VIDIOC_PRIVATE 192 /* 192-255 are private */

364 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#endif /* _UAPI__LINUX_VIDEODEV2_H */

1.2.10 Video Capture Example

file: media/v4l/capture.c

/*
* V4L2 video capture example
*
* This program can be used and distributed without restrictions.
*
* This program is provided with the V4L2 API
* see https://linuxtv.org/docs.php for more information
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include <getopt.h> /* getopt_long() */

#include <fcntl.h> /* low-level i/o */
#include <unistd.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/ioctl.h>

#include <linux/videodev2.h>

#define CLEAR(x) memset(&(x), 0, sizeof(x))

enum io_method {
IO_METHOD_READ,
IO_METHOD_MMAP,
IO_METHOD_USERPTR,

};

struct buffer {
void *start;
size_t length;

};

static char *dev_name;
static enum io_method io = IO_METHOD_MMAP;
static int fd = -1;
struct buffer *buffers;
static unsigned int n_buffers;
static int out_buf;
static int force_format;
static int frame_count = 70;

static void errno_exit(const char *s)
{

fprintf(stderr, "%s error %d, %s\\n", s, errno, strerror(errno));
exit(EXIT_FAILURE);

}

1.2. Part I - Video for Linux API 365

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

static int xioctl(int fh, int request, void *arg)
{

int r;

do {
r = ioctl(fh, request, arg);

} while (-1 == r && EINTR == errno);

return r;
}

static void process_image(const void *p, int size)
{

if (out_buf)
fwrite(p, size, 1, stdout);

fflush(stderr);
fprintf(stderr, ".");
fflush(stdout);

}

static int read_frame(void)
{

struct v4l2_buffer buf;
unsigned int i;

switch (io) {
case IO_METHOD_READ:

if (-1 == read(fd, buffers[0].start, buffers[0].length)) {
switch (errno) {
case EAGAIN:

return 0;

case EIO:
/* Could ignore EIO, see spec. */

/* fall through */

default:
errno_exit("read");

}
}

process_image(buffers[0].start, buffers[0].length);
break;

case IO_METHOD_MMAP:
CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;

if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {
switch (errno) {
case EAGAIN:

return 0;

case EIO:
/* Could ignore EIO, see spec. */

/* fall through */

366 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

default:
errno_exit("VIDIOC_DQBUF");

}
}

assert(buf.index < n_buffers);

process_image(buffers[buf.index].start, buf.bytesused);

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

break;

case IO_METHOD_USERPTR:
CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;

if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {
switch (errno) {
case EAGAIN:

return 0;

case EIO:
/* Could ignore EIO, see spec. */

/* fall through */

default:
errno_exit("VIDIOC_DQBUF");

}
}

for (i = 0; i < n_buffers; ++i)
if (buf.m.userptr == (unsigned long)buffers[i].start

&& buf.length == buffers[i].length)
break;

assert(i < n_buffers);

process_image((void *)buf.m.userptr, buf.bytesused);

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

break;
}

return 1;
}

static void mainloop(void)
{

unsigned int count;

count = frame_count;

while (count-- > 0) {
for (;;) {

fd_set fds;
struct timeval tv;
int r;

1.2. Part I - Video for Linux API 367

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

FD_ZERO(&fds);
FD_SET(fd, &fds);

/* Timeout. */
tv.tv_sec = 2;
tv.tv_usec = 0;

r = select(fd + 1, &fds, NULL, NULL, &tv);

if (-1 == r) {
if (EINTR == errno)

continue;
errno_exit("select");

}

if (0 == r) {
fprintf(stderr, "select timeout\\n");
exit(EXIT_FAILURE);

}

if (read_frame())
break;

/* EAGAIN - continue select loop. */
}

}
}

static void stop_capturing(void)
{

enum v4l2_buf_type type;

switch (io) {
case IO_METHOD_READ:

/* Nothing to do. */
break;

case IO_METHOD_MMAP:
case IO_METHOD_USERPTR:

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMOFF, &type))

errno_exit("VIDIOC_STREAMOFF");
break;

}
}

static void start_capturing(void)
{

unsigned int i;
enum v4l2_buf_type type;

switch (io) {
case IO_METHOD_READ:

/* Nothing to do. */
break;

case IO_METHOD_MMAP:
for (i = 0; i < n_buffers; ++i) {

struct v4l2_buffer buf;

CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;

368 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))

errno_exit("VIDIOC_STREAMON");
break;

case IO_METHOD_USERPTR:
for (i = 0; i < n_buffers; ++i) {

struct v4l2_buffer buf;

CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;
buf.index = i;
buf.m.userptr = (unsigned long)buffers[i].start;
buf.length = buffers[i].length;

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))

errno_exit("VIDIOC_STREAMON");
break;

}
}

static void uninit_device(void)
{

unsigned int i;

switch (io) {
case IO_METHOD_READ:

free(buffers[0].start);
break;

case IO_METHOD_MMAP:
for (i = 0; i < n_buffers; ++i)

if (-1 == munmap(buffers[i].start, buffers[i].length))
errno_exit("munmap");

break;

case IO_METHOD_USERPTR:
for (i = 0; i < n_buffers; ++i)

free(buffers[i].start);
break;

}

free(buffers);
}

static void init_read(unsigned int buffer_size)
{

buffers = calloc(1, sizeof(*buffers));

if (!buffers) {
fprintf(stderr, "Out of memory\\n");
exit(EXIT_FAILURE);

}

1.2. Part I - Video for Linux API 369

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

buffers[0].length = buffer_size;
buffers[0].start = malloc(buffer_size);

if (!buffers[0].start) {
fprintf(stderr, "Out of memory\\n");
exit(EXIT_FAILURE);

}
}

static void init_mmap(void)
{

struct v4l2_requestbuffers req;

CLEAR(req);

req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_MMAP;

if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {

fprintf(stderr, "%s does not support "
"memory mappingn", dev_name);

exit(EXIT_FAILURE);
} else {

errno_exit("VIDIOC_REQBUFS");
}

}

if (req.count < 2) {
fprintf(stderr, "Insufficient buffer memory on %s\\n",

dev_name);
exit(EXIT_FAILURE);

}

buffers = calloc(req.count, sizeof(*buffers));

if (!buffers) {
fprintf(stderr, "Out of memory\\n");
exit(EXIT_FAILURE);

}

for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {
struct v4l2_buffer buf;

CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = n_buffers;

if (-1 == xioctl(fd, VIDIOC_QUERYBUF, &buf))
errno_exit("VIDIOC_QUERYBUF");

buffers[n_buffers].length = buf.length;
buffers[n_buffers].start =

mmap(NULL /* start anywhere */,
buf.length,
PROT_READ | PROT_WRITE /* required */,
MAP_SHARED /* recommended */,
fd, buf.m.offset);

if (MAP_FAILED == buffers[n_buffers].start)

370 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

errno_exit("mmap");
}

}

static void init_userp(unsigned int buffer_size)
{

struct v4l2_requestbuffers req;

CLEAR(req);

req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_USERPTR;

if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {

fprintf(stderr, "%s does not support "
"user pointer i/on", dev_name);

exit(EXIT_FAILURE);
} else {

errno_exit("VIDIOC_REQBUFS");
}

}

buffers = calloc(4, sizeof(*buffers));

if (!buffers) {
fprintf(stderr, "Out of memory\\n");
exit(EXIT_FAILURE);

}

for (n_buffers = 0; n_buffers < 4; ++n_buffers) {
buffers[n_buffers].length = buffer_size;
buffers[n_buffers].start = malloc(buffer_size);

if (!buffers[n_buffers].start) {
fprintf(stderr, "Out of memory\\n");
exit(EXIT_FAILURE);

}
}

}

static void init_device(void)
{

struct v4l2_capability cap;
struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format fmt;
unsigned int min;

if (-1 == xioctl(fd, VIDIOC_QUERYCAP, &cap)) {
if (EINVAL == errno) {

fprintf(stderr, "%s is no V4L2 device\\n",
dev_name);

exit(EXIT_FAILURE);
} else {

errno_exit("VIDIOC_QUERYCAP");
}

}

if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {
fprintf(stderr, "%s is no video capture device\\n",

dev_name);

1.2. Part I - Video for Linux API 371

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

exit(EXIT_FAILURE);
}

switch (io) {
case IO_METHOD_READ:

if (!(cap.capabilities & V4L2_CAP_READWRITE)) {
fprintf(stderr, "%s does not support read i/o\\n",

dev_name);
exit(EXIT_FAILURE);

}
break;

case IO_METHOD_MMAP:
case IO_METHOD_USERPTR:

if (!(cap.capabilities & V4L2_CAP_STREAMING)) {
fprintf(stderr, "%s does not support streaming i/o\\n",

dev_name);
exit(EXIT_FAILURE);

}
break;

}

/* Select video input, video standard and tune here. */

CLEAR(cropcap);

cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (0 == xioctl(fd, VIDIOC_CROPCAP, &cropcap)) {
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect; /* reset to default */

if (-1 == xioctl(fd, VIDIOC_S_CROP, &crop)) {
switch (errno) {
case EINVAL:

/* Cropping not supported. */
break;

default:
/* Errors ignored. */
break;

}
}

} else {
/* Errors ignored. */

}

CLEAR(fmt);

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (force_format) {

fmt.fmt.pix.width = 640;
fmt.fmt.pix.height = 480;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;

if (-1 == xioctl(fd, VIDIOC_S_FMT, &fmt))
errno_exit("VIDIOC_S_FMT");

/* Note VIDIOC_S_FMT may change width and height. */
} else {

372 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* Preserve original settings as set by v4l2-ctl for example */
if (-1 == xioctl(fd, VIDIOC_G_FMT, &fmt))

errno_exit("VIDIOC_G_FMT");
}

/* Buggy driver paranoia. */
min = fmt.fmt.pix.width * 2;
if (fmt.fmt.pix.bytesperline < min)

fmt.fmt.pix.bytesperline = min;
min = fmt.fmt.pix.bytesperline * fmt.fmt.pix.height;
if (fmt.fmt.pix.sizeimage < min)

fmt.fmt.pix.sizeimage = min;

switch (io) {
case IO_METHOD_READ:

init_read(fmt.fmt.pix.sizeimage);
break;

case IO_METHOD_MMAP:
init_mmap();
break;

case IO_METHOD_USERPTR:
init_userp(fmt.fmt.pix.sizeimage);
break;

}
}

static void close_device(void)
{

if (-1 == close(fd))
errno_exit("close");

fd = -1;
}

static void open_device(void)
{

struct stat st;

if (-1 == stat(dev_name, &st)) {
fprintf(stderr, "Cannot identify '%s': %d, %s\\n",

dev_name, errno, strerror(errno));
exit(EXIT_FAILURE);

}

if (!S_ISCHR(st.st_mode)) {
fprintf(stderr, "%s is no devicen", dev_name);
exit(EXIT_FAILURE);

}

fd = open(dev_name, O_RDWR /* required */ | O_NONBLOCK, 0);

if (-1 == fd) {
fprintf(stderr, "Cannot open '%s': %d, %s\\n",

dev_name, errno, strerror(errno));
exit(EXIT_FAILURE);

}
}

static void usage(FILE *fp, int argc, char **argv)
{

fprintf(fp,

1.2. Part I - Video for Linux API 373

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

"Usage: %s [options]\\n\\n"
"Version 1.3\\n"
"Options:\\n"
"-d | --device name Video device name [%s]n"
"-h | --help Print this messagen"
"-m | --mmap Use memory mapped buffers [default]n"
"-r | --read Use read() callsn"
"-u | --userp Use application allocated buffersn"
"-o | --output Outputs stream to stdoutn"
"-f | --format Force format to 640x480 YUYVn"
"-c | --count Number of frames to grab [%i]n"
"",
argv[0], dev_name, frame_count);

}

static const char short_options[] = "d:hmruofc:";

static const struct option
long_options[] = {

{ "device", required_argument, NULL, 'd' },
{ "help", no_argument, NULL, 'h' },
{ "mmap", no_argument, NULL, 'm' },
{ "read", no_argument, NULL, 'r' },
{ "userp", no_argument, NULL, 'u' },
{ "output", no_argument, NULL, 'o' },
{ "format", no_argument, NULL, 'f' },
{ "count", required_argument, NULL, 'c' },
{ 0, 0, 0, 0 }

};

int main(int argc, char **argv)
{

dev_name = "/dev/video0";

for (;;) {
int idx;
int c;

c = getopt_long(argc, argv,
short_options, long_options, &idx);

if (-1 == c)
break;

switch (c) {
case 0: /* getopt_long() flag */

break;

case 'd':
dev_name = optarg;
break;

case 'h':
usage(stdout, argc, argv);
exit(EXIT_SUCCESS);

case 'm':
io = IO_METHOD_MMAP;
break;

case 'r':
io = IO_METHOD_READ;
break;

374 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

case 'u':
io = IO_METHOD_USERPTR;
break;

case 'o':
out_buf++;
break;

case 'f':
force_format++;
break;

case 'c':
errno = 0;
frame_count = strtol(optarg, NULL, 0);
if (errno)

errno_exit(optarg);
break;

default:
usage(stderr, argc, argv);
exit(EXIT_FAILURE);

}
}

open_device();
init_device();
start_capturing();
mainloop();
stop_capturing();
uninit_device();
close_device();
fprintf(stderr, "\\n");
return 0;

}

1.2.11 Video Grabber example using libv4l

This program demonstrates how to grab V4L2 images in ppm format by using libv4l handlers. The advan-
tage is that this grabber can potentially work with any V4L2 driver.

file: media/v4l/v4l2grab.c

/* V4L2 video picture grabber
Copyright (C) 2009 Mauro Carvalho Chehab <mchehab@infradead.org>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

*/

#include <stdio.h>
#include <stdlib.h>

1.2. Part I - Video for Linux API 375

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <linux/videodev2.h>
#include "../libv4l/include/libv4l2.h"

#define CLEAR(x) memset(&(x), 0, sizeof(x))

struct buffer {
void *start;
size_t length;

};

static void xioctl(int fh, int request, void *arg)
{

int r;

do {
r = v4l2_ioctl(fh, request, arg);

} while (r == -1 && ((errno == EINTR) || (errno == EAGAIN)));

if (r == -1) {
fprintf(stderr, "error %d, %s\\n", errno, strerror(errno));
exit(EXIT_FAILURE);

}
}

int main(int argc, char **argv)
{

struct v4l2_format fmt;
struct v4l2_buffer buf;
struct v4l2_requestbuffers req;
enum v4l2_buf_type type;
fd_set fds;
struct timeval tv;
int r, fd = -1;
unsigned int i, n_buffers;
char *dev_name = "/dev/video0";
char out_name[256];
FILE *fout;
struct buffer *buffers;

fd = v4l2_open(dev_name, O_RDWR | O_NONBLOCK, 0);
if (fd < 0) {

perror("Cannot open device");
exit(EXIT_FAILURE);

}

CLEAR(fmt);
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = 640;
fmt.fmt.pix.height = 480;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_RGB24;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;
xioctl(fd, VIDIOC_S_FMT, &fmt);
if (fmt.fmt.pix.pixelformat != V4L2_PIX_FMT_RGB24) {

printf("Libv4l didn't accept RGB24 format. Can't proceed.\\n");
exit(EXIT_FAILURE);

}

376 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

if ((fmt.fmt.pix.width != 640) || (fmt.fmt.pix.height != 480))
printf("Warning: driver is sending image at %dx%d\\n",

fmt.fmt.pix.width, fmt.fmt.pix.height);

CLEAR(req);
req.count = 2;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_MMAP;
xioctl(fd, VIDIOC_REQBUFS, &req);

buffers = calloc(req.count, sizeof(*buffers));
for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {

CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = n_buffers;

xioctl(fd, VIDIOC_QUERYBUF, &buf);

buffers[n_buffers].length = buf.length;
buffers[n_buffers].start = v4l2_mmap(NULL, buf.length,

PROT_READ | PROT_WRITE, MAP_SHARED,
fd, buf.m.offset);

if (MAP_FAILED == buffers[n_buffers].start) {
perror("mmap");
exit(EXIT_FAILURE);

}
}

for (i = 0; i < n_buffers; ++i) {
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;
xioctl(fd, VIDIOC_QBUF, &buf);

}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

xioctl(fd, VIDIOC_STREAMON, &type);
for (i = 0; i < 20; i++) {

do {
FD_ZERO(&fds);
FD_SET(fd, &fds);

/* Timeout. */
tv.tv_sec = 2;
tv.tv_usec = 0;

r = select(fd + 1, &fds, NULL, NULL, &tv);
} while ((r == -1 && (errno = EINTR)));
if (r == -1) {

perror("select");
return errno;

}

CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
xioctl(fd, VIDIOC_DQBUF, &buf);

sprintf(out_name, "out%03d.ppm", i);

1.2. Part I - Video for Linux API 377

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

fout = fopen(out_name, "w");
if (!fout) {

perror("Cannot open image");
exit(EXIT_FAILURE);

}
fprintf(fout, "P6\\n%d %d 255\\n",

fmt.fmt.pix.width, fmt.fmt.pix.height);
fwrite(buffers[buf.index].start, buf.bytesused, 1, fout);
fclose(fout);

xioctl(fd, VIDIOC_QBUF, &buf);
}

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
xioctl(fd, VIDIOC_STREAMOFF, &type);
for (i = 0; i < n_buffers; ++i)

v4l2_munmap(buffers[i].start, buffers[i].length);
v4l2_close(fd);

return 0;
}

1.2.12 References

CEA 608-E

title CEA-608-E R-2014 “Line 21 Data Services”
author Consumer Electronics Association (http://www.ce.org)

EN 300 294

title EN 300 294 “625-line television Wide Screen Signalling (WSS)”
author European Telecommunication Standards Institute (http://www.etsi.org)

ETS 300 231

title ETS 300 231 “Specification of the domestic video Programme Delivery Control system
(PDC)”

author European Telecommunication Standards Institute (http://www.etsi.org)

ETS 300 706

title ETS 300 706 “Enhanced Teletext specification”
author European Telecommunication Standards Institute (http://www.etsi.org)

ISO 13818-1

title ITU-T Rec. H.222.0 | ISO/IEC 13818-1 “Information technology — Generic coding of moving
pictures and associated audio information: Systems”

author International Telecommunication Union (http://www.itu.ch), International Organisation
for Standardisation (http://www.iso.ch)

378 Chapter 1. Linux Media Infrastructure userspace API

http://www.ce.org
http://www.etsi.org
http://www.etsi.org
http://www.etsi.org
http://www.itu.ch
http://www.iso.ch

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ISO 13818-2

title ITU-T Rec. H.262 | ISO/IEC 13818-2 “Information technology — Generic coding of moving
pictures and associated audio information: Video”

author International Telecommunication Union (http://www.itu.ch), International Organisation
for Standardisation (http://www.iso.ch)

ITU BT.470

title ITU-R Recommendation BT.470-6 “Conventional Television Systems”
author International Telecommunication Union (http://www.itu.ch)

ITU BT.601

title ITU-R Recommendation BT.601-5 “Studio Encoding Parameters of Digital Television for
Standard 4:3 and Wide-Screen 16:9 Aspect Ratios”

author International Telecommunication Union (http://www.itu.ch)

ITU BT.653

title ITU-R Recommendation BT.653-3 “Teletext systems”
author International Telecommunication Union (http://www.itu.ch)

ITU BT.709

title ITU-R Recommendation BT.709-5 “Parameter values for the HDTV standards for production
and international programme exchange”

author International Telecommunication Union (http://www.itu.ch)

ITU BT.1119

title ITU-R Recommendation BT.1119 “625-line television Wide Screen Signalling (WSS)”
author International Telecommunication Union (http://www.itu.ch)

JFIF

title JPEG File Interchange Format
subtitle Version 1.02
author Independent JPEG Group (http://www.ijg.org)

ITU-T.81

title ITU-T Recommendation T.81 “Information Technology — Digital Compression and Coding
of Continous-Tone Still Images — Requirements and Guidelines”

author International Telecommunication Union (http://www.itu.int)

1.2. Part I - Video for Linux API 379

http://www.itu.ch
http://www.iso.ch
http://www.itu.ch
http://www.itu.ch
http://www.itu.ch
http://www.itu.ch
http://www.itu.ch
http://www.ijg.org
http://www.itu.int

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

W3C JPEG JFIF

title JPEG JFIF
author The World Wide Web Consortium (http://www.w3.org)

SMPTE 12M

title SMPTE 12M-1999 “Television, Audio and Film - Time and Control Code”
author Society of Motion Picture and Television Engineers (http://www.smpte.org)

SMPTE 170M

title SMPTE 170M-1999 “Television - Composite Analog Video Signal - NTSC for Studio Applica-
tions”

author Society of Motion Picture and Television Engineers (http://www.smpte.org)

SMPTE 240M

title SMPTE 240M-1999 “Television - Signal Parameters - 1125-Line High-Definition Production”
author Society of Motion Picture and Television Engineers (http://www.smpte.org)

SMPTE RP 431-2

title SMPTE RP 431-2:2011 “D-Cinema Quality - Reference Projector and Environment”
author Society of Motion Picture and Television Engineers (http://www.smpte.org)

SMPTE ST 2084

title SMPTE ST 2084:2014 “High Dynamic Range Electro-Optical Transfer Function of Master
Reference Displays”

author Society of Motion Picture and Television Engineers (http://www.smpte.org)

sRGB

title IEC 61966-2-1 ed1.0 “Multimedia systems and equipment - Colour measurement and man-
agement - Part 2-1: Colour management - Default RGB colour space - sRGB”

author International Electrotechnical Commission (http://www.iec.ch)

sYCC

title IEC 61966-2-1-am1 ed1.0 “Amendment 1 - Multimedia systems and equipment - Colour
measurement and management - Part 2-1: Colour management - Default RGB colour space
- sRGB”

author International Electrotechnical Commission (http://www.iec.ch)

380 Chapter 1. Linux Media Infrastructure userspace API

http://www.w3.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org
http://www.iec.ch
http://www.iec.ch

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

xvYCC

title IEC 61966-2-4 ed1.0 “Multimedia systems and equipment - Colour measurement and man-
agement - Part 2-4: Colour management - Extended-gamut YCC colour space for video
applications - xvYCC”

author International Electrotechnical Commission (http://www.iec.ch)

AdobeRGB

title Adobe© RGB (1998) Color Image Encoding Version 2005-05
author Adobe Systems Incorporated (http://www.adobe.com)

opRGB

title IEC 61966-2-5 “Multimedia systems and equipment - Colour measurement and manage-
ment - Part 2-5: Colour management - Optional RGB colour space - opRGB”

author International Electrotechnical Commission (http://www.iec.ch)

ITU BT.2020

title ITU-R Recommendation BT.2020 (08/2012) “Parameter values for ultra-high definition tele-
vision systems for production and international programme exchange”

author International Telecommunication Union (http://www.itu.ch)

EBU Tech 3213

title E.B.U. Standard for Chromaticity Tolerances for Studio Monitors”
author European Broadcast Union (http://www.ebu.ch)

IEC 62106

title Specification of the radio data system (RDS) for VHF/FM sound broadcasting in the fre-
quency range from 87,5 to 108,0 MHz

author International Electrotechnical Commission (http://www.iec.ch)

NRSC-4-B

title NRSC-4-B: United States RBDS Standard
author National Radio Systems Committee (http://www.nrscstandards.org)

ISO 12232:2006

title Photography — Digital still cameras — Determination of exposure index, ISO speed ratings,
standard output sensitivity, and recommended exposure index

author International Organization for Standardization (http://www.iso.org)

1.2. Part I - Video for Linux API 381

http://www.iec.ch
http://www.adobe.com
http://www.iec.ch
http://www.itu.ch
http://www.ebu.ch
http://www.iec.ch
http://www.nrscstandards.org
http://www.iso.org

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CEA-861-E

title A DTV Profile for Uncompressed High Speed Digital Interfaces
author Consumer Electronics Association (http://www.ce.org)

VESA DMT

title VESA and Industry Standards and Guidelines for Computer Display Monitor Timing (DMT)
author Video Electronics Standards Association (http://www.vesa.org)

EDID

title VESA Enhanced Extended Display Identification Data Standard
subtitle Release A, Revision 2
author Video Electronics Standards Association (http://www.vesa.org)

HDCP

title High-bandwidth Digital Content Protection System
subtitle Revision 1.3
author Digital Content Protection LLC (http://www.digital-cp.com)

HDMI

title High-Definition Multimedia Interface
subtitle Specification Version 1.4a
author HDMI Licensing LLC (http://www.hdmi.org)

HDMI2

title High-Definition Multimedia Interface
subtitle Specification Version 2.0
author HDMI Licensing LLC (http://www.hdmi.org)

DP

title VESA DisplayPort Standard
subtitle Version 1, Revision 2
author Video Electronics Standards Association (http://www.vesa.org)

poynton

title Digital Video and HDTV, Algorithms and Interfaces
author Charles Poynton

382 Chapter 1. Linux Media Infrastructure userspace API

http://www.ce.org
http://www.vesa.org
http://www.vesa.org
http://www.digital-cp.com
http://www.hdmi.org
http://www.hdmi.org
http://www.vesa.org

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

colimg

title Color Imaging: Fundamentals and Applications
author Erik Reinhard et al.

1.2.13 Revision and Copyright

Authors, in alphabetical order:
• Ailus, Sakari <sakari.ailus@iki.fi>

– Subdev selections API.
• Carvalho Chehab, Mauro <m.chehab@kernel.org>

– Documented libv4l, designed and added v4l2grab example, Remote Controller chapter.
• Dirks, Bill

– Original author of the V4L2 API and documentation.
• H Schimek, Michael <mschimek@gmx.at>

– Original author of the V4L2 API and documentation.
• Karicheri, Muralidharan <m-karicheri2@ti.com>

– Documented the Digital Video timings API.
• Osciak, Pawel <pawel@osciak.com>

– Designed and documented the multi-planar API.
• Palosaari, Antti <crope@iki.fi>

– SDR API.
• Ribalda, Ricardo

– Introduce HSV formats and other minor changes.
• Rubli, Martin

– Designed and documented the VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS
ioctls.

• Walls, Andy <awalls@md.metrocast.net>
– Documented the fielded V4L2_MPEG_STREAM_VBI_FMT_IVTV MPEG stream embedded, sliced VBI

data format in this specification.
• Verkuil, Hans <hverkuil@xs4all.nl>

– Designed and documented the VIDIOC_LOG_STATUS ioctl, the extended control ioctls, major
parts of the sliced VBI API, the MPEG encoder and decoder APIs and the DV Timings API.

Copyright © 1999-2016: Bill Dirks, Michael H. Schimek, Hans Verkuil, Martin Rubli, Andy Walls, Muralid-
haran Karicheri, Mauro Carvalho Chehab, Pawel Osciak, Sakari Ailus & Antti Palosaari.
Except when explicitly stated as GPL, programming examples within this part can be used and distributed
without restrictions.

1.2.14 Revision History

revision 4.10 / 2016-07-15 (rr)
Introduce HSV formats.

revision 4.5 / 2015-10-29 (rr)

1.2. Part I - Video for Linux API 383

mailto:sakari.ailus@iki.fi
mailto:m.chehab@kernel.org
mailto:mschimek@gmx.at
mailto:m-karicheri2@ti.com
mailto:pawel@osciak.com
mailto:crope@iki.fi
mailto:awalls@md.metrocast.net
mailto:hverkuil@xs4all.nl

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Extend VIDIOC_G_EXT_CTRLS;. Replace ctrl_class with a new union with ctrl_class and which. Which is
used to select the current value of the control or the default value.

revision 4.4 / 2015-05-26 (ap)
Renamed V4L2_TUNER_ADC to V4L2_TUNER_SDR. Added V4L2_CID_RF_TUNER_RF_GAIN control. Added
transmitter support for Software Defined Radio (SDR) Interface.

revision 4.1 / 2015-02-13 (mcc)
Fix documentation for media controller device nodes and add support for DVB device nodes. Add support
for Tuner sub-device.

revision 3.19 / 2014-12-05 (hv)
Rewrote Colorspace chapter, added new enum v4l2_ycbcr_encoding and enum v4l2_quantization
fields to struct v4l2_pix_format, struct v4l2_pix_format_mplane and struct v4l2_mbus_framefmt.

revision 3.17 / 2014-08-04 (lp, hv)
Extended struct v4l2_pix_format. Added format flags. Added compound control types and VID-
IOC_QUERY_EXT_CTRL.

revision 3.15 / 2014-02-03 (hv, ap)
Update several sections of “Common API Elements”: “Opening and Closing Devices” “Querying Capabil-
ities”, “Application Priority”, “Video Inputs and Outputs”, “Audio Inputs and Outputs” “Tuners and Modu-
lators”, “Video Standards” and “Digital Video (DV) Timings”. Added SDR API.

revision 3.14 / 2013-11-25 (rr)
Set width and height as unsigned on v4l2_rect.

revision 3.11 / 2013-05-26 (hv)
Remove obsolete VIDIOC_DBG_G_CHIP_IDENT ioctl.

revision 3.10 / 2013-03-25 (hv)
Remove obsolete and unused DV_PRESET ioctls: VIDIOC_G_DV_PRESET, VIDIOC_S_DV_PRESET, VID-
IOC_QUERY_DV_PRESET and VIDIOC_ENUM_DV_PRESET. Remove the related v4l2_input/output capability
flags V4L2_IN_CAP_PRESETS and V4L2_OUT_CAP_PRESETS. Added VIDIOC_DBG_G_CHIP_INFO.

revision 3.9 / 2012-12-03 (sa, sn)
Added timestamp types to v4l2_buffer. Added V4L2_EVENT_CTRL_CH_RANGE control event changes flag.

revision 3.6 / 2012-07-02 (hv)
Added VIDIOC_ENUM_FREQ_BANDS.

revision 3.5 / 2012-05-07 (sa, sn, hv)
Added V4L2_CTRL_TYPE_INTEGER_MENU and V4L2 subdev selections API. Improved the de-
scription of V4L2_CID_COLORFX control, added V4L2_CID_COLORFX_CBCR control. Added cam-
era controls V4L2_CID_AUTO_EXPOSURE_BIAS, V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE,
V4L2_CID_IMAGE_STABILIZATION, V4L2_CID_ISO_SENSITIVITY, V4L2_CID_ISO_SENSITIVITY_AUTO,
V4L2_CID_EXPOSURE_METERING, V4L2_CID_SCENE_MODE, V4L2_CID_3A_LOCK,
V4L2_CID_AUTO_FOCUS_START, V4L2_CID_AUTO_FOCUS_STOP, V4L2_CID_AUTO_FOCUS_STATUS and
V4L2_CID_AUTO_FOCUS_RANGE. Added VIDIOC_ENUM_DV_TIMINGS, VIDIOC_QUERY_DV_TIMINGS and
VIDIOC_DV_TIMINGS_CAP.

revision 3.4 / 2012-01-25 (sn)
Added JPEG compression control class.

revision 3.3 / 2012-01-11 (hv)
Added device_caps field to struct v4l2_capabilities.

revision 3.2 / 2011-08-26 (hv)

384 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Added V4L2_CTRL_FLAG_VOLATILE.
revision 3.1 / 2011-06-27 (mcc, po, hv)

Documented that VIDIOC_QUERYCAP now returns a per-subsystem version instead of a per-driver one.
Standardize an error code for invalid ioctl. Added V4L2_CTRL_TYPE_BITMASK.

revision 2.6.39 / 2011-03-01 (mcc, po)
Removed VIDIOC_*_OLD from videodev2.h header and update it to reflect latest changes. Added the
multi-planar API .

revision 2.6.37 / 2010-08-06 (hv)
Removed obsolete vtx (videotext) API.

revision 2.6.33 / 2009-12-03 (mk)
Added documentation for the Digital Video timings API.

revision 2.6.32 / 2009-08-31 (mcc)
Now, revisions will match the kernel version where the V4L2 API changes will be used by the Linux Kernel.
Also added Remote Controller chapter.

revision 0.29 / 2009-08-26 (ev)
Added documentation for string controls and for FM Transmitter controls.

revision 0.28 / 2009-08-26 (gl)
Added V4L2_CID_BAND_STOP_FILTER documentation.

revision 0.27 / 2009-08-15 (mcc)
Added libv4l and Remote Controller documentation; added v4l2grab and keytable application examples.

revision 0.26 / 2009-07-23 (hv)
Finalized the RDS capture API. Added modulator and RDS encoder capabilities. Added support for string
controls.

revision 0.25 / 2009-01-18 (hv)
Added pixel formats VYUY, NV16 and NV61, and changed the debug ioctls VIDIOC_DBG_G/S_REGISTER
and VIDIOC_DBG_G_CHIP_IDENT. Added camera controls V4L2_CID_ZOOM_ABSOLUTE,
V4L2_CID_ZOOM_RELATIVE, V4L2_CID_ZOOM_CONTINUOUS and V4L2_CID_PRIVACY.

revision 0.24 / 2008-03-04 (mhs)
Added pixel formats Y16 and SBGGR16, new controls and a camera controls class. Removed VID-
IOC_G/S_MPEGCOMP.

revision 0.23 / 2007-08-30 (mhs)
Fixed a typo in VIDIOC_DBG_G/S_REGISTER. Clarified the byte order of packed pixel formats.

revision 0.22 / 2007-08-29 (mhs)
Added the Video Output Overlay interface, new MPEG controls, V4L2_FIELD_INTERLACED_TB
and V4L2_FIELD_INTERLACED_BT, VIDIOC_DBG_G/S_REGISTER, VIDIOC_(TRY_)ENCODER_CMD, VID-
IOC_G_CHIP_IDENT, VIDIOC_G_ENC_INDEX, new pixel formats. Clarifications in the cropping chapter,
about RGB pixel formats, the mmap(), poll(), select(), read() and write() functions. Typographical fixes.

revision 0.21 / 2006-12-19 (mhs)
Fixed a link in the VIDIOC_G_EXT_CTRLS section.

revision 0.20 / 2006-11-24 (mhs)
Clarified the purpose of the audioset field in struct v4l2_input and v4l2_output.

revision 0.19 / 2006-10-19 (mhs)

1.2. Part I - Video for Linux API 385

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Documented V4L2_PIX_FMT_RGB444.
revision 0.18 / 2006-10-18 (mhs)

Added the description of extended controls by Hans Verkuil. Linked V4L2_PIX_FMT_MPEG to
V4L2_CID_MPEG_STREAM_TYPE.

revision 0.17 / 2006-10-12 (mhs)
Corrected V4L2_PIX_FMT_HM12 description.

revision 0.16 / 2006-10-08 (mhs)
VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS are now part of the API.

revision 0.15 / 2006-09-23 (mhs)
Cleaned up the bibliography, added BT.653 and BT.1119. capture.c/start_capturing() for user pointer
I/O did not initialize the buffer index. Documented the V4L MPEG and MJPEG VID_TYPEs and
V4L2_PIX_FMT_SBGGR8. Updated the list of reserved pixel formats. See the history chapter for API
changes.

revision 0.14 / 2006-09-14 (mr)
Added VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS proposal for frame format enu-
meration of digital devices.

revision 0.13 / 2006-04-07 (mhs)
Corrected the description of struct v4l2_window clips. New V4L2_STD_ and
V4L2_TUNER_MODE_LANG1_LANG2 defines.

revision 0.12 / 2006-02-03 (mhs)
Corrected the description of struct v4l2_captureparm and v4l2_outputparm.

revision 0.11 / 2006-01-27 (mhs)
Improved the description of struct v4l2_tuner.

revision 0.10 / 2006-01-10 (mhs)
VIDIOC_G_INPUT and VIDIOC_S_PARM clarifications.

revision 0.9 / 2005-11-27 (mhs)
Improved the 525 line numbering diagram. Hans Verkuil and I rewrote the sliced VBI section. He also con-
tributed a VIDIOC_LOG_STATUS page. Fixed VIDIOC_S_STD call in the video standard selection example.
Various updates.

revision 0.8 / 2004-10-04 (mhs)
Somehow a piece of junk slipped into the capture example, removed.

revision 0.7 / 2004-09-19 (mhs)
Fixed video standard selection, control enumeration, downscaling and aspect example. Added read and
user pointer i/o to video capture example.

revision 0.6 / 2004-08-01 (mhs)
v4l2_buffer changes, added video capture example, various corrections.

revision 0.5 / 2003-11-05 (mhs)
Pixel format erratum.

revision 0.4 / 2003-09-17 (mhs)
Corrected source and Makefile to generate a PDF. SGML fixes. Added latest API changes. Closed gaps in
the history chapter.

revision 0.3 / 2003-02-05 (mhs)

386 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Another draft, more corrections.
revision 0.2 / 2003-01-15 (mhs)

Second draft, with corrections pointed out by Gerd Knorr.
revision 0.1 / 2002-12-01 (mhs)

First draft, based on documentation by Bill Dirks and discussions on the V4L mailing list.

1.3 Part II - Digital TV API

Note:

This API is also known as Linux DVB API.
It it was originally written to support the European digital TV standard (DVB), and later extended to
support all digital TV standards.
In order to avoid confusion, within this document, it was opted to refer to it, and to associated hardware
as Digital TV.
The word DVB is reserved to be used for:
• the Digital TV API version (e. g. DVB API version 3 or DVB API version 5);
• digital TV data types (enums, structs, defines, etc);
• digital TV device nodes (/dev/dvb/...);
• the European DVB standard.

Version 5.10

1.3.1 Introduction

What you need to know

The reader of this document is required to have some knowledge in the area of digital video broadcasting
(Digital TV) and should be familiar with part I of the MPEG2 specification ISO/IEC 13818 (aka ITU-T H.222),
i.e you should know what a program/transport stream (PS/TS) is and what is meant by a packetized ele-
mentary stream (PES) or an I-frame.
Various Digital TV standards documents are available for download at:

• European standards (DVB): http://www.dvb.org and/or http://www.etsi.org.
• American standards (ATSC): https://www.atsc.org/standards/
• Japanese standards (ISDB): http://www.dibeg.org/

It is also necessary to know how to access Linux devices and how to use ioctl calls. This also includes the
knowledge of C or C++.

History

The first API for Digital TV cards we used at Convergence in late 1999 was an extension of the Video4Linux
API which was primarily developed for frame grabber cards. As such it was not really well suited to be
used for Digital TV cards and their new features like recording MPEG streams and filtering several section
and PES data streams at the same time.
In early 2000, Convergence was approached by Nokia with a proposal for a new standard Linux Digital TV
API. As a commitment to the development of terminals based on open standards, Nokia and Convergence
made it available to all Linux developers and published it on https://linuxtv.org in September 2000. With

1.3. Part II - Digital TV API 387

http://www.dvb.org
http://www.etsi.org
https://www.atsc.org/standards/
http://www.dibeg.org/
https://linuxtv.org

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

the Linux driver for the Siemens/Hauppauge DVB PCI card, Convergence provided a first implementation
of the Linux Digital TV API. Convergence was the maintainer of the Linux Digital TV API in the early days.
Now, the API is maintained by the LinuxTV community (i.e. you, the reader of this document). The Linux
Digital TV API is constantly reviewed and improved together with the improvements at the subsystem’s
core at the Kernel.

Overview

Fig. 1.17: Components of a Digital TV card/STB

A Digital TV card or set-top-box (STB) usually consists of the following main hardware components:
Frontend consisting of tuner and digital TV demodulator Here the raw signal reaches the digital

TV hardware from a satellite dish or antenna or directly from cable. The frontend down-converts
and demodulates this signal into an MPEG transport stream (TS). In case of a satellite frontend, this
includes a facility for satellite equipment control (SEC), which allows control of LNB polarization, multi
feed switches or dish rotors.

Conditional Access (CA) hardware like CI adapters and smartcard slots The complete TS is
passed through the CA hardware. Programs to which the user has access (controlled by the smart
card) are decoded in real time and re-inserted into the TS.

Note:

Not every digital TV hardware provides conditional access hardware.

Demultiplexer which filters the incoming Digital TV MPEG-TS stream The demultiplexer splits
the TS into its components like audio and video streams. Besides usually several of such audio and
video streams it also contains data streams with information about the programs offered in this or
other streams of the same provider.

Audio and video decoder The main targets of the demultiplexer are audio and video decoders. After
decoding, they pass on the uncompressed audio and video to the computer screen or to a TV set.

388 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

Modern hardware usually doesn’t have a separate decoder hardware, as such functionality can
be provided by the main CPU, by the graphics adapter of the system or by a signal processing
hardware embedded on a Systems on a Chip (SoC) integrated circuit.
It may also not be needed for certain usages (e.g. for data-only uses like “internet over satellite”).

Components of a Digital TV card/STB shows a crude schematic of the control and data flow between
those components.

Linux Digital TV Devices

The Linux Digital TV API lets you control these hardware components through currently six Unix-style
character devices for video, audio, frontend, demux, CA and IP-over-DVB networking. The video and
audio devices control the MPEG2 decoder hardware, the frontend device the tuner and the Digital TV
demodulator. The demux device gives you control over the PES and section filters of the hardware. If the
hardware does not support filtering these filters can be implemented in software. Finally, the CA device
controls all the conditional access capabilities of the hardware. It can depend on the individual security
requirements of the platform, if and how many of the CA functions are made available to the application
through this device.
All devices can be found in the /dev tree under /dev/dvb. The individual devices are called:

• /dev/dvb/adapterN/audioM,
• /dev/dvb/adapterN/videoM,
• /dev/dvb/adapterN/frontendM,
• /dev/dvb/adapterN/netM,
• /dev/dvb/adapterN/demuxM,
• /dev/dvb/adapterN/dvrM,
• /dev/dvb/adapterN/caM,

where N enumerates the Digital TV cards in a system starting from 0, and M enumerates the devices of
each type within each adapter, starting from 0, too. We will omit the “/dev/dvb/adapterN/” in the further
discussion of these devices.
More details about the data structures and function calls of all the devices are described in the following
chapters.

API include files

For each of the Digital TV devices a corresponding include file exists. The Digital TV API include files should
be included in application sources with a partial path like:

#include <linux/dvb/ca.h>

#include <linux/dvb/dmx.h>

#include <linux/dvb/frontend.h>

#include <linux/dvb/net.h>

To enable applications to support different API version, an additional include file linux/dvb/version.h
exists, which defines the constant DVB_API_VERSION. This document describes DVB_API_VERSION 5.10.

1.3. Part II - Digital TV API 389

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1.3.2 Digital TV Frontend API

The Digital TV frontend API was designed to support three groups of delivery systems: Terrestrial, cable
and Satellite. Currently, the following delivery systems are supported:

• Terrestrial systems: DVB-T, DVB-T2, ATSC, ATSC M/H, ISDB-T, DVB-H, DTMB, CMMB
• Cable systems: DVB-C Annex A/C, ClearQAM (DVB-C Annex B)
• Satellite systems: DVB-S, DVB-S2, DVB Turbo, ISDB-S, DSS

The Digital TV frontend controls several sub-devices including:
• Tuner
• Digital TV demodulator
• Low noise amplifier (LNA)
• Satellite Equipment Control (SEC) 1.

The frontend can be accessed through /dev/dvb/adapter?/frontend?. Data types and ioctl definitions
can be accessed by including linux/dvb/frontend.h in your application.

Note:

Transmission via the internet (DVB-IP) and MMT (MPEG Media Transport) is not yet handled by this API
but a future extension is possible.

Querying frontend information

Usually, the first thing to do when the frontend is opened is to check the frontend capabilities. This is done
using ioctl FE_GET_INFO . This ioctl will enumerate the Digital TV API version and other characteristics
about the frontend, and can be opened either in read only or read/write mode.

Querying frontend status and statistics

Once FE_SET_PROPERTY is called, the frontend will run a kernel thread that will periodically check for
the tuner lock status and provide statistics about the quality of the signal.
The information about the frontend tuner locking status can be queried using ioctl FE_READ_STATUS .
Signal statistics are provided via ioctl FE_SET_PROPERTY, FE_GET_PROPERTY .

Note:

Most statistics require the demodulator to be fully locked (e. g. with FE_HAS_LOCK bit set). See
Frontend statistics indicators for more details.

Property types

Tuning into a Digital TV physical channel and starting decoding it requires changing a set of parameters, in
order to control the tuner, the demodulator, the Linear Low-noise Amplifier (LNA) and to set the antenna

1 On Satellite systems, the API support for the Satellite Equipment Control (SEC) allows to power control and to send/receive
signals to control the antenna subsystem, selecting the polarization and choosing the Intermediate Frequency IF) of the Low Noise
Block Converter Feed Horn (LNBf). It supports the DiSEqC and V-SEC protocols. The DiSEqC (digital SEC) specification is available
at Eutelsat.

390 Chapter 1. Linux Media Infrastructure userspace API

http://www.eutelsat.com/satellites/4_5_5.html

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

subsystem via Satellite Equipment Control - SEC (on satellite systems). The actual parameters are specific
to each particular digital TV standards, and may change as the digital TV specs evolves.
In the past (up to DVB API version 3 - DVBv3), the strategy used was to have a union with the parameters
needed to tune for DVB-S, DVB-C, DVB-T and ATSC delivery systems grouped there. The problem is that,
as the second generation standards appeared, the size of such union was not big enough to group the
structs that would be required for those new standards. Also, extending it would break userspace.
So, the legacy union/struct based approach was deprecated, in favor of a properties set approach. On
such approach, FE_GET_PROPERTY and FE_SET_PROPERTY are used to setup the frontend and read its
status.
The actual action is determined by a set of dtv_property cmd/data pairs. With one single ioctl, is possible
to get/set up to 64 properties.
This section describes the new and recommended way to set the frontend, with supports all digital TV
delivery systems.

Note:

1. On Linux DVB API version 3, setting a frontend was done via struct dvb_frontend_parameters.
2. Don’t use DVB API version 3 calls on hardware with supports newer standards. Such API provides
no suport or a very limited support to new standards and/or new hardware.

3. Nowadays, most frontends support multiple delivery systems. Only with DVB API version 5 calls
it is possible to switch between the multiple delivery systems supported by a frontend.

4. DVB API version 5 is also called S2API, as the first new standard added to it was DVB-S2.

Example: in order to set the hardware to tune into a DVB-C channel at 651 kHz, modulated with 256-QAM,
FEC 3/4 and symbol rate of 5.217 Mbauds, those properties should be sent to FE_SET_PROPERTY ioctl:

DTV_DELIVERY_SYSTEM = SYS_DVBC_ANNEX_A
DTV_FREQUENCY = 651000000
DTV_MODULATION = QAM_256
DTV_INVERSION = INVERSION_AUTO
DTV_SYMBOL_RATE = 5217000
DTV_INNER_FEC = FEC_3_4
DTV_TUNE

The code that would that would do the above is show in Example: Setting digital TV frontend properties .

Listing 1.1: Example: Setting digital TV frontend properties
#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/dvb/frontend.h>

static struct dtv_property props[] = {
{ .cmd = DTV_DELIVERY_SYSTEM, .u.data = SYS_DVBC_ANNEX_A },
{ .cmd = DTV_FREQUENCY, .u.data = 651000000 },
{ .cmd = DTV_MODULATION, .u.data = QAM_256 },
{ .cmd = DTV_INVERSION, .u.data = INVERSION_AUTO },
{ .cmd = DTV_SYMBOL_RATE, .u.data = 5217000 },
{ .cmd = DTV_INNER_FEC, .u.data = FEC_3_4 },
{ .cmd = DTV_TUNE }

};

static struct dtv_properties dtv_prop = {
.num = 6, .props = props

1.3. Part II - Digital TV API 391

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

};

int main(void)
{

int fd = open("/dev/dvb/adapter0/frontend0", O_RDWR);

if (!fd) {
perror ("open");
return -1;

}
if (ioctl(fd, FE_SET_PROPERTY, &dtv_prop) == -1) {

perror("ioctl");
return -1;

}
printf("Frontend set\\n");
return 0;

}

Attention:

While it is possible to directly call the Kernel code like the above example, it is strongly recom-
mended to use libdvbv5, as it provides abstraction to work with the supported digital TV standards
and provides methods for usual operations like program scanning and to read/write channel de-
scriptor files.

Digital TV property parameters

There are several different Digital TV parameters that can be used by FE_SET_PROPERTY and
FE_GET_PROPERTY ioctls . This section describes each of them. Please notice, however, that only a
subset of them are needed to setup a frontend.

DTV_UNDEFINED

Used internally. A GET/SET operation for it won’t change or return anything.

DTV_TUNE

Interpret the cache of data, build either a traditional frontend tunerequest so we can pass validation in
the FE_SET_FRONTEND ioctl.

DTV_CLEAR

Reset a cache of data specific to the frontend here. This does not effect hardware.

DTV_FREQUENCY

Frequency of the digital TV transponder/channel.

392 Chapter 1. Linux Media Infrastructure userspace API

https://linuxtv.org/docs/libdvbv5/index.html

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

1. For satellite delivery systems, the frequency is in kHz.
2. For cable and terrestrial delivery systems, the frequency is in Hz.
3. On most delivery systems, the frequency is the center frequency of the transponder/channel. The
exception is for ISDB-T, where the main carrier has a 1/7 offset from the center.

4. For ISDB-T, the channels are usually transmitted with an offset of about 143kHz. E.g. a valid
frequency could be 474,143 kHz. The stepping is bound to the bandwidth of the channel which is
typically 6MHz.

5. In ISDB-Tsb, the channel consists of only one or three segments the frequency step is 429kHz,
3*429 respectively.

DTV_MODULATION

Specifies the frontend modulation type for delivery systems that supports more multiple modulations.
The modulation can be one of the types defined by enum fe_modulation.
Most of the digital TV standards offers more than one possible modulation type.
The table below presents a summary of the types of modulation types supported by each delivery system,
as currently defined by specs.
Standard Modulation types
ATSC (version 1) 8-VSB and 16-VSB.
DMTB 4-QAM, 16-QAM, 32-QAM, 64-QAM and 4-QAM-NR.
DVB-C Annex A/C 16-QAM, 32-QAM, 64-QAM and 256-QAM.
DVB-C Annex B 64-QAM.
DVB-T QPSK, 16-QAM and 64-QAM.
DVB-T2 QPSK, 16-QAM, 64-QAM and 256-QAM.
DVB-S No need to set. It supports only QPSK.
DVB-S2 QPSK, 8-PSK, 16-APSK and 32-APSK.
ISDB-T QPSK, DQPSK, 16-QAM and 64-QAM.
ISDB-S 8-PSK, QPSK and BPSK.

Note:

Please notice that some of the above modulation types may not be defined currently at the Kernel.
The reason is simple: no driver needed such definition yet.

DTV_BANDWIDTH_HZ

Bandwidth for the channel, in HZ.
Should be set only for terrestrial delivery systems.
Possible values: 1712000, 5000000, 6000000, 7000000, 8000000, 10000000.
Terrestrial Standard Possible values for bandwidth
ATSC (version 1) No need to set. It is always 6MHz.
DMTB No need to set. It is always 8MHz.
DVB-T 6MHz, 7MHz and 8MHz.
DVB-T2 1.172 MHz, 5MHz, 6MHz, 7MHz, 8MHz and 10MHz
ISDB-T 5MHz, 6MHz, 7MHz and 8MHz, although most places use 6MHz.

1.3. Part II - Digital TV API 393

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

1. For ISDB-Tsb, the bandwidth can vary depending on the number of connected segments.
It can be easily derived from other parameters (DTV_ISDBT_SB_SEGMENT_IDX,
DTV_ISDBT_SB_SEGMENT_COUNT).

2. On Satellite and Cable delivery systems, the bandwidth depends on the symbol rate. So, the
Kernel will silently ignore any setting DTV_BANDWIDTH_HZ . I will however fill it back with a
bandwidth estimation.
Such bandwidth estimation takes into account the symbol rate set with DTV_SYMBOL_RATE , and
the rolloff factor, with is fixed for DVB-C and DVB-S.
For DVB-S2, the rolloff should also be set via DTV_ROLLOFF .

DTV_INVERSION

Specifies if the frontend should do spectral inversion or not.
The acceptable values are defined by fe_spectral_inversion.

DTV_DISEQC_MASTER

Currently not implemented.

DTV_SYMBOL_RATE

Used on cable and satellite delivery systems.
Digital TV symbol rate, in bauds (symbols/second).

DTV_INNER_FEC

Used on cable and satellite delivery systems.
The acceptable values are defined by fe_code_rate.

DTV_VOLTAGE

Used on satellite delivery systems.
The voltage is usually used with non-DiSEqC capable LNBs to switch the polarzation (horizontal/vertical).
When using DiSEqC epuipment this voltage has to be switched consistently to the DiSEqC commands as
described in the DiSEqC spec.
The acceptable values are defined by fe_sec_voltage.

DTV_TONE

Currently not used.

394 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

DTV_PILOT

Used on DVB-S2.
Sets DVB-S2 pilot.
The acceptable values are defined by fe_pilot.

DTV_ROLLOFF

Used on DVB-S2.
Sets DVB-S2 rolloff.
The acceptable values are defined by fe_rolloff.

DTV_DISEQC_SLAVE_REPLY

Currently not implemented.

DTV_FE_CAPABILITY_COUNT

Currently not implemented.

DTV_FE_CAPABILITY

Currently not implemented.

DTV_DELIVERY_SYSTEM

Specifies the type of the delivery system.
The acceptable values are defined by fe_delivery_system.

DTV_ISDBT_PARTIAL_RECEPTION

Used only on ISDB.
If DTV_ISDBT_SOUND_BROADCASTING is ‘0’ this bit-field represents whether the channel is in partial recep-
tion mode or not.
If ‘1’ DTV_ISDBT_LAYERA_* values are assigned to the center segment and
DTV_ISDBT_LAYERA_SEGMENT_COUNT has to be ‘1’.
If in addition DTV_ISDBT_SOUND_BROADCASTING is ‘1’ DTV_ISDBT_PARTIAL_RECEPTION represents whether
this ISDB-Tsb channel is consisting of one segment and layer or three segments and two layers.
Possible values: 0, 1, -1 (AUTO)

DTV_ISDBT_SOUND_BROADCASTING

Used only on ISDB.
This field represents whether the other DTV_ISDBT_*-parameters are referring to an ISDB-T and an ISDB-
Tsb channel. (See also DTV_ISDBT_PARTIAL_RECEPTION).
Possible values: 0, 1, -1 (AUTO)

1.3. Part II - Digital TV API 395

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

DTV_ISDBT_SB_SUBCHANNEL_ID

Used only on ISDB.
This field only applies if DTV_ISDBT_SOUND_BROADCASTING is ‘1’.
(Note of the author: This might not be the correct description of the SUBCHANNEL-ID in all details, but it is
my understanding of the technical background needed to program a device)
An ISDB-Tsb channel (1 or 3 segments) can be broadcasted alone or in a set of connected ISDB-Tsb chan-
nels. In this set of channels every channel can be received independently. The number of connected
ISDB-Tsb segment can vary, e.g. depending on the frequency spectrum bandwidth available.
Example: Assume 8 ISDB-Tsb connected segments are broadcasted. The broadcaster has several possi-
bilities to put those channels in the air: Assuming a normal 13-segment ISDB-T spectrum he can align the
8 segments from position 1-8 to 5-13 or anything in between.
The underlying layer of segments are subchannels: each segment is consisting of several subchannels
with a predefined IDs. A sub-channel is used to help the demodulator to synchronize on the channel.
An ISDB-T channel is always centered over all sub-channels. As for the example above, in ISDB-Tsb it is
no longer as simple as that.
The DTV_ISDBT_SB_SUBCHANNEL_ID parameter is used to give the sub-channel ID of the segment to be
demodulated.
Possible values: 0 .. 41, -1 (AUTO)

DTV_ISDBT_SB_SEGMENT_IDX

Used only on ISDB.
This field only applies if DTV_ISDBT_SOUND_BROADCASTING is ‘1’.
DTV_ISDBT_SB_SEGMENT_IDX gives the index of the segment to be demodulated for an ISDB-Tsb channel
where several of them are transmitted in the connected manner.
Possible values: 0 .. DTV_ISDBT_SB_SEGMENT_COUNT - 1
Note: This value cannot be determined by an automatic channel search.

DTV_ISDBT_SB_SEGMENT_COUNT

Used only on ISDB.
This field only applies if DTV_ISDBT_SOUND_BROADCASTING is ‘1’.
DTV_ISDBT_SB_SEGMENT_COUNT gives the total count of connected ISDB-Tsb channels.
Possible values: 1 .. 13
Note: This value cannot be determined by an automatic channel search.

DTV-ISDBT-LAYER[A-C] parameters

Used only on ISDB.
ISDB-T channels can be coded hierarchically. As opposed to DVB-T in ISDB-T hierarchical layers can be
decoded simultaneously. For that reason a ISDB-T demodulator has 3 Viterbi and 3 Reed-Solomon de-
coders.
ISDB-T has 3 hierarchical layers which each can use a part of the available segments. The total number
of segments over all layers has to 13 in ISDB-T.

396 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

There are 3 parameter sets, for Layers A, B and C.

DTV_ISDBT_LAYER_ENABLED

Used only on ISDB.
Hierarchical reception in ISDB-T is achieved by enabling or disabling layers in the decoding process. Set-
ting all bits of DTV_ISDBT_LAYER_ENABLED to ‘1’ forces all layers (if applicable) to be demodulated. This
is the default.
If the channel is in the partial reception mode (DTV_ISDBT_PARTIAL_RECEPTION = 1) the central seg-
ment can be decoded independently of the other 12 segments. In that mode layer A has to have a
SEGMENT_COUNT of 1.
In ISDB-Tsb only layer A is used, it can be 1 or 3 in ISDB-Tsb according to DTV_ISDBT_PARTIAL_RECEPTION.
SEGMENT_COUNT must be filled accordingly.
Only the values of the first 3 bits are used. Other bits will be silently ignored:
DTV_ISDBT_LAYER_ENABLED bit 0: layer A enabled
DTV_ISDBT_LAYER_ENABLED bit 1: layer B enabled
DTV_ISDBT_LAYER_ENABLED bit 2: layer C enabled
DTV_ISDBT_LAYER_ENABLED bits 3-31: unused

DTV_ISDBT_LAYER[A-C]_FEC

Used only on ISDB.
The Forward Error Correction mechanism used by a given ISDB Layer, as defined by fe_code_rate.
Possible values are: FEC_AUTO, FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8

DTV_ISDBT_LAYER[A-C]_MODULATION

Used only on ISDB.
The modulation used by a given ISDB Layer, as defined by fe_modulation.
Possible values are: QAM_AUTO, QPSK, QAM_16, QAM_64, DQPSK

Note:

1. If layer C is DQPSK, then layer B has to be DQPSK.
2. If layer B is DQPSK and DTV_ISDBT_PARTIAL_RECEPTION= 0, then layer has to be DQPSK.

DTV_ISDBT_LAYER[A-C]_SEGMENT_COUNT

Used only on ISDB.
Possible values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -1 (AUTO)
Note: Truth table for DTV_ISDBT_SOUND_BROADCASTING and DTV_ISDBT_PARTIAL_RECEPTION and
LAYER[A-C]_SEGMENT_COUNT

1.3. Part II - Digital TV API 397

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.171: Truth table for ISDB-T Sound Broadcasting
Partial Reception Sound Broadcasting Layer A width Layer B width Layer C width total width
0 0 1 .. 13 1 .. 13 1 .. 13 13
1 0 1 1 .. 13 1 .. 13 13
0 1 1 0 0 1
1 1 1 2 0 13

DTV_ISDBT_LAYER[A-C]_TIME_INTERLEAVING

Used only on ISDB.
Valid values: 0, 1, 2, 4, -1 (AUTO)
when DTV_ISDBT_SOUND_BROADCASTING is active, value 8 is also valid.
Note: The real time interleaving length depends on the mode (fft-size). The values here are referring to
what can be found in the TMCC-structure, as shown in the table below.
isdbt_layer_interleaving_table

Table 1.172: ISDB-T time interleaving modes
DTV_ISDBT_LAYER[A-C]_TIME_INTERLEAVING Mode 1 (2K FFT) Mode 2 (4K FFT) Mode 3 (8K FFT)
0 0 0 0
1 4 2 1
2 8 4 2
4 16 8 4

DTV_ATSCMH_FIC_VER

Used only on ATSC-MH.
Version number of the FIC (Fast Information Channel) signaling data.
FIC is used for relaying information to allow rapid service acquisition by the receiver.
Possible values: 0, 1, 2, 3, ..., 30, 31

DTV_ATSCMH_PARADE_ID

Used only on ATSC-MH.
Parade identification number
A parade is a collection of up to eight MH groups, conveying one or two ensembles.
Possible values: 0, 1, 2, 3, ..., 126, 127

DTV_ATSCMH_NOG

Used only on ATSC-MH.
Number of MH groups per MH subframe for a designated parade.
Possible values: 1, 2, 3, 4, 5, 6, 7, 8

398 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

DTV_ATSCMH_TNOG

Used only on ATSC-MH.
Total number of MH groups including all MH groups belonging to all MH parades in one MH subframe.
Possible values: 0, 1, 2, 3, ..., 30, 31

DTV_ATSCMH_SGN

Used only on ATSC-MH.
Start group number.
Possible values: 0, 1, 2, 3, ..., 14, 15

DTV_ATSCMH_PRC

Used only on ATSC-MH.
Parade repetition cycle.
Possible values: 1, 2, 3, 4, 5, 6, 7, 8

DTV_ATSCMH_RS_FRAME_MODE

Used only on ATSC-MH.
Reed Solomon (RS) frame mode.
The acceptable values are defined by atscmh_rs_frame_mode.

DTV_ATSCMH_RS_FRAME_ENSEMBLE

Used only on ATSC-MH.
Reed Solomon(RS) frame ensemble.
The acceptable values are defined by atscmh_rs_frame_ensemble.

DTV_ATSCMH_RS_CODE_MODE_PRI

Used only on ATSC-MH.
Reed Solomon (RS) code mode (primary).
The acceptable values are defined by atscmh_rs_code_mode.

DTV_ATSCMH_RS_CODE_MODE_SEC

Used only on ATSC-MH.
Reed Solomon (RS) code mode (secondary).
The acceptable values are defined by atscmh_rs_code_mode.

1.3. Part II - Digital TV API 399

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

DTV_ATSCMH_SCCC_BLOCK_MODE

Used only on ATSC-MH.
Series Concatenated Convolutional Code Block Mode.
The acceptable values are defined by atscmh_sccc_block_mode.

DTV_ATSCMH_SCCC_CODE_MODE_A

Used only on ATSC-MH.
Series Concatenated Convolutional Code Rate.
The acceptable values are defined by atscmh_sccc_code_mode.

DTV_ATSCMH_SCCC_CODE_MODE_B

Used only on ATSC-MH.
Series Concatenated Convolutional Code Rate.
Possible values are the same as documented on enum atscmh_sccc_code_mode.

DTV_ATSCMH_SCCC_CODE_MODE_C

Used only on ATSC-MH.
Series Concatenated Convolutional Code Rate.
Possible values are the same as documented on enum atscmh_sccc_code_mode.

DTV_ATSCMH_SCCC_CODE_MODE_D

Used only on ATSC-MH.
Series Concatenated Convolutional Code Rate.
Possible values are the same as documented on enum atscmh_sccc_code_mode.

DTV_API_VERSION

Returns the major/minor version of the Digital TV API

DTV_CODE_RATE_HP

Used on terrestrial transmissions.
The acceptable values are defined by fe_transmit_mode.

DTV_CODE_RATE_LP

Used on terrestrial transmissions.
The acceptable values are defined by fe_transmit_mode.

400 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

DTV_GUARD_INTERVAL

The acceptable values are defined by fe_guard_interval.

Note:

1. If DTV_GUARD_INTERVAL is set the GUARD_INTERVAL_AUTO the hardware will try to find the correct
guard interval (if capable) and will use TMCC to fill in the missing parameters.

2. Intervals GUARD_INTERVAL_1_128, GUARD_INTERVAL_19_128 and GUARD_INTERVAL_19_256 are
used only for DVB-T2 at present.

3. Intervals GUARD_INTERVAL_PN420, GUARD_INTERVAL_PN595 and GUARD_INTERVAL_PN945 are used
only for DMTB at the present. On such standard, only those intervals and GUARD_INTERVAL_AUTO
are valid.

DTV_TRANSMISSION_MODE

Used only on OFTM-based standards, e. g. DVB-T/T2, ISDB-T, DTMB.
Specifies the FFT size (with corresponds to the approximate number of carriers) used by the standard.
The acceptable values are defined by fe_transmit_mode.

Note:

1. ISDB-T supports three carrier/symbol-size: 8K, 4K, 2K. It is called mode on such standard, and
are numbered from 1 to 3:
Mode FFT size Transmission mode
1 2K TRANSMISSION_MODE_2K
2 4K TRANSMISSION_MODE_4K
3 8K TRANSMISSION_MODE_8K

2. If DTV_TRANSMISSION_MODE is set the TRANSMISSION_MODE_AUTO the hardware will try to find the
correct FFT-size (if capable) and will use TMCC to fill in the missing parameters.

3. DVB-T specifies 2K and 8K as valid sizes.
4. DVB-T2 specifies 1K, 2K, 4K, 8K, 16K and 32K.
5. DTMB specifies C1 and C3780.

DTV_HIERARCHY

Used only on DVB-T and DVB-T2.
Frontend hierarchy.
The acceptable values are defined by fe_hierarchy.

DTV_STREAM_ID

Used on DVB-S2, DVB-T2 and ISDB-S.
DVB-S2, DVB-T2 and ISDB-S support the transmission of several streams on a single transport stream. This
property enables the digital TV driver to handle substream filtering, when supported by the hardware. By
default, substream filtering is disabled.
For DVB-S2 and DVB-T2, the valid substream id range is from 0 to 255.
For ISDB, the valid substream id range is from 1 to 65535.

1.3. Part II - Digital TV API 401

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

To disable it, you should use the special macro NO_STREAM_ID_FILTER.
Note: any value outside the id range also disables filtering.

DTV_DVBT2_PLP_ID_LEGACY

Obsolete, replaced with DTV_STREAM_ID.

DTV_ENUM_DELSYS

A Multi standard frontend needs to advertise the delivery systems provided. Applications need to enu-
merate the provided delivery systems, before using any other operation with the frontend. Prior to it’s
introduction, FE_GET_INFO was used to determine a frontend type. A frontend which provides more than
a single delivery system, FE_GET_INFO doesn’t help much. Applications which intends to use a multi-
standard frontend must enumerate the delivery systems associated with it, rather than trying to use
FE_GET_INFO. In the case of a legacy frontend, the result is just the same as with FE_GET_INFO, but in a
more structured format
The acceptable values are defined by fe_delivery_system.

DTV_INTERLEAVING

Time interleaving to be used.
The acceptable values are defined by fe_interleaving.

DTV_LNA

Low-noise amplifier.
Hardware might offer controllable LNA which can be set manually using that parameter. Usually LNA could
be found only from terrestrial devices if at all.
Possible values: 0, 1, LNA_AUTO
0, LNA off
1, LNA on
use the special macro LNA_AUTO to set LNA auto

Frontend statistics indicators

The values are returned via dtv_property.stat. If the property is supported, dtv_property.stat.len
is bigger than zero.
For most delivery systems, dtv_property.stat.len will be 1 if the stats is supported, and the properties
will return a single value for each parameter.
It should be noted, however, that new OFDM delivery systems like ISDB can use different modulation
types for each group of carriers. On such standards, up to 3 groups of statistics can be provided, and
dtv_property.stat.len is updated to reflect the “global” metrics, plus one metric per each carrier group
(called “layer” on ISDB).
So, in order to be consistent with other delivery systems, the first value at dtv_property.stat.dtv_stats
array refers to the global metric. The other elements of the array represent each layer, starting from layer
A(index 1), layer B (index 2) and so on.
The number of filled elements are stored at dtv_property.stat.len.

402 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Each element of the dtv_property.stat.dtv_stats array consists on two elements:
• svalue or uvalue, where svalue is for signed values of the measure (dB measures) and uvalue is

for unsigned values (counters, relative scale)
• scale - Scale for the value. It can be:

– FE_SCALE_NOT_AVAILABLE - The parameter is supported by the frontend, but it was not possible
to collect it (could be a transitory or permanent condition)

– FE_SCALE_DECIBEL - parameter is a signed value, measured in 1/1000 dB
– FE_SCALE_RELATIVE - parameter is a unsigned value, where 0 means 0% and 65535 means

100%.
– FE_SCALE_COUNTER - parameter is a unsigned value that counts the occurrence of an event, like

bit error, block error, or lapsed time.

DTV_STAT_SIGNAL_STRENGTH

Indicates the signal strength level at the analog part of the tuner or of the demod.
Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete yet.
• FE_SCALE_DECIBEL - signal strength is in 0.001 dBm units, power measured in miliwatts. This value

is generally negative.
• FE_SCALE_RELATIVE - The frontend provides a 0% to 100% measurement for power (actually, 0 to

65535).

DTV_STAT_CNR

Indicates the Signal to Noise ratio for the main carrier.
Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete yet.
• FE_SCALE_DECIBEL - Signal/Noise ratio is in 0.001 dB units.
• FE_SCALE_RELATIVE - The frontend provides a 0% to 100% measurement for Signal/Noise (actually,

0 to 65535).

DTV_STAT_PRE_ERROR_BIT_COUNT

Measures the number of bit errors before the forward error correction (FEC) on the inner coding block
(before Viterbi, LDPC or other inner code).
This measure is taken during the same interval as DTV_STAT_PRE_TOTAL_BIT_COUNT.
In order to get the BER (Bit Error Rate) measurement, it should be divided by
DTV_STAT_PRE_TOTAL_BIT_COUNT .
This measurement is monotonically increased, as the frontend gets more bit count measurements. The
frontend may reset it when a channel/transponder is tuned.
Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete yet.
• FE_SCALE_COUNTER - Number of error bits counted before the inner coding.

1.3. Part II - Digital TV API 403

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

DTV_STAT_PRE_TOTAL_BIT_COUNT

Measures the amount of bits received before the inner code block, during the same period as
DTV_STAT_PRE_ERROR_BIT_COUNT measurement was taken.
It should be noted that this measurement can be smaller than the total amount of bits on the transport
stream, as the frontend may need to manually restart the measurement, losing some data between each
measurement interval.
This measurement is monotonically increased, as the frontend gets more bit count measurements. The
frontend may reset it when a channel/transponder is tuned.
Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete yet.
• FE_SCALE_COUNTER - Number of bits counted while measuring DTV_STAT_PRE_ERROR_BIT_COUNT .

DTV_STAT_POST_ERROR_BIT_COUNT

Measures the number of bit errors after the forward error correction (FEC) done by inner code block (after
Viterbi, LDPC or other inner code).
This measure is taken during the same interval as DTV_STAT_POST_TOTAL_BIT_COUNT.
In order to get the BER (Bit Error Rate) measurement, it should be divided by
DTV_STAT_POST_TOTAL_BIT_COUNT .
This measurement is monotonically increased, as the frontend gets more bit count measurements. The
frontend may reset it when a channel/transponder is tuned.
Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete yet.
• FE_SCALE_COUNTER - Number of error bits counted after the inner coding.

DTV_STAT_POST_TOTAL_BIT_COUNT

Measures the amount of bits received after the inner coding, during the same period as
DTV_STAT_POST_ERROR_BIT_COUNT measurement was taken.
It should be noted that this measurement can be smaller than the total amount of bits on the transport
stream, as the frontend may need to manually restart the measurement, losing some data between each
measurement interval.
This measurement is monotonically increased, as the frontend gets more bit count measurements. The
frontend may reset it when a channel/transponder is tuned.
Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete yet.
• FE_SCALE_COUNTER - Number of bits counted while measuring DTV_STAT_POST_ERROR_BIT_COUNT

.

DTV_STAT_ERROR_BLOCK_COUNT

Measures the number of block errors after the outer forward error correction coding (after Reed-Solomon
or other outer code).
This measurement is monotonically increased, as the frontend gets more bit count measurements. The
frontend may reset it when a channel/transponder is tuned.

404 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Possible scales for this metric are:
• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete yet.
• FE_SCALE_COUNTER - Number of error blocks counted after the outer coding.

DTV-STAT_TOTAL_BLOCK_COUNT

Measures the total number of blocks received during the same period as
DTV_STAT_ERROR_BLOCK_COUNT measurement was taken.
It can be used to calculate the PER indicator, by dividing DTV_STAT_ERROR_BLOCK_COUNT by DTV-
STAT_TOTAL_BLOCK_COUNT .
Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete yet.
• FE_SCALE_COUNTER - Number of blocks counted while measuring DTV_STAT_ERROR_BLOCK_COUNT

.

Properties used on terrestrial delivery systems

DVB-T delivery system

The following parameters are valid for DVB-T:
• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_BANDWIDTH_HZ

• DTV_INVERSION

• DTV_CODE_RATE_HP

• DTV_CODE_RATE_LP

• DTV_GUARD_INTERVAL

• DTV_TRANSMISSION_MODE

• DTV_HIERARCHY

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

DVB-T2 delivery system

DVB-T2 support is currently in the early stages of development, so expect that this section maygrow and
become more detailed with time.
The following parameters are valid for DVB-T2:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

1.3. Part II - Digital TV API 405

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_BANDWIDTH_HZ

• DTV_INVERSION

• DTV_CODE_RATE_HP

• DTV_CODE_RATE_LP

• DTV_GUARD_INTERVAL

• DTV_TRANSMISSION_MODE

• DTV_HIERARCHY

• DTV_STREAM_ID

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

ISDB-T delivery system

This ISDB-T/ISDB-Tsb API extension should reflect all information needed to tune any ISDB-T/ISDB-Tsb
hardware. Of course it is possible that some very sophisticated devices won’t need certain parameters to
tune.
The information given here should help application writers to know how to handle ISDB-T and ISDB-Tsb
hardware using the Linux Digital TV API.
The details given here about ISDB-T and ISDB-Tsb are just enough to basically show the dependencies be-
tween the needed parameter values, but surely some information is left out. For more detailed information
see the following documents:
ARIB STD-B31 - “Transmission System for Digital Terrestrial Television Broadcasting” and
ARIB TR-B14 - “Operational Guidelines for Digital Terrestrial Television Broadcasting”.
In order to understand the ISDB specific parameters, one has to have some knowledge the channel struc-
ture in ISDB-T and ISDB-Tsb. I.e. it has to be known to the reader that an ISDB-T channel consists of 13
segments, that it can have up to 3 layer sharing those segments, and things like that.
The following parameters are valid for ISDB-T:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_BANDWIDTH_HZ

• DTV_INVERSION

• DTV_GUARD_INTERVAL

• DTV_TRANSMISSION_MODE

• DTV_ISDBT_LAYER_ENABLED

• DTV_ISDBT_PARTIAL_RECEPTION

406 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• DTV_ISDBT_SOUND_BROADCASTING

• DTV_ISDBT_SB_SUBCHANNEL_ID

• DTV_ISDBT_SB_SEGMENT_IDX

• DTV_ISDBT_SB_SEGMENT_COUNT

• DTV_ISDBT_LAYERA_FEC

• DTV_ISDBT_LAYERA_MODULATION

• DTV_ISDBT_LAYERA_SEGMENT_COUNT

• DTV_ISDBT_LAYERA_TIME_INTERLEAVING

• DTV_ISDBT_LAYERB_FEC

• DTV_ISDBT_LAYERB_MODULATION

• DTV_ISDBT_LAYERB_SEGMENT_COUNT

• DTV_ISDBT_LAYERB_TIME_INTERLEAVING

• DTV_ISDBT_LAYERC_FEC

• DTV_ISDBT_LAYERC_MODULATION

• DTV_ISDBT_LAYERC_SEGMENT_COUNT

• DTV_ISDBT_LAYERC_TIME_INTERLEAVING

In addition, the DTV QoS statistics are also valid.

ATSC delivery system

The following parameters are valid for ATSC:
• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_BANDWIDTH_HZ

In addition, the DTV QoS statistics are also valid.

ATSC-MH delivery system

The following parameters are valid for ATSC-MH:
• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_BANDWIDTH_HZ

• DTV_ATSCMH_FIC_VER

1.3. Part II - Digital TV API 407

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• DTV_ATSCMH_PARADE_ID

• DTV_ATSCMH_NOG

• DTV_ATSCMH_TNOG

• DTV_ATSCMH_SGN

• DTV_ATSCMH_PRC

• DTV_ATSCMH_RS_FRAME_MODE

• DTV_ATSCMH_RS_FRAME_ENSEMBLE

• DTV_ATSCMH_RS_CODE_MODE_PRI

• DTV_ATSCMH_RS_CODE_MODE_SEC

• DTV_ATSCMH_SCCC_BLOCK_MODE

• DTV_ATSCMH_SCCC_CODE_MODE_A

• DTV_ATSCMH_SCCC_CODE_MODE_B

• DTV_ATSCMH_SCCC_CODE_MODE_C

• DTV_ATSCMH_SCCC_CODE_MODE_D

In addition, the DTV QoS statistics are also valid.

DTMB delivery system

The following parameters are valid for DTMB:
• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_BANDWIDTH_HZ

• DTV_INVERSION

• DTV_INNER_FEC

• DTV_GUARD_INTERVAL

• DTV_TRANSMISSION_MODE

• DTV_INTERLEAVING

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

Properties used on cable delivery systems

DVB-C delivery system

The DVB-C Annex-A is the widely used cable standard. Transmission uses QAM modulation.
The DVB-C Annex-C is optimized for 6MHz, and is used in Japan. It supports a subset of the Annex A
modulation types, and a roll-off of 0.13, instead of 0.15

408 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The following parameters are valid for DVB-C Annex A/C:
• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_INVERSION

• DTV_SYMBOL_RATE

• DTV_INNER_FEC

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

DVB-C Annex B delivery system

The DVB-C Annex-B is only used on a few Countries like the United States.
The following parameters are valid for DVB-C Annex B:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_INVERSION

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

Properties used on satellite delivery systems

DVB-S delivery system

The following parameters are valid for DVB-S:
• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_INVERSION

• DTV_SYMBOL_RATE

• DTV_INNER_FEC

• DTV_VOLTAGE

1.3. Part II - Digital TV API 409

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• DTV_TONE

In addition, the DTV QoS statistics are also valid.
Future implementations might add those two missing parameters:

• DTV_DISEQC_MASTER

• DTV_DISEQC_SLAVE_REPLY

DVB-S2 delivery system

In addition to all parameters valid for DVB-S, DVB-S2 supports the following parameters:
• DTV_MODULATION

• DTV_PILOT

• DTV_ROLLOFF

• DTV_STREAM_ID

In addition, the DTV QoS statistics are also valid.

Turbo code delivery system

In addition to all parameters valid for DVB-S, turbo code supports the following parameters:
• DTV_MODULATION

ISDB-S delivery system

The following parameters are valid for ISDB-S:
• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_INVERSION

• DTV_SYMBOL_RATE

• DTV_INNER_FEC

• DTV_VOLTAGE

• DTV_STREAM_ID

Frontend uAPI data types

enum fe_caps
Frontend capabilities

Constants
FE_IS_STUPID There’s something wrong at the frontend, and it can’t report its capabilities.
FE_CAN_INVERSION_AUTO Can auto-detect frequency spectral band inversion
FE_CAN_FEC_1_2 Supports FEC 1/2

410 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

FE_CAN_FEC_2_3 Supports FEC 2/3
FE_CAN_FEC_3_4 Supports FEC 3/4
FE_CAN_FEC_4_5 Supports FEC 4/5
FE_CAN_FEC_5_6 Supports FEC 5/6
FE_CAN_FEC_6_7 Supports FEC 6/7
FE_CAN_FEC_7_8 Supports FEC 7/8
FE_CAN_FEC_8_9 Supports FEC 8/9
FE_CAN_FEC_AUTO Can auto-detect FEC
FE_CAN_QPSK Supports QPSK modulation
FE_CAN_QAM_16 Supports 16-QAM modulation
FE_CAN_QAM_32 Supports 32-QAM modulation
FE_CAN_QAM_64 Supports 64-QAM modulation
FE_CAN_QAM_128 Supports 128-QAM modulation
FE_CAN_QAM_256 Supports 256-QAM modulation
FE_CAN_QAM_AUTO Can auto-detect QAM modulation
FE_CAN_TRANSMISSION_MODE_AUTO Can auto-detect transmission mode
FE_CAN_BANDWIDTH_AUTO Can auto-detect bandwidth
FE_CAN_GUARD_INTERVAL_AUTO Can auto-detect guard interval
FE_CAN_HIERARCHY_AUTO Can auto-detect hierarchy
FE_CAN_8VSB Supports 8-VSB modulation
FE_CAN_16VSB Supporta 16-VSB modulation
FE_HAS_EXTENDED_CAPS Unused
FE_CAN_MULTISTREAM Supports multistream filtering
FE_CAN_TURBO_FEC Supports “turbo FEC” modulation
FE_CAN_2G_MODULATION Supports “2nd generation” modulation, e. g. DVB-S2, DVB-T2, DVB-C2
FE_NEEDS_BENDING Unused
FE_CAN_RECOVER Can recover from a cable unplug automatically
FE_CAN_MUTE_TS Can stop spurious TS data output
struct dvb_frontend_info

Frontend properties and capabilities
Definition

struct dvb_frontend_info {
char name;
enum fe_type type;
__u32 frequency_min;
__u32 frequency_max;
__u32 frequency_stepsize;
__u32 frequency_tolerance;
__u32 symbol_rate_min;
__u32 symbol_rate_max;
__u32 symbol_rate_tolerance;
__u32 notifier_delay;
enum fe_caps caps;

};

1.3. Part II - Digital TV API 411

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Members
name Name of the frontend
type DEPRECATED. Should not be used on modern programs, as a frontend may have more than one

type. In order to get the support types of a given frontend, use DTV_ENUM_DELSYS instead.
frequency_min Minimal frequency supported by the frontend.
frequency_max Minimal frequency supported by the frontend.
frequency_stepsize All frequencies are multiple of this value.
frequency_tolerance Frequency tolerance.
symbol_rate_min Minimal symbol rate, in bauds (for Cable/Satellite systems).
symbol_rate_max Maximal symbol rate, in bauds (for Cable/Satellite systems).
symbol_rate_tolerance Maximal symbol rate tolerance, in ppm (for Cable/Satellite systems).
notifier_delay DEPRECATED. Not used by any driver.
caps Capabilities supported by the frontend, as specified in enum fe_caps.
Description
struct dvb_diseqc_master_cmd

DiSEqC master command
Definition

struct dvb_diseqc_master_cmd {
__u8 msg;
__u8 msg_len;

};

Members
msg DiSEqC message to be sent. It contains a 3 bytes header with: framing + address + command, and

an optional argument of up to 3 bytes of data.
msg_len Length of the DiSEqC message. Valid values are 3 to 6.
Description
Check out the DiSEqC bus spec available on http://www.eutelsat.org/ for the possible messages that can
be used.
struct dvb_diseqc_slave_reply

DiSEqC received data
Definition

struct dvb_diseqc_slave_reply {
__u8 msg;
__u8 msg_len;
int timeout;

};

Members
msg DiSEqC message buffer to store a message received via DiSEqC. It contains one byte header with:

framing and an optional argument of up to 3 bytes of data.
msg_len Length of the DiSEqC message. Valid values are 0 to 4, where 0 means no message.
timeout Return from ioctl after timeout ms with errorcode when no message was received.

412 Chapter 1. Linux Media Infrastructure userspace API

http://www.eutelsat.org/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
Check out the DiSEqC bus spec available on http://www.eutelsat.org/ for the possible messages that can
be used.
enum fe_sec_voltage

DC Voltage used to feed the LNBf
Constants
SEC_VOLTAGE_13 Output 13V to the LNBf
SEC_VOLTAGE_18 Output 18V to the LNBf
SEC_VOLTAGE_OFF Don’t feed the LNBf with a DC voltage
enum fe_sec_tone_mode

Type of tone to be send to the LNBf.
Constants
SEC_TONE_ON Sends a 22kHz tone burst to the antenna.
SEC_TONE_OFF Don’t send a 22kHz tone to the antenna (except if the FE_DISEQC_* ioctls are called).
enum fe_sec_mini_cmd

Type of mini burst to be sent
Constants
SEC_MINI_A Sends a mini-DiSEqC 22kHz ‘0’ Tone Burst to select satellite-A
SEC_MINI_B Sends a mini-DiSEqC 22kHz ‘1’ Data Burst to select satellite-B
enum fe_status

Enumerates the possible frontend status.
Constants
FE_NONE The frontend doesn’t have any kind of lock. That’s the initial frontend status
FE_HAS_SIGNAL Has found something above the noise level.
FE_HAS_CARRIER Has found a signal.
FE_HAS_VITERBI FEC inner coding (Viterbi, LDPC or other inner code). is stable.
FE_HAS_SYNC Synchronization bytes was found.
FE_HAS_LOCK Digital TV were locked and everything is working.
FE_TIMEDOUT Fo lock within the last about 2 seconds.
FE_REINIT Frontend was reinitialized, application is recommended to reset DiSEqC, tone and parameters.
enum fe_spectral_inversion

Type of inversion band
Constants
INVERSION_OFF Don’t do spectral band inversion.
INVERSION_ON Do spectral band inversion.
INVERSION_AUTO Autodetect spectral band inversion.
Description
This parameter indicates if spectral inversion should be presumed or not. In the automatic setting
(INVERSION_AUTO) the hardware will try to figure out the correct setting by itself. If the hardware doesn’t
support, the dvb_frontend will try to lock at the carrier first with inversion off. If it fails, it will try to enable
inversion.

1.3. Part II - Digital TV API 413

http://www.eutelsat.org/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

enum fe_code_rate
Type of Forward Error Correction (FEC)

Constants
FEC_NONE No Forward Error Correction Code
FEC_1_2 Forward Error Correction Code 1/2
FEC_2_3 Forward Error Correction Code 2/3
FEC_3_4 Forward Error Correction Code 3/4
FEC_4_5 Forward Error Correction Code 4/5
FEC_5_6 Forward Error Correction Code 5/6
FEC_6_7 Forward Error Correction Code 6/7
FEC_7_8 Forward Error Correction Code 7/8
FEC_8_9 Forward Error Correction Code 8/9
FEC_AUTO Autodetect Error Correction Code
FEC_3_5 Forward Error Correction Code 3/5
FEC_9_10 Forward Error Correction Code 9/10
FEC_2_5 Forward Error Correction Code 2/5
Description
Please note that not all FEC types are supported by a given standard.
enum fe_modulation

Type of modulation/constellation
Constants
QPSK QPSK modulation
QAM_16 16-QAM modulation
QAM_32 32-QAM modulation
QAM_64 64-QAM modulation
QAM_128 128-QAM modulation
QAM_256 256-QAM modulation
QAM_AUTO Autodetect QAM modulation
VSB_8 8-VSB modulation
VSB_16 16-VSB modulation
PSK_8 8-PSK modulation
APSK_16 16-APSK modulation
APSK_32 32-APSK modulation
DQPSK DQPSK modulation
QAM_4_NR 4-QAM-NR modulation
Description
Please note that not all modulations are supported by a given standard.
enum fe_transmit_mode

Transmission mode
Constants

414 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

TRANSMISSION_MODE_2K Transmission mode 2K
TRANSMISSION_MODE_8K Transmission mode 8K
TRANSMISSION_MODE_AUTO Autodetect transmission mode. The hardware will try to find the correct FFT-

size (if capable) to fill in the missing parameters.
TRANSMISSION_MODE_4K Transmission mode 4K
TRANSMISSION_MODE_1K Transmission mode 1K
TRANSMISSION_MODE_16K Transmission mode 16K
TRANSMISSION_MODE_32K Transmission mode 32K
TRANSMISSION_MODE_C1 Single Carrier (C=1) transmission mode (DTMB only)
TRANSMISSION_MODE_C3780 Multi Carrier (C=3780) transmission mode (DTMB only)
Description
Please note that not all transmission modes are supported by a given standard.
enum fe_guard_interval

Guard interval
Constants
GUARD_INTERVAL_1_32 Guard interval 1/32
GUARD_INTERVAL_1_16 Guard interval 1/16
GUARD_INTERVAL_1_8 Guard interval 1/8
GUARD_INTERVAL_1_4 Guard interval 1/4
GUARD_INTERVAL_AUTO Autodetect the guard interval
GUARD_INTERVAL_1_128 Guard interval 1/128
GUARD_INTERVAL_19_128 Guard interval 19/128
GUARD_INTERVAL_19_256 Guard interval 19/256
GUARD_INTERVAL_PN420 PN length 420 (1/4)
GUARD_INTERVAL_PN595 PN length 595 (1/6)
GUARD_INTERVAL_PN945 PN length 945 (1/9)
Description
Please note that not all guard intervals are supported by a given standard.
enum fe_hierarchy

Hierarchy
Constants
HIERARCHY_NONE No hierarchy
HIERARCHY_1 Hierarchy 1
HIERARCHY_2 Hierarchy 2
HIERARCHY_4 Hierarchy 4
HIERARCHY_AUTO Autodetect hierarchy (if supported)
Description
Please note that not all hierarchy types are supported by a given standard.
enum fe_interleaving

Interleaving

1.3. Part II - Digital TV API 415

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Constants
INTERLEAVING_NONE No interleaving.
INTERLEAVING_AUTO Auto-detect interleaving.
INTERLEAVING_240 Interleaving of 240 symbols.
INTERLEAVING_720 Interleaving of 720 symbols.
Description
Please note that, currently, only DTMB uses it.
enum fe_pilot

Type of pilot tone
Constants
PILOT_ON Pilot tones enabled
PILOT_OFF Pilot tones disabled
PILOT_AUTO Autodetect pilot tones
enum fe_rolloff

Rolloff factor
Constants
ROLLOFF_35 Roloff factor: α=35%
ROLLOFF_20 Roloff factor: α=20%
ROLLOFF_25 Roloff factor: α=25%
ROLLOFF_AUTO Auto-detect the roloff factor.
Description
enum fe_delivery_system

Type of the delivery system
Constants
SYS_UNDEFINED Undefined standard. Generally, indicates an error
SYS_DVBC_ANNEX_A Cable TV: DVB-C following ITU-T J.83 Annex A spec
SYS_DVBC_ANNEX_B Cable TV: DVB-C following ITU-T J.83 Annex B spec (ClearQAM)
SYS_DVBT Terrestrial TV: DVB-T
SYS_DSS Satellite TV: DSS (not fully supported)
SYS_DVBS Satellite TV: DVB-S
SYS_DVBS2 Satellite TV: DVB-S2
SYS_DVBH Terrestrial TV (mobile): DVB-H (standard deprecated)
SYS_ISDBT Terrestrial TV: ISDB-T
SYS_ISDBS Satellite TV: ISDB-S
SYS_ISDBC Cable TV: ISDB-C (no drivers yet)
SYS_ATSC Terrestrial TV: ATSC
SYS_ATSCMH Terrestrial TV (mobile): ATSC-M/H
SYS_DTMB Terrestrial TV: DTMB
SYS_CMMB Terrestrial TV (mobile): CMMB (not fully supported)
SYS_DAB Digital audio: DAB (not fully supported)

416 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

SYS_DVBT2 Terrestrial TV: DVB-T2
SYS_TURBO Satellite TV: DVB-S Turbo
SYS_DVBC_ANNEX_C Cable TV: DVB-C following ITU-T J.83 Annex C spec
enum atscmh_sccc_block_mode

Type of Series Concatenated Convolutional Code Block Mode.
Constants
ATSCMH_SCCC_BLK_SEP Separate SCCC: the SCCC outer code mode shall be set independently for each

Group Region (A, B, C, D)
ATSCMH_SCCC_BLK_COMB Combined SCCC: all four Regions shall have the same SCCC outer code mode.
ATSCMH_SCCC_BLK_RES Reserved. Shouldn’t be used.
enum atscmh_sccc_code_mode

Type of Series Concatenated Convolutional Code Rate.
Constants
ATSCMH_SCCC_CODE_HLF The outer code rate of a SCCC Block is 1/2 rate.
ATSCMH_SCCC_CODE_QTR The outer code rate of a SCCC Block is 1/4 rate.
ATSCMH_SCCC_CODE_RES Reserved. Should not be used.
enum atscmh_rs_frame_ensemble

Reed Solomon(RS) frame ensemble.
Constants
ATSCMH_RSFRAME_ENS_PRI Primary Ensemble.
ATSCMH_RSFRAME_ENS_SEC Secondary Ensemble.
enum atscmh_rs_frame_mode

Reed Solomon (RS) frame mode.
Constants
ATSCMH_RSFRAME_PRI_ONLY Single Frame: There is only a primary RS Frame for all Group Regions.
ATSCMH_RSFRAME_PRI_SEC Dual Frame: There are two separate RS Frames: Primary RS Frame for Group

Region A and B and Secondary RS Frame for Group Region C and D.
ATSCMH_RSFRAME_RES Reserved. Shouldn’t be used.
enum atscmh_rs_code_mode

Constants
ATSCMH_RSCODE_211_187 Reed Solomon code (211,187).
ATSCMH_RSCODE_223_187 Reed Solomon code (223,187).
ATSCMH_RSCODE_235_187 Reed Solomon code (235,187).
ATSCMH_RSCODE_RES Reserved. Shouldn’t be used.
enum fecap_scale_params

scale types for the quality parameters.
Constants
FE_SCALE_NOT_AVAILABLE That QoS measure is not available. That could indicate a temporary or a per-

manent condition.
FE_SCALE_DECIBEL The scale is measured in 0.001 dB steps, typically used on signal measures.
FE_SCALE_RELATIVE The scale is a relative percentual measure, ranging from 0 (0%) to 0xffff (100%).
FE_SCALE_COUNTER The scale counts the occurrence of an event, like bit error, block error, lapsed time.

1.3. Part II - Digital TV API 417

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct dtv_stats
Used for reading a DTV status property

Definition

struct dtv_stats {
__u8 scale;
union {unnamed_union};

};

Members
scale Filled with enum fecap_scale_params - the scale in usage for that parameter
{unnamed_union} anonymous
Description
The {unnamed_union} may have either one of the values below:
svalue integer value of the measure, for FE_SCALE_DECIBEL, used for dB measures. The unit is 0.001

dB.
uvalue unsigned integer value of the measure, used when scale is either FE_SCALE_RELATIVE or

FE_SCALE_COUNTER.
For most delivery systems, this will return a single value for each parameter.
It should be noticed, however, that new OFDM delivery systems like ISDB can use different modulation
types for each group of carriers. On such standards, up to 8 groups of statistics can be provided, one for
each carrier group (called “layer” on ISDB).
In order to be consistent with other delivery systems, the first value refers to the entire set of carriers
(“global”).
scale should use the value FE_SCALE_NOT_AVAILABLE when the value for the entire group of carriers or
from one specific layer is not provided by the hardware.
len should be filled with the latest filled status + 1.
In other words, for ISDB, those values should be filled like:

u.st.stat.svalue[0] = global statistics;
u.st.stat.scale[0] = FE_SCALE_DECIBEL;
u.st.stat.value[1] = layer A statistics;
u.st.stat.scale[1] = FE_SCALE_NOT_AVAILABLE (if not available);
u.st.stat.svalue[2] = layer B statistics;
u.st.stat.scale[2] = FE_SCALE_DECIBEL;
u.st.stat.svalue[3] = layer C statistics;
u.st.stat.scale[3] = FE_SCALE_DECIBEL;
u.st.len = 4;

struct dtv_fe_stats
store Digital TV frontend statistics

Definition

struct dtv_fe_stats {
__u8 len;
struct dtv_stats stat;

};

Members
len length of the statistics - if zero, stats is disabled.
stat array with digital TV statistics.

418 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
On most standards, len can either be 0 or 1. However, for ISDB, each layer is modulated in separate.
So, each layer may have its own set of statistics. If so, stat[0] carries on a global value for the property.
Indexes 1 to 3 means layer A to B.
struct dtv_property

store one of frontend command and its value
Definition

struct dtv_property {
__u32 cmd;
__u32 reserved;
union u;
int result;

};

Members
cmd Digital TV command.
reserved Not used.
u Union with the values for the command.
result Result of the command set (currently unused).
Description
The u union may have either one of the values below:
data an unsigned 32-bits number.
st a struct dtv_fe_stats array of statistics.
buffer a buffer of up to 32 characters (currently unused).
struct dtv_properties

a set of command/value pairs.
Definition

struct dtv_properties {
__u32 num;
struct dtv_property * props;

};

Members
num amount of commands stored at the struct.
props a pointer to struct dtv_property.

Frontend Function Calls

Digital TV frontend open()

Name

fe-open - Open a frontend device

1.3. Part II - Digital TV API 419

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.
flags Open flags. Access can either be O_RDWR or O_RDONLY.

Multiple opens are allowed with O_RDONLY. In this mode, only query and read ioctls are allowed.
Only one open is allowed in O_RDWR. In this mode, all ioctls are allowed.
When the O_NONBLOCK flag is given, the system calls may return EAGAIN error code when no data is
available or when the device driver is temporarily busy.
Other flags have no effect.

Description

This system call opens a named frontend device (/dev/dvb/adapter?/frontend?) for subsequent use.
Usually the first thing to do after a successful open is to find out the frontend type with ioctl FE_GET_INFO
.
The device can be opened in read-only mode, which only allows monitoring of device status and statistics,
or read/write mode, which allows any kind of use (e.g. performing tuning operations.)
In a system with multiple front-ends, it is usually the case that multiple devices cannot be open in
read/write mode simultaneously. As long as a front-end device is opened in read/write mode, other open()
calls in read/write mode will either fail or block, depending on whether non-blocking or blocking mode was
specified. A front-end device opened in blocking mode can later be put into non-blocking mode (and vice
versa) using the F_SETFL command of the fcntl system call. This is a standard system call, documented in
the Linux manual page for fcntl. When an open() call has succeeded, the device will be ready for use in the
specified mode. This implies that the corresponding hardware is powered up, and that other front-ends
may have been powered down to make that possible.

Return Value

On success open() returns the new file descriptor. On error, -1 is returned, and the errno variable is set
appropriately.
Possible error codes are:
On success 0 is returned, and ca_slot_info is filled.
On error -1 is returned, and the errno variable is set appropriately.
EPERM The caller has no permission to access the device.
EBUSY The the device driver is already in use.
EMFILE The process already has the maximum number of files open.
ENFILE The limit on the total number of files open on the system has been reached.
The generic error codes are described at the Generic Error Codes chapter.

420 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Digital TV frontend close()

Name

fe-close - Close a frontend device

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

This system call closes a previously opened front-end device. After closing a front-end device, its corre-
sponding hardware might be powered down automatically.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_GET_INFO

Name

FE_GET_INFO - Query Digital TV frontend capabilities and returns information about the - front-end. This
call only requires read-only access to the device.

Synopsis

int ioctl(int fd, FE_GET_INFO, struct dvb_frontend_info *argp)

Arguments

fd File descriptor returned by open() .
argp pointer to struct struct dvb_frontend_info

1.3. Part II - Digital TV API 421

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

All Digital TV frontend devices support the ioctl FE_GET_INFO ioctl. It is used to identify kernel devices
compatible with this specification and to obtain information about driver and hardware capabilities. The
ioctl takes a pointer to dvb_frontend_info which is filled by the driver. When the driver is not compatible
with this specification the ioctl returns an error.

frontend capabilities

Capabilities describe what a frontend can do. Some capabilities are supported only on some specific
frontend types.
The frontend capabilities are described at fe_caps.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_READ_STATUS

Name

FE_READ_STATUS - Returns status information about the front-end. This call only requires - read-only
access to the device

Synopsis

int ioctl(int fd, FE_READ_STATUS, unsigned int *status)

Arguments

fd File descriptor returned by open() .
status pointer to a bitmask integer filled with the values defined by enum fe_status.

Description

All Digital TV frontend devices support the FE_READ_STATUS ioctl. It is used to check about the locking
status of the frontend after being tuned. The ioctl takes a pointer to an integer where the status will be
written.

Note:

The size of status is actually sizeof(enum fe_status), with varies according with the architecture. This
needs to be fixed in the future.

422 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int fe_status

The fe_status parameter is used to indicate the current state and/or state changes of the frontend hard-
ware. It is produced using the enum fe_status values on a bitmask

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_PROPERTY, FE_GET_PROPERTY

Name

FE_SET_PROPERTY - FE_GET_PROPERTY - FE_SET_PROPERTY sets one or more frontend properties. -
FE_GET_PROPERTY returns one or more frontend properties.

Synopsis

int ioctl(int fd, FE_GET_PROPERTY, struct dtv_properties *argp)
int ioctl(int fd, FE_SET_PROPERTY, struct dtv_properties *argp)

Arguments

fd File descriptor returned by open() .
argp Pointer to struct dtv_properties.

Description

All Digital TV frontend devices support the FE_SET_PROPERTY and FE_GET_PROPERTY ioctls. The supported
properties and statistics depends on the delivery system and on the device:

• FE_SET_PROPERTY:

– This ioctl is used to set one or more frontend properties.
– This is the basic command to request the frontend to tune into some frequency and to start

decoding the digital TV signal.
– This call requires read/write access to the device.
– At return, the values are updated to reflect the actual parameters used.

• FE_GET_PROPERTY:

– This ioctl is used to get properties and statistics from the frontend.
– No properties are changed, and statistics aren’t reset.
– This call only requires read-only access to the device.

1.3. Part II - Digital TV API 423

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_RESET_OVERLOAD

Name

FE_DISEQC_RESET_OVERLOAD - Restores the power to the antenna subsystem, if it was powered off due
- to power overload.

Synopsis

int ioctl(int fd, FE_DISEQC_RESET_OVERLOAD, NULL)

Arguments

fd File descriptor returned by open() .

Description

If the bus has been automatically powered off due to power overload, this ioctl call restores the power to
the bus. The call requires read/write access to the device. This call has no effect if the device is manually
powered off. Not all Digital TV adapters support this ioctl.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_SEND_MASTER_CMD

Name

FE_DISEQC_SEND_MASTER_CMD - Sends a DiSEqC command

Synopsis

int ioctl(int fd, FE_DISEQC_SEND_MASTER_CMD, struct dvb_diseqc_master_cmd *argp)

Arguments

fd File descriptor returned by open() .
argp pointer to struct dvb_diseqc_master_cmd

424 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Sends the DiSEqC command pointed by dvb_diseqc_master_cmd to the antenna subsystem.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_RECV_SLAVE_REPLY

Name

FE_DISEQC_RECV_SLAVE_REPLY - Receives reply from a DiSEqC 2.0 command

Synopsis

int ioctl(int fd, FE_DISEQC_RECV_SLAVE_REPLY, struct dvb_diseqc_slave_reply *argp)

Arguments

fd File descriptor returned by open() .
argp pointer to struct dvb_diseqc_slave_reply.

Description

Receives reply from a DiSEqC 2.0 command.
The received message is stored at the buffer pointed by argp.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_SEND_BURST

Name

FE_DISEQC_SEND_BURST - Sends a 22KHz tone burst for 2x1 mini DiSEqC satellite selection.

Synopsis

int ioctl(int fd, FE_DISEQC_SEND_BURST, enum fe_sec_mini_cmd tone)

1.3. Part II - Digital TV API 425

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
tone An integer enumered value described at fe_sec_mini_cmd.

Description

This ioctl is used to set the generation of a 22kHz tone burst for mini DiSEqC satellite selection for 2x1
switches. This call requires read/write permissions.
It provides support for what’s specified at Digital Satellite Equipment Control (DiSEqC) - Simple “ToneBurst”
Detection Circuit specification.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_TONE

Name

FE_SET_TONE - Sets/resets the generation of the continuous 22kHz tone.

Synopsis

int ioctl(int fd, FE_SET_TONE, enum fe_sec_tone_mode tone)

Arguments

fd File descriptor returned by open() .
tone an integer enumered value described at fe_sec_tone_mode

Description

This ioctl is used to set the generation of the continuous 22kHz tone. This call requires read/write permis-
sions.
Usually, satellite antenna subsystems require that the digital TV device to send a 22kHz tone in order
to select between high/low band on some dual-band LNBf. It is also used to send signals to DiSEqC
equipment, but this is done using the DiSEqC ioctls.

Attention:

If more than one device is connected to the same antenna, setting a tone may interfere on other de-
vices, as they may lose the capability of selecting the band. So, it is recommended that applications
would change to SEC_TONE_OFF when the device is not used.

426 Chapter 1. Linux Media Infrastructure userspace API

http://www.eutelsat.com/files/contributed/satellites/pdf/Diseqc/associated%20docs/simple_tone_burst_detec.pdf
http://www.eutelsat.com/files/contributed/satellites/pdf/Diseqc/associated%20docs/simple_tone_burst_detec.pdf

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_VOLTAGE

Name

FE_SET_VOLTAGE - Allow setting the DC level sent to the antenna subsystem.

Synopsis

int ioctl(int fd, FE_SET_VOLTAGE, enum fe_sec_voltage voltage)

Arguments

fd File descriptor returned by open() .
voltage an integer enumered value described at fe_sec_voltage

Description

This ioctl allows to set the DC voltage level sent through the antenna cable to 13V, 18V or off.
Usually, a satellite antenna subsystems require that the digital TV device to send a DC voltage to feed
power to the LNBf. Depending on the LNBf type, the polarization or the intermediate frequency (IF) of the
LNBf can controlled by the voltage level. Other devices (for example, the ones that implement DISEqC
and multipoint LNBf’s don’t need to control the voltage level, provided that either 13V or 18V is sent to
power up the LNBf.

Attention:

if more than one device is connected to the same antenna, setting a voltage level may interfere
on other devices, as they may lose the capability of setting polarization or IF. So, on those cases,
setting the voltage to SEC_VOLTAGE_OFF while the device is not is used is recommended.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

1.3. Part II - Digital TV API 427

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ioctl FE_ENABLE_HIGH_LNB_VOLTAGE

Name

FE_ENABLE_HIGH_LNB_VOLTAGE - Select output DC level between normal LNBf voltages or higher LNBf -
voltages.

Synopsis

int ioctl(int fd, FE_ENABLE_HIGH_LNB_VOLTAGE, unsigned int high)

Arguments

fd File descriptor returned by open() .
high Valid flags:

• 0 - normal 13V and 18V.
• >0 - enables slightly higher voltages instead of 13/18V, in order to compensate for long antenna

cables.

Description

Select output DC level between normal LNBf voltages or higher LNBf voltages between 0 (normal) or a
value grater than 0 for higher voltages.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_FRONTEND_TUNE_MODE

Name

FE_SET_FRONTEND_TUNE_MODE - Allow setting tuner mode flags to the frontend.

Synopsis

int ioctl(int fd, FE_SET_FRONTEND_TUNE_MODE, unsigned int flags)

Arguments

fd File descriptor returned by open() .
flags Valid flags:

• 0 - normal tune mode

428 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• FE_TUNE_MODE_ONESHOT - When set, this flag will disable any zigzagging or other “normal” tuning
behaviour. Additionally, there will be no automatic monitoring of the lock status, and hence no
frontend events will be generated. If a frontend device is closed, this flag will be automatically
turned off when the device is reopened read-write.

Description

Allow setting tuner mode flags to the frontend, between 0 (normal) or FE_TUNE_MODE_ONESHOT mode

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

1.3.3 Digital TV Demux Device

The Digital TV demux device controls the MPEG-TS filters for the digital TV. If the driver and hardware
supports, those filters are implemented at the hardware. Otherwise, the Kernel provides a software emu-
lation.
It can be accessed through /dev/adapter?/demux?. Data types and and ioctl definitions can be accessed
by including linux/dvb/dmx.h in your application.

Demux Data Types

enum dmx_output
Output for the demux.

Constants
DMX_OUT_DECODER Streaming directly to decoder.
DMX_OUT_TAP Output going to a memory buffer (to be retrieved via the read command). Delivers the

stream output to the demux device on which the ioctl is called.
DMX_OUT_TS_TAP Output multiplexed into a new TS (to be retrieved by reading from the logical DVR de-

vice). Routes output to the logical DVR device /dev/dvb/adapter?/dvr?, which delivers a TS multi-
plexed from all filters for which DMX_OUT_TS_TAP was specified.

DMX_OUT_TSDEMUX_TAP Like DMX_OUT_TS_TAP but retrieved from the DMX device.
enum dmx_input

Input from the demux.
Constants
DMX_IN_FRONTEND Input from a front-end device.
DMX_IN_DVR Input from the logical DVR device.
enum dmx_ts_pes

type of the PES filter.
Constants
DMX_PES_AUDIO0 first audio PID. Also referred as DMX_PES_AUDIO.
DMX_PES_VIDEO0 first video PID. Also referred as DMX_PES_VIDEO.
DMX_PES_TELETEXT0 first teletext PID. Also referred as DMX_PES_TELETEXT.

1.3. Part II - Digital TV API 429

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

DMX_PES_SUBTITLE0 first subtitle PID. Also referred as DMX_PES_SUBTITLE.
DMX_PES_PCR0 first Program Clock Reference PID. Also referred as DMX_PES_PCR.
DMX_PES_AUDIO1 second audio PID.
DMX_PES_VIDEO1 second video PID.
DMX_PES_TELETEXT1 second teletext PID.
DMX_PES_SUBTITLE1 second subtitle PID.
DMX_PES_PCR1 second Program Clock Reference PID.
DMX_PES_AUDIO2 third audio PID.
DMX_PES_VIDEO2 third video PID.
DMX_PES_TELETEXT2 third teletext PID.
DMX_PES_SUBTITLE2 third subtitle PID.
DMX_PES_PCR2 third Program Clock Reference PID.
DMX_PES_AUDIO3 fourth audio PID.
DMX_PES_VIDEO3 fourth video PID.
DMX_PES_TELETEXT3 fourth teletext PID.
DMX_PES_SUBTITLE3 fourth subtitle PID.
DMX_PES_PCR3 fourth Program Clock Reference PID.
DMX_PES_OTHER any other PID.
struct dmx_filter

Specifies a section header filter.
Definition

struct dmx_filter {
__u8 filter;
__u8 mask;
__u8 mode;

};

Members
filter bit array with bits to be matched at the section header.
mask bits that are valid at the filter bit array.
mode mode of match: if bit is zero, it will match if equal (positive match); if bit is one, it will match if the

bit is negated.
Note
All arrays in this struct have a size of DMX_FILTER_SIZE (16 bytes).
struct dmx_sct_filter_params

Specifies a section filter.
Definition

struct dmx_sct_filter_params {
__u16 pid;
struct dmx_filter filter;
__u32 timeout;
__u32 flags;

#define DMX_CHECK_CRC 1
#define DMX_ONESHOT 2

430 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define DMX_IMMEDIATE_START 4
};

Members
pid PID to be filtered.
filter section header filter, as defined by struct dmx_filter.
timeout maximum time to filter, in milliseconds.
flags extra flags for the section filter.
Description
Carries the configuration for a MPEG-TS section filter.
The flags can be:

• DMX_CHECK_CRC - only deliver sections where the CRC check succeeded;
• DMX_ONESHOT - disable the section filter after one section has been delivered;
• DMX_IMMEDIATE_START - Start filter immediately without requiring a DMX_START .

struct dmx_pes_filter_params
Specifies Packetized Elementary Stream (PES) filter parameters.

Definition

struct dmx_pes_filter_params {
__u16 pid;
enum dmx_input input;
enum dmx_output output;
enum dmx_ts_pes pes_type;
__u32 flags;

};

Members
pid PID to be filtered.
input Demux input, as specified by enum dmx_input.
output Demux output, as specified by enum dmx_output.
pes_type Type of the pes filter, as specified by enum dmx_pes_type.
flags Demux PES flags.
struct dmx_stc

Stores System Time Counter (STC) information.
Definition

struct dmx_stc {
unsigned int num;
unsigned int base;
__u64 stc;

};

Members
num input data: number of the STC, from 0 to N.
base output: divisor for STC to get 90 kHz clock.
stc output: stc in base * 90 kHz units.

1.3. Part II - Digital TV API 431

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Demux Function Calls

Digital TV demux open()

Name

Digital TV demux open()

Synopsis

int open(const char *deviceName, int flags)

Arguments

name Name of specific Digital TV demux device.
flags A bit-wise OR of the following flags:
O_RDONLY read-only access
O_RDWR read/write access
O_NONBLOCK open in non-blocking mode (blocking mode is the default)

Description

This system call, used with a device name of /dev/dvb/adapter?/demux?, allocates a new filter and re-
turns a handle which can be used for subsequent control of that filter. This call has to be made for each fil-
ter to be used, i.e. every returned file descriptor is a reference to a single filter. /dev/dvb/adapter?/dvr?
is a logical device to be used for retrieving Transport Streams for digital video recording. When reading
from this device a transport stream containing the packets from all PES filters set in the correspond-
ing demux device (/dev/dvb/adapter?/demux?) having the output set to DMX_OUT_TS_TAP. A recorded
Transport Stream is replayed by writing to this device.
The significance of blocking or non-blocking mode is described in the documentation for functions where
there is a difference. It does not affect the semantics of the open() call itself. A device opened in blocking
mode can later be put into non-blocking mode (and vice versa) using the F_SETFL command of the fcntl
system call.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
EMFILE “Too many open files”, i.e. no more filters available.
The generic error codes are described at the Generic Error Codes chapter.

Digital TV demux close()

Name

Digital TV demux close()

432 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int close(int fd)

Arguments

fd File descriptor returned by a previous call to open().

Description

This system call deactivates and deallocates a filter that was previously allocated via the open() call.

Return Value

On success 0 is returned.
On error, -1 is returned and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

Digital TV demux read()

Name

Digital TV demux read()

Synopsis

size_t read(int fd, void *buf, size_t count)

Arguments

fd

File descriptor returned by a previous call to open().
buf Buffer to be filled

count Max number of bytes to read

Description

This system call returns filtered data, which might be section or Packetized Elementary Stream (PES) data.
The filtered data is transferred from the driver’s internal circular buffer to buf. The maximum amount of
data to be transferred is implied by count.

Note:

if a section filter created with DMX_CHECK_CRC flag set, data that fails on CRC check will be silently
ignored.

1.3. Part II - Digital TV API 433

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
EWOULDBLOCK No data to return and O_NONBLOCK was specified.
EOVERFLOW The filtered data was not read from the buffer in due time, resulting in non-read data

being lost. The buffer is flushed.
ETIMEDOUT The section was not loaded within the stated timeout period. See ioctl

DMX_SET_FILTER for how to set a timeout.
EFAULT The driver failed to write to the callers buffer due to an invalid *buf pointer.
The generic error codes are described at the Generic Error Codes chapter.

Digital TV demux write()

Name

Digital TV demux write()

Synopsis

ssize_t write(int fd, const void *buf, size_t count)

Arguments

fd File descriptor returned by a previous call to open().
buf Buffer with data to be written
count Number of bytes at the buffer

Description

This system call is only provided by the logical device /dev/dvb/adapter?/dvr?, associated with the
physical demux device that provides the actual DVR functionality. It is used for replay of a digitally
recorded Transport Stream. Matching filters have to be defined in the corresponding physical demux
device, /dev/dvb/adapter?/demux?. The amount of data to be transferred is implied by count.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
EWOULDBLOCK No data was written. This might happen if O_NONBLOCK was specified and there is no

more buffer space available (if O_NONBLOCK is not specified the function will block until
buffer space is available).

EBUSY This error code indicates that there are conflicting requests. The corresponding demux
device is setup to receive data from the front- end. Make sure that these filters are
stopped and that the filters with input set to DMX_IN_DVR are started.

The generic error codes are described at the Generic Error Codes chapter.

434 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

DMX_START

Name

DMX_START

Synopsis

int ioctl(int fd, DMX_START)

Arguments

fd File descriptor returned by open().

Description

This ioctl call is used to start the actual filtering operation defined via the ioctl calls DMX_SET_FILTER or
DMX_SET_PES_FILTER .

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
EINVAL Invalid argument, i.e. no filtering parameters provided via the DMX_SET_FILTER or

DMX_SET_PES_FILTER ioctls.
EBUSY This error code indicates that there are conflicting requests. There are active filters

filtering data from another input source. Make sure that these filters are stopped
before starting this filter.

The generic error codes are described at the Generic Error Codes chapter.

DMX_STOP

Name

DMX_STOP

Synopsis

int ioctl(int fd, DMX_STOP)

Arguments

fd File descriptor returned by open().

Description

This ioctl call is used to stop the actual filtering operation defined via the ioctl calls DMX_SET_FILTER or
DMX_SET_PES_FILTER and started via the DMX_START command.

1.3. Part II - Digital TV API 435

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

DMX_SET_FILTER

Name

DMX_SET_FILTER

Synopsis

int ioctl(int fd, DMX_SET_FILTER, struct dmx_sct_filter_params *params)

Arguments

fd File descriptor returned by open().
params

Pointer to structure containing filter parameters.

Description

This ioctl call sets up a filter according to the filter and mask parameters provided. A timeout may be
defined stating number of seconds to wait for a section to be loaded. A value of 0 means that no time-
out should be applied. Finally there is a flag field where it is possible to state whether a section should
be CRC-checked, whether the filter should be a ”one-shot” filter, i.e. if the filtering operation should be
stopped after the first section is received, and whether the filtering operation should be started imme-
diately (without waiting for a DMX_START ioctl call). If a filter was previously set-up, this filter will be
canceled, and the receive buffer will be flushed.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

DMX_SET_PES_FILTER

Name

DMX_SET_PES_FILTER

Synopsis

int ioctl(int fd, DMX_SET_PES_FILTER, struct dmx_pes_filter_params *params)

436 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open().
params Pointer to structure containing filter parameters.

Description

This ioctl call sets up a PES filter according to the parameters provided. By a PES filter is meant a filter that
is based just on the packet identifier (PID), i.e. no PES header or payload filtering capability is supported.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
EBUSY This error code indicates that there are conflicting requests. There are active filters

filtering data from another input source. Make sure that these filters are stopped
before starting this filter.

The generic error codes are described at the Generic Error Codes chapter.

DMX_SET_BUFFER_SIZE

Name

DMX_SET_BUFFER_SIZE

Synopsis

int ioctl(int fd, DMX_SET_BUFFER_SIZE, unsigned long size)

Arguments

fd File descriptor returned by open().
size Unsigned long size

Description

This ioctl call is used to set the size of the circular buffer used for filtered data. The default size is two
maximum sized sections, i.e. if this function is not called a buffer size of 2 * 4096 bytes will be used.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

1.3. Part II - Digital TV API 437

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

DMX_GET_STC

Name

DMX_GET_STC

Synopsis

int ioctl(int fd, DMX_GET_STC, struct dmx_stc *stc)

Arguments

fd File descriptor returned by open().
stc Pointer to dmx_stc where the stc data is to be stored.

Description

This ioctl call returns the current value of the system time counter (which is driven by a PES filter of type
DMX_PES_PCR). Some hardware supports more than one STC, so you must specify which one by setting
the num field of stc before the ioctl (range 0...n). The result is returned in form of a ratio with a 64 bit
numerator and a 32 bit denominator, so the real 90kHz STC value is stc->stc / stc->base.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
EINVAL Invalid stc number.
The generic error codes are described at the Generic Error Codes chapter.

DMX_GET_PES_PIDS

Name

DMX_GET_PES_PIDS

Synopsis

int ioctl(fd, DMX_GET_PES_PIDS, __u16 pids[5])

Arguments

fd File descriptor returned by open().
pids Array used to store 5 Program IDs.

438 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

This ioctl allows to query a DVB device to return the first PID used by audio, video, textext, subtitle and
PCR programs on a given service. They’re stored as:
PID element position content
pids[DMX_PES_AUDIO] 0 first audio PID
pids[DMX_PES_VIDEO] 1 first video PID
pids[DMX_PES_TELETEXT] 2 first teletext PID
pids[DMX_PES_SUBTITLE] 3 first subtitle PID
pids[DMX_PES_PCR] 4 first Program Clock Reference PID

Note:

A value equal to 0xffff means that the PID was not filled by the Kernel.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

DMX_ADD_PID

Name

DMX_ADD_PID

Synopsis

int ioctl(fd, DMX_ADD_PID, __u16 *pid)

Arguments

fd File descriptor returned by open().
pid PID number to be filtered.

Description

This ioctl call allows to add multiple PIDs to a transport stream filter previously set up with
DMX_SET_PES_FILTER and output equal to DMX_OUT_TSDEMUX_TAP.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

1.3. Part II - Digital TV API 439

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

DMX_REMOVE_PID

Name

DMX_REMOVE_PID

Synopsis

int ioctl(fd, DMX_REMOVE_PID, __u16 *pid)

Arguments

fd File descriptor returned by open().
pid PID of the PES filter to be removed.

Description

This ioctl call allows to remove a PID when multiple PIDs are set on a transport stream filter, e. g. a filter
previously set up with output equal to DMX_OUT_TSDEMUX_TAP, created via either DMX_SET_PES_FILTER
or DMX_ADD_PID .

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

1.3.4 Digital TV CA Device

The Digital TV CA device controls the conditional access hardware. It can be accessed through
/dev/dvb/adapter?/ca?. Data types and and ioctl definitions can be accessed by including
linux/dvb/ca.h in your application.

Note:

There are three ioctls at this API that aren’t documented: CA_GET_MSG , CA_SEND_MSG and
CA_SET_DESCR . Documentation for them are welcome.

CA Data Types

struct ca_slot_info
CA slot interface types and info.

Definition

struct ca_slot_info {
int num;
int type;

#define CA_CI 1
#define CA_CI_LINK 2

440 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define CA_CI_PHYS 4
#define CA_DESCR 8
#define CA_SC 128
unsigned int flags;

#define CA_CI_MODULE_PRESENT 1
#define CA_CI_MODULE_READY 2
};

Members
num slot number.
type slot type.
flags flags applicable to the slot.
Description
This struct stores the CA slot information.
type can be:

• CA_CI - CI high level interface;
• CA_CI_LINK - CI link layer level interface;
• CA_CI_PHYS - CI physical layer level interface;
• CA_DESCR - built-in descrambler;
• CA_SC -simple smart card interface.

flags can be:
• CA_CI_MODULE_PRESENT - module (or card) inserted;
• CA_CI_MODULE_READY - module is ready for usage.

struct ca_descr_info
descrambler types and info.

Definition

struct ca_descr_info {
unsigned int num;
unsigned int type;

#define CA_ECD 1
#define CA_NDS 2
#define CA_DSS 4
};

Members
num number of available descramblers (keys).
type type of supported scrambling system.
Description
Identifies the number of descramblers and their type.
type can be:

• CA_ECD - European Common Descrambler (ECD) hardware;
• CA_NDS - Videoguard (NDS) hardware;
• CA_DSS - Distributed Sample Scrambling (DSS) hardware.

struct ca_caps
CA slot interface capabilities.

1.3. Part II - Digital TV API 441

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Definition

struct ca_caps {
unsigned int slot_num;
unsigned int slot_type;
unsigned int descr_num;
unsigned int descr_type;

};

Members
slot_num total number of CA card and module slots.
slot_type bitmap with all supported types as defined at struct ca_slot_info (e. g. CA_CI,

CA_CI_LINK, etc).
descr_num total number of descrambler slots (keys)
descr_type bitmap with all supported types as defined at struct ca_descr_info (e. g. CA_ECD, CA_NDS,

etc).
struct ca_msg

a message to/from a CI-CAM
Definition

struct ca_msg {
unsigned int index;
unsigned int type;
unsigned int length;
unsigned char msg;

};

Members
index unused
type unused
length length of the message
msg message
Description
This struct carries a message to be send/received from a CI CA module.
struct ca_descr

CA descrambler control words info
Definition

struct ca_descr {
unsigned int index;
unsigned int parity;
unsigned char cw;

};

Members
index CA Descrambler slot
parity control words parity, where 0 means even and 1 means odd
cw CA Descrambler control words

442 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CA Function Calls

Digital TV CA open()

Name

Digital TV CA open()

Synopsis

int open(const char *name, int flags)

Arguments

name Name of specific Digital TV CA device.
flags A bit-wise OR of the following flags:
O_RDONLY read-only access
O_RDWR read/write access
O_NONBLOCK open in non-blocking mode (blocking mode is the default)

Description

This system call opens a named ca device (e.g. /dev/dvb/adapter?/ca?) for subsequent use.
When an open() call has succeeded, the device will be ready for use. The significance of blocking or
non-blocking mode is described in the documentation for functions where there is a difference. It does
not affect the semantics of the open() call itself. A device opened in blocking mode can later be put
into non-blocking mode (and vice versa) using the F_SETFL command of the fcntl system call. This is
a standard system call, documented in the Linux manual page for fcntl. Only one user can open the CA
Device in O_RDWR mode. All other attempts to open the device in this mode will fail, and an error code will
be returned.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

Digital TV CA close()

Name

Digital TV CA close()

Synopsis

int close(int fd)

1.3. Part II - Digital TV API 443

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by a previous call to open().

Description

This system call closes a previously opened CA device.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

CA_RESET

Name

CA_RESET

Synopsis

int ioctl(fd, CA_RESET)

Arguments

fd File descriptor returned by a previous call to open().

Description

Puts the Conditional Access hardware on its initial state. It should be called before start using the CA
hardware.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

CA_GET_CAP

Name

CA_GET_CAP

444 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(fd, CA_GET_CAP, struct ca_caps *caps)

Arguments

fd File descriptor returned by a previous call to open().
caps Pointer to struct ca_caps.

Description

Queries the Kernel for information about the available CA and descrambler slots, and their types.

Return Value

On success 0 is returned and ca_caps is filled.
On error, -1 is returned and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

CA_GET_SLOT_INFO

Name

CA_GET_SLOT_INFO

Synopsis

int ioctl(fd, CA_GET_SLOT_INFO, struct ca_slot_info *info)

Arguments

fd File descriptor returned by a previous call to open().
info Pointer to struct ca_slot_info.

Description

Returns information about a CA slot identified by ca_slot_info.slot_num.

Return Value

On success 0 is returned, and ca_slot_info is filled.
On error -1 is returned, and the errno variable is set appropriately.
ENODEV the slot is not available.
The generic error codes are described at the Generic Error Codes chapter.

1.3. Part II - Digital TV API 445

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CA_GET_DESCR_INFO

Name

CA_GET_DESCR_INFO

Synopsis

int ioctl(fd, CA_GET_DESCR_INFO, struct ca_descr_info *desc)

Arguments

fd File descriptor returned by a previous call to open().
desc Pointer to struct ca_descr_info.

Description

Returns information about all descrambler slots.

Return Value

On success 0 is returned, and ca_descr_info is filled.
On error -1 is returned, and the errno variable is set appropriately. The generic error codes are described
at the Generic Error Codes chapter.

CA_GET_MSG

Name

CA_GET_MSG

Synopsis

int ioctl(fd, CA_GET_MSG, struct ca_msg *msg)

Arguments

fd File descriptor returned by a previous call to open().
msg Pointer to struct ca_msg.

Description

Receives a message via a CI CA module.

Note:

Please notice that, on most drivers, this is done by reading from the /dev/adapter?/ca? device node.

446 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

CA_SEND_MSG

Name

CA_SEND_MSG

Synopsis

int ioctl(fd, CA_SEND_MSG, struct ca_msg *msg)

Arguments

fd File descriptor returned by a previous call to open().
msg Pointer to struct ca_msg.

Description

Sends a message via a CI CA module.

Note:

Please notice that, on most drivers, this is done by writing to the /dev/adapter?/ca? device node.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

CA_SET_DESCR

Name

CA_SET_DESCR

Synopsis

int ioctl(fd, CA_SET_DESCR, struct ca_descr *desc)

1.3. Part II - Digital TV API 447

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by a previous call to open().
msg Pointer to struct ca_descr.

Description

CA_SET_DESCR is used for feeding descrambler CA slots with descrambling keys (refered as control words).

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

1.3.5 Digital TV Network API

The Digital TV net device controls the mapping of data packages that are part of a transport stream to be
mapped into a virtual network interface, visible through the standard Linux network protocol stack.
Currently, two encapsulations are supported:

• Multi Protocol Encapsulation (MPE)
• Ultra Lightweight Encapsulation (ULE)

In order to create the Linux virtual network interfaces, an application needs to tell to the Kernel what
are the PIDs and the encapsulation types that are present on the transport stream. This is done through
/dev/dvb/adapter?/net? device node. The data will be available via virtual dvb?_? network interfaces,
and will be controlled/routed via the standard ip tools (like ip, route, netstat, ifconfig, etc).
Data types and and ioctl definitions are defined via linux/dvb/net.h header.

Digital TV net Function Calls

Net Data Types

struct dvb_net_if
describes a DVB network interface

Definition

struct dvb_net_if {
__u16 pid;
__u16 if_num;
__u8 feedtype;

#define DVB_NET_FEEDTYPE_MPE 0
#define DVB_NET_FEEDTYPE_ULE 1
};

Members
pid Packet ID (PID) of the MPEG-TS that contains data
if_num number of the Digital TV interface.
feedtype Encapsulation type of the feed.

448 Chapter 1. Linux Media Infrastructure userspace API

http://en.wikipedia.org/wiki/Multiprotocol_Encapsulation
http://en.wikipedia.org/wiki/Unidirectional_Lightweight_Encapsulation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
A MPEG-TS stream may contain packet IDs with IP packages on it. This struct describes it, and the type
of encoding.
feedtype can be:

• DVB_NET_FEEDTYPE_MPE for MPE encoding
• DVB_NET_FEEDTYPE_ULE for ULE encoding.

ioctl NET_ADD_IF

Name

NET_ADD_IF - Creates a new network interface for a given Packet ID.

Synopsis

int ioctl(int fd, NET_ADD_IF, struct dvb_net_if *net_if)

Arguments

fd File descriptor returned by open() .
net_if pointer to struct dvb_net_if

Description

The NET_ADD_IF ioctl system call selects the Packet ID (PID) that contains a TCP/IP traffic, the type of
encapsulation to be used (MPE or ULE) and the interface number for the new interface to be created.
When the system call successfully returns, a new virtual network interface is created.
The struct dvb_net_if::ifnum field will be filled with the number of the created interface.

Return Value

On success 0 is returned, and ca_slot_info is filled.
On error -1 is returned, and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl NET_REMOVE_IF

Name

NET_REMOVE_IF - Removes a network interface.

Synopsis

int ioctl(int fd, NET_REMOVE_IF, int ifnum)

1.3. Part II - Digital TV API 449

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
net_if number of the interface to be removed

Description

The NET_REMOVE_IF ioctl deletes an interface previously created via NET_ADD_IF .

Return Value

On success 0 is returned, and ca_slot_info is filled.
On error -1 is returned, and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl NET_GET_IF

Name

NET_GET_IF - Read the configuration data of an interface created via - NET_ADD_IF .

Synopsis

int ioctl(int fd, NET_GET_IF, struct dvb_net_if *net_if)

Arguments

fd File descriptor returned by open() .
net_if pointer to struct dvb_net_if

Description

The NET_GET_IF ioctl uses the interface number given by the struct dvb_net_if::ifnum field and fills the
content of struct dvb_net_if with the packet ID and encapsulation type used on such interface. If the
interface was not created yet with NET_ADD_IF , it will return -1 and fill the errno with EINVAL error code.

Return Value

On success 0 is returned, and ca_slot_info is filled.
On error -1 is returned, and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

450 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1.3.6 Digital TV Deprecated APIs

The APIs described here should not be used on new drivers or applications.
The DVBv3 frontend API has issues with new delivery systems, including DVB-S2, DVB-T2, ISDB, etc.
There’s just one driver for a very legacy hardware using the Digital TV audio and video APIs. No modern
drivers should use it. Instead, audio and video should be using the V4L2 and ALSA APIs, and the pipelines
should be set via the Media Controller API.

Attention:

The APIs described here doesn’t necessarily reflect the current code implementation, as this section
of the document was written for DVB version 1, while the code reflects DVB version 3 implementa-
tion.

Digital TV Frontend legacy API (a. k. a. DVBv3)

The usage of this API is deprecated, as it doesn’t support all digital TV standards, doesn’t provide good
statistics measurements and provides incomplete information. This is kept only to support legacy appli-
cations.

Frontend Legacy Data Types

Frontend type

For historical reasons, frontend types are named by the type of modulation used in transmission. The
fontend types are given by fe_type_t type, defined as:
fe_type

Table 1.173: Frontend types
fe_type Description DTV_DELIVERY_SYSTEM equivalent type

FE_QPSK
For DVB-S
standard

SYS_DVBS

FE_QAM
For DVB-C
annex A
standard

SYS_DVBC_ANNEX_A

FE_OFDM
For DVB-T
standard

SYS_DVBT

FE_ATSC
For ATSC
standard
(terrestrial)
or for DVB-C
Annex B
(cable) used
in US.

SYS_ATSC (terrestrial) or SYS_DVBC_ANNEX_B (ca-
ble)

Newer formats like DVB-S2, ISDB-T, ISDB-S and DVB-T2 are not described at the above, as they’re sup-
ported via the new FE_GET_PROPERTY/FE_GET_SET_PROPERTY ioctl’s, using the DTV_DELIVERY_SYSTEM
parameter.
In the old days, struct dvb_frontend_info used to contain fe_type_t field to indicate the delivery sys-
tems, filled with either FE_QPSK,FE_QAM,FE_OFDM or FE_ATSC. While this is still filled to keep backward
compatibility, the usage of this field is deprecated, as it can report just one delivery system, but some
devices support multiple delivery systems. Please use DTV_ENUM_DELSYS instead.

1.3. Part II - Digital TV API 451

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

On devices that support multiple delivery systems, struct dvb_frontend_info::fe_type_t is filled with the
currently standard, as selected by the last call to FE_SET_PROPERTY using the DTV_DELIVERY_SYSTEM
property.

Frontend bandwidth

fe_bandwidth

Table 1.174: enum fe_bandwidth
ID Description

BANDWIDTH_AUTO
Autodetect bandwidth (if supported)

BANDWIDTH_1_712_MHZ
1.712 MHz

BANDWIDTH_5_MHZ
5 MHz

BANDWIDTH_6_MHZ
6 MHz

BANDWIDTH_7_MHZ
7 MHz

BANDWIDTH_8_MHZ
8 MHz

BANDWIDTH_10_MHZ
10 MHz

dvb_frontend_parameters

frontend parameters

The kind of parameters passed to the frontend device for tuning depend on the kind of hardware you are
using.
The struct dvb_frontend_parameters uses a union with specific per-system parameters. However, as
newer delivery systems required more data, the structure size weren’t enough to fit, and just extending
its size would break the existing applications. So, those parameters were replaced by the usage of
FE_GET_PROPERTY/FE_SET_PROPERTY ioctl’s. The new API is flexible enough to add new parameters to
existing delivery systems, and to add newer delivery systems.
So, newer applications should use FE_GET_PROPERTY/FE_SET_PROPERTY instead, in order to be able to
support the newer System Delivery like DVB-S2, DVB-T2, DVB-C2, ISDB, etc.
All kinds of parameters are combined as a union in the dvb_frontend_parameters structure:

struct dvb_frontend_parameters {
uint32_t frequency; /* (absolute) frequency in Hz for QAM/OFDM */

/* intermediate frequency in kHz for QPSK */
fe_spectral_inversion_t inversion;
union {

struct dvb_qpsk_parameters qpsk;
struct dvb_qam_parameters qam;
struct dvb_ofdm_parameters ofdm;
struct dvb_vsb_parameters vsb;

} u;
};

In the case of QPSK frontends the frequency field specifies the intermediate frequency, i.e. the offset
which is effectively added to the local oscillator frequency (LOF) of the LNB. The intermediate frequency
has to be specified in units of kHz. For QAM and OFDM frontends the frequency specifies the absolute
frequency and is given in Hz.
dvb_qpsk_parameters

452 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

QPSK parameters

For satellite QPSK frontends you have to use the dvb_qpsk_parameters structure:

struct dvb_qpsk_parameters {
uint32_t symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t fec_inner; /* forward error correction (see above) */

};

dvb_qam_parameters

QAM parameters

for cable QAM frontend you use the dvb_qam_parameters structure:

struct dvb_qam_parameters {
uint32_t symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t fec_inner; /* forward error correction (see above) */
fe_modulation_t modulation; /* modulation type (see above) */

};

dvb_vsb_parameters

VSB parameters

ATSC frontends are supported by the dvb_vsb_parameters structure:

struct dvb_vsb_parameters {
fe_modulation_t modulation; /* modulation type (see above) */

};

dvb_ofdm_parameters

OFDM parameters

DVB-T frontends are supported by the dvb_ofdm_parameters structure:

struct dvb_ofdm_parameters {
fe_bandwidth_t bandwidth;
fe_code_rate_t code_rate_HP; /* high priority stream code rate */
fe_code_rate_t code_rate_LP; /* low priority stream code rate */
fe_modulation_t constellation; /* modulation type (see above) */
fe_transmit_mode_t transmission_mode;
fe_guard_interval_t guard_interval;
fe_hierarchy_t hierarchy_information;

};

dvb_frontend_event

frontend events

struct dvb_frontend_event {
fe_status_t status;
struct dvb_frontend_parameters parameters;

};

1.3. Part II - Digital TV API 453

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Frontend Legacy Function Calls

Those functions are defined at DVB version 3. The support is kept in the kernel due to compatibility issues
only. Their usage is strongly not recommended

FE_READ_BER

Name

FE_READ_BER

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_READ_BER, uint32_t *ber)

Arguments

fd File descriptor returned by open().
ber The bit error rate is stored into *ber.

Description

This ioctl call returns the bit error rate for the signal currently received/demodulated by the front-end. For
this command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

FE_READ_SNR

Name

FE_READ_SNR

Attention:

This ioctl is deprecated.

454 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, FE_READ_SNR, int16_t *snr)

Arguments

fd File descriptor returned by open().
snr The signal-to-noise ratio is stored into *snr.

Description

This ioctl call returns the signal-to-noise ratio for the signal currently received by the front-end. For this
command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

FE_READ_SIGNAL_STRENGTH

Name

FE_READ_SIGNAL_STRENGTH

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_READ_SIGNAL_STRENGTH, uint16_t *strength)

Arguments

fd File descriptor returned by open().
strength The signal strength value is stored into *strength.

Description

This ioctl call returns the signal strength value for the signal currently received by the front-end. For this
command, read-only access to the device is sufficient.

1.3. Part II - Digital TV API 455

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

FE_READ_UNCORRECTED_BLOCKS

Name

FE_READ_UNCORRECTED_BLOCKS

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_READ_UNCORRECTED_BLOCKS, uint32_t *ublocks)

Arguments

fd File descriptor returned by open().
ublocks The total number of uncorrected blocks seen by the driver so far.

Description

This ioctl call returns the number of uncorrected blocks detected by the device driver during its lifetime.
For meaningful measurements, the increment in block count during a specific time interval should be
calculated. For this command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

FE_SET_FRONTEND

Attention:

This ioctl is deprecated.

456 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Name

FE_SET_FRONTEND

Synopsis

int ioctl(int fd, FE_SET_FRONTEND, struct dvb_frontend_parameters *p)

Arguments

fd File descriptor returned by open().
p Points to parameters for tuning operation.

Description

This ioctl call starts a tuning operation using specified parameters. The result of this call will be successful
if the parameters were valid and the tuning could be initiated. The result of the tuning operation in itself,
however, will arrive asynchronously as an event (see documentation for FE_GET_EVENT and FrontendE-
vent.) If a new FE_SET_FRONTEND operation is initiated before the previous one was completed, the
previous operation will be aborted in favor of the new one. This command requires read/write access to
the device.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
EINVAL Maximum supported symbol rate reached.
Generic error codes are described at the Generic Error Codes chapter.

FE_GET_FRONTEND

Name

FE_GET_FRONTEND

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_GET_FRONTEND, struct dvb_frontend_parameters *p)

Arguments

fd File descriptor returned by open().
p Points to parameters for tuning operation.

1.3. Part II - Digital TV API 457

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

This ioctl call queries the currently effective frontend parameters. For this command, read-only access to
the device is sufficient.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
EINVAL Maximum supported symbol rate reached.
Generic error codes are described at the Generic Error Codes chapter.

FE_GET_EVENT

Name

FE_GET_EVENT

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_GET_EVENT, struct dvb_frontend_event *ev)

Arguments

fd File descriptor returned by open().
ev Points to the location where the event, if any, is to be stored.

Description

This ioctl call returns a frontend event if available. If an event is not available, the behavior depends on
whether the device is in blocking or non-blocking mode. In the latter case, the call fails immediately with
errno set to EWOULDBLOCK. In the former case, the call blocks until an event becomes available.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
EWOULDBLOCK There is no event pending, and the device is in non-blocking mode.
EOVERFLOW Overflow in event queue - one or more events were lost.
Generic error codes are described at the Generic Error Codes chapter.

458 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

FE_DISHNETWORK_SEND_LEGACY_CMD

Name

FE_DISHNETWORK_SEND_LEGACY_CMD

Synopsis

int ioctl(int fd, FE_DISHNETWORK_SEND_LEGACY_CMD, unsigned long cmd)

Arguments

fd File descriptor returned by open().
cmd Sends the specified raw cmd to the dish via DISEqC.

Description

Warning:

This is a very obscure legacy command, used only at stv0299 driver. Should not be used on newer
drivers.

It provides a non-standard method for selecting Diseqc voltage on the frontend, for Dish Network legacy
switches.
As support for this ioctl were added in 2004, this means that such dishes were already legacy in 2004.

Return Value

On success 0 is returned.
On error -1 is returned, and the errno variable is set appropriately.
Generic error codes are described at the Generic Error Codes chapter.

Digital TV Video Device

The Digital TV video device controls the MPEG2 video decoder of the Digital TV hardware. It can be
accessed through /dev/dvb/adapter0/video0. Data types and and ioctl definitions can be accessed by
including linux/dvb/video.h in your application.
Note that the Digital TV video device only controls decoding of the MPEG video stream, not its presentation
on the TV or computer screen. On PCs this is typically handled by an associated video4linux device, e.g.
/dev/video, which allows scaling and defining output windows.
Some Digital TV cards don’t have their own MPEG decoder, which results in the omission of the audio and
video device as well as the video4linux device.
The ioctls that deal with SPUs (sub picture units) and navigation packets are only supported on some
MPEG decoders made for DVD playback.
These ioctls were also used by V4L2 to control MPEG decoders implemented in V4L2. The use of these
ioctls for that purpose has been made obsolete and proper V4L2 ioctls or controls have been created to
replace that functionality.

1.3. Part II - Digital TV API 459

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Video Data Types

video_format_t

The video_format_t data type defined by

typedef enum {
VIDEO_FORMAT_4_3, /* Select 4:3 format */
VIDEO_FORMAT_16_9, /* Select 16:9 format. */
VIDEO_FORMAT_221_1 /* 2.21:1 */

} video_format_t;

is used in the VIDEO_SET_FORMAT function (??) to tell the driver which aspect ratio the output hardware
(e.g. TV) has. It is also used in the data structures video_status (??) returned by VIDEO_GET_STATUS (??)
and video_event (??) returned by VIDEO_GET_EVENT (??) which report about the display format of the
current video stream.

video_displayformat_t

In case the display format of the video stream and of the display hardware differ the application has to
specify how to handle the cropping of the picture. This can be done using the VIDEO_SET_DISPLAY_FORMAT
call (??) which accepts

typedef enum {
VIDEO_PAN_SCAN, /* use pan and scan format */
VIDEO_LETTER_BOX, /* use letterbox format */
VIDEO_CENTER_CUT_OUT /* use center cut out format */

} video_displayformat_t;

as argument.

video_stream_source_t

The video stream source is set through the VIDEO_SELECT_SOURCE call and can take the following values,
depending on whether we are replaying from an internal (demuxer) or external (user write) source.

typedef enum {
VIDEO_SOURCE_DEMUX, /* Select the demux as the main source */
VIDEO_SOURCE_MEMORY /* If this source is selected, the stream

comes from the user through the write
system call */

} video_stream_source_t;

VIDEO_SOURCE_DEMUX selects the demultiplexer (fed either by the frontend or the DVR device) as the
source of the video stream. If VIDEO_SOURCE_MEMORY is selected the stream comes from the application
through the write() system call.

video_play_state_t

The following values can be returned by the VIDEO_GET_STATUS call representing the state of video play-
back.

typedef enum {
VIDEO_STOPPED, /* Video is stopped */
VIDEO_PLAYING, /* Video is currently playing */
VIDEO_FREEZED /* Video is freezed */

} video_play_state_t;

460 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

video_command

struct video_command

The structure must be zeroed before use by the application This ensures it can be extended safely in the
future.

struct video_command {
__u32 cmd;
__u32 flags;
union {

struct {
__u64 pts;

} stop;

struct {
/* 0 or 1000 specifies normal speed,

1 specifies forward single stepping,
-1 specifies backward single stepping,
>>1: playback at speed/1000 of the normal speed,
<-1: reverse playback at (-speed/1000) of the normal speed. */

__s32 speed;
__u32 format;

} play;

struct {
__u32 data[16];

} raw;
};

};

video_size_t

typedef struct {
int w;
int h;
video_format_t aspect_ratio;

} video_size_t;

video_event

struct video_event

The following is the structure of a video event as it is returned by the VIDEO_GET_EVENT call.

struct video_event {
__s32 type;

#define VIDEO_EVENT_SIZE_CHANGED 1
#define VIDEO_EVENT_FRAME_RATE_CHANGED 2
#define VIDEO_EVENT_DECODER_STOPPED 3
#define VIDEO_EVENT_VSYNC 4

__kernel_time_t timestamp;
union {

video_size_t size;
unsigned int frame_rate; /* in frames per 1000sec */
unsigned char vsync_field; /* unknown/odd/even/progressive */

} u;
};

1.3. Part II - Digital TV API 461

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

video_status

struct video_status

The VIDEO_GET_STATUS call returns the following structure informing about various states of the playback
operation.

struct video_status {
int video_blank; /* blank video on freeze? */
video_play_state_t play_state; /* current state of playback */
video_stream_source_t stream_source; /* current source (demux/memory) */
video_format_t video_format; /* current aspect ratio of stream */
video_displayformat_t display_format;/* selected cropping mode */

};

If video_blank is set video will be blanked out if the channel is changed or if playback is stopped. Otherwise,
the last picture will be displayed. play_state indicates if the video is currently frozen, stopped, or being
played back. The stream_source corresponds to the seleted source for the video stream. It can come
either from the demultiplexer or from memory. The video_format indicates the aspect ratio (one of 4:3 or
16:9) of the currently played video stream. Finally, display_format corresponds to the selected cropping
mode in case the source video format is not the same as the format of the output device.
video_still_picture

struct video_still_picture

An I-frame displayed via the VIDEO_STILLPICTURE call is passed on within the following structure.

/* pointer to and size of a single iframe in memory */
struct video_still_picture {

char *iFrame; /* pointer to a single iframe in memory */
int32_t size;

};

video capabilities

A call to VIDEO_GET_CAPABILITIES returns an unsigned integer with the following bits set according to the
hardwares capabilities.

/* bit definitions for capabilities: */
/* can the hardware decode MPEG1 and/or MPEG2? */
#define VIDEO_CAP_MPEG1 1
#define VIDEO_CAP_MPEG2 2
/* can you send a system and/or program stream to video device?

(you still have to open the video and the audio device but only
send the stream to the video device) */

#define VIDEO_CAP_SYS 4
#define VIDEO_CAP_PROG 8
/* can the driver also handle SPU, NAVI and CSS encoded data?

(CSS API is not present yet) */
#define VIDEO_CAP_SPU 16
#define VIDEO_CAP_NAVI 32
#define VIDEO_CAP_CSS 64

462 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

video_system_t

A call to VIDEO_SET_SYSTEM sets the desired video system for TV output. The following system types can
be set:

typedef enum {
VIDEO_SYSTEM_PAL,
VIDEO_SYSTEM_NTSC,
VIDEO_SYSTEM_PALN,
VIDEO_SYSTEM_PALNc,
VIDEO_SYSTEM_PALM,
VIDEO_SYSTEM_NTSC60,
VIDEO_SYSTEM_PAL60,
VIDEO_SYSTEM_PALM60

} video_system_t;

video_highlight

struct video_highlight

Calling the ioctl VIDEO_SET_HIGHLIGHTS posts the SPU highlight information. The call expects the follow-
ing format for that information:

typedef
struct video_highlight {

boolean active; /* 1=show highlight, 0=hide highlight */
uint8_t contrast1; /* 7- 4 Pattern pixel contrast */

/* 3- 0 Background pixel contrast */
uint8_t contrast2; /* 7- 4 Emphasis pixel-2 contrast */

/* 3- 0 Emphasis pixel-1 contrast */
uint8_t color1; /* 7- 4 Pattern pixel color */

/* 3- 0 Background pixel color */
uint8_t color2; /* 7- 4 Emphasis pixel-2 color */

/* 3- 0 Emphasis pixel-1 color */
uint32_t ypos; /* 23-22 auto action mode */

/* 21-12 start y */
/* 9- 0 end y */

uint32_t xpos; /* 23-22 button color number */
/* 21-12 start x */
/* 9- 0 end x */

} video_highlight_t;

video_spu

struct video_spu

Calling VIDEO_SET_SPU deactivates or activates SPU decoding, according to the following format:

typedef
struct video_spu {

boolean active;
int stream_id;

} video_spu_t;

video_spu_palette

1.3. Part II - Digital TV API 463

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct video_spu_palette

The following structure is used to set the SPU palette by calling VIDEO_SPU_PALETTE:

typedef
struct video_spu_palette {

int length;
uint8_t *palette;

} video_spu_palette_t;

video_navi_pack

struct video_navi_pack

In order to get the navigational data the following structure has to be passed to the ioctl VIDEO_GET_NAVI:

typedef
struct video_navi_pack {

int length; /* 0 ... 1024 */
uint8_t data[1024];

} video_navi_pack_t;

video_attributes_t

The following attributes can be set by a call to VIDEO_SET_ATTRIBUTES:

typedef uint16_t video_attributes_t;
/* bits: descr. */
/* 15-14 Video compression mode (0=MPEG-1, 1=MPEG-2) */
/* 13-12 TV system (0=525/60, 1=625/50) */
/* 11-10 Aspect ratio (0=4:3, 3=16:9) */
/* 9- 8 permitted display mode on 4:3 monitor (0=both, 1=only pan-sca */
/* 7 line 21-1 data present in GOP (1=yes, 0=no) */
/* 6 line 21-2 data present in GOP (1=yes, 0=no) */
/* 5- 3 source resolution (0=720x480/576, 1=704x480/576, 2=352x480/57 */
/* 2 source letterboxed (1=yes, 0=no) */
/* 0 film/camera mode (0=camera, 1=film (625/50 only)) */

Video Function Calls

dvb video open()

Name

dvb video open()

Attention:

This ioctl is deprecated.

Synopsis

int open(const char *deviceName, int flags)

464 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

const char *deviceName Name of specific video device.
int flags A bit-wise OR of the following flags:

O_RDONLY read-only access
O_RDWR read/write access
O_NONBLOCK open in non-blocking mode
(blocking mode is the default)

Description

This system call opens a named video device (e.g. /dev/dvb/adapter0/video0) for subsequent use.
When an open() call has succeeded, the device will be ready for use. The significance of blocking or
non-blocking mode is described in the documentation for functions where there is a difference. It does
not affect the semantics of the open() call itself. A device opened in blocking mode can later be put
into non-blocking mode (and vice versa) using the F_SETFL command of the fcntl system call. This is a
standard system call, documented in the Linux manual page for fcntl. Only one user can open the Video
Device in O_RDWR mode. All other attempts to open the device in this mode will fail, and an error-code
will be returned. If the Video Device is opened in O_RDONLY mode, the only ioctl call that can be used is
VIDEO_GET_STATUS. All other call will return an error code.

Return Value

ENODEV Device driver not loaded/available.
EINTERNAL Internal error.
EBUSY Device or resource busy.
EINVAL Invalid argument.

dvb video close()

Name

dvb video close()

Attention:

This ioctl is deprecated.

Synopsis

int close(int fd)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This system call closes a previously opened video device.

1.3. Part II - Digital TV API 465

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

EBADF fd is not a valid open file descriptor.

dvb video write()

Name

dvb video write()

Attention:

This ioctl is deprecated.

Synopsis

size_t write(int fd, const void *buf, size_t count)

Arguments

int fd File descriptor returned by a previous call to open().
void *buf Pointer to the buffer containing the PES data.
size_t count Size of buf.

Description

This system call can only be used if VIDEO_SOURCE_MEMORY is selected in the ioctl call
VIDEO_SELECT_SOURCE. The data provided shall be in PES format, unless the capability allows other for-
mats. If O_NONBLOCK is not specified the function will block until buffer space is available. The amount
of data to be transferred is implied by count.

Return Value

EPERM Mode VIDEO_SOURCE_MEMORY not selected.
ENOMEM Attempted to write more data than the internal buffer can hold.
EBADF fd is not a valid open file descriptor.

VIDEO_STOP

Name

VIDEO_STOP

Attention:

This ioctl is deprecated.

466 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(fd, VIDEO_STOP, boolean mode)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_STOP for this command.
Boolean mode Indicates how the screen shall be handled.

TRUE: Blank screen when stop.
FALSE: Show last decoded frame.

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2 ioctl VID-
IOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD instead.
This ioctl call asks the Video Device to stop playing the current stream. Depending on the input parameter,
the screen can be blanked out or displaying the last decoded frame.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_PLAY

Name

VIDEO_PLAY

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_PLAY)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_PLAY for this command.

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2 ioctl VID-
IOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD instead.
This ioctl call asks the Video Device to start playing a video stream from the selected source.

1.3. Part II - Digital TV API 467

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_FREEZE

Name

VIDEO_FREEZE

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_FREEZE)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_FREEZE for this command.

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2 ioctl VID-
IOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD instead.
This ioctl call suspends the live video stream being played. Decoding and playing are frozen. It is then
possible to restart the decoding and playing process of the video stream using the VIDEO_CONTINUE
command. If VIDEO_SOURCE_MEMORY is selected in the ioctl call VIDEO_SELECT_SOURCE, the Digital TV
subsystem will not decode any more data until the ioctl call VIDEO_CONTINUE or VIDEO_PLAY is performed.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_CONTINUE

Name

VIDEO_CONTINUE

Attention:

This ioctl is deprecated.

468 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(fd, VIDEO_CONTINUE)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_CONTINUE for this command.

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2 ioctl VID-
IOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD instead.
This ioctl call restarts decoding and playing processes of the video stream which was played before a call
to VIDEO_FREEZE was made.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_SELECT_SOURCE

Name

VIDEO_SELECT_SOURCE

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SELECT_SOURCE, video_stream_source_t source)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SELECT_SOURCE for this command.
video_stream_source_t source Indicates which source shall be used for the Video stream.

Description

This ioctl is for Digital TV devices only. This ioctl was also supported by the V4L2 ivtv driver, but that has
been replaced by the ivtv-specific IVTV_IOC_PASSTHROUGH_MODE ioctl.
This ioctl call informs the video device which source shall be used for the input data. The possible sources
are demux or memory. If memory is selected, the data is fed to the video device through the write
command.

1.3. Part II - Digital TV API 469

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

video_stream_source_t

typedef enum {
VIDEO_SOURCE_DEMUX, /* Select the demux as the main source */
VIDEO_SOURCE_MEMORY /* If this source is selected, the stream

comes from the user through the write
system call */

} video_stream_source_t;

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_SET_BLANK

Name

VIDEO_SET_BLANK

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_BLANK, boolean mode)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_BLANK for this command.
boolean mode TRUE: Blank screen when stop.

FALSE: Show last decoded frame.

Description

This ioctl call asks the Video Device to blank out the picture.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_GET_STATUS

Name

VIDEO_GET_STATUS

470 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_GET_STATUS, struct video_status *status)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_GET_STATUS for this command.
struct video_status *status Returns the current status of the Video Device.

Description

This ioctl call asks the Video Device to return the current status of the device.
video_status

struct video_status {
int video_blank; /* blank video on freeze? */
video_play_state_t play_state; /* current state of playback */
video_stream_source_t stream_source; /* current source (demux/memory) */
video_format_t video_format; /* current aspect ratio of stream*/
video_displayformat_t display_format;/* selected cropping mode */

};

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_GET_FRAME_COUNT

Name

VIDEO_GET_FRAME_COUNT

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_GET_FRAME_COUNT, __u64 *pts)

1.3. Part II - Digital TV API 471

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_GET_FRAME_COUNT for this command.
__u64 *pts Returns the number of frames displayed since the decoder was started.

Description

This ioctl is obsolete. Do not use in new drivers. For V4L2 decoders this ioctl has been replaced by the
V4L2_CID_MPEG_VIDEO_DEC_FRAME control.
This ioctl call asks the Video Device to return the number of displayed frames since the decoder was
started.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_GET_PTS

Name

VIDEO_GET_PTS

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_GET_PTS, __u64 *pts)

Arguments

int fd File descriptor returned by a previous call to
open().

int request Equals VIDEO_GET_PTS for this command.
__u64 *pts Returns the 33-bit timestamp as defined in ITU T-

REC-H.222.0 / ISO/IEC 13818-1.
The PTS should belong to the currently played
frame if possible, but may also be a value close
to it like the PTS of the last decoded frame or the
last PTS extracted by the PES parser.

Description

This ioctl is obsolete. Do not use in new drivers. For V4L2 decoders this ioctl has been replaced by the
V4L2_CID_MPEG_VIDEO_DEC_PTS control.
This ioctl call asks the Video Device to return the current PTS timestamp.

472 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_GET_FRAME_RATE

Name

VIDEO_GET_FRAME_RATE

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_GET_FRAME_RATE, unsigned int *rate)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_GET_FRAME_RATE for this command.
unsigned int *rate Returns the framerate in number of frames per 1000 seconds.

Description

This ioctl call asks the Video Device to return the current framerate.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_GET_EVENT

Name

VIDEO_GET_EVENT

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_GET_EVENT, struct video_event *ev)

1.3. Part II - Digital TV API 473

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_GET_EVENT for this command.
struct video_event *ev Points to the location where the event, if any, is to be stored.

Description

This ioctl is for Digital TV devices only. To get events from a V4L2 decoder use the V4L2 ioctl VID-
IOC_DQEVENT ioctl instead.
This ioctl call returns an event of type video_event if available. If an event is not available, the behavior
depends on whether the device is in blocking or non-blocking mode. In the latter case, the call fails
immediately with errno set to EWOULDBLOCK. In the former case, the call blocks until an event becomes
available. The standard Linux poll() and/or select() system calls can be used with the device file descriptor
to watch for new events. For select(), the file descriptor should be included in the exceptfds argument,
and for poll(), POLLPRI should be specified as the wake-up condition. Read-only permissions are sufficient
for this ioctl call.
video_event

struct video_event {
__s32 type;

#define VIDEO_EVENT_SIZE_CHANGED 1
#define VIDEO_EVENT_FRAME_RATE_CHANGED 2
#define VIDEO_EVENT_DECODER_STOPPED 3
#define VIDEO_EVENT_VSYNC 4

__kernel_time_t timestamp;
union {

video_size_t size;
unsigned int frame_rate; /* in frames per 1000sec */
unsigned char vsync_field; /* unknown/odd/even/progressive */

} u;
};

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EWOULDBLOCK There is no event pending, and the device is in non-blocking mode.
EOVERFLOW Overflow in event queue - one or more events were lost.

VIDEO_COMMAND

Name

VIDEO_COMMAND

Attention:

This ioctl is deprecated.

474 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, VIDEO_COMMAND, struct video_command *cmd)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_COMMAND for this command.
struct video_command *cmd Commands the decoder.

Description

This ioctl is obsolete. Do not use in new drivers. For V4L2 decoders this ioctl has been replaced by the
ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD ioctl.
This ioctl commands the decoder. The video_command struct is a subset of the v4l2_decoder_cmd struct,
so refer to the ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD documentation for more infor-
mation.
struct video_command

/* The structure must be zeroed before use by the application
This ensures it can be extended safely in the future. */
struct video_command {

__u32 cmd;
__u32 flags;
union {

struct {
__u64 pts;

} stop;

struct {
/* 0 or 1000 specifies normal speed,
1 specifies forward single stepping,
-1 specifies backward single stepping,
>1: playback at speed/1000 of the normal speed,
<-1: reverse playback at (-speed/1000) of the normal speed. */
__s32 speed;
__u32 format;

} play;

struct {
__u32 data[16];

} raw;
};

};

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_TRY_COMMAND

1.3. Part II - Digital TV API 475

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Name

VIDEO_TRY_COMMAND

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_TRY_COMMAND, struct video_command *cmd)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_TRY_COMMAND for this command.
struct video_command *cmd Try a decoder command.

Description

This ioctl is obsolete. Do not use in new drivers. For V4L2 decoders this ioctl has been replaced by the
VIDIOC_TRY_DECODER_CMD ioctl.
This ioctl tries a decoder command. The video_command struct is a subset of the v4l2_decoder_cmd
struct, so refer to the VIDIOC_TRY_DECODER_CMD documentation for more information.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_GET_SIZE

Name

VIDEO_GET_SIZE

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_GET_SIZE, video_size_t *size)

476 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_GET_SIZE for this command.
video_size_t *size Returns the size and aspect ratio.

Description

This ioctl returns the size and aspect ratio.
video_size_t

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_SET_DISPLAY_FORMAT

Name

VIDEO_SET_DISPLAY_FORMAT

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_DISPLAY_FORMAT)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_DISPLAY_FORMAT for this command.
video_display_format_t format Selects the video format to be used.

Description

This ioctl call asks the Video Device to select the video format to be applied by the MPEG chip on the
video.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

1.3. Part II - Digital TV API 477

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

VIDEO_STILLPICTURE

Name

VIDEO_STILLPICTURE

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_STILLPICTURE, struct video_still_picture *sp)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_STILLPICTURE for this command.
struct video_still_picture *sp Pointer to a location where an I-frame and size is stored.

Description

This ioctl call asks the Video Device to display a still picture (I-frame). The input data shall contain an
I-frame. If the pointer is NULL, then the current displayed still picture is blanked.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_FAST_FORWARD

Name

VIDEO_FAST_FORWARD

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_FAST_FORWARD, int nFrames)

478 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_FAST_FORWARD for this command.
int nFrames The number of frames to skip.

Description

This ioctl call asks the Video Device to skip decoding of N number of I-frames. This call can only be used
if VIDEO_SOURCE_MEMORY is selected.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EPERM Mode VIDEO_SOURCE_MEMORY not selected.

VIDEO_SLOWMOTION

Name

VIDEO_SLOWMOTION

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SLOWMOTION, int nFrames)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SLOWMOTION for this command.
int nFrames The number of times to repeat each frame.

Description

This ioctl call asks the video device to repeat decoding frames N number of times. This call can only be
used if VIDEO_SOURCE_MEMORY is selected.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EPERM Mode VIDEO_SOURCE_MEMORY not selected.

1.3. Part II - Digital TV API 479

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

VIDEO_GET_CAPABILITIES

Name

VIDEO_GET_CAPABILITIES

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_GET_CAPABILITIES, unsigned int *cap)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_GET_CAPABILITIES for this command.
unsigned int *cap Pointer to a location where to store the capability information.

Description

This ioctl call asks the video device about its decoding capabilities. On success it returns and integer
which has bits set according to the defines in section ??.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_SET_ID

Name

VIDEO_SET_ID

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_SET_ID, int id)

480 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_ID for this command.
int id video sub-stream id

Description

This ioctl selects which sub-stream is to be decoded if a program or system stream is sent to the video
device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL Invalid sub-stream id.

VIDEO_CLEAR_BUFFER

Name

VIDEO_CLEAR_BUFFER

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_CLEAR_BUFFER)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_CLEAR_BUFFER for this command.

Description

This ioctl call clears all video buffers in the driver and in the decoder hardware.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

1.3. Part II - Digital TV API 481

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

VIDEO_SET_STREAMTYPE

Name

VIDEO_SET_STREAMTYPE

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_STREAMTYPE, int type)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_STREAMTYPE for this command.
int type stream type

Description

This ioctl tells the driver which kind of stream to expect being written to it. If this call is not used the
default of video PES is used. Some drivers might not support this call and always expect PES.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_SET_FORMAT

Name

VIDEO_SET_FORMAT

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_FORMAT, video_format_t format)

482 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_FORMAT for this command.
video_format_t format video format of TV as defined in section ??.

Description

This ioctl sets the screen format (aspect ratio) of the connected output device (TV) so that the output of
the decoder can be adjusted accordingly.
video_format_t

typedef enum {
VIDEO_FORMAT_4_3, /* Select 4:3 format */
VIDEO_FORMAT_16_9, /* Select 16:9 format. */
VIDEO_FORMAT_221_1 /* 2.21:1 */

} video_format_t;

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL format is not a valid video format.

VIDEO_SET_SYSTEM

Name

VIDEO_SET_SYSTEM

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_SYSTEM, video_system_t system)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_FORMAT for this command.
video_system_t system video system of TV output.

Description

This ioctl sets the television output format. The format (see section ??) may vary from the color format of
the displayed MPEG stream. If the hardware is not able to display the requested format the call will return
an error.

1.3. Part II - Digital TV API 483

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL system is not a valid or supported video system.

VIDEO_SET_HIGHLIGHT

Name

VIDEO_SET_HIGHLIGHT

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_HIGHLIGHT, struct video_highlight *vhilite)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_HIGHLIGHT for this command.
video_highlight_t *vhilite SPU Highlight information according to section ??.

Description

This ioctl sets the SPU highlight information for the menu access of a DVD.
video_highlight

typedef
struct video_highlight {

int active; /* 1=show highlight, 0=hide highlight */
__u8 contrast1; /* 7- 4 Pattern pixel contrast */

/* 3- 0 Background pixel contrast */
__u8 contrast2; /* 7- 4 Emphasis pixel-2 contrast */

/* 3- 0 Emphasis pixel-1 contrast */
__u8 color1; /* 7- 4 Pattern pixel color */

/* 3- 0 Background pixel color */
__u8 color2; /* 7- 4 Emphasis pixel-2 color */

/* 3- 0 Emphasis pixel-1 color */
__u32 ypos; /* 23-22 auto action mode */

/* 21-12 start y */
/* 9- 0 end y */

__u32 xpos; /* 23-22 button color number */
/* 21-12 start x */
/* 9- 0 end x */

} video_highlight_t;

484 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

VIDEO_SET_SPU

Name

VIDEO_SET_SPU

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_SPU, struct video_spu *spu)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_SPU for this command.
video_spu_t *spu SPU decoding (de)activation and subid setting according to section ??.

Description

This ioctl activates or deactivates SPU decoding in a DVD input stream. It can only be used, if the driver
is able to handle a DVD stream.
struct video_spu

typedef struct video_spu {
int active;
int stream_id;

} video_spu_t;

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL input is not a valid spu setting or driver cannot handle SPU.

VIDEO_SET_SPU_PALETTE

Name

VIDEO_SET_SPU_PALETTE

1.3. Part II - Digital TV API 485

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_SPU_PALETTE, struct video_spu_palette *palette)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_SPU_PALETTE for this command.
video_spu_palette_t *palette SPU palette according to section ??.

Description

This ioctl sets the SPU color palette.
video_spu_palette

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL input is not a valid palette or driver doesn’t handle SPU.

VIDEO_GET_NAVI

Name

VIDEO_GET_NAVI

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_GET_NAVI, struct video_navi_pack *navipack)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_GET_NAVI for this command.
video_navi_pack_t *navipack PCI or DSI pack (private stream 2) according to section ??.

486 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

This ioctl returns navigational information from the DVD stream. This is especially needed if an encoded
stream has to be decoded by the hardware.
video_navi_pack

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EFAULT driver is not able to return navigational information

VIDEO_SET_ATTRIBUTES

Name

VIDEO_SET_ATTRIBUTES

Attention:

This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_ATTRIBUTE, video_attributes_t vattr)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_ATTRIBUTE for this command.
video_attributes_t vattr video attributes according to section ??.

Description

This ioctl is intended for DVD playback and allows you to set certain information about the stream. Some
hardware may not need this information, but the call also tells the hardware to prepare for DVD playback.

video_attributes_t

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL input is not a valid attribute setting.

1.3. Part II - Digital TV API 487

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Digital TV Audio Device

The Digital TV audio device controls the MPEG2 audio decoder of the Digital TV hardware. It can be
accessed through /dev/dvb/adapter?/audio?. Data types and and ioctl definitions can be accessed by
including linux/dvb/audio.h in your application.
Please note that some Digital TV cards don’t have their own MPEG decoder, which results in the omission
of the audio and video device.
These ioctls were also used by V4L2 to control MPEG decoders implemented in V4L2. The use of these
ioctls for that purpose has been made obsolete and proper V4L2 ioctls or controls have been created to
replace that functionality.

Audio Data Types

This section describes the structures, data types and defines used when talking to the audio device.
audio_stream_source

The audio stream source is set through the AUDIO_SELECT_SOURCE call and can take the following values,
depending on whether we are replaying from an internal (demux) or external (user write) source.

typedef enum {
AUDIO_SOURCE_DEMUX,
AUDIO_SOURCE_MEMORY

} audio_stream_source_t;

AUDIO_SOURCE_DEMUX selects the demultiplexer (fed either by the frontend or the DVR device) as the
source of the video stream. If AUDIO_SOURCE_MEMORY is selected the stream comes from the application
through the write() system call.
audio_play_state

The following values can be returned by the AUDIO_GET_STATUS call representing the state of audio
playback.

typedef enum {
AUDIO_STOPPED,
AUDIO_PLAYING,
AUDIO_PAUSED

} audio_play_state_t;

audio_channel_select

The audio channel selected via AUDIO_CHANNEL_SELECT is determined by the following values.

typedef enum {
AUDIO_STEREO,
AUDIO_MONO_LEFT,
AUDIO_MONO_RIGHT,
AUDIO_MONO,
AUDIO_STEREO_SWAPPED

} audio_channel_select_t;

audio_status

The AUDIO_GET_STATUS call returns the following structure informing about various states of the playback
operation.

typedef struct audio_status {
boolean AV_sync_state;
boolean mute_state;
audio_play_state_t play_state;

488 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

audio_stream_source_t stream_source;
audio_channel_select_t channel_select;
boolean bypass_mode;
audio_mixer_t mixer_state;

} audio_status_t;

audio_mixer

The following structure is used by the AUDIO_SET_MIXER call to set the audio volume.

typedef struct audio_mixer {
unsigned int volume_left;
unsigned int volume_right;

} audio_mixer_t;

audio encodings

A call to AUDIO_GET_CAPABILITIES returns an unsigned integer with the following bits set according to the
hardwares capabilities.

#define AUDIO_CAP_DTS 1
#define AUDIO_CAP_LPCM 2
#define AUDIO_CAP_MP1 4
#define AUDIO_CAP_MP2 8
#define AUDIO_CAP_MP3 16
#define AUDIO_CAP_AAC 32
#define AUDIO_CAP_OGG 64
#define AUDIO_CAP_SDDS 128
#define AUDIO_CAP_AC3 256

audio_karaoke

The ioctl AUDIO_SET_KARAOKE uses the following format:

typedef
struct audio_karaoke {

int vocal1;
int vocal2;
int melody;

} audio_karaoke_t;

If Vocal1 or Vocal2 are non-zero, they get mixed into left and right t at 70% each. If both, Vocal1 and
Vocal2 are non-zero, Vocal1 gets mixed into the left channel and Vocal2 into the right channel at 100%
each. Ff Melody is non-zero, the melody channel gets mixed into left and right.
audio_attributes

The following attributes can be set by a call to AUDIO_SET_ATTRIBUTES:

typedef uint16_t audio_attributes_t;
/* bits: descr. */
/* 15-13 audio coding mode (0=ac3, 2=mpeg1, 3=mpeg2ext, 4=LPCM, 6=DTS, */
/* 12 multichannel extension */
/* 11-10 audio type (0=not spec, 1=language included) */
/* 9- 8 audio application mode (0=not spec, 1=karaoke, 2=surround) */
/* 7- 6 Quantization / DRC (mpeg audio: 1=DRC exists)(lpcm: 0=16bit, */
/* 5- 4 Sample frequency fs (0=48kHz, 1=96kHz) */
/* 2- 0 number of audio channels (n+1 channels) */

Audio Function Calls

1.3. Part II - Digital TV API 489

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Digital TV audio open()

Name

Digital TV audio open()

Attention:

This ioctl is deprecated

Synopsis

int open(const char *deviceName, int flags)

Arguments

const char *deviceName Name of specific audio device.
int flags A bit-wise OR of the following flags:

O_RDONLY read-only access
O_RDWR read/write access
O_NONBLOCK open in non-blocking mode
(blocking mode is the default)

Description

This system call opens a named audio device (e.g. /dev/dvb/adapter0/audio0) for subsequent use. When
an open() call has succeeded, the device will be ready for use. The significance of blocking or non-blocking
mode is described in the documentation for functions where there is a difference. It does not affect the
semantics of the open() call itself. A device opened in blocking mode can later be put into non-blocking
mode (and vice versa) using the F_SETFL command of the fcntl system call. This is a standard system
call, documented in the Linux manual page for fcntl. Only one user can open the Audio Device in O_RDWR
mode. All other attempts to open the device in this mode will fail, and an error code will be returned. If
the Audio Device is opened in O_RDONLY mode, the only ioctl call that can be used is AUDIO_GET_STATUS.
All other call will return with an error code.

Return Value

ENODEV Device driver not loaded/available.
EBUSY Device or resource busy.
EINVAL Invalid argument.

Digital TV audio close()

Name

Digital TV audio close()

490 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Attention:

This ioctl is deprecated

Synopsis

int close(int fd)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This system call closes a previously opened audio device.

Return Value

EBADF fd is not a valid open file descriptor.

Digital TV audio write()

Name

Digital TV audio write()

Attention:

This ioctl is deprecated

Synopsis

size_t write(int fd, const void *buf, size_t count)

Arguments

int fd File descriptor returned by a previous call to open().
void *buf Pointer to the buffer containing the PES data.
size_t count Size of buf.

Description

This system call can only be used if AUDIO_SOURCE_MEMORY is selected in the ioctl call AU-
DIO_SELECT_SOURCE. The data provided shall be in PES format. If O_NONBLOCK is not specified the
function will block until buffer space is available. The amount of data to be transferred is implied by
count.

1.3. Part II - Digital TV API 491

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

EPERM Mode AUDIO_SOURCE_MEMORY not selected.
ENOMEM Attempted to write more data than the internal buffer can hold.
EBADF fd is not a valid open file descriptor.

AUDIO_STOP

Name

AUDIO_STOP

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_STOP)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl call asks the Audio Device to stop playing the current stream.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_PLAY

Name

AUDIO_PLAY

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_PLAY)

492 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl call asks the Audio Device to start playing an audio stream from the selected source.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_PAUSE

Name

AUDIO_PAUSE

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_PAUSE)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl call suspends the audio stream being played. Decoding and playing are paused. It is then possi-
ble to restart again decoding and playing process of the audio stream using AUDIO_CONTINUE command.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_CONTINUE

Name

AUDIO_CONTINUE

1.3. Part II - Digital TV API 493

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_CONTINUE)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl restarts the decoding and playing process previously paused with AUDIO_PAUSE command.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_SELECT_SOURCE

Name

AUDIO_SELECT_SOURCE

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SELECT_SOURCE, struct audio_stream_source *source)

Arguments

int fd File descriptor returned by a previous call to open().
audio_stream_source_t source Indicates the source that shall be used for the Audio stream.

Description

This ioctl call informs the audio device which source shall be used for the input data. The possible sources
are demux or memory. If AUDIO_SOURCE_MEMORY is selected, the data is fed to the Audio Device through
the write command.

494 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_SET_MUTE

Name

AUDIO_SET_MUTE

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_MUTE, boolean state)

Arguments

int fd File descriptor returned by a previous call to
open().

boolean state Indicates if audio device shall mute or not.
TRUE: Audio Mute
FALSE: Audio Un-mute

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2 ioctl VID-
IOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD with the V4L2_DEC_CMD_START_MUTE_AUDIO flag in-
stead.
This ioctl call asks the audio device to mute the stream that is currently being played.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_SET_AV_SYNC

Name

AUDIO_SET_AV_SYNC

1.3. Part II - Digital TV API 495

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_AV_SYNC, boolean state)

Arguments

int fd File descriptor returned by a previous call to
open().

boolean state Tells the Digital TV subsystem if A/V synchroniza-
tion shall be ON or OFF.
TRUE: AV-sync ON
FALSE: AV-sync OFF

Description

This ioctl call asks the Audio Device to turn ON or OFF A/V synchronization.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_SET_BYPASS_MODE

Name

AUDIO_SET_BYPASS_MODE

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_BYPASS_MODE, boolean mode)

496 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

int fd File descriptor returned by a previous call to
open().

boolean mode Enables or disables the decoding of the current Au-
dio stream in the Digital TV subsystem.
TRUE: Bypass is disabled
FALSE: Bypass is enabled

Description

This ioctl call asks the Audio Device to bypass the Audio decoder and forward the stream without decoding.
This mode shall be used if streams that can’t be handled by the Digial TV system shall be decoded. Dolby
DigitalTM streams are automatically forwarded by the Digital TV subsystem if the hardware can handle it.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_CHANNEL_SELECT

Name

AUDIO_CHANNEL_SELECT

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_CHANNEL_SELECT, struct *audio_channel_select)

Arguments

int fd File descriptor returned by a previous call to open().
audio_channel_select_t ch Select the output format of the audio (mono left/right, stereo).

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2
V4L2_CID_MPEG_AUDIO_DEC_PLAYBACK control instead.
This ioctl call asks the Audio Device to select the requested channel if possible.

1.3. Part II - Digital TV API 497

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_BILINGUAL_CHANNEL_SELECT

Name

AUDIO_BILINGUAL_CHANNEL_SELECT

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_BILINGUAL_CHANNEL_SELECT, struct *audio_channel_select)

Arguments

int fd File descriptor returned by a previous call to open().
audio_channel_select_t ch Select the output format of the audio (mono left/right, stereo).

Description

This ioctl is obsolete. Do not use in new drivers. It has been replaced by the V4L2
V4L2_CID_MPEG_AUDIO_DEC_MULTILINGUAL_PLAYBACK control for MPEG decoders controlled through
V4L2.
This ioctl call asks the Audio Device to select the requested channel for bilingual streams if possible.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_GET_PTS

Name

AUDIO_GET_PTS

Attention:

This ioctl is deprecated

498 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, AUDIO_GET_PTS, __u64 *pts)

Arguments

int fd File descriptor returned by a previous call to
open().

__u64 *pts Returns the 33-bit timestamp as defined in ITU T-
REC-H.222.0 / ISO/IEC 13818-1.
The PTS should belong to the currently played
frame if possible, but may also be a value close
to it like the PTS of the last decoded frame or the
last PTS extracted by the PES parser.

Description

This ioctl is obsolete. Do not use in new drivers. If you need this functionality, then please contact the
linux-media mailing list (https://linuxtv.org/lists.php).
This ioctl call asks the Audio Device to return the current PTS timestamp.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_GET_STATUS

Name

AUDIO_GET_STATUS

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_GET_STATUS, struct audio_status *status)

Arguments

int fd File descriptor returned by a previous call to open().
struct audio_status *status Returns the current state of Audio Device.

Description

This ioctl call asks the Audio Device to return the current state of the Audio Device.

1.3. Part II - Digital TV API 499

https://linuxtv.org/lists.php

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_GET_CAPABILITIES

Name

AUDIO_GET_CAPABILITIES

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_GET_CAPABILITIES, unsigned int *cap)

Arguments

int fd File descriptor returned by a previous call to open().
unsigned int *cap Returns a bit array of supported sound formats.

Description

This ioctl call asks the Audio Device to tell us about the decoding capabilities of the audio hardware.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_CLEAR_BUFFER

Name

AUDIO_CLEAR_BUFFER

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_CLEAR_BUFFER)

500 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl call asks the Audio Device to clear all software and hardware buffers of the audio decoder device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_SET_ID

Name

AUDIO_SET_ID

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_ID, int id)

Arguments

int fd File descriptor returned by a previous call to open().
int id audio sub-stream id

Description

This ioctl selects which sub-stream is to be decoded if a program or system stream is sent to the video
device. If no audio stream type is set the id has to be in [0xC0,0xDF] for MPEG sound, in [0x80,0x87] for
AC3 and in [0xA0,0xA7] for LPCM. More specifications may follow for other stream types. If the stream
type is set the id just specifies the substream id of the audio stream and only the first 5 bits are recognized.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

1.3. Part II - Digital TV API 501

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

AUDIO_SET_MIXER

Name

AUDIO_SET_MIXER

Attention:

This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_MIXER, struct audio_mixer *mix)

Arguments

int fd File descriptor returned by a previous call to open().
audio_mixer_t *mix mixer settings.

Description

This ioctl lets you adjust the mixer settings of the audio decoder.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

AUDIO_SET_STREAMTYPE

Name

AUDIO_SET_STREAMTYPE

Attention:

This ioctl is deprecated

Synopsis

int ioctl(fd, AUDIO_SET_STREAMTYPE, int type)

Arguments

int fd File descriptor returned by a previous call to open().
int type stream type

502 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

This ioctl tells the driver which kind of audio stream to expect. This is useful if the stream offers several
audio sub-streams like LPCM and AC3.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL type is not a valid or supported stream type.

AUDIO_SET_EXT_ID

Name

AUDIO_SET_EXT_ID

Attention:

This ioctl is deprecated

Synopsis

int ioctl(fd, AUDIO_SET_EXT_ID, int id)

Arguments

int fd File descriptor returned by a previous call to open().
int id audio sub_stream_id

Description

This ioctl can be used to set the extension id for MPEG streams in DVD playback. Only the first 3 bits are
recognized.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL id is not a valid id.

AUDIO_SET_ATTRIBUTES

Name

AUDIO_SET_ATTRIBUTES

1.3. Part II - Digital TV API 503

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Attention:

This ioctl is deprecated

Synopsis

int ioctl(fd, AUDIO_SET_ATTRIBUTES, struct audio_attributes *attr)

Arguments

int fd File descriptor returned by a previous call to open().
audio_attributes_t attr audio attributes according to section ??

Description

This ioctl is intended for DVD playback and allows you to set certain information about the audio stream.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL attr is not a valid or supported attribute setting.

AUDIO_SET_KARAOKE

Name

AUDIO_SET_KARAOKE

Attention:

This ioctl is deprecated

Synopsis

int ioctl(fd, AUDIO_SET_KARAOKE, struct audio_karaoke *karaoke)

Arguments

int fd File descriptor returned by a previous call to open().
audio_karaoke_t *karaoke karaoke settings according to section ??.

Description

This ioctl allows one to set the mixer settings for a karaoke DVD.

504 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL karaoke is not a valid or supported karaoke setting.

1.3.7 Examples

In this section we would like to present some examples for using the Digital TV API.

Note:

This section is out of date, and the code below won’t even compile. Please refer to the libdvbv5 for
updated/recommended examples.

Example: Tuning

We will start with a generic tuning subroutine that uses the frontend and SEC, as well as the demux
devices. The example is given for QPSK tuners, but can easily be adjusted for QAM.

#include <sys/ioctl.h>
#include <stdio.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <time.h>
#include <unistd.h>

#include <linux/dvb/dmx.h>
#include <linux/dvb/frontend.h>
#include <linux/dvb/sec.h>
#include <sys/poll.h>

#define DMX "/dev/dvb/adapter0/demux1"
#define FRONT "/dev/dvb/adapter0/frontend1"
#define SEC "/dev/dvb/adapter0/sec1"

/* routine for checking if we have a signal and other status information*/
int FEReadStatus(int fd, fe_status_t *stat)
{

int ans;

if ((ans = ioctl(fd,FE_READ_STATUS,stat) < 0)){
perror("FE READ STATUS: ");
return -1;

}

if (*stat & FE_HAS_POWER)
printf("FE HAS POWER\\n");

if (*stat & FE_HAS_SIGNAL)
printf("FE HAS SIGNAL\\n");

if (*stat & FE_SPECTRUM_INV)
printf("SPEKTRUM INV\\n");

1.3. Part II - Digital TV API 505

https://linuxtv.org/docs/libdvbv5/index.html

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

return 0;
}

/* tune qpsk */
/* freq: frequency of transponder */
/* vpid, apid, tpid: PIDs of video, audio and teletext TS packets */
/* diseqc: DiSEqC address of the used LNB */
/* pol: Polarisation */
/* srate: Symbol Rate */
/* fec. FEC */
/* lnb_lof1: local frequency of lower LNB band */
/* lnb_lof2: local frequency of upper LNB band */
/* lnb_slof: switch frequency of LNB */

int set_qpsk_channel(int freq, int vpid, int apid, int tpid,
int diseqc, int pol, int srate, int fec, int lnb_lof1,
int lnb_lof2, int lnb_slof)

{
struct secCommand scmd;
struct secCmdSequence scmds;
struct dmx_pes_filter_params pesFilterParams;
FrontendParameters frp;
struct pollfd pfd[1];
FrontendEvent event;
int demux1, demux2, demux3, front;

frequency = (uint32_t) freq;
symbolrate = (uint32_t) srate;

if((front = open(FRONT,O_RDWR)) < 0){
perror("FRONTEND DEVICE: ");
return -1;

}

if((sec = open(SEC,O_RDWR)) < 0){
perror("SEC DEVICE: ");
return -1;

}

if (demux1 < 0){
if ((demux1=open(DMX, O_RDWR|O_NONBLOCK))

< 0){
perror("DEMUX DEVICE: ");
return -1;

}
}

if (demux2 < 0){
if ((demux2=open(DMX, O_RDWR|O_NONBLOCK))

< 0){
perror("DEMUX DEVICE: ");
return -1;

}
}

if (demux3 < 0){
if ((demux3=open(DMX, O_RDWR|O_NONBLOCK))

< 0){
perror("DEMUX DEVICE: ");
return -1;

}
}

506 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

if (freq < lnb_slof) {
frp.Frequency = (freq - lnb_lof1);
scmds.continuousTone = SEC_TONE_OFF;

} else {
frp.Frequency = (freq - lnb_lof2);
scmds.continuousTone = SEC_TONE_ON;

}
frp.Inversion = INVERSION_AUTO;
if (pol) scmds.voltage = SEC_VOLTAGE_18;
else scmds.voltage = SEC_VOLTAGE_13;

scmd.type=0;
scmd.u.diseqc.addr=0x10;
scmd.u.diseqc.cmd=0x38;
scmd.u.diseqc.numParams=1;
scmd.u.diseqc.params[0] = 0xF0 | ((diseqc * 4) & 0x0F) |

(scmds.continuousTone == SEC_TONE_ON ? 1 : 0) |
(scmds.voltage==SEC_VOLTAGE_18 ? 2 : 0);

scmds.miniCommand=SEC_MINI_NONE;
scmds.numCommands=1;
scmds.commands=&scmd;
if (ioctl(sec, SEC_SEND_SEQUENCE, &scmds) < 0){

perror("SEC SEND: ");
return -1;

}

if (ioctl(sec, SEC_SEND_SEQUENCE, &scmds) < 0){
perror("SEC SEND: ");
return -1;

}

frp.u.qpsk.SymbolRate = srate;
frp.u.qpsk.FEC_inner = fec;

if (ioctl(front, FE_SET_FRONTEND, &frp) < 0){
perror("QPSK TUNE: ");
return -1;

}

pfd[0].fd = front;
pfd[0].events = POLLIN;

if (poll(pfd,1,3000)){
if (pfd[0].revents & POLLIN){

printf("Getting QPSK event\\n");
if (ioctl(front, FE_GET_EVENT, &event)

== -EOVERFLOW){
perror("qpsk get event");
return -1;

}
printf("Received ");
switch(event.type){
case FE_UNEXPECTED_EV:

printf("unexpected event\\n");
return -1;

case FE_FAILURE_EV:
printf("failure event\\n");
return -1;

case FE_COMPLETION_EV:

1.3. Part II - Digital TV API 507

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

printf("completion event\\n");
}

}
}

pesFilterParams.pid = vpid;
pesFilterParams.input = DMX_IN_FRONTEND;
pesFilterParams.output = DMX_OUT_DECODER;
pesFilterParams.pes_type = DMX_PES_VIDEO;
pesFilterParams.flags = DMX_IMMEDIATE_START;
if (ioctl(demux1, DMX_SET_PES_FILTER, &pesFilterParams) < 0){

perror("set_vpid");
return -1;

}

pesFilterParams.pid = apid;
pesFilterParams.input = DMX_IN_FRONTEND;
pesFilterParams.output = DMX_OUT_DECODER;
pesFilterParams.pes_type = DMX_PES_AUDIO;
pesFilterParams.flags = DMX_IMMEDIATE_START;
if (ioctl(demux2, DMX_SET_PES_FILTER, &pesFilterParams) < 0){

perror("set_apid");
return -1;

}

pesFilterParams.pid = tpid;
pesFilterParams.input = DMX_IN_FRONTEND;
pesFilterParams.output = DMX_OUT_DECODER;
pesFilterParams.pes_type = DMX_PES_TELETEXT;
pesFilterParams.flags = DMX_IMMEDIATE_START;
if (ioctl(demux3, DMX_SET_PES_FILTER, &pesFilterParams) < 0){

perror("set_tpid");
return -1;

}

return has_signal(fds);
}

The program assumes that you are using a universal LNB and a standard DiSEqC switch with up to 4
addresses. Of course, you could build in some more checking if tuning was successful and maybe try to
repeat the tuning process. Depending on the external hardware, i.e. LNB and DiSEqC switch, and weather
conditions this may be necessary.

Example: The DVR device

The following program code shows how to use the DVR device for recording.

#include <sys/ioctl.h>
#include <stdio.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <time.h>
#include <unistd.h>

#include <linux/dvb/dmx.h>
#include <linux/dvb/video.h>
#include <sys/poll.h>
#define DVR "/dev/dvb/adapter0/dvr1"

508 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define AUDIO "/dev/dvb/adapter0/audio1"
#define VIDEO "/dev/dvb/adapter0/video1"

#define BUFFY (188*20)
#define MAX_LENGTH (1024*1024*5) /* record 5MB */

/* switch the demuxes to recording, assuming the transponder is tuned */

/* demux1, demux2: file descriptor of video and audio filters */
/* vpid, apid: PIDs of video and audio channels */

int switch_to_record(int demux1, int demux2, uint16_t vpid, uint16_t apid)
{

struct dmx_pes_filter_params pesFilterParams;

if (demux1 < 0){
if ((demux1=open(DMX, O_RDWR|O_NONBLOCK))

< 0){
perror("DEMUX DEVICE: ");
return -1;

}
}

if (demux2 < 0){
if ((demux2=open(DMX, O_RDWR|O_NONBLOCK))

< 0){
perror("DEMUX DEVICE: ");
return -1;

}
}

pesFilterParams.pid = vpid;
pesFilterParams.input = DMX_IN_FRONTEND;
pesFilterParams.output = DMX_OUT_TS_TAP;
pesFilterParams.pes_type = DMX_PES_VIDEO;
pesFilterParams.flags = DMX_IMMEDIATE_START;
if (ioctl(demux1, DMX_SET_PES_FILTER, &pesFilterParams) < 0){

perror("DEMUX DEVICE");
return -1;

}
pesFilterParams.pid = apid;
pesFilterParams.input = DMX_IN_FRONTEND;
pesFilterParams.output = DMX_OUT_TS_TAP;
pesFilterParams.pes_type = DMX_PES_AUDIO;
pesFilterParams.flags = DMX_IMMEDIATE_START;
if (ioctl(demux2, DMX_SET_PES_FILTER, &pesFilterParams) < 0){

perror("DEMUX DEVICE");
return -1;

}
return 0;

}

/* start recording MAX_LENGTH , assuming the transponder is tuned */

/* demux1, demux2: file descriptor of video and audio filters */
/* vpid, apid: PIDs of video and audio channels */
int record_dvr(int demux1, int demux2, uint16_t vpid, uint16_t apid)
{

int i;
int len;
int written;
uint8_t buf[BUFFY];

1.3. Part II - Digital TV API 509

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

uint64_t length;
struct pollfd pfd[1];
int dvr, dvr_out;

/* open dvr device */
if ((dvr = open(DVR, O_RDONLY|O_NONBLOCK)) < 0){

perror("DVR DEVICE");
return -1;

}

/* switch video and audio demuxes to dvr */
printf ("Switching dvr on\\n");
i = switch_to_record(demux1, demux2, vpid, apid);
printf("finished: ");

printf("Recording %2.0f MB of test file in TS format\\n",
MAX_LENGTH/(1024.0*1024.0));

length = 0;

/* open output file */
if ((dvr_out = open(DVR_FILE,O_WRONLY|O_CREAT

|O_TRUNC, S_IRUSR|S_IWUSR
|S_IRGRP|S_IWGRP|S_IROTH|
S_IWOTH)) < 0){

perror("Can't open file for dvr test");
return -1;

}

pfd[0].fd = dvr;
pfd[0].events = POLLIN;

/* poll for dvr data and write to file */
while (length < MAX_LENGTH) {

if (poll(pfd,1,1)){
if (pfd[0].revents & POLLIN){

len = read(dvr, buf, BUFFY);
if (len < 0){

perror("recording");
return -1;

}
if (len > 0){

written = 0;
while (written < len)

written +=
write (dvr_out,

buf, len);
length += len;
printf("written %2.0f MB\\r",

length/1024./1024.);
}

}
}

}
return 0;

}

1.3.8 Digital TV uAPI header files

Digital TV uAPI headers

510 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

frontend.h

/*
* frontend.h
*
* Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
* Ralph Metzler <ralph@convergence.de>
* Holger Waechtler <holger@convergence.de>
* Andre Draszik <ad@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/

#ifndef _DVBFRONTEND_H_
#define _DVBFRONTEND_H_

#include <linux/types.h>

/**
* enum fe_caps
- Frontend capabilities
*
* @FE_IS_STUPID: There's something wrong at the
* frontend, and it can't report its
* capabilities.
* @FE_CAN_INVERSION_AUTO: Can auto-detect frequency spectral
* band inversion
* @FE_CAN_FEC_1_2: Supports FEC 1/2
* @FE_CAN_FEC_2_3: Supports FEC 2/3
* @FE_CAN_FEC_3_4: Supports FEC 3/4
* @FE_CAN_FEC_4_5: Supports FEC 4/5
* @FE_CAN_FEC_5_6: Supports FEC 5/6
* @FE_CAN_FEC_6_7: Supports FEC 6/7
* @FE_CAN_FEC_7_8: Supports FEC 7/8
* @FE_CAN_FEC_8_9: Supports FEC 8/9
* @FE_CAN_FEC_AUTO: Can auto-detect FEC
* @FE_CAN_QPSK: Supports QPSK modulation
* @FE_CAN_QAM_16: Supports 16-QAM modulation
* @FE_CAN_QAM_32: Supports 32-QAM modulation
* @FE_CAN_QAM_64: Supports 64-QAM modulation
* @FE_CAN_QAM_128: Supports 128-QAM modulation
* @FE_CAN_QAM_256: Supports 256-QAM modulation
* @FE_CAN_QAM_AUTO: Can auto-detect QAM modulation
* @FE_CAN_TRANSMISSION_MODE_AUTO: Can auto-detect transmission mode

1.3. Part II - Digital TV API 511

mailto:marcus@convergence.de
mailto:ralph@convergence.de
mailto:holger@convergence.de
mailto:ad@convergence.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* @FE_CAN_BANDWIDTH_AUTO: Can auto-detect bandwidth
* @FE_CAN_GUARD_INTERVAL_AUTO: Can auto-detect guard interval
* @FE_CAN_HIERARCHY_AUTO: Can auto-detect hierarchy
* @FE_CAN_8VSB: Supports 8-VSB modulation
* @FE_CAN_16VSB: Supporta 16-VSB modulation
* @FE_HAS_EXTENDED_CAPS: Unused
* @FE_CAN_MULTISTREAM: Supports multistream filtering
* @FE_CAN_TURBO_FEC: Supports ``turbo FEC'' modulation
* @FE_CAN_2G_MODULATION: Supports ``2nd generation'' modulation,
* e. g. DVB-S2, DVB-T2, DVB-C2
* @FE_NEEDS_BENDING: Unused
* @FE_CAN_RECOVER: Can recover from a cable unplug
* automatically
* @FE_CAN_MUTE_TS: Can stop spurious TS data output
*/

enum fe_caps
{

FE_IS_STUPID = 0,
FE_CAN_INVERSION_AUTO = 0x1,
FE_CAN_FEC_1_2 = 0x2,
FE_CAN_FEC_2_3 = 0x4,
FE_CAN_FEC_3_4 = 0x8,
FE_CAN_FEC_4_5 = 0x10,
FE_CAN_FEC_5_6 = 0x20,
FE_CAN_FEC_6_7 = 0x40,
FE_CAN_FEC_7_8 = 0x80,
FE_CAN_FEC_8_9 = 0x100,
FE_CAN_FEC_AUTO = 0x200,
FE_CAN_QPSK = 0x400,
FE_CAN_QAM_16 = 0x800,
FE_CAN_QAM_32 = 0x1000,
FE_CAN_QAM_64 = 0x2000,
FE_CAN_QAM_128 = 0x4000,
FE_CAN_QAM_256 = 0x8000,
FE_CAN_QAM_AUTO = 0x10000,
FE_CAN_TRANSMISSION_MODE_AUTO = 0x20000,
FE_CAN_BANDWIDTH_AUTO = 0x40000,
FE_CAN_GUARD_INTERVAL_AUTO = 0x80000,
FE_CAN_HIERARCHY_AUTO = 0x100000,
FE_CAN_8VSB = 0x200000,
FE_CAN_16VSB = 0x400000,
FE_HAS_EXTENDED_CAPS = 0x800000,
FE_CAN_MULTISTREAM = 0x4000000,
FE_CAN_TURBO_FEC = 0x8000000,
FE_CAN_2G_MODULATION = 0x10000000,
FE_NEEDS_BENDING = 0x20000000,
FE_CAN_RECOVER = 0x40000000,
FE_CAN_MUTE_TS = 0x80000000

};

/*
* DEPRECATED: Should be kept just due to backward compatibility.
*/

enum fe_type
{

FE_QPSK ,
FE_QAM ,
FE_OFDM ,

512 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

FE_ATSC
};

/**
* struct dvb_frontend_info
- Frontend properties and capabilities
*
* @name: Name of the frontend
* @type: ****DEPRECATED****.
* Should not be used on modern programs,
* as a frontend may have more than one type.
* In order to get the support types of a given
* frontend, use :c:type:`DTV_ENUM_DELSYS`
* instead.
* @frequency_min: Minimal frequency supported by the frontend.
* @frequency_max: Minimal frequency supported by the frontend.
* @frequency_stepsize: All frequencies are multiple of this value.
* @frequency_tolerance: Frequency tolerance.
* @symbol_rate_min: Minimal symbol rate, in bauds
* (for Cable/Satellite systems).
* @symbol_rate_max: Maximal symbol rate, in bauds
* (for Cable/Satellite systems).
* @symbol_rate_tolerance: Maximal symbol rate tolerance, in ppm
* (for Cable/Satellite systems).
* @notifier_delay: ****DEPRECATED****. Not used by any driver.
* @caps: Capabilities supported by the frontend,
* as specified in &enum fe_caps.
*
* .. note:
*
* #. The frequencies are specified in Hz for Terrestrial and Cable
* systems.
* #. The frequencies are specified in kHz for Satellite systems.
*/

struct dvb_frontend_info
{

char name[128];
enum fe_type

type; /* DEPRECATED. Use DTV_ENUM_DELSYS instead */
__u32 frequency_min;
__u32 frequency_max;
__u32 frequency_stepsize;
__u32 frequency_tolerance;
__u32 symbol_rate_min;
__u32 symbol_rate_max;
__u32 symbol_rate_tolerance;
__u32 notifier_delay; /* DEPRECATED */
enum fe_caps

caps;
};

/**
* struct dvb_diseqc_master_cmd
- DiSEqC master command
*
* @msg:
* DiSEqC message to be sent. It contains a 3 bytes header with:
* framing + address + command, and an optional argument

1.3. Part II - Digital TV API 513

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* of up to 3 bytes of data.
* @msg_len:
* Length of the DiSEqC message. Valid values are 3 to 6.
*
* Check out the DiSEqC bus spec available on http://www.eutelsat.org/ for
* the possible messages that can be used.
*/

struct dvb_diseqc_master_cmd
{

__u8 msg[6];
__u8 msg_len;

};

/**
* struct dvb_diseqc_slave_reply
- DiSEqC received data
*
* @msg:
* DiSEqC message buffer to store a message received via DiSEqC.
* It contains one byte header with: framing and
* an optional argument of up to 3 bytes of data.
* @msg_len:
* Length of the DiSEqC message. Valid values are 0 to 4,
* where 0 means no message.
* @timeout:
* Return from ioctl after timeout ms with errorcode when
* no message was received.
*
* Check out the DiSEqC bus spec available on http://www.eutelsat.org/ for
* the possible messages that can be used.
*/

struct dvb_diseqc_slave_reply
{

__u8 msg[4];
__u8 msg_len;
int timeout;

};

/**
* enum fe_sec_voltage
- DC Voltage used to feed the LNBf
*
* @SEC_VOLTAGE_13: Output 13V to the LNBf
* @SEC_VOLTAGE_18: Output 18V to the LNBf
* @SEC_VOLTAGE_OFF: Don't feed the LNBf with a DC voltage
*/

enum fe_sec_voltage
{

SEC_VOLTAGE_13,
SEC_VOLTAGE_18,
SEC_VOLTAGE_OFF

};

/**
* enum fe_sec_tone_mode
- Type of tone to be send to the LNBf.
* @SEC_TONE_ON: Sends a 22kHz tone burst to the antenna.
* @SEC_TONE_OFF: Don't send a 22kHz tone to the antenna (except

514 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* if the ``FE_DISEQC_*`` ioctls are called).
*/

enum fe_sec_tone_mode
{

SEC_TONE_ON,
SEC_TONE_OFF

};

/**
* enum fe_sec_mini_cmd
- Type of mini burst to be sent
*
* @SEC_MINI_A: Sends a mini-DiSEqC 22kHz `0' Tone Burst to select
* satellite-A
* @SEC_MINI_B: Sends a mini-DiSEqC 22kHz `1' Data Burst to select
* satellite-B
*/

enum fe_sec_mini_cmd
{

SEC_MINI_A,
SEC_MINI_B

};

/**
* enum fe_status
- Enumerates the possible frontend status.
* @FE_NONE: The frontend doesn't have any kind of lock.
* That's the initial frontend status
* @FE_HAS_SIGNAL: Has found something above the noise level.
* @FE_HAS_CARRIER: Has found a signal.
* @FE_HAS_VITERBI: FEC inner coding (Viterbi, LDPC or other inner code).
* is stable.
* @FE_HAS_SYNC: Synchronization bytes was found.
* @FE_HAS_LOCK: Digital TV were locked and everything is working.
* @FE_TIMEDOUT: Fo lock within the last about 2 seconds.
* @FE_REINIT: Frontend was reinitialized, application is recommended
* to reset DiSEqC, tone and parameters.
*/

enum fe_status
{

FE_NONE = 0x00,
FE_HAS_SIGNAL = 0x01,
FE_HAS_CARRIER = 0x02,
FE_HAS_VITERBI = 0x04,
FE_HAS_SYNC = 0x08,
FE_HAS_LOCK = 0x10,
FE_TIMEDOUT = 0x20,
FE_REINIT = 0x40,

};

/**
* enum fe_spectral_inversion
- Type of inversion band
*
* @INVERSION_OFF: Don't do spectral band inversion.
* @INVERSION_ON: Do spectral band inversion.
* @INVERSION_AUTO: Autodetect spectral band inversion.
*

1.3. Part II - Digital TV API 515

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* This parameter indicates if spectral inversion should be presumed or
* not. In the automatic setting (``INVERSION_AUTO``) the hardware will try
* to figure out the correct setting by itself. If the hardware doesn't
* support, the %dvb_frontend will try to lock at the carrier first with
* inversion off. If it fails, it will try to enable inversion.
*/

enum fe_spectral_inversion
{

INVERSION_OFF,
INVERSION_ON,
INVERSION_AUTO

};

/**
* enum fe_code_rate
- Type of Forward Error Correction (FEC)
*
*
* @FEC_NONE: No Forward Error Correction Code
* @FEC_1_2: Forward Error Correction Code 1/2
* @FEC_2_3: Forward Error Correction Code 2/3
* @FEC_3_4: Forward Error Correction Code 3/4
* @FEC_4_5: Forward Error Correction Code 4/5
* @FEC_5_6: Forward Error Correction Code 5/6
* @FEC_6_7: Forward Error Correction Code 6/7
* @FEC_7_8: Forward Error Correction Code 7/8
* @FEC_8_9: Forward Error Correction Code 8/9
* @FEC_AUTO: Autodetect Error Correction Code
* @FEC_3_5: Forward Error Correction Code 3/5
* @FEC_9_10: Forward Error Correction Code 9/10
* @FEC_2_5: Forward Error Correction Code 2/5
*
* Please note that not all FEC types are supported by a given standard.
*/

enum fe_code_rate
{

FEC_NONE = 0,
FEC_1_2,
FEC_2_3,
FEC_3_4,
FEC_4_5,
FEC_5_6,
FEC_6_7,
FEC_7_8,
FEC_8_9,
FEC_AUTO,
FEC_3_5,
FEC_9_10,
FEC_2_5,

};

/**
* enum fe_modulation
- Type of modulation/constellation
* @QPSK: QPSK modulation
* @QAM_16: 16-QAM modulation
* @QAM_32: 32-QAM modulation
* @QAM_64: 64-QAM modulation

516 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* @QAM_128: 128-QAM modulation
* @QAM_256: 256-QAM modulation
* @QAM_AUTO: Autodetect QAM modulation
* @VSB_8: 8-VSB modulation
* @VSB_16: 16-VSB modulation
* @PSK_8: 8-PSK modulation
* @APSK_16: 16-APSK modulation
* @APSK_32: 32-APSK modulation
* @DQPSK: DQPSK modulation
* @QAM_4_NR: 4-QAM-NR modulation
*
* Please note that not all modulations are supported by a given standard.
*
*/

enum fe_modulation
{

QPSK,
QAM_16,
QAM_32,
QAM_64,
QAM_128,
QAM_256,
QAM_AUTO,
VSB_8,
VSB_16,
PSK_8,
APSK_16,
APSK_32,
DQPSK,
QAM_4_NR,

};

/**
* enum fe_transmit_mode
- Transmission mode
*
* @TRANSMISSION_MODE_AUTO:
* Autodetect transmission mode. The hardware will try to find the
* correct FFT-size (if capable) to fill in the missing parameters.
* @TRANSMISSION_MODE_1K:
* Transmission mode 1K
* @TRANSMISSION_MODE_2K:
* Transmission mode 2K
* @TRANSMISSION_MODE_8K:
* Transmission mode 8K
* @TRANSMISSION_MODE_4K:
* Transmission mode 4K
* @TRANSMISSION_MODE_16K:
* Transmission mode 16K
* @TRANSMISSION_MODE_32K:
* Transmission mode 32K
* @TRANSMISSION_MODE_C1:
* Single Carrier (C=1) transmission mode (DTMB only)
* @TRANSMISSION_MODE_C3780:
* Multi Carrier (C=3780) transmission mode (DTMB only)
*
* Please note that not all transmission modes are supported by a given
* standard.

1.3. Part II - Digital TV API 517

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

*/
enum fe_transmit_mode
{

TRANSMISSION_MODE_2K,
TRANSMISSION_MODE_8K,
TRANSMISSION_MODE_AUTO,
TRANSMISSION_MODE_4K,
TRANSMISSION_MODE_1K,
TRANSMISSION_MODE_16K,
TRANSMISSION_MODE_32K,
TRANSMISSION_MODE_C1,
TRANSMISSION_MODE_C3780,

};

/**
* enum fe_guard_interval
- Guard interval
*
* @GUARD_INTERVAL_AUTO: Autodetect the guard interval
* @GUARD_INTERVAL_1_128: Guard interval 1/128
* @GUARD_INTERVAL_1_32: Guard interval 1/32
* @GUARD_INTERVAL_1_16: Guard interval 1/16
* @GUARD_INTERVAL_1_8: Guard interval 1/8
* @GUARD_INTERVAL_1_4: Guard interval 1/4
* @GUARD_INTERVAL_19_128: Guard interval 19/128
* @GUARD_INTERVAL_19_256: Guard interval 19/256
* @GUARD_INTERVAL_PN420: PN length 420 (1/4)
* @GUARD_INTERVAL_PN595: PN length 595 (1/6)
* @GUARD_INTERVAL_PN945: PN length 945 (1/9)
*
* Please note that not all guard intervals are supported by a given standard.
*/

enum fe_guard_interval
{

GUARD_INTERVAL_1_32,
GUARD_INTERVAL_1_16,
GUARD_INTERVAL_1_8,
GUARD_INTERVAL_1_4,
GUARD_INTERVAL_AUTO,
GUARD_INTERVAL_1_128,
GUARD_INTERVAL_19_128,
GUARD_INTERVAL_19_256,
GUARD_INTERVAL_PN420,
GUARD_INTERVAL_PN595,
GUARD_INTERVAL_PN945,

};

/**
* enum fe_hierarchy
- Hierarchy
* @HIERARCHY_NONE: No hierarchy
* @HIERARCHY_AUTO: Autodetect hierarchy (if supported)
* @HIERARCHY_1: Hierarchy 1
* @HIERARCHY_2: Hierarchy 2
* @HIERARCHY_4: Hierarchy 4
*
* Please note that not all hierarchy types are supported by a given standard.
*/

518 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

enum fe_hierarchy
{

HIERARCHY_NONE,
HIERARCHY_1,
HIERARCHY_2,
HIERARCHY_4,
HIERARCHY_AUTO

};

/**
* enum fe_interleaving
- Interleaving
* @INTERLEAVING_NONE: No interleaving.
* @INTERLEAVING_AUTO: Auto-detect interleaving.
* @INTERLEAVING_240: Interleaving of 240 symbols.
* @INTERLEAVING_720: Interleaving of 720 symbols.
*
* Please note that, currently, only DTMB uses it.
*/

enum fe_interleaving
{

INTERLEAVING_NONE,
INTERLEAVING_AUTO,
INTERLEAVING_240,
INTERLEAVING_720,

};

/* DVBv5 property Commands */

#define DTV_UNDEFINED 0
#define DTV_TUNE 1
#define DTV_CLEAR 2
#define DTV_FREQUENCY 3
#define DTV_MODULATION 4
#define DTV_BANDWIDTH_HZ 5
#define DTV_INVERSION 6
#define DTV_DISEQC_MASTER 7
#define DTV_SYMBOL_RATE 8
#define DTV_INNER_FEC 9
#define DTV_VOLTAGE 10
#define DTV_TONE 11
#define DTV_PILOT 12
#define DTV_ROLLOFF 13
#define DTV_DISEQC_SLAVE_REPLY 14

/* Basic enumeration set for querying unlimited capabilities */
#define DTV_FE_CAPABILITY_COUNT 15
#define DTV_FE_CAPABILITY 16
#define DTV_DELIVERY_SYSTEM 17

/* ISDB-T and ISDB-Tsb */
#define DTV_ISDBT_PARTIAL_RECEPTION 18
#define DTV_ISDBT_SOUND_BROADCASTING 19

#define DTV_ISDBT_SB_SUBCHANNEL_ID 20
#define DTV_ISDBT_SB_SEGMENT_IDX 21
#define DTV_ISDBT_SB_SEGMENT_COUNT 22

1.3. Part II - Digital TV API 519

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define DTV_ISDBT_LAYERA_FEC 23
#define DTV_ISDBT_LAYERA_MODULATION 24
#define DTV_ISDBT_LAYERA_SEGMENT_COUNT 25
#define DTV_ISDBT_LAYERA_TIME_INTERLEAVING 26

#define DTV_ISDBT_LAYERB_FEC 27
#define DTV_ISDBT_LAYERB_MODULATION 28
#define DTV_ISDBT_LAYERB_SEGMENT_COUNT 29
#define DTV_ISDBT_LAYERB_TIME_INTERLEAVING 30

#define DTV_ISDBT_LAYERC_FEC 31
#define DTV_ISDBT_LAYERC_MODULATION 32
#define DTV_ISDBT_LAYERC_SEGMENT_COUNT 33
#define DTV_ISDBT_LAYERC_TIME_INTERLEAVING 34

#define DTV_API_VERSION 35

#define DTV_CODE_RATE_HP 36
#define DTV_CODE_RATE_LP 37
#define DTV_GUARD_INTERVAL 38
#define DTV_TRANSMISSION_MODE 39
#define DTV_HIERARCHY 40

#define DTV_ISDBT_LAYER_ENABLED 41

#define DTV_STREAM_ID 42
#define DTV_ISDBS_TS_ID_LEGACY DTV_STREAM_ID
#define DTV_DVBT2_PLP_ID_LEGACY 43

#define DTV_ENUM_DELSYS 44

/* ATSC-MH */
#define DTV_ATSCMH_FIC_VER 45
#define DTV_ATSCMH_PARADE_ID 46
#define DTV_ATSCMH_NOG 47
#define DTV_ATSCMH_TNOG 48
#define DTV_ATSCMH_SGN 49
#define DTV_ATSCMH_PRC 50
#define DTV_ATSCMH_RS_FRAME_MODE 51
#define DTV_ATSCMH_RS_FRAME_ENSEMBLE 52
#define DTV_ATSCMH_RS_CODE_MODE_PRI 53
#define DTV_ATSCMH_RS_CODE_MODE_SEC 54
#define DTV_ATSCMH_SCCC_BLOCK_MODE 55
#define DTV_ATSCMH_SCCC_CODE_MODE_A 56
#define DTV_ATSCMH_SCCC_CODE_MODE_B 57
#define DTV_ATSCMH_SCCC_CODE_MODE_C 58
#define DTV_ATSCMH_SCCC_CODE_MODE_D 59

#define DTV_INTERLEAVING 60
#define DTV_LNA 61

/* Quality parameters */
#define DTV_STAT_SIGNAL_STRENGTH 62
#define DTV_STAT_CNR 63
#define DTV_STAT_PRE_ERROR_BIT_COUNT 64
#define DTV_STAT_PRE_TOTAL_BIT_COUNT 65
#define DTV_STAT_POST_ERROR_BIT_COUNT 66
#define DTV_STAT_POST_TOTAL_BIT_COUNT 67

520 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define DTV_STAT_ERROR_BLOCK_COUNT 68
#define DTV_STAT_TOTAL_BLOCK_COUNT 69

#define DTV_MAX_COMMAND DTV_STAT_TOTAL_BLOCK_COUNT

/**
* enum fe_pilot
- Type of pilot tone
*
* @PILOT_ON: Pilot tones enabled
* @PILOT_OFF: Pilot tones disabled
* @PILOT_AUTO: Autodetect pilot tones
*/

enum fe_pilot
{

PILOT_ON,
PILOT_OFF,
PILOT_AUTO,

};

/**
* enum fe_rolloff
- Rolloff factor
* @ROLLOFF_35: Roloff factor: α=35%
* @ROLLOFF_20: Roloff factor: α=20%
* @ROLLOFF_25: Roloff factor: α=25%
* @ROLLOFF_AUTO: Auto-detect the roloff factor.
*
* .. note:
*
* Roloff factor of 35% is implied on DVB-S. On DVB-S2, it is default.
*/

enum fe_rolloff
{

ROLLOFF_35,
ROLLOFF_20,
ROLLOFF_25,
ROLLOFF_AUTO,

};

/**
* enum fe_delivery_system
- Type of the delivery system
*
* @SYS_UNDEFINED:
* Undefined standard. Generally, indicates an error
* @SYS_DVBC_ANNEX_A:
* Cable TV: DVB-C following ITU-T J.83 Annex A spec
* @SYS_DVBC_ANNEX_B:
* Cable TV: DVB-C following ITU-T J.83 Annex B spec (ClearQAM)
* @SYS_DVBC_ANNEX_C:
* Cable TV: DVB-C following ITU-T J.83 Annex C spec
* @SYS_ISDBC:
* Cable TV: ISDB-C (no drivers yet)
* @SYS_DVBT:
* Terrestrial TV: DVB-T
* @SYS_DVBT2:
* Terrestrial TV: DVB-T2

1.3. Part II - Digital TV API 521

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* @SYS_ISDBT:
* Terrestrial TV: ISDB-T
* @SYS_ATSC:
* Terrestrial TV: ATSC
* @SYS_ATSCMH:
* Terrestrial TV (mobile): ATSC-M/H
* @SYS_DTMB:
* Terrestrial TV: DTMB
* @SYS_DVBS:
* Satellite TV: DVB-S
* @SYS_DVBS2:
* Satellite TV: DVB-S2
* @SYS_TURBO:
* Satellite TV: DVB-S Turbo
* @SYS_ISDBS:
* Satellite TV: ISDB-S
* @SYS_DAB:
* Digital audio: DAB (not fully supported)
* @SYS_DSS:
* Satellite TV: DSS (not fully supported)
* @SYS_CMMB:
* Terrestrial TV (mobile): CMMB (not fully supported)
* @SYS_DVBH:
* Terrestrial TV (mobile): DVB-H (standard deprecated)
*/

enum fe_delivery_system
{

SYS_UNDEFINED,
SYS_DVBC_ANNEX_A,
SYS_DVBC_ANNEX_B,
SYS_DVBT,
SYS_DSS,
SYS_DVBS,
SYS_DVBS2,
SYS_DVBH,
SYS_ISDBT,
SYS_ISDBS,
SYS_ISDBC,
SYS_ATSC,
SYS_ATSCMH,
SYS_DTMB,
SYS_CMMB,
SYS_DAB,
SYS_DVBT2,
SYS_TURBO,
SYS_DVBC_ANNEX_C,

};

/* backward compatibility definitions for delivery systems */
#define SYS_DVBC_ANNEX_AC SYS_DVBC_ANNEX_A
#define SYS_DMBTH SYS_DTMB /* DMB-TH is legacy name, use DTMB */

/* ATSC-MH specific parameters */

/**
* enum atscmh_sccc_block_mode
- Type of Series Concatenated Convolutional
* Code Block Mode.

522 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

*
* @ATSCMH_SCCC_BLK_SEP:
* Separate SCCC: the SCCC outer code mode shall be set independently
* for each Group Region (A, B, C, D)
* @ATSCMH_SCCC_BLK_COMB:
* Combined SCCC: all four Regions shall have the same SCCC outer
* code mode.
* @ATSCMH_SCCC_BLK_RES:
* Reserved. Shouldn't be used.
*/

enum atscmh_sccc_block_mode
{

ATSCMH_SCCC_BLK_SEP = 0,
ATSCMH_SCCC_BLK_COMB = 1,
ATSCMH_SCCC_BLK_RES = 2,

};

/**
* enum atscmh_sccc_code_mode
- Type of Series Concatenated Convolutional
* Code Rate.
*
* @ATSCMH_SCCC_CODE_HLF:
* The outer code rate of a SCCC Block is 1/2 rate.
* @ATSCMH_SCCC_CODE_QTR:
* The outer code rate of a SCCC Block is 1/4 rate.
* @ATSCMH_SCCC_CODE_RES:
* Reserved. Should not be used.
*/

enum atscmh_sccc_code_mode
{

ATSCMH_SCCC_CODE_HLF = 0,
ATSCMH_SCCC_CODE_QTR = 1,
ATSCMH_SCCC_CODE_RES = 2,

};

/**
* enum atscmh_rs_frame_ensemble
- Reed Solomon(RS) frame ensemble.
*
* @ATSCMH_RSFRAME_ENS_PRI: Primary Ensemble.
* @ATSCMH_RSFRAME_ENS_SEC: Secondary Ensemble.
*/

enum atscmh_rs_frame_ensemble
{

ATSCMH_RSFRAME_ENS_PRI = 0,
ATSCMH_RSFRAME_ENS_SEC = 1,

};

/**
* enum atscmh_rs_frame_mode
- Reed Solomon (RS) frame mode.
*
* @ATSCMH_RSFRAME_PRI_ONLY:
* Single Frame: There is only a primary RS Frame for all Group
* Regions.
* @ATSCMH_RSFRAME_PRI_SEC:
* Dual Frame: There are two separate RS Frames: Primary RS Frame for

1.3. Part II - Digital TV API 523

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* Group Region A and B and Secondary RS Frame for Group Region C and
* D.
* @ATSCMH_RSFRAME_RES:
* Reserved. Shouldn't be used.
*/

enum atscmh_rs_frame_mode
{

ATSCMH_RSFRAME_PRI_ONLY = 0,
ATSCMH_RSFRAME_PRI_SEC = 1,
ATSCMH_RSFRAME_RES = 2,

};

/**
* enum atscmh_rs_code_mode

* @ATSCMH_RSCODE_211_187: Reed Solomon code (211,187).
* @ATSCMH_RSCODE_223_187: Reed Solomon code (223,187).
* @ATSCMH_RSCODE_235_187: Reed Solomon code (235,187).
* @ATSCMH_RSCODE_RES: Reserved. Shouldn't be used.
*/

enum atscmh_rs_code_mode
{

ATSCMH_RSCODE_211_187 = 0,
ATSCMH_RSCODE_223_187 = 1,
ATSCMH_RSCODE_235_187 = 2,
ATSCMH_RSCODE_RES = 3,

};

#define NO_STREAM_ID_FILTER (~0U)
#define LNA_AUTO (~0U)

/**
* enum fecap_scale_params
- scale types for the quality parameters.
*
* @FE_SCALE_NOT_AVAILABLE: That QoS measure is not available. That
* could indicate a temporary or a permanent
* condition.
* @FE_SCALE_DECIBEL: The scale is measured in 0.001 dB steps, typically
* used on signal measures.
* @FE_SCALE_RELATIVE: The scale is a relative percentual measure,
* ranging from 0 (0%) to 0xffff (100%).
* @FE_SCALE_COUNTER: The scale counts the occurrence of an event, like
* bit error, block error, lapsed time.
*/

enum fecap_scale_params
{

FE_SCALE_NOT_AVAILABLE = 0,
FE_SCALE_DECIBEL,
FE_SCALE_RELATIVE,
FE_SCALE_COUNTER

};

/**
* struct dtv_stats
- Used for reading a DTV status property
*
* @scale: Filled with enum fecap_scale_params

524 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

- the scale
* in usage for that parameter
*
* The ``{unnamed_union}`` may have either one of the values below:
*
* %svalue
* integer value of the measure, for %FE_SCALE_DECIBEL,
* used for dB measures. The unit is 0.001 dB.
*
* %uvalue
* unsigned integer value of the measure, used when @scale is
* either %FE_SCALE_RELATIVE or %FE_SCALE_COUNTER.
*
* For most delivery systems, this will return a single value for each
* parameter.
*
* It should be noticed, however, that new OFDM delivery systems like
* ISDB can use different modulation types for each group of carriers.
* On such standards, up to 8 groups of statistics can be provided, one
* for each carrier group (called ``layer'' on ISDB).
*
* In order to be consistent with other delivery systems, the first
* value refers to the entire set of carriers (``global'').
*
* @scale should use the value %FE_SCALE_NOT_AVAILABLE when
* the value for the entire group of carriers or from one specific layer
* is not provided by the hardware.
*
* @len should be filled with the latest filled status + 1.
*
* In other words, for ISDB, those values should be filled like::
*
* u.st.stat.svalue[0] = global statistics;
* u.st.stat.scale[0] = FE_SCALE_DECIBEL;
* u.st.stat.value[1] = layer A statistics;
* u.st.stat.scale[1] = FE_SCALE_NOT_AVAILABLE (if not available);
* u.st.stat.svalue[2] = layer B statistics;
* u.st.stat.scale[2] = FE_SCALE_DECIBEL;
* u.st.stat.svalue[3] = layer C statistics;
* u.st.stat.scale[3] = FE_SCALE_DECIBEL;
* u.st.len = 4;
*/

struct dtv_stats
{

__u8 scale; /* enum fecap_scale_params
type */

union {
__u64 uvalue; /* for counters and relative scales */
__s64 svalue; /* for 0.001 dB measures */

};
} __attribute__ ((packed));

#define MAX_DTV_STATS 4

/**
* struct dtv_fe_stats
- store Digital TV frontend statistics
*

1.3. Part II - Digital TV API 525

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* @len: length of the statistics - if zero, stats is disabled.
* @stat: array with digital TV statistics.
*
* On most standards, @len can either be 0 or 1. However, for ISDB, each
* layer is modulated in separate. So, each layer may have its own set
* of statistics. If so, stat[0] carries on a global value for the property.
* Indexes 1 to 3 means layer A to B.
*/

struct dtv_fe_stats
{

__u8 len;
struct dtv_stats

stat[MAX_DTV_STATS];
} __attribute__ ((packed));

/**
* struct dtv_property
- store one of frontend command and its value
*
* @cmd: Digital TV command.
* @reserved: Not used.
* @u: Union with the values for the command.
* @result: Result of the command set (currently unused).
*
* The @u union may have either one of the values below:
*
* %data
* an unsigned 32-bits number.
* %st
* a &struct dtv_fe_stats
array of statistics.
* %buffer
* a buffer of up to 32 characters (currently unused).
*/

struct dtv_property
{

__u32 cmd;
__u32 reserved[3];
union {

__u32 data;
struct dtv_fe_stats

st;
struct {

__u8 data[32];
__u32 len;
__u32 reserved1[3];
void *reserved2;

} buffer;
} u;
int result;

} __attribute__ ((packed));

/* num of properties cannot exceed DTV_IOCTL_MAX_MSGS per ioctl */
#define DTV_IOCTL_MAX_MSGS 64

/**
* struct dtv_properties
- a set of command/value pairs.

526 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

*
* @num: amount of commands stored at the struct.
* @props: a pointer to &struct dtv_property.
*/

struct dtv_properties
{

__u32 num;
struct dtv_property

*props;
};

/*
* When set, this flag will disable any zigzagging or other ``normal'' tuning
* behavior. Additionally, there will be no automatic monitoring of the lock
* status, and hence no frontend events will be generated. If a frontend device
* is closed, this flag will be automatically turned off when the device is
* reopened read-write.
*/

#define FE_TUNE_MODE_ONESHOT
0x01

/* Digital TV Frontend API calls */

#define FE_GET_INFO _IOR(`o', 61, struct dvb_frontend_info
)

#define FE_DISEQC_RESET_OVERLOAD _IO(`o', 62)
#define FE_DISEQC_SEND_MASTER_CMD _IOW(`o', 63, struct dvb_diseqc_master_cmd
)
#define FE_DISEQC_RECV_SLAVE_REPLY _IOR(`o', 64, struct dvb_diseqc_slave_reply
)
#define FE_DISEQC_SEND_BURST _IO(`o', 65) /* fe_sec_mini_cmd_t
*/

#define FE_SET_TONE _IO(`o', 66) /* fe_sec_tone_mode_t
*/

#define FE_SET_VOLTAGE _IO(`o', 67) /* fe_sec_voltage_t
*/

#define FE_ENABLE_HIGH_LNB_VOLTAGE _IO(`o', 68) /* int */

#define FE_READ_STATUS _IOR(`o', 69, fe_status_t
)
#define FE_READ_BER _IOR(`o', 70, __u32)
#define FE_READ_SIGNAL_STRENGTH _IOR(`o', 71, __u16)
#define FE_READ_SNR _IOR(`o', 72, __u16)
#define FE_READ_UNCORRECTED_BLOCKS _IOR(`o', 73, __u32)

#define FE_SET_FRONTEND_TUNE_MODE _IO(`o', 81) /* unsigned int */
#define FE_GET_EVENT _IOR(`o', 78, struct dvb_frontend_event
)

#define FE_DISHNETWORK_SEND_LEGACY_CMD _IO(`o', 80) /* unsigned int */

#define FE_SET_PROPERTY
_IOW(`o', 82, struct dtv_properties

)
#define FE_GET_PROPERTY _IOR(`o', 83, struct dtv_properties
)

1.3. Part II - Digital TV API 527

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#if defined(__DVB_CORE__) || !defined(__KERNEL__)

/*
* DEPRECATED: Everything below is deprecated in favor of DVBv5 API
*
* The DVBv3 only ioctls, structs and enums should not be used on
* newer programs, as it doesn't support the second generation of
* digital TV standards, nor supports newer delivery systems.
* They also don't support modern frontends with usually support multiple
* delivery systems.
*
* Drivers shouldn't use them.
*
* New applications should use DVBv5 delivery system instead
*/

/*
*/

enum fe_bandwidth
{

BANDWIDTH_8_MHZ ,
BANDWIDTH_7_MHZ ,
BANDWIDTH_6_MHZ ,
BANDWIDTH_AUTO ,
BANDWIDTH_5_MHZ ,
BANDWIDTH_10_MHZ ,
BANDWIDTH_1_712_MHZ ,

};

/* This is kept for legacy userspace support */
typedef enum fe_sec_voltage

fe_sec_voltage_t
;
typedef enum fe_caps

fe_caps_t
;
typedef enum fe_type

fe_type_t
;
typedef enum fe_sec_tone_mode

fe_sec_tone_mode_t
;
typedef enum fe_sec_mini_cmd

fe_sec_mini_cmd_t
;
typedef enum fe_status

fe_status_t
;
typedef enum fe_spectral_inversion

fe_spectral_inversion_t
;
typedef enum fe_code_rate

fe_code_rate_t
;
typedef enum fe_modulation

fe_modulation_t

528 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

;
typedef enum fe_transmit_mode

fe_transmit_mode_t
;
typedef enum fe_bandwidth

fe_bandwidth_t
;
typedef enum fe_guard_interval

fe_guard_interval_t
;
typedef enum fe_hierarchy

fe_hierarchy_t
;
typedef enum fe_pilot

fe_pilot_t
;
typedef enum fe_rolloff

fe_rolloff_t
;
typedef enum fe_delivery_system

fe_delivery_system_t
;

/* DVBv3 structs */

struct dvb_qpsk_parameters
{

__u32 symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t

fec_inner; /* forward error correction (see above) */
};

struct dvb_qam_parameters
{

__u32 symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t

fec_inner; /* forward error correction (see above) */
fe_modulation_t

modulation; /* modulation type (see above) */
};

struct dvb_vsb_parameters
{

fe_modulation_t
modulation; /* modulation type (see above) */

};

struct dvb_ofdm_parameters
{

fe_bandwidth_t
bandwidth;

fe_code_rate_t
code_rate_HP; /* high priority stream code rate */

fe_code_rate_t
code_rate_LP; /* low priority stream code rate */

fe_modulation_t
constellation; /* modulation type (see above) */

fe_transmit_mode_t

1.3. Part II - Digital TV API 529

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

transmission_mode;
fe_guard_interval_t

guard_interval;
fe_hierarchy_t

hierarchy_information;
};

struct dvb_frontend_parameters
{

__u32 frequency; /* (absolute) frequency in Hz for DVB-C/DVB-T/ATSC */
/* intermediate frequency in kHz for DVB-S */

fe_spectral_inversion_t
inversion;

union {
struct dvb_qpsk_parameters

qpsk; /* DVB-S */
struct dvb_qam_parameters

qam; /* DVB-C */
struct dvb_ofdm_parameters

ofdm; /* DVB-T */
struct dvb_vsb_parameters

vsb; /* ATSC */
} u;

};

struct dvb_frontend_event
{

fe_status_t
status;

struct dvb_frontend_parameters
parameters;

};

/* DVBv3 API calls */

#define FE_SET_FRONTEND _IOW(`o', 76, struct dvb_frontend_parameters
)
#define FE_GET_FRONTEND _IOR(`o', 77, struct dvb_frontend_parameters
)

#endif

#endif /*_DVBFRONTEND_H_*/

dmx.h

/*
* dmx.h
*
* Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
* & Ralph Metzler <ralph@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.

530 Chapter 1. Linux Media Infrastructure userspace API

mailto:marcus@convergence.de
mailto:ralph@convergence.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/

#ifndef _UAPI_DVBDMX_H_
#define _UAPI_DVBDMX_H_

#include <linux/types.h>
#ifndef __KERNEL__
#include <time.h>
#endif

#define DMX_FILTER_SIZE 16

/**
* enum dmx_output
- Output for the demux.
*
* @DMX_OUT_DECODER:
* Streaming directly to decoder.
* @DMX_OUT_TAP:
* Output going to a memory buffer (to be retrieved via the read command).
* Delivers the stream output to the demux device on which the ioctl
* is called.
* @DMX_OUT_TS_TAP:
* Output multiplexed into a new TS (to be retrieved by reading from the
* logical DVR device). Routes output to the logical DVR device
* ``/dev/dvb/adapter?/dvr?``, which delivers a TS multiplexed from all
* filters for which @DMX_OUT_TS_TAP was specified.
* @DMX_OUT_TSDEMUX_TAP:
* Like @DMX_OUT_TS_TAP but retrieved from the DMX device.
*/

enum dmx_output
{

DMX_OUT_DECODER,
DMX_OUT_TAP,
DMX_OUT_TS_TAP,
DMX_OUT_TSDEMUX_TAP

};

/**
* dmx_input
- Input from the demux.
*
* @:c:type:DMX_IN_FRONTEND <dmx_input>: Input from a front-end device.
* @:c:type:DMX_IN_DVR <dmx_input>: Input from the logical DVR device.
*/
dmx_input
{

DMX_IN_FRONTEND

1.3. Part II - Digital TV API 531

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

,
DMX_IN_DVR

};

/**
* dmx_ts_pes
- type of the PES filter.
*
* @:c:type:DMX_PES_AUDIO0 <dmx_pes_type>: first audio PID. Also re-

ferred as @DMX_PES_AUDIO.
* @:c:type:DMX_PES_VIDEO0 <dmx_pes_type>: first video PID. Also re-

ferred as @DMX_PES_VIDEO.
* @:c:type:DMX_PES_TELETEXT0 <dmx_pes_type>: first teletext PID. Also re-

ferred as @DMX_PES_TELETEXT.
* @:c:type:DMX_PES_SUBTITLE0 <dmx_pes_type>: first subtitle PID. Also re-

ferred as @DMX_PES_SUBTITLE.
* @:c:type:DMX_PES_PCR0 <dmx_pes_type>: first Program Clock Reference PID.
* Also referred as @DMX_PES_PCR.
*
* @:c:type:DMX_PES_AUDIO1 <dmx_pes_type>: second audio PID.
* @:c:type:DMX_PES_VIDEO1 <dmx_pes_type>: second video PID.
* @:c:type:DMX_PES_TELETEXT1 <dmx_pes_type>: second teletext PID.
* @:c:type:DMX_PES_SUBTITLE1 <dmx_pes_type>: second subtitle PID.
* @:c:type:DMX_PES_PCR1 <dmx_pes_type>: second Program Clock Reference PID.
*
* @:c:type:DMX_PES_AUDIO2 <dmx_pes_type>: third audio PID.
* @:c:type:DMX_PES_VIDEO2 <dmx_pes_type>: third video PID.
* @:c:type:DMX_PES_TELETEXT2 <dmx_pes_type>: third teletext PID.
* @:c:type:DMX_PES_SUBTITLE2 <dmx_pes_type>: third subtitle PID.
* @:c:type:DMX_PES_PCR2 <dmx_pes_type>: third Program Clock Reference PID.
*
* @:c:type:DMX_PES_AUDIO3 <dmx_pes_type>: fourth audio PID.
* @:c:type:DMX_PES_VIDEO3 <dmx_pes_type>: fourth video PID.
* @:c:type:DMX_PES_TELETEXT3 <dmx_pes_type>: fourth teletext PID.
* @:c:type:DMX_PES_SUBTITLE3 <dmx_pes_type>: fourth subtitle PID.
* @:c:type:DMX_PES_PCR3 <dmx_pes_type>: fourth Program Clock Reference PID.
*
* @:c:type:DMX_PES_OTHER <dmx_pes_type>: any other PID.
*/

dmx_ts_pes
{

DMX_PES_AUDIO0
,

DMX_PES_VIDEO0
,

DMX_PES_TELETEXT0
,

DMX_PES_SUBTITLE0
,

DMX_PES_PCR0
,

DMX_PES_AUDIO1
,

DMX_PES_VIDEO1
,

532 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

DMX_PES_TELETEXT1
,

DMX_PES_SUBTITLE1
,

DMX_PES_PCR1
,

DMX_PES_AUDIO2
,

DMX_PES_VIDEO2
,

DMX_PES_TELETEXT2
,

DMX_PES_SUBTITLE2
,

DMX_PES_PCR2
,

DMX_PES_AUDIO3
,

DMX_PES_VIDEO3
,

DMX_PES_TELETEXT3
,

DMX_PES_SUBTITLE3
,

DMX_PES_PCR3
,

DMX_PES_OTHER

};

#define DMX_PES_AUDIO DMX_PES_AUDIO0

#define DMX_PES_VIDEO DMX_PES_VIDEO0

#define DMX_PES_TELETEXT DMX_PES_TELETEXT0

#define DMX_PES_SUBTITLE DMX_PES_SUBTITLE0

#define DMX_PES_PCR DMX_PES_PCR0

/**
* struct dmx_filter
- Specifies a section header filter.
*
* @filter: bit array with bits to be matched at the section header.
* @mask: bits that are valid at the filter bit array.
* @mode: mode of match: if bit is zero, it will match if equal (positive
* match); if bit is one, it will match if the bit is negated.
*
* Note: All arrays in this struct have a size of DMX_FILTER_SIZE (16 bytes).
*/

struct dmx_filter
{

__u8 filter[DMX_FILTER_SIZE];

1.3. Part II - Digital TV API 533

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

__u8 mask[DMX_FILTER_SIZE];
__u8 mode[DMX_FILTER_SIZE];

};

/**
* struct dmx_sct_filter_params
- Specifies a section filter.
*
* @pid: PID to be filtered.
* @filter: section header filter, as defined by &struct dmx_filter.
* @timeout: maximum time to filter, in milliseconds.
* @flags: extra flags for the section filter.
*
* Carries the configuration for a MPEG-TS section filter.
*
* The @flags can be:
*
* - %DMX_CHECK_CRC - only deliver sections where the CRC check succeeded;
* - %DMX_ONESHOT - disable the section filter after one section
* has been delivered;
* - %DMX_IMMEDIATE_START - Start filter immediately without requiring a
* :ref:`DMX_START`.
*/

struct dmx_sct_filter_params
{

__u16 pid;
struct dmx_filter

filter;
__u32 timeout;
__u32 flags;

#define DMX_CHECK_CRC
1

#define DMX_ONESHOT
2

#define DMX_IMMEDIATE_START
4

};

/**
* struct dmx_pes_filter_params
- Specifies Packetized Elementary Stream (PES)
* filter parameters.
*
* @pid: PID to be filtered.
* @input: Demux input, as specified by &enum dmx_input.
* @output: Demux output, as specified by &enum dmx_output.
* @pes_type: Type of the pes filter, as specified by &enum dmx_pes_type.
* @flags: Demux PES flags.
*/

struct dmx_pes_filter_params
{

__u16 pid;
dmx_input

input;
enum dmx_output

output;
dmx_ts_pes

pes_type;

534 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

__u32 flags;
};

/**
* struct dmx_stc
- Stores System Time Counter (STC) information.
*
* @num: input data: number of the STC, from 0 to N.
* @base: output: divisor for STC to get 90 kHz clock.
* @stc: output: stc in @base * 90 kHz units.
*/

struct dmx_stc
{

unsigned int num;
unsigned int base;
__u64 stc;

};

#define DMX_START _IO(`o', 41)
#define DMX_STOP _IO(`o', 42)
#define DMX_SET_FILTER _IOW(`o', 43, struct dmx_sct_filter_params
)
#define DMX_SET_PES_FILTER _IOW(`o', 44, struct dmx_pes_filter_params
)
#define DMX_SET_BUFFER_SIZE _IO(`o', 45)
#define DMX_GET_PES_PIDS _IOR(`o', 47, __u16[5])
#define DMX_GET_STC _IOWR(`o', 50, struct dmx_stc
)
#define DMX_ADD_PID _IOW(`o', 51, __u16)
#define DMX_REMOVE_PID _IOW(`o', 52, __u16)

#if !defined(__KERNEL__)

/* This is needed for legacy userspace support */
typedef enum dmx_output

dmx_output_t
;
typedef dmx_input

dmx_input_t
;
typedef dmx_ts_pes

dmx_pes_type_t
;
typedef struct dmx_filter

dmx_filter_t
;

#endif

#endif /* _UAPI_DVBDMX_H_ */

ca.h

/*
* ca.h
*
* Copyright (C) 2000 Ralph Metzler <ralph@convergence.de>

1.3. Part II - Digital TV API 535

mailto:ralph@convergence.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* & Marcus Metzler <marcus@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Lesser Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/

#ifndef _DVBCA_H_
#define _DVBCA_H_

/**
* struct ca_slot_info
- CA slot interface types and info.
*
* @num: slot number.
* @type: slot type.
* @flags: flags applicable to the slot.
*
* This struct stores the CA slot information.
*
* @type can be:
*
* - %CA_CI - CI high level interface;
* - %CA_CI_LINK - CI link layer level interface;
* - %CA_CI_PHYS - CI physical layer level interface;
* - %CA_DESCR - built-in descrambler;
* - %CA_SC -simple smart card interface.
*
* @flags can be:
*
* - %CA_CI_MODULE_PRESENT - module (or card) inserted;
* - %CA_CI_MODULE_READY - module is ready for usage.
*/

struct ca_slot_info
{

int num;
int type;

#define CA_CI
1

#define CA_CI_LINK
2

#define CA_CI_PHYS
4

#define CA_DESCR
8

536 Chapter 1. Linux Media Infrastructure userspace API

mailto:marcus@convergence.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define CA_SC
128

unsigned int flags;
#define CA_CI_MODULE_PRESENT
1

#define CA_CI_MODULE_READY
2

};

/**
* struct ca_descr_info
- descrambler types and info.
*
* @num: number of available descramblers (keys).
* @type: type of supported scrambling system.
*
* Identifies the number of descramblers and their type.
*
* @type can be:
*
* - %CA_ECD - European Common Descrambler (ECD) hardware;
* - %CA_NDS - Videoguard (NDS) hardware;
* - %CA_DSS - Distributed Sample Scrambling (DSS) hardware.
*/

struct ca_descr_info
{

unsigned int num;
unsigned int type;

#define CA_ECD
1

#define CA_NDS
2

#define CA_DSS
4

};

/**
* struct ca_caps
- CA slot interface capabilities.
*
* @slot_num: total number of CA card and module slots.
* @slot_type: bitmap with all supported types as defined at
* &struct ca_slot_info
(e. g. %CA_CI, %CA_CI_LINK, etc).
* @descr_num: total number of descrambler slots (keys)
* @descr_type: bitmap with all supported types as defined at
* &struct ca_descr_info
(e. g. %CA_ECD, %CA_NDS, etc).
*/

struct ca_caps
{

unsigned int slot_num;
unsigned int slot_type;
unsigned int descr_num;
unsigned int descr_type;

};

1.3. Part II - Digital TV API 537

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/**
* struct ca_msg
- a message to/from a CI-CAM
*
* @index: unused
* @type: unused
* @length: length of the message
* @msg: message
*
* This struct carries a message to be send/received from a CI CA module.
*/

struct ca_msg
{

unsigned int index;
unsigned int type;
unsigned int length;
unsigned char msg[256];

};

/**
* struct ca_descr
- CA descrambler control words info
*
* @index: CA Descrambler slot
* @parity: control words parity, where 0 means even and 1 means odd
* @cw: CA Descrambler control words
*/

struct ca_descr
{

unsigned int index;
unsigned int parity;
unsigned char cw[8];

};

#define CA_RESET _IO(`o', 128)
#define CA_GET_CAP _IOR(`o', 129, struct ca_caps
)
#define CA_GET_SLOT_INFO _IOR(`o', 130, struct ca_slot_info
)
#define CA_GET_DESCR_INFO _IOR(`o', 131, struct ca_descr_info
)
#define CA_GET_MSG _IOR(`o', 132, struct ca_msg
)
#define CA_SEND_MSG _IOW(`o', 133, struct ca_msg
)
#define CA_SET_DESCR _IOW(`o', 134, struct ca_descr
)

#if !defined(__KERNEL__)

/* This is needed for legacy userspace support */
typedef struct ca_slot_info

ca_slot_info_t
;
typedef struct ca_descr_info

ca_descr_info_t
;
typedef struct ca_caps

538 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ca_caps_t
;
typedef struct ca_msg

ca_msg_t
;
typedef struct ca_descr

ca_descr_t
;

#endif

#endif

net.h

/*
* net.h
*
* Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
* & Ralph Metzler <ralph@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/

#ifndef _DVBNET_H_
#define _DVBNET_H_

#include <linux/types.h>

/**
* struct dvb_net_if
- describes a DVB network interface
*
* @pid: Packet ID (PID) of the MPEG-TS that contains data
* @if_num: number of the Digital TV interface.
* @feedtype: Encapsulation type of the feed.
*
* A MPEG-TS stream may contain packet IDs with IP packages on it.
* This struct describes it, and the type of encoding.
*
* @feedtype can be:
*
* - %DVB_NET_FEEDTYPE_MPE for MPE encoding

1.3. Part II - Digital TV API 539

mailto:marcus@convergence.de
mailto:ralph@convergence.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* - %DVB_NET_FEEDTYPE_ULE for ULE encoding.
*/

struct dvb_net_if
{

__u16 pid;
__u16 if_num;
__u8 feedtype;

#define DVB_NET_FEEDTYPE_MPE
0 /* multi protocol encapsulation */

#define DVB_NET_FEEDTYPE_ULE
1 /* ultra lightweight encapsulation */

};

#define NET_ADD_IF _IOWR(`o', 52, struct dvb_net_if
)
#define NET_REMOVE_IF _IO(`o', 53)
#define NET_GET_IF _IOWR(`o', 54, struct dvb_net_if
)

/* binary compatibility cruft: */
struct __dvb_net_if_old {

__u16 pid;
__u16 if_num;

};
#define __NET_ADD_IF_OLD _IOWR(`o', 52, struct __dvb_net_if_old)
#define __NET_GET_IF_OLD _IOWR(`o', 54, struct __dvb_net_if_old)

#endif /*_DVBNET_H_*/

Legacy uAPI

audio.h

/*
* audio.h
*
* Copyright (C) 2000 Ralph Metzler <ralph@convergence.de>
* & Marcus Metzler <marcus@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Lesser Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/

#ifndef _DVBAUDIO_H_

540 Chapter 1. Linux Media Infrastructure userspace API

mailto:ralph@convergence.de
mailto:marcus@convergence.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define _DVBAUDIO_H_

#include <linux/types.h>

typedef enum {
AUDIO_SOURCE_DEMUX, /* Select the demux as the main source */
AUDIO_SOURCE_MEMORY /* Select internal memory as the main source */

} audio_stream_source_t;

typedef enum {
AUDIO_STOPPED, /* Device is stopped */
AUDIO_PLAYING, /* Device is currently playing */
AUDIO_PAUSED /* Device is paused */

} audio_play_state_t;

typedef enum {
AUDIO_STEREO,
AUDIO_MONO_LEFT,
AUDIO_MONO_RIGHT,
AUDIO_MONO,
AUDIO_STEREO_SWAPPED

} audio_channel_select_t;

typedef struct audio_mixer
{

unsigned int volume_left;
unsigned int volume_right;

// what else do we need? bass, pass-through, ...
} audio_mixer_t
;

typedef struct audio_status
{

int AV_sync_state; /* sync audio and video? */
int mute_state; /* audio is muted */
audio_play_state_t play_state; /* current playback state */
audio_stream_source_t stream_source; /* current stream source */
audio_channel_select_t channel_select; /* currently selected channel */
int bypass_mode; /* pass on audio data to */
audio_mixer_t
mixer_state; /* current mixer state */

} audio_status_t
; /* separate decoder hardware */

typedef
struct audio_karaoke
{ /* if Vocal1 or Vocal2 are non-zero, they get mixed */

int vocal1; /* into left and right t at 70% each */
int vocal2; /* if both, Vocal1 and Vocal2 are non-zero, Vocal1 gets*/
int melody; /* mixed into the left channel and */

/* Vocal2 into the right channel at 100% each. */
/* if Melody is non-zero, the melody channel gets mixed*/

} audio_karaoke_t
; /* into left and right */

typedef __u16 audio_attributes_t;
/* bits: descr. */
/* 15-13 audio coding mode (0=ac3, 2=mpeg1, 3=mpeg2ext, 4=LPCM, 6=DTS, */

1.3. Part II - Digital TV API 541

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* 12 multichannel extension */
/* 11-10 audio type (0=not spec, 1=language included) */
/* 9- 8 audio application mode (0=not spec, 1=karaoke, 2=surround) */
/* 7- 6 Quantization / DRC (mpeg audio: 1=DRC exists)(lpcm: 0=16bit, */
/* 5- 4 Sample frequency fs (0=48kHz, 1=96kHz) */
/* 2- 0 number of audio channels (n+1 channels) */

/* for GET_CAPABILITIES and SET_FORMAT, the latter should only set one bit */
#define AUDIO_CAP_DTS 1
#define AUDIO_CAP_LPCM 2
#define AUDIO_CAP_MP1 4
#define AUDIO_CAP_MP2 8
#define AUDIO_CAP_MP3 16
#define AUDIO_CAP_AAC 32
#define AUDIO_CAP_OGG 64
#define AUDIO_CAP_SDDS 128
#define AUDIO_CAP_AC3 256

#define AUDIO_STOP _IO(`o', 1)
#define AUDIO_PLAY _IO(`o', 2)
#define AUDIO_PAUSE _IO(`o', 3)
#define AUDIO_CONTINUE _IO(`o', 4)
#define AUDIO_SELECT_SOURCE _IO(`o', 5)
#define AUDIO_SET_MUTE _IO(`o', 6)
#define AUDIO_SET_AV_SYNC _IO(`o', 7)
#define AUDIO_SET_BYPASS_MODE _IO(`o', 8)
#define AUDIO_CHANNEL_SELECT _IO(`o', 9)
#define AUDIO_GET_STATUS _IOR(`o', 10, audio_status_t
)

#define AUDIO_GET_CAPABILITIES _IOR(`o', 11, unsigned int)
#define AUDIO_CLEAR_BUFFER _IO(`o', 12)
#define AUDIO_SET_ID _IO(`o', 13)
#define AUDIO_SET_MIXER _IOW(`o', 14, audio_mixer_t
)
#define AUDIO_SET_STREAMTYPE _IO(`o', 15)
#define AUDIO_SET_EXT_ID _IO(`o', 16)
#define AUDIO_SET_ATTRIBUTES _IOW(`o', 17, audio_attributes_t)
#define AUDIO_SET_KARAOKE _IOW(`o', 18, audio_karaoke_t
)

/**
* AUDIO_GET_PTS
*
* Read the 33 bit presentation time stamp as defined
* in ITU T-REC-H.222.0 / ISO/IEC 13818-1.
*
* The PTS should belong to the currently played
* frame if possible, but may also be a value close to it
* like the PTS of the last decoded frame or the last PTS
* extracted by the PES parser.
*/

#define AUDIO_GET_PTS _IOR(`o', 19, __u64)
#define AUDIO_BILINGUAL_CHANNEL_SELECT _IO(`o', 20)

#endif /* _DVBAUDIO_H_ */

542 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

video.h

/*
* video.h
*
* Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
* & Ralph Metzler <ralph@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/

#ifndef _UAPI_DVBVIDEO_H_
#define _UAPI_DVBVIDEO_H_

#include <linux/types.h>
#ifndef __KERNEL__
#include <time.h>
#endif

typedef enum {
VIDEO_FORMAT_4_3, /* Select 4:3 format */
VIDEO_FORMAT_16_9, /* Select 16:9 format. */
VIDEO_FORMAT_221_1 /* 2.21:1 */

} video_format_t;

typedef enum {
VIDEO_SYSTEM_PAL,
VIDEO_SYSTEM_NTSC,
VIDEO_SYSTEM_PALN,
VIDEO_SYSTEM_PALNc,
VIDEO_SYSTEM_PALM,
VIDEO_SYSTEM_NTSC60,
VIDEO_SYSTEM_PAL60,
VIDEO_SYSTEM_PALM60

} video_system_t;

typedef enum {
VIDEO_PAN_SCAN, /* use pan and scan format */
VIDEO_LETTER_BOX, /* use letterbox format */
VIDEO_CENTER_CUT_OUT /* use center cut out format */

} video_displayformat_t;

typedef struct {
int w;

1.3. Part II - Digital TV API 543

mailto:marcus@convergence.de
mailto:ralph@convergence.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int h;
video_format_t aspect_ratio;

} video_size_t;

typedef enum {
VIDEO_SOURCE_DEMUX, /* Select the demux as the main source */
VIDEO_SOURCE_MEMORY /* If this source is selected, the stream

comes from the user through the write
system call */

} video_stream_source_t;

typedef enum {
VIDEO_STOPPED, /* Video is stopped */
VIDEO_PLAYING, /* Video is currently playing */
VIDEO_FREEZED /* Video is freezed */

} video_play_state_t;

/* Decoder commands */
#define VIDEO_CMD_PLAY (0)
#define VIDEO_CMD_STOP (1)
#define VIDEO_CMD_FREEZE (2)
#define VIDEO_CMD_CONTINUE (3)

/* Flags for VIDEO_CMD_FREEZE */
#define VIDEO_CMD_FREEZE_TO_BLACK (1 << 0)

/* Flags for VIDEO_CMD_STOP */
#define VIDEO_CMD_STOP_TO_BLACK (1 << 0)
#define VIDEO_CMD_STOP_IMMEDIATELY (1 << 1)

/* Play input formats: */
/* The decoder has no special format requirements */
#define VIDEO_PLAY_FMT_NONE (0)
/* The decoder requires full GOPs */
#define VIDEO_PLAY_FMT_GOP (1)

/* The structure must be zeroed before use by the application
This ensures it can be extended safely in the future. */

struct video_command
{

__u32 cmd;
__u32 flags;
union {

struct {
__u64 pts;

} stop;

struct {
/* 0 or 1000 specifies normal speed,

1 specifies forward single stepping,
-1 specifies backward single stepping,
>1: playback at speed/1000 of the normal speed,
<-1: reverse playback at (-speed/1000) of the nor-

mal speed. */
__s32 speed;
__u32 format;

} play;

544 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct {
__u32 data[16];

} raw;
};

};

/* FIELD_UNKNOWN can be used if the hardware does not know whether
the Vsync is for an odd, even or progressive (i.e. non-interlaced)
field. */

#define VIDEO_VSYNC_FIELD_UNKNOWN (0)
#define VIDEO_VSYNC_FIELD_ODD (1)
#define VIDEO_VSYNC_FIELD_EVEN (2)
#define VIDEO_VSYNC_FIELD_PROGRESSIVE (3)

struct video_event
{

__s32 type;
#define VIDEO_EVENT_SIZE_CHANGED 1
#define VIDEO_EVENT_FRAME_RATE_CHANGED 2
#define VIDEO_EVENT_DECODER_STOPPED 3
#define VIDEO_EVENT_VSYNC 4

/* unused, make sure to use atomic time for y2038 if it ever gets used */
long timestamp;
union {

video_size_t size;
unsigned int frame_rate; /* in frames per 1000sec */
unsigned char vsync_field; /* unknown/odd/even/progressive */

} u;
};

struct video_status
{

int video_blank; /* blank video on freeze? */
video_play_state_t play_state; /* current state of playback */
video_stream_source_t stream_source; /* current source (demux/memory) */
video_format_t video_format; /* current aspect ratio of stream*/
video_displayformat_t display_format;/* selected cropping mode */

};

struct video_still_picture
{

char __user *iFrame; /* pointer to a single iframe in memory */
__s32 size;

};

typedef
struct video_highlight
{

int active; /* 1=show highlight, 0=hide highlight */
__u8 contrast1; /* 7- 4 Pattern pixel contrast */

/* 3- 0 Background pixel contrast */
__u8 contrast2; /* 7- 4 Emphasis pixel-2 contrast */

/* 3- 0 Emphasis pixel-1 contrast */
__u8 color1; /* 7- 4 Pattern pixel color */

/* 3- 0 Background pixel color */
__u8 color2; /* 7- 4 Emphasis pixel-2 color */

/* 3- 0 Emphasis pixel-1 color */
__u32 ypos; /* 23-22 auto action mode */

1.3. Part II - Digital TV API 545

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* 21-12 start y */
/* 9- 0 end y */

__u32 xpos; /* 23-22 button color number */
/* 21-12 start x */
/* 9- 0 end x */

} video_highlight_t
;

typedef struct video_spu
{

int active;
int stream_id;

} video_spu_t
;

typedef struct video_spu_palette
{ /* SPU Palette information */

int length;
__u8 __user *palette;

} video_spu_palette_t
;

typedef struct video_navi_pack
{

int length; /* 0 ... 1024 */
__u8 data[1024];

} video_navi_pack_t
;

typedef __u16 video_attributes_t;
/* bits: descr. */
/* 15-14 Video compression mode (0=MPEG-1, 1=MPEG-2) */
/* 13-12 TV system (0=525/60, 1=625/50) */
/* 11-10 Aspect ratio (0=4:3, 3=16:9) */
/* 9- 8 permitted display mode on 4:3 monitor (0=both, 1=only pan-sca */
/* 7 line 21-1 data present in GOP (1=yes, 0=no) */
/* 6 line 21-2 data present in GOP (1=yes, 0=no) */
/* 5- 3 source resolution (0=720x480/576, 1=704x480/576, 2=352x480/57 */
/* 2 source letterboxed (1=yes, 0=no) */
/* 0 film/camera mode (0=
*camera, 1=film (625/50 only)) */

/* bit definitions for capabilities: */
/* can the hardware decode MPEG1 and/or MPEG2? */
#define VIDEO_CAP_MPEG1 1
#define VIDEO_CAP_MPEG2 2
/* can you send a system and/or program stream to video device?

(you still have to open the video and the audio device but only
send the stream to the video device) */

#define VIDEO_CAP_SYS 4
#define VIDEO_CAP_PROG 8
/* can the driver also handle SPU, NAVI and CSS encoded data?

(CSS API is not present yet) */
#define VIDEO_CAP_SPU 16
#define VIDEO_CAP_NAVI 32
#define VIDEO_CAP_CSS 64

#define VIDEO_STOP _IO(`o', 21)

546 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define VIDEO_PLAY _IO(`o', 22)
#define VIDEO_FREEZE _IO(`o', 23)
#define VIDEO_CONTINUE _IO(`o', 24)
#define VIDEO_SELECT_SOURCE _IO(`o', 25)
#define VIDEO_SET_BLANK _IO(`o', 26)
#define VIDEO_GET_STATUS _IOR(`o', 27, struct video_status
)
#define VIDEO_GET_EVENT _IOR(`o', 28, struct video_event
)
#define VIDEO_SET_DISPLAY_FORMAT _IO(`o', 29)
#define VIDEO_STILLPICTURE _IOW(`o', 30, struct video_still_picture
)
#define VIDEO_FAST_FORWARD _IO(`o', 31)
#define VIDEO_SLOWMOTION _IO(`o', 32)
#define VIDEO_GET_CAPABILITIES _IOR(`o', 33, unsigned int)
#define VIDEO_CLEAR_BUFFER _IO(`o', 34)
#define VIDEO_SET_ID _IO(`o', 35)
#define VIDEO_SET_STREAMTYPE _IO(`o', 36)
#define VIDEO_SET_FORMAT _IO(`o', 37)
#define VIDEO_SET_SYSTEM _IO(`o', 38)
#define VIDEO_SET_HIGHLIGHT _IOW(`o', 39, video_highlight_t
)
#define VIDEO_SET_SPU _IOW(`o', 50, video_spu_t
)
#define VIDEO_SET_SPU_PALETTE _IOW(`o', 51, video_spu_palette_t
)
#define VIDEO_GET_NAVI _IOR(`o', 52, video_navi_pack_t
)
#define VIDEO_SET_ATTRIBUTES _IO(`o', 53)
#define VIDEO_GET_SIZE _IOR(`o', 55, video_size_t)
#define VIDEO_GET_FRAME_RATE _IOR(`o', 56, unsigned int)

/**
* VIDEO_GET_PTS
*
* Read the 33 bit presentation time stamp as defined
* in ITU T-REC-H.222.0 / ISO/IEC 13818-1.
*
* The PTS should belong to the currently played
* frame if possible, but may also be a value close to it
* like the PTS of the last decoded frame or the last PTS
* extracted by the PES parser.
*/

#define VIDEO_GET_PTS _IOR(`o', 57, __u64)

/* Read the number of displayed frames since the decoder was started */
#define VIDEO_GET_FRAME_COUNT _IOR(`o', 58, __u64)

#define VIDEO_COMMAND _IOWR(`o', 59, struct video_command
)
#define VIDEO_TRY_COMMAND _IOWR(`o', 60, struct video_command
)

#endif /* _UAPI_DVBVIDEO_H_ */

1.3. Part II - Digital TV API 547

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1.3.9 Revision and Copyright

Authors:
• 10. (a) Metzler, Ralph <rjkm@metzlerbros.de>
• Original author of the Digital TV API documentation.
• 15. (a) Metzler, Marcus <rjkm@metzlerbros.de>
• Original author of the Digital TV API documentation.
• Carvalho Chehab, Mauro <m.chehab@kernel.org>
• Ported document to Docbook XML, addition of DVBv5 API, documentation gaps fix.

Copyright © 2002-2003 : Convergence GmbH
Copyright © 2009-2017 : Mauro Carvalho Chehab

1.3.10 Revision History

revision 2.2.0 / 2017-09-01 (mcc)
Most gaps between the uAPI document and the Kernel implementation got fixed for the non-legacy API.

revision 2.1.0 / 2015-05-29 (mcc)
DocBook improvements and cleanups, in order to document the system calls on a more standard way and
provide more description about the current Digital TV API.

revision 2.0.4 / 2011-05-06 (mcc)
Add more information about DVBv5 API, better describing the frontend GET/SET props ioctl’s.

revision 2.0.3 / 2010-07-03 (mcc)
Add some frontend capabilities flags, present on kernel, but missing at the specs.

revision 2.0.2 / 2009-10-25 (mcc)
documents FE_SET_FRONTEND_TUNE_MODE and FE_DISHETWORK_SEND_LEGACY_CMD ioctls.

revision 2.0.1 / 2009-09-16 (mcc)
Added ISDB-T test originally written by Patrick Boettcher

revision 2.0.0 / 2009-09-06 (mcc)
Conversion from LaTex to DocBook XML. The contents is the same as the original LaTex version.

revision 1.0.0 / 2003-07-24 (rjkm)
Initial revision on LaTEX.

1.4 Part III - Remote Controller API

1.4.1 Introduction

Currently, most analog and digital devices have a Infrared input for remote controllers. Each manufacturer
has their own type of control. It is not rare for the same manufacturer to ship different types of controls,
depending on the device.
A Remote Controller interface is mapped as a normal evdev/input interface, just like a keyboard or a
mouse. So, it uses all ioctls already defined for any other input devices.
However, remove controllers are more flexible than a normal input device, as the IR receiver (and/or
transmitter) can be used in conjunction with a wide variety of different IR remotes.

548 Chapter 1. Linux Media Infrastructure userspace API

mailto:rjkm@metzlerbros.de
mailto:rjkm@metzlerbros.de
mailto:m.chehab@kernel.org

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

In order to allow flexibility, the Remote Controller subsystem allows controlling the RC-specific attributes
via the sysfs class nodes .

1.4.2 Remote Controller’s sysfs nodes

As defined at Documentation/ABI/testing/sysfs-class-rc, those are the sysfs nodes that control the
Remote Controllers:

/sys/class/rc/

The /sys/class/rc/ class sub-directory belongs to the Remote Controller core and provides a sysfs in-
terface for configuring infrared remote controller receivers.

/sys/class/rc/rcN/

A /sys/class/rc/rcN directory is created for each remote control receiver device where N is the number
of the receiver.

/sys/class/rc/rcN/protocols

Reading this file returns a list of available protocols, something like:

rc5 [rc6] nec jvc [sony]

Enabled protocols are shown in [] brackets.
Writing “+proto” will add a protocol to the list of enabled protocols.
Writing “-proto” will remove a protocol from the list of enabled protocols.
Writing “proto” will enable only “proto”.
Writing “none” will disable all protocols.
Write fails with EINVAL if an invalid protocol combination or unknown protocol name is used.

/sys/class/rc/rcN/filter

Sets the scancode filter expected value.
Use in combination with /sys/class/rc/rcN/filter_mask to set the expected value of the bits set in
the filter mask. If the hardware supports it then scancodes which do not match the filter will be ignored.
Otherwise the write will fail with an error.
This value may be reset to 0 if the current protocol is altered.

/sys/class/rc/rcN/filter_mask

Sets the scancode filter mask of bits to compare. Use in combination with /sys/class/rc/rcN/filter to
set the bits of the scancode which should be compared against the expected value. A value of 0 disables
the filter to allow all valid scancodes to be processed.
If the hardware supports it then scancodes which do not match the filter will be ignored. Otherwise the
write will fail with an error.
This value may be reset to 0 if the current protocol is altered.

1.4. Part III - Remote Controller API 549

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/sys/class/rc/rcN/wakeup_protocols

Reading this file returns a list of available protocols to use for the wakeup filter, something like:

rc-5 nec nec-x rc-6-0 rc-6-6a-24 [rc-6-6a-32] rc-6-mce

Note that protocol variants are listed, so nec, sony, rc-5, rc-6 have their different bit length encodings
listed if available.
Note that all protocol variants are listed.
The enabled wakeup protocol is shown in [] brackets.
Only one protocol can be selected at a time.
Writing “proto” will use “proto” for wakeup events.
Writing “none” will disable wakeup.
Write fails with EINVAL if an invalid protocol combination or unknown protocol name is used, or if wakeup
is not supported by the hardware.

/sys/class/rc/rcN/wakeup_filter

Sets the scancode wakeup filter expected value. Use in combination with
/sys/class/rc/rcN/wakeup_filter_mask to set the expected value of the bits set in the wakeup
filter mask to trigger a system wake event.
If the hardware supports it and wakeup_filter_mask is not 0 then scancodes which match the filter will
wake the system from e.g. suspend to RAM or power off. Otherwise the write will fail with an error.
This value may be reset to 0 if the wakeup protocol is altered.

/sys/class/rc/rcN/wakeup_filter_mask

Sets the scancode wakeup filter mask of bits to compare. Use in combination with
/sys/class/rc/rcN/wakeup_filter to set the bits of the scancode which should be compared
against the expected value to trigger a system wake event.
If the hardware supports it and wakeup_filter_mask is not 0 then scancodes which match the filter will
wake the system from e.g. suspend to RAM or power off. Otherwise the write will fail with an error.
This value may be reset to 0 if the wakeup protocol is altered.

1.4.3 Remote controller tables

Unfortunately, for several years, there was no effort to create uniform IR keycodes for different devices.
This caused the same IR keyname to be mapped completely differently on different IR devices. This
resulted that the same IR keyname to be mapped completely different on different IR’s. Due to that, V4L2
API now specifies a standard for mapping Media keys on IR.
This standard should be used by both V4L/DVB drivers and userspace applications
The modules register the remote as keyboard within the linux input layer. This means that the IR
key strokes will look like normal keyboard key strokes (if CONFIG_INPUT_KEYBOARD is enabled). Us-
ing the event devices (CONFIG_INPUT_EVDEV) it is possible for applications to access the remote via
/dev/input/event devices.

Table 1.175: IR default keymapping

Key code Meaning Key examples on IR
Continued on next page

550 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.175 – continued from previous page
Numeric keys
KEY_0 Keyboard digit 0 0
KEY_1 Keyboard digit 1 1
KEY_2 Keyboard digit 2 2
KEY_3 Keyboard digit 3 3
KEY_4 Keyboard digit 4 4
KEY_5 Keyboard digit 5 5
KEY_6 Keyboard digit 6 6
KEY_7 Keyboard digit 7 7
KEY_8 Keyboard digit 8 8
KEY_9 Keyboard digit 9 9
Movie play control
KEY_FORWARD Instantly advance in time >> / FORWARD
KEY_BACK Instantly go back in time <<< / BACK
KEY_FASTFORWARD Play movie faster

>>> / FORWARD

KEY_REWIND Play movie back REWIND / BACKWARD
KEY_NEXT Select next chapter / sub-

chapter / interval
NEXT / SKIP

KEY_PREVIOUS Select previous chapter /
sub-chapter / interval

<< / PREV / PREVIOUS

KEY_AGAIN Repeat the video or a
video interval

REPEAT / LOOP / RECALL

KEY_PAUSE Pause sroweam PAUSE / FREEZE
KEY_PLAY Play movie at the normal

timeshift
NORMAL TIMESHIFT / LIVE / >

KEY_PLAYPAUSE Alternate between play
and pause

PLAY / PAUSE

KEY_STOP Stop sroweam STOP
KEY_RECORD Start/stop recording

sroweam
CAPTURE / REC / RECORD/PAUSE

KEY_CAMERA Take a picture of the im-
age

CAMERA ICON / CAPTURE / SNAPSHOT

KEY_SHUFFLE Enable shuffle mode SHUFFLE
KEY_TIME Activate time shift mode TIME SHIFT
KEY_TITLE Allow changing the chap-

ter
CHAPTER

KEY_SUBTITLE Allow changing the subti-
tle

SUBTITLE

Image control
KEY_BRIGHTNESSDOWN Decrease Brightness BRIGHTNESS DECREASE
KEY_BRIGHTNESSUP Increase Brightness BRIGHTNESS INCREASE
KEY_ANGLE Switch video camera an-

gle (on videos with more
than one angle stored)

ANGLE / SWAP

KEY_EPG Open the Elecrowonic
Play Guide (EPG)

EPG / GUIDE

KEY_TEXT Activate/change closed
caption mode

CLOSED CAPTION/TELETEXT / DVD TEXT / TELE-
TEXT / TTX

Audio control
KEY_AUDIO Change audio source AUDIO SOURCE / AUDIO / MUSIC
KEY_MUTE Mute/unmute audio MUTE / DEMUTE / UNMUTE
KEY_VOLUMEDOWN Decrease volume VOLUME- / VOLUME DOWN

Continued on next page

1.4. Part III - Remote Controller API 551

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.175 – continued from previous page
KEY_VOLUMEUP Increase volume VOLUME+ / VOLUME UP
KEY_MODE Change sound mode MONO/STEREO
KEY_LANGUAGE Select Language 1ST / 2ND LANGUAGE / DVD LANG / MTS/SAP / MTS

SEL
Channel control
KEY_CHANNEL Go to the next favorite

channel
ALT / CHANNEL / CH SURFING / SURF / FAV

KEY_CHANNELDOWN Decrease channel se-
quencially

CHANNEL - / CHANNEL DOWN / DOWN

KEY_CHANNELUP Increase channel se-
quencially

CHANNEL + / CHANNEL UP / UP

KEY_DIGITS Use more than one digit
for channel

PLUS / 100/ 1xx / xxx / -/– / Single Double Triple
Digit

KEY_SEARCH Start channel autoscan SCAN / AUTOSCAN
Colored keys
KEY_BLUE IR Blue key BLUE
KEY_GREEN IR Green Key GREEN
KEY_RED IR Red key RED
KEY_YELLOW IR Yellow key YELLOW
Media selection
KEY_CD Change input source to

Compact Disc
CD

KEY_DVD Change input to DVD DVD / DVD MENU
KEY_EJECTCLOSECD Open/close the CD/DVD

player
->) / CLOSE / OPEN

KEY_MEDIA Turn on/off Media appli-
cation

PC/TV / TURN ON/OFF APP

KEY_PC Selects from TV to PC PC
KEY_RADIO Put into AM/FM radio

mode
RADIO / TV/FM / TV/RADIO / FM / FM/RADIO

KEY_TV Select tv mode TV / LIVE TV
KEY_TV2 Select Cable mode AIR/CBL
KEY_VCR Select VCR mode VCR MODE / DTR
KEY_VIDEO Alternate between input

modes
SOURCE / SELECT / DISPLAY / SWITCH INPUTS /
VIDEO

Power control
KEY_POWER Turn on/off computer SYSTEM POWER / COMPUTER POWER
KEY_POWER2 Turn on/off application TV ON/OFF / POWER
KEY_SLEEP Activate sleep timer SLEEP / SLEEP TIMER
KEY_SUSPEND Put computer into sus-

pend mode
STANDBY / SUSPEND

Window control
KEY_CLEAR Stop sroweam and re-

turn to default input
video/audio

CLEAR / RESET / BOSS KEY

KEY_CYCLEWINDOWS Minimize windows and
move to the next one

ALT-TAB / MINIMIZE / DESKTOP

KEY_FAVORITES Open the favorites
sroweam window

TV WALL / Favorites

KEY_MENU Call application menu 2ND CONTROLS (USA: MENU) / DVD/MENU /
SHOW/HIDE CTRL

KEY_NEW Open/Close Picture in Pic-
ture

PIP

KEY_OK Send a confirmation code
to application

OK / ENTER / RETURN

Continued on next page

552 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.175 – continued from previous page
KEY_SCREEN Select screen aspect ra-

tio
4:3 16:9 SELECT

KEY_ZOOM Put device into zoom/full
screen mode

ZOOM / FULL SCREEN / ZOOM+ / HIDE PANNEL /
SWITCH

Navigation keys
KEY_ESC Cancel current operation CANCEL / BACK
KEY_HELP Open a Help window HELP
KEY_HOMEPAGE Navigate to Homepage HOME
KEY_INFO Open On Screen Display DISPLAY INFORMATION / OSD
KEY_WWW Open the default browser WEB
KEY_UP Up key UP
KEY_DOWN Down key DOWN
KEY_LEFT Left key LEFT
KEY_RIGHT Right key RIGHT
Miscellaneous keys
KEY_DOT Return a dot .
KEY_FN Select a function FUNCTION

It should be noted that, sometimes, there some fundamental missing keys at some cheaper IR’s. Due to
that, it is recommended to:

Table 1.176: Notes
On simpler IR’s, without separate channel keys, you need to map UP as KEY_CHANNELUP
On simpler IR’s, without separate channel keys, you need to map DOWN as KEY_CHANNELDOWN
On simpler IR’s, without separate volume keys, you need to map LEFT as KEY_VOLUMEDOWN
On simpler IR’s, without separate volume keys, you need to map RIGHT as KEY_VOLUMEUP

1.4.4 Changing default Remote Controller mappings

The event interface provides two ioctls to be used against the /dev/input/event device, to allow changing
the default keymapping.
This program demonstrates how to replace the keymap tables.

file: uapi/v4l/keytable.c

/* keytable.c - This program allows checking/replacing keys at IR

Copyright (C) 2006-2009 Mauro Carvalho Chehab <mchehab@infradead.org>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

*/

#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

1.4. Part III - Remote Controller API 553

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#include <string.h>
#include <linux/input.h>
#include <sys/ioctl.h>

#include "parse.h"

void prtcode (int *codes)
{

struct parse_key *p;

for (p=keynames;p->name!=NULL;p++) {
if (p->value == (unsigned)codes[1]) {

printf("scancode 0x%04x = %s (0x%02x)\\n", codes[0], p->name, codes[1]);
return;

}
}

if (isprint (codes[1]))
printf("scancode %d = '%c' (0x%02x)\\n", codes[0], codes[1], codes[1]);

else
printf("scancode %d = 0x%02x\\n", codes[0], codes[1]);

}

int parse_code(char *string)
{

struct parse_key *p;

for (p=keynames;p->name!=NULL;p++) {
if (!strcasecmp(p->name, string)) {

return p->value;
}

}
return -1;

}

int main (int argc, char *argv[])
{

int fd;
unsigned int i, j;
int codes[2];

if (argc<2 || argc>4) {
printf ("usage: %s <device> to get table; or\\n"

" %s <device> <scancode> <keycode>\\n"
" %s <device> <keycode_file>n",*argv,*argv,*argv);

return -1;
}

if ((fd = open(argv[1], O_RDONLY)) < 0) {
perror("Couldn't open input device");
return(-1);

}

if (argc==4) {
int value;

value=parse_code(argv[3]);

if (value==-1) {
value = strtol(argv[3], NULL, 0);
if (errno)

perror("value");
}

554 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

codes [0] = (unsigned) strtol(argv[2], NULL, 0);
codes [1] = (unsigned) value;

if(ioctl(fd, EVIOCSKEYCODE, codes))
perror ("EVIOCSKEYCODE");

if(ioctl(fd, EVIOCGKEYCODE, codes)==0)
prtcode(codes);

return 0;
}

if (argc==3) {
FILE *fin;
int value;
char *scancode, *keycode, s[2048];

fin=fopen(argv[2],"r");
if (fin==NULL) {

perror ("opening keycode file");
return -1;

}

/* Clears old table */
for (j = 0; j < 256; j++) {

for (i = 0; i < 256; i++) {
codes[0] = (j << 8) | i;
codes[1] = KEY_RESERVED;
ioctl(fd, EVIOCSKEYCODE, codes);

}
}

while (fgets(s,sizeof(s),fin)) {
scancode=strtok(s,"\\n\\t =:");
if (!scancode) {

perror ("parsing input file scancode");
return -1;

}
if (!strcasecmp(scancode, "scancode")) {

scancode = strtok(NULL,"\\n\\t =:");
if (!scancode) {

perror ("parsing input file scancode");
return -1;

}
}

keycode=strtok(NULL,"\\n\\t =:(");
if (!keycode) {

perror ("parsing input file keycode");
return -1;

}

// printf ("parsing %s=%s:", scancode, keycode);
value=parse_code(keycode);
// printf ("\\tvalue=%d\\n",value);

if (value==-1) {
value = strtol(keycode, NULL, 0);
if (errno)

perror("value");
}

codes [0] = (unsigned) strtol(scancode, NULL, 0);

1.4. Part III - Remote Controller API 555

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

codes [1] = (unsigned) value;

// printf("\\t%04x=%04x\\n",codes[0], codes[1]);
if(ioctl(fd, EVIOCSKEYCODE, codes)) {

fprintf(stderr, "Setting scancode 0x%04x with 0x%04x via ",
↪→codes[0], codes[1]);

perror ("EVIOCSKEYCODE");
}

if(ioctl(fd, EVIOCGKEYCODE, codes)==0)
prtcode(codes);

}
return 0;

}

/* Get scancode table */
for (j = 0; j < 256; j++) {

for (i = 0; i < 256; i++) {
codes[0] = (j << 8) | i;
if (!ioctl(fd, EVIOCGKEYCODE, codes) && codes[1] != KEY_RESERVED)

prtcode(codes);
}

}
return 0;

}

1.4.5 LIRC Device Interface

Introduction

The LIRC device interface is a bi-directional interface for transporting raw IR data between userspace and
kernelspace. Fundamentally, it is just a chardev (/dev/lircX, for X = 0, 1, 2, ...), with a number of standard
struct file_operations defined on it. With respect to transporting raw IR data to and fro, the essential fops
are read, write and ioctl.
Example dmesg output upon a driver registering w/LIRC:

$ dmesg |grep lirc_dev
lirc_dev: IR Remote Control driver registered, major 248
rc rc0: lirc_dev: driver ir-lirc-codec (mceusb) registered at minor = 0

What you should see for a chardev:

$ ls -l /dev/lirc*
crw-rw---- 1 root root 248, 0 Jul 2 22:20 /dev/lirc0

LIRC modes

LIRC supports some modes of receiving and sending IR codes, as shown on the following table.
LIRC_MODE_MODE2

The driver returns a sequence of pulse and space codes to userspace, as a series of u32 values.
This mode is used only for IR receive.
The upper 8 bits determine the packet type, and the lower 24 bits the payload. Use
LIRC_VALUE() macro to get the payload, and the macro LIRC_MODE2() will give you the type,
which is one of:
LIRC_MODE2_PULSE

556 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Signifies the presence of IR in microseconds.
LIRC_MODE2_SPACE

Signifies absence of IR in microseconds.
LIRC_MODE2_FREQUENCY

If measurement of the carrier frequency was enabled with ioctl
LIRC_SET_MEASURE_CARRIER_MODE then this packet gives you the carrier fre-
quency in Hertz.

LIRC_MODE2_TIMEOUT

If timeout reports are enabled with ioctl LIRC_SET_REC_TIMEOUT_REPORTS , when the
timeout set with ioctl LIRC_SET_REC_TIMEOUT expires due to no IR being detected,
this packet will be sent, with the number of microseconds with no IR.

LIRC_MODE_LIRCCODE

This mode can be used for IR receive and send.
The IR signal is decoded internally by the receiver, or encoded by the transmitter. The LIRC
interface represents the scancode as byte string, which might not be a u32, it can be any length.
The value is entirely driver dependent. This mode is used by some older lirc drivers.
The length of each code depends on the driver, which can be retrieved with ioctl
LIRC_GET_LENGTH . This length is used both for transmitting and receiving IR.

LIRC_MODE_PULSE

In pulse mode, a sequence of pulse/space integer values are written to the lirc device using
LIRC write() .
The values are alternating pulse and space lengths, in microseconds. The first and last entry
must be a pulse, so there must be an odd number of entries.
This mode is used only for IR send.

LIRC Function Reference

LIRC read()

Name

lirc-read - Read from a LIRC device

Synopsis

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open().
buf Buffer to be filled
count Max number of bytes to read

1.4. Part III - Remote Controller API 557

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf. If count
is zero, read() returns zero and has no other results. If count is greater than SSIZE_MAX, the result is
unspecified.
The exact format of the data depends on what LIRC modes a driver uses. Use ioctl LIRC_GET_FEATURES
to get the supported mode.
The generally preferred mode for receive is LIRC_MODE_MODE2 , in which packets containing an int value
describing an IR signal are read from the chardev.

Return Value

On success, the number of bytes read is returned. It is not an error if this number is smaller than the
number of bytes requested, or the amount of data required for one frame. On error, -1 is returned, and
the errno variable is set appropriately.

LIRC write()

Name

lirc-write - Write to a LIRC device

Synopsis

#include <unistd.h>

ssize_t write(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open().
buf Buffer with data to be written
count Number of bytes at the buffer

Description

write() writes up to count bytes to the device referenced by the file descriptor fd from the buffer starting
at buf.
The exact format of the data depends on what mode a driver uses, use ioctl LIRC_GET_FEATURES to get
the supported mode.
When in LIRC_MODE_PULSE mode, the data written to the chardev is a pulse/space sequence of integer
values. Pulses and spaces are only marked implicitly by their position. The data must start and end with
a pulse, therefore, the data must always include an uneven number of samples. The write function must
block until the data has been transmitted by the hardware. If more data is provided than the hardware
can send, the driver returns EINVAL.

558 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success, the number of bytes read is returned. It is not an error if this number is smaller than the
number of bytes requested, or the amount of data required for one frame. On error, -1 is returned, and
the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes
chapter.

ioctl LIRC_GET_FEATURES

Name

LIRC_GET_FEATURES - Get the underlying hardware device’s features

Synopsis

int ioctl(int fd, LIRC_GET_FEATURES, __u32 *features)

Arguments

fd File descriptor returned by open().
features Bitmask with the LIRC features.

Description

Get the underlying hardware device’s features. If a driver does not announce support of certain features,
calling of the corresponding ioctls is undefined.

LIRC features

LIRC_CAN_REC_RAW

Unused. Kept just to avoid breaking uAPI.
LIRC_CAN_REC_PULSE

Unused. Kept just to avoid breaking uAPI. LIRC_MODE_PULSE can only be used for transmitting.
LIRC_CAN_REC_MODE2

The driver is capable of receiving using LIRC_MODE_MODE2 .
LIRC_CAN_REC_LIRCCODE

The driver is capable of receiving using LIRC_MODE_LIRCCODE .
LIRC_CAN_SET_SEND_CARRIER

The driver supports changing the modulation frequency via ioctl LIRC_SET_SEND_CARRIER .
LIRC_CAN_SET_SEND_DUTY_CYCLE

The driver supports changing the duty cycle using ioctl LIRC_SET_SEND_DUTY_CYCLE .
LIRC_CAN_SET_TRANSMITTER_MASK

The driver supports changing the active transmitter(s) using ioctl
LIRC_SET_TRANSMITTER_MASK .

LIRC_CAN_SET_REC_CARRIER

1.4. Part III - Remote Controller API 559

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The driver supports setting the receive carrier frequency using ioctl LIRC_SET_REC_CARRIER .
LIRC_CAN_SET_REC_DUTY_CYCLE_RANGE

Unused. Kept just to avoid breaking uAPI.
LIRC_CAN_SET_REC_CARRIER_RANGE

The driver supports ioctl LIRC_SET_REC_CARRIER_RANGE .
LIRC_CAN_GET_REC_RESOLUTION

The driver supports ioctl LIRC_GET_REC_RESOLUTION .
LIRC_CAN_SET_REC_TIMEOUT

The driver supports ioctl LIRC_SET_REC_TIMEOUT .
LIRC_CAN_SET_REC_FILTER

Unused. Kept just to avoid breaking uAPI.
LIRC_CAN_MEASURE_CARRIER

The driver supports measuring of the modulation frequency using ioctl
LIRC_SET_MEASURE_CARRIER_MODE .

LIRC_CAN_USE_WIDEBAND_RECEIVER

The driver supports learning mode using ioctl LIRC_SET_WIDEBAND_RECEIVER .
LIRC_CAN_NOTIFY_DECODE

Unused. Kept just to avoid breaking uAPI.
LIRC_CAN_SEND_RAW

Unused. Kept just to avoid breaking uAPI.
LIRC_CAN_SEND_PULSE

The driver supports sending (also called as IR blasting or IR TX) using LIRC_MODE_PULSE .
LIRC_CAN_SEND_MODE2

Unused. Kept just to avoid breaking uAPI. LIRC_MODE_MODE2 can only be used for receiving.
LIRC_CAN_SEND_LIRCCODE

The driver supports sending (also called as IR blasting or IR TX) using LIRC_MODE_LIRCCODE .

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctls LIRC_GET_SEND_MODE and LIRC_SET_SEND_MODE

Name

LIRC_GET_SEND_MODE/LIRC_SET_SEND_MODE - Get/set supported transmit mode.

Synopsis

int ioctl(int fd, LIRC_GET_SEND_MODE, __u32 *tx_modes)
int ioctl(int fd, LIRC_SET_SEND_MODE, __u32 *tx_modes)

560 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open().
tx_modes Bitmask with the supported transmit modes.

Description

Get/set current transmit mode.
Only LIRC_MODE_PULSE and LIRC_MODE_LIRCCODE is supported by for IR send, depending on the
driver. Use ioctl LIRC_GET_FEATURES to find out which modes the driver supports.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctls LIRC_GET_REC_MODE and LIRC_SET_REC_MODE

Name

LIRC_GET_REC_MODE/LIRC_SET_REC_MODE - Get/set supported receive modes.

Synopsis

int ioctl(int fd, LIRC_GET_REC_MODE, __u32 rx_modes)
int ioctl(int fd, LIRC_SET_REC_MODE, __u32 rx_modes)

Arguments

fd File descriptor returned by open().
rx_modes Bitmask with the supported transmit modes.

Description

Get/set supported receive modes. Only LIRC_MODE_MODE2 and LIRC_MODE_LIRCCODE are supported
for IR receive. Use ioctl LIRC_GET_FEATURES to find out which modes the driver supports.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl LIRC_GET_REC_RESOLUTION

Name

LIRC_GET_REC_RESOLUTION - Obtain the value of receive resolution, in microseconds.

1.4. Part III - Remote Controller API 561

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, LIRC_GET_REC_RESOLUTION, __u32 *microseconds)

Arguments

fd File descriptor returned by open().
microseconds Resolution, in microseconds.

Description

Some receivers have maximum resolution which is defined by internal sample rate or data format limita-
tions. E.g. it’s common that signals can only be reported in 50 microsecond steps.
This ioctl returns the integer value with such resolution, with can be used by userspace applications like
lircd to automatically adjust the tolerance value.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl LIRC_SET_SEND_DUTY_CYCLE

Name

LIRC_SET_SEND_DUTY_CYCLE - Set the duty cycle of the carrier signal for IR transmit.

Synopsis

int ioctl(int fd, LIRC_SET_SEND_DUTY_CYCLE, __u32 *duty_cycle)

Arguments

fd File descriptor returned by open().
duty_cycle Duty cicle, describing the pulse width in percent (from 1 to 99) of the total cycle. Values 0

and 100 are reserved.

Description

Get/set the duty cycle of the carrier signal for IR transmit.
Currently, no special meaning is defined for 0 or 100, but this could be used to switch off carrier generation
in the future, so these values should be reserved.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

562 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ioctls LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT

Name

LIRC_GET_MIN_TIMEOUT / LIRC_GET_MAX_TIMEOUT - Obtain the possible timeout range for IR receive.

Synopsis

int ioctl(int fd, LIRC_GET_MIN_TIMEOUT, __u32 *timeout)
int ioctl(int fd, LIRC_GET_MAX_TIMEOUT, __u32 *timeout)

Arguments

fd File descriptor returned by open().
timeout Timeout, in microseconds.

Description

Some devices have internal timers that can be used to detect when there’s no IR activity for a long time.
This can help lircd in detecting that a IR signal is finished and can speed up the decoding process. Returns
an integer value with the minimum/maximum timeout that can be set.

Note:

Some devices have a fixed timeout, in that case both ioctls will return the same value even though
the timeout cannot be changed via ioctl LIRC_SET_REC_TIMEOUT .

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl LIRC_SET_REC_TIMEOUT

Name

LIRC_SET_REC_TIMEOUT - sets the integer value for IR inactivity timeout.

Synopsis

int ioctl(int fd, LIRC_SET_REC_TIMEOUT, __u32 *timeout)

Arguments

fd File descriptor returned by open().
timeout Timeout, in microseconds.

1.4. Part III - Remote Controller API 563

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Sets the integer value for IR inactivity timeout.
If supported by the hardware, setting it to 0 disables all hardware timeouts and data should be reported
as soon as possible. If the exact value cannot be set, then the next possible value _greater_ than the
given value should be set.

Note:

The range of supported timeout is given by ioctls LIRC_GET_MIN_TIMEOUT and
LIRC_GET_MAX_TIMEOUT .

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl LIRC_GET_LENGTH

Name

LIRC_GET_LENGTH - Retrieves the code length in bits.

Synopsis

int ioctl(int fd, LIRC_GET_LENGTH, __u32 *length)

Arguments

fd File descriptor returned by open().
length length, in bits

Description

Retrieves the code length in bits (only for LIRC_MODE_LIRCCODE). Reads on the device must be done in
blocks matching the bit count. The bit could should be rounded up so that it matches full bytes.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl LIRC_SET_REC_CARRIER

Name

LIRC_SET_REC_CARRIER - Set carrier used to modulate IR receive.

564 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, LIRC_SET_REC_CARRIER, __u32 *frequency)

Arguments

fd File descriptor returned by open().
frequency Frequency of the carrier that modulates PWM data, in Hz.

Description

Set receive carrier used to modulate IR PWM pulses and spaces.

Note:

If called together with ioctl LIRC_SET_REC_CARRIER_RANGE , this ioctl sets the upper bound frequency
that will be recognized by the device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl LIRC_SET_REC_CARRIER_RANGE

Name

LIRC_SET_REC_CARRIER_RANGE - Set lower bound of the carrier used to modulate IR receive.

Synopsis

int ioctl(int fd, LIRC_SET_REC_CARRIER_RANGE, __u32 *frequency)

Arguments

fd File descriptor returned by open().
frequency Frequency of the carrier that modulates PWM data, in Hz.

Description

This ioctl sets the upper range of carrier frequency that will be recognized by the IR receiver.

Note:

To set a range use LIRC_SET_REC_CARRIER_RANGE with the lower bound first and later call
LIRC_SET_REC_CARRIER with the upper bound.

1.4. Part III - Remote Controller API 565

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl LIRC_SET_SEND_CARRIER

Name

LIRC_SET_SEND_CARRIER - Set send carrier used to modulate IR TX.

Synopsis

int ioctl(int fd, LIRC_SET_SEND_CARRIER, __u32 *frequency)

Arguments

fd File descriptor returned by open().
frequency Frequency of the carrier to be modulated, in Hz.

Description

Set send carrier used to modulate IR PWM pulses and spaces.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl LIRC_SET_TRANSMITTER_MASK

Name

LIRC_SET_TRANSMITTER_MASK - Enables send codes on a given set of transmitters

Synopsis

int ioctl(int fd, LIRC_SET_TRANSMITTER_MASK, __u32 *mask)

Arguments

fd File descriptor returned by open().
mask Mask with channels to enable tx. Channel 0 is the least significant bit.

566 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Some IR TX devices have multiple output channels, in such case, LIRC_CAN_SET_TRANSMITTER_MASK is
returned via ioctl LIRC_GET_FEATURES and this ioctl sets what channels will send IR codes.
This ioctl enables the given set of transmitters. The first transmitter is encoded by the least significant
bit and so on.
When an invalid bit mask is given, i.e. a bit is set, even though the device does not have so many
transitters, then this ioctl returns the number of available transitters and does nothing otherwise.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl LIRC_SET_REC_TIMEOUT_REPORTS

Name

LIRC_SET_REC_TIMEOUT_REPORTS - enable or disable timeout reports for IR receive

Synopsis

int ioctl(int fd, LIRC_SET_REC_TIMEOUT_REPORTS, __u32 *enable)

Arguments

fd File descriptor returned by open().
enable enable = 1 means enable timeout report, enable = 0 means disable timeout reports.

Description

Enable or disable timeout reports for IR receive. By default, timeout reports should be turned off.

Note:

This ioctl is only valid for LIRC_MODE_MODE2 .

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl LIRC_SET_MEASURE_CARRIER_MODE

Name

LIRC_SET_MEASURE_CARRIER_MODE - enable or disable measure mode

1.4. Part III - Remote Controller API 567

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

int ioctl(int fd, LIRC_SET_MEASURE_CARRIER_MODE, __u32 *enable)

Arguments

fd File descriptor returned by open().
enable enable = 1 means enable measure mode, enable = 0 means disable measure mode.

Description

Enable or disable measure mode. If enabled, from the next key press on, the driver will send
LIRC_MODE2_FREQUENCY packets. By default this should be turned off.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl LIRC_SET_WIDEBAND_RECEIVER

Name

LIRC_SET_WIDEBAND_RECEIVER - enable wide band receiver.

Synopsis

int ioctl(int fd, LIRC_SET_WIDEBAND_RECEIVER, __u32 *enable)

Arguments

fd File descriptor returned by open().
enable enable = 1 means enable wideband receiver, enable = 0 means disable wideband receiver.

Description

Some receivers are equipped with special wide band receiver which is intended to be used to learn output
of existing remote. This ioctl allows enabling or disabling it.
This might be useful of receivers that have otherwise narrow band receiver that prevents them to be used
with some remotes. Wide band receiver might also be more precise. On the other hand its disadvantage
it usually reduced range of reception.

Note:

Wide band receiver might be implictly enabled if you enable carrier reports. In that case it will be
disabled as soon as you disable carrier reports. Trying to disable wide band receiver while carrier
reports are active will do nothing.

568 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

LIRC Header File

lirc.h

/*
* lirc.h - linux infrared remote control header file
* last modified 2010/07/13 by Jarod Wilson
*/

#ifndef _LINUX_LIRC_H
#define _LINUX_LIRC_H

#include <linux/types.h>
#include <linux/ioctl.h>

#define PULSE_BIT 0x01000000
#define PULSE_MASK 0x00FFFFFF

#define LIRC_MODE2_SPACE 0x00000000
#define LIRC_MODE2_PULSE 0x01000000
#define LIRC_MODE2_FREQUENCY 0x02000000
#define LIRC_MODE2_TIMEOUT 0x03000000

#define LIRC_VALUE_MASK 0x00FFFFFF
#define LIRC_MODE2_MASK 0xFF000000

#define LIRC_SPACE(val) (((val)&LIRC_VALUE_MASK) | LIRC_MODE2_SPACE)
#define LIRC_PULSE(val) (((val)&LIRC_VALUE_MASK) | LIRC_MODE2_PULSE)
#define LIRC_FREQUENCY(val) (((val)&LIRC_VALUE_MASK) | LIRC_MODE2_FREQUENCY)
#define LIRC_TIMEOUT(val) (((val)&LIRC_VALUE_MASK) | LIRC_MODE2_TIMEOUT)

#define LIRC_VALUE(val) ((val)&LIRC_VALUE_MASK)
#define LIRC_MODE2(val) ((val)&LIRC_MODE2_MASK)

#define LIRC_IS_SPACE(val) (LIRC_MODE2(val) == LIRC_MODE2_SPACE)
#define LIRC_IS_PULSE(val) (LIRC_MODE2(val) == LIRC_MODE2_PULSE)
#define LIRC_IS_FREQUENCY(val) (LIRC_MODE2(val) == LIRC_MODE2_FREQUENCY)
#define LIRC_IS_TIMEOUT(val) (LIRC_MODE2(val) == LIRC_MODE2_TIMEOUT)

/* used heavily by lirc userspace */
#define lirc_t int

/*** lirc compatible hardware features ***/

#define LIRC_MODE2SEND(x) (x)
#define LIRC_SEND2MODE(x) (x)
#define LIRC_MODE2REC(x) ((x) << 16)
#define LIRC_REC2MODE(x) ((x) >> 16)

#define LIRC_MODE_RAW 0x00000001
#define LIRC_MODE_PULSE 0x00000002
#define LIRC_MODE_MODE2 0x00000004

1.4. Part III - Remote Controller API 569

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define LIRC_MODE_LIRCCODE 0x00000010

#define LIRC_CAN_SEND_RAW LIRC_MODE2SEND(LIRC_MODE_RAW)
#define LIRC_CAN_SEND_PULSE LIRC_MODE2SEND(LIRC_MODE_PULSE)
#define LIRC_CAN_SEND_MODE2 LIRC_MODE2SEND(LIRC_MODE_MODE2)
#define LIRC_CAN_SEND_LIRCCODE LIRC_MODE2SEND(LIRC_MODE_LIRCCODE)

#define LIRC_CAN_SEND_MASK 0x0000003f

#define LIRC_CAN_SET_SEND_CARRIER 0x00000100
#define LIRC_CAN_SET_SEND_DUTY_CYCLE 0x00000200
#define LIRC_CAN_SET_TRANSMITTER_MASK 0x00000400

#define LIRC_CAN_REC_RAW LIRC_MODE2REC(LIRC_MODE_RAW)
#define LIRC_CAN_REC_PULSE LIRC_MODE2REC(LIRC_MODE_PULSE)
#define LIRC_CAN_REC_MODE2 LIRC_MODE2REC(LIRC_MODE_MODE2)
#define LIRC_CAN_REC_LIRCCODE LIRC_MODE2REC(LIRC_MODE_LIRCCODE)

#define LIRC_CAN_REC_MASK LIRC_MODE2REC(LIRC_CAN_SEND_MASK)

#define LIRC_CAN_SET_REC_CARRIER (LIRC_CAN_SET_SEND_CARRIER << 16)
#define LIRC_CAN_SET_REC_DUTY_CYCLE (LIRC_CAN_SET_SEND_DUTY_CYCLE << 16)

#define LIRC_CAN_SET_REC_DUTY_CYCLE_RANGE 0x40000000
#define LIRC_CAN_SET_REC_CARRIER_RANGE 0x80000000
#define LIRC_CAN_GET_REC_RESOLUTION 0x20000000
#define LIRC_CAN_SET_REC_TIMEOUT 0x10000000
#define LIRC_CAN_SET_REC_FILTER 0x08000000

#define LIRC_CAN_MEASURE_CARRIER 0x02000000
#define LIRC_CAN_USE_WIDEBAND_RECEIVER 0x04000000

#define LIRC_CAN_SEND(x) ((x)&LIRC_CAN_SEND_MASK)
#define LIRC_CAN_REC(x) ((x)&LIRC_CAN_REC_MASK)

#define LIRC_CAN_NOTIFY_DECODE 0x01000000

/*** IOCTL commands for lirc driver ***/

#define LIRC_GET_FEATURES _IOR(`i', 0x00000000, __u32)

#define LIRC_GET_SEND_MODE _IOR(`i', 0x00000001, __u32)
#define LIRC_GET_REC_MODE _IOR(`i', 0x00000002, __u32)
#define LIRC_GET_REC_RESOLUTION _IOR(`i', 0x00000007, __u32)

#define LIRC_GET_MIN_TIMEOUT _IOR(`i', 0x00000008, __u32)
#define LIRC_GET_MAX_TIMEOUT _IOR(`i', 0x00000009, __u32)

/* code length in bits, currently only for LIRC_MODE_LIRCCODE */
#define LIRC_GET_LENGTH _IOR(`i', 0x0000000f, __u32)

#define LIRC_SET_SEND_MODE _IOW(`i', 0x00000011, __u32)
#define LIRC_SET_REC_MODE _IOW(`i', 0x00000012, __u32)
/* Note: these can reset the according pulse_width */
#define LIRC_SET_SEND_CARRIER _IOW(`i', 0x00000013, __u32)
#define LIRC_SET_REC_CARRIER _IOW(`i', 0x00000014, __u32)
#define LIRC_SET_SEND_DUTY_CYCLE _IOW(`i', 0x00000015, __u32)
#define LIRC_SET_TRANSMITTER_MASK _IOW(`i', 0x00000017, __u32)

570 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/*
* when a timeout != 0 is set the driver will send a
* LIRC_MODE2_TIMEOUT data packet, otherwise LIRC_MODE2_TIMEOUT is
* never sent, timeout is disabled by default
*/

#define LIRC_SET_REC_TIMEOUT _IOW(`i', 0x00000018, __u32)

/* 1 enables, 0 disables timeout reports in MODE2 */
#define LIRC_SET_REC_TIMEOUT_REPORTS _IOW(`i', 0x00000019, __u32)

/*
* if enabled from the next key press on the driver will send
* LIRC_MODE2_FREQUENCY packets
*/

#define LIRC_SET_MEASURE_CARRIER_MODE _IOW(`i', 0x0000001d, __u32)

/*
* to set a range use LIRC_SET_REC_CARRIER_RANGE with the
* lower bound first and later LIRC_SET_REC_CARRIER with the upper bound
*/

#define LIRC_SET_REC_CARRIER_RANGE _IOW(`i', 0x0000001f, __u32)

#define LIRC_SET_WIDEBAND_RECEIVER _IOW(`i', 0x00000023, __u32)

#endif

1.4.6 Revision and Copyright

Authors:
• Carvalho Chehab, Mauro <mchehab@kernel.org>
• Initial version.

Copyright © 2009-2016 : Mauro Carvalho Chehab

1.4.7 Revision History

revision 3.15 / 2014-02-06 (mcc)
Added the interface description and the RC sysfs class description.

revision 1.0 / 2009-09-06 (mcc)
Initial revision

1.5 Part IV - Media Controller API

1.5.1 Introduction

Media devices increasingly handle multiple related functions. Many USB cameras include microphones,
video capture hardware can also output video, or SoC camera interfaces also perform memory-to-memory
operations similar to video codecs.
Independent functions, even when implemented in the same hardware, can be modelled as separate
devices. A USB camera with a microphone will be presented to userspace applications as V4L2 and ALSA
capture devices. The devices’ relationships (when using a webcam, end-users shouldn’t have to manually

1.5. Part IV - Media Controller API 571

mailto:mchehab@kernel.org

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

select the associated USB microphone), while not made available directly to applications by the drivers,
can usually be retrieved from sysfs.
With more and more advanced SoC devices being introduced, the current approach will not scale. Device
topologies are getting increasingly complex and can’t always be represented by a tree structure. Hard-
ware blocks are shared between different functions, creating dependencies between seemingly unrelated
devices.
Kernel abstraction APIs such as V4L2 and ALSA provide means for applications to access hardware pa-
rameters. As newer hardware expose an increasingly high number of those parameters, drivers need to
guess what applications really require based on limited information, thereby implementing policies that
belong to userspace.
The media controller API aims at solving those problems.

1.5.2 Media device model

Discovering a device internal topology, and configuring it at runtime, is one of the goals of the media
controller API. To achieve this, hardware devices and Linux Kernel interfaces are modelled as graph objects
on an oriented graph. The object types that constitute the graph are:

• An entity is a basic media hardware or software building block. It can correspond to a large variety
of logical blocks such as physical hardware devices (CMOS sensor for instance), logical hardware
devices (a building block in a System-on-Chip image processing pipeline), DMA channels or physical
connectors.

• An interface is a graph representation of a Linux Kernel userspace API interface, like a device node
or a sysfs file that controls one or more entities in the graph.

• A pad is a data connection endpoint through which an entity can interact with other entities. Data
(not restricted to video) produced by an entity flows from the entity’s output to one or more entity
inputs. Pads should not be confused with physical pins at chip boundaries.

• A data link is a point-to-point oriented connection between two pads, either on the same entity or
on different entities. Data flows from a source pad to a sink pad.

• An interface link is a point-to-point bidirectional control connection between a Linux Kernel interface
and an entity.

1.5.3 Types and flags used to represent the media graph elements

Table 1.177: Media entity types

MEDIA_ENT_F_UNKNOWN and
MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN

Unknown entity. That generally indicates that a driver
didn’t initialize properly the entity, with is a Kernel bug

MEDIA_ENT_F_IO_V4L Data streaming input and/or output entity.
MEDIA_ENT_F_IO_VBI V4L VBI streaming input or output entity
MEDIA_ENT_F_IO_SWRADIO V4L Software Digital Radio (SDR) streaming input or output

entity
MEDIA_ENT_F_IO_DTV DVB Digital TV streaming input or output entity
MEDIA_ENT_F_DTV_DEMOD Digital TV demodulator entity.
MEDIA_ENT_F_TS_DEMUX MPEG Transport stream demux entity. Could be imple-

mented on hardware or in Kernelspace by the Linux DVB
subsystem.

MEDIA_ENT_F_DTV_CA Digital TV Conditional Access module (CAM) entity
MEDIA_ENT_F_DTV_NET_DECAP Digital TV network ULE/MLE desencapsulation entity. Could

be implemented on hardware or in Kernelspace
MEDIA_ENT_F_CONN_RF Connector for a Radio Frequency (RF) signal.

Continued on next page

572 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.177 – continued from previous page
MEDIA_ENT_F_CONN_SVIDEO Connector for a S-Video signal.
MEDIA_ENT_F_CONN_COMPOSITE Connector for a RGB composite signal.
MEDIA_ENT_F_CAM_SENSOR Camera video sensor entity.
MEDIA_ENT_F_FLASH Flash controller entity.
MEDIA_ENT_F_LENS Lens controller entity.
MEDIA_ENT_F_ATV_DECODER Analog video decoder, the basic function of the video

decoder is to accept analogue video from a wide variety
of sources such as broadcast, DVD players, cameras and
video cassette recorders, in either NTSC, PAL, SECAM or
HD format, separating the stream into its component parts,
luminance and chrominance, and output it in some digital
video standard, with appropriate timing signals.

MEDIA_ENT_F_TUNER Digital TV, analog TV, radio and/or software radio tuner,
with consists on a PLL tuning stage that converts radio
frequency (RF) signal into an Intermediate Frequency (IF).
Modern tuners have internally IF-PLL decoders for audio
and video, but older models have those stages imple-
mented on separate entities.

MEDIA_ENT_F_IF_VID_DECODER IF-PLL video decoder. It receives the IF from a PLL and de-
codes the analog TV video signal. This is commonly found
on some very old analog tuners, like Philips MK3 designs.
They all contain a tda9887 (or some software compatible
similar chip, like tda9885). Those devices use a different
I2C address than the tuner PLL.

MEDIA_ENT_F_IF_AUD_DECODER IF-PLL sound decoder. It receives the IF from a PLL and de-
codes the analog TV audio signal. This is commonly found
on some very old analog hardware, like Micronas msp3400,
Philips tda9840, tda985x, etc. Those devices use a differ-
ent I2C address than the tuner PLL and should be controlled
together with the IF-PLL video decoder.

MEDIA_ENT_F_AUDIO_CAPTURE Audio Capture Function Entity.
MEDIA_ENT_F_AUDIO_PLAYBACK Audio Playback Function Entity.
MEDIA_ENT_F_AUDIO_MIXER Audio Mixer Function Entity.
MEDIA_ENT_F_PROC_VIDEO_COMPOSER Video composer (blender). An entity capable of video com-

posing must have at least two sink pads and one source
pad, and composes input video frames onto output video
frames. Composition can be performed using alpha blend-
ing, color keying, raster operations (ROP), stitching or any
other means.

MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER Video pixel formatter. An entity capable of pixel format-
ting must have at least one sink pad and one source pad.
Read pixel formatters read pixels from memory and per-
form a subset of unpacking, cropping, color keying, alpha
multiplication and pixel encoding conversion. Write pixel
formatters perform a subset of dithering, pixel encoding
conversion and packing and write pixels to memory.

MEDIA_ENT_F_PROC_VIDEO_PIXEL_ENC_CONV Video pixel encoding converter. An entity capable of pixel
enconding conversion must have at least one sink pad and
one source pad, and convert the encoding of pixels re-
ceived on its sink pad(s) to a different encoding output on
its source pad(s). Pixel encoding conversion includes but
isn’t limited to RGB to/from HSV, RGB to/from YUV and CFA
(Bayer) to RGB conversions.

Continued on next page

1.5. Part IV - Media Controller API 573

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.177 – continued from previous page
MEDIA_ENT_F_PROC_VIDEO_LUT Video look-up table. An entity capable of video lookup ta-

ble processing must have one sink pad and one source pad.
It uses the values of the pixels received on its sink pad
to look up entries in internal tables and output them on
its source pad. The lookup processing can be performed
on all components separately or combine them for multi-
dimensional table lookups.

MEDIA_ENT_F_PROC_VIDEO_SCALER Video scaler. An entity capable of video scaling must have
at least one sink pad and one source pad, and scale the
video frame(s) received on its sink pad(s) to a different
resolution output on its source pad(s). The range of sup-
ported scaling ratios is entity-specific and can differ be-
tween the horizontal and vertical directions (in particular
scaling can be supported in one direction only). Binning
and sub-sampling (occasionally also referred to as skip-
ping) are considered as scaling.

MEDIA_ENT_F_PROC_VIDEO_STATISTICS Video statistics computation (histogram, 3A, ...). An entity
capable of statistics computation must have one sink pad
and one source pad. It computes statistics over the frames
received on its sink pad and outputs the statistics data on
its source pad.

MEDIA_ENT_F_VID_MUX Video multiplexer. An entity capable of multiplexing must
have at least two sink pads and one source pad, and must
pass the video frame(s) received from the active sink pad
to the source pad.

MEDIA_ENT_F_VID_IF_BRIDGE Video interface bridge. A video interface bridge entity
must have at least one sink pad and at least one source
pad. It receives video frames on its sink pad from an in-
put video bus of one type (HDMI, eDP, MIPI CSI-2, ...), and
outputs them on its source pad to an output video bus of
another type (eDP, MIPI CSI-2, parallel, ...).

Table 1.178: Media entity flags

MEDIA_ENT_FL_DEFAULT Default entity for its type. Used to discover the default audio, VBI
and video devices, the default camera sensor, ...

MEDIA_ENT_FL_CONNECTOR The entity represents a data conector

574 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.179: Media interface types

MEDIA_INTF_T_DVB_FE Device node interface for the Dig-
ital TV frontend

typically,
/dev/dvb/adapter?/frontend?

MEDIA_INTF_T_DVB_DEMUX Device node interface for the Dig-
ital TV demux

typically,
/dev/dvb/adapter?/demux?

MEDIA_INTF_T_DVB_DVR Device node interface for the Dig-
ital TV DVR

typically,
/dev/dvb/adapter?/dvr?

MEDIA_INTF_T_DVB_CA Device node interface for the Dig-
ital TV Conditional Access

typically,
/dev/dvb/adapter?/ca?

MEDIA_INTF_T_DVB_NET Device node interface for the Dig-
ital TV network control

typically,
/dev/dvb/adapter?/net?

MEDIA_INTF_T_V4L_VIDEO Device node interface for video
(V4L)

typically, /dev/video?

MEDIA_INTF_T_V4L_VBI Device node interface for VBI
(V4L)

typically, /dev/vbi?

MEDIA_INTF_T_V4L_RADIO Device node interface for radio
(V4L)

typically, /dev/radio?

MEDIA_INTF_T_V4L_SUBDEV Device node interface for a V4L
subdevice

typically, /dev/v4l-subdev?

MEDIA_INTF_T_V4L_SWRADIO Device node interface for Software
Defined Radio (V4L)

typically, /dev/swradio?

MEDIA_INTF_T_V4L_TOUCH Device node interface for Touch
device (V4L)

typically, /dev/v4l-touch?

MEDIA_INTF_T_ALSA_PCM_CAPTURE Device node interface for ALSA
PCM Capture

typically,
/dev/snd/pcmC?D?c

MEDIA_INTF_T_ALSA_PCM_PLAYBACK Device node interface for ALSA
PCM Playback

typically,
/dev/snd/pcmC?D?p

MEDIA_INTF_T_ALSA_CONTROL Device node interface for ALSA
Control

typically, /dev/snd/controlC?

MEDIA_INTF_T_ALSA_COMPRESS Device node interface for ALSA
Compress

typically, /dev/snd/compr?

MEDIA_INTF_T_ALSA_RAWMIDI Device node interface for ALSA
Raw MIDI

typically, /dev/snd/midi?

MEDIA_INTF_T_ALSA_HWDEP Device node interface for ALSA
Hardware Dependent

typically, /dev/snd/hwC?D?

MEDIA_INTF_T_ALSA_SEQUENCER Device node interface for ALSA Se-
quencer

typically, /dev/snd/seq

MEDIA_INTF_T_ALSA_TIMER Device node interface for ALSA
Timer

typically, /dev/snd/timer

1.5. Part IV - Media Controller API 575

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.180: Media pad flags

MEDIA_PAD_FL_SINK Input pad, relative to the entity. Input pads sink data and are targets
of links.

MEDIA_PAD_FL_SOURCE Output pad, relative to the entity. Output pads source data and are
origins of links.

MEDIA_PAD_FL_MUST_CONNECT If this flag is set and the pad is linked to any other pad, then at least
one of those links must be enabled for the entity to be able to stream.
There could be temporary reasons (e.g. device configuration depen-
dent) for the pad to need enabled links even when this flag isn’t set;
the absence of the flag doesn’t imply there is none.

One and only one of MEDIA_PAD_FL_SINK and MEDIA_PAD_FL_SOURCE must be set for every pad.

Table 1.181: Media link flags

MEDIA_LNK_FL_ENABLED The link is enabled and can be used to transfer media data. When
two or more links target a sink pad, only one of them can be enabled
at a time.

MEDIA_LNK_FL_IMMUTABLE The link enabled state can’t be modified at runtime. An immutable
link is always enabled.

MEDIA_LNK_FL_DYNAMIC The link enabled state can be modified during streaming. This flag is
set by drivers and is read-only for applications.

MEDIA_LNK_FL_LINK_TYPE This is a bitmask that defines the type of the link. Currently, two
types of links are supported: MEDIA_LNK_FL_DATA_LINK if the link
is between two pads MEDIA_LNK_FL_INTERFACE_LINK if the link is
between an interface and an entity

1.5.4 Function Reference

media open()

Name

media-open - Open a media device

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.
flags Open flags. Access mode must be either O_RDONLY or O_RDWR. Other flags have no effect.

576 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

To open a media device applications call open() with the desired device name. The function has no side
effects; the device configuration remain unchanged.
When the device is opened in read-only mode, attempts to modify its configuration will result in an error,
and errno will be set to EBADF.

Return Value

open() returns the new file descriptor on success. On error, -1 is returned, and errno is set appropriately.
Possible error codes are:
EACCES The requested access to the file is not allowed.
EMFILE The process already has the maximum number of files open.
ENFILE The system limit on the total number of open files has been reached.
ENOMEM Insufficient kernel memory was available.
ENXIO No device corresponding to this device special file exists.

media close()

Name

media-close - Close a media device

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

Closes the media device. Resources associated with the file descriptor are freed. The device configuration
remain unchanged.

Return Value

close() returns 0 on success. On error, -1 is returned, and errno is set appropriately. Possible error codes
are:
EBADF fd is not a valid open file descriptor.

1.5. Part IV - Media Controller API 577

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

media ioctl()

Name

media-ioctl - Control a media device

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp)

Arguments

fd File descriptor returned by open().
request Media ioctl request code as defined in the media.h header file, for example ME-

DIA_IOC_SETUP_LINK.
argp Pointer to a request-specific structure.

Description

The ioctl() function manipulates media device parameters. The argument fd must be an open file
descriptor.
The ioctl request code specifies the media function to be called. It has encoded in it whether the argument
is an input, output or read/write parameter, and the size of the argument argp in bytes.
Macros and structures definitions specifying media ioctl requests and their parameters are located in the
media.h header file. All media ioctl requests, their respective function and parameters are specified in
Function Reference .

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
Request-specific error codes are listed in the individual requests descriptions.
When an ioctl that takes an output or read/write parameter fails, the parameter remains unmodified.

ioctl MEDIA_IOC_DEVICE_INFO

Name

MEDIA_IOC_DEVICE_INFO - Query device information

Synopsis

int ioctl(int fd, MEDIA_IOC_DEVICE_INFO, struct media_device_info *argp)

578 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

fd File descriptor returned by open() .
argp

Description

All media devices must support the MEDIA_IOC_DEVICE_INFO ioctl. To query device information, applica-
tions call the ioctl with a pointer to a struct media_device_info. The driver fills the structure and returns
the information to the application. The ioctl never fails.
media_device_info

Table 1.182: struct media_device_info
char driver[16] Name of the driver implementing the media API as

a NUL-terminated ASCII string. The driver version
is stored in the driver_version field.
Driver specific applications can use this informa-
tion to verify the driver identity. It is also useful
to work around known bugs, or to identify drivers
in error reports.

char model[32] Device model name as a NUL-terminated UTF-8
string. The device version is stored in the de-
vice_version field and is not be appended to the
model name.

char serial[40] Serial number as a NUL-terminated ASCII string.
char bus_info[32] Location of the device in the system as a NUL-

terminated ASCII string. This includes the bus
type name (PCI, USB, ...) and a bus-specific iden-
tifier.

__u32 media_version Media API version, formatted with the KER-
NEL_VERSION() macro.

__u32 hw_revision Hardware device revision in a driver-specific for-
mat.

__u32 driver_version Media device driver version, formatted with the
KERNEL_VERSION() macro. Together with the
driver field this identifies a particular driver.

__u32 reserved[31] Reserved for future extensions. Drivers and appli-
cations must set this array to zero.

The serial and bus_info fields can be used to distinguish between multiple instances of otherwise iden-
tical hardware. The serial number takes precedence when provided and can be assumed to be unique.
If the serial number is an empty string, the bus_info field can be used instead. The bus_info field is
guaranteed to be unique, but can vary across reboots or device unplug/replug.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

ioctl MEDIA_IOC_G_TOPOLOGY

1.5. Part IV - Media Controller API 579

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Name

MEDIA_IOC_G_TOPOLOGY - Enumerate the graph topology and graph element properties

Synopsis

int ioctl(int fd, MEDIA_IOC_G_TOPOLOGY, struct media_v2_topology *argp)

Arguments

fd File descriptor returned by open() .
argp

Description

The typical usage of this ioctl is to call it twice. On the first call, the structure defined at struct me-
dia_v2_topology should be zeroed. At return, if no errors happen, this ioctl will return the topol-
ogy_version and the total number of entities, interfaces, pads and links.
Before the second call, the userspace should allocate arrays to store the graph elements that are desired,
putting the pointers to them at the ptr_entities, ptr_interfaces, ptr_links and/or ptr_pads, keeping the other
values untouched.
If the topology_version remains the same, the ioctl should fill the desired arrays with the media graph
elements.
media_v2_topology

Table 1.183: struct media_v2_topology
__u64 topology_version Version of the media graph topology. When the graph is created, this

field starts with zero. Every time a graph element is added or removed,
this field is incremented.

__u64 num_entities Number of entities in the graph
__u64 ptr_entities A pointer to a memory area where the entities array will be stored, con-

verted to a 64-bits integer. It can be zero. if zero, the ioctl won’t store
the entities. It will just update num_entities

__u64 num_interfaces Number of interfaces in the graph
__u64 ptr_interfaces A pointer to a memory area where the interfaces array will be stored,

converted to a 64-bits integer. It can be zero. if zero, the ioctl won’t
store the interfaces. It will just update num_interfaces

__u64 num_pads Total number of pads in the graph
__u64 ptr_pads A pointer to a memory area where the pads array will be stored, con-

verted to a 64-bits integer. It can be zero. if zero, the ioctl won’t store
the pads. It will just update num_pads

__u64 num_links Total number of data and interface links in the graph
__u64 ptr_links A pointer to a memory area where the links array will be stored, con-

verted to a 64-bits integer. It can be zero. if zero, the ioctl won’t store
the links. It will just update num_links

media_v2_entity

580 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.184: struct media_v2_entity
__u32 id Unique ID for the entity.
char name[64] Entity name as an UTF-8 NULL-terminated string.
__u32 function Entity main function, see Media entity types for details.
__u32 reserved[12] Reserved for future extensions. Drivers and applications must set this

array to zero.

media_v2_interface

Table 1.185: struct media_v2_interface
__u32 id Unique ID for the interface.
__u32 intf_type Interface type, see Media interface types for details.
__u32 flags Interface flags. Currently unused.
__u32 reserved[9] Reserved for future extensions. Drivers and applications must set this

array to zero.
struct
me-
dia_v2_intf_devnode

devnode Used only for device node interfaces. See media_v2_intf_devnode for
details..

media_v2_intf_devnode

Table 1.186: struct media_v2_intf_devnode
__u32 major Device node major number.
__u32 minor Device node minor number.

media_v2_pad

Table 1.187: struct media_v2_pad
__u32 id Unique ID for the pad.
__u32 entity_id Unique ID for the entity where this pad belongs.
__u32 flags Pad flags, see Media pad flags for more details.
__u32 reserved[9] Reserved for future extensions. Drivers and applications must set this

array to zero.

media_v2_link

Table 1.188: struct media_v2_link
__u32 id Unique ID for the link.
__u32 source_id On pad to pad links: unique ID for the source pad.

On interface to entity links: unique ID for the entity.
__u32 sink_id On pad to pad links: unique ID for the sink pad.

On interface to entity links: unique ID for the entity.
__u32 flags Link flags, see Media link flags for more details.
__u32 reserved[5] Reserved for future extensions. Drivers and applications must set this

array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
ENOSPC This is returned when either one or more of the num_entities, num_interfaces, num_links or

num_pads are non-zero and are smaller than the actual number of elements inside the graph. This

1.5. Part IV - Media Controller API 581

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

may happen if the topology_version changed when compared to the last time this ioctl was called.
Userspace should usually free the area for the pointers, zero the struct elements and call this ioctl
again.

ioctl MEDIA_IOC_ENUM_ENTITIES

Name

MEDIA_IOC_ENUM_ENTITIES - Enumerate entities and their properties

Synopsis

int ioctl(int fd, MEDIA_IOC_ENUM_ENTITIES, struct media_entity_desc *argp)

Arguments

fd File descriptor returned by open() .
argp

Description

To query the attributes of an entity, applications set the id field of a struct media_entity_desc structure
and call the MEDIA_IOC_ENUM_ENTITIES ioctl with a pointer to this structure. The driver fills the rest of
the structure or returns an EINVAL error code when the id is invalid. Entities can be enumerated by or’ing
the id with the MEDIA_ENT_ID_FLAG_NEXT flag. The driver will return information about the entity with the
smallest id strictly larger than the requested one (‘next entity’), or the EINVAL error code if there is none.
Entity IDs can be non-contiguous. Applications must not try to enumerate entities by calling ME-
DIA_IOC_ENUM_ENTITIES with increasing id’s until they get an error.
media_entity_desc

Table 1.189: struct media_entity_desc
__u32 id Entity id, set by the application. When the id is or’ed with ME-

DIA_ENT_ID_FLAG_NEXT, the driver clears the flag and returns
the first entity with a larger id.

char name[32] Entity name as an UTF-8 NULL-terminated string.
__u32 type Entity type, see Media entity types for details.
__u32 revision Entity revision. Always zero (obsolete)
__u32 flags Entity flags, see Media entity flags for details.
__u32 group_id Entity group ID. Always zero (obsolete)
__u16 pads Number of pads
__u16 links Total number of outbound links. Inbound links are not counted

in this field.
union

struct dev Valid for (sub-)devices that create a single device node.
__u32 major Device node major number.
__u32 minor Device node minor number.

__u8 raw[184]

582 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct media_entity_desc id references a non-existing entity.

ioctl MEDIA_IOC_ENUM_LINKS

Name

MEDIA_IOC_ENUM_LINKS - Enumerate all pads and links for a given entity

Synopsis

int ioctl(int fd, MEDIA_IOC_ENUM_LINKS, struct media_links_enum *argp)

Arguments

fd File descriptor returned by open() .
argp

Description

To enumerate pads and/or links for a given entity, applications set the entity field of a struct me-
dia_links_enum structure and initialize the struct media_pad_desc and struct media_link_desc struc-
ture arrays pointed by the pads and links fields. They then call the MEDIA_IOC_ENUM_LINKS ioctl with a
pointer to this structure.
If the pads field is not NULL, the driver fills the pads array with information about the entity’s pads. The
array must have enough room to store all the entity’s pads. The number of pads can be retrieved with
ioctl MEDIA_IOC_ENUM_ENTITIES .
If the links field is not NULL, the driver fills the links array with information about the entity’s outbound
links. The array must have enough room to store all the entity’s outbound links. The number of outbound
links can be retrieved with ioctl MEDIA_IOC_ENUM_ENTITIES .
Only forward links that originate at one of the entity’s source pads are returned during the enumeration
process.
media_links_enum

Table 1.190: struct media_links_enum
__u32 entity Entity id, set by the application.
struct media_pad_desc *pads Pointer to a pads array allocated by the applica-

tion. Ignored if NULL.
struct media_link_desc *links Pointer to a links array allocated by the applica-

tion. Ignored if NULL.

media_pad_desc

1.5. Part IV - Media Controller API 583

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.191: struct media_pad_desc
__u32 entity ID of the entity this pad belongs to.
__u16 index 0-based pad index.
__u32 flags Pad flags, see Media pad flags for more details.

media_link_desc

Table 1.192: struct media_link_desc
struct media_pad_desc source Pad at the origin of this link.
struct media_pad_desc sink Pad at the target of this link.
__u32 flags Link flags, see Media link flags for more details.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct media_links_enum id references a non-existing entity.

ioctl MEDIA_IOC_SETUP_LINK

Name

MEDIA_IOC_SETUP_LINK - Modify the properties of a link

Synopsis

int ioctl(int fd, MEDIA_IOC_SETUP_LINK, struct media_link_desc *argp)

Arguments

fd File descriptor returned by open() .
argp

Description

To change link properties applications fill a struct media_link_desc with link identification information
(source and sink pad) and the new requested link flags. They then call the MEDIA_IOC_SETUP_LINK ioctl
with a pointer to that structure.
The only configurable property is the ENABLED link flag to enable/disable a link. Links marked with the
IMMUTABLE link flag can not be enabled or disabled.
Link configuration has no side effect on other links. If an enabled link at the sink pad prevents the link
from being enabled, the driver returns with an EBUSY error code.
Only links marked with the DYNAMIC link flag can be enabled/disabled while streaming media data. At-
tempting to enable or disable a streaming non-dynamic link will return an EBUSY error code.
If the specified link can’t be found the driver returns with an EINVAL error code.

584 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
EINVAL The struct media_link_desc references a non-existing link, or the link is immutable and an at-

tempt to modify its configuration was made.

1.5.5 Media Controller Header File

media.h

/*
* Multimedia device API
*
* Copyright (C) 2010 Nokia Corporation
*
* Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
* Sakari Ailus <sakari.ailus@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#ifndef __LINUX_MEDIA_H
#define __LINUX_MEDIA_H

#ifndef __KERNEL__
#include <stdint.h>
#endif
#include <linux/ioctl.h>
#include <linux/types.h>
#include <linux/version.h>

struct media_device_info
{

char driver[16];
char model[32];
char serial[40];
char bus_info[32];
__u32 media_version;
__u32 hw_revision;
__u32 driver_version;
__u32 reserved[31];

};

#define MEDIA_ENT_ID_FLAG_NEXT (1 << 31)

1.5. Part IV - Media Controller API 585

mailto:laurent.pinchart@ideasonboard.com
mailto:sakari.ailus@iki.fi

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/*
* Initial value to be used when a new entity is created
* Drivers should change it to something useful
*/

#define MEDIA_ENT_F_UNKNOWN 0x00000000

/*
* Base number ranges for entity functions
*
* NOTE: those ranges and entity function number are phased just to
* make it easier to maintain this file. Userspace should not rely on
* the ranges to identify a group of function types, as newer
* functions can be added with any name within the full u32 range.
*/

#define MEDIA_ENT_F_BASE 0x00000000
#define MEDIA_ENT_F_OLD_BASE 0x00010000
#define MEDIA_ENT_F_OLD_SUBDEV_BASE 0x00020000

/*
* DVB entities
*/

#define MEDIA_ENT_F_DTV_DEMOD (MEDIA_ENT_F_BASE + 0x00001)
#define MEDIA_ENT_F_TS_DEMUX (MEDIA_ENT_F_BASE + 0x00002)
#define MEDIA_ENT_F_DTV_CA (MEDIA_ENT_F_BASE + 0x00003)
#define MEDIA_ENT_F_DTV_NET_DECAP (MEDIA_ENT_F_BASE + 0x00004)

/*
* I/O entities
*/

#define MEDIA_ENT_F_IO_DTV (MEDIA_ENT_F_BASE + 0x01001)
#define MEDIA_ENT_F_IO_VBI (MEDIA_ENT_F_BASE + 0x01002)
#define MEDIA_ENT_F_IO_SWRADIO (MEDIA_ENT_F_BASE + 0x01003)

/*
* Analog TV IF-PLL decoders
*
* It is a responsibility of the master/bridge drivers to create links
* for MEDIA_ENT_F_IF_VID_DECODER and MEDIA_ENT_F_IF_AUD_DECODER.
*/

#define MEDIA_ENT_F_IF_VID_DECODER (MEDIA_ENT_F_BASE + 0x02001)
#define MEDIA_ENT_F_IF_AUD_DECODER (MEDIA_ENT_F_BASE + 0x02002)

/*
* Audio Entity Functions
*/

#define MEDIA_ENT_F_AUDIO_CAPTURE (MEDIA_ENT_F_BASE + 0x03001)
#define MEDIA_ENT_F_AUDIO_PLAYBACK (MEDIA_ENT_F_BASE + 0x03002)
#define MEDIA_ENT_F_AUDIO_MIXER (MEDIA_ENT_F_BASE + 0x03003)

/*
* Processing entities
*/

#define MEDIA_ENT_F_PROC_VIDEO_COMPOSER (MEDIA_ENT_F_BASE + 0x4001)
#define MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER (MEDIA_ENT_F_BASE + 0x4002)
#define MEDIA_ENT_F_PROC_VIDEO_PIXEL_ENC_CONV (MEDIA_ENT_F_BASE + 0x4003)
#define MEDIA_ENT_F_PROC_VIDEO_LUT (MEDIA_ENT_F_BASE + 0x4004)
#define MEDIA_ENT_F_PROC_VIDEO_SCALER (MEDIA_ENT_F_BASE + 0x4005)

586 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define MEDIA_ENT_F_PROC_VIDEO_STATISTICS (MEDIA_ENT_F_BASE + 0x4006)

/*
* Switch and bridge entitites
*/

#define MEDIA_ENT_F_VID_MUX (MEDIA_ENT_F_BASE + 0x5001)
#define MEDIA_ENT_F_VID_IF_BRIDGE (MEDIA_ENT_F_BASE + 0x5002)

/*
* Connectors
*/

/* It is a responsibility of the entity drivers to add connectors and links */
#ifdef __KERNEL__

/*
* For now, it should not be used in userspace, as some
* definitions may change
*/

#define MEDIA_ENT_F_CONN_RF (MEDIA_ENT_F_BASE + 0x30001)
#define MEDIA_ENT_F_CONN_SVIDEO (MEDIA_ENT_F_BASE + 0x30002)
#define MEDIA_ENT_F_CONN_COMPOSITE (MEDIA_ENT_F_BASE + 0x30003)

#endif

/*
* Don't touch on those. The ranges MEDIA_ENT_F_OLD_BASE and
* MEDIA_ENT_F_OLD_SUBDEV_BASE are kept to keep backward compatibility
* with the legacy v1 API.The number range is out of range by purpose:
* several previously reserved numbers got excluded from this range.
*
* Subdevs are initialized with MEDIA_ENT_T_V4L2_SUBDEV_UNKNOWN,
* in order to preserve backward compatibility.
* Drivers must change to the proper subdev type before
* registering the entity.
*/

#define MEDIA_ENT_F_IO_V4L (MEDIA_ENT_F_OLD_BASE + 1)

#define MEDIA_ENT_F_CAM_SENSOR (MEDIA_ENT_F_OLD_SUBDEV_BASE + 1)
#define MEDIA_ENT_F_FLASH (MEDIA_ENT_F_OLD_SUBDEV_BASE + 2)
#define MEDIA_ENT_F_LENS (MEDIA_ENT_F_OLD_SUBDEV_BASE + 3)
#define MEDIA_ENT_F_ATV_DECODER (MEDIA_ENT_F_OLD_SUBDEV_BASE + 4)
/*
* It is a responsibility of the master/bridge drivers to add connectors
* and links for MEDIA_ENT_F_TUNER. Please notice that some old tuners
* may require the usage of separate I2C chips to decode analog TV signals,
* when the master/bridge chipset doesn't have its own TV standard decoder.
* On such cases, the IF-PLL staging is mapped via one or two entities:
* MEDIA_ENT_F_IF_VID_DECODER and/or MEDIA_ENT_F_IF_AUD_DECODER.
*/

#define MEDIA_ENT_F_TUNER (MEDIA_ENT_F_OLD_SUBDEV_BASE + 5)

#define MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN MEDIA_ENT_F_OLD_SUBDEV_BASE

#if !defined(__KERNEL__) || defined(__NEED_MEDIA_LEGACY_API)

/*
* Legacy symbols used to avoid userspace compilation breakages

1.5. Part IV - Media Controller API 587

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

*
* Those symbols map the entity function into types and should be
* used only on legacy programs for legacy hardware. Don't rely
* on those for MEDIA_IOC_G_TOPOLOGY.
*/

#define MEDIA_ENT_TYPE_SHIFT 16
#define MEDIA_ENT_TYPE_MASK 0x00ff0000
#define MEDIA_ENT_SUBTYPE_MASK 0x0000ffff

/* End of the old subdev reserved numberspace */
#define MEDIA_ENT_T_DEVNODE_UNKNOWN (MEDIA_ENT_T_DEVNODE | \

MEDIA_ENT_SUBTYPE_MASK)

#define MEDIA_ENT_T_DEVNODE MEDIA_ENT_F_OLD_BASE
#define MEDIA_ENT_T_DEVNODE_V4L MEDIA_ENT_F_IO_V4L
#define MEDIA_ENT_T_DEVNODE_FB (MEDIA_ENT_T_DEVNODE + 2)
#define MEDIA_ENT_T_DEVNODE_ALSA (MEDIA_ENT_T_DEVNODE + 3)
#define MEDIA_ENT_T_DEVNODE_DVB (MEDIA_ENT_T_DEVNODE + 4)

#define MEDIA_ENT_T_UNKNOWN MEDIA_ENT_F_UNKNOWN
#define MEDIA_ENT_T_V4L2_VIDEO MEDIA_ENT_F_IO_V4L
#define MEDIA_ENT_T_V4L2_SUBDEV MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN
#define MEDIA_ENT_T_V4L2_SUBDEV_SENSOR MEDIA_ENT_F_CAM_SENSOR
#define MEDIA_ENT_T_V4L2_SUBDEV_FLASH MEDIA_ENT_F_FLASH
#define MEDIA_ENT_T_V4L2_SUBDEV_LENS MEDIA_ENT_F_LENS
#define MEDIA_ENT_T_V4L2_SUBDEV_DECODER MEDIA_ENT_F_ATV_DECODER
#define MEDIA_ENT_T_V4L2_SUBDEV_TUNER MEDIA_ENT_F_TUNER

/* Obsolete symbol for media_version, no longer used in the kernel */
#define MEDIA_API_VERSION KERNEL_VERSION(0, 1, 0)
#endif

/* Entity flags */
#define MEDIA_ENT_FL_DEFAULT (1 << 0)
#define MEDIA_ENT_FL_CONNECTOR (1 << 1)

struct media_entity_desc
{

__u32 id;
char name[32];
__u32 type;
__u32 revision;
__u32 flags;
__u32 group_id;
__u16 pads;
__u16 links;

__u32 reserved[4];

union {
/* Node specifications */
struct {

__u32 major;
__u32 minor;

} dev;

#if 1
/*

588 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* TODO: this shouldn't have been added without
* actual drivers that use this. When the first real driver
* appears that sets this information, special attention
* should be given whether this information is 1) enough, and
* 2) can deal with udev rules that rename devices. The struct
* dev would not be sufficient for this since that does not
* contain the subdevice information. In addition, struct dev
* can only refer to a single device, and not to multiple (e.g.
* pcm and mixer devices).
*
* So for now mark this as a to do.
*/

struct {
__u32 card;
__u32 device;
__u32 subdevice;

} alsa;
#endif

#if 1
/*
* DEPRECATED: previous node specifications. Kept just to
* avoid breaking compilation, but media_entity_desc.dev
* should be used instead. In particular, alsa and dvb
* fields below are wrong: for all devnodes, there should
* be just major/minor inside the struct, as this is enough
* to represent any devnode, no matter what type.
*/

struct {
__u32 major;
__u32 minor;

} v4l;
struct {

__u32 major;
__u32 minor;

} fb;
int dvb;

#endif

/* Sub-device specifications */
/* Nothing needed yet */
__u8 raw[184];

};
};

#define MEDIA_PAD_FL_SINK (1 << 0)
#define MEDIA_PAD_FL_SOURCE (1 << 1)
#define MEDIA_PAD_FL_MUST_CONNECT (1 << 2)

struct media_pad_desc
{

__u32 entity; /* entity ID */
__u16 index; /* pad index */
__u32 flags; /* pad flags */
__u32 reserved[2];

};

#define MEDIA_LNK_FL_ENABLED (1 << 0)

1.5. Part IV - Media Controller API 589

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define MEDIA_LNK_FL_IMMUTABLE (1 << 1)
#define MEDIA_LNK_FL_DYNAMIC (1 << 2)

#define MEDIA_LNK_FL_LINK_TYPE (0xf << 28)
define MEDIA_LNK_FL_DATA_LINK (0 << 28)
define MEDIA_LNK_FL_INTERFACE_LINK (1 << 28)

struct media_link_desc
{

struct media_pad_desc
source;

struct media_pad_desc
sink;

__u32 flags;
__u32 reserved[2];

};

struct media_links_enum
{

__u32 entity;
/* Should have enough room for pads elements */
struct media_pad_desc

__user *pads;
/* Should have enough room for links elements */
struct media_link_desc

__user *links;
__u32 reserved[4];

};

/* Interface type ranges */

#define MEDIA_INTF_T_DVB_BASE 0x00000100
#define MEDIA_INTF_T_V4L_BASE 0x00000200
#define MEDIA_INTF_T_ALSA_BASE 0x00000300

/* Interface types */

#define MEDIA_INTF_T_DVB_FE (MEDIA_INTF_T_DVB_BASE)
#define MEDIA_INTF_T_DVB_DEMUX (MEDIA_INTF_T_DVB_BASE + 1)
#define MEDIA_INTF_T_DVB_DVR (MEDIA_INTF_T_DVB_BASE + 2)
#define MEDIA_INTF_T_DVB_CA (MEDIA_INTF_T_DVB_BASE + 3)
#define MEDIA_INTF_T_DVB_NET (MEDIA_INTF_T_DVB_BASE + 4)

#define MEDIA_INTF_T_V4L_VIDEO (MEDIA_INTF_T_V4L_BASE)
#define MEDIA_INTF_T_V4L_VBI (MEDIA_INTF_T_V4L_BASE + 1)
#define MEDIA_INTF_T_V4L_RADIO (MEDIA_INTF_T_V4L_BASE + 2)
#define MEDIA_INTF_T_V4L_SUBDEV (MEDIA_INTF_T_V4L_BASE + 3)
#define MEDIA_INTF_T_V4L_SWRADIO (MEDIA_INTF_T_V4L_BASE + 4)
#define MEDIA_INTF_T_V4L_TOUCH (MEDIA_INTF_T_V4L_BASE + 5)

#define MEDIA_INTF_T_ALSA_PCM_CAPTURE (MEDIA_INTF_T_ALSA_BASE)
#define MEDIA_INTF_T_ALSA_PCM_PLAYBACK (MEDIA_INTF_T_ALSA_BASE + 1)
#define MEDIA_INTF_T_ALSA_CONTROL (MEDIA_INTF_T_ALSA_BASE + 2)
#define MEDIA_INTF_T_ALSA_COMPRESS (MEDIA_INTF_T_ALSA_BASE + 3)
#define MEDIA_INTF_T_ALSA_RAWMIDI (MEDIA_INTF_T_ALSA_BASE + 4)
#define MEDIA_INTF_T_ALSA_HWDEP (MEDIA_INTF_T_ALSA_BASE + 5)
#define MEDIA_INTF_T_ALSA_SEQUENCER (MEDIA_INTF_T_ALSA_BASE + 6)
#define MEDIA_INTF_T_ALSA_TIMER (MEDIA_INTF_T_ALSA_BASE + 7)

590 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/*
* MC next gen API definitions
*
* NOTE: The declarations below are close to the MC RFC for the Media
* Controller, the next generation. Yet, there are a few adjustments
* to do, as we want to be able to have a functional API before
* the MC properties change. Those will be properly marked below.
* Please also notice that I removed ``num_pads'', ``num_links'',
* from the proposal, as a proper userspace application will likely
* use lists for pads/links, just as we intend to do in Kernelspace.
* The API definition should be freed from fields that are bound to
* some specific data structure.
*
* FIXME: Currently, I opted to name the new types as ``media_v2'', as this
* won't cause any conflict with the Kernelspace namespace, nor with
* the previous kAPI media_*_desc namespace. This can be changed
* later, before the adding this API upstream.
*/

struct media_v2_entity
{

__u32 id;
char name[64]; /* FIXME: move to a property? (RFC says so) */
__u32 function; /* Main function of the entity */
__u32 reserved[6];

} __attribute__ ((packed));

/* Should match the specific fields at media_intf_devnode */
struct media_v2_intf_devnode
{

__u32 major;
__u32 minor;

} __attribute__ ((packed));

struct media_v2_interface
{

__u32 id;
__u32 intf_type;
__u32 flags;
__u32 reserved[9];

union {
struct media_v2_intf_devnode

devnode;
__u32 raw[16];

};
} __attribute__ ((packed));

struct media_v2_pad
{

__u32 id;
__u32 entity_id;
__u32 flags;
__u32 reserved[5];

} __attribute__ ((packed));

struct media_v2_link

1.5. Part IV - Media Controller API 591

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

{
__u32 id;
__u32 source_id;
__u32 sink_id;
__u32 flags;
__u32 reserved[6];

} __attribute__ ((packed));

struct media_v2_topology
{

__u64 topology_version;

__u32 num_entities;
__u32 reserved1;
__u64 ptr_entities;

__u32 num_interfaces;
__u32 reserved2;
__u64 ptr_interfaces;

__u32 num_pads;
__u32 reserved3;
__u64 ptr_pads;

__u32 num_links;
__u32 reserved4;
__u64 ptr_links;

} __attribute__ ((packed));

/* ioctls */

#define MEDIA_IOC_DEVICE_INFO _IOWR(`|', 0x00, struct media_device_info
)
#define MEDIA_IOC_ENUM_ENTITIES _IOWR(`|', 0x01, struct media_entity_desc
)
#define MEDIA_IOC_ENUM_LINKS _IOWR(`|', 0x02, struct media_links_enum
)
#define MEDIA_IOC_SETUP_LINK _IOWR(`|', 0x03, struct media_link_desc
)
#define MEDIA_IOC_G_TOPOLOGY _IOWR(`|', 0x04, struct media_v2_topology
)

#endif /* __LINUX_MEDIA_H */

1.5.6 Revision and Copyright

Authors:
• Pinchart, Laurent <laurent.pinchart@ideasonboard.com>
• Initial version.
• Carvalho Chehab, Mauro <mchehab@kernel.org>
• MEDIA_IOC_G_TOPOLOGY documentation and documentation improvements.

Copyright © 2010 : Laurent Pinchart
Copyright © 2015-2016 : Mauro Carvalho Chehab

592 Chapter 1. Linux Media Infrastructure userspace API

mailto:laurent.pinchart@ideasonboard.com
mailto:mchehab@kernel.org

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1.5.7 Revision History

revision 1.1.0 / 2015-12-12 (mcc)
revision 1.0.0 / 2010-11-10 (lp)

Initial revision

1.6 Part V - Consumer Electronics Control API

This part describes the CEC: Consumer Electronics Control

1.6.1 Introduction

HDMI connectors provide a single pin for use by the Consumer Electronics Control protocol. This protocol
allows different devices connected by an HDMI cable to communicate. The protocol for CEC version 1.4
is defined in supplements 1 (CEC) and 2 (HEAC or HDMI Ethernet and Audio Return Channel) of the HDMI
1.4a (HDMI) specification and the extensions added to CEC version 2.0 are defined in chapter 11 of the
HDMI 2.0 (HDMI2) specification.
The bitrate is very slow (effectively no more than 36 bytes per second) and is based on the ancient AV.link
protocol used in old SCART connectors. The protocol closely resembles a crazy Rube Goldberg contraption
and is an unholy mix of low and high level messages. Some messages, especially those part of the HEAC
protocol layered on top of CEC, need to be handled by the kernel, others can be handled either by the
kernel or by userspace.
In addition, CEC can be implemented in HDMI receivers, transmitters and in USB devices that have an
HDMI input and an HDMI output and that control just the CEC pin.
Drivers that support CEC will create a CEC device node (/dev/cecX) to give userspace access to the CEC
adapter. The ioctl CEC_ADAP_G_CAPS ioctl will tell userspace what it is allowed to do.
In order to check the support and test it, it is suggested to download the v4l-utils package. It provides
three tools to handle CEC:

• cec-ctl: the Swiss army knife of CEC. Allows you to configure, transmit and monitor CEC messages.
• cec-compliance: does a CEC compliance test of a remote CEC device to determine how compliant

the CEC implementation is.
• cec-follower: emulates a CEC follower.

1.6.2 Function Reference

cec open()

Name

cec-open - Open a cec device

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

1.6. Part V - Consumer Electronics Control API 593

https://git.linuxtv.org/v4l-utils.git/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Arguments

device_name Device to be opened.
flags Open flags. Access mode must be O_RDWR.

When the O_NONBLOCK flag is given, the CEC_RECEIVE and CEC_DQEVENT ioctls will return
the EAGAIN error code when no message or event is available, and ioctls CEC_TRANSMIT ,
CEC_ADAP_S_PHYS_ADDR and CEC_ADAP_S_LOG_ADDRS all return 0.
Other flags have no effect.

Description

To open a cec device applications call open() with the desired device name. The function has no side
effects; the device configuration remain unchanged.
When the device is opened in read-only mode, attempts to modify its configuration will result in an error,
and errno will be set to EBADF.

Return Value

open() returns the new file descriptor on success. On error, -1 is returned, and errno is set appropriately.
Possible error codes include:
EACCES The requested access to the file is not allowed.
EMFILE The process already has the maximum number of files open.
ENFILE The system limit on the total number of open files has been reached.
ENOMEM Insufficient kernel memory was available.
ENXIO No device corresponding to this device special file exists.

cec close()

Name

cec-close - Close a cec device

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

Closes the cec device. Resources associated with the file descriptor are freed. The device configuration
remain unchanged.

594 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

close() returns 0 on success. On error, -1 is returned, and errno is set appropriately. Possible error codes
are:
EBADF fd is not a valid open file descriptor.

cec ioctl()

Name

cec-ioctl - Control a cec device

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp)

Arguments

fd File descriptor returned by open().
request CEC ioctl request code as defined in the cec.h header file, for example CEC_ADAP_G_CAPS .
argp Pointer to a request-specific structure.

Description

The ioctl() function manipulates cec device parameters. The argument fd must be an open file descrip-
tor.
The ioctl request code specifies the cec function to be called. It has encoded in it whether the argument
is an input, output or read/write parameter, and the size of the argument argp in bytes.
Macros and structures definitions specifying cec ioctl requests and their parameters are located in the
cec.h header file. All cec ioctl requests, their respective function and parameters are specified in Function
Reference .

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
Request-specific error codes are listed in the individual requests descriptions.
When an ioctl that takes an output or read/write parameter fails, the parameter remains unmodified.

cec poll()

Name

cec-poll - Wait for some event on a file descriptor

1.6. Part V - Consumer Electronics Control API 595

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout)

Arguments

ufds List of FD events to be watched
nfds Number of FD events at the *ufds array
timeout Timeout to wait for events

Description

With the poll() function applications can wait for CEC events.
On success poll() returns the number of file descriptors that have been selected (that is, file descriptors
for which the revents field of the respective struct pollfd is non-zero). CEC devices set the POLLIN and
POLLRDNORM flags in the revents field if there are messages in the receive queue. If the transmit queue
has room for new messages, the POLLOUT and POLLWRNORM flags are set. If there are events in the event
queue, then the POLLPRI flag is set. When the function times out it returns a value of zero, on failure it
returns -1 and the errno variable is set appropriately.
For more details see the poll() manual page.

Return Value

On success, poll() returns the number structures which have non-zero revents fields, or zero if the call
timed out. On error -1 is returned, and the errno variable is set appropriately:
EBADF One or more of the ufds members specify an invalid file descriptor.
EFAULT ufds references an inaccessible memory area.
EINTR The call was interrupted by a signal.
EINVAL The nfds argument is greater than OPEN_MAX.

ioctl CEC_ADAP_G_CAPS

Name

CEC_ADAP_G_CAPS - Query device capabilities

Synopsis

int ioctl(int fd, CEC_ADAP_G_CAPS, struct cec_caps *argp)

Arguments

fd File descriptor returned by open().
argp

596 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

All cec devices must support ioctl CEC_ADAP_G_CAPS . To query device information, applications call the
ioctl with a pointer to a struct cec_caps. The driver fills the structure and returns the information to the
application. The ioctl never fails.
cec_caps

Table 1.193: struct cec_caps
char driver[32] The name of the cec adapter driver.
char name[32] The name of this CEC adapter. The combination driver and name must be

unique.
__u32 capabilities The capabilities of the CEC adapter, see CEC Capabilities Flags .
__u32 version CEC Framework API version, formatted with the KERNEL_VERSION() macro.

Table 1.194: CEC Capabilities Flags

CEC_CAP_PHYS_ADDR 0x00000001 Userspace has to configure the physical address by calling
ioctl CEC_ADAP_S_PHYS_ADDR . If this capability isn’t set,

then setting the physical address is handled by the kernel
whenever the EDID is set (for an HDMI receiver) or read (for
an HDMI transmitter).

CEC_CAP_LOG_ADDRS 0x00000002 Userspace has to configure the logical addresses by calling
ioctl CEC_ADAP_S_LOG_ADDRS . If this capability isn’t set,

then the kernel will have configured this.

CEC_CAP_TRANSMIT 0x00000004 Userspace can transmit CEC messages by calling ioctl
CEC_TRANSMIT . This implies that userspace can be a fol-
lower as well, since being able to transmit messages is a pre-
requisite of becoming a follower. If this capability isn’t set,
then the kernel will handle all CEC transmits and process all
CEC messages it receives.

CEC_CAP_PASSTHROUGH 0x00000008 Userspace can use the passthrough mode by calling ioctl
CEC_S_MODE .

CEC_CAP_RC 0x00000010 This adapter supports the remote control protocol.

CEC_CAP_MONITOR_ALL 0x00000020 The CEC hardware can monitor all messages, not just di-
rected and broadcast messages.

CEC_CAP_NEEDS_HPD 0x00000040 The CEC hardware is only active if the HDMI Hotplug Detect
pin is high. This makes it impossible to use CEC to wake up
displays that set the HPD pin low when in standby mode, but
keep the CEC bus alive.

CEC_CAP_MONITOR_PIN 0x00000080 The CEC hardware can monitor CEC pin changes from low
to high voltage and vice versa. When in pin monitoring
mode the application will receive CEC_EVENT_PIN_CEC_LOW
and CEC_EVENT_PIN_CEC_HIGH events.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

1.6. Part V - Consumer Electronics Control API 597

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ioctls CEC_ADAP_G_LOG_ADDRS and CEC_ADAP_S_LOG_ADDRS

Name

CEC_ADAP_G_LOG_ADDRS, CEC_ADAP_S_LOG_ADDRS - Get or set the logical addresses

Synopsis

int ioctl(int fd, CEC_ADAP_G_LOG_ADDRS, struct cec_log_addrs *argp)
int ioctl(int fd, CEC_ADAP_S_LOG_ADDRS, struct cec_log_addrs *argp)

Arguments

fd File descriptor returned by open().
argp Pointer to struct cec_log_addrs.

Description

To query the current CEC logical addresses, applications call ioctl CEC_ADAP_G_LOG_ADDRS with a pointer
to a struct cec_log_addrs where the driver stores the logical addresses.
To set new logical addresses, applications fill in struct cec_log_addrs and call ioctl
CEC_ADAP_S_LOG_ADDRS with a pointer to this struct. The ioctl CEC_ADAP_S_LOG_ADDRS is
only available if CEC_CAP_LOG_ADDRS is set (the ENOTTY error code is returned otherwise). The ioctl
CEC_ADAP_S_LOG_ADDRS can only be called by a file descriptor in initiator mode (see ioctls CEC_G_MODE
and CEC_S_MODE), if not the EBUSY error code will be returned.
To clear existing logical addresses set num_log_addrs to 0. All other fields will be ignored in that case.
The adapter will go to the unconfigured state and the cec_version, vendor_id and osd_name fields are
all reset to their default values (CEC version 2.0, no vendor ID and an empty OSD name).
If the physical address is valid (see ioctl CEC_ADAP_S_PHYS_ADDR), then this ioctl will block until all
requested logical addresses have been claimed. If the file descriptor is in non-blocking mode then it will
not wait for the logical addresses to be claimed, instead it just returns 0.
A CEC_EVENT_STATE_CHANGE event is sent when the logical addresses are claimed or cleared.
Attempting to call ioctl CEC_ADAP_S_LOG_ADDRS when logical address types are already defined will
return with error EBUSY.
cec_log_addrs

Table 1.195: struct cec_log_addrs

__u8 log_addr[CEC_MAX_LOG_ADDRS] The actual logical addresses that were
claimed. This is set by the driver.
If no logical address could be claimed,
then it is set to CEC_LOG_ADDR_INVALID.
If this adapter is Unregistered, then
log_addr[0] is set to 0xf and all others to
CEC_LOG_ADDR_INVALID.

Continued on next page

598 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.195 – continued from previous page
__u16 log_addr_mask The bitmask of all logical addresses this

adapter has claimed. If this adapter is Un-
registered then log_addr_mask sets bit 15
and clears all other bits. If this adapter is
not configured at all, then log_addr_mask
is set to 0. Set by the driver.

__u8 cec_version The CEC version that this adapter shall
use. See CEC Versions . Used to im-
plement the CEC_MSG_CEC_VERSION and
CEC_MSG_REPORT_FEATURES messages.
Note that CEC_OP_CEC_VERSION_1_3A is
not allowed by the CEC framework.

__u8 num_log_addrs Number of logical addresses to set up.
Must be ≤ available_log_addrs as re-
turned by ioctl CEC_ADAP_G_CAPS . All
arrays in this structure are only filled up
to index available_log_addrs-1. The re-
maining array elements will be ignored.
Note that the CEC 2.0 standard allows for
a maximum of 2 logical addresses, al-
though some hardware has support for
more. CEC_MAX_LOG_ADDRS is 4. The driver
will return the actual number of logical ad-
dresses it could claim, which may be less
than what was requested. If this field is
set to 0, then the CEC adapter shall clear
all claimed logical addresses and all other
fields will be ignored.

__u32 vendor_id The vendor ID is a 24-bit number that iden-
tifies the specific vendor or entity. Based
on this ID vendor specific commands may
be defined. If you do not want a vendor ID
then set it to CEC_VENDOR_ID_NONE.

__u32 flags Flags. See Flags for struct cec_log_addrs
for a list of available flags.

char osd_name[15] The On-Screen Display name as is returned
by the CEC_MSG_SET_OSD_NAME message.

__u8 primary_device_type[CEC_MAX_LOG_ADDRS] Primary device type for each logical ad-
dress. See CEC Primary Device Types for
possible types.

__u8 log_addr_type[CEC_MAX_LOG_ADDRS] Logical address types. See CEC Log-
ical Address Types for possible types.
The driver will update this with the ac-
tual logical address type that it claimed
(e.g. it may have to fallback to
CEC_LOG_ADDR_TYPE_UNREGISTERED).

Continued on next page

1.6. Part V - Consumer Electronics Control API 599

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.195 – continued from previous page
__u8 all_device_types[CEC_MAX_LOG_ADDRS] CEC 2.0 specific: the bit mask of all de-

vice types. See CEC All Device Types
Flags . It is used in the CEC 2.0
CEC_MSG_REPORT_FEATURES message. For
CEC 1.4 you can either leave this field to 0,
or fill it in according to the CEC 2.0 guide-
lines to give the CEC framework more infor-
mation about the device type, even though
the framework won’t use it directly in the
CEC message.

__u8 features[CEC_MAX_LOG_ADDRS][12] Features for each logical address. It is used
in the CEC 2.0 CEC_MSG_REPORT_FEATURES
message. The 12 bytes include both the RC
Profile and the Device Features. For CEC
1.4 you can either leave this field to all 0,
or fill it in according to the CEC 2.0 guide-
lines to give the CEC framework more infor-
mation about the device type, even though
the framework won’t use it directly in the
CEC message.

Table 1.196: Flags for struct cec_log_addrs

CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK 1 By default if no logical address of the requested
type can be claimed, then it will go back to the
unconfigured state. If this flag is set, then it will
fallback to the Unregistered logical address. Note
that if the Unregistered logical address was explic-
itly requested, then this flag has no effect.

CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU 2 By default the CEC_MSG_USER_CONTROL_PRESSED
and CEC_MSG_USER_CONTROL_RELEASED mes-
sages are only passed on to the follower(s), if
any. If this flag is set, then these messages
are also passed on to the remote control input
subsystem and will appear as keystrokes. This
features needs to be enabled explicitly. If CEC is
used to enter e.g. passwords, then you may not
want to enable this to avoid trivial snooping of
the keystrokes.

CEC_LOG_ADDRS_FL_CDC_ONLY 4 If this flag is set, then the device is CDC-Only.
CDC-Only CEC devices are CEC devices that can
only handle CDC messages.
All other messages are ignored.

Table 1.197: CEC Versions

CEC_OP_CEC_VERSION_1_3A 4 CEC version according to the HDMI 1.3a standard.

CEC_OP_CEC_VERSION_1_4B 5 CEC version according to the HDMI 1.4b standard.

CEC_OP_CEC_VERSION_2_0 6 CEC version according to the HDMI 2.0 standard.

600 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.198: CEC Primary Device Types

CEC_OP_PRIM_DEVTYPE_TV 0 Use for a TV.

CEC_OP_PRIM_DEVTYPE_RECORD 1 Use for a recording device.

CEC_OP_PRIM_DEVTYPE_TUNER 3 Use for a device with a tuner.

CEC_OP_PRIM_DEVTYPE_PLAYBACK 4 Use for a playback device.

CEC_OP_PRIM_DEVTYPE_AUDIOSYSTEM 5 Use for an audio system (e.g. an audio/video re-
ceiver).

CEC_OP_PRIM_DEVTYPE_SWITCH 6 Use for a CEC switch.

CEC_OP_PRIM_DEVTYPE_VIDEOPROC 7 Use for a video processor device.

Table 1.199: CEC Logical Address Types

CEC_LOG_ADDR_TYPE_TV 0 Use for a TV.

CEC_LOG_ADDR_TYPE_RECORD 1 Use for a recording device.

CEC_LOG_ADDR_TYPE_TUNER 2 Use for a tuner device.

CEC_LOG_ADDR_TYPE_PLAYBACK 3 Use for a playback device.

CEC_LOG_ADDR_TYPE_AUDIOSYSTEM 4 Use for an audio system device.

CEC_LOG_ADDR_TYPE_SPECIFIC 5 Use for a second TV or for a video processor de-
vice.

CEC_LOG_ADDR_TYPE_UNREGISTERED 6 Use this if you just want to remain unregistered.
Used for pure CEC switches or CDC-only devices
(CDC: Capability Discovery and Control).

Table 1.200: CEC All Device Types Flags

CEC_OP_ALL_DEVTYPE_TV 0x80 This supports the TV type.

CEC_OP_ALL_DEVTYPE_RECORD 0x40 This supports the Recording type.

CEC_OP_ALL_DEVTYPE_TUNER 0x20 This supports the Tuner type.

CEC_OP_ALL_DEVTYPE_PLAYBACK 0x10 This supports the Playback type.

CEC_OP_ALL_DEVTYPE_AUDIOSYSTEM 0x08 This supports the Audio System type.

CEC_OP_ALL_DEVTYPE_SWITCH 0x04 This supports the CEC Switch or Video Processing
type.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
The ioctl CEC_ADAP_S_LOG_ADDRS can return the following error codes:
ENOTTY The CEC_CAP_LOG_ADDRS capability wasn’t set, so this ioctl is not supported.
EBUSY The CEC adapter is currently configuring itself, or it is already configured and num_log_addrs is

non-zero, or another filehandle is in exclusive follower or initiator mode, or the filehandle is in mode

1.6. Part V - Consumer Electronics Control API 601

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CEC_MODE_NO_INITIATOR.
EINVAL The contents of struct cec_log_addrs is invalid.

ioctls CEC_ADAP_G_PHYS_ADDR and CEC_ADAP_S_PHYS_ADDR

Name

CEC_ADAP_G_PHYS_ADDR, CEC_ADAP_S_PHYS_ADDR - Get or set the physical address

Synopsis

int ioctl(int fd, CEC_ADAP_G_PHYS_ADDR, __u16 *argp)
int ioctl(int fd, CEC_ADAP_S_PHYS_ADDR, __u16 *argp)

Arguments

fd File descriptor returned by open().
argp Pointer to the CEC address.

Description

To query the current physical address applications call ioctl CEC_ADAP_G_PHYS_ADDR with a pointer to
a __u16 where the driver stores the physical address.
To set a new physical address applications store the physical address in a __u16 and call ioctl
CEC_ADAP_S_PHYS_ADDR with a pointer to this integer. The ioctl CEC_ADAP_S_PHYS_ADDR is only
available if CEC_CAP_PHYS_ADDR is set (the ENOTTY error code will be returned otherwise). The ioctl
CEC_ADAP_S_PHYS_ADDR can only be called by a file descriptor in initiator mode (see ioctls CEC_G_MODE
and CEC_S_MODE), if not the EBUSY error code will be returned.
To clear an existing physical address use CEC_PHYS_ADDR_INVALID. The adapter will go to the unconfigured
state.
If logical address types have been defined (see ioctl CEC_ADAP_S_LOG_ADDRS), then this ioctl will block
until all requested logical addresses have been claimed. If the file descriptor is in non-blocking mode then
it will not wait for the logical addresses to be claimed, instead it just returns 0.
A CEC_EVENT_STATE_CHANGE event is sent when the physical address changes.
The physical address is a 16-bit number where each group of 4 bits represent a digit of the physical
address a.b.c.d where the most significant 4 bits represent ‘a’. The CEC root device (usually the TV) has
address 0.0.0.0. Every device that is hooked up to an input of the TV has address a.0.0.0 (where ‘a’ is ≥
1), devices hooked up to those in turn have addresses a.b.0.0, etc. So a topology of up to 5 devices deep
is supported. The physical address a device shall use is stored in the EDID of the sink.
For example, the EDID for each HDMI input of the TV will have a different physical address of the form
a.0.0.0 that the sources will read out and use as their physical address.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
The ioctl CEC_ADAP_S_PHYS_ADDR can return the following error codes:
ENOTTY The CEC_CAP_PHYS_ADDR capability wasn’t set, so this ioctl is not supported.

602 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

EBUSY Another filehandle is in exclusive follower or initiator mode, or the filehandle is in mode
CEC_MODE_NO_INITIATOR.

EINVAL The physical address is malformed.

ioctl CEC_DQEVENT

Name

CEC_DQEVENT - Dequeue a CEC event

Synopsis

int ioctl(int fd, CEC_DQEVENT, struct cec_event *argp)

Arguments

fd File descriptor returned by open().
argp

Description

CEC devices can send asynchronous events. These can be retrieved by calling CEC_DQEVENT(). If the
file descriptor is in non-blocking mode and no event is pending, then it will return -1 and set errno to the
EAGAIN error code.
The internal event queues are per-filehandle and per-event type. If there is no more room in a queue then
the last event is overwritten with the new one. This means that intermediate results can be thrown away
but that the latest event is always available. This also means that is it possible to read two successive
events that have the same value (e.g. two CEC_EVENT_STATE_CHANGE events with the same state).
In that case the intermediate state changes were lost but it is guaranteed that the state did change in
between the two events.
cec_event_state_change

Table 1.201: struct cec_event_state_change
__u16 phys_addr The current physical address. This is CEC_PHYS_ADDR_INVALID if no valid

physical address is set.
__u16 log_addr_mask The current set of claimed logical addresses. This is 0 if no logical addresses

are claimed or if phys_addr is CEC_PHYS_ADDR_INVALID. If bit 15 is set (1 <<
CEC_LOG_ADDR_UNREGISTERED) then this device has the unregistered logical
address. In that case all other bits are 0.

cec_event_lost_msgs

Table 1.202: struct cec_event_lost_msgs
__u32 lost_msgs Set to the number of lost messages since the filehandle was opened or since the

last time this event was dequeued for this filehandle. The messages lost are the
oldest messages. So when a new message arrives and there is no more room, then
the oldest message is discarded to make room for the new one. The internal size of
the message queue guarantees that all messages received in the last two seconds
will be stored. Since messages should be replied to within a second according to
the CEC specification, this is more than enough.

1.6. Part V - Consumer Electronics Control API 603

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

cec_event

Table 1.203: struct cec_event

__u64 ts

Timestamp of the event in ns.

The timestamp has been taken from the CLOCK_MONOTONIC clock.

To access the same clock from userspace use clock_gettime().

__u32 event The CEC event type, see CEC Events Types .
__u32 flags Event flags, see CEC Event Flags .
union (anonymous)

struct
cec_event_state_change

state_change The new adapter state as sent by the
CEC_EVENT_STATE_CHANGE event.

struct
cec_event_lost_msgs

lost_msgs The number of lost messages as sent by the
CEC_EVENT_LOST_MSGS event.

Table 1.204: CEC Events Types

CEC_EVENT_STATE_CHANGE 1 Generated when the CEC Adapter’s state changes. When
open() is called an initial event will be generated for that file-
handle with the CEC Adapter’s state at that time.

CEC_EVENT_LOST_MSGS 2 Generated if one or more CEC messages were lost because the
application didn’t dequeue CEC messages fast enough.

CEC_EVENT_PIN_CEC_LOW 3 Generated if the CEC pin goes from a high voltage to
a low voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set.

CEC_EVENT_PIN_CEC_HIGH 4 Generated if the CEC pin goes from a low voltage to a
high voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set.

Table 1.205: CEC Event Flags

CEC_EVENT_FL_INITIAL_VALUE 1 Set for the initial events that are generated when the device
is opened. See the table above for which events do this. This
allows applications to learn the initial state of the CEC adapter
at open() time.

CEC_EVENT_FL_DROPPED_EVENTS 2 Set if one or more events of the given event type have been
dropped. This is an indication that the application cannot keep
up.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
The ioctl CEC_DQEVENT can return the following error codes:
EAGAIN This is returned when the filehandle is in non-blocking mode and there are no pending events.
ERESTARTSYS An interrupt (e.g. Ctrl-C) arrived while in blocking mode waiting for events to arrive.

604 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ioctls CEC_G_MODE and CEC_S_MODE

CEC_G_MODE, CEC_S_MODE - Get or set exclusive use of the CEC adapter

Synopsis

int ioctl(int fd, CEC_G_MODE, __u32 *argp)
int ioctl(int fd, CEC_S_MODE, __u32 *argp)

Arguments

fd File descriptor returned by open().
argp Pointer to CEC mode.

Description

By default any filehandle can use ioctls CEC_RECEIVE and CEC_TRANSMIT , but in order to prevent ap-
plications from stepping on each others toes it must be possible to obtain exclusive access to the CEC
adapter. This ioctl sets the filehandle to initiator and/or follower mode which can be exclusive depending
on the chosen mode. The initiator is the filehandle that is used to initiate messages, i.e. it commands
other CEC devices. The follower is the filehandle that receives messages sent to the CEC adapter and
processes them. The same filehandle can be both initiator and follower, or this role can be taken by two
different filehandles.
When a CEC message is received, then the CEC framework will decide how it will be processed. If the
message is a reply to an earlier transmitted message, then the reply is sent back to the filehandle that is
waiting for it. In addition the CEC framework will process it.
If the message is not a reply, then the CEC framework will process it first. If there is no follower, then the
message is just discarded and a feature abort is sent back to the initiator if the framework couldn’t process
it. If there is a follower, then the message is passed on to the follower who will use ioctl CEC_RECEIVE
to dequeue the new message. The framework expects the follower to make the right decisions.
The CEC framework will process core messages unless requested otherwise by the follower. The follower
can enable the passthrough mode. In that case, the CEC framework will pass on most core messages with-
out processing them and the follower will have to implement those messages. There are some messages
that the core will always process, regardless of the passthrough mode. See Core Message Processing for
details.
If there is no initiator, then any CEC filehandle can use ioctl CEC_TRANSMIT . If there is an exclusive
initiator then only that initiator can call ioctls CEC_RECEIVE and CEC_TRANSMIT . The follower can of
course always call ioctl CEC_TRANSMIT .
Available initiator modes are:

1.6. Part V - Consumer Electronics Control API 605

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.206: Initiator Modes

CEC_MODE_NO_INITIATOR 0x0 This is not an initiator, i.e. it cannot transmit CEC messages or
make any other changes to the CEC adapter.

CEC_MODE_INITIATOR 0x1 This is an initiator (the default when the device is opened) and
it can transmit CEC messages and make changes to the CEC
adapter, unless there is an exclusive initiator.

CEC_MODE_EXCL_INITIATOR 0x2 This is an exclusive initiator and this file descriptor is the only
one that can transmit CEC messages and make changes to the
CEC adapter. If someone else is already the exclusive initiator
then an attempt to become one will return the EBUSY error code
error.

Available follower modes are:

Table 1.207: Follower Modes

CEC_MODE_NO_FOLLOWER
0x00

This is not a follower (the default when the device is
opened).

CEC_MODE_FOLLOWER
0x10

This is a follower and it will receive CEC messages
unless there is an exclusive follower. You cannot be-
come a follower if CEC_CAP_TRANSMIT is not set or if
CEC_MODE_NO_INITIATOR was specified, the EINVAL er-
ror code is returned in that case.

CEC_MODE_EXCL_FOLLOWER
0x20

This is an exclusive follower and only this file descrip-
tor will receive CEC messages for processing. If someone
else is already the exclusive follower then an attempt to
become one will return the EBUSY error code. You cannot
become a follower if CEC_CAP_TRANSMIT is not set or
if CEC_MODE_NO_INITIATOR was specified, the EINVAL
error code is returned in that case.

CEC_MODE_EXCL_FOLLOWER_PASSTHRU
0x30

This is an exclusive follower and only this file descrip-
tor will receive CEC messages for processing. In addition
it will put the CEC device into passthrough mode, allow-
ing the exclusive follower to handle most core messages
instead of relying on the CEC framework for that. If some-
one else is already the exclusive follower then an attempt
to become one will return the EBUSY error code. You can-
not become a follower if CEC_CAP_TRANSMIT is not set
or if CEC_MODE_NO_INITIATOR was specified, the EIN-
VAL error code is returned in that case.

CEC_MODE_MONITOR_PIN
0xd0

Put the file descriptor into pin monitoring mode. Can only
be used in combination with CEC_MODE_NO_INITIATOR ,
otherwise the EINVAL error code will be returned. This
mode requires that the CEC_CAP_MONITOR_PIN ca-
pability is set, otherwise the EINVAL error code is re-
turned. While in pin monitoring mode this file de-
scriptor can receive the CEC_EVENT_PIN_CEC_LOW and
CEC_EVENT_PIN_CEC_HIGH events to see the low-level
CEC pin transitions. This is very useful for debug-
ging. This mode is only allowed if the process has the
CAP_NET_ADMIN capability. If that is not set, then the
EPERM error code is returned.

Continued on next page

606 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.207 – continued from previous page
CEC_MODE_MONITOR

0xe0
Put the file descriptor into monitor mode. Can only be

used in combination with CEC_MODE_NO_INITIATOR ,i
otherwise the EINVAL error code will be returned. In mon-
itor mode all messages this CEC device transmits and all
messages it receives (both broadcast messages and di-
rected messages for one its logical addresses) will be re-
ported. This is very useful for debugging. This is only
allowed if the process has the CAP_NET_ADMIN capability.
If that is not set, then the EPERM error code is returned.

CEC_MODE_MONITOR_ALL 0xf0 Put the file descriptor into ‘monitor all’ mode. Can only
be used in combination with CEC_MODE_NO_INITIATOR ,
otherwise the EINVAL error code will be returned. In ‘mon-
itor all’ mode all messages this CEC device transmits and
all messages it receives, including directed messages for
other CEC devices will be reported. This is very useful for
debugging, but not all devices support this. This mode re-
quires that the CEC_CAP_MONITOR_ALL capability is set,
otherwise the EINVAL error code is returned. This is only
allowed if the process has the CAP_NET_ADMIN capability.
If that is not set, then the EPERM error code is returned.

Core message processing details:

1.6. Part V - Consumer Electronics Control API 607

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.208: Core Message Processing

CEC_MSG_GET_CEC_VERSION The core will return the CEC version that was set with ioctl
CEC_ADAP_S_LOG_ADDRS , except when in passthrough mode.
In passthrough mode the core does nothing and this message
has to be handled by a follower instead.

CEC_MSG_GIVE_DEVICE_VENDOR_ID The core will return the vendor ID that was set with ioctl
CEC_ADAP_S_LOG_ADDRS , except when in passthrough mode.
In passthrough mode the core does nothing and this message
has to be handled by a follower instead.

CEC_MSG_ABORT The core will return a Feature Abort message with reason
‘Feature Refused’ as per the specification, except when in
passthrough mode. In passthrough mode the core does noth-
ing and this message has to be handled by a follower instead.

CEC_MSG_GIVE_PHYSICAL_ADDR The core will report the current physical address, except when
in passthrough mode. In passthrough mode the core does
nothing and this message has to be handled by a follower in-
stead.

CEC_MSG_GIVE_OSD_NAME The core will report the current OSD name that was set with
ioctl CEC_ADAP_S_LOG_ADDRS , except when in passthrough
mode. In passthrough mode the core does nothing and this
message has to be handled by a follower instead.

CEC_MSG_GIVE_FEATURES The core will do nothing if the CEC version is older than 2.0,
otherwise it will report the current features that were set with
ioctl CEC_ADAP_S_LOG_ADDRS , except when in passthrough

mode. In passthrough mode the core does nothing (for any
CEC version) and this message has to be handled by a follower
instead.

CEC_MSG_USER_CONTROL_PRESSED If CEC_CAP_RC is set and if
CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU is set, then
generate a remote control key press. This message is always
passed on to the follower(s).

CEC_MSG_USER_CONTROL_RELEASED If CEC_CAP_RC is set and if
CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU is set, then
generate a remote control key release. This message is
always passed on to the follower(s).

CEC_MSG_REPORT_PHYSICAL_ADDR The CEC framework will make note of the reported physical
address and then just pass the message on to the follower(s).

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
The ioctl CEC_S_MODE can return the following error codes:
EINVAL The requested mode is invalid.
EPERM Monitor mode is requested without having root permissions
EBUSY Someone else is already an exclusive follower or initiator.

608 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ioctls CEC_RECEIVE and CEC_TRANSMIT

Name

CEC_RECEIVE, CEC_TRANSMIT - Receive or transmit a CEC message

Synopsis

int ioctl(int fd, CEC_RECEIVE, struct cec_msg *argp)
int ioctl(int fd, CEC_TRANSMIT, struct cec_msg *argp)

Arguments

fd File descriptor returned by open().
argp Pointer to struct cec_msg.

Description

To receive a CEC message the application has to fill in the timeout field of struct cec_msg and pass it to
ioctl CEC_RECEIVE . If the file descriptor is in non-blocking mode and there are no received messages

pending, then it will return -1 and set errno to the EAGAIN error code. If the file descriptor is in blocking
mode and timeout is non-zero and no message arrived within timeout milliseconds, then it will return -1
and set errno to the ETIMEDOUT error code.
A received message can be:

1. a message received from another CEC device (the sequence field will be 0).
2. the result of an earlier non-blocking transmit (the sequence field will be non-zero).

To send a CEC message the application has to fill in the struct cec_msg and pass it to ioctl CEC_TRANSMIT
. The ioctl CEC_TRANSMIT is only available if CEC_CAP_TRANSMIT is set. If there is no more room in the
transmit queue, then it will return -1 and set errno to the EBUSY error code. The transmit queue has enough
room for 18 messages (about 1 second worth of 2-byte messages). Note that the CEC kernel framework
will also reply to core messages (see Core Message Processing), so it is not a good idea to fully fill up
the transmit queue.
If the file descriptor is in non-blocking mode then the transmit will return 0 and the result of the transmit
will be available via ioctl CEC_RECEIVE once the transmit has finished (including waiting for a reply, if
requested).
The sequence field is filled in for every transmit and this can be checked against the received messages
to find the corresponding transmit result.
Normally calling ioctl CEC_TRANSMIT when the physical address is invalid (due to e.g. a disconnect) will
return ENONET.
However, the CEC specification allows sending messages from ‘Unregistered’ to ‘TV’ when the physical
address is invalid since some TVs pull the hotplug detect pin of the HDMI connector low when they go into
standby, or when switching to another input.
When the hotplug detect pin goes low the EDID disappears, and thus the physical address, but the cable
is still connected and CEC still works. In order to detect/wake up the device it is allowed to send poll and
‘Image/Text View On’ messages from initiator 0xf (‘Unregistered’) to destination 0 (‘TV’).
cec_msg

1.6. Part V - Consumer Electronics Control API 609

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.209: struct cec_msg

__u64 tx_ts Timestamp in ns of when the last byte of the message was transmitted.
The timestamp has been taken from the CLOCK_MONOTONIC clock. To access
the same clock from userspace use clock_gettime().

__u64 rx_ts Timestamp in ns of when the last byte of the message was received. The
timestamp has been taken from the CLOCK_MONOTONIC clock. To access the
same clock from userspace use clock_gettime().

__u32 len The length of the message. For ioctl CEC_TRANSMIT this is filled in by
the application. The driver will fill this in for ioctl CEC_RECEIVE . For ioctl
CEC_TRANSMIT it will be filled in by the driver with the length of the reply
message if reply was set.

__u32 timeout The timeout in milliseconds. This is the time the device will wait for a
message to be received before timing out. If it is set to 0, then it will wait
indefinitely when it is called by ioctl CEC_RECEIVE . If it is 0 and it is called
by ioctl CEC_TRANSMIT , then it will be replaced by 1000 if the reply is
non-zero or ignored if reply is 0.

__u32 sequence A non-zero sequence number is automatically assigned by the CEC frame-
work for all transmitted messages. It is used by the CEC framework when
it queues the transmit result (when transmit was called in non-blocking
mode). This allows the application to associate the received message with
the original transmit.

__u32 flags Flags. See Flags for struct cec_msg for a list of available flags.
__u8 tx_status The status bits of the transmitted message. See CEC Transmit Status

for the possible status values. It is 0 if this messages was received, not
transmitted.

__u8 msg[16] The message payload. For ioctl CEC_TRANSMIT this is filled in by the
application. The driver will fill this in for ioctl CEC_RECEIVE . For ioctl
CEC_TRANSMIT it will be filled in by the driver with the payload of the
reply message if timeout was set.

__u8 reply Wait until this message is replied. If reply is 0 and the timeout is 0, then
don’t wait for a reply but return after transmitting the message. Ignored by
ioctl CEC_RECEIVE . The case where reply is 0 (this is the opcode for the
Feature Abort message) and timeout is non-zero is specifically allowed to
make it possible to send a message and wait up to timeout milliseconds
for a Feature Abort reply. In this case rx_status will either be set to
CEC_RX_STATUS_TIMEOUT or CEC_RX_STATUS_FEATURE_ABORT .
If the transmitter message is CEC_MSG_INITIATE_ARC then
the reply values CEC_MSG_REPORT_ARC_INITIATED and
CEC_MSG_REPORT_ARC_TERMINATED are processed differently: ei-
ther value will match both possible replies. The reason is that the
CEC_MSG_INITIATE_ARC message is the only CEC message that has two
possible replies other than Feature Abort. The reply field will be updated
with the actual reply so that it is synchronized with the contents of the
received message.

__u8 rx_status The status bits of the received message. See CEC Receive Status for
the possible status values. It is 0 if this message was transmitted, not
received, unless this is the reply to a transmitted message. In that case
both rx_status and tx_status are set.

__u8 tx_status The status bits of the transmitted message. See CEC Transmit Status
for the possible status values. It is 0 if this messages was received, not
transmitted.

__u8 tx_arb_lost_cnt A counter of the number of transmit attempts that resulted in the Arbitra-
tion Lost error. This is only set if the hardware supports this, otherwise it
is always 0. This counter is only valid if the CEC_TX_STATUS_ARB_LOST
status bit is set.

Continued on next page

610 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 1.209 – continued from previous page
__u8 tx_nack_cnt A counter of the number of transmit attempts that resulted in the Not Ac-

knowledged error. This is only set if the hardware supports this, otherwise
it is always 0. This counter is only valid if the CEC_TX_STATUS_NACK
status bit is set.

__u8 tx_low_drive_cnt A counter of the number of transmit attempts that resulted in the Arbitra-
tion Lost error. This is only set if the hardware supports this, otherwise it
is always 0. This counter is only valid if the CEC_TX_STATUS_LOW_DRIVE
status bit is set.

__u8 tx_error_cnt A counter of the number of transmit errors other than Arbitration Lost or
Not Acknowledged. This is only set if the hardware supports this, otherwise
it is always 0. This counter is only valid if the CEC_TX_STATUS_ERROR
status bit is set.

Table 1.210: Flags for struct cec_msg

CEC_MSG_FL_REPLY_TO_FOLLOWERS 1 If a CEC transmit expects a reply, then by default that
reply is only sent to the filehandle that called ioctl
CEC_TRANSMIT . If this flag is set, then the reply is also
sent to all followers, if any. If the filehandle that called
ioctl CEC_TRANSMIT is also a follower, then that filehandle
will receive the reply twice: once as the result of the ioctl
CEC_TRANSMIT , and once via ioctl CEC_RECEIVE .

Table 1.211: CEC Transmit Status

CEC_TX_STATUS_OK 0x01 The message was transmitted successfully. This is mutually
exclusive with CEC_TX_STATUS_MAX_RETRIES . Other bits can
still be set if earlier attempts met with failure before the trans-
mit was eventually successful.

CEC_TX_STATUS_ARB_LOST 0x02 CEC line arbitration was lost.

CEC_TX_STATUS_NACK 0x04 Message was not acknowledged.

CEC_TX_STATUS_LOW_DRIVE 0x08 Low drive was detected on the CEC bus. This indicates that a
follower detected an error on the bus and requests a retrans-
mission.

CEC_TX_STATUS_ERROR 0x10 Some error occurred. This is used for any errors that do not fit
the previous two, either because the hardware could not tell
which error occurred, or because the hardware tested for other
conditions besides those two.

CEC_TX_STATUS_MAX_RETRIES 0x20 The transmit failed after one or more retries. This status bit is
mutually exclusive with CEC_TX_STATUS_OK . Other bits can
still be set to explain which failures were seen.

Table 1.212: CEC Receive Status

CEC_RX_STATUS_OK 0x01 The message was received successfully.

CEC_RX_STATUS_TIMEOUT 0x02 The reply to an earlier transmitted message timed out.

CEC_RX_STATUS_FEATURE_ABORT0x04 The message was received successfully but the reply was
CEC_MSG_FEATURE_ABORT. This status is only set if this message
was the reply to an earlier transmitted message.

1.6. Part V - Consumer Electronics Control API 611

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.
The ioctl CEC_RECEIVE can return the following error codes:
EAGAIN No messages are in the receive queue, and the filehandle is in non-blocking mode.
ETIMEDOUT The timeout was reached while waiting for a message.
ERESTARTSYS The wait for a message was interrupted (e.g. by Ctrl-C).
The ioctl CEC_TRANSMIT can return the following error codes:
ENOTTY The CEC_CAP_TRANSMIT capability wasn’t set, so this ioctl is not supported.
EPERM The CEC adapter is not configured, i.e. ioctl CEC_ADAP_S_LOG_ADDRS has never been called.
ENONET The CEC adapter is not configured, i.e. ioctl CEC_ADAP_S_LOG_ADDRS was called, but the

physical address is invalid so no logical address was claimed. An exception is made in this case
for transmits from initiator 0xf (‘Unregistered’) to destination 0 (‘TV’). In that case the transmit will
proceed as usual.

EBUSY Another filehandle is in exclusive follower or initiator mode, or the filehandle is in mode
CEC_MODE_NO_INITIATOR. This is also returned if the transmit queue is full.

EINVAL The contents of struct cec_msg is invalid.
ERESTARTSYS The wait for a successful transmit was interrupted (e.g. by Ctrl-C).

1.6.3 CEC Header File

cec.h

/*
* cec - HDMI Consumer Electronics Control public header
*
* Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* Alternatively you can redistribute this file under the terms of the
* BSD license as stated below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. The names of its contributors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

612 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/

#ifndef _CEC_UAPI_H
#define _CEC_UAPI_H

#include <linux/types.h>
#include <linux/string.h>

#define CEC_MAX_MSG_SIZE 16

/**
* struct cec_msg
- CEC message structure.
* @tx_ts: Timestamp in nanoseconds using CLOCK_MONOTONIC. Set by the
* driver when the message transmission has finished.
* @rx_ts: Timestamp in nanoseconds using CLOCK_MONOTONIC. Set by the
* driver when the message was received.
* @len: Length in bytes of the message.
* @timeout: The timeout (in ms) that is used to timeout CEC_RECEIVE.
* Set to 0 if you want to wait forever. This timeout can also be
* used with CEC_TRANSMIT as the timeout for waiting for a reply.
* If 0, then it will use a 1 second timeout instead of waiting
* forever as is done with CEC_RECEIVE.
* @sequence: The framework assigns a sequence number to messages that are
* sent. This can be used to track replies to previously sent
* messages.
* @flags: Set to 0.
* @msg: The message payload.
* @reply: This field is ignored with CEC_RECEIVE and is only used by
* CEC_TRANSMIT. If non-zero, then wait for a reply with this
* opcode. Set to CEC_MSG_FEATURE_ABORT if you want to wait for
* a possible ABORT reply. If there was an error when sending the
* msg or FeatureAbort was returned, then reply is set to 0.
* If reply is non-zero upon return, then len/msg are set to
* the received message.
* If reply is zero upon return and status has the
* CEC_TX_STATUS_FEATURE_ABORT bit set, then len/msg are set to
* the received feature abort message.
* If reply is zero upon return and status has the
* CEC_TX_STATUS_MAX_RETRIES bit set, then no reply was seen at
* all. If reply is non-zero for CEC_TRANSMIT and the message is a
* broadcast, then -EINVAL is returned.
* if reply is non-zero, then timeout is set to 1000 (the required
* maximum response time).
* @rx_status: The message receive status bits. Set by the driver.
* @tx_status: The message transmit status bits. Set by the driver.
* @tx_arb_lost_cnt: The number of `Arbitration Lost' events. Set by the driver.
* @tx_nack_cnt: The number of `Not Acknowledged' events. Set by the driver.
* @tx_low_drive_cnt: The number of `Low Drive Detected' events. Set by the
* driver.
* @tx_error_cnt: The number of `Error' events. Set by the driver.
*/

1.6. Part V - Consumer Electronics Control API 613

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct cec_msg
{

__u64 tx_ts;
__u64 rx_ts;
__u32 len;
__u32 timeout;
__u32 sequence;
__u32 flags;
__u8 msg[CEC_MAX_MSG_SIZE];
__u8 reply;
__u8 rx_status;
__u8 tx_status;
__u8 tx_arb_lost_cnt;
__u8 tx_nack_cnt;
__u8 tx_low_drive_cnt;
__u8 tx_error_cnt;

};

/**
* cec_msg_initiator - return the initiator's logical address.
* @msg: the message structure
*/

static inline __u8 cec_msg_initiator(const struct cec_msg
*msg)

{
return msg->msg[0] >> 4;

}

/**
* cec_msg_destination - return the destination's logical address.
* @msg: the message structure
*/

static inline __u8 cec_msg_destination(const struct cec_msg
*msg)

{
return msg->msg[0] & 0xf;

}

/**
* cec_msg_opcode - return the opcode of the message, -1 for poll
* @msg: the message structure
*/

static inline int cec_msg_opcode(const struct cec_msg
*msg)

{
return msg->len > 1 ? msg->msg[1] : -1;

}

/**
* cec_msg_is_broadcast - return true if this is a broadcast message.
* @msg: the message structure
*/

static inline int cec_msg_is_broadcast(const struct cec_msg
*msg)

{
return (msg->msg[0] & 0xf) == 0xf;

}

614 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/**
* cec_msg_init - initialize the message structure.
* @msg: the message structure
* @initiator: the logical address of the initiator
* @destination:the logical address of the destination (0xf for broadcast)
*
* The whole structure is zeroed, the len field is set to 1 (i.e. a poll
* message) and the initiator and destination are filled in.
*/

static inline void cec_msg_init(struct cec_msg
*msg,

__u8 initiator, __u8 destination)
{

memset(msg, 0, sizeof(*msg));
msg->msg[0] = (initiator << 4) | destination;
msg->len = 1;

}

/**
* cec_msg_set_reply_to - fill in destination/initiator in a reply message.
* @msg: the message structure for the reply
* @orig: the original message structure
*
* Set the msg destination to the orig initiator and the msg initiator to the
* orig destination. Note that msg and orig may be the same pointer, in which
* case the change is done in place.
*/

static inline void cec_msg_set_reply_to(struct cec_msg
*msg,

struct cec_msg
*orig)

{
/* The destination becomes the initiator and vice versa */
msg->msg[0] = (cec_msg_destination(orig) << 4) |

cec_msg_initiator(orig);
msg->reply = msg->timeout = 0;

}

/* cec_msg flags field */
#define CEC_MSG_FL_REPLY_TO_FOLLOWERS (1 << 0)

/* cec_msg tx/rx_status field */
#define CEC_TX_STATUS_OK (1 << 0)
#define CEC_TX_STATUS_ARB_LOST (1 << 1)
#define CEC_TX_STATUS_NACK (1 << 2)
#define CEC_TX_STATUS_LOW_DRIVE (1 << 3)
#define CEC_TX_STATUS_ERROR (1 << 4)
#define CEC_TX_STATUS_MAX_RETRIES (1 << 5)

#define CEC_RX_STATUS_OK (1 << 0)
#define CEC_RX_STATUS_TIMEOUT (1 << 1)
#define CEC_RX_STATUS_FEATURE_ABORT (1 << 2)

static inline int cec_msg_status_is_ok(const struct cec_msg
*msg)

{
if (msg->tx_status && !(msg->tx_status & CEC_TX_STATUS_OK))

return 0;

1.6. Part V - Consumer Electronics Control API 615

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

if (msg->rx_status && !(msg->rx_status & CEC_RX_STATUS_OK))
return 0;

if (!msg->tx_status && !msg->rx_status)
return 0;

return !(msg->rx_status & CEC_RX_STATUS_FEATURE_ABORT);
}

#define CEC_LOG_ADDR_INVALID 0xff
#define CEC_PHYS_ADDR_INVALID 0xffff

/*
* The maximum number of logical addresses one device can be assigned to.
* The CEC 2.0 spec allows for only 2 logical addresses at the moment. The
* Analog Devices CEC hardware supports 3. So let's go wild and go for 4.
*/

#define CEC_MAX_LOG_ADDRS 4

/* The logical addresses defined by CEC 2.0 */
#define CEC_LOG_ADDR_TV 0
#define CEC_LOG_ADDR_RECORD_1 1
#define CEC_LOG_ADDR_RECORD_2 2
#define CEC_LOG_ADDR_TUNER_1 3
#define CEC_LOG_ADDR_PLAYBACK_1 4
#define CEC_LOG_ADDR_AUDIOSYSTEM 5
#define CEC_LOG_ADDR_TUNER_2 6
#define CEC_LOG_ADDR_TUNER_3 7
#define CEC_LOG_ADDR_PLAYBACK_2 8
#define CEC_LOG_ADDR_RECORD_3 9
#define CEC_LOG_ADDR_TUNER_4 10
#define CEC_LOG_ADDR_PLAYBACK_3 11
#define CEC_LOG_ADDR_BACKUP_1 12
#define CEC_LOG_ADDR_BACKUP_2 13
#define CEC_LOG_ADDR_SPECIFIC 14
#define CEC_LOG_ADDR_UNREGISTERED 15 /* as initiator address */
#define CEC_LOG_ADDR_BROADCAST 15 /* as destination address */

/* The logical address types that the CEC device wants to claim */
#define CEC_LOG_ADDR_TYPE_TV 0
#define CEC_LOG_ADDR_TYPE_RECORD 1
#define CEC_LOG_ADDR_TYPE_TUNER 2
#define CEC_LOG_ADDR_TYPE_PLAYBACK 3
#define CEC_LOG_ADDR_TYPE_AUDIOSYSTEM 4
#define CEC_LOG_ADDR_TYPE_SPECIFIC 5
#define CEC_LOG_ADDR_TYPE_UNREGISTERED 6
/*
* Switches should use UNREGISTERED.
* Processors should use SPECIFIC.
*/

#define CEC_LOG_ADDR_MASK_TV (1 << CEC_LOG_ADDR_TV)
#define CEC_LOG_ADDR_MASK_RECORD ((1 << CEC_LOG_ADDR_RECORD_1) | \

(1 << CEC_LOG_ADDR_RECORD_2) | \
(1 << CEC_LOG_ADDR_RECORD_3))

#define CEC_LOG_ADDR_MASK_TUNER ((1 << CEC_LOG_ADDR_TUNER_1) | \
(1 << CEC_LOG_ADDR_TUNER_2) | \
(1 << CEC_LOG_ADDR_TUNER_3) | \
(1 << CEC_LOG_ADDR_TUNER_4))

#define CEC_LOG_ADDR_MASK_PLAYBACK ((1 << CEC_LOG_ADDR_PLAYBACK_1) | \

616 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

(1 << CEC_LOG_ADDR_PLAYBACK_2) | \
(1 << CEC_LOG_ADDR_PLAYBACK_3))

#define CEC_LOG_ADDR_MASK_AUDIOSYSTEM (1 << CEC_LOG_ADDR_AUDIOSYSTEM)
#define CEC_LOG_ADDR_MASK_BACKUP ((1 << CEC_LOG_ADDR_BACKUP_1) | \

(1 << CEC_LOG_ADDR_BACKUP_2))
#define CEC_LOG_ADDR_MASK_SPECIFIC (1 << CEC_LOG_ADDR_SPECIFIC)
#define CEC_LOG_ADDR_MASK_UNREGISTERED (1 << CEC_LOG_ADDR_UNREGISTERED)

static inline int cec_has_tv(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_TV;
}

static inline int cec_has_record(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_RECORD;
}

static inline int cec_has_tuner(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_TUNER;
}

static inline int cec_has_playback(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_PLAYBACK;
}

static inline int cec_has_audiosystem(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_AUDIOSYSTEM;
}

static inline int cec_has_backup(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_BACKUP;
}

static inline int cec_has_specific(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_SPECIFIC;
}

static inline int cec_is_unregistered(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_UNREGISTERED;
}

static inline int cec_is_unconfigured(__u16 log_addr_mask)
{

return log_addr_mask == 0;
}

/*
* Use this if there is no vendor ID (CEC_G_VENDOR_ID) or if the vendor ID
* should be disabled (CEC_S_VENDOR_ID)
*/

#define CEC_VENDOR_ID_NONE 0xffffffff

1.6. Part V - Consumer Electronics Control API 617

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* The message handling modes */
/* Modes for initiator */
#define CEC_MODE_NO_INITIATOR (0x0 << 0)
#define CEC_MODE_INITIATOR (0x1 << 0)
#define CEC_MODE_EXCL_INITIATOR (0x2 << 0)
#define CEC_MODE_INITIATOR_MSK 0x0f

/* Modes for follower */
#define CEC_MODE_NO_FOLLOWER (0x0 << 4)
#define CEC_MODE_FOLLOWER (0x1 << 4)
#define CEC_MODE_EXCL_FOLLOWER (0x2 << 4)
#define CEC_MODE_EXCL_FOLLOWER_PASSTHRU (0x3 << 4)
#define CEC_MODE_MONITOR_PIN (0xd << 4)
#define CEC_MODE_MONITOR (0xe << 4)
#define CEC_MODE_MONITOR_ALL (0xf << 4)
#define CEC_MODE_FOLLOWER_MSK 0xf0

/* Userspace has to configure the physical address */
#define CEC_CAP_PHYS_ADDR (1 << 0)
/* Userspace has to configure the logical addresses */
#define CEC_CAP_LOG_ADDRS (1 << 1)
/* Userspace can transmit messages (and thus become follower as well) */
#define CEC_CAP_TRANSMIT (1 << 2)
/*
* Passthrough all messages instead of processing them.
*/

#define CEC_CAP_PASSTHROUGH (1 << 3)
/* Supports remote control */
#define CEC_CAP_RC (1 << 4)
/* Hardware can monitor all messages, not just directed and broadcast. */
#define CEC_CAP_MONITOR_ALL (1 << 5)
/* Hardware can use CEC only if the HDMI HPD pin is high. */
#define CEC_CAP_NEEDS_HPD (1 << 6)
/* Hardware can monitor CEC pin transitions */
#define CEC_CAP_MONITOR_PIN (1 << 7)

/**
* struct cec_caps
- CEC capabilities structure.
* @driver: name of the CEC device driver.
* @name: name of the CEC device. @driver + @name must be unique.
* @available_log_addrs: number of available logical addresses.
* @capabilities: capabilities of the CEC adapter.
* @version: version of the CEC adapter framework.
*/

struct cec_caps
{

char driver[32];
char name[32];
__u32 available_log_addrs;
__u32 capabilities;
__u32 version;

};

/**
* struct cec_log_addrs
- CEC logical addresses structure.

618 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* @log_addr: the claimed logical addresses. Set by the driver.
* @log_addr_mask: current logical address mask. Set by the driver.
* @cec_version: the CEC version that the adapter should implement. Set by the
* caller.
* @num_log_addrs: how many logical addresses should be claimed. Set by the
* caller.
* @vendor_id: the vendor ID of the device. Set by the caller.
* @flags: flags.
* @osd_name: the OSD name of the device. Set by the caller.
* @primary_device_type: the primary device type for each logical address.
* Set by the caller.
* @log_addr_type: the logical address types. Set by the caller.
* @all_device_types: CEC 2.0: all device types represented by the logical
* address. Set by the caller.
* @features: CEC 2.0: The logical address features. Set by the caller.
*/

struct cec_log_addrs
{

__u8 log_addr[CEC_MAX_LOG_ADDRS];
__u16 log_addr_mask;
__u8 cec_version;
__u8 num_log_addrs;
__u32 vendor_id;
__u32 flags;
char osd_name[15];
__u8 primary_device_type[CEC_MAX_LOG_ADDRS];
__u8 log_addr_type[CEC_MAX_LOG_ADDRS];

/* CEC 2.0 */
__u8 all_device_types[CEC_MAX_LOG_ADDRS];
__u8 features[CEC_MAX_LOG_ADDRS][12];

};

/* Allow a fallback to unregistered */
#define CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK (1 << 0)
/* Passthrough RC messages to the input subsystem */
#define CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU (1 << 1)
/* CDC-Only device: supports only CDC messages */
#define CEC_LOG_ADDRS_FL_CDC_ONLY (1 << 2)

/* Events */

/* Event that occurs when the adapter state changes */
#define CEC_EVENT_STATE_CHANGE 1
/*
* This event is sent when messages are lost because the application
* didn't empty the message queue in time
*/

#define CEC_EVENT_LOST_MSGS 2
#define CEC_EVENT_PIN_CEC_LOW 3
#define CEC_EVENT_PIN_CEC_HIGH 4

#define CEC_EVENT_FL_INITIAL_STATE (1 << 0)
#define CEC_EVENT_FL_DROPPED_EVENTS (1 << 1)

/**
* struct cec_event_state_change
- used when the CEC adapter changes state.

1.6. Part V - Consumer Electronics Control API 619

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* @phys_addr: the current physical address
* @log_addr_mask: the current logical address mask
*/

struct cec_event_state_change
{

__u16 phys_addr;
__u16 log_addr_mask;

};

/**
* struct cec_event_lost_msgs
- tells you how many messages were lost.
* @lost_msgs: how many messages were lost.
*/

struct cec_event_lost_msgs
{

__u32 lost_msgs;
};

/**
* struct cec_event
- CEC event structure
* @ts: the timestamp of when the event was sent.
* @event: the event.
* array.
* @state_change: the event payload for CEC_EVENT_STATE_CHANGE.
* @lost_msgs: the event payload for CEC_EVENT_LOST_MSGS.
* @raw: array to pad the union.
*/

struct cec_event
{

__u64 ts;
__u32 event;
__u32 flags;
union {

struct cec_event_state_change
state_change;

struct cec_event_lost_msgs
lost_msgs;

__u32 raw[16];
};

};

/* ioctls */

/* Adapter capabilities */
#define CEC_ADAP_G_CAPS _IOWR(`a', 0, struct cec_caps
)

/*
* phys_addr is either 0 (if this is the CEC root device)
* or a valid physical address obtained from the sink's EDID
* as read by this CEC device (if this is a source device)
* or a physical address obtained and modified from a sink
* EDID and used for a sink CEC device.
* If nothing is connected, then phys_addr is 0xffff.
* See HDMI 1.4b, section 8.7 (Physical Address).
*

620 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* The CEC_ADAP_S_PHYS_ADDR ioctl may not be available if that is handled
* internally.
*/

#define CEC_ADAP_G_PHYS_ADDR _IOR(`a', 1, __u16)
#define CEC_ADAP_S_PHYS_ADDR _IOW(`a', 2, __u16)

/*
* Configure the CEC adapter. It sets the device type and which
* logical types it will try to claim. It will return which
* logical addresses it could actually claim.
* An error is returned if the adapter is disabled or if there
* is no physical address assigned.
*/

#define CEC_ADAP_G_LOG_ADDRS _IOR(`a', 3, struct cec_log_addrs
)
#define CEC_ADAP_S_LOG_ADDRS _IOWR(`a', 4, struct cec_log_addrs
)

/* Transmit/receive a CEC command */
#define CEC_TRANSMIT _IOWR(`a', 5, struct cec_msg
)
#define CEC_RECEIVE _IOWR(`a', 6, struct cec_msg
)

/* Dequeue CEC events */
#define CEC_DQEVENT _IOWR(`a', 7, struct cec_event
)

/*
* Get and set the message handling mode for this filehandle.
*/

#define CEC_G_MODE _IOR(`a', 8, __u32)
#define CEC_S_MODE _IOW(`a', 9, __u32)

/*
* The remainder of this header defines all CEC messages and operands.
* The format matters since it the cec-ctl utility parses it to generate
* code for implementing all these messages.
*
* Comments ending with `Feature' group messages for each feature.
* If messages are part of multiple features, then the ``Has also''
* comment is used to list the previously defined messages that are
* supported by the feature.
*
* Before operands are defined a comment is added that gives the
* name of the operand and in brackets the variable name of the
* corresponding argument in the cec-funcs.h function.
*/

/* Messages */

/* One Touch Play Feature */
#define CEC_MSG_ACTIVE_SOURCE 0x82
#define CEC_MSG_IMAGE_VIEW_ON 0x04
#define CEC_MSG_TEXT_VIEW_ON 0x0d

/* Routing Control Feature */

1.6. Part V - Consumer Electronics Control API 621

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/*
* Has also:
* CEC_MSG_ACTIVE_SOURCE
*/

#define CEC_MSG_INACTIVE_SOURCE 0x9d
#define CEC_MSG_REQUEST_ACTIVE_SOURCE 0x85
#define CEC_MSG_ROUTING_CHANGE 0x80
#define CEC_MSG_ROUTING_INFORMATION 0x81
#define CEC_MSG_SET_STREAM_PATH 0x86

/* Standby Feature */
#define CEC_MSG_STANDBY 0x36

/* One Touch Record Feature */
#define CEC_MSG_RECORD_OFF 0x0b
#define CEC_MSG_RECORD_ON 0x09
/* Record Source Type Operand (rec_src_type) */
#define CEC_OP_RECORD_SRC_OWN 1
#define CEC_OP_RECORD_SRC_DIGITAL 2
#define CEC_OP_RECORD_SRC_ANALOG 3
#define CEC_OP_RECORD_SRC_EXT_PLUG 4
#define CEC_OP_RECORD_SRC_EXT_PHYS_ADDR 5
/* Service Identification Method Operand (service_id_method) */
#define CEC_OP_SERVICE_ID_METHOD_BY_DIG_ID 0
#define CEC_OP_SERVICE_ID_METHOD_BY_CHANNEL 1
/* Digital Service Broadcast System Operand (dig_bcast_system) */
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_GEN 0x00
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_GEN 0x01
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_GEN 0x02
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_BS 0x08
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_CS 0x09
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_T 0x0a
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_CABLE 0x10
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_SAT 0x11
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_T 0x12
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_C 0x18
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_S 0x19
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_S2 0x1a
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_T 0x1b
/* Analogue Broadcast Type Operand (ana_bcast_type) */
#define CEC_OP_ANA_BCAST_TYPE_CABLE 0
#define CEC_OP_ANA_BCAST_TYPE_SATELLITE 1
#define CEC_OP_ANA_BCAST_TYPE_TERRESTRIAL 2
/* Broadcast System Operand (bcast_system) */
#define CEC_OP_BCAST_SYSTEM_PAL_BG 0x00
#define CEC_OP_BCAST_SYSTEM_SECAM_LQ 0x01 /* SECAM L' */
#define CEC_OP_BCAST_SYSTEM_PAL_M 0x02
#define CEC_OP_BCAST_SYSTEM_NTSC_M 0x03
#define CEC_OP_BCAST_SYSTEM_PAL_I 0x04
#define CEC_OP_BCAST_SYSTEM_SECAM_DK 0x05
#define CEC_OP_BCAST_SYSTEM_SECAM_BG 0x06
#define CEC_OP_BCAST_SYSTEM_SECAM_L 0x07
#define CEC_OP_BCAST_SYSTEM_PAL_DK 0x08
#define CEC_OP_BCAST_SYSTEM_OTHER 0x1f
/* Channel Number Format Operand (channel_number_fmt) */
#define CEC_OP_CHANNEL_NUMBER_FMT_1_PART 0x01

622 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define CEC_OP_CHANNEL_NUMBER_FMT_2_PART 0x02

#define CEC_MSG_RECORD_STATUS 0x0a
/* Record Status Operand (rec_status) */
#define CEC_OP_RECORD_STATUS_CUR_SRC 0x01
#define CEC_OP_RECORD_STATUS_DIG_SERVICE 0x02
#define CEC_OP_RECORD_STATUS_ANA_SERVICE 0x03
#define CEC_OP_RECORD_STATUS_EXT_INPUT 0x04
#define CEC_OP_RECORD_STATUS_NO_DIG_SERVICE 0x05
#define CEC_OP_RECORD_STATUS_NO_ANA_SERVICE 0x06
#define CEC_OP_RECORD_STATUS_NO_SERVICE 0x07
#define CEC_OP_RECORD_STATUS_INVALID_EXT_PLUG 0x09
#define CEC_OP_RECORD_STATUS_INVALID_EXT_PHYS_ADDR 0x0a
#define CEC_OP_RECORD_STATUS_UNSUP_CA 0x0b
#define CEC_OP_RECORD_STATUS_NO_CA_ENTITLEMENTS 0x0c
#define CEC_OP_RECORD_STATUS_CANT_COPY_SRC 0x0d
#define CEC_OP_RECORD_STATUS_NO_MORE_COPIES 0x0e
#define CEC_OP_RECORD_STATUS_NO_MEDIA 0x10
#define CEC_OP_RECORD_STATUS_PLAYING 0x11
#define CEC_OP_RECORD_STATUS_ALREADY_RECORDING 0x12
#define CEC_OP_RECORD_STATUS_MEDIA_PROT 0x13
#define CEC_OP_RECORD_STATUS_NO_SIGNAL 0x14
#define CEC_OP_RECORD_STATUS_MEDIA_PROBLEM 0x15
#define CEC_OP_RECORD_STATUS_NO_SPACE 0x16
#define CEC_OP_RECORD_STATUS_PARENTAL_LOCK 0x17
#define CEC_OP_RECORD_STATUS_TERMINATED_OK 0x1a
#define CEC_OP_RECORD_STATUS_ALREADY_TERM 0x1b
#define CEC_OP_RECORD_STATUS_OTHER 0x1f

#define CEC_MSG_RECORD_TV_SCREEN 0x0f

/* Timer Programming Feature */
#define CEC_MSG_CLEAR_ANALOGUE_TIMER 0x33
/* Recording Sequence Operand (recording_seq) */
#define CEC_OP_REC_SEQ_SUNDAY 0x01
#define CEC_OP_REC_SEQ_MONDAY 0x02
#define CEC_OP_REC_SEQ_TUESDAY 0x04
#define CEC_OP_REC_SEQ_WEDNESDAY 0x08
#define CEC_OP_REC_SEQ_THURSDAY 0x10
#define CEC_OP_REC_SEQ_FRIDAY 0x20
#define CEC_OP_REC_SEQ_SATERDAY 0x40
#define CEC_OP_REC_SEQ_ONCE_ONLY 0x00

#define CEC_MSG_CLEAR_DIGITAL_TIMER 0x99

#define CEC_MSG_CLEAR_EXT_TIMER 0xa1
/* External Source Specifier Operand (ext_src_spec) */
#define CEC_OP_EXT_SRC_PLUG 0x04
#define CEC_OP_EXT_SRC_PHYS_ADDR 0x05

#define CEC_MSG_SET_ANALOGUE_TIMER 0x34
#define CEC_MSG_SET_DIGITAL_TIMER 0x97
#define CEC_MSG_SET_EXT_TIMER 0xa2

#define CEC_MSG_SET_TIMER_PROGRAM_TITLE 0x67
#define CEC_MSG_TIMER_CLEARED_STATUS 0x43
/* Timer Cleared Status Data Operand (timer_cleared_status) */
#define CEC_OP_TIMER_CLR_STAT_RECORDING 0x00

1.6. Part V - Consumer Electronics Control API 623

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define CEC_OP_TIMER_CLR_STAT_NO_MATCHING 0x01
#define CEC_OP_TIMER_CLR_STAT_NO_INFO 0x02
#define CEC_OP_TIMER_CLR_STAT_CLEARED 0x80

#define CEC_MSG_TIMER_STATUS 0x35
/* Timer Overlap Warning Operand (timer_overlap_warning) */
#define CEC_OP_TIMER_OVERLAP_WARNING_NO_OVERLAP 0
#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP 1
/* Media Info Operand (media_info) */
#define CEC_OP_MEDIA_INFO_UNPROT_MEDIA 0
#define CEC_OP_MEDIA_INFO_PROT_MEDIA 1
#define CEC_OP_MEDIA_INFO_NO_MEDIA 2
/* Programmed Indicator Operand (prog_indicator) */
#define CEC_OP_PROG_IND_NOT_PROGRAMMED 0
#define CEC_OP_PROG_IND_PROGRAMMED 1
/* Programmed Info Operand (prog_info) */
#define CEC_OP_PROG_INFO_ENOUGH_SPACE 0x08
#define CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE 0x09
#define CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE 0x0b
#define CEC_OP_PROG_INFO_NONE_AVAILABLE 0x0a
/* Not Programmed Error Info Operand (prog_error) */
#define CEC_OP_PROG_ERROR_NO_FREE_TIMER 0x01
#define CEC_OP_PROG_ERROR_DATE_OUT_OF_RANGE 0x02
#define CEC_OP_PROG_ERROR_REC_SEQ_ERROR 0x03
#define CEC_OP_PROG_ERROR_INV_EXT_PLUG 0x04
#define CEC_OP_PROG_ERROR_INV_EXT_PHYS_ADDR 0x05
#define CEC_OP_PROG_ERROR_CA_UNSUPP 0x06
#define CEC_OP_PROG_ERROR_INSUF_CA_ENTITLEMENTS 0x07
#define CEC_OP_PROG_ERROR_RESOLUTION_UNSUPP 0x08
#define CEC_OP_PROG_ERROR_PARENTAL_LOCK 0x09
#define CEC_OP_PROG_ERROR_CLOCK_FAILURE 0x0a
#define CEC_OP_PROG_ERROR_DUPLICATE 0x0e

/* System Information Feature */
#define CEC_MSG_CEC_VERSION 0x9e
/* CEC Version Operand (cec_version) */
#define CEC_OP_CEC_VERSION_1_3A 4
#define CEC_OP_CEC_VERSION_1_4 5
#define CEC_OP_CEC_VERSION_2_0 6

#define CEC_MSG_GET_CEC_VERSION 0x9f
#define CEC_MSG_GIVE_PHYSICAL_ADDR 0x83
#define CEC_MSG_GET_MENU_LANGUAGE 0x91
#define CEC_MSG_REPORT_PHYSICAL_ADDR 0x84
/* Primary Device Type Operand (prim_devtype) */
#define CEC_OP_PRIM_DEVTYPE_TV 0
#define CEC_OP_PRIM_DEVTYPE_RECORD 1
#define CEC_OP_PRIM_DEVTYPE_TUNER 3
#define CEC_OP_PRIM_DEVTYPE_PLAYBACK 4
#define CEC_OP_PRIM_DEVTYPE_AUDIOSYSTEM 5
#define CEC_OP_PRIM_DEVTYPE_SWITCH 6
#define CEC_OP_PRIM_DEVTYPE_PROCESSOR 7

#define CEC_MSG_SET_MENU_LANGUAGE 0x32
#define CEC_MSG_REPORT_FEATURES 0xa6 /* HDMI 2.0 */
/* All Device Types Operand (all_device_types) */
#define CEC_OP_ALL_DEVTYPE_TV 0x80
#define CEC_OP_ALL_DEVTYPE_RECORD 0x40

624 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define CEC_OP_ALL_DEVTYPE_TUNER 0x20
#define CEC_OP_ALL_DEVTYPE_PLAYBACK 0x10
#define CEC_OP_ALL_DEVTYPE_AUDIOSYSTEM 0x08
#define CEC_OP_ALL_DEVTYPE_SWITCH 0x04
/*
* And if you wondering what happened to PROCESSOR devices: those should
* be mapped to a SWITCH.
*/

/* Valid for RC Profile and Device Feature operands */
#define CEC_OP_FEAT_EXT 0x80 /* Extension bit */
/* RC Profile Operand (rc_profile) */
#define CEC_OP_FEAT_RC_TV_PROFILE_NONE 0x00
#define CEC_OP_FEAT_RC_TV_PROFILE_1 0x02
#define CEC_OP_FEAT_RC_TV_PROFILE_2 0x06
#define CEC_OP_FEAT_RC_TV_PROFILE_3 0x0a
#define CEC_OP_FEAT_RC_TV_PROFILE_4 0x0e
#define CEC_OP_FEAT_RC_SRC_HAS_DEV_ROOT_MENU 0x50
#define CEC_OP_FEAT_RC_SRC_HAS_DEV_SETUP_MENU 0x48
#define CEC_OP_FEAT_RC_SRC_HAS_CONTENTS_MENU 0x44
#define CEC_OP_FEAT_RC_SRC_HAS_MEDIA_TOP_MENU 0x42
#define CEC_OP_FEAT_RC_SRC_HAS_MEDIA_CONTEXT_MENU 0x41
/* Device Feature Operand (dev_features) */
#define CEC_OP_FEAT_DEV_HAS_RECORD_TV_SCREEN 0x40
#define CEC_OP_FEAT_DEV_HAS_SET_OSD_STRING 0x20
#define CEC_OP_FEAT_DEV_HAS_DECK_CONTROL 0x10
#define CEC_OP_FEAT_DEV_HAS_SET_AUDIO_RATE 0x08
#define CEC_OP_FEAT_DEV_SINK_HAS_ARC_TX 0x04
#define CEC_OP_FEAT_DEV_SOURCE_HAS_ARC_RX 0x02

#define CEC_MSG_GIVE_FEATURES 0xa5 /* HDMI 2.0 */

/* Deck Control Feature */
#define CEC_MSG_DECK_CONTROL 0x42
/* Deck Control Mode Operand (deck_control_mode) */
#define CEC_OP_DECK_CTL_MODE_SKIP_FWD 1
#define CEC_OP_DECK_CTL_MODE_SKIP_REV 2
#define CEC_OP_DECK_CTL_MODE_STOP 3
#define CEC_OP_DECK_CTL_MODE_EJECT 4

#define CEC_MSG_DECK_STATUS 0x1b
/* Deck Info Operand (deck_info) */
#define CEC_OP_DECK_INFO_PLAY 0x11
#define CEC_OP_DECK_INFO_RECORD 0x12
#define CEC_OP_DECK_INFO_PLAY_REV 0x13
#define CEC_OP_DECK_INFO_STILL 0x14
#define CEC_OP_DECK_INFO_SLOW 0x15
#define CEC_OP_DECK_INFO_SLOW_REV 0x16
#define CEC_OP_DECK_INFO_FAST_FWD 0x17
#define CEC_OP_DECK_INFO_FAST_REV 0x18
#define CEC_OP_DECK_INFO_NO_MEDIA 0x19
#define CEC_OP_DECK_INFO_STOP 0x1a
#define CEC_OP_DECK_INFO_SKIP_FWD 0x1b
#define CEC_OP_DECK_INFO_SKIP_REV 0x1c
#define CEC_OP_DECK_INFO_INDEX_SEARCH_FWD 0x1d
#define CEC_OP_DECK_INFO_INDEX_SEARCH_REV 0x1e
#define CEC_OP_DECK_INFO_OTHER 0x1f

1.6. Part V - Consumer Electronics Control API 625

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define CEC_MSG_GIVE_DECK_STATUS 0x1a
/* Status Request Operand (status_req) */
#define CEC_OP_STATUS_REQ_ON 1
#define CEC_OP_STATUS_REQ_OFF 2
#define CEC_OP_STATUS_REQ_ONCE 3

#define CEC_MSG_PLAY 0x41
/* Play Mode Operand (play_mode) */
#define CEC_OP_PLAY_MODE_PLAY_FWD 0x24
#define CEC_OP_PLAY_MODE_PLAY_REV 0x20
#define CEC_OP_PLAY_MODE_PLAY_STILL 0x25
#define CEC_OP_PLAY_MODE_PLAY_FAST_FWD_MIN 0x05
#define CEC_OP_PLAY_MODE_PLAY_FAST_FWD_MED 0x06
#define CEC_OP_PLAY_MODE_PLAY_FAST_FWD_MAX 0x07
#define CEC_OP_PLAY_MODE_PLAY_FAST_REV_MIN 0x09
#define CEC_OP_PLAY_MODE_PLAY_FAST_REV_MED 0x0a
#define CEC_OP_PLAY_MODE_PLAY_FAST_REV_MAX 0x0b
#define CEC_OP_PLAY_MODE_PLAY_SLOW_FWD_MIN 0x15
#define CEC_OP_PLAY_MODE_PLAY_SLOW_FWD_MED 0x16
#define CEC_OP_PLAY_MODE_PLAY_SLOW_FWD_MAX 0x17
#define CEC_OP_PLAY_MODE_PLAY_SLOW_REV_MIN 0x19
#define CEC_OP_PLAY_MODE_PLAY_SLOW_REV_MED 0x1a
#define CEC_OP_PLAY_MODE_PLAY_SLOW_REV_MAX 0x1b

/* Tuner Control Feature */
#define CEC_MSG_GIVE_TUNER_DEVICE_STATUS 0x08
#define CEC_MSG_SELECT_ANALOGUE_SERVICE 0x92
#define CEC_MSG_SELECT_DIGITAL_SERVICE 0x93
#define CEC_MSG_TUNER_DEVICE_STATUS 0x07
/* Recording Flag Operand (rec_flag) */
#define CEC_OP_REC_FLAG_USED 0
#define CEC_OP_REC_FLAG_NOT_USED 1
/* Tuner Display Info Operand (tuner_display_info) */
#define CEC_OP_TUNER_DISPLAY_INFO_DIGITAL 0
#define CEC_OP_TUNER_DISPLAY_INFO_NONE 1
#define CEC_OP_TUNER_DISPLAY_INFO_ANALOGUE 2

#define CEC_MSG_TUNER_STEP_DECREMENT 0x06
#define CEC_MSG_TUNER_STEP_INCREMENT 0x05

/* Vendor Specific Commands Feature */

/*
* Has also:
* CEC_MSG_CEC_VERSION
* CEC_MSG_GET_CEC_VERSION
*/

#define CEC_MSG_DEVICE_VENDOR_ID 0x87
#define CEC_MSG_GIVE_DEVICE_VENDOR_ID 0x8c
#define CEC_MSG_VENDOR_COMMAND 0x89
#define CEC_MSG_VENDOR_COMMAND_WITH_ID 0xa0
#define CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN 0x8a
#define CEC_MSG_VENDOR_REMOTE_BUTTON_UP 0x8b

/* OSD Display Feature */
#define CEC_MSG_SET_OSD_STRING 0x64
/* Display Control Operand (disp_ctl) */
#define CEC_OP_DISP_CTL_DEFAULT 0x00

626 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define CEC_OP_DISP_CTL_UNTIL_CLEARED 0x40
#define CEC_OP_DISP_CTL_CLEAR 0x80

/* Device OSD Transfer Feature */
#define CEC_MSG_GIVE_OSD_NAME 0x46
#define CEC_MSG_SET_OSD_NAME 0x47

/* Device Menu Control Feature */
#define CEC_MSG_MENU_REQUEST 0x8d
/* Menu Request Type Operand (menu_req) */
#define CEC_OP_MENU_REQUEST_ACTIVATE 0x00
#define CEC_OP_MENU_REQUEST_DEACTIVATE 0x01
#define CEC_OP_MENU_REQUEST_QUERY 0x02

#define CEC_MSG_MENU_STATUS 0x8e
/* Menu State Operand (menu_state) */
#define CEC_OP_MENU_STATE_ACTIVATED 0x00
#define CEC_OP_MENU_STATE_DEACTIVATED 0x01

#define CEC_MSG_USER_CONTROL_PRESSED 0x44
/* UI Broadcast Type Operand (ui_bcast_type) */
#define CEC_OP_UI_BCAST_TYPE_TOGGLE_ALL 0x00
#define CEC_OP_UI_BCAST_TYPE_TOGGLE_DIG_ANA 0x01
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE 0x10
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE_T 0x20
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE_CABLE 0x30
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE_SAT 0x40
#define CEC_OP_UI_BCAST_TYPE_DIGITAL 0x50
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_T 0x60
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_CABLE 0x70
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_SAT 0x80
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_COM_SAT 0x90
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_COM_SAT2 0x91
#define CEC_OP_UI_BCAST_TYPE_IP 0xa0
/* UI Sound Presentation Control Operand (ui_snd_pres_ctl) */
#define CEC_OP_UI_SND_PRES_CTL_DUAL_MONO 0x10
#define CEC_OP_UI_SND_PRES_CTL_KARAOKE 0x20
#define CEC_OP_UI_SND_PRES_CTL_DOWNMIX 0x80
#define CEC_OP_UI_SND_PRES_CTL_REVERB 0x90
#define CEC_OP_UI_SND_PRES_CTL_EQUALIZER 0xa0
#define CEC_OP_UI_SND_PRES_CTL_BASS_UP 0xb1
#define CEC_OP_UI_SND_PRES_CTL_BASS_NEUTRAL 0xb2
#define CEC_OP_UI_SND_PRES_CTL_BASS_DOWN 0xb3
#define CEC_OP_UI_SND_PRES_CTL_TREBLE_UP 0xc1
#define CEC_OP_UI_SND_PRES_CTL_TREBLE_NEUTRAL 0xc2
#define CEC_OP_UI_SND_PRES_CTL_TREBLE_DOWN 0xc3

#define CEC_MSG_USER_CONTROL_RELEASED 0x45

/* Remote Control Passthrough Feature */

/*
* Has also:
* CEC_MSG_USER_CONTROL_PRESSED
* CEC_MSG_USER_CONTROL_RELEASED
*/

/* Power Status Feature */

1.6. Part V - Consumer Electronics Control API 627

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define CEC_MSG_GIVE_DEVICE_POWER_STATUS 0x8f
#define CEC_MSG_REPORT_POWER_STATUS 0x90
/* Power Status Operand (pwr_state) */
#define CEC_OP_POWER_STATUS_ON 0
#define CEC_OP_POWER_STATUS_STANDBY 1
#define CEC_OP_POWER_STATUS_TO_ON 2
#define CEC_OP_POWER_STATUS_TO_STANDBY 3

/* General Protocol Messages */
#define CEC_MSG_FEATURE_ABORT 0x00
/* Abort Reason Operand (reason) */
#define CEC_OP_ABORT_UNRECOGNIZED_OP 0
#define CEC_OP_ABORT_INCORRECT_MODE 1
#define CEC_OP_ABORT_NO_SOURCE 2
#define CEC_OP_ABORT_INVALID_OP 3
#define CEC_OP_ABORT_REFUSED 4
#define CEC_OP_ABORT_UNDETERMINED 5

#define CEC_MSG_ABORT 0xff

/* System Audio Control Feature */

/*
* Has also:
* CEC_MSG_USER_CONTROL_PRESSED
* CEC_MSG_USER_CONTROL_RELEASED
*/

#define CEC_MSG_GIVE_AUDIO_STATUS 0x71
#define CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS 0x7d
#define CEC_MSG_REPORT_AUDIO_STATUS 0x7a
/* Audio Mute Status Operand (aud_mute_status) */
#define CEC_OP_AUD_MUTE_STATUS_OFF 0
#define CEC_OP_AUD_MUTE_STATUS_ON 1

#define CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR 0xa3
#define CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR 0xa4
#define CEC_MSG_SET_SYSTEM_AUDIO_MODE 0x72
/* System Audio Status Operand (sys_aud_status) */
#define CEC_OP_SYS_AUD_STATUS_OFF 0
#define CEC_OP_SYS_AUD_STATUS_ON 1

#define CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST 0x70
#define CEC_MSG_SYSTEM_AUDIO_MODE_STATUS 0x7e
/* Audio Format ID Operand (audio_format_id) */
#define CEC_OP_AUD_FMT_ID_CEA861 0
#define CEC_OP_AUD_FMT_ID_CEA861_CXT 1

/* Audio Rate Control Feature */
#define CEC_MSG_SET_AUDIO_RATE 0x9a
/* Audio Rate Operand (audio_rate) */
#define CEC_OP_AUD_RATE_OFF 0
#define CEC_OP_AUD_RATE_WIDE_STD 1
#define CEC_OP_AUD_RATE_WIDE_FAST 2
#define CEC_OP_AUD_RATE_WIDE_SLOW 3
#define CEC_OP_AUD_RATE_NARROW_STD 4
#define CEC_OP_AUD_RATE_NARROW_FAST 5
#define CEC_OP_AUD_RATE_NARROW_SLOW 6

628 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* Audio Return Channel Control Feature */
#define CEC_MSG_INITIATE_ARC 0xc0
#define CEC_MSG_REPORT_ARC_INITIATED 0xc1
#define CEC_MSG_REPORT_ARC_TERMINATED 0xc2
#define CEC_MSG_REQUEST_ARC_INITIATION 0xc3
#define CEC_MSG_REQUEST_ARC_TERMINATION 0xc4
#define CEC_MSG_TERMINATE_ARC 0xc5

/* Dynamic Audio Lipsync Feature */
/* Only for CEC 2.0 and up */
#define CEC_MSG_REQUEST_CURRENT_LATENCY 0xa7
#define CEC_MSG_REPORT_CURRENT_LATENCY 0xa8
/* Low Latency Mode Operand (low_latency_mode) */
#define CEC_OP_LOW_LATENCY_MODE_OFF 0
#define CEC_OP_LOW_LATENCY_MODE_ON 1
/* Audio Output Compensated Operand (audio_out_compensated) */
#define CEC_OP_AUD_OUT_COMPENSATED_NA 0
#define CEC_OP_AUD_OUT_COMPENSATED_DELAY 1
#define CEC_OP_AUD_OUT_COMPENSATED_NO_DELAY 2
#define CEC_OP_AUD_OUT_COMPENSATED_PARTIAL_DELAY 3

/* Capability Discovery and Control Feature */
#define CEC_MSG_CDC_MESSAGE 0xf8
/* Ethernet-over-HDMI: nobody ever does this... */
#define CEC_MSG_CDC_HEC_INQUIRE_STATE 0x00
#define CEC_MSG_CDC_HEC_REPORT_STATE 0x01
/* HEC Functionality State Operand (hec_func_state) */
#define CEC_OP_HEC_FUNC_STATE_NOT_SUPPORTED 0
#define CEC_OP_HEC_FUNC_STATE_INACTIVE 1
#define CEC_OP_HEC_FUNC_STATE_ACTIVE 2
#define CEC_OP_HEC_FUNC_STATE_ACTIVATION_FIELD 3
/* Host Functionality State Operand (host_func_state) */
#define CEC_OP_HOST_FUNC_STATE_NOT_SUPPORTED 0
#define CEC_OP_HOST_FUNC_STATE_INACTIVE 1
#define CEC_OP_HOST_FUNC_STATE_ACTIVE 2
/* ENC Functionality State Operand (enc_func_state) */
#define CEC_OP_ENC_FUNC_STATE_EXT_CON_NOT_SUPPORTED 0
#define CEC_OP_ENC_FUNC_STATE_EXT_CON_INACTIVE 1
#define CEC_OP_ENC_FUNC_STATE_EXT_CON_ACTIVE 2
/* CDC Error Code Operand (cdc_errcode) */
#define CEC_OP_CDC_ERROR_CODE_NONE 0
#define CEC_OP_CDC_ERROR_CODE_CAP_UNSUPPORTED 1
#define CEC_OP_CDC_ERROR_CODE_WRONG_STATE 2
#define CEC_OP_CDC_ERROR_CODE_OTHER 3
/* HEC Support Operand (hec_support) */
#define CEC_OP_HEC_SUPPORT_NO 0
#define CEC_OP_HEC_SUPPORT_YES 1
/* HEC Activation Operand (hec_activation) */
#define CEC_OP_HEC_ACTIVATION_ON 0
#define CEC_OP_HEC_ACTIVATION_OFF 1

#define CEC_MSG_CDC_HEC_SET_STATE_ADJACENT 0x02
#define CEC_MSG_CDC_HEC_SET_STATE 0x03
/* HEC Set State Operand (hec_set_state) */
#define CEC_OP_HEC_SET_STATE_DEACTIVATE 0
#define CEC_OP_HEC_SET_STATE_ACTIVATE 1

#define CEC_MSG_CDC_HEC_REQUEST_DEACTIVATION 0x04

1.6. Part V - Consumer Electronics Control API 629

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

#define CEC_MSG_CDC_HEC_NOTIFY_ALIVE 0x05
#define CEC_MSG_CDC_HEC_DISCOVER 0x06
/* Hotplug Detect messages */
#define CEC_MSG_CDC_HPD_SET_STATE 0x10
/* HPD State Operand (hpd_state) */
#define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0
#define CEC_OP_HPD_STATE_CP_EDID_ENABLE 1
#define CEC_OP_HPD_STATE_CP_EDID_DISABLE_ENABLE 2
#define CEC_OP_HPD_STATE_EDID_DISABLE 3
#define CEC_OP_HPD_STATE_EDID_ENABLE 4
#define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5
#define CEC_MSG_CDC_HPD_REPORT_STATE 0x11
/* HPD Error Code Operand (hpd_error) */
#define CEC_OP_HPD_ERROR_NONE 0
#define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1
#define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2
#define CEC_OP_HPD_ERROR_OTHER 3
#define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4

/* End of Messages */

/* Helper functions to identify the `special' CEC devices */

static inline int cec_is_2nd_tv(const struct cec_log_addrs
*las)

{
/*
* It is a second TV if the logical address is 14 or 15 and the
* primary device type is a TV.
*/

return las->num_log_addrs &&
las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC &&
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_TV;

}

static inline int cec_is_processor(const struct cec_log_addrs
*las)

{
/*
* It is a processor if the logical address is 12-15 and the
* primary device type is a Processor.
*/

return las->num_log_addrs &&
las->log_addr[0] >= CEC_LOG_ADDR_BACKUP_1 &&
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_PROCESSOR;

}

static inline int cec_is_switch(const struct cec_log_addrs
*las)

{
/*
* It is a switch if the logical address is 15 and the
* primary device type is a Switch and the CDC-Only flag is not set.
*/

return las->num_log_addrs == 1 &&
las->log_addr[0] == CEC_LOG_ADDR_UNREGISTERED &&
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_SWITCH &&
!(las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY);

630 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

}

static inline int cec_is_cdc_only(const struct cec_log_addrs
*las)

{
/*
* It is a CDC-only device if the logical address is 15 and the
* primary device type is a Switch and the CDC-Only flag is set.
*/

return las->num_log_addrs == 1 &&
las->log_addr[0] == CEC_LOG_ADDR_UNREGISTERED &&
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_SWITCH &&
(las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY);

}

#endif

1.6.4 Revision and Copyright

Authors:
• Verkuil, Hans <hans.verkuil@cisco.com>
• Initial version.

Copyright © 2016 : Hans Verkuil

1.6.5 Revision History

revision 1.0.0 / 2016-03-17 (hv)
Initial revision

1.6. Part V - Consumer Electronics Control API 631

mailto:hans.verkuil@cisco.com

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1.7 Generic Error Codes

Table 1.213: Generic error codes
EAGAIN (aka
EWOULDBLOCK)

The ioctl can’t be handled because the device is in state where it can’t perform it. This
could happen for example in case where device is sleeping and ioctl is performed to
query statistics. It is also returned when the ioctl would need to wait for an event, but
the device was opened in non-blocking mode.

EBADF The file descriptor is not a valid.
EBUSY The ioctl can’t be handled because the device is busy. This is typically return while

device is streaming, and an ioctl tried to change something that would affect the
stream, or would require the usage of a hardware resource that was already allocated.
The ioctl must not be retried without performing another action to fix the problem first
(typically: stop the stream before retrying).

EFAULT There was a failure while copying data from/to userspace, probably caused by an
invalid pointer reference.

EINVAL One or more of the ioctl parameters are invalid or out of the allowed range. This is a
widely used error code. See the individual ioctl requests for specific causes.

ENODEV Device not found or was removed.
ENOMEM There’s not enough memory to handle the desired operation.
ENOTTY The ioctl is not supported by the driver, actually meaning that the required function-

ality is not available, or the file descriptor is not for a media device.
ENOSPC On USB devices, the stream ioctl’s can return this error, meaning that this request

would overcommit the usb bandwidth reserved for periodic transfers (up to 80% of
the USB bandwidth).

EPERM Permission denied. Can be returned if the device needs write permission, or some
special capabilities is needed (e. g. root)

EIO I/O error. Typically used when there are problems communicating with a hardware
device. This could indicate broken or flaky hardware. It’s a ‘Something is wrong, I
give up!’ type of error.

ENXIO No device corresponding to this device special file exists.

Note:

1. This list is not exhaustive; ioctls may return other error codes. Since errors may have side effects
such as a driver reset, applications should abort on unexpected errors, or otherwise assume that
the device is in a bad state.

2. Request-specific error codes are listed in the individual requests descriptions.

1.8 GNU Free Documentation License

1.8.1 0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free” in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher
a way to get credit for their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.
We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that

632 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1.8.2 1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”. A “Modified Version”
of the Document means any work containing the Document or a portion of it, either copied verbatim, or
with modifications and/or translated into another language. A “Secondary Section” is a named appendix
or a front-matter section of the Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (For example, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them. The “Invariant Sections” are certain Secondary Sections
whose titles are designated, as being those of Invariant Sections, in the notice that says that the Docu-
ment is released under this License. The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup has been designed to thwart or dis-
courage subsequent modification by readers is not Transparent. A copy that is not “Transparent” is called
“Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats
that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML produced by some word
processors for output purposes only. The “Title Page” means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material this License requires to appear in
the title page. For works in formats which do not have any title page as such, “Title Page” means the text
near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

1.8.3 2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3 .
You may also lend copies, under the same conditions stated above, and you may publicly display copies.

1.8.4 3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license
notice requires Cover Texts , you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add other material

1.8. GNU Free Documentation License 633

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy of
the Document, free of added material, which the general network-using public has access to download
anonymously at no charge using public-standard network protocols. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year after the
last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.
It is requested, but not required, that you contact the authors of the Document well before redistribut-
ing any large number of copies, to give them a chance to provide you with an updated version of the
Document.

1.8.5 4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified

Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document , and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

• B. List on the Title Page , as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version , together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

• C. State on the Title Page the name of the publisher of the Modified Version , as the publisher.
• D. Preserve all the copyright notices of the Document .
• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
• F. Include, immediately after the copyright notices, a license notice giving the public permission to

use the Modified Version under the terms of this License, in the form shown in the Addendum below.
• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given

in the Document’s license notice.
• H. Include an unaltered copy of this License.
• I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the title,

year, new authors, and publisher of the Modified Version as given on the Title Page . If there is no
section entitled “History” in the Document , create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

634 Chapter 1. Linux Media Infrastructure userspace API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document , unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section entitled “Endorsements”. Such a section may not be included in the Modified
Version .

• N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section .

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been

approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text , and a passage of up to 25 words as
a Back-Cover Text , to the end of the list of Cover Texts in the Modified Version . Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version .

1.8.6 5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but

different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections entitled “History” in the various original documents,
forming one section entitled “History”; likewise combine any sections entitled “Acknowledgements”, and
any sections entitled “Dedications”. You must delete all sections entitled “Endorsements.”

1.8.7 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.
You may extract a single document from such a collection, and dispbibute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

1.8. GNU Free Documentation License 635

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1.8.8 7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified
Version of the Document, provided no compilation copyright is claimed for the compilation. Such a
compilation is called an “aggregate”, and this License does not apply to the other self-contained works
thus compiled with the Document , on account of their being thus compiled, if they are not themselves
derivative works of the Document. If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

1.8.9 8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4 . Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in addition
to the original versions of these Invariant Sections. You may include a translation of this License provided
that you also include the original English version of this License. In case of a disagreement between the
translation and the original English version of this License, the original English version will prevail.

1.8.10 9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

1.8.11 10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

1.8.12 Addendum

To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Soft-
ware Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

636 Chapter 1. Linux Media Infrastructure userspace API

http://www.gnu.org/fsf/fsf.html
http://www.gnu.org/copyleft

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

If you have no Invariant Sections , write “with no Invariant Sections” instead of saying which ones are
invariant. If you have no Front-Cover Texts , write “no Front-Cover Texts” instead of “Front-Cover Texts
being LIST”; likewise for Back-Cover Texts .
If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

1.8. GNU Free Documentation License 637

http://www.gnu.org/copyleft/gpl.html

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

638 Chapter 1. Linux Media Infrastructure userspace API

CHAPTER

TWO

MEDIA SUBSYSTEM KERNEL INTERNAL API

Copyright © 2009-2016 : LinuxTV Developers
This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
For more details see the file COPYING in the source distribution of Linux.

2.1 Video4Linux devices

2.1.1 Introduction

The V4L2 drivers tend to be very complex due to the complexity of the hardware: most devices have
multiple ICs, export multiple device nodes in /dev, and create also non-V4L2 devices such as DVB, ALSA,
FB, I2C and input (IR) devices.
Especially the fact that V4L2 drivers have to setup supporting ICs to do audio/video mux-
ing/encoding/decoding makes it more complex than most. Usually these ICs are connected to the main
bridge driver through one or more I2C busses, but other busses can also be used. Such devices are called
‘sub-devices’.
For a long time the framework was limited to the video_device struct for creating V4L device nodes and
video_buf for handling the video buffers (note that this document does not discuss the video_buf frame-
work).
This meant that all drivers had to do the setup of device instances and connecting to sub-devices them-
selves. Some of this is quite complicated to do right and many drivers never did do it correctly.
There is also a lot of common code that could never be refactored due to the lack of a framework.
So this framework sets up the basic building blocks that all drivers need and this same framework should
make it much easier to refactor common code into utility functions shared by all drivers.
A good example to look at as a reference is the v4l2-pci-skeleton.c source that is available in samples/v4l/.
It is a skeleton driver for a PCI capture card, and demonstrates how to use the V4L2 driver framework. It
can be used as a template for real PCI video capture driver.

2.1.2 Structure of a V4L driver

All drivers have the following structure:
1. A struct for each device instance containing the device state.
2. A way of initializing and commanding sub-devices (if any).

639

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

3. Creating V4L2 device nodes (/dev/videoX, /dev/vbiX and /dev/radioX) and keeping track of device-
node specific data.

4. Filehandle-specific structs containing per-filehandle data;
5. video buffer handling.

This is a rough schematic of how it all relates:

device instances
|
+-sub-device instances
|
\-V4L2 device nodes

|
\-filehandle instances

2.1.3 Structure of the V4L2 framework

The framework closely resembles the driver structure: it has a v4l2_device struct for the device instance
data, a v4l2_subdev struct to refer to sub-device instances, the video_device struct stores V4L2 device
node data and the v4l2_fh struct keeps track of filehandle instances.
The V4L2 framework also optionally integrates with the media framework. If a driver sets the struct
v4l2_device mdev field, sub-devices and video nodes will automatically appear in the media framework
as entities.

2.1.4 Video device’ s internal representation

The actual device nodes in the /dev directory are created using the video_device struct (v4l2-dev.h).
This struct can either be allocated dynamically or embedded in a larger struct.
To allocate it dynamically use video_device_alloc():

struct video_device *vdev = video_device_alloc();

if (vdev == NULL)
return -ENOMEM;

vdev->release = video_device_release;

If you embed it in a larger struct, then you must set the release() callback to your own function:

struct video_device *vdev = &my_vdev->vdev;

vdev->release = my_vdev_release;

The release() callback must be set and it is called when the last user of the video device exits.
The default video_device_release() callback currently just calls kfree to free the allocated memory.
There is also a :video_device_release_empty() function that does nothing (is empty) and should be
used if the struct is embedded and there is nothing to do when it is released.
You should also set these fields of video_device:

• video_device->v4l2_dev: must be set to the v4l2_device parent device.
• video_device->name: set to something descriptive and unique.
• video_device->vfl_dir: set this to VFL_DIR_RX for capture devices (VFL_DIR_RX has value 0, so this is

normally already the default), set to VFL_DIR_TX for output devices and VFL_DIR_M2M for mem2mem
(codec) devices.

640 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• video_device->fops: set to the v4l2_file_operations struct.
• video_device->ioctl_ops: if you use the v4l2_ioctl_ops to simplify ioctl maintenance (highly

recommended to use this and it might become compulsory in the future!), then set this to your
v4l2_ioctl_ops struct. The video_device->vfl_type and video_device->vfl_dir fields are used
to disable ops that do not match the type/dir combination. E.g. VBI ops are disabled for non-VBI
nodes, and output ops are disabled for a capture device. This makes it possible to provide just one
v4l2_ioctl_ops struct for both vbi and video nodes.

• video_device->lock: leave to NULL if you want to do all the locking in the driver. Otherwise you
give it a pointer to a struct mutex_lock and before the video_device->unlocked_ioctl file operation
is called this lock will be taken by the core and released afterwards. See the next section for more
details.

• video_device->queue: a pointer to the struct vb2_queue associated with this device node. If
queue is not NULL, and queue->lock is not NULL, then queue->lock is used for the queuing ioctls
(VIDIOC_REQBUFS, CREATE_BUFS, QBUF, DQBUF, QUERYBUF, PREPARE_BUF, STREAMON and STREAMOFF)
instead of the lock above. That way the vb2 queuing framework does not have to wait for other
ioctls. This queue pointer is also used by the vb2 helper functions to check for queuing ownership
(i.e. is the filehandle calling it allowed to do the operation).

• video_device->prio: keeps track of the priorities. Used to implement VIDIOC_G_PRIORITY and VID-
IOC_S_PRIORITY. If left to NULL, then it will use the struct v4l2_prio_state in v4l2_device. If you
want to have a separate priority state per (group of) device node(s), then you can point it to your
own struct v4l2_prio_state.

• video_device->dev_parent: you only set this if v4l2_device was registered with NULL as the parent
device struct. This only happens in cases where one hardware device has multiple PCI devices that
all share the same v4l2_device core.
The cx88 driver is an example of this: one core v4l2_device struct, but it is used by both a raw video
PCI device (cx8800) and a MPEG PCI device (cx8802). Since the v4l2_device cannot be associated
with two PCI devices at the same time it is setup without a parent device. But when the struct
video_device is initialized you do know which parent PCI device to use and so you set dev_device
to the correct PCI device.

If you use v4l2_ioctl_ops, then you should set video_device->unlocked_ioctl to video_ioctl2() in
your v4l2_file_operations struct.
In some cases you want to tell the core that a function you had specified in your v4l2_ioctl_ops should
be ignored. You can mark such ioctls by calling this function before video_register_device() is called:

v4l2_disable_ioctl (vdev, cmd).
This tends to be needed if based on external factors (e.g. which card is being used) you want to turns off
certain features in v4l2_ioctl_ops without having to make a new struct.
The v4l2_file_operations struct is a subset of file_operations. The main difference is that the inode
argument is omitted since it is never used.
If integration with the media framework is needed, you must initialize the media_entity struct embedded
in the video_device struct (entity field) by calling media_entity_pads_init():

struct media_pad *pad = &my_vdev->pad;
int err;

err = media_entity_pads_init(&vdev->entity, 1, pad);

The pads array must have been previously initialized. There is no need to manually set the struct me-
dia_entity type and name fields.
A reference to the entity will be automatically acquired/released when the video device is opened/closed.

2.1. Video4Linux devices 641

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ioctls and locking

The V4L core provides optional locking services. The main service is the lock field in struct video_device,
which is a pointer to a mutex. If you set this pointer, then that will be used by unlocked_ioctl to serialize
all ioctls.
If you are using the videobuf2 framework , then there is a second lock that you can set: video_device-
>queue->lock. If set, then this lock will be used instead of video_device->lock to serialize all queuing
ioctls (see the previous section for the full list of those ioctls).
The advantage of using a different lock for the queuing ioctls is that for some drivers (particularly USB
drivers) certain commands such as setting controls can take a long time, so you want to use a separate
lock for the buffer queuing ioctls. That way your VIDIOC_DQBUF doesn’t stall because the driver is busy
changing the e.g. exposure of the webcam.
Of course, you can always do all the locking yourself by leaving both lock pointers at NULL.
If you use the old videobuf framework then you must pass the video_device->lock to the videobuf
queue initialize function: if videobuf has to wait for a frame to arrive, then it will temporarily unlock the
lock and relock it afterwards. If your driver also waits in the code, then you should do the same to allow
other processes to access the device node while the first process is waiting for something.
In the case of videobuf2 you will need to implement the wait_prepare() and wait_finish() callbacks
to unlock/lock if applicable. If you use the queue->lock pointer, then you can use the helper functions
vb2_ops_wait_prepare() and vb2_ops_wait_finish().
The implementation of a hotplug disconnect should also take the lock from video_device before calling
v4l2_device_disconnect. If you are also using video_device->queue->lock, then you have to first lock
video_device->queue->lock followed by video_device->lock. That way you can be sure no ioctl is
running when you call v4l2_device_disconnect().

Video device registration

Next you register the video device with video_register_device(). This will create the character device
for you.

err = video_register_device(vdev, VFL_TYPE_GRABBER, -1);
if (err) {

video_device_release(vdev); /* or kfree(my_vdev); */
return err;

}

If the v4l2_device parent device has a not NULL mdev field, the video device entity will be automatically
registered with the media device.
Which device is registered depends on the type argument. The following types exist:

• VFL_TYPE_GRABBER: /dev/videoX for video input/output devices
• VFL_TYPE_VBI: /dev/vbiX for vertical blank data (i.e. closed captions, teletext)
• VFL_TYPE_RADIO: /dev/radioX for radio tuners
• VFL_TYPE_SDR: /dev/swradioX for Software Defined Radio tuners
• VFL_TYPE_TOUCH: /dev/v4l-touchX for touch sensors

The last argument gives you a certain amount of control over the device device node number used (i.e. the
X in videoX). Normally you will pass -1 to let the v4l2 framework pick the first free number. But sometimes
users want to select a specific node number. It is common that drivers allow the user to select a specific
device node number through a driver module option. That number is then passed to this function and
video_register_device will attempt to select that device node number. If that number was already in use,
then the next free device node number will be selected and it will send a warning to the kernel log.

642 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Another use-case is if a driver creates many devices. In that case it can be useful to place different video
devices in separate ranges. For example, video capture devices start at 0, video output devices start at
16. So you can use the last argument to specify a minimum device node number and the v4l2 framework
will try to pick the first free number that is equal or higher to what you passed. If that fails, then it will
just pick the first free number.
Since in this case you do not care about a warning about not being able to select the specified device
node number, you can call the function video_register_device_no_warn() instead.
Whenever a device node is created some attributes are also created for you. If you look in
/sys/class/video4linux you see the devices. Go into e.g. video0 and you will see ‘name’, ‘dev_debug’
and ‘index’ attributes. The ‘name’ attribute is the ‘name’ field of the video_device struct. The ‘dev_debug’
attribute can be used to enable core debugging. See the next section for more detailed information on
this.
The ‘index’ attribute is the index of the device node: for each call to video_register_device() the index
is just increased by 1. The first video device node you register always starts with index 0.
Users can setup udev rules that utilize the index attribute to make fancy device names (e.g. ‘mpegX‘ for
MPEG video capture device nodes).
After the device was successfully registered, then you can use these fields:

• video_device->vfl_type: the device type passed to video_register_device().
• video_device->minor: the assigned device minor number.
• video_device->num: the device node number (i.e. the X in videoX).
• video_device->index: the device index number.

If the registration failed, then you need to call video_device_release() to free the allocated
video_device struct, or free your own struct if the video_device was embedded in it. The vdev-
>release() callback will never be called if the registration failed, nor should you ever attempt to un-
register the device if the registration failed.

video device debugging

The ‘dev_debug’ attribute that is created for each video, vbi, radio or swradio device in
/sys/class/video4linux/<devX>/ allows you to enable logging of file operations.
It is a bitmask and the following bits can be set:
Mask Description
0x01 Log the ioctl name and error code. VIDIOC_(D)QBUF ioctls are only logged if bit 0x08 is also set.
0x02 Log the ioctl name arguments and error code. VIDIOC_(D)QBUF ioctls are only logged if bit 0x08 is

also set.
0x04 Log the file operations open, release, read, write, mmap and get_unmapped_area. The read and

write operations are only logged if bit 0x08 is also set.
0x08 Log the read and write file operations and the VIDIOC_QBUF and VIDIOC_DQBUF ioctls.
0x10 Log the poll file operation.

Video device cleanup

When the video device nodes have to be removed, either during the unload of the driver or because the
USB device was disconnected, then you should unregister them with:

video_unregister_device() (vdev);
This will remove the device nodes from sysfs (causing udev to remove them from /dev).
After video_unregister_device() returns no new opens can be done. However, in the case of USB
devices some application might still have one of these device nodes open. So after the unregister all file
operations (except release, of course) will return an error as well.

2.1. Video4Linux devices 643

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

When the last user of the video device node exits, then the vdev->release() callback is called and you
can do the final cleanup there.
Don’t forget to cleanup the media entity associated with the video device if it has been initialized:

media_entity_cleanup (&vdev->entity);
This can be done from the release callback.

helper functions

There are a few useful helper functions:
• file and video_device private data

You can set/get driver private data in the video_device struct using:
video_get_drvdata (vdev);
video_set_drvdata (vdev);

Note that you can safely call video_set_drvdata() before calling video_register_device().
And this function:

video_devdata (struct file *file);
returns the video_device belonging to the file struct.
The video_devdata() function combines video_get_drvdata() with video_devdata():

video_drvdata (struct file *file);
You can go from a video_device struct to the v4l2_device struct using:

struct v4l2_device *v4l2_dev = vdev->v4l2_dev;

• Device node name
The video_device node kernel name can be retrieved using:

video_device_node_name (vdev);
The name is used as a hint by userspace tools such as udev. The function should be used where possible
instead of accessing the video_device::num and video_device::minor fields.

video_device functions and data structures

struct v4l2_prio_state
stores the priority states

Definition

struct v4l2_prio_state {
atomic_t prios;

};

Members
prios array with elements to store the array priorities
Description

Note:

The size of prios array matches the number of priority types defined by enum v4l2_priority.

644 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void v4l2_prio_init(struct v4l2_prio_state * global)
initializes a struct v4l2_prio_state

Parameters
struct v4l2_prio_state * global pointer to struct v4l2_prio_state

int v4l2_prio_change(struct v4l2_prio_state * global, enum v4l2_priority * local, enum
v4l2_priority new)

changes the v4l2 file handler priority
Parameters
struct v4l2_prio_state * global pointer to the struct v4l2_prio_state of the device node.
enum v4l2_priority * local pointer to the desired priority, as defined by enum v4l2_priority

enum v4l2_priority new Priority type requested, as defined by enum v4l2_priority.
Description

Note:

This function should be used only by the V4L2 core.

void v4l2_prio_open(struct v4l2_prio_state * global, enum v4l2_priority * local)
Implements the priority logic for a file handler open

Parameters
struct v4l2_prio_state * global pointer to the struct v4l2_prio_state of the device node.
enum v4l2_priority * local pointer to the desired priority, as defined by enum v4l2_priority

Description

Note:

This function should be used only by the V4L2 core.

void v4l2_prio_close(struct v4l2_prio_state * global, enum v4l2_priority local)
Implements the priority logic for a file handler close

Parameters
struct v4l2_prio_state * global pointer to the struct v4l2_prio_state of the device node.
enum v4l2_priority local priority to be released, as defined by enum v4l2_priority

Description

Note:

This function should be used only by the V4L2 core.

enum v4l2_priority v4l2_prio_max(struct v4l2_prio_state * global)
Return the maximum priority, as stored at the global array.

Parameters
struct v4l2_prio_state * global pointer to the struct v4l2_prio_state of the device node.

2.1. Video4Linux devices 645

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Note:

This function should be used only by the V4L2 core.

int v4l2_prio_check(struct v4l2_prio_state * global, enum v4l2_priority local)
Implements the priority logic for a file handler close

Parameters
struct v4l2_prio_state * global pointer to the struct v4l2_prio_state of the device node.
enum v4l2_priority local desired priority, as defined by enum v4l2_priority local
Description

Note:

This function should be used only by the V4L2 core.

struct v4l2_file_operations
fs operations used by a V4L2 device

Definition

struct v4l2_file_operations {
struct module * owner;
ssize_t (* read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (* write) (struct file *, const char __user *, size_t, loff_t *);
unsigned int (* poll) (struct file *, struct poll_table_struct *);
long (* unlocked_ioctl) (struct file *, unsigned int, unsigned long);

#ifdef CONFIG_COMPAT
long (* compat_ioctl32) (struct file *, unsigned int, unsigned long);

#endif
unsigned long (* get_unmapped_area) (struct file *, unsigned long, unsigned long, unsigned␣

↪→long, unsigned long);
int (* mmap) (struct file *, struct vm_area_struct *);
int (* open) (struct file *);
int (* release) (struct file *);

};

Members
owner pointer to struct module
read operations needed to implement the read() syscall
write operations needed to implement the write() syscall
poll operations needed to implement the poll() syscall
unlocked_ioctl operations needed to implement the ioctl() syscall
compat_ioctl32 operations needed to implement the ioctl() syscall for the special case where the

Kernel uses 64 bits instructions, but the userspace uses 32 bits.
get_unmapped_area called by the mmap() syscall, used when %!CONFIG_MMU
mmap operations needed to implement the mmap() syscall
open operations needed to implement the open() syscall
release operations needed to implement the release() syscall

646 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Note:

Those operations are used to implemente the fs struct file_operations at the V4L2 drivers. The V4L2
core overrides the fs ops with some extra logic needed by the subsystem.

struct video_device
Structure used to create and manage the V4L2 device nodes.

Definition

struct video_device {
#if defined(CONFIG_MEDIA_CONTROLLER
struct media_entity entity;
struct media_intf_devnode * intf_devnode;
struct media_pipeline pipe;

#endif
const struct v4l2_file_operations * fops;
u32 device_caps;
struct device dev;
struct cdev * cdev;
struct v4l2_device * v4l2_dev;
struct device * dev_parent;
struct v4l2_ctrl_handler * ctrl_handler;
struct vb2_queue * queue;
struct v4l2_prio_state * prio;
char name;
int vfl_type;
int vfl_dir;
int minor;
u16 num;
unsigned long flags;
int index;
spinlock_t fh_lock;
struct list_head fh_list;
int dev_debug;
v4l2_std_id tvnorms;
void (* release) (struct video_device *vdev);
const struct v4l2_ioctl_ops * ioctl_ops;
unsigned long valid_ioctls;
unsigned long disable_locking;
struct mutex * lock;

};

Members
entity struct media_entity

intf_devnode pointer to struct media_intf_devnode

pipe struct media_pipeline

fops pointer to struct v4l2_file_operations for the video device
device_caps device capabilities as used in v4l2_capabilities
dev struct device for the video device
cdev character device
v4l2_dev pointer to struct v4l2_device parent
dev_parent pointer to struct device parent

2.1. Video4Linux devices 647

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ctrl_handler Control handler associated with this device node. May be NULL.
queue struct vb2_queue associated with this device node. May be NULL.
prio pointer to struct v4l2_prio_state with device’s Priority state. If NULL, then v4l2_dev->prio will

be used.
name video device name
vfl_type V4L device type
vfl_dir V4L receiver, transmitter or m2m
minor device node ‘minor’. It is set to -1 if the registration failed
num number of the video device node
flags video device flags. Use bitops to set/clear/test flags
index attribute to differentiate multiple indices on one physical device
fh_lock Lock for all v4l2_fhs
fh_list List of struct v4l2_fh

dev_debug Internal device debug flags, not for use by drivers
tvnorms Supported tv norms
release video device release() callback
ioctl_ops pointer to struct v4l2_ioctl_ops with ioctl callbacks
valid_ioctls bitmap with the valid ioctls for this device
disable_locking bitmap with the ioctls that don’t require locking
lock pointer to struct mutex serialization lock
Description

Note:

Only set dev_parent if that can’t be deduced from v4l2_dev.

int __video_register_device(struct video_device * vdev, int type, int nr, int warn_if_nr_in_use,
struct module * owner)

register video4linux devices
Parameters
struct video_device * vdev struct video_device to register
int type type of device to register
int nr which device node number is desired: (0 == /dev/video0, 1 == /dev/video1, ..., -1 == first free)
int warn_if_nr_in_use warn if the desired device node number was already in use and another number

was chosen instead.
struct module * owner module that owns the video device node
Description
The registration code assigns minor numbers and device node numbers based on the requested type and
registers the new device node with the kernel.
This function assumes that struct video_device was zeroed when it was allocated and does not contain
any stale date.
An error is returned if no free minor or device node number could be found, or if the registration of the
device node failed.

648 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Returns 0 on success.
Valid values for type are:

• VFL_TYPE_GRABBER - A frame grabber
• VFL_TYPE_VBI - Vertical blank data (undecoded)
• VFL_TYPE_RADIO - A radio card
• VFL_TYPE_SUBDEV - A subdevice
• VFL_TYPE_SDR - Software Defined Radio
• VFL_TYPE_TOUCH - A touch sensor

Note:

This function is meant to be used only inside the V4L2 core. Drivers should use
video_register_device() or video_register_device_no_warn().

int video_register_device(struct video_device * vdev, int type, int nr)
register video4linux devices

Parameters
struct video_device * vdev struct video_device to register
int type type of device to register
int nr which device node number is desired: (0 == /dev/video0, 1 == /dev/video1, ..., -1 == first free)
Description
Internally, it calls __video_register_device(). Please see its documentation for more details.

Note:

if video_register_device fails, the release() callback of struct video_device structure is not called,
so the caller is responsible for freeing any data. Usually that means that you video_device_release()
should be called on failure.

int video_register_device_no_warn(struct video_device * vdev, int type, int nr)
register video4linux devices

Parameters
struct video_device * vdev struct video_device to register
int type type of device to register
int nr which device node number is desired: (0 == /dev/video0, 1 == /dev/video1, ..., -1 == first free)
Description
This function is identical to video_register_device() except that no warning is issued if the desired
device node number was already in use.
Internally, it calls __video_register_device(). Please see its documentation for more details.

Note:

if video_register_device fails, the release() callback of struct video_device structure is not called,
so the caller is responsible for freeing any data. Usually that means that you video_device_release()
should be called on failure.

2.1. Video4Linux devices 649

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void video_unregister_device(struct video_device * vdev)
Unregister video devices.

Parameters
struct video_device * vdev struct video_device to register
Description
Does nothing if vdev == NULL or if video_is_registered() returns false.
struct video_device * video_device_alloc(void)

helper function to alloc struct video_device

Parameters
void no arguments
Description
Returns NULL if -ENOMEM or a struct video_device on success.
void video_device_release(struct video_device * vdev)

helper function to release struct video_device

Parameters
struct video_device * vdev pointer to struct video_device

Description
Can also be used for video_device->release().
void video_device_release_empty(struct video_device * vdev)

helper function to implement the video_device->release() callback.
Parameters
struct video_device * vdev pointer to struct video_device

Description
This release function does nothing.
It should be used when the video_device is a static global struct.

Note:

Having a static video_device is a dubious construction at best.

bool v4l2_is_known_ioctl(unsigned int cmd)
Checks if a given cmd is a known V4L ioctl

Parameters
unsigned int cmd ioctl command
Description
returns true if cmd is a known V4L2 ioctl
void v4l2_disable_ioctl(struct video_device * vdev, unsigned int cmd)

mark that a given command isn’t implemented. shouldn’t use core locking
Parameters
struct video_device * vdev pointer to struct video_device

unsigned int cmd ioctl command

650 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
This function allows drivers to provide just one v4l2_ioctl_ops struct, but disable ioctls based on the specific
card that is actually found.

Note:

This must be called before video_register_device. See also the comments for deter-
mine_valid_ioctls().

void * video_get_drvdata(struct video_device * vdev)
gets private data from struct video_device.

Parameters
struct video_device * vdev pointer to struct video_device

Description
returns a pointer to the private data
void video_set_drvdata(struct video_device * vdev, void * data)

sets private data from struct video_device.
Parameters
struct video_device * vdev pointer to struct video_device

void * data private data pointer
struct video_device * video_devdata(struct file * file)

gets struct video_device from struct file.
Parameters
struct file * file pointer to struct file
void * video_drvdata(struct file * file)

gets private data from struct video_device using the struct file.
Parameters
struct file * file pointer to struct file
Description
This is function combines both video_get_drvdata() and video_devdata() as this is used very often.
const char * video_device_node_name(struct video_device * vdev)

returns the video device name
Parameters
struct video_device * vdev pointer to struct video_device

Description
Returns the device name string
int video_is_registered(struct video_device * vdev)

returns true if the struct video_device is registered.
Parameters
struct video_device * vdev pointer to struct video_device

Description

2.1. Video4Linux devices 651

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

2.1.5 V4L2 device instance

Each device instance is represented by a struct v4l2_device. Very simple devices can just allocate this
struct, but most of the time you would embed this struct inside a larger struct.
You must register the device instance by calling:

v4l2_device_register (dev, v4l2_dev).
Registration will initialize the v4l2_device struct. If the dev->driver_data field is NULL, it will be linked to
v4l2_dev argument.
Drivers that want integration with the media device framework need to set dev->driver_data manually to
point to the driver-specific device structure that embed the struct v4l2_device instance. This is achieved
by a dev_set_drvdata() call before registering the V4L2 device instance. They must also set the struct
v4l2_device mdev field to point to a properly initialized and registered media_device instance.
If v4l2_dev->name is empty then it will be set to a value derived from dev (driver name followed by the
bus_id, to be precise). If you set it up before calling v4l2_device_register() then it will be untouched.
If dev is NULL, then you must setup v4l2_dev->name before calling v4l2_device_register().
You can use v4l2_device_set_name() to set the name based on a driver name and a driver-global
atomic_t instance. This will generate names like ivtv0, ivtv1, etc. If the name ends with a digit, then it
will insert a dash: cx18-0, cx18-1, etc. This function returns the instance number.
The first dev argument is normally the struct device pointer of a pci_dev, usb_interface or plat-
form_device. It is rare for dev to be NULL, but it happens with ISA devices or when one device creates
multiple PCI devices, thus making it impossible to associate v4l2_dev with a particular parent.
You can also supply a notify() callback that can be called by sub-devices to notify you of events. Whether
you need to set this depends on the sub-device. Any notifications a sub-device supports must be defined
in a header in include/media/subdevice.h.
V4L2 devices are unregistered by calling:

v4l2_device_unregister() (v4l2_dev).
If the dev->driver_data field points to v4l2_dev, it will be reset to NULL. Unregistering will also automati-
cally unregister all subdevs from the device.
If you have a hotpluggable device (e.g. a USB device), then when a disconnect happens the parent device
becomes invalid. Since v4l2_device has a pointer to that parent device it has to be cleared as well to
mark that the parent is gone. To do this call:

v4l2_device_disconnect() (v4l2_dev).
This does not unregister the subdevs, so you still need to call the v4l2_device_unregister() function
for that. If your driver is not hotpluggable, then there is no need to call v4l2_device_disconnect().
Sometimes you need to iterate over all devices registered by a specific driver. This is usually the case if
multiple device drivers use the same hardware. E.g. the ivtvfb driver is a framebuffer driver that uses
the ivtv hardware. The same is true for alsa drivers for example.
You can iterate over all registered devices as follows:

static int callback(struct device *dev, void *p)
{

struct v4l2_device *v4l2_dev = dev_get_drvdata(dev);

/* test if this device was inited */
if (v4l2_dev == NULL)

return 0;
...
return 0;

}

int iterate(void *p)

652 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

{
struct device_driver *drv;
int err;

/* Find driver 'ivtv' on the PCI bus.
pci_bus_type is a global. For USB busses use usb_bus_type. */
drv = driver_find("ivtv", &pci_bus_type);
/* iterate over all ivtv device instances */
err = driver_for_each_device(drv, NULL, p, callback);
put_driver(drv);
return err;

}

Sometimes you need to keep a running counter of the device instance. This is commonly used to map a
device instance to an index of a module option array.
The recommended approach is as follows:

static atomic_t drv_instance = ATOMIC_INIT(0);

static int drv_probe(struct pci_dev *pdev, const struct pci_device_id *pci_id)
{

...
state->instance = atomic_inc_return(&drv_instance) - 1;

}

If you have multiple device nodes then it can be difficult to know when it is safe to unregister v4l2_device
for hotpluggable devices. For this purpose v4l2_device has refcounting support. The refcount is in-
creased whenever video_register_device() is called and it is decreased whenever that device node is
released. When the refcount reaches zero, then the v4l2_device release() callback is called. You can do
your final cleanup there.
If other device nodes (e.g. ALSA) are created, then you can increase and decrease the refcount manually
as well by calling:

v4l2_device_get() (v4l2_dev).
or:

v4l2_device_put() (v4l2_dev).
Since the initial refcount is 1 you also need to call v4l2_device_put() in the disconnect() callback (for
USB devices) or in the remove() callback (for e.g. PCI devices), otherwise the refcount will never reach 0.

v4l2_device functions and data structures

struct v4l2_device
main struct to for V4L2 device drivers

Definition

struct v4l2_device {
struct device * dev;

#if defined(CONFIG_MEDIA_CONTROLLER
struct media_device * mdev;

#endif
struct list_head subdevs;
spinlock_t lock;
char name;
void (* notify) (struct v4l2_subdev *sd, unsigned int notification, void *arg);
struct v4l2_ctrl_handler * ctrl_handler;
struct v4l2_prio_state prio;
struct kref ref;

2.1. Video4Linux devices 653

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void (* release) (struct v4l2_device *v4l2_dev);
};

Members
dev pointer to struct device.
mdev pointer to struct media_device
subdevs used to keep track of the registered subdevs
lock lock this struct; can be used by the driver as well if this struct is embedded into a larger struct.
name unique device name, by default the driver name + bus ID
notify notify callback called by some sub-devices.
ctrl_handler The control handler. May be NULL.
prio Device’s priority state
ref Keep track of the references to this struct.
release Release function that is called when the ref count goes to 0.
Description
Each instance of a V4L2 device should create the v4l2_device struct, either stand-alone or embedded in
a larger struct.
It allows easy access to sub-devices (see v4l2-subdev.h) and provides basic V4L2 device-level support.

Note:

1. dev->driver_data points to this struct.
2. dev might be NULL if there is no parent device

void v4l2_device_get(struct v4l2_device * v4l2_dev)
gets a V4L2 device reference

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device
Description
This is an ancillary routine meant to increment the usage for the struct v4l2_device pointed by v4l2_dev.

int v4l2_device_put(struct v4l2_device * v4l2_dev)
putss a V4L2 device reference

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device
Description
This is an ancillary routine meant to decrement the usage for the struct v4l2_device pointed by v4l2_dev.

int v4l2_device_register(struct device * dev, struct v4l2_device * v4l2_dev)
Initialize v4l2_dev and make dev->driver_data point to v4l2_dev.

Parameters
struct device * dev pointer to struct device
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

654 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Note:

devmay be NULL in rare cases (ISA devices). In such case the caller must fill in the v4l2_dev->name
field before calling this function.

int v4l2_device_set_name(struct v4l2_device * v4l2_dev, const char * basename, atomic_t * in-
stance)

Optional function to initialize the name field of struct v4l2_device
Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device
const char * basename base name for the device name
atomic_t * instance pointer to a static atomic_t var with the instance usage for the device driver.
Description
v4l2_device_set_name() initializes the name field of struct v4l2_device using the driver name and a
driver-global atomic_t instance.
This function will increment the instance counter and returns the instance value used in the name.
Example

static atomic_t drv_instance = ATOMIC_INIT(0);
...
instance = v4l2_device_set_name(&v4l2_dev, “foo”, &drv_instance);

The first time this is called the name field will be set to foo0 and this function returns 0. If the name ends
with a digit (e.g. cx18), then the name will be set to cx18-0 since cx180 would look really odd.
void v4l2_device_disconnect(struct v4l2_device * v4l2_dev)

Change V4L2 device state to disconnected.
Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device
Description
Should be called when the USB parent disconnects. Since the parent disappears, this ensures that
v4l2_dev doesn’t have an invalid parent pointer.

Note:

This function sets v4l2_dev->dev to NULL.

void v4l2_device_unregister(struct v4l2_device * v4l2_dev)
Unregister all sub-devices and any other resources related to v4l2_dev.

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device
int v4l2_device_register_subdev(struct v4l2_device * v4l2_dev, struct v4l2_subdev * sd)

Registers a subdev with a v4l2 device.
Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

2.1. Video4Linux devices 655

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_subdev * sd pointer to struct v4l2_subdev
Description
While registered, the subdev module is marked as in-use.
An error is returned if the module is no longer loaded on any attempts to register it.
void v4l2_device_unregister_subdev(struct v4l2_subdev * sd)

Unregisters a subdev with a v4l2 device.
Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev
Description

Note:

Can also be called if the subdev wasn’t registered. In such case, it will do nothing.

int v4l2_device_register_subdev_nodes(struct v4l2_device * v4l2_dev)
Registers device nodes for all subdevs of the v4l2 device that are marked with the
V4L2_SUBDEV_FL_HAS_DEVNODE flag.

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device
void v4l2_subdev_notify(struct v4l2_subdev * sd, unsigned int notification, void * arg)

Sends a notification to v4l2_device.
Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev
unsigned int notification type of notification. Please notice that the notification type is driver-

specific.
void * arg arguments for the notification. Those are specific to each notification type.

2.1.6 V4L2 File handlers

struct v4l2_fh provides a way to easily keep file handle specific data that is used by the V4L2 framework.

Attention:

New drivers must use struct v4l2_fh since it is also used to implement priority handling (ioctl
VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY).

The users of v4l2_fh (in the V4L2 framework, not the driver) know whether a driver uses v4l2_fh as its
file->private_data pointer by testing the V4L2_FL_USES_V4L2_FH bit in video_device->flags. This bit
is set whenever v4l2_fh_init() is called.
struct v4l2_fh is allocated as a part of the driver’s own file handle structure and file->private_data is
set to it in the driver’s open() function by the driver.
In many cases the struct v4l2_fh will be embedded in a larger structure. In that case you should call:

1. v4l2_fh_init() and v4l2_fh_add() in open()

2. v4l2_fh_del() and v4l2_fh_exit() in release()

656 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Drivers can extract their own file handle structure by using the container_of macro.
Example:

struct my_fh {
int blah;
struct v4l2_fh fh;

};

...

int my_open(struct file *file)
{

struct my_fh *my_fh;
struct video_device *vfd;
int ret;

...

my_fh = kzalloc(sizeof(*my_fh), GFP_KERNEL);

...

v4l2_fh_init(&my_fh->fh, vfd);

...

file->private_data = &my_fh->fh;
v4l2_fh_add(&my_fh->fh);
return 0;

}

int my_release(struct file *file)
{

struct v4l2_fh *fh = file->private_data;
struct my_fh *my_fh = container_of(fh, struct my_fh, fh);

...
v4l2_fh_del(&my_fh->fh);
v4l2_fh_exit(&my_fh->fh);
kfree(my_fh);
return 0;

}

Below is a short description of the v4l2_fh functions used:
v4l2_fh_init (fh, vdev)

• Initialise the file handle. This MUST be performed in the driver’s v4l2_file_operations->open()
handler.

v4l2_fh_add (fh)
• Add a v4l2_fh to video_device file handle list. Must be called once the file handle is completely

initialized.
v4l2_fh_del (fh)

• Unassociate the file handle from video_device. The file handle exit function may now be called.
v4l2_fh_exit (fh)

• Uninitialise the file handle. After uninitialisation the v4l2_fh memory can be freed.
If struct v4l2_fh is not embedded, then you can use these helper functions:
v4l2_fh_open (struct file *filp)

2.1. Video4Linux devices 657

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• This allocates a struct v4l2_fh, initializes it and adds it to the struct video_device associated with
the file struct.

v4l2_fh_release (struct file *filp)
• This deletes it from the struct video_device associated with the file struct, uninitialised the v4l2_fh

and frees it.
These two functions can be plugged into the v4l2_file_operation’s open() and release() ops.
Several drivers need to do something when the first file handle is opened and when the last file handle
closes. Two helper functions were added to check whether the v4l2_fh struct is the only open filehandle
of the associated device node:
v4l2_fh_is_singular (fh)

• Returns 1 if the file handle is the only open file handle, else 0.
v4l2_fh_is_singular_file (struct file *filp)

• Same, but it calls v4l2_fh_is_singular with filp->private_data.

V4L2 fh functions and data structures

struct v4l2_fh
Describes a V4L2 file handler

Definition

struct v4l2_fh {
struct list_head list;
struct video_device * vdev;
struct v4l2_ctrl_handler * ctrl_handler;
enum v4l2_priority prio;
wait_queue_head_t wait;
struct list_head subscribed;
struct list_head available;
unsigned int navailable;
u32 sequence;

#if IS_ENABLED(CONFIG_V4L2_MEM2MEM_DEV
struct v4l2_m2m_ctx * m2m_ctx;

#endif
};

Members
list list of file handlers
vdev pointer to struct video_device

ctrl_handler pointer to struct v4l2_ctrl_handler

prio priority of the file handler, as defined by enum v4l2_priority

wait event’ s wait queue
subscribed list of subscribed events
available list of events waiting to be dequeued
navailable number of available events at available list
sequence event sequence number
m2m_ctx pointer to struct v4l2_m2m_ctx

void v4l2_fh_init(struct v4l2_fh * fh, struct video_device * vdev)
Initialise the file handle.

658 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

struct video_device * vdev pointer to struct video_device

Description
Parts of the V4L2 framework using the file handles should be initialised in this function. Must be called
from driver’s v4l2_file_operations->open() handler if the driver uses struct v4l2_fh.
void v4l2_fh_add(struct v4l2_fh * fh)

Add the fh to the list of file handles on a video_device.
Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

Description

Note:

The fh file handle must be initialised first.

int v4l2_fh_open(struct file * filp)
Ancillary routine that can be used as the open() op of v4l2_file_operations.

Parameters
struct file * filp pointer to struct file
Description
It allocates a v4l2_fh and inits and adds it to the struct video_device associated with the file pointer.
void v4l2_fh_del(struct v4l2_fh * fh)

Remove file handle from the list of file handles.
Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

Description
On error filp->private_data will be NULL, otherwise it will point to the struct v4l2_fh.

Note:

Must be called in v4l2_file_operations->release() handler if the driver uses struct v4l2_fh.

void v4l2_fh_exit(struct v4l2_fh * fh)
Release resources related to a file handle.

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

Description
Parts of the V4L2 framework using the v4l2_fh must release their resources here, too.

Note:

Must be called in v4l2_file_operations->release() handler if the driver uses struct v4l2_fh.

2.1. Video4Linux devices 659

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int v4l2_fh_release(struct file * filp)
Ancillary routine that can be used as the release() op of v4l2_file_operations.

Parameters
struct file * filp pointer to struct file
Description
It deletes and exits the v4l2_fh associated with the file pointer and frees it. It will do nothing if filp-
>private_data (the pointer to the v4l2_fh struct) is NULL.
This function always returns 0.
int v4l2_fh_is_singular(struct v4l2_fh * fh)

Returns 1 if this filehandle is the only filehandle opened for the associated video_device.
Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

Description
If fh is NULL, then it returns 0.
int v4l2_fh_is_singular_file(struct file * filp)

Returns 1 if this filehandle is the only filehandle opened for the associated video_device.
Parameters
struct file * filp pointer to struct file
Description
This is a helper function variant of v4l2_fh_is_singular() with uses struct file as argument.
If filp->private_data is NULL, then it will return 0.

2.1.7 V4L2 sub-devices

Many drivers need to communicate with sub-devices. These devices can do all sort of tasks, but most
commonly they handle audio and/or video muxing, encoding or decoding. For webcams common sub-
devices are sensors and camera controllers.
Usually these are I2C devices, but not necessarily. In order to provide the driver with a consistent interface
to these sub-devices the v4l2_subdev struct (v4l2-subdev.h) was created.
Each sub-device driver must have a v4l2_subdev struct. This struct can be stand-alone for simple sub-
devices or it might be embedded in a larger struct if more state information needs to be stored. Usually
there is a low-level device struct (e.g. i2c_client) that contains the device data as setup by the kernel. It
is recommended to store that pointer in the private data of v4l2_subdev using v4l2_set_subdevdata().
That makes it easy to go from a v4l2_subdev to the actual low-level bus-specific device data.
You also need a way to go from the low-level struct to v4l2_subdev. For the common i2c_client struct
the i2c_set_clientdata() call is used to store a v4l2_subdev pointer, for other busses you may have to use
other methods.
Bridges might also need to store per-subdev private data, such as a pointer to bridge-specific per-subdev
private data. The v4l2_subdev structure provides host private data for that purpose that can be accessed
with v4l2_get_subdev_hostdata() and v4l2_set_subdev_hostdata().
From the bridge driver perspective, you load the sub-device module and somehow obtain the v4l2_subdev
pointer. For i2c devices this is easy: you call i2c_get_clientdata(). For other busses something similar
needs to be done. Helper functions exists for sub-devices on an I2C bus that do most of this tricky work
for you.
Each v4l2_subdev contains function pointers that sub-device drivers can implement (or leave NULL if it
is not applicable). Since sub-devices can do so many different things and you do not want to end up with

660 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

a huge ops struct of which only a handful of ops are commonly implemented, the function pointers are
sorted according to category and each category has its own ops struct.
The top-level ops struct contains pointers to the category ops structs, which may be NULL if the subdev
driver does not support anything from that category.
It looks like this:

struct v4l2_subdev_core_ops {
int (*log_status)(struct v4l2_subdev *sd);
int (*init)(struct v4l2_subdev *sd, u32 val);
...

};

struct v4l2_subdev_tuner_ops {
...

};

struct v4l2_subdev_audio_ops {
...

};

struct v4l2_subdev_video_ops {
...

};

struct v4l2_subdev_pad_ops {
...

};

struct v4l2_subdev_ops {
const struct v4l2_subdev_core_ops *core;
const struct v4l2_subdev_tuner_ops *tuner;
const struct v4l2_subdev_audio_ops *audio;
const struct v4l2_subdev_video_ops *video;
const struct v4l2_subdev_pad_ops *video;

};

The core ops are common to all subdevs, the other categories are implemented depending on the sub-
device. E.g. a video device is unlikely to support the audio ops and vice versa.
This setup limits the number of function pointers while still making it easy to add new ops and categories.
A sub-device driver initializes the v4l2_subdev struct using:

v4l2_subdev_init (sd, &ops).
Afterwards you need to initialize sd->name with a unique name and set the module owner. This is done
for you if you use the i2c helper functions.
If integration with the media framework is needed, you must initialize the media_entity struct embedded
in the v4l2_subdev struct (entity field) by calling media_entity_pads_init(), if the entity has pads:

struct media_pad *pads = &my_sd->pads;
int err;

err = media_entity_pads_init(&sd->entity, npads, pads);

The pads array must have been previously initialized. There is no need to manually set the struct me-
dia_entity function and name fields, but the revision field must be initialized if needed.
A reference to the entity will be automatically acquired/released when the subdev device node (if any) is
opened/closed.
Don’t forget to cleanup the media entity before the sub-device is destroyed:

2.1. Video4Linux devices 661

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

media_entity_cleanup(&sd->entity);

If the subdev driver intends to process video and integrate with the media framework, it must implement
format related functionality using v4l2_subdev_pad_ops instead of v4l2_subdev_video_ops.
In that case, the subdev driver may set the link_validate field to provide its own link validation function.
The link validation function is called for every link in the pipeline where both of the ends of the links are
V4L2 sub-devices. The driver is still responsible for validating the correctness of the format configuration
between sub-devices and video nodes.
If link_validate op is not set, the default function v4l2_subdev_link_validate_default() is used in-
stead. This function ensures that width, height and the media bus pixel code are equal on both source
and sink of the link. Subdev drivers are also free to use this function to perform the checks mentioned
above in addition to their own checks.
There are currently two ways to register subdevices with the V4L2 core. The first (traditional) possibility
is to have subdevices registered by bridge drivers. This can be done when the bridge driver has the
complete information about subdevices connected to it and knows exactly when to register them. This is
typically the case for internal subdevices, like video data processing units within SoCs or complex PCI(e)
boards, camera sensors in USB cameras or connected to SoCs, which pass information about them to
bridge drivers, usually in their platform data.
There are however also situations where subdevices have to be registered asynchronously to bridge de-
vices. An example of such a configuration is a Device Tree based system where information about subde-
vices is made available to the system independently from the bridge devices, e.g. when subdevices are
defined in DT as I2C device nodes. The API used in this second case is described further below.
Using one or the other registration method only affects the probing process, the run-time bridge-subdevice
interaction is in both cases the same.
In the synchronous case a device (bridge) driver needs to register the v4l2_subdev with the v4l2_device:

v4l2_device_register_subdev (v4l2_dev, sd).
This can fail if the subdev module disappeared before it could be registered. After this function was called
successfully the subdev->dev field points to the v4l2_device.
If the v4l2_device parent device has a non-NULL mdev field, the sub-device entity will be automatically
registered with the media device.
You can unregister a sub-device using:

v4l2_device_unregister_subdev (sd).
Afterwards the subdev module can be unloaded and sd->dev == NULL.
You can call an ops function either directly:

err = sd->ops->core->g_std(sd, &norm);

but it is better and easier to use this macro:

err = v4l2_subdev_call(sd, core, g_std, &norm);

The macro will to the right NULL pointer checks and returns -ENODEV if sd is NULL, -ENOIOCTLCMD if either
sd->core or sd->core->g_std is NULL, or the actual result of the sd->ops->core->g_std ops.
It is also possible to call all or a subset of the sub-devices:

v4l2_device_call_all(v4l2_dev, 0, core, g_std, &norm);

Any subdev that does not support this ops is skipped and error results are ignored. If you want to check
for errors use this:

err = v4l2_device_call_until_err(v4l2_dev, 0, core, g_std, &norm);

662 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Any error except -ENOIOCTLCMD will exit the loop with that error. If no errors (except -ENOIOCTLCMD)
occurred, then 0 is returned.
The second argument to both calls is a group ID. If 0, then all subdevs are called. If non-zero, then only
those whose group ID match that value will be called. Before a bridge driver registers a subdev it can set
sd->grp_id to whatever value it wants (it’s 0 by default). This value is owned by the bridge driver and the
sub-device driver will never modify or use it.
The group ID gives the bridge driver more control how callbacks are called. For example, there may
be multiple audio chips on a board, each capable of changing the volume. But usually only one will
actually be used when the user want to change the volume. You can set the group ID for that subdev to
e.g. AUDIO_CONTROLLER and specify that as the group ID value when calling v4l2_device_call_all().
That ensures that it will only go to the subdev that needs it.
If the sub-device needs to notify its v4l2_device parent of an event, then it can call
v4l2_subdev_notify(sd,notification,arg). This macro checks whether there is a notify() callback
defined and returns -ENODEV if not. Otherwise the result of the notify() call is returned.
The advantage of using v4l2_subdev is that it is a generic struct and does not contain any knowledge
about the underlying hardware. So a driver might contain several subdevs that use an I2C bus, but also a
subdev that is controlled through GPIO pins. This distinction is only relevant when setting up the device,
but once the subdev is registered it is completely transparent.
In the asynchronous case subdevice probing can be invoked independently of the bridge driver availability.
The subdevice driver then has to verify whether all the requirements for a successful probing are satisfied.
This can include a check for a master clock availability. If any of the conditions aren’t satisfied the driver
might decide to return -EPROBE_DEFER to request further reprobing attempts. Once all conditions are met
the subdevice shall be registered using the v4l2_async_register_subdev() function. Unregistration is
performed using the v4l2_async_unregister_subdev() call. Subdevices registered this way are stored
in a global list of subdevices, ready to be picked up by bridge drivers.
Bridge drivers in turn have to register a notifier object with an array of subdevice descriptors that the
bridge device needs for its operation. This is performed using the v4l2_async_notifier_register()
call. To unregister the notifier the driver has to call v4l2_async_notifier_unregister(). The for-
mer of the two functions takes two arguments: a pointer to struct v4l2_device and a pointer to struct
v4l2_async_notifier. The latter contains a pointer to an array of pointers to subdevice descriptors
of type struct v4l2_async_subdev type. The V4L2 core will then use these descriptors to match asyn-
chronously registered subdevices to them. If a match is detected the .bound() notifier callback is called.
After all subdevices have been located the .complete() callback is called. When a subdevice is removed
from the system the .unbind() method is called. All three callbacks are optional.

2.1.8 V4L2 sub-device userspace API

Beside exposing a kernel API through the v4l2_subdev_ops structure, V4L2 sub-devices can also be con-
trolled directly by userspace applications.
Device nodes named v4l-subdevX can be created in /dev to access sub-devices directly. If a sub-device
supports direct userspace configuration it must set the V4L2_SUBDEV_FL_HAS_DEVNODE flag before being
registered.
After registering sub-devices, the v4l2_device driver can create device nodes
for all registered sub-devices marked with V4L2_SUBDEV_FL_HAS_DEVNODE by calling
v4l2_device_register_subdev_nodes(). Those device nodes will be automatically removed when
sub-devices are unregistered.
The device node handles a subset of the V4L2 API.
VIDIOC_QUERYCTRL, VIDIOC_QUERYMENU, VIDIOC_G_CTRL, VIDIOC_S_CTRL, VIDIOC_G_EXT_CTRLS, VID-
IOC_S_EXT_CTRLS and VIDIOC_TRY_EXT_CTRLS:

The controls ioctls are identical to the ones defined in V4L2. They behave identically, with the
only exception that they deal only with controls implemented in the sub-device. Depending on
the driver, those controls can be also be accessed through one (or several) V4L2 device nodes.

2.1. Video4Linux devices 663

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

VIDIOC_DQEVENT, VIDIOC_SUBSCRIBE_EVENT and VIDIOC_UNSUBSCRIBE_EVENT

The events ioctls are identical to the ones defined in V4L2. They behave identically, with the
only exception that they deal only with events generated by the sub-device. Depending on the
driver, those events can also be reported by one (or several) V4L2 device nodes.
Sub-device drivers that want to use events need to set the V4L2_SUBDEV_USES_EVENTS
v4l2_subdev.flags and initialize v4l2_subdev.nevents to events queue depth before registering
the sub-device. After registration events can be queued as usual on the v4l2_subdev.devnode
device node.
To properly support events, the poll() file operation is also implemented.

Private ioctls
All ioctls not in the above list are passed directly to the sub-device driver through the core::ioctl
operation.

2.1.9 I2C sub-device drivers

Since these drivers are so common, special helper functions are available to ease the use of these drivers
(v4l2-common.h).
The recommended method of adding v4l2_subdev support to an I2C driver is to embed the v4l2_subdev
struct into the state struct that is created for each I2C device instance. Very simple devices have no state
struct and in that case you can just create a v4l2_subdev directly.
A typical state struct would look like this (where ‘chipname’ is replaced by the name of the chip):

struct chipname_state {
struct v4l2_subdev sd;
... /* additional state fields */

};

Initialize the v4l2_subdev struct as follows:

v4l2_i2c_subdev_init(&state->sd, client, subdev_ops);

This function will fill in all the fields of v4l2_subdev ensure that the v4l2_subdev and i2c_client both point
to one another.
You should also add a helper inline function to go from a v4l2_subdev pointer to a chipname_state struct:

static inline struct chipname_state *to_state(struct v4l2_subdev *sd)
{

return container_of(sd, struct chipname_state, sd);
}

Use this to go from the v4l2_subdev struct to the i2c_client struct:

struct i2c_client *client = v4l2_get_subdevdata(sd);

And this to go from an i2c_client to a v4l2_subdev struct:

struct v4l2_subdev *sd = i2c_get_clientdata(client);

Make sure to call v4l2_device_unregister_subdev()(sd) when the remove() callback is called. This will
unregister the sub-device from the bridge driver. It is safe to call this even if the sub-device was never
registered.
You need to do this because when the bridge driver destroys the i2c adapter the remove() callbacks are
called of the i2c devices on that adapter. After that the corresponding v4l2_subdev structures are invalid,
so they have to be unregistered first. Calling v4l2_device_unregister_subdev()(sd) from the remove()
callback ensures that this is always done correctly.

664 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The bridge driver also has some helper functions it can use:

struct v4l2_subdev *sd = v4l2_i2c_new_subdev(v4l2_dev, adapter,
"module_foo", "chipid", 0x36, NULL);

This loads the given module (can be NULL if no module needs to be loaded) and calls i2c_new_device()
with the given i2c_adapter and chip/address arguments. If all goes well, then it registers the subdev
with the v4l2_device.
You can also use the last argument of v4l2_i2c_new_subdev() to pass an array of possible I2C addresses
that it should probe. These probe addresses are only used if the previous argument is 0. A non-zero
argument means that you know the exact i2c address so in that case no probing will take place.
Both functions return NULL if something went wrong.
Note that the chipid you pass to v4l2_i2c_new_subdev() is usually the same as the module name. It
allows you to specify a chip variant, e.g. “saa7114” or “saa7115”. In general though the i2c driver
autodetects this. The use of chipid is something that needs to be looked at more closely at a later date.
It differs between i2c drivers and as such can be confusing. To see which chip variants are supported you
can look in the i2c driver code for the i2c_device_id table. This lists all the possibilities.
There are one more helper function:
v4l2_i2c_new_subdev_board() uses an i2c_board_info struct which is passed to the i2c driver and
replaces the irq, platform_data and addr arguments.
If the subdev supports the s_config core ops, then that op is called with the irq and platform_data argu-
ments after the subdev was setup.
The v4l2_i2c_new_subdev() function will call v4l2_i2c_new_subdev_board(), internally filling a
i2c_board_info structure using the client_type and the addr to fill it.

2.1.10 V4L2 sub-device functions and data structures

struct v4l2_decode_vbi_line
used to decode_vbi_line

Definition

struct v4l2_decode_vbi_line {
u32 is_second_field;
u8 * p;
u32 line;
u32 type;

};

Members
is_second_field Set to 0 for the first (odd) field; set to 1 for the second (even) field.
p Pointer to the sliced VBI data from the decoder. On exit, points to the start of the payload.
line Line number of the sliced VBI data (1-23)
type VBI service type (V4L2_SLICED_*). 0 if no service found
struct v4l2_subdev_io_pin_config

Subdevice external IO pin configuration
Definition

struct v4l2_subdev_io_pin_config {
u32 flags;
u8 pin;
u8 function;
u8 value;

2.1. Video4Linux devices 665

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

u8 strength;
};

Members
flags bitmask with flags for this pin’s config: V4L2_SUBDEV_IO_PIN_DISABLE - disables a pin

config, V4L2_SUBDEV_IO_PIN_OUTPUT - if pin is an output, V4L2_SUBDEV_IO_PIN_INPUT - if
pin is an input, V4L2_SUBDEV_IO_PIN_SET_VALUE - to set the output value via value and
V4L2_SUBDEV_IO_PIN_ACTIVE_LOW - if active is 0.

pin Chip external IO pin to configure
function Internal signal pad/function to route to IO pin
value Initial value for pin - e.g. GPIO output value
strength Pin drive strength
struct v4l2_subdev_core_ops

Define core ops callbacks for subdevs
Definition

struct v4l2_subdev_core_ops {
int (* log_status) (struct v4l2_subdev *sd);
int (* s_io_pin_config) (struct v4l2_subdev *sd, size_t n, struct v4l2_subdev_io_pin_config␣

↪→*pincfg);
int (* init) (struct v4l2_subdev *sd, u32 val);
int (* load_fw) (struct v4l2_subdev *sd);
int (* reset) (struct v4l2_subdev *sd, u32 val);
int (* s_gpio) (struct v4l2_subdev *sd, u32 val);
long (* ioctl) (struct v4l2_subdev *sd, unsigned int cmd, void *arg);

#ifdef CONFIG_COMPAT
long (* compat_ioctl32) (struct v4l2_subdev *sd, unsigned int cmd, unsigned long arg);

#endif
#ifdef CONFIG_VIDEO_ADV_DEBUG
int (* g_register) (struct v4l2_subdev *sd, struct v4l2_dbg_register *reg);
int (* s_register) (struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg);

#endif
int (* s_power) (struct v4l2_subdev *sd, int on);
int (* interrupt_service_routine) (struct v4l2_subdev *sd, u32 status, bool *handled);
int (* subscribe_event) (struct v4l2_subdev *sd, struct v4l2_fh *fh, struct v4l2_event_

↪→subscription *sub);
int (* unsubscribe_event) (struct v4l2_subdev *sd, struct v4l2_fh *fh, struct v4l2_event_

↪→subscription *sub);
};

Members
log_status callback for VIDIOC_LOG_STATUS ioctl handler code.
s_io_pin_config configure one or more chip I/O pins for chips that multiplex different internal signal pads

out to IO pins. This function takes a pointer to an array of ‘n’ pin configuration entries, one for each
pin being configured. This function could be called at times other than just subdevice initialization.

init initialize the sensor registers to some sort of reasonable default values. Do not use for new drivers
and should be removed in existing drivers.

load_fw load firmware.
reset generic reset command. The argument selects which subsystems to reset. Passing 0 will always

reset the whole chip. Do not use for new drivers without discussing this first on the linux-media
mailinglist. There should be no reason normally to reset a device.

s_gpio set GPIO pins. Very simple right now, might need to be extended with a direction argument if
needed.

666 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ioctl called at the end of ioctl() syscall handler at the V4L2 core. used to provide support for private
ioctls used on the driver.

compat_ioctl32 called when a 32 bits application uses a 64 bits Kernel, in order to fix data passed from/to
userspace.

g_register callback for VIDIOC_G_REGISTER ioctl handler code.
s_register callback for VIDIOC_G_REGISTER ioctl handler code.
s_power puts subdevice in power saving mode (on == 0) or normal operation mode (on == 1).
interrupt_service_routine Called by the bridge chip’s interrupt service handler, when an interrupt

status has be raised due to this subdev, so that this subdev can handle the details. It may schedule
work to be performed later. It must not sleep. Called from an IRQ context.

subscribe_event used by the drivers to request the control framework that for it to be warned when the
value of a control changes.

unsubscribe_event remove event subscription from the control framework.
struct v4l2_subdev_tuner_ops

Callbacks used when v4l device was opened in radio mode.
Definition

struct v4l2_subdev_tuner_ops {
int (* s_radio) (struct v4l2_subdev *sd);
int (* s_frequency) (struct v4l2_subdev *sd, const struct v4l2_frequency *freq);
int (* g_frequency) (struct v4l2_subdev *sd, struct v4l2_frequency *freq);
int (* enum_freq_bands) (struct v4l2_subdev *sd, struct v4l2_frequency_band *band);
int (* g_tuner) (struct v4l2_subdev *sd, struct v4l2_tuner *vt);
int (* s_tuner) (struct v4l2_subdev *sd, const struct v4l2_tuner *vt);
int (* g_modulator) (struct v4l2_subdev *sd, struct v4l2_modulator *vm);
int (* s_modulator) (struct v4l2_subdev *sd, const struct v4l2_modulator *vm);
int (* s_type_addr) (struct v4l2_subdev *sd, struct tuner_setup *type);
int (* s_config) (struct v4l2_subdev *sd, const struct v4l2_priv_tun_config *config);

};

Members
s_radio callback for VIDIOC_S_RADIO ioctl handler code.
s_frequency callback for VIDIOC_S_FREQUENCY ioctl handler code.
g_frequency callback for VIDIOC_G_FREQUENCY ioctl handler code. freq->type must be filled in. Normally

done by video_ioctl2() or the bridge driver.
enum_freq_bands callback for VIDIOC_ENUM_FREQ_BANDS ioctl handler code.
g_tuner callback for VIDIOC_G_TUNER ioctl handler code.
s_tuner callback for VIDIOC_S_TUNER ioctl handler code. vt->type must be filled in. Normally done by

video_ioctl2 or the bridge driver.
g_modulator callback for VIDIOC_G_MODULATOR ioctl handler code.
s_modulator callback for VIDIOC_S_MODULATOR ioctl handler code.
s_type_addr sets tuner type and its I2C addr.
s_config sets tda9887 specific stuff, like port1, port2 and qss
struct v4l2_subdev_audio_ops

Callbacks used for audio-related settings
Definition

2.1. Video4Linux devices 667

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_subdev_audio_ops {
int (* s_clock_freq) (struct v4l2_subdev *sd, u32 freq);
int (* s_i2s_clock_freq) (struct v4l2_subdev *sd, u32 freq);
int (* s_routing) (struct v4l2_subdev *sd, u32 input, u32 output, u32 config);
int (* s_stream) (struct v4l2_subdev *sd, int enable);

};

Members
s_clock_freq set the frequency (in Hz) of the audio clock output. Used to slave an audio processor to the

video decoder, ensuring that audio and video remain synchronized. Usual values for the frequency
are 48000, 44100 or 32000 Hz. If the frequency is not supported, then -EINVAL is returned.

s_i2s_clock_freq sets I2S speed in bps. This is used to provide a standard way to select I2S clock used
by driving digital audio streams at some board designs. Usual values for the frequency are 1024000
and 2048000. If the frequency is not supported, then -EINVAL is returned.

s_routing used to define the input and/or output pins of an audio chip, and any additional configuration
data. Never attempt to use user-level input IDs (e.g. Composite, S-Video, Tuner) at this level. An i2c
device shouldn’t know about whether an input pin is connected to a Composite connector, become
on another board or platform it might be connected to something else entirely. The calling driver is
responsible for mapping a user-level input to the right pins on the i2c device.

s_stream used to notify the audio code that stream will start or has stopped.
struct v4l2_mbus_frame_desc_entry

media bus frame description structure
Definition

struct v4l2_mbus_frame_desc_entry {
u16 flags;
u32 pixelcode;
u32 length;

};

Members
flags bitmask flags: V4L2_MBUS_FRAME_DESC_FL_LEN_MAX and V4L2_MBUS_FRAME_DESC_FL_BLOB.
pixelcode media bus pixel code, valid if FRAME_DESC_FL_BLOB is not set
length number of octets per frame, valid if V4L2_MBUS_FRAME_DESC_FL_BLOB is set
struct v4l2_mbus_frame_desc

media bus data frame description
Definition

struct v4l2_mbus_frame_desc {
struct v4l2_mbus_frame_desc_entry entry;
unsigned short num_entries;

};

Members
entry frame descriptors array
num_entries number of entries in entry array
struct v4l2_subdev_video_ops

Callbacks used when v4l device was opened in video mode.
Definition

668 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_subdev_video_ops {
int (* s_routing) (struct v4l2_subdev *sd, u32 input, u32 output, u32 config);
int (* s_crystal_freq) (struct v4l2_subdev *sd, u32 freq, u32 flags);
int (* g_std) (struct v4l2_subdev *sd, v4l2_std_id *norm);
int (* s_std) (struct v4l2_subdev *sd, v4l2_std_id norm);
int (* s_std_output) (struct v4l2_subdev *sd, v4l2_std_id std);
int (* g_std_output) (struct v4l2_subdev *sd, v4l2_std_id *std);
int (* querystd) (struct v4l2_subdev *sd, v4l2_std_id *std);
int (* g_tvnorms) (struct v4l2_subdev *sd, v4l2_std_id *std);
int (* g_tvnorms_output) (struct v4l2_subdev *sd, v4l2_std_id *std);
int (* g_input_status) (struct v4l2_subdev *sd, u32 *status);
int (* s_stream) (struct v4l2_subdev *sd, int enable);
int (* g_pixelaspect) (struct v4l2_subdev *sd, struct v4l2_fract *aspect);
int (* g_parm) (struct v4l2_subdev *sd, struct v4l2_streamparm *param);
int (* s_parm) (struct v4l2_subdev *sd, struct v4l2_streamparm *param);
int (* g_frame_interval) (struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval␣

↪→*interval);
int (* s_frame_interval) (struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval␣

↪→*interval);
int (* s_dv_timings) (struct v4l2_subdev *sd, struct v4l2_dv_timings *timings);
int (* g_dv_timings) (struct v4l2_subdev *sd, struct v4l2_dv_timings *timings);
int (* query_dv_timings) (struct v4l2_subdev *sd, struct v4l2_dv_timings *timings);
int (* g_mbus_config) (struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg);
int (* s_mbus_config) (struct v4l2_subdev *sd, const struct v4l2_mbus_config *cfg);
int (* s_rx_buffer) (struct v4l2_subdev *sd, void *buf, unsigned int *size);

};

Members
s_routing see s_routing in audio_ops, except this version is for video devices.
s_crystal_freq sets the frequency of the crystal used to generate the clocks in Hz. An extra flags field

allows device specific configuration regarding clock frequency dividers, etc. If not used, then set
flags to 0. If the frequency is not supported, then -EINVAL is returned.

g_std callback for VIDIOC_G_STD ioctl handler code.
s_std callback for VIDIOC_S_STD ioctl handler code.
s_std_output set v4l2_std_id for video OUTPUT devices. This is ignored by video input devices.
g_std_output get current standard for video OUTPUT devices. This is ignored by video input devices.
querystd callback for VIDIOC_QUERYSTD ioctl handler code.
g_tvnorms get v4l2_std_id with all standards supported by the video CAPTURE device. This is ignored

by video output devices.
g_tvnorms_output get v4l2_std_id with all standards supported by the video OUTPUT device. This is

ignored by video capture devices.
g_input_status get input status. Same as the status field in the struct v4l2_input

s_stream used to notify the driver that a video stream will start or has stopped.
g_pixelaspect callback to return the pixelaspect ratio.
g_parm callback for VIDIOC_G_PARM ioctl handler code.
s_parm callback for VIDIOC_S_PARM ioctl handler code.
g_frame_interval callback for VIDIOC_G_FRAMEINTERVAL ioctl handler code.
s_frame_interval callback for VIDIOC_S_FRAMEINTERVAL ioctl handler code.
s_dv_timings Set custom dv timings in the sub device. This is used when sub device is capable of setting

detailed timing information in the hardware to generate/detect the video signal.
g_dv_timings Get custom dv timings in the sub device.

2.1. Video4Linux devices 669

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

query_dv_timings callback for VIDIOC_QUERY_DV_TIMINGS ioctl handler code.
g_mbus_config get supported mediabus configurations
s_mbus_config set a certain mediabus configuration. This operation is added for compatibility with soc-

camera drivers and should not be used by new software.
s_rx_buffer set a host allocated memory buffer for the subdev. The subdev can adjust size to a lower

value and must not write more data to the buffer starting at data than the original value of size.
struct v4l2_subdev_vbi_ops

Callbacks used when v4l device was opened in video mode via the vbi device node.
Definition

struct v4l2_subdev_vbi_ops {
int (* decode_vbi_line) (struct v4l2_subdev *sd, struct v4l2_decode_vbi_line *vbi_line);
int (* s_vbi_data) (struct v4l2_subdev *sd, const struct v4l2_sliced_vbi_data *vbi_data);
int (* g_vbi_data) (struct v4l2_subdev *sd, struct v4l2_sliced_vbi_data *vbi_data);
int (* g_sliced_vbi_cap) (struct v4l2_subdev *sd, struct v4l2_sliced_vbi_cap *cap);
int (* s_raw_fmt) (struct v4l2_subdev *sd, struct v4l2_vbi_format *fmt);
int (* g_sliced_fmt) (struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format *fmt);
int (* s_sliced_fmt) (struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format *fmt);

};

Members
decode_vbi_line video decoders that support sliced VBI need to implement this ioctl. Field p of the

struct v4l2_decode_vbi_line is set to the start of the VBI data that was generated by the decoder.
The driver then parses the sliced VBI data and sets the other fields in the struct accordingly. The
pointer p is updated to point to the start of the payload which can be copied verbatim into the data
field of the struct v4l2_sliced_vbi_data. If no valid VBI data was found, then the type field is set
to 0 on return.

s_vbi_data used to generate VBI signals on a video signal. struct v4l2_sliced_vbi_data is filled with
the data packets that should be output. Note that if you set the line field to 0, then that VBI signal is
disabled. If no valid VBI data was found, then the type field is set to 0 on return.

g_vbi_data used to obtain the sliced VBI packet from a readback register. Not all video decoders support
this. If no data is available because the readback register contains invalid or erroneous data -EIO is
returned. Note that you must fill in the ‘id’ member and the ‘field’ member (to determine whether
CC data from the first or second field should be obtained).

g_sliced_vbi_cap callback for VIDIOC_SLICED_VBI_CAP ioctl handler code.
s_raw_fmt setup the video encoder/decoder for raw VBI.
g_sliced_fmt retrieve the current sliced VBI settings.
s_sliced_fmt setup the sliced VBI settings.
struct v4l2_subdev_sensor_ops

v4l2-subdev sensor operations
Definition

struct v4l2_subdev_sensor_ops {
int (* g_skip_top_lines) (struct v4l2_subdev *sd, u32 *lines);
int (* g_skip_frames) (struct v4l2_subdev *sd, u32 *frames);

};

Members
g_skip_top_lines number of lines at the top of the image to be skipped. This is needed for some sensors,

which always corrupt several top lines of the output image, or which send their metadata in them.
g_skip_frames number of frames to skip at stream start. This is needed for buggy sensors that generate

faulty frames when they are turned on.

670 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

enum v4l2_subdev_ir_mode
describes the type of IR supported

Constants
V4L2_SUBDEV_IR_MODE_PULSE_WIDTH IR uses struct ir_raw_event records
struct v4l2_subdev_ir_parameters

Parameters for IR TX or TX
Definition

struct v4l2_subdev_ir_parameters {
unsigned int bytes_per_data_element;
enum v4l2_subdev_ir_mode mode;
bool enable;
bool interrupt_enable;
bool shutdown;
bool modulation;
u32 max_pulse_width;
unsigned int carrier_freq;
unsigned int duty_cycle;
bool invert_level;
bool invert_carrier_sense;
u32 noise_filter_min_width;
unsigned int carrier_range_lower;
unsigned int carrier_range_upper;
u32 resolution;

};

Members
bytes_per_data_element bytes per data element of data in read or write call.
mode IR mode as defined by enum v4l2_subdev_ir_mode.
enable device is active if true
interrupt_enable IR interrupts are enabled if true
shutdown if true: set hardware to low/no power, false: normal mode
modulation if true, it uses carrier, if false: baseband
max_pulse_width maximum pulse width in ns, valid only for baseband signal
carrier_freq carrier frequency in Hz, valid only for modulated signal
duty_cycle duty cycle percentage, valid only for modulated signal
invert_level invert signal level
invert_carrier_sense Send 0/space as a carrier burst. used only in TX.
noise_filter_min_width min time of a valid pulse, in ns. Used only for RX.
carrier_range_lower Lower carrier range, in Hz, valid only for modulated signal. Used only for RX.
carrier_range_upper Upper carrier range, in Hz, valid only for modulated signal. Used only for RX.
resolution The receive resolution, in ns . Used only for RX.
struct v4l2_subdev_ir_ops

operations for IR subdevices
Definition

struct v4l2_subdev_ir_ops {
int (* rx_read) (struct v4l2_subdev *sd, u8 *buf, size_t count, ssize_t *num);
int (* rx_g_parameters) (struct v4l2_subdev *sd, struct v4l2_subdev_ir_parameters *params);

2.1. Video4Linux devices 671

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int (* rx_s_parameters) (struct v4l2_subdev *sd, struct v4l2_subdev_ir_parameters *params);
int (* tx_write) (struct v4l2_subdev *sd, u8 *buf, size_t count, ssize_t *num);
int (* tx_g_parameters) (struct v4l2_subdev *sd, struct v4l2_subdev_ir_parameters *params);
int (* tx_s_parameters) (struct v4l2_subdev *sd, struct v4l2_subdev_ir_parameters *params);

};

Members
rx_read Reads received codes or pulse width data. The semantics are similar to a non-blocking read()

call.
rx_g_parameters Get the current operating parameters and state of the the IR receiver.
rx_s_parameters Set the current operating parameters and state of the the IR receiver. It is recom-

mended to call [rt]x_g_parameters first to fill out the current state, and only change the fields that
need to be changed. Upon return, the actual device operating parameters and state will be returned.
Note that hardware limitations may prevent the actual settings from matching the requested settings
- e.g. an actual carrier setting of 35,904 Hz when 36,000 Hz was requested. An exception is when the
shutdown parameter is true. The last used operational parameters will be returned, but the actual
state of the hardware be different to minimize power consumption and processing when shutdown
is true.

tx_write Writes codes or pulse width data for transmission. The semantics are similar to a non-blocking
write() call.

tx_g_parameters Get the current operating parameters and state of the the IR transmitter.
tx_s_parameters Set the current operating parameters and state of the the IR transmitter. It is recom-

mended to call [rt]x_g_parameters first to fill out the current state, and only change the fields that
need to be changed. Upon return, the actual device operating parameters and state will be returned.
Note that hardware limitations may prevent the actual settings from matching the requested settings
- e.g. an actual carrier setting of 35,904 Hz when 36,000 Hz was requested. An exception is when the
shutdown parameter is true. The last used operational parameters will be returned, but the actual
state of the hardware be different to minimize power consumption and processing when shutdown
is true.

struct v4l2_subdev_pad_config
Used for storing subdev pad information.

Definition

struct v4l2_subdev_pad_config {
struct v4l2_mbus_framefmt try_fmt;
struct v4l2_rect try_crop;
struct v4l2_rect try_compose;

};

Members
try_fmt struct v4l2_mbus_framefmt

try_crop struct v4l2_rect to be used for crop
try_compose struct v4l2_rect to be used for compose
Description
This structure only needs to be passed to the pad op if the ‘which’ field of the main argument is set to
V4L2_SUBDEV_FORMAT_TRY. For V4L2_SUBDEV_FORMAT_ACTIVE it is safe to pass NULL.
struct v4l2_subdev_pad_ops

v4l2-subdev pad level operations
Definition

672 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_subdev_pad_ops {
int (* init_cfg) (struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg);
int (* enum_mbus_code) (struct v4l2_subdev *sd,struct v4l2_subdev_pad_config *cfg, struct␣

↪→v4l2_subdev_mbus_code_enum *code);
int (* enum_frame_size) (struct v4l2_subdev *sd,struct v4l2_subdev_pad_config *cfg, struct␣

↪→v4l2_subdev_frame_size_enum *fse);
int (* enum_frame_interval) (struct v4l2_subdev *sd,struct v4l2_subdev_pad_config *cfg,␣

↪→struct v4l2_subdev_frame_interval_enum *fie);
int (* get_fmt) (struct v4l2_subdev *sd,struct v4l2_subdev_pad_config *cfg, struct v4l2_

↪→subdev_format *format);
int (* set_fmt) (struct v4l2_subdev *sd,struct v4l2_subdev_pad_config *cfg, struct v4l2_

↪→subdev_format *format);
int (* get_selection) (struct v4l2_subdev *sd,struct v4l2_subdev_pad_config *cfg, struct v4l2_

↪→subdev_selection *sel);
int (* set_selection) (struct v4l2_subdev *sd,struct v4l2_subdev_pad_config *cfg, struct v4l2_

↪→subdev_selection *sel);
int (* get_edid) (struct v4l2_subdev *sd, struct v4l2_edid *edid);
int (* set_edid) (struct v4l2_subdev *sd, struct v4l2_edid *edid);
int (* dv_timings_cap) (struct v4l2_subdev *sd, struct v4l2_dv_timings_cap *cap);
int (* enum_dv_timings) (struct v4l2_subdev *sd, struct v4l2_enum_dv_timings *timings);

#ifdef CONFIG_MEDIA_CONTROLLER
int (* link_validate) (struct v4l2_subdev *sd, struct media_link *link,struct v4l2_subdev_

↪→format *source_fmt, struct v4l2_subdev_format *sink_fmt);
#endif
int (* get_frame_desc) (struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_frame_desc␣

↪→*fd);
int (* set_frame_desc) (struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_frame_desc␣

↪→*fd);
};

Members
init_cfg initialize the pad config to default values
enum_mbus_code callback for VIDIOC_SUBDEV_ENUM_MBUS_CODE ioctl handler code.
enum_frame_size callback for VIDIOC_SUBDEV_ENUM_FRAME_SIZE ioctl handler code.
enum_frame_interval callback for VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL ioctl handler code.
get_fmt callback for VIDIOC_SUBDEV_G_FMT ioctl handler code.
set_fmt callback for VIDIOC_SUBDEV_S_FMT ioctl handler code.
get_selection callback for VIDIOC_SUBDEV_G_SELECTION ioctl handler code.
set_selection callback for VIDIOC_SUBDEV_S_SELECTION ioctl handler code.
get_edid callback for VIDIOC_SUBDEV_G_EDID ioctl handler code.
set_edid callback for VIDIOC_SUBDEV_S_EDID ioctl handler code.
dv_timings_cap callback for VIDIOC_SUBDEV_DV_TIMINGS_CAP ioctl handler code.
enum_dv_timings callback for VIDIOC_SUBDEV_ENUM_DV_TIMINGS ioctl handler code.
link_validate used by the media controller code to check if the links that belongs to a pipeline can be

used for stream.
get_frame_desc get the current low level media bus frame parameters.
set_frame_desc set the low level media bus frame parameters, fd array may be adjusted by the subdev

driver to device capabilities.
struct v4l2_subdev_ops

Subdev operations
Definition

2.1. Video4Linux devices 673

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_subdev_ops {
const struct v4l2_subdev_core_ops * core;
const struct v4l2_subdev_tuner_ops * tuner;
const struct v4l2_subdev_audio_ops * audio;
const struct v4l2_subdev_video_ops * video;
const struct v4l2_subdev_vbi_ops * vbi;
const struct v4l2_subdev_ir_ops * ir;
const struct v4l2_subdev_sensor_ops * sensor;
const struct v4l2_subdev_pad_ops * pad;

};

Members
core pointer to struct v4l2_subdev_core_ops. Can be NULL

tuner pointer to struct v4l2_subdev_tuner_ops. Can be NULL

audio pointer to struct v4l2_subdev_audio_ops. Can be NULL

video pointer to struct v4l2_subdev_video_ops. Can be NULL

vbi pointer to struct v4l2_subdev_vbi_ops. Can be NULL

ir pointer to struct v4l2_subdev_ir_ops. Can be NULL

sensor pointer to struct v4l2_subdev_sensor_ops. Can be NULL

pad pointer to struct v4l2_subdev_pad_ops. Can be NULL

struct v4l2_subdev_internal_ops
V4L2 subdev internal ops

Definition

struct v4l2_subdev_internal_ops {
int (* registered) (struct v4l2_subdev *sd);
void (* unregistered) (struct v4l2_subdev *sd);
int (* open) (struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh);
int (* close) (struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh);

};

Members
registered called when this subdev is registered. When called the v4l2_dev field is set to the correct

v4l2_device.
unregistered called when this subdev is unregistered. When called the v4l2_dev field is still set to the

correct v4l2_device.
open called when the subdev device node is opened by an application.
close called when the subdev device node is closed.
Description

Note:

Never call this from drivers, only the v4l2 framework can call these ops.

struct v4l2_subdev_platform_data
regulators config struct

Definition

674 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_subdev_platform_data {
struct regulator_bulk_data * regulators;
int num_regulators;
void * host_priv;

};

Members
regulators Optional regulators used to power on/off the subdevice
num_regulators Number of regululators
host_priv Per-subdevice data, specific for a certain video host device
struct v4l2_subdev

describes a V4L2 sub-device
Definition

struct v4l2_subdev {
#if defined(CONFIG_MEDIA_CONTROLLER
struct media_entity entity;

#endif
struct list_head list;
struct module * owner;
bool owner_v4l2_dev;
u32 flags;
struct v4l2_device * v4l2_dev;
const struct v4l2_subdev_ops * ops;
const struct v4l2_subdev_internal_ops * internal_ops;
struct v4l2_ctrl_handler * ctrl_handler;
char name;
u32 grp_id;
void * dev_priv;
void * host_priv;
struct video_device * devnode;
struct device * dev;
struct fwnode_handle * fwnode;
struct list_head async_list;
struct v4l2_async_subdev * asd;
struct v4l2_async_notifier * notifier;
struct v4l2_subdev_platform_data * pdata;

};

Members
entity pointer to struct media_entity

list List of sub-devices
owner The owner is the same as the driver’s struct device owner.
owner_v4l2_dev true if the sd->owner matches the owner of v4l2_dev->dev ownner. Initialized by

v4l2_device_register_subdev().
flags subdev flags. Can be: V4L2_SUBDEV_FL_IS_I2C - Set this flag if this subdev is a i2c device;

V4L2_SUBDEV_FL_IS_SPI - Set this flag if this subdev is a spi device; V4L2_SUBDEV_FL_HAS_DEVNODE
- Set this flag if this subdev needs a device node; V4L2_SUBDEV_FL_HAS_EVENTS - Set this flag if this
subdev generates events.

v4l2_dev pointer to struct v4l2_device
ops pointer to struct v4l2_subdev_ops
internal_ops pointer to struct v4l2_subdev_internal_ops. Never call these internal ops from within a

driver!

2.1. Video4Linux devices 675

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ctrl_handler The control handler of this subdev. May be NULL.
name Name of the sub-device. Please notice that the name must be unique.
grp_id can be used to group similar subdevs. Value is driver-specific
dev_priv pointer to private data
host_priv pointer to private data used by the device where the subdev is attached.
devnode subdev device node
dev pointer to the physical device, if any
fwnode The fwnode_handle of the subdev, usually the same as either dev->of_node->fwnode or dev-

>fwnode (whichever is non-NULL).
async_list Links this subdev to a global subdev_list or notifier->done list.
asd Pointer to respective struct v4l2_async_subdev.
notifier Pointer to the managing notifier.
pdata common part of subdevice platform data
Description
Each instance of a subdev driver should create this struct, either stand-alone or embedded in a larger
struct.
This structure should be initialized by v4l2_subdev_init() or one of its variants:
v4l2_spi_subdev_init(), v4l2_i2c_subdev_init().
struct v4l2_subdev_fh

Used for storing subdev information per file handle
Definition

struct v4l2_subdev_fh {
struct v4l2_fh vfh;

#if defined(CONFIG_VIDEO_V4L2_SUBDEV_API
struct v4l2_subdev_pad_config * pad;

#endif
};

Members
vfh pointer to struct v4l2_fh
pad pointer to v4l2_subdev_pad_config
void v4l2_set_subdevdata(struct v4l2_subdev * sd, void * p)

Sets V4L2 dev private device data
Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

void * p pointer to the private device data to be stored.
void * v4l2_get_subdevdata(const struct v4l2_subdev * sd)

Gets V4L2 dev private device data
Parameters
const struct v4l2_subdev * sd pointer to struct v4l2_subdev

Description
Returns the pointer to the private device data to be stored.
void v4l2_set_subdev_hostdata(struct v4l2_subdev * sd, void * p)

Sets V4L2 dev private host data

676 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

void * p pointer to the private data to be stored.
void * v4l2_get_subdev_hostdata(const struct v4l2_subdev * sd)

Gets V4L2 dev private data
Parameters
const struct v4l2_subdev * sd pointer to struct v4l2_subdev

Description
Returns the pointer to the private host data to be stored.
int v4l2_subdev_link_validate_default(struct v4l2_subdev * sd, struct media_link * link,

struct v4l2_subdev_format * source_fmt, struct
v4l2_subdev_format * sink_fmt)

validates a media link
Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct media_link * link pointer to struct media_link

struct v4l2_subdev_format * source_fmt pointer to struct v4l2_subdev_format

struct v4l2_subdev_format * sink_fmt pointer to struct v4l2_subdev_format

Description
This function ensures that width, height and the media bus pixel code are equal on both source and sink
of the link.
int v4l2_subdev_link_validate(struct media_link * link)

validates a media link
Parameters
struct media_link * link pointer to struct media_link

Description
This function calls the subdev’s link_validate ops to validate if a media link is valid for streaming. It also
internally calls v4l2_subdev_link_validate_default() to ensure that width, height and the media bus
pixel code are equal on both source and sink of the link.
struct v4l2_subdev_pad_config * v4l2_subdev_alloc_pad_config(struct v4l2_subdev * sd)

Allocates memory for pad config
Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev
void v4l2_subdev_free_pad_config(struct v4l2_subdev_pad_config * cfg)

Frees memory allocated by v4l2_subdev_alloc_pad_config().
Parameters
struct v4l2_subdev_pad_config * cfg pointer to struct v4l2_subdev_pad_config

void v4l2_subdev_init(struct v4l2_subdev * sd, const struct v4l2_subdev_ops * ops)
initializes the sub-device struct

Parameters
struct v4l2_subdev * sd pointer to the struct v4l2_subdev to be initialized
const struct v4l2_subdev_ops * ops pointer to struct v4l2_subdev_ops.

2.1. Video4Linux devices 677

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void v4l2_subdev_notify_event(struct v4l2_subdev * sd, const struct v4l2_event * ev)
Delivers event notification for subdevice

Parameters
struct v4l2_subdev * sd The subdev for which to deliver the event
const struct v4l2_event * ev The event to deliver
Description
Will deliver the specified event to all userspace event listeners which are subscribed to the v42l subdev
event queue as well as to the bridge driver using the notify callback. The notification type for the notify
callback will be V4L2_DEVICE_NOTIFY_EVENT.
enum v4l2_async_match_type

type of asynchronous subdevice logic to be used in order to identify a match
Constants
V4L2_ASYNC_MATCH_CUSTOM Match will use the logic provided by struct v4l2_async_subdev.match ops
V4L2_ASYNC_MATCH_DEVNAME Match will use the device name
V4L2_ASYNC_MATCH_I2C Match will check for I2C adapter ID and address
V4L2_ASYNC_MATCH_FWNODE Match will use firmware node
Description
This enum is used by the asyncrhronous sub-device logic to define the algorithm that will be used to match
an asynchronous device.
struct v4l2_async_subdev

sub-device descriptor, as known to a bridge
Definition

struct v4l2_async_subdev {
enum v4l2_async_match_type match_type;
union match;
struct list_head list;

};

Members
match_type type of match that will be used
match union of per-bus type matching data sets
list used to link struct v4l2_async_subdev objects, waiting to be probed, to a notifier->waiting list
struct v4l2_async_notifier

v4l2_device notifier data
Definition

struct v4l2_async_notifier {
unsigned int num_subdevs;
struct v4l2_async_subdev ** subdevs;
struct v4l2_device * v4l2_dev;
struct list_head waiting;
struct list_head done;
struct list_head list;
int (* bound) (struct v4l2_async_notifier *notifier,struct v4l2_subdev *subdev, struct v4l2_

↪→async_subdev *asd);
int (* complete) (struct v4l2_async_notifier *notifier);
void (* unbind) (struct v4l2_async_notifier *notifier,struct v4l2_subdev *subdev, struct v4l2_

↪→async_subdev *asd);
};

678 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Members
num_subdevs number of subdevices
subdevs array of pointers to subdevice descriptors
v4l2_dev pointer to struct v4l2_device
waiting list of struct v4l2_async_subdev, waiting for their drivers
done list of struct v4l2_subdev, already probed
list member in a global list of notifiers
bound a subdevice driver has successfully probed one of subdevices
complete all subdevices have been probed successfully
unbind a subdevice is leaving
int v4l2_async_notifier_register(struct v4l2_device * v4l2_dev, struct v4l2_async_notifier * no-

tifier)
registers a subdevice asynchronous notifier

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

struct v4l2_async_notifier * notifier pointer to struct v4l2_async_notifier

void v4l2_async_notifier_unregister(struct v4l2_async_notifier * notifier)
unregisters a subdevice asynchronous notifier

Parameters
struct v4l2_async_notifier * notifier pointer to struct v4l2_async_notifier

int v4l2_async_register_subdev(struct v4l2_subdev * sd)
registers a sub-device to the asynchronous subdevice framework

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

void v4l2_async_unregister_subdev(struct v4l2_subdev * sd)
unregisters a sub-device to the asynchronous subdevice framework

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

2.1.11 V4L2 events

The V4L2 events provide a generic way to pass events to user space. The driver must use v4l2_fh to be
able to support V4L2 events.
Events are defined by a type and an optional ID. The ID may refer to a V4L2 object such as a control ID.
If unused, then the ID is 0.
When the user subscribes to an event the driver will allocate a number of kevent structs for that event.
So every (type, ID) event tuple will have its own set of kevent structs. This guarantees that if a driver is
generating lots of events of one type in a short time, then that will not overwrite events of another type.
But if you get more events of one type than the number of kevents that were reserved, then the oldest
event will be dropped and the new one added.
Furthermore, the internal struct v4l2_subscribed_event has merge() and replace() callbacks which
drivers can set. These callbacks are called when a new event is raised and there is no more room. The
replace() callback allows you to replace the payload of the old event with that of the new event, merging
any relevant data from the old payload into the new payload that replaces it. It is called when this event

2.1. Video4Linux devices 679

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

type has only one kevent struct allocated. The merge() callback allows you to merge the oldest event
payload into that of the second-oldest event payload. It is called when there are two or more kevent
structs allocated.
This way no status information is lost, just the intermediate steps leading up to that state.
A good example of these replace/merge callbacks is in v4l2-event.c: ctrls_replace() and
ctrls_merge() callbacks for the control event.

Note:

these callbacks can be called from interrupt context, so they must be fast.

In order to queue events to video device, drivers should call:
v4l2_event_queue (vdev, ev)

The driver’s only responsibility is to fill in the type and the data fields. The other fields will be filled in by
V4L2.

Event subscription

Subscribing to an event is via:
v4l2_event_subscribe (fh, sub , elems, ops)

This function is used to implement video_device-> ioctl_ops-> vidioc_subscribe_event, but the
driver must check first if the driver is able to produce events with specified event id, and then should
call v4l2_event_subscribe() to subscribe the event.
The elems argument is the size of the event queue for this event. If it is 0, then the framework will fill in
a default value (this depends on the event type).
The ops argument allows the driver to specify a number of callbacks:
Callback Description
add called when a new listener gets added (subscribing to the same event twice will only cause

this callback to get called once)
del called when a listener stops listening
replace replace event ‘old’ with event ‘new’.
merge merge event ‘old’ into event ‘new’.
All 4 callbacks are optional, if you don’t want to specify any callbacks the ops argument itself maybe NULL.

Unsubscribing an event

Unsubscribing to an event is via:
v4l2_event_unsubscribe (fh, sub)

This function is used to implement video_device-> ioctl_ops-> vidioc_unsubscribe_event. A driver
may call v4l2_event_unsubscribe() directly unless it wants to be involved in unsubscription process.
The special type V4L2_EVENT_ALL may be used to unsubscribe all events. The drivers may want to handle
this in a special way.

Check if there’s a pending event

Checking if there’s a pending event is via:
v4l2_event_pending (fh)

680 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

This function returns the number of pending events. Useful when implementing poll.

How events work

Events are delivered to user space through the poll system call. The driver can use v4l2_fh->wait (a
wait_queue_head_t) as the argument for poll_wait().
There are standard and private events. New standard events must use the smallest available event
type. The drivers must allocate their events from their own class starting from class base. Class base is
V4L2_EVENT_PRIVATE_START + n * 1000 where n is the lowest available number. The first event type in
the class is reserved for future use, so the first available event type is ‘class base + 1’.
An example on how the V4L2 events may be used can be found in the OMAP 3 ISP driver
(drivers/media/platform/omap3isp).
A subdev can directly send an event to the v4l2_device notify function with V4L2_DEVICE_NOTIFY_EVENT.
This allows the bridge to map the subdev that sends the event to the video node(s) associated with the
subdev that need to be informed about such an event.

V4L2 event functions and data structures

struct v4l2_kevent
Internal kernel event struct.

Definition

struct v4l2_kevent {
struct list_head list;
struct v4l2_subscribed_event * sev;
struct v4l2_event event;

};

Members
list List node for the v4l2_fh->available list.
sev Pointer to parent v4l2_subscribed_event.
event The event itself.
struct v4l2_subscribed_event_ops

Subscribed event operations.
Definition

struct v4l2_subscribed_event_ops {
int (* add) (struct v4l2_subscribed_event *sev, unsigned int elems);
void (* del) (struct v4l2_subscribed_event *sev);
void (* replace) (struct v4l2_event *old, const struct v4l2_event *new);
void (* merge) (const struct v4l2_event *old, struct v4l2_event *new);

};

Members
add Optional callback, called when a new listener is added
del Optional callback, called when a listener stops listening
replace Optional callback that can replace event ‘old’ with event ‘new’.
merge Optional callback that can merge event ‘old’ into event ‘new’.
struct v4l2_subscribed_event

Internal struct representing a subscribed event.

2.1. Video4Linux devices 681

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Definition

struct v4l2_subscribed_event {
struct list_head list;
u32 type;
u32 id;
u32 flags;
struct v4l2_fh * fh;
struct list_head node;
const struct v4l2_subscribed_event_ops * ops;
unsigned int elems;
unsigned int first;
unsigned int in_use;
struct v4l2_kevent events;

};

Members
list List node for the v4l2_fh->subscribed list.
type Event type.
id Associated object ID (e.g. control ID). 0 if there isn’t any.
flags Copy of v4l2_event_subscription->flags.
fh Filehandle that subscribed to this event.
node List node that hooks into the object’s event list (if there is one).
ops v4l2_subscribed_event_ops
elems The number of elements in the events array.
first The index of the events containing the oldest available event.
in_use The number of queued events.
events An array of elems events.
int v4l2_event_dequeue(struct v4l2_fh * fh, struct v4l2_event * event, int nonblocking)

Dequeue events from video device.
Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh
struct v4l2_event * event pointer to struct v4l2_event
int nonblocking if not zero, waits for an event to arrive
void v4l2_event_queue(struct video_device * vdev, const struct v4l2_event * ev)

Queue events to video device.
Parameters
struct video_device * vdev pointer to struct video_device

const struct v4l2_event * ev pointer to struct v4l2_event

Description
The event will be queued for all struct v4l2_fh file handlers.

Note:

The driver’s only responsibility is to fill in the type and the data fields.The other fields will be filled in
by V4L2.

682 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void v4l2_event_queue_fh(struct v4l2_fh * fh, const struct v4l2_event * ev)
Queue events to video device.

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

const struct v4l2_event * ev pointer to struct v4l2_event

Description
The event will be queued only for the specified struct v4l2_fh file handler.

Note:

The driver’s only responsibility is to fill in the type and the data fields.The other fields will be filled in
by V4L2.

int v4l2_event_pending(struct v4l2_fh * fh)
Check if an event is available

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

Description
Returns the number of pending events.
int v4l2_event_subscribe(struct v4l2_fh * fh, const struct v4l2_event_subscription * sub, unsigned

int elems, const struct v4l2_subscribed_event_ops * ops)
Subscribes to an event

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

const struct v4l2_event_subscription * sub pointer to struct v4l2_event_subscription

unsigned int elems size of the events queue
const struct v4l2_subscribed_event_ops * ops pointer to v4l2_subscribed_event_ops

Description

Note:

if elems is zero, the framework will fill in a default value, with is currently 1 element.

int v4l2_event_unsubscribe(struct v4l2_fh * fh, const struct v4l2_event_subscription * sub)
Unsubscribes to an event

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

const struct v4l2_event_subscription * sub pointer to struct v4l2_event_subscription

void v4l2_event_unsubscribe_all(struct v4l2_fh * fh)
Unsubscribes to all events

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

2.1. Video4Linux devices 683

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int v4l2_event_subdev_unsubscribe(struct v4l2_subdev * sd, struct v4l2_fh * fh, struct
v4l2_event_subscription * sub)

Subdev variant of v4l2_event_unsubscribe()
Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_fh * fh pointer to struct v4l2_fh

struct v4l2_event_subscription * sub pointer to struct v4l2_event_subscription

Description

Note:

This function should be used for the struct v4l2_subdev_core_ops unsubscribe_event field.

int v4l2_src_change_event_subscribe(struct v4l2_fh * fh, const struct v4l2_event_subscription
* sub)

helper function that calls v4l2_event_subscribe() if the event is V4L2_EVENT_SOURCE_CHANGE.
Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh
const struct v4l2_event_subscription * sub pointer to struct v4l2_event_subscription

int v4l2_src_change_event_subdev_subscribe(struct v4l2_subdev * sd, struct v4l2_fh * fh, struct
v4l2_event_subscription * sub)

Variant of v4l2_event_subscribe(), meant to subscribe only events of the type
V4L2_EVENT_SOURCE_CHANGE.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_fh * fh pointer to struct v4l2_fh

struct v4l2_event_subscription * sub pointer to struct v4l2_event_subscription

2.1.12 V4L2 Controls

Introduction

The V4L2 control API seems simple enough, but quickly becomes very hard to implement correctly in
drivers. But much of the code needed to handle controls is actually not driver specific and can be moved
to the V4L core framework.
After all, the only part that a driver developer is interested in is:

1. How do I add a control?
2. How do I set the control’s value? (i.e. s_ctrl)

And occasionally:
3. How do I get the control’s value? (i.e. g_volatile_ctrl)
4. How do I validate the user’s proposed control value? (i.e. try_ctrl)

All the rest is something that can be done centrally.
The control framework was created in order to implement all the rules of the V4L2 specification with
respect to controls in a central place. And to make life as easy as possible for the driver developer.

684 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note that the control framework relies on the presence of a struct v4l2_device for V4L2 drivers and struct
v4l2_subdev for sub-device drivers.

Objects in the framework

There are two main objects:
The v4l2_ctrl object describes the control properties and keeps track of the control’s value (both the
current value and the proposed new value).
v4l2_ctrl_handler is the object that keeps track of controls. It maintains a list of v4l2_ctrl objects that it
owns and another list of references to controls, possibly to controls owned by other handlers.

Basic usage for V4L2 and sub-device drivers

1. Prepare the driver:
1.1) Add the handler to your driver’s top-level struct:

struct foo_dev {
...
struct v4l2_ctrl_handler ctrl_handler;
...

};

struct foo_dev *foo;

1.2) Initialize the handler:

v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);

The second argument is a hint telling the function how many controls this handler is expected to handle.
It will allocate a hashtable based on this information. It is a hint only.
1.3) Hook the control handler into the driver:
1.3.1) For V4L2 drivers do this:

struct foo_dev {
...
struct v4l2_device v4l2_dev;
...
struct v4l2_ctrl_handler ctrl_handler;
...

};

foo->v4l2_dev.ctrl_handler = &foo->ctrl_handler;

Where foo->v4l2_dev is of type struct v4l2_device.
Finally, remove all control functions from your v4l2_ioctl_ops (if any): vidioc_queryctrl, vid-
ioc_query_ext_ctrl, vidioc_querymenu, vidioc_g_ctrl, vidioc_s_ctrl, vidioc_g_ext_ctrls, vidioc_try_ext_ctrls
and vidioc_s_ext_ctrls. Those are now no longer needed.
1.3.2) For sub-device drivers do this:

struct foo_dev {
...
struct v4l2_subdev sd;
...
struct v4l2_ctrl_handler ctrl_handler;
...

};

2.1. Video4Linux devices 685

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

foo->sd.ctrl_handler = &foo->ctrl_handler;

Where foo->sd is of type struct v4l2_subdev.
1.4) Clean up the handler at the end:

v4l2_ctrl_handler_free(&foo->ctrl_handler);

2. Add controls:
You add non-menu controls by calling v4l2_ctrl_new_std:

struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 min, s32 max, u32 step, s32 def);

Menu and integer menu controls are added by calling v4l2_ctrl_new_std_menu:

struct v4l2_ctrl *v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 max, s32 skip_mask, s32 def);

Menu controls with a driver specific menu are added by calling v4l2_ctrl_new_std_menu_items:

struct v4l2_ctrl *v4l2_ctrl_new_std_menu_items(
struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops, u32 id, s32 max,
s32 skip_mask, s32 def, const char * const *qmenu);

Integer menu controls with a driver specific menu can be added by calling v4l2_ctrl_new_int_menu:

struct v4l2_ctrl *v4l2_ctrl_new_int_menu(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 max, s32 def, const s64 *qmenu_int);

These functions are typically called right after the v4l2_ctrl_handler_init:

static const s64 exp_bias_qmenu[] = {
-2, -1, 0, 1, 2

};
static const char * const test_pattern[] = {

"Disabled",
"Vertical Bars",
"Solid Black",
"Solid White",

};

v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);
v4l2_ctrl_new_std(&foo->ctrl_handler, &foo_ctrl_ops,

V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);
v4l2_ctrl_new_std(&foo->ctrl_handler, &foo_ctrl_ops,

V4L2_CID_CONTRAST, 0, 255, 1, 128);
v4l2_ctrl_new_std_menu(&foo->ctrl_handler, &foo_ctrl_ops,

V4L2_CID_POWER_LINE_FREQUENCY,
V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0,
V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);

v4l2_ctrl_new_int_menu(&foo->ctrl_handler, &foo_ctrl_ops,
V4L2_CID_EXPOSURE_BIAS,
ARRAY_SIZE(exp_bias_qmenu) - 1,
ARRAY_SIZE(exp_bias_qmenu) / 2 - 1,
exp_bias_qmenu);

v4l2_ctrl_new_std_menu_items(&foo->ctrl_handler, &foo_ctrl_ops,

686 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_CID_TEST_PATTERN, ARRAY_SIZE(test_pattern) - 1, 0,
0, test_pattern);

...
if (foo->ctrl_handler.error) {

int err = foo->ctrl_handler.error;

v4l2_ctrl_handler_free(&foo->ctrl_handler);
return err;

}

The v4l2_ctrl_new_std function returns the v4l2_ctrl pointer to the new control, but if you do not need to
access the pointer outside the control ops, then there is no need to store it.
The v4l2_ctrl_new_std function will fill in most fields based on the control ID except for the min, max, step
and default values. These are passed in the last four arguments. These values are driver specific while
control attributes like type, name, flags are all global. The control’s current value will be set to the default
value.
The v4l2_ctrl_new_std_menu function is very similar but it is used for menu controls. There is no min
argument since that is always 0 for menu controls, and instead of a step there is a skip_mask argument:
if bit X is 1, then menu item X is skipped.
The v4l2_ctrl_new_int_menu function creates a new standard integer menu control with driver-specific
items in the menu. It differs from v4l2_ctrl_new_std_menu in that it doesn’t have the mask argument and
takes as the last argument an array of signed 64-bit integers that form an exact menu item list.
The v4l2_ctrl_new_std_menu_items function is very similar to v4l2_ctrl_new_std_menu but takes an extra
parameter qmenu, which is the driver specific menu for an otherwise standard menu control. A good
example for this control is the test pattern control for capture/display/sensors devices that have the ca-
pability to generate test patterns. These test patterns are hardware specific, so the contents of the menu
will vary from device to device.
Note that if something fails, the function will return NULL or an error and set ctrl_handler->error to the
error code. If ctrl_handler->error was already set, then it will just return and do nothing. This is also true
for v4l2_ctrl_handler_init if it cannot allocate the internal data structure.
This makes it easy to init the handler and just add all controls and only check the error code at the end.
Saves a lot of repetitive error checking.
It is recommended to add controls in ascending control ID order: it will be a bit faster that way.

3. Optionally force initial control setup:

v4l2_ctrl_handler_setup(&foo->ctrl_handler);

This will call s_ctrl for all controls unconditionally. Effectively this initializes the hardware to the default
control values. It is recommended that you do this as this ensures that both the internal data structures
and the hardware are in sync.

4. Finally: implement the v4l2_ctrl_ops

static const struct v4l2_ctrl_ops foo_ctrl_ops = {
.s_ctrl = foo_s_ctrl,

};

Usually all you need is s_ctrl:

static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
{

struct foo *state = container_of(ctrl->handler, struct foo, ctrl_handler);

switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:

write_reg(0x123, ctrl->val);

2.1. Video4Linux devices 687

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

break;
case V4L2_CID_CONTRAST:

write_reg(0x456, ctrl->val);
break;

}
return 0;

}

The control ops are called with the v4l2_ctrl pointer as argument. The new control value has already been
validated, so all you need to do is to actually update the hardware registers.
You’re done! And this is sufficient for most of the drivers we have. No need to do any validation of
control values, or implement QUERYCTRL, QUERY_EXT_CTRL and QUERYMENU. And G/S_CTRL as well as
G/TRY/S_EXT_CTRLS are automatically supported.

Note:

The remainder sections deal with more advanced controls topics and scenarios. In practice the basic
usage as described above is sufficient for most drivers.

Inheriting Controls

When a sub-device is registered with a V4L2 driver by calling v4l2_device_register_subdev() and the
ctrl_handler fields of both v4l2_subdev and v4l2_device are set, then the controls of the subdev will be-
come automatically available in the V4L2 driver as well. If the subdev driver contains controls that already
exist in the V4L2 driver, then those will be skipped (so a V4L2 driver can always override a subdev control).
What happens here is that v4l2_device_register_subdev() calls v4l2_ctrl_add_handler() adding the controls
of the subdev to the controls of v4l2_device.

Accessing Control Values

The following union is used inside the control framework to access control values:

union v4l2_ctrl_ptr {
s32 *p_s32;
s64 *p_s64;
char *p_char;
void *p;

};

The v4l2_ctrl struct contains these fields that can be used to access both current and new values:

s32 val;
struct {

s32 val;
} cur;

union v4l2_ctrl_ptr p_new;
union v4l2_ctrl_ptr p_cur;

If the control has a simple s32 type type, then:

&ctrl->val == ctrl->p_new.p_s32
&ctrl->cur.val == ctrl->p_cur.p_s32

688 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

For all other types use ctrl->p_cur.p<something>. Basically the val and cur.val fields can be considered
an alias since these are used so often.
Within the control ops you can freely use these. The val and cur.val speak for themselves. The p_char
pointers point to character buffers of length ctrl->maximum + 1, and are always 0-terminated.
Unless the control is marked volatile the p_cur field points to the the current cached control value.
When you create a new control this value is made identical to the default value. After calling
v4l2_ctrl_handler_setup() this value is passed to the hardware. It is generally a good idea to call this
function.
Whenever a new value is set that new value is automatically cached. This means that most drivers do
not need to implement the g_volatile_ctrl() op. The exception is for controls that return a volatile register
such as a signal strength read-out that changes continuously. In that case you will need to implement
g_volatile_ctrl like this:

static int foo_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{

switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:

ctrl->val = read_reg(0x123);
break;

}
}

Note that you use the ‘new value’ union as well in g_volatile_ctrl. In general controls that need to im-
plement g_volatile_ctrl are read-only controls. If they are not, a V4L2_EVENT_CTRL_CH_VALUE will not be
generated when the control changes.
To mark a control as volatile you have to set V4L2_CTRL_FLAG_VOLATILE:

ctrl = v4l2_ctrl_new_std(&sd->ctrl_handler, ...);
if (ctrl)

ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;

For try/s_ctrl the new values (i.e. as passed by the user) are filled in and you can modify them in try_ctrl
or set them in s_ctrl. The ‘cur’ union contains the current value, which you can use (but not change!) as
well.
If s_ctrl returns 0 (OK), then the control framework will copy the new final values to the ‘cur’ union.
While in g_volatile/s/try_ctrl you can access the value of all controls owned by the same handler since the
handler’s lock is held. If you need to access the value of controls owned by other handlers, then you have
to be very careful not to introduce deadlocks.
Outside of the control ops you have to go through to helper functions to get or set a single control value
safely in your driver:

s32 v4l2_ctrl_g_ctrl(struct v4l2_ctrl *ctrl);
int v4l2_ctrl_s_ctrl(struct v4l2_ctrl *ctrl, s32 val);

These functions go through the control framework just as VIDIOC_G/S_CTRL ioctls do. Don’t use these
inside the control ops g_volatile/s/try_ctrl, though, that will result in a deadlock since these helpers lock
the handler as well.
You can also take the handler lock yourself:

mutex_lock(&state->ctrl_handler.lock);
pr_info("String value is '%s'\n", ctrl1->p_cur.p_char);
pr_info("Integer value is '%s'\n", ctrl2->cur.val);
mutex_unlock(&state->ctrl_handler.lock);

2.1. Video4Linux devices 689

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Menu Controls

The v4l2_ctrl struct contains this union:

union {
u32 step;
u32 menu_skip_mask;

};

For menu controls menu_skip_mask is used. What it does is that it allows you to easily exclude certain
menu items. This is used in the VIDIOC_QUERYMENU implementation where you can return -EINVAL if a
certain menu item is not present. Note that VIDIOC_QUERYCTRL always returns a step value of 1 for menu
controls.
A good example is the MPEG Audio Layer II Bitrate menu control where the menu is a list of standardized
possible bitrates. But in practice hardware implementations will only support a subset of those. By setting
the skip mask you can tell the framework which menu items should be skipped. Setting it to 0 means that
all menu items are supported.
You set this mask either through the v4l2_ctrl_config struct for a custom control, or by calling
v4l2_ctrl_new_std_menu().

Custom Controls

Driver specific controls can be created using v4l2_ctrl_new_custom():

static const struct v4l2_ctrl_config ctrl_filter = {
.ops = &ctrl_custom_ops,
.id = V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER,
.name = "Spatial Filter",
.type = V4L2_CTRL_TYPE_INTEGER,
.flags = V4L2_CTRL_FLAG_SLIDER,
.max = 15,
.step = 1,

};

ctrl = v4l2_ctrl_new_custom(&foo->ctrl_handler, &ctrl_filter, NULL);

The last argument is the priv pointer which can be set to driver-specific private data.
The v4l2_ctrl_config struct also has a field to set the is_private flag.
If the name field is not set, then the framework will assume this is a standard control and will fill in the
name, type and flags fields accordingly.

Active and Grabbed Controls

If you get more complex relationships between controls, then you may have to activate and deactivate
controls. For example, if the Chroma AGC control is on, then the Chroma Gain control is inactive. That is,
you may set it, but the value will not be used by the hardware as long as the automatic gain control is on.
Typically user interfaces can disable such input fields.
You can set the ‘active’ status using v4l2_ctrl_activate(). By default all controls are active. Note that the
framework does not check for this flag. It is meant purely for GUIs. The function is typically called from
within s_ctrl.
The other flag is the ‘grabbed’ flag. A grabbed control means that you cannot change it because it is in use
by some resource. Typical examples are MPEG bitrate controls that cannot be changed while capturing is
in progress.

690 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

If a control is set to ‘grabbed’ using v4l2_ctrl_grab(), then the framework will return -EBUSY if an attempt
is made to set this control. The v4l2_ctrl_grab() function is typically called from the driver when it starts
or stops streaming.

Control Clusters

By default all controls are independent from the others. But in more complex scenarios you can get
dependencies from one control to another. In that case you need to ‘cluster’ them:

struct foo {
struct v4l2_ctrl_handler ctrl_handler;

#define AUDIO_CL_VOLUME (0)
#define AUDIO_CL_MUTE (1)

struct v4l2_ctrl *audio_cluster[2];
...

};

state->audio_cluster[AUDIO_CL_VOLUME] =
v4l2_ctrl_new_std(&state->ctrl_handler, ...);

state->audio_cluster[AUDIO_CL_MUTE] =
v4l2_ctrl_new_std(&state->ctrl_handler, ...);

v4l2_ctrl_cluster(ARRAY_SIZE(state->audio_cluster), state->audio_cluster);

From now on whenever one or more of the controls belonging to the same cluster is set (or ‘gotten’, or
‘tried’), only the control ops of the first control (‘volume’ in this example) is called. You effectively create
a new composite control. Similar to how a ‘struct’ works in C.
So when s_ctrl is called with V4L2_CID_AUDIO_VOLUME as argument, you should set all two controls be-
longing to the audio_cluster:

static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
{

struct foo *state = container_of(ctrl->handler, struct foo, ctrl_handler);

switch (ctrl->id) {
case V4L2_CID_AUDIO_VOLUME: {

struct v4l2_ctrl *mute = ctrl->cluster[AUDIO_CL_MUTE];

write_reg(0x123, mute->val ? 0 : ctrl->val);
break;

}
case V4L2_CID_CONTRAST:

write_reg(0x456, ctrl->val);
break;

}
return 0;

}

In the example above the following are equivalent for the VOLUME case:

ctrl == ctrl->cluster[AUDIO_CL_VOLUME] == state->audio_cluster[AUDIO_CL_VOLUME]
ctrl->cluster[AUDIO_CL_MUTE] == state->audio_cluster[AUDIO_CL_MUTE]

In practice using cluster arrays like this becomes very tiresome. So instead the following equivalent
method is used:

struct {
/* audio cluster */
struct v4l2_ctrl *volume;
struct v4l2_ctrl *mute;

};

2.1. Video4Linux devices 691

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The anonymous struct is used to clearly ‘cluster’ these two control pointers, but it serves no other purpose.
The effect is the same as creating an array with two control pointers. So you can just do:

state->volume = v4l2_ctrl_new_std(&state->ctrl_handler, ...);
state->mute = v4l2_ctrl_new_std(&state->ctrl_handler, ...);
v4l2_ctrl_cluster(2, &state->volume);

And in foo_s_ctrl you can use these pointers directly: state->mute->val.
Note that controls in a cluster may be NULL. For example, if for some reason mute was never added
(because the hardware doesn’t support that particular feature), then mute will be NULL. So in that case
we have a cluster of 2 controls, of which only 1 is actually instantiated. The only restriction is that the first
control of the cluster must always be present, since that is the ‘master’ control of the cluster. The master
control is the one that identifies the cluster and that provides the pointer to the v4l2_ctrl_ops struct that
is used for that cluster.
Obviously, all controls in the cluster array must be initialized to either a valid control or to NULL.
In rare cases you might want to know which controls of a cluster actually were set explicitly by the user.
For this you can check the ‘is_new’ flag of each control. For example, in the case of a volume/mute cluster
the ‘is_new’ flag of the mute control would be set if the user called VIDIOC_S_CTRL for mute only. If the
user would call VIDIOC_S_EXT_CTRLS for both mute and volume controls, then the ‘is_new’ flag would be
1 for both controls.
The ‘is_new’ flag is always 1 when called from v4l2_ctrl_handler_setup().

Handling autogain/gain-type Controls with Auto Clusters

A common type of control cluster is one that handles ‘auto-foo/foo’-type controls. Typical examples are
autogain/gain, autoexposure/exposure, autowhitebalance/red balance/blue balance. In all cases you have
one control that determines whether another control is handled automatically by the hardware, or whether
it is under manual control from the user.
If the cluster is in automatic mode, then the manual controls should be marked inactive and volatile. When
the volatile controls are read the g_volatile_ctrl operation should return the value that the hardware’s
automatic mode set up automatically.
If the cluster is put in manual mode, then the manual controls should become active again and the volatile
flag is cleared (so g_volatile_ctrl is no longer called while in manual mode). In addition just before switching
to manual mode the current values as determined by the auto mode are copied as the new manual values.
Finally the V4L2_CTRL_FLAG_UPDATE should be set for the auto control since changing that control affects
the control flags of the manual controls.
In order to simplify this a special variation of v4l2_ctrl_cluster was introduced:

void v4l2_ctrl_auto_cluster(unsigned ncontrols, struct v4l2_ctrl **controls,
u8 manual_val, bool set_volatile);

The first two arguments are identical to v4l2_ctrl_cluster. The third argument tells the frame-
work which value switches the cluster into manual mode. The last argument will optionally set
V4L2_CTRL_FLAG_VOLATILE for the non-auto controls. If it is false, then the manual controls are never
volatile. You would typically use that if the hardware does not give you the option to read back to values
as determined by the auto mode (e.g. if autogain is on, the hardware doesn’t allow you to obtain the
current gain value).
The first control of the cluster is assumed to be the ‘auto’ control.
Using this function will ensure that you don’t need to handle all the complex flag and volatile handling.

692 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

VIDIOC_LOG_STATUS Support

This ioctl allow you to dump the current status of a driver to the kernel log. The
v4l2_ctrl_handler_log_status(ctrl_handler, prefix) can be used to dump the value of the controls
owned by the given handler to the log. You can supply a prefix as well. If the prefix didn’t end with a
space, then ‘: ‘ will be added for you.

Different Handlers for Different Video Nodes

Usually the V4L2 driver has just one control handler that is global for all video nodes. But you can also
specify different control handlers for different video nodes. You can do that by manually setting the
ctrl_handler field of struct video_device.
That is no problem if there are no subdevs involved but if there are, then you need to block the automatic
merging of subdev controls to the global control handler. You do that by simply setting the ctrl_handler field
in struct v4l2_device to NULL. Now v4l2_device_register_subdev() will no longer merge subdev controls.
After each subdev was added, you will then have to call v4l2_ctrl_add_handler manually to add the sub-
dev’s control handler (sd->ctrl_handler) to the desired control handler. This control handler may be spe-
cific to the video_device or for a subset of video_device’s. For example: the radio device nodes only have
audio controls, while the video and vbi device nodes share the same control handler for the audio and
video controls.
If you want to have one handler (e.g. for a radio device node) have a subset of another handler (e.g. for
a video device node), then you should first add the controls to the first handler, add the other controls to
the second handler and finally add the first handler to the second. For example:

v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_VOLUME, ...);
v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_BRIGHTNESS, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_CONTRAST, ...);
v4l2_ctrl_add_handler(&video_ctrl_handler, &radio_ctrl_handler, NULL);

The last argument to v4l2_ctrl_add_handler() is a filter function that allows you to filter which controls will
be added. Set it to NULL if you want to add all controls.
Or you can add specific controls to a handler:

volume = v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_AUDIO_VOLUME, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_BRIGHTNESS, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_CONTRAST, ...);

What you should not do is make two identical controls for two handlers. For example:

v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_AUDIO_MUTE, ...);

This would be bad since muting the radio would not change the video mute control. The rule is to have
one control for each hardware ‘knob’ that you can twiddle.

Finding Controls

Normally you have created the controls yourself and you can store the struct v4l2_ctrl pointer into your
own struct.
But sometimes you need to find a control from another handler that you do not own. For example, if you
have to find a volume control from a subdev.
You can do that by calling v4l2_ctrl_find:

2.1. Video4Linux devices 693

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_ctrl *volume;

volume = v4l2_ctrl_find(sd->ctrl_handler, V4L2_CID_AUDIO_VOLUME);

Since v4l2_ctrl_find will lock the handler you have to be careful where you use it. For example, this is not
a good idea:

struct v4l2_ctrl_handler ctrl_handler;

v4l2_ctrl_new_std(&ctrl_handler, &video_ops, V4L2_CID_BRIGHTNESS, ...);
v4l2_ctrl_new_std(&ctrl_handler, &video_ops, V4L2_CID_CONTRAST, ...);

...and in video_ops.s_ctrl:

case V4L2_CID_BRIGHTNESS:
contrast = v4l2_find_ctrl(&ctrl_handler, V4L2_CID_CONTRAST);
...

When s_ctrl is called by the framework the ctrl_handler.lock is already taken, so attempting to find another
control from the same handler will deadlock.
It is recommended not to use this function from inside the control ops.

Inheriting Controls

When one control handler is added to another using v4l2_ctrl_add_handler, then by default all controls
from one are merged to the other. But a subdev might have low-level controls that make sense for some
advanced embedded system, but not when it is used in consumer-level hardware. In that case you want
to keep those low-level controls local to the subdev. You can do this by simply setting the ‘is_private’ flag
of the control to 1:

static const struct v4l2_ctrl_config ctrl_private = {
.ops = &ctrl_custom_ops,
.id = V4L2_CID_...,
.name = "Some Private Control",
.type = V4L2_CTRL_TYPE_INTEGER,
.max = 15,
.step = 1,
.is_private = 1,

};

ctrl = v4l2_ctrl_new_custom(&foo->ctrl_handler, &ctrl_private, NULL);

These controls will now be skipped when v4l2_ctrl_add_handler is called.

V4L2_CTRL_TYPE_CTRL_CLASS Controls

Controls of this type can be used by GUIs to get the name of the control class. A fully featured GUI can
make a dialog with multiple tabs with each tab containing the controls belonging to a particular control
class. The name of each tab can be found by querying a special control with ID <control class | 1>.
Drivers do not have to care about this. The framework will automatically add a control of this type when-
ever the first control belonging to a new control class is added.

Adding Notify Callbacks

Sometimes the platform or bridge driver needs to be notified when a control from a sub-device driver
changes. You can set a notify callback by calling this function:

694 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void v4l2_ctrl_notify(struct v4l2_ctrl *ctrl,
void (*notify)(struct v4l2_ctrl *ctrl, void *priv), void *priv);

Whenever the give control changes value the notify callback will be called with a pointer to the control
and the priv pointer that was passed with v4l2_ctrl_notify. Note that the control’s handler lock is held
when the notify function is called.
There can be only one notify function per control handler. Any attempt to set another notify function will
cause a WARN_ON.

v4l2_ctrl functions and data structures

union v4l2_ctrl_ptr
A pointer to a control value.

Definition

union v4l2_ctrl_ptr {
s32 * p_s32;
s64 * p_s64;
u8 * p_u8;
u16 * p_u16;
u32 * p_u32;
char * p_char;
void * p;

};

Members
p_s32 Pointer to a 32-bit signed value.
p_s64 Pointer to a 64-bit signed value.
p_u8 Pointer to a 8-bit unsigned value.
p_u16 Pointer to a 16-bit unsigned value.
p_u32 Pointer to a 32-bit unsigned value.
p_char Pointer to a string.
p Pointer to a compound value.
struct v4l2_ctrl_ops

The control operations that the driver has to provide.
Definition

struct v4l2_ctrl_ops {
int (* g_volatile_ctrl) (struct v4l2_ctrl *ctrl);
int (* try_ctrl) (struct v4l2_ctrl *ctrl);
int (* s_ctrl) (struct v4l2_ctrl *ctrl);

};

Members
g_volatile_ctrl Get a new value for this control. Generally only relevant for volatile (and usually read-

only) controls such as a control that returns the current signal strength which changes continuously.
If not set, then the currently cached value will be returned.

try_ctrl Test whether the control’s value is valid. Only relevant when the usual min/max/step checks
are not sufficient.

s_ctrl Actually set the new control value. s_ctrl is compulsory. The ctrl->handler->lock is held when
these ops are called, so no one else can access controls owned by that handler.

2.1. Video4Linux devices 695

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_ctrl_type_ops
The control type operations that the driver has to provide.

Definition

struct v4l2_ctrl_type_ops {
bool (* equal) (const struct v4l2_ctrl *ctrl, u32 idx,union v4l2_ctrl_ptr ptr1, union v4l2_

↪→ctrl_ptr ptr2);
void (* init) (const struct v4l2_ctrl *ctrl, u32 idx, union v4l2_ctrl_ptr ptr);
void (* log) (const struct v4l2_ctrl *ctrl);
int (* validate) (const struct v4l2_ctrl *ctrl, u32 idx, union v4l2_ctrl_ptr ptr);

};

Members
equal return true if both values are equal.
init initialize the value.
log log the value.
validate validate the value. Return 0 on success and a negative value otherwise.
v4l2_ctrl_notify_fnc

Typedef: typedef for a notify argument with a function that should be called when a control value
has changed.

Syntax
void v4l2_ctrl_notify_fnc (struct v4l2_ctrl * ctrl,void * priv);

Parameters
struct v4l2_ctrl * ctrl pointer to struct v4l2_ctrl
void * priv control private data
Description
This typedef definition is used as an argument to v4l2_ctrl_notify() and as an argument at struct
v4l2_ctrl_handler.
struct v4l2_ctrl

The control structure.
Definition

struct v4l2_ctrl {
struct list_head node;
struct list_head ev_subs;
struct v4l2_ctrl_handler * handler;
struct v4l2_ctrl ** cluster;
unsigned int ncontrols;
unsigned int done:1;
unsigned int is_new:1;
unsigned int has_changed:1;
unsigned int is_private:1;
unsigned int is_auto:1;
unsigned int is_int:1;
unsigned int is_string:1;
unsigned int is_ptr:1;
unsigned int is_array:1;
unsigned int has_volatiles:1;
unsigned int call_notify:1;
unsigned int manual_mode_value:8;
const struct v4l2_ctrl_ops * ops;
const struct v4l2_ctrl_type_ops * type_ops;
u32 id;

696 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

const char * name;
enum v4l2_ctrl_type type;
s64 minimum;
s64 maximum;
s64 default_value;
u32 elems;
u32 elem_size;
u32 dims;
u32 nr_of_dims;
union cur;
union v4l2_ctrl_ptr p_new;
union v4l2_ctrl_ptr p_cur;

};

Members
node The list node.
ev_subs The list of control event subscriptions.
handler The handler that owns the control.
cluster Point to start of cluster array.
ncontrols Number of controls in cluster array.
done Internal flag: set for each processed control.
is_new Set when the user specified a new value for this control. It is also set when called from

v4l2_ctrl_handler_setup(). Drivers should never set this flag.
has_changed Set when the current value differs from the new value. Drivers should never use this flag.
is_private If set, then this control is private to its handler and it will not be added to any other handlers.

Drivers can set this flag.
is_auto If set, then this control selects whether the other cluster members are in ‘automatic’ mode

or ‘manual’ mode. This is used for autogain/gain type clusters. Drivers should never set this flag
directly.

is_int If set, then this control has a simple integer value (i.e. it uses ctrl->val).
is_string If set, then this control has type V4L2_CTRL_TYPE_STRING.
is_ptr If set, then this control is an array and/or has type >= V4L2_CTRL_COMPOUND_TYPES and/or has

type V4L2_CTRL_TYPE_STRING. In other words, struct v4l2_ext_control uses field p to point to
the data.

is_array If set, then this control contains an N-dimensional array.
has_volatiles If set, then one or more members of the cluster are volatile. Drivers should never touch

this flag.
call_notify If set, then call the handler’s notify function whenever the control’s value changes.
manual_mode_value If the is_auto flag is set, then this is the value of the auto control that determines if

that control is in manual mode. So if the value of the auto control equals this value, then the whole
cluster is in manual mode. Drivers should never set this flag directly.

ops The control ops.
type_ops The control type ops.
id The control ID.
name The control name.
type The control type.
minimum The control’s minimum value.

2.1. Video4Linux devices 697

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

maximum The control’s maximum value.
default_value The control’s default value.
elems The number of elements in the N-dimensional array.
elem_size The size in bytes of the control.
dims The size of each dimension.
nr_of_dims The number of dimensions in dims.
cur The control’s current value.
p_new The control’s new value represented via a union with provides a standard way of accessing control

types through a pointer.
p_cur The control’s current value represented via a union with provides a standard way of accessing

control types through a pointer.
struct v4l2_ctrl_ref

The control reference.
Definition

struct v4l2_ctrl_ref {
struct list_head node;
struct v4l2_ctrl_ref * next;
struct v4l2_ctrl * ctrl;
struct v4l2_ctrl_helper * helper;

};

Members
node List node for the sorted list.
next Single-link list node for the hash.
ctrl The actual control information.
helper Pointer to helper struct. Used internally in prepare_ext_ctrls function at v4l2-ctrl.c.
Description
Each control handler has a list of these refs. The list_head is used to keep a sorted-by-control-ID list of all
controls, while the next pointer is used to link the control in the hash’s bucket.
struct v4l2_ctrl_handler

The control handler keeps track of all the controls: both the controls owned by the handler and those
inherited from other handlers.

Definition

struct v4l2_ctrl_handler {
struct mutex _lock;
struct mutex * lock;
struct list_head ctrls;
struct list_head ctrl_refs;
struct v4l2_ctrl_ref * cached;
struct v4l2_ctrl_ref ** buckets;
v4l2_ctrl_notify_fnc notify;
void * notify_priv;
u16 nr_of_buckets;
int error;

};

Members
_lock Default for “lock”.

698 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

lock Lock to control access to this handler and its controls. May be replaced by the user right after init.
ctrls The list of controls owned by this handler.
ctrl_refs The list of control references.
cached The last found control reference. It is common that the same control is needed multiple times, so

this is a simple optimization.
buckets Buckets for the hashing. Allows for quick control lookup.
notify A notify callback that is called whenever the control changes value. Note that the handler’s lock

is held when the notify function is called!
notify_priv Passed as argument to the v4l2_ctrl notify callback.
nr_of_buckets Total number of buckets in the array.
error The error code of the first failed control addition.
struct v4l2_ctrl_config

Control configuration structure.
Definition

struct v4l2_ctrl_config {
const struct v4l2_ctrl_ops * ops;
const struct v4l2_ctrl_type_ops * type_ops;
u32 id;
const char * name;
enum v4l2_ctrl_type type;
s64 min;
s64 max;
u64 step;
s64 def;
u32 dims;
u32 elem_size;
u32 flags;
u64 menu_skip_mask;
const char *const * qmenu;
const s64 * qmenu_int;
unsigned int is_private:1;

};

Members
ops The control ops.
type_ops The control type ops. Only needed for compound controls.
id The control ID.
name The control name.
type The control type.
min The control’s minimum value.
max The control’s maximum value.
step The control’s step value for non-menu controls.
def The control’s default value.
dims The size of each dimension.
elem_size The size in bytes of the control.
flags The control’s flags.

2.1. Video4Linux devices 699

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

menu_skip_mask The control’s skip mask for menu controls. This makes it easy to skip menu items that
are not valid. If bit X is set, then menu item X is skipped. Of course, this only works for menus with
<= 64 menu items. There are no menus that come close to that number, so this is OK. Should we
ever need more, then this will have to be extended to a bit array.

qmenu A const char * array for all menu items. Array entries that are empty strings (“”) correspond to
non-existing menu items (this is in addition to the menu_skip_mask above). The last entry must be
NULL.

qmenu_int A const s64 integer array for all menu items of the type V4L2_CTRL_TYPE_INTEGER_MENU.
is_private If set, then this control is private to its handler and it will not be added to any other handlers.
void v4l2_ctrl_fill(u32 id, const char ** name, enum v4l2_ctrl_type * type, s64 * min, s64 * max,

u64 * step, s64 * def, u32 * flags)
Fill in the control fields based on the control ID.

Parameters
u32 id ID of the control
const char ** name pointer to be filled with a string with the name of the control
enum v4l2_ctrl_type * type pointer for storing the type of the control
s64 * min pointer for storing the minimum value for the control
s64 * max pointer for storing the maximum value for the control
u64 * step pointer for storing the control step
s64 * def pointer for storing the default value for the control
u32 * flags pointer for storing the flags to be used on the control
Description
This works for all standard V4L2 controls. For non-standard controls it will only fill in the given arguments
and name content will be set to NULL.
This function will overwrite the contents of name, type and flags. The contents of min, max, step and
def may be modified depending on the type.

Note:

Do not use in drivers! It is used internally for backwards compatibility control handling only. Once all
drivers are converted to use the new control framework this function will no longer be exported.

int v4l2_ctrl_handler_init_class(struct v4l2_ctrl_handler * hdl, unsigned
int nr_of_controls_hint, struct lock_class_key * key, const
char * name)

Initialize the control handler.
Parameters
struct v4l2_ctrl_handler * hdl The control handler.
unsigned int nr_of_controls_hint A hint of how many controls this handler is expected to refer to.

This is the total number, so including any inherited controls. It doesn’t have to be precise, but if
it is way off, then you either waste memory (too many buckets are allocated) or the control lookup
becomes slower (not enough buckets are allocated, so there are more slow list lookups). It will always
work, though.

struct lock_class_key * key Used by the lock validator if CONFIG_LOCKDEP is set.
const char * name Used by the lock validator if CONFIG_LOCKDEP is set.

700 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Attention:

Never use this call directly, always use the v4l2_ctrl_handler_init() macro that hides the key
and name arguments.

Return
returns an error if the buckets could not be allocated. This error will also be stored in hdl->error.
v4l2_ctrl_handler_init(hdl, nr_of_controls_hint)

helper function to create a static struct lock_class_key and calls
v4l2_ctrl_handler_init_class()

Parameters
hdl The control handler.
nr_of_controls_hint A hint of how many controls this handler is expected to refer to. This is the total

number, so including any inherited controls. It doesn’t have to be precise, but if it is way off, then
you either waste memory (too many buckets are allocated) or the control lookup becomes slower
(not enough buckets are allocated, so there are more slow list lookups). It will always work, though.

Description
This helper function creates a static struct lock_class_key and calls v4l2_ctrl_handler_init_class(),
providing a proper name for the lock validador.
Use this helper function to initialize a control handler.
void v4l2_ctrl_handler_free(struct v4l2_ctrl_handler * hdl)

Free all controls owned by the handler and free the control list.
Parameters
struct v4l2_ctrl_handler * hdl The control handler.
Description
Does nothing if hdl == NULL.
void v4l2_ctrl_lock(struct v4l2_ctrl * ctrl)

Helper function to lock the handler associated with the control.
Parameters
struct v4l2_ctrl * ctrl The control to lock.
void v4l2_ctrl_unlock(struct v4l2_ctrl * ctrl)

Helper function to unlock the handler associated with the control.
Parameters
struct v4l2_ctrl * ctrl The control to unlock.
int __v4l2_ctrl_handler_setup(struct v4l2_ctrl_handler * hdl)

Call the s_ctrl op for all controls belonging to the handler to initialize the hardware to the cur-
rent control values. The caller is responsible for acquiring the control handler mutex on behalf of
__v4l2_ctrl_handler_setup().

Parameters
struct v4l2_ctrl_handler * hdl The control handler.
Description
Button controls will be skipped, as are read-only controls.

2.1. Video4Linux devices 701

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

If hdl == NULL, then this just returns 0.
int v4l2_ctrl_handler_setup(struct v4l2_ctrl_handler * hdl)

Call the s_ctrl op for all controls belonging to the handler to initialize the hardware to the current
control values.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.
Description
Button controls will be skipped, as are read-only controls.
If hdl == NULL, then this just returns 0.
void v4l2_ctrl_handler_log_status(struct v4l2_ctrl_handler * hdl, const char * prefix)

Log all controls owned by the handler.
Parameters
struct v4l2_ctrl_handler * hdl The control handler.
const char * prefix The prefix to use when logging the control values. If the prefix does not end with

a space, then ”: ” will be added after the prefix. If prefix == NULL, then no prefix will be used.
Description
For use with VIDIOC_LOG_STATUS.
Does nothing if hdl == NULL.
struct v4l2_ctrl * v4l2_ctrl_new_custom(struct v4l2_ctrl_handler * hdl, const struct

v4l2_ctrl_config * cfg, void * priv)
Allocate and initialize a new custom V4L2 control.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.
const struct v4l2_ctrl_config * cfg The control’s configuration data.
void * priv The control’s driver-specific private data.
Description
If the v4l2_ctrl struct could not be allocated then NULL is returned and hdl->error is set to the error
code (if it wasn’t set already).
struct v4l2_ctrl * v4l2_ctrl_new_std(struct v4l2_ctrl_handler * hdl, const struct v4l2_ctrl_ops

* ops, u32 id, s64 min, s64 max, u64 step, s64 def)
Allocate and initialize a new standard V4L2 non-menu control.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.
const struct v4l2_ctrl_ops * ops The control ops.
u32 id The control ID.
s64 min The control’s minimum value.
s64 max The control’s maximum value.
u64 step The control’s step value
s64 def The control’s default value.
Description
If the v4l2_ctrl struct could not be allocated, or the control ID is not known, then NULL is returned and
hdl->error is set to the appropriate error code (if it wasn’t set already).

702 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

If id refers to a menu control, then this function will return NULL.
Use v4l2_ctrl_new_std_menu() when adding menu controls.
struct v4l2_ctrl * v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler * hdl, const struct v4l2_ctrl_ops

* ops, u32 id, u8 max, u64 mask, u8 def)
Allocate and initialize a new standard V4L2 menu control.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.
const struct v4l2_ctrl_ops * ops The control ops.
u32 id The control ID.
u8 max The control’s maximum value.
u64 mask The control’s skip mask for menu controls. This makes it easy to skip menu items that are not

valid. If bit X is set, then menu item X is skipped. Of course, this only works for menus with <= 64
menu items. There are no menus that come close to that number, so this is OK. Should we ever need
more, then this will have to be extended to a bit array.

u8 def The control’s default value.
Description
Same as v4l2_ctrl_new_std(), but min is set to 0 and the mask value determines which menu items
are to be skipped.
If id refers to a non-menu control, then this function will return NULL.
struct v4l2_ctrl * v4l2_ctrl_new_std_menu_items(struct v4l2_ctrl_handler * hdl, const struct

v4l2_ctrl_ops * ops, u32 id, u8 max, u64 mask,
u8 def, const char *const * qmenu)

Create a new standard V4L2 menu control with driver specific menu.
Parameters
struct v4l2_ctrl_handler * hdl The control handler.
const struct v4l2_ctrl_ops * ops The control ops.
u32 id The control ID.
u8 max The control’s maximum value.
u64 mask The control’s skip mask for menu controls. This makes it easy to skip menu items that are not

valid. If bit X is set, then menu item X is skipped. Of course, this only works for menus with <= 64
menu items. There are no menus that come close to that number, so this is OK. Should we ever need
more, then this will have to be extended to a bit array.

u8 def The control’s default value.
const char *const * qmenu The new menu.
Description
Same as v4l2_ctrl_new_std_menu(), but qmenu will be the driver specific menu of this control.
struct v4l2_ctrl * v4l2_ctrl_new_int_menu(struct v4l2_ctrl_handler * hdl, const struct v4l2_ctrl_ops

* ops, u32 id, u8 max, u8 def, const s64 * qmenu_int)
Create a new standard V4L2 integer menu control.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.
const struct v4l2_ctrl_ops * ops The control ops.
u32 id The control ID.
u8 max The control’s maximum value.

2.1. Video4Linux devices 703

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

u8 def The control’s default value.
const s64 * qmenu_int The control’s menu entries.
Description
Same as v4l2_ctrl_new_std_menu(), but mask is set to 0 and it additionaly takes as an argument an
array of integers determining the menu items.
If id refers to a non-integer-menu control, then this function will return NULL.
v4l2_ctrl_filter

Typedef: Typedef to define the filter function to be used when adding a control handler.
Syntax

bool v4l2_ctrl_filter (const struct v4l2_ctrl * ctrl);

Parameters
const struct v4l2_ctrl * ctrl pointer to struct v4l2_ctrl.
int v4l2_ctrl_add_handler(struct v4l2_ctrl_handler * hdl, struct v4l2_ctrl_handler * add,

v4l2_ctrl_filter filter)
Add all controls from handler add to handler hdl.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.
struct v4l2_ctrl_handler * add The control handler whose controls you want to add to thehdl control

handler.
v4l2_ctrl_filter filter This function will filter which controls should be added.
Description
Does nothing if either of the two handlers is a NULL pointer. If filter is NULL, then all controls are added.
Otherwise only those controls for which filter returns true will be added. In case of an error hdl->error
will be set to the error code (if it wasn’t set already).
bool v4l2_ctrl_radio_filter(const struct v4l2_ctrl * ctrl)

Standard filter for radio controls.
Parameters
const struct v4l2_ctrl * ctrl The control that is filtered.
Description
This will return true for any controls that are valid for radio device nodes. Those are all of the
V4L2_CID_AUDIO_* user controls and all FM transmitter class controls.
This function is to be used with v4l2_ctrl_add_handler().
void v4l2_ctrl_cluster(unsigned int ncontrols, struct v4l2_ctrl ** controls)

Mark all controls in the cluster as belonging to that cluster.
Parameters
unsigned int ncontrols The number of controls in this cluster.
struct v4l2_ctrl ** controls The cluster control array of size ncontrols.
void v4l2_ctrl_auto_cluster(unsigned int ncontrols, struct v4l2_ctrl ** controls, u8 manual_val,

bool set_volatile)
Mark all controls in the cluster as belonging to that cluster and set it up for autofoo/foo-type handling.

Parameters
unsigned int ncontrols The number of controls in this cluster.

704 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_ctrl ** controls The cluster control array of size ncontrols. The first control must be
the ‘auto’ control (e.g. autogain, autoexposure, etc.)

u8 manual_val The value for the first control in the cluster that equals the manual setting.
bool set_volatile If true, then all controls except the first auto control will be volatile.
Description
Use for control groups where one control selects some automatic feature and the other controls are only
active whenever the automatic feature is turned off (manual mode). Typical examples: autogain vs gain,
auto-whitebalance vs red and blue balance, etc.
The behavior of such controls is as follows:
When the autofoo control is set to automatic, then any manual controls are set to inactive and any reads
will call g_volatile_ctrl (if the control was marked volatile).
When the autofoo control is set to manual, then any manual controls will be marked active, and any reads
will just return the current value without going through g_volatile_ctrl.
In addition, this function will set the V4L2_CTRL_FLAG_UPDATE flag on the autofoo control and
V4L2_CTRL_FLAG_INACTIVE on the foo control(s) if autofoo is in auto mode.
struct v4l2_ctrl * v4l2_ctrl_find(struct v4l2_ctrl_handler * hdl, u32 id)

Find a control with the given ID.
Parameters
struct v4l2_ctrl_handler * hdl The control handler.
u32 id The control ID to find.
Description
If hdl== NULL this will return NULL as well. Will lock the handler so do not use from inside v4l2_ctrl_ops.

void v4l2_ctrl_activate(struct v4l2_ctrl * ctrl, bool active)
Make the control active or inactive.

Parameters
struct v4l2_ctrl * ctrl The control to (de)activate.
bool active True if the control should become active.
Description
This sets or clears the V4L2_CTRL_FLAG_INACTIVE flag atomically. Does nothing if ctrl == NULL. This will
usually be called from within the s_ctrl op. The V4L2_EVENT_CTRL event will be generated afterwards.
This function assumes that the control handler is locked.
void v4l2_ctrl_grab(struct v4l2_ctrl * ctrl, bool grabbed)

Mark the control as grabbed or not grabbed.
Parameters
struct v4l2_ctrl * ctrl The control to (de)activate.
bool grabbed True if the control should become grabbed.
Description
This sets or clears the V4L2_CTRL_FLAG_GRABBED flag atomically. Does nothing if ctrl == NULL. The
V4L2_EVENT_CTRL event will be generated afterwards. This will usually be called when starting or stopping
streaming in the driver.
This function assumes that the control handler is not locked and will take the lock itself.
int __v4l2_ctrl_modify_range(struct v4l2_ctrl * ctrl, s64 min, s64 max, u64 step, s64 def)

Unlocked variant of v4l2_ctrl_modify_range()

2.1. Video4Linux devices 705

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Parameters
struct v4l2_ctrl * ctrl The control to update.
s64 min The control’s minimum value.
s64 max The control’s maximum value.
u64 step The control’s step value
s64 def The control’s default value.
Description
Update the range of a control on the fly. This works for control types INTEGER, BOOLEAN, MENU, INTEGER
MENU and BITMASK. For menu controls the step value is interpreted as a menu_skip_mask.
An error is returned if one of the range arguments is invalid for this control type.
This function assumes that the control handler is not locked and will take the lock itself.
int v4l2_ctrl_modify_range(struct v4l2_ctrl * ctrl, s64 min, s64 max, u64 step, s64 def)

Update the range of a control.
Parameters
struct v4l2_ctrl * ctrl The control to update.
s64 min The control’s minimum value.
s64 max The control’s maximum value.
u64 step The control’s step value
s64 def The control’s default value.
Description
Update the range of a control on the fly. This works for control types INTEGER, BOOLEAN, MENU, INTEGER
MENU and BITMASK. For menu controls the step value is interpreted as a menu_skip_mask.
An error is returned if one of the range arguments is invalid for this control type.
This function assumes that the control handler is not locked and will take the lock itself.
void v4l2_ctrl_notify(struct v4l2_ctrl * ctrl, v4l2_ctrl_notify_fnc notify, void * priv)

Function to set a notify callback for a control.
Parameters
struct v4l2_ctrl * ctrl The control.
v4l2_ctrl_notify_fnc notify The callback function.
void * priv The callback private handle, passed as argument to the callback.
Description
This function sets a callback function for the control. If ctrl is NULL, then it will do nothing. If notify is
NULL, then the notify callback will be removed.
There can be only one notify. If another already exists, then a WARN_ON will be issued and the function
will do nothing.
const char * v4l2_ctrl_get_name(u32 id)

Get the name of the control
Parameters
u32 id The control ID.
Description
This function returns the name of the given control ID or NULL if it isn’t a known control.

706 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

const char * const * v4l2_ctrl_get_menu(u32 id)
Get the menu string array of the control

Parameters
u32 id The control ID.
Description
This function returns the NULL-terminated menu string array name of the given control ID or NULL if it
isn’t a known menu control.
const s64 * v4l2_ctrl_get_int_menu(u32 id, u32 * len)

Get the integer menu array of the control
Parameters
u32 id The control ID.
u32 * len The size of the integer array.
Description
This function returns the integer array of the given control ID or NULL if it if it isn’t a known integer menu
control.
s32 v4l2_ctrl_g_ctrl(struct v4l2_ctrl * ctrl)

Helper function to get the control’s value from within a driver.
Parameters
struct v4l2_ctrl * ctrl The control.
Description
This returns the control’s value safely by going through the control framework. This function will lock the
control’s handler, so it cannot be used from within the v4l2_ctrl_ops functions.
This function is for integer type controls only.
int __v4l2_ctrl_s_ctrl(struct v4l2_ctrl * ctrl, s32 val)

Unlocked variant of v4l2_ctrl_s_ctrl().
Parameters
struct v4l2_ctrl * ctrl The control.
s32 val TheControls name new value.
Description
This sets the control’s new value safely by going through the control framework. This function assumes
the control’s handler is already locked, allowing it to be used from within the v4l2_ctrl_ops functions.
This function is for integer type controls only.
int v4l2_ctrl_s_ctrl(struct v4l2_ctrl * ctrl, s32 val)

Helper function to set the control’s value from within a driver.
Parameters
struct v4l2_ctrl * ctrl The control.
s32 val The new value.
Description
This sets the control’s new value safely by going through the control framework. This function will lock
the control’s handler, so it cannot be used from within the v4l2_ctrl_ops functions.
This function is for integer type controls only.
s64 v4l2_ctrl_g_ctrl_int64(struct v4l2_ctrl * ctrl)

Helper function to get a 64-bit control’s value from within a driver.

2.1. Video4Linux devices 707

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Parameters
struct v4l2_ctrl * ctrl The control.
Description
This returns the control’s value safely by going through the control framework. This function will lock the
control’s handler, so it cannot be used from within the v4l2_ctrl_ops functions.
This function is for 64-bit integer type controls only.
int __v4l2_ctrl_s_ctrl_int64(struct v4l2_ctrl * ctrl, s64 val)

Unlocked variant of v4l2_ctrl_s_ctrl_int64().
Parameters
struct v4l2_ctrl * ctrl The control.
s64 val The new value.
Description
This sets the control’s new value safely by going through the control framework. This function assumes
the control’s handler is already locked, allowing it to be used from within the v4l2_ctrl_ops functions.
This function is for 64-bit integer type controls only.
int v4l2_ctrl_s_ctrl_int64(struct v4l2_ctrl * ctrl, s64 val)

Helper function to set a 64-bit control’s value from within a driver.
Parameters
struct v4l2_ctrl * ctrl The control.
s64 val The new value.
Description
This sets the control’s new value safely by going through the control framework. This function will lock
the control’s handler, so it cannot be used from within the v4l2_ctrl_ops functions.
This function is for 64-bit integer type controls only.
int __v4l2_ctrl_s_ctrl_string(struct v4l2_ctrl * ctrl, const char * s)

Unlocked variant of v4l2_ctrl_s_ctrl_string().
Parameters
struct v4l2_ctrl * ctrl The control.
const char * s The new string.
Description
This sets the control’s new string safely by going through the control framework. This function assumes
the control’s handler is already locked, allowing it to be used from within the v4l2_ctrl_ops functions.
This function is for string type controls only.
int v4l2_ctrl_s_ctrl_string(struct v4l2_ctrl * ctrl, const char * s)

Helper function to set a control’s string value from within a driver.
Parameters
struct v4l2_ctrl * ctrl The control.
const char * s The new string. Controls name This sets the control’s new string safely by going through

the control framework. This function will lock the control’s handler, so it cannot be used from within
the v4l2_ctrl_ops functions.

Description
This function is for string type controls only.

708 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void v4l2_ctrl_replace(struct v4l2_event * old, const struct v4l2_event * new)
Function to be used as a callback to struct v4l2_subscribed_event_ops replace()

Parameters
struct v4l2_event * old pointer to struct v4l2_event with the reported event;
const struct v4l2_event * new pointer to struct v4l2_event with the modified event;
void v4l2_ctrl_merge(const struct v4l2_event * old, struct v4l2_event * new)

Function to be used as a callback to struct v4l2_subscribed_event_ops merge()
Parameters
const struct v4l2_event * old pointer to struct v4l2_event with the reported event;
struct v4l2_event * new pointer to struct v4l2_event with the merged event;
int v4l2_ctrl_log_status(struct file * file, void * fh)

helper function to implement VIDIOC_LOG_STATUS ioctl
Parameters
struct file * file pointer to struct file
void * fh unused. Kept just to be compatible to the arguments expected by struct

v4l2_ioctl_ops.vidioc_log_status.
Description
Can be used as a vidioc_log_status function that just dumps all controls associated with the filehandle.
int v4l2_ctrl_subscribe_event(struct v4l2_fh * fh, const struct v4l2_event_subscription * sub)

Subscribes to an event
Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh
const struct v4l2_event_subscription * sub pointer to struct v4l2_event_subscription

Description
Can be used as a vidioc_subscribe_event function that just subscribes control events.
unsigned int v4l2_ctrl_poll(struct file * file, struct poll_table_struct * wait)

function to be used as a callback to the poll() That just polls for control events.
Parameters
struct file * file pointer to struct file
struct poll_table_struct * wait pointer to struct poll_table_struct
int v4l2_queryctrl(struct v4l2_ctrl_handler * hdl, struct v4l2_queryctrl * qc)

Helper function to implement VIDIOC_QUERYCTRL ioctl
Parameters
struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_queryctrl * qc pointer to struct v4l2_queryctrl

Description
If hdl == NULL then they will all return -EINVAL.
int v4l2_query_ext_ctrl(struct v4l2_ctrl_handler * hdl, struct v4l2_query_ext_ctrl * qc)

Helper function to implement VIDIOC_QUERY_EXT_CTRL ioctl
Parameters
struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_query_ext_ctrl * qc pointer to struct v4l2_query_ext_ctrl

2.1. Video4Linux devices 709

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
If hdl == NULL then they will all return -EINVAL.
int v4l2_querymenu(struct v4l2_ctrl_handler * hdl, struct v4l2_querymenu * qm)

Helper function to implement VIDIOC_QUERYMENU ioctl
Parameters
struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_querymenu * qm pointer to struct v4l2_querymenu

Description
If hdl == NULL then they will all return -EINVAL.
int v4l2_g_ctrl(struct v4l2_ctrl_handler * hdl, struct v4l2_control * ctrl)

Helper function to implement VIDIOC_G_CTRL ioctl
Parameters
struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_control * ctrl pointer to struct v4l2_control

Description
If hdl == NULL then they will all return -EINVAL.
int v4l2_s_ctrl(struct v4l2_fh * fh, struct v4l2_ctrl_handler * hdl, struct v4l2_control * ctrl)

Helper function to implement VIDIOC_S_CTRL ioctl
Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_control * ctrl pointer to struct v4l2_control

Description
If hdl == NULL then they will all return -EINVAL.
int v4l2_g_ext_ctrls(struct v4l2_ctrl_handler * hdl, struct v4l2_ext_controls * c)

Helper function to implement VIDIOC_G_EXT_CTRLS ioctl
Parameters
struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_ext_controls * c pointer to struct v4l2_ext_controls

Description
If hdl == NULL then they will all return -EINVAL.
int v4l2_try_ext_ctrls(struct v4l2_ctrl_handler * hdl, struct v4l2_ext_controls * c)

Helper function to implement VIDIOC_TRY_EXT_CTRLS ioctl
Parameters
struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_ext_controls * c pointer to struct v4l2_ext_controls

Description
If hdl == NULL then they will all return -EINVAL.
int v4l2_s_ext_ctrls(struct v4l2_fh * fh, struct v4l2_ctrl_handler * hdl, struct v4l2_ext_controls

* c)
Helper function to implement VIDIOC_S_EXT_CTRLS ioctl

710 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_ext_controls * c pointer to struct v4l2_ext_controls

Description
If hdl == NULL then they will all return -EINVAL.
int v4l2_ctrl_subdev_subscribe_event(struct v4l2_subdev * sd, struct v4l2_fh * fh, struct

v4l2_event_subscription * sub)
Helper function to implement as a struct v4l2_subdev_core_ops subscribe_event function that
just subscribes control events.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_fh * fh pointer to struct v4l2_fh

struct v4l2_event_subscription * sub pointer to struct v4l2_event_subscription

int v4l2_ctrl_subdev_log_status(struct v4l2_subdev * sd)
Log all controls owned by subdev’s control handler.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

2.1.13 Videobuf Framework

Author: Jonathan Corbet <corbet@lwn.net>
Current as of 2.6.33

Note:

The videobuf framework was deprecated in favor of videobuf2. Shouldn’t be used on new drivers.

Introduction

The videobuf layer functions as a sort of glue layer between a V4L2 driver and user space. It handles
the allocation and management of buffers for the storage of video frames. There is a set of functions
which can be used to implement many of the standard POSIX I/O system calls, including read(), poll(),
and, happily, mmap(). Another set of functions can be used to implement the bulk of the V4L2 ioctl() calls
related to streaming I/O, including buffer allocation, queueing and dequeueing, and streaming control.
Using videobuf imposes a few design decisions on the driver author, but the payback comes in the form
of reduced code in the driver and a consistent implementation of the V4L2 user-space API.

Buffer types

Not all video devices use the same kind of buffers. In fact, there are (at least) three common variations:
• Buffers which are scattered in both the physical and (kernel) virtual address spaces. (Almost) all

user-space buffers are like this, but it makes great sense to allocate kernel-space buffers this way
as well when it is possible. Unfortunately, it is not always possible; working with this kind of buffer
normally requires hardware which can do scatter/gather DMA operations.

2.1. Video4Linux devices 711

mailto:corbet@lwn.net

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• Buffers which are physically scattered, but which are virtually contiguous; buffers allocated with
vmalloc(), in other words. These buffers are just as hard to use for DMA operations, but they can be
useful in situations where DMA is not available but virtually-contiguous buffers are convenient.

• Buffers which are physically contiguous. Allocation of this kind of buffer can be unreliable on frag-
mented systems, but simpler DMA controllers cannot deal with anything else.

Videobuf can work with all three types of buffers, but the driver author must pick one at the outset and
design the driver around that decision.
[It’s worth noting that there’s a fourth kind of buffer: “overlay” buffers which are located within the
system’s video memory. The overlay functionality is considered to be deprecated for most use, but it
still shows up occasionally in system-on-chip drivers where the performance benefits merit the use of
this technique. Overlay buffers can be handled as a form of scattered buffer, but there are very few
implementations in the kernel and a description of this technique is currently beyond the scope of this
document.]

Data structures, callbacks, and initialization

Depending on which type of buffers are being used, the driver should include one of the following files:

<media/videobuf-dma-sg.h> /* Physically scattered */
<media/videobuf-vmalloc.h> /* vmalloc() buffers */
<media/videobuf-dma-contig.h> /* Physically contiguous */

The driver’s data structure describing a V4L2 device should include a struct videobuf_queue instance for
the management of the buffer queue, along with a list_head for the queue of available buffers. There will
also need to be an interrupt-safe spinlock which is used to protect (at least) the queue.
The next step is to write four simple callbacks to help videobuf deal with the management of buffers:

struct videobuf_queue_ops {
int (*buf_setup)(struct videobuf_queue *q,

unsigned int *count, unsigned int *size);
int (*buf_prepare)(struct videobuf_queue *q,

struct videobuf_buffer *vb,
enum v4l2_field field);

void (*buf_queue)(struct videobuf_queue *q,
struct videobuf_buffer *vb);

void (*buf_release)(struct videobuf_queue *q,
struct videobuf_buffer *vb);

};

buf_setup() is called early in the I/O process, when streaming is being initiated; its purpose is to tell
videobuf about the I/O stream. The count parameter will be a suggested number of buffers to use; the
driver should check it for rationality and adjust it if need be. As a practical rule, a minimum of two buffers
are needed for proper streaming, and there is usually a maximum (which cannot exceed 32) which makes
sense for each device. The size parameter should be set to the expected (maximum) size for each frame
of data.
Each buffer (in the form of a struct videobuf_buffer pointer) will be passed to buf_prepare(), which
should set the buffer’s size, width, height, and field fields properly. If the buffer’s state field is
VIDEOBUF_NEEDS_INIT, the driver should pass it to:

int videobuf_iolock(struct videobuf_queue* q, struct videobuf_buffer *vb,
struct v4l2_framebuffer *fbuf);

Among other things, this call will usually allocate memory for the buffer. Finally, the buf_prepare() function
should set the buffer’s state to VIDEOBUF_PREPARED.
When a buffer is queued for I/O, it is passed to buf_queue(), which should put it onto the driver’s list of
available buffers and set its state to VIDEOBUF_QUEUED. Note that this function is called with the queue

712 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

spinlock held; if it tries to acquire it as well things will come to a screeching halt. Yes, this is the voice
of experience. Note also that videobuf may wait on the first buffer in the queue; placing other buffers in
front of it could again gum up the works. So use list_add_tail() to enqueue buffers.
Finally, buf_release() is called when a buffer is no longer intended to be used. The driver should ensure
that there is no I/O active on the buffer, then pass it to the appropriate free routine(s):

/* Scatter/gather drivers */
int videobuf_dma_unmap(struct videobuf_queue *q,

struct videobuf_dmabuf *dma);
int videobuf_dma_free(struct videobuf_dmabuf *dma);

/* vmalloc drivers */
void videobuf_vmalloc_free (struct videobuf_buffer *buf);

/* Contiguous drivers */
void videobuf_dma_contig_free(struct videobuf_queue *q,

struct videobuf_buffer *buf);

One way to ensure that a buffer is no longer under I/O is to pass it to:

int videobuf_waiton(struct videobuf_buffer *vb, int non_blocking, int intr);

Here, vb is the buffer, non_blocking indicates whether non-blocking I/O should be used (it should be zero
in the buf_release() case), and intr controls whether an interruptible wait is used.

File operations

At this point, much of the work is done; much of the rest is slipping videobuf calls into the implementation
of the other driver callbacks. The first step is in the open() function, which must initialize the videobuf
queue. The function to use depends on the type of buffer used:

void videobuf_queue_sg_init(struct videobuf_queue *q,
struct videobuf_queue_ops *ops,
struct device *dev,
spinlock_t *irqlock,
enum v4l2_buf_type type,
enum v4l2_field field,
unsigned int msize,
void *priv);

void videobuf_queue_vmalloc_init(struct videobuf_queue *q,
struct videobuf_queue_ops *ops,
struct device *dev,
spinlock_t *irqlock,
enum v4l2_buf_type type,
enum v4l2_field field,
unsigned int msize,
void *priv);

void videobuf_queue_dma_contig_init(struct videobuf_queue *q,
struct videobuf_queue_ops *ops,
struct device *dev,
spinlock_t *irqlock,
enum v4l2_buf_type type,
enum v4l2_field field,
unsigned int msize,
void *priv);

In each case, the parameters are the same: q is the queue structure for the device, ops is the set of
callbacks as described above, dev is the device structure for this video device, irqlock is an interrupt-safe
spinlock to protect access to the data structures, type is the buffer type used by the device (cameras will

2.1. Video4Linux devices 713

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

use V4L2_BUF_TYPE_VIDEO_CAPTURE, for example), field describes which field is being captured (often
V4L2_FIELD_NONE for progressive devices), msize is the size of any containing structure used around
struct videobuf_buffer, and priv is a private data pointer which shows up in the priv_data field of struct
videobuf_queue. Note that these are void functions which, evidently, are immune to failure.
V4L2 capture drivers can be written to support either of two APIs: the read() system call and the rather
more complicated streaming mechanism. As a general rule, it is necessary to support both to ensure that
all applications have a chance of working with the device. Videobuf makes it easy to do that with the
same code. To implement read(), the driver need only make a call to one of:

ssize_t videobuf_read_one(struct videobuf_queue *q,
char __user *data, size_t count,
loff_t *ppos, int nonblocking);

ssize_t videobuf_read_stream(struct videobuf_queue *q,
char __user *data, size_t count,
loff_t *ppos, int vbihack, int nonblocking);

Either one of these functions will read frame data into data, returning the amount actually read; the
difference is that videobuf_read_one() will only read a single frame, while videobuf_read_stream() will
read multiple frames if they are needed to satisfy the count requested by the application. A typical driver
read() implementation will start the capture engine, call one of the above functions, then stop the engine
before returning (though a smarter implementation might leave the engine running for a little while in
anticipation of another read() call happening in the near future).
The poll() function can usually be implemented with a direct call to:

unsigned int videobuf_poll_stream(struct file *file,
struct videobuf_queue *q,
poll_table *wait);

Note that the actual wait queue eventually used will be the one associated with the first available buffer.
When streaming I/O is done to kernel-space buffers, the driver must support the mmap() system call to
enable user space to access the data. In many V4L2 drivers, the often-complex mmap() implementation
simplifies to a single call to:

int videobuf_mmap_mapper(struct videobuf_queue *q,
struct vm_area_struct *vma);

Everything else is handled by the videobuf code.
The release() function requires two separate videobuf calls:

void videobuf_stop(struct videobuf_queue *q);
int videobuf_mmap_free(struct videobuf_queue *q);

The call to videobuf_stop() terminates any I/O in progress - though it is still up to the driver to stop the
capture engine. The call to videobuf_mmap_free() will ensure that all buffers have been unmapped; if
so, they will all be passed to the buf_release() callback. If buffers remain mapped, videobuf_mmap_free()
returns an error code instead. The purpose is clearly to cause the closing of the file descriptor to fail if
buffers are still mapped, but every driver in the 2.6.32 kernel cheerfully ignores its return value.

ioctl() operations

The V4L2 API includes a very long list of driver callbacks to respond to the many ioctl() commands made
available to user space. A number of these - those associated with streaming I/O - turn almost directly
into videobuf calls. The relevant helper functions are:

int videobuf_reqbufs(struct videobuf_queue *q,
struct v4l2_requestbuffers *req);

int videobuf_querybuf(struct videobuf_queue *q, struct v4l2_buffer *b);

714 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int videobuf_qbuf(struct videobuf_queue *q, struct v4l2_buffer *b);
int videobuf_dqbuf(struct videobuf_queue *q, struct v4l2_buffer *b,

int nonblocking);
int videobuf_streamon(struct videobuf_queue *q);
int videobuf_streamoff(struct videobuf_queue *q);

So, for example, a VIDIOC_REQBUFS call turns into a call to the driver’s vidioc_reqbufs() callback
which, in turn, usually only needs to locate the proper struct videobuf_queue pointer and pass it to
videobuf_reqbufs(). These support functions can replace a great deal of buffer management boilerplate
in a lot of V4L2 drivers.
The vidioc_streamon() and vidioc_streamoff() functions will be a bit more complex, of course, since they
will also need to deal with starting and stopping the capture engine.

Buffer allocation

Thus far, we have talked about buffers, but have not looked at how they are allocated. The scatter/gather
case is the most complex on this front. For allocation, the driver can leave buffer allocation entirely up
to the videobuf layer; in this case, buffers will be allocated as anonymous user-space pages and will be
very scattered indeed. If the application is using user-space buffers, no allocation is needed; the videobuf
layer will take care of calling get_user_pages() and filling in the scatterlist array.
If the driver needs to do its own memory allocation, it should be done in the vidioc_reqbufs() function,
after calling videobuf_reqbufs(). The first step is a call to:

struct videobuf_dmabuf *videobuf_to_dma(struct videobuf_buffer *buf);

The returned videobuf_dmabuf structure (defined in <media/videobuf-dma-sg.h>) includes a couple of
relevant fields:

struct scatterlist *sglist;
int sglen;

The driver must allocate an appropriately-sized scatterlist array and populate it with pointers to the pieces
of the allocated buffer; sglen should be set to the length of the array.
Drivers using the vmalloc() method need not (and cannot) concern themselves with buffer allocation at all;
videobuf will handle those details. The same is normally true of contiguous-DMA drivers as well; videobuf
will allocate the buffers (with dma_alloc_coherent()) when it sees fit. That means that these drivers may
be trying to do high-order allocations at any time, an operation which is not always guaranteed to work.
Some drivers play tricks by allocating DMA space at system boot time; videobuf does not currently play
well with those drivers.
As of 2.6.31, contiguous-DMA drivers can work with a user-supplied buffer, as long as that buffer is phys-
ically contiguous. Normal user-space allocations will not meet that criterion, but buffers obtained from
other kernel drivers, or those contained within huge pages, will work with these drivers.

Filling the buffers

The final part of a videobuf implementation has no direct callback - it’s the portion of the code which
actually puts frame data into the buffers, usually in response to interrupts from the device. For all types
of drivers, this process works approximately as follows:

• Obtain the next available buffer and make sure that somebody is actually waiting for it.
• Get a pointer to the memory and put video data there.
• Mark the buffer as done and wake up the process waiting for it.

Step (1) above is done by looking at the driver-managed list_head structure - the one which is filled in the
buf_queue() callback. Because starting the engine and enqueueing buffers are done in separate steps, it’s

2.1. Video4Linux devices 715

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

possible for the engine to be running without any buffers available - in the vmalloc() case especially. So
the driver should be prepared for the list to be empty. It is equally possible that nobody is yet interested in
the buffer; the driver should not remove it from the list or fill it until a process is waiting on it. That test can
be done by examining the buffer’s done field (a wait_queue_head_t structure) with waitqueue_active().
A buffer’s state should be set to VIDEOBUF_ACTIVE before being mapped for DMA; that ensures that the
videobuf layer will not try to do anything with it while the device is transferring data.
For scatter/gather drivers, the needed memory pointers will be found in the scatterlist structure described
above. Drivers using the vmalloc() method can get a memory pointer with:

void *videobuf_to_vmalloc(struct videobuf_buffer *buf);

For contiguous DMA drivers, the function to use is:

dma_addr_t videobuf_to_dma_contig(struct videobuf_buffer *buf);

The contiguous DMA API goes out of its way to hide the kernel-space address of the DMA buffer from
drivers.
The final step is to set the size field of the relevant videobuf_buffer structure to the actual size of the
captured image, set state to VIDEOBUF_DONE, then call wake_up() on the done queue. At this point, the
buffer is owned by the videobuf layer and the driver should not touch it again.
Developers who are interested in more information can go into the relevant header files; there are a few
low-level functions declared there which have not been talked about here. Also worthwhile is the vivi
driver (drivers/media/platform/vivi.c), which is maintained as an example of how V4L2 drivers should be
written. Vivi only uses the vmalloc() API, but it’s good enough to get started with. Note also that all of
these calls are exported GPL-only, so they will not be available to non-GPL kernel modules.

2.1.14 V4L2 videobuf2 functions and data structures

enum vb2_memory
type of memory model used to make the buffers visible on userspace.

Constants
VB2_MEMORY_UNKNOWN Buffer status is unknown or it is not used yet on userspace.
VB2_MEMORY_MMAP The buffers are allocated by the Kernel and it is memory mapped via mmap() ioctl. This

model is also used when the user is using the buffers via read() or write() system calls.
VB2_MEMORY_USERPTR The buffers was allocated in userspace and it is memory mapped via mmap() ioctl.
VB2_MEMORY_DMABUF The buffers are passed to userspace via DMA buffer.
struct vb2_mem_ops

memory handling/memory allocator operations
Definition

struct vb2_mem_ops {
void *(* alloc) (struct device *dev, unsigned long attrs,unsigned long size,enum dma_data_

↪→direction dma_dir, gfp_t gfp_flags);
void (* put) (void *buf_priv);
struct dma_buf *(* get_dmabuf) (void *buf_priv, unsigned long flags);
void *(* get_userptr) (struct device *dev, unsigned long vaddr,unsigned long size, enum dma_

↪→data_direction dma_dir);
void (* put_userptr) (void *buf_priv);
void (* prepare) (void *buf_priv);
void (* finish) (void *buf_priv);
void *(* attach_dmabuf) (struct device *dev,struct dma_buf *dbuf,unsigned long size, enum dma_

↪→data_direction dma_dir);
void (* detach_dmabuf) (void *buf_priv);

716 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int (* map_dmabuf) (void *buf_priv);
void (* unmap_dmabuf) (void *buf_priv);
void *(* vaddr) (void *buf_priv);
void *(* cookie) (void *buf_priv);
unsigned int (* num_users) (void *buf_priv);
int (* mmap) (void *buf_priv, struct vm_area_struct *vma);

};

Members
alloc allocate video memory and, optionally, allocator private data, return ERR_PTR() on failure or a

pointer to allocator private, per-buffer data on success; the returned private structure will then be
passed as buf_priv argument to other ops in this structure. Additional gfp_flags to use when allo-
cating the are also passed to this operation. These flags are from the gfp_flags field of vb2_queue.

put inform the allocator that the buffer will no longer be used; usually will result in the allocator freeing
the buffer (if no other users of this buffer are present); the buf_priv argument is the allocator private
per-buffer structure previously returned from the alloc callback.

get_dmabuf acquire userspace memory for a hardware operation; used for DMABUF memory types.
get_userptr acquire userspace memory for a hardware operation; used for USERPTR memory types;

vaddr is the address passed to the videobuf layer when queuing a video buffer of USERPTR
type; should return an allocator private per-buffer structure associated with the buffer on success,
ERR_PTR() on failure; the returned private structure will then be passed as buf_priv argument to
other ops in this structure.

put_userptr inform the allocator that a USERPTR buffer will no longer be used.
prepare called every time the buffer is passed from userspace to the driver, useful for cache synchroni-

sation, optional.
finish called every time the buffer is passed back from the driver to the userspace, also optional.
attach_dmabuf attach a shared struct dma_buf for a hardware operation; used for DMABUF memory

types; dev is the alloc device dbuf is the shared dma_buf; returns ERR_PTR() on failure; allocator
private per-buffer structure on success; this needs to be used for further accesses to the buffer.

detach_dmabuf inform the exporter of the buffer that the current DMABUF buffer is no longer used;
the buf_priv argument is the allocator private per-buffer structure previously returned from the
attach_dmabuf callback.

map_dmabuf request for access to the dmabuf from allocator; the allocator of dmabuf is informed that this
driver is going to use the dmabuf.

unmap_dmabuf releases access control to the dmabuf - allocator is notified that this driver is done using
the dmabuf for now.

vaddr return a kernel virtual address to a given memory buffer associated with the passed private struc-
ture or NULL if no such mapping exists.

cookie return allocator specific cookie for a given memory buffer associated with the passed private
structure or NULL if not available.

num_users return the current number of users of a memory buffer; return 1 if the videobuf layer (or
actually the driver using it) is the only user.

mmap setup a userspace mapping for a given memory buffer under the provided virtual memory region.
Description
Those operations are used by the videobuf2 core to implement the memory handling/memory allocators
for each type of supported streaming I/O method.

2.1. Video4Linux devices 717

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

1. Required ops for USERPTR types: get_userptr, put_userptr.
2. Required ops for MMAP types: alloc, put, num_users, mmap.
3. Required ops for read/write access types: alloc, put, num_users, vaddr.
4. Required ops for DMABUF types: attach_dmabuf, detach_dmabuf, map_dmabuf, unmap_dmabuf.

struct vb2_plane
plane information

Definition

struct vb2_plane {
void * mem_priv;
struct dma_buf * dbuf;
unsigned int dbuf_mapped;
unsigned int bytesused;
unsigned int length;
unsigned int min_length;
union m;
unsigned int data_offset;

};

Members
mem_priv private data with this plane
dbuf dma_buf - shared buffer object
dbuf_mapped flag to show whether dbuf is mapped or not
bytesused number of bytes occupied by data in the plane (payload)
length size of this plane (NOT the payload) in bytes
min_length minimum required size of this plane (NOT the payload) in bytes. length is always greater or

equal to min_length.
m Union with memtype-specific data (offset, userptr or fd).
data_offset offset in the plane to the start of data; usually 0, unless there is a header in front of the

data Should contain enough information to be able to cover all the fields of struct v4l2_plane at
videodev2.h

enum vb2_io_modes
queue access methods

Constants
VB2_MMAP driver supports MMAP with streaming API
VB2_USERPTR driver supports USERPTR with streaming API
VB2_READ driver supports read() style access
VB2_WRITE driver supports write() style access
VB2_DMABUF driver supports DMABUF with streaming API
enum vb2_buffer_state

current video buffer state
Constants
VB2_BUF_STATE_DEQUEUED buffer under userspace control
VB2_BUF_STATE_PREPARING buffer is being prepared in videobuf

718 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

VB2_BUF_STATE_PREPARED buffer prepared in videobuf and by the driver
VB2_BUF_STATE_QUEUED buffer queued in videobuf, but not in driver
VB2_BUF_STATE_REQUEUEING re-queue a buffer to the driver
VB2_BUF_STATE_ACTIVE buffer queued in driver and possibly used in a hardware operation
VB2_BUF_STATE_DONE buffer returned from driver to videobuf, but not yet dequeued to userspace
VB2_BUF_STATE_ERROR same as above, but the operation on the buffer has ended with an error, which

will be reported to the userspace when it is dequeued
struct vb2_buffer

represents a video buffer
Definition

struct vb2_buffer {
struct vb2_queue * vb2_queue;
unsigned int index;
unsigned int type;
unsigned int memory;
unsigned int num_planes;
struct vb2_plane planes;
u64 timestamp;

};

Members
vb2_queue the queue to which this driver belongs
index id number of the buffer
type buffer type
memory the method, in which the actual data is passed
num_planes number of planes in the buffer on an internal driver queue
planes private per-plane information; do not change
timestamp frame timestamp in ns
struct vb2_ops

driver-specific callbacks
Definition

struct vb2_ops {
int (* queue_setup) (struct vb2_queue *q,unsigned int *num_buffers, unsigned int *num_planes,␣

↪→unsigned int sizes[], struct device *alloc_devs[]);
void (* wait_prepare) (struct vb2_queue *q);
void (* wait_finish) (struct vb2_queue *q);
int (* buf_init) (struct vb2_buffer *vb);
int (* buf_prepare) (struct vb2_buffer *vb);
void (* buf_finish) (struct vb2_buffer *vb);
void (* buf_cleanup) (struct vb2_buffer *vb);
int (* start_streaming) (struct vb2_queue *q, unsigned int count);
void (* stop_streaming) (struct vb2_queue *q);
void (* buf_queue) (struct vb2_buffer *vb);

};

Members
queue_setup called from VIDIOC_REQBUFS() and VIDIOC_CREATE_BUFS() handlers before memory allo-

cation. It can be called twice: if the original number of requested buffers could not be allocated, then
it will be called a second time with the actually allocated number of buffers to verify if that is OK. The
driver should return the required number of buffers in *num_buffers, the required number of planes

2.1. Video4Linux devices 719

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

per buffer in *num_planes, the size of each plane should be set in the sizes[] array and optional
per-plane allocator specific device in the alloc_devs[] array. When called from VIDIOC_REQBUFS(),
*num_planes == 0, the driver has to use the currently configured format to determine the plane
sizes and *num_buffers is the total number of buffers that are being allocated. When called from
VIDIOC_CREATE_BUFS(), *num_planes != 0 and it describes the requested number of planes and
sizes[] contains the requested plane sizes. In this case *num_buffers are being allocated additionally
to q->num_buffers. If either *num_planes or the requested sizes are invalid callback must return
-EINVAL.

wait_prepare release any locks taken while calling vb2 functions; it is called before an ioctl needs to wait
for a new buffer to arrive; required to avoid a deadlock in blocking access type.

wait_finish reacquire all locks released in the previous callback; required to continue operation after
sleeping while waiting for a new buffer to arrive.

buf_init called once after allocating a buffer (in MMAP case) or after acquiring a new USERPTR buffer;
drivers may perform additional buffer-related initialization; initialization failure (return != 0) will pre-
vent queue setup from completing successfully; optional.

buf_prepare called every time the buffer is queued from userspace and from the VIDIOC_PREPARE_BUF()
ioctl; drivers may perform any initialization required before each hardware operation in this callback;
drivers can access/modify the buffer here as it is still synced for the CPU; drivers that support VID-
IOC_CREATE_BUFS() must also validate the buffer size; if an error is returned, the buffer will not be
queued in driver; optional.

buf_finish called before every dequeue of the buffer back to userspace; the buffer is synced for the
CPU, so drivers can access/modify the buffer contents; drivers may perform any operations required
before userspace accesses the buffer; optional. The buffer state can be one of the following: DONE
and ERROR occur while streaming is in progress, and the PREPARED state occurs when the queue has
been canceled and all pending buffers are being returned to their default DEQUEUED state. Typically
you only have to do something if the state is VB2_BUF_STATE_DONE, since in all other cases the buffer
contents will be ignored anyway.

buf_cleanup called once before the buffer is freed; drivers may perform any additional cleanup; optional.
start_streaming called once to enter ‘streaming’ state; the driver may receive buffers with buf_queue

callback before start_streaming is called; the driver gets the number of already queued buffers
in count parameter; driver can return an error if hardware fails, in that case all buffers that
have been already given by the buf_queue callback are to be returned by the driver by calling
vb2_buffer_done() with VB2_BUF_STATE_QUEUED. If you need a minimum number of buffers before
you can start streaming, then set min_buffers_needed in the vb2_queue structure. If that is non-
zero then start_streaming won’t be called until at least that many buffers have been queued up by
userspace.

stop_streaming called when ‘streaming’ state must be disabled; driver should stop any DMA trans-
actions or wait until they finish and give back all buffers it got from buf_queue callback by
calling vb2_buffer_done() with either VB2_BUF_STATE_DONE or VB2_BUF_STATE_ERROR; may use
vb2_wait_for_all_buffers() function

buf_queue passes buffer vb to the driver; driver may start hardware operation on this buffer; driver should
give the buffer back by calling vb2_buffer_done() function; it is allways called after calling VID-
IOC_STREAMON() ioctl; might be called before start_streaming callback if user pre-queued buffers
before calling VIDIOC_STREAMON().

struct vb2_buf_ops
driver-specific callbacks

Definition

struct vb2_buf_ops {
int (* verify_planes_array) (struct vb2_buffer *vb, const void *pb);
void (* fill_user_buffer) (struct vb2_buffer *vb, void *pb);
int (* fill_vb2_buffer) (struct vb2_buffer *vb, const void *pb, struct vb2_plane *planes);

720 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void (* copy_timestamp) (struct vb2_buffer *vb, const void *pb);
};

Members
verify_planes_array Verify that a given user space structure contains enough planes for the buffer.

This is called for each dequeued buffer.
fill_user_buffer given a vb2_buffer fill in the userspace structure. For V4L2 this is a struct v4l2_buffer.
fill_vb2_buffer given a userspace structure, fill in the vb2_buffer. If the userspace structure is invalid,

then this op will return an error.
copy_timestamp copy the timestamp from a userspace structure to the vb2_buffer struct.
struct vb2_queue

a videobuf queue
Definition

struct vb2_queue {
unsigned int type;
unsigned int io_modes;
struct device * dev;
unsigned long dma_attrs;
unsigned bidirectional:1;
unsigned fileio_read_once:1;
unsigned fileio_write_immediately:1;
unsigned allow_zero_bytesused:1;
unsigned quirk_poll_must_check_waiting_for_buffers:1;
struct mutex * lock;
void * owner;
const struct vb2_ops * ops;
const struct vb2_mem_ops * mem_ops;
const struct vb2_buf_ops * buf_ops;
void * drv_priv;
unsigned int buf_struct_size;
u32 timestamp_flags;
gfp_t gfp_flags;
u32 min_buffers_needed;

};

Members
type private buffer type whose content is defined by the vb2-core caller. For example, for V4L2, it should

match the types defined on enum v4l2_buf_type

io_modes supported io methods (see vb2_io_modes enum)
dev device to use for the default allocation context if the driver doesn’t fill in the alloc_devs array.
dma_attrs DMA attributes to use for the DMA.
bidirectional when this flag is set the DMA direction for the buffers of this queue will be overridden

with DMA_BIDIRECTIONAL direction. This is useful in cases where the hardware (firmware) writes
to a buffer which is mapped as read (DMA_TO_DEVICE), or reads from buffer which is mapped for
write (DMA_FROM_DEVICE) in order to satisfy some internal hardware restrictions or adds a padding
needed by the processing algorithm. In case the DMA mapping is not bidirectional but the hard-
ware (firmware) trying to access the buffer (in the opposite direction) this could lead to an IOMMU
protection faults.

fileio_read_once report EOF after reading the first buffer
fileio_write_immediately queue buffer after each write() call
allow_zero_bytesused allow bytesused == 0 to be passed to the driver

2.1. Video4Linux devices 721

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

quirk_poll_must_check_waiting_for_buffers Return POLLERR at poll when QBUF has not been called.
This is a vb1 idiom that has been adopted also by vb2.

lock pointer to a mutex that protects the vb2_queue struct. The driver can set this to a mutex to let the
v4l2 core serialize the queuing ioctls. If the driver wants to handle locking itself, then this should be
set to NULL. This lock is not used by the videobuf2 core API.

owner The filehandle that ‘owns’ the buffers, i.e. the filehandle that called reqbufs, create_buffers or
started fileio. This field is not used by the videobuf2 core API, but it allows drivers to easily associate
an owner filehandle with the queue.

ops driver-specific callbacks
mem_ops memory allocator specific callbacks
buf_ops callbacks to deliver buffer information between user-space and kernel-space
drv_priv driver private data
buf_struct_size size of the driver-specific buffer structure; “0” indicates the driver doesn’t want to use

a custom buffer structure type. for example, sizeof(struct vb2_v4l2_buffer) will be used for v4l2.
timestamp_flags Timestamp flags; V4L2_BUF_FLAG_TIMESTAMP_* and V4L2_BUF_FLAG_TSTAMP_SRC_*
gfp_flags additional gfp flags used when allocating the buffers. Typically this is 0, but it may be e.g.

GFP_DMA or __GFP_DMA32 to force the buffer allocation to a specific memory zone.
min_buffers_needed the minimum number of buffers needed before start_streaming can be called.

Used when a DMA engine cannot be started unless at least this number of buffers have been queued
into the driver.

void * vb2_plane_vaddr(struct vb2_buffer * vb, unsigned int plane_no)
Return a kernel virtual address of a given plane

Parameters
struct vb2_buffer * vb vb2_buffer to which the plane in question belongs to
unsigned int plane_no plane number for which the address is to be returned
Description
This function returns a kernel virtual address of a given plane if such a mapping exist, NULL otherwise.
void * vb2_plane_cookie(struct vb2_buffer * vb, unsigned int plane_no)

Return allocator specific cookie for the given plane
Parameters
struct vb2_buffer * vb vb2_buffer to which the plane in question belongs to
unsigned int plane_no plane number for which the cookie is to be returned
Description
This function returns an allocator specific cookie for a given plane if available, NULL otherwise. The
allocator should provide some simple static inline function, which would convert this cookie to the allocator
specific type that can be used directly by the driver to access the buffer. This can be for example physical
address, pointer to scatter list or IOMMU mapping.
void vb2_buffer_done(struct vb2_buffer * vb, enum vb2_buffer_state state)

inform videobuf that an operation on a buffer is finished
Parameters
struct vb2_buffer * vb vb2_buffer returned from the driver
enum vb2_buffer_state state either VB2_BUF_STATE_DONE if the operation finished successfully,

VB2_BUF_STATE_ERROR if the operation finished with an error or VB2_BUF_STATE_QUEUED if the
driver wants to requeue buffers. If start_streaming fails then it should return buffers with state
VB2_BUF_STATE_QUEUED to put them back into the queue.

722 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
This function should be called by the driver after a hardware operation on a buffer is finished and the
buffer may be returned to userspace. The driver cannot use this buffer anymore until it is queued back
to it by videobuf by the means of vb2_ops->buf_queue callback. Only buffers previously queued to the
driver by vb2_ops->buf_queue can be passed to this function.
While streaming a buffer can only be returned in state DONE or ERROR. The start_streaming op can also
return them in case the DMA engine cannot be started for some reason. In that case the buffers should
be returned with state QUEUED.
void vb2_discard_done(struct vb2_queue * q)

discard all buffers marked as DONE
Parameters
struct vb2_queue * q videobuf2 queue
Description
This function is intended to be used with suspend/resume operations. It discards all ‘done’ buffers as they
would be too old to be requested after resume.
Drivers must stop the hardware and synchronize with interrupt handlers and/or delayed works before
calling this function to make sure no buffer will be touched by the driver and/or hardware.
int vb2_wait_for_all_buffers(struct vb2_queue * q)

wait until all buffers are given back to vb2
Parameters
struct vb2_queue * q videobuf2 queue
Description
This function will wait until all buffers that have been given to the driver by vb2_ops->buf_queue are
given back to vb2 with vb2_buffer_done(). It doesn’t call wait_prepare()/wait_finish() pair. It is
intended to be called with all locks taken, for example from vb2_ops->stop_streaming callback.
void vb2_core_querybuf(struct vb2_queue * q, unsigned int index, void * pb)

query video buffer information
Parameters
struct vb2_queue * q videobuf queue
unsigned int index id number of the buffer
void * pb buffer struct passed from userspace
Description
Should be called from vidioc_querybuf ioctl handler in driver. The passed buffer should have been verified.
This function fills the relevant information for the userspace.
int vb2_core_reqbufs(struct vb2_queue * q, enum vb2_memory memory, unsigned int * count)

Initiate streaming
Parameters
struct vb2_queue * q videobuf2 queue
enum vb2_memory memory memory type
unsigned int * count requested buffer count
Description
Should be called from vidioc_reqbufs ioctl handler of a driver.
This function:

1. verifies streaming parameters passed from the userspace,

2.1. Video4Linux devices 723

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

2. sets up the queue,
3. negotiates number of buffers and planes per buffer with the driver to be used during streaming,
4. allocates internal buffer structures (struct vb2_buffer), according to the agreed parameters,
5. for MMAP memory type, allocates actual video memory, using the memory handling/allocation rou-

tines provided during queue initialization
If req->count is 0, all the memory will be freed instead. If the queue has been allocated previously (by a
previous vb2_reqbufs) call and the queue is not busy, memory will be reallocated.
The return values from this function are intended to be directly returned from vidioc_reqbufs handler in
driver.
int vb2_core_create_bufs(struct vb2_queue * q, enum vb2_memory memory, unsigned

int * count, unsigned int requested_planes, const unsigned
int requested_sizes)

Allocate buffers and any required auxiliary structs
Parameters
struct vb2_queue * q videobuf2 queue
enum vb2_memory memory memory type
unsigned int * count requested buffer count
unsigned int requested_planes number of planes requested
const unsigned int requested_sizes array with the size of the planes
Description
Should be called from VIDIOC_CREATE_BUFS() ioctl handler of a driver. This function:

1. verifies parameter sanity
2. calls the .:c:func:queue_setup() queue operation
3. performs any necessary memory allocations

Return
the return values from this function are intended to be directly returned from VIDIOC_CREATE_BUFS()
handler in driver.
int vb2_core_prepare_buf(struct vb2_queue * q, unsigned int index, void * pb)

Pass ownership of a buffer from userspace to the kernel
Parameters
struct vb2_queue * q videobuf2 queue
unsigned int index id number of the buffer
void * pb buffer structure passed from userspace to vidioc_prepare_buf handler in driver
Description
Should be called from vidioc_prepare_buf ioctl handler of a driver. The passed buffer should have been
verified. This function calls buf_prepare callback in the driver (if provided), in which driver-specific buffer
initialization can be performed,
The return values from this function are intended to be directly returned from vidioc_prepare_buf handler
in driver.
int vb2_core_qbuf(struct vb2_queue * q, unsigned int index, void * pb)

Queue a buffer from userspace
Parameters
struct vb2_queue * q videobuf2 queue

724 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

unsigned int index id number of the buffer
void * pb buffer structure passed from userspace to vidioc_qbuf handler in driver
Description
Should be called from vidioc_qbuf ioctl handler of a driver. The passed buffer should have been verified.
This function:

1. if necessary, calls buf_prepare callback in the driver (if provided), in which driver-specific buffer
initialization can be performed,

2. if streaming is on, queues the buffer in driver by the means of vb2_ops->buf_queue callback for
processing.

The return values from this function are intended to be directly returned from vidioc_qbuf handler in driver.

int vb2_core_dqbuf(struct vb2_queue * q, unsigned int * pindex, void * pb, bool nonblocking)
Dequeue a buffer to the userspace

Parameters
struct vb2_queue * q videobuf2 queue
unsigned int * pindex pointer to the buffer index. May be NULL
void * pb buffer structure passed from userspace to vidioc_dqbuf handler in driver
bool nonblocking if true, this call will not sleep waiting for a buffer if no buffers ready for dequeuing are

present. Normally the driver would be passing (file->f_flags & O_NONBLOCK) here
Description
Should be called from vidioc_dqbuf ioctl handler of a driver. The passed buffer should have been verified.
This function:

1. calls buf_finish callback in the driver (if provided), in which driver can perform any additional opera-
tions that may be required before returning the buffer to userspace, such as cache sync,

2. the buffer struct members are filled with relevant information for the userspace.
The return values from this function are intended to be directly returned from vidioc_dqbuf handler in
driver.
int vb2_core_expbuf(struct vb2_queue * q, int * fd, unsigned int type, unsigned int index, unsigned

int plane, unsigned int flags)
Export a buffer as a file descriptor

Parameters
struct vb2_queue * q videobuf2 queue
int * fd file descriptor associated with DMABUF (set by driver) *
unsigned int type buffer type
unsigned int index id number of the buffer
unsigned int plane index of the plane to be exported, 0 for single plane queues
unsigned int flags flags for newly created file, currently only O_CLOEXEC is supported, refer to manual

of open syscall for more details
Description
The return values from this function are intended to be directly returned from vidioc_expbuf handler in
driver.
int vb2_core_queue_init(struct vb2_queue * q)

initialize a videobuf2 queue

2.1. Video4Linux devices 725

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Parameters
struct vb2_queue * q videobuf2 queue; this structure should be allocated in driver
Description
The vb2_queue structure should be allocated by the driver. The driver is responsible of clearing it’s
content and setting initial values for some required entries before calling this function. q->ops, q-
>mem_ops, q->type and q->io_modes are mandatory. Please refer to the struct vb2_queue description
in include/media/videobuf2-core.h for more information.
void vb2_core_queue_release(struct vb2_queue * q)

stop streaming, release the queue and free memory
Parameters
struct vb2_queue * q videobuf2 queue
Description
This function stops streaming and performs necessary clean ups, including freeing video buffer memory.
The driver is responsible for freeing the vb2_queue structure itself.
void vb2_queue_error(struct vb2_queue * q)

signal a fatal error on the queue
Parameters
struct vb2_queue * q videobuf2 queue
Description
Flag that a fatal unrecoverable error has occurred and wake up all processes waiting on the queue. Polling
will now set POLLERR and queuing and dequeuing buffers will return -EIO.
The error flag will be cleared when cancelling the queue, either from vb2_streamoff or vb2_queue_release.
Drivers should thus not call this function before starting the stream, otherwise the error flag will remain
set until the queue is released when closing the device node.
int vb2_mmap(struct vb2_queue * q, struct vm_area_struct * vma)

map video buffers into application address space
Parameters
struct vb2_queue * q videobuf2 queue
struct vm_area_struct * vma vma passed to the mmap file operation handler in the driver
Description
Should be called from mmap file operation handler of a driver. This function maps one plane of one of the
available video buffers to userspace. To map whole video memory allocated on reqbufs, this function has
to be called once per each plane per each buffer previously allocated.
When the userspace application calls mmap, it passes to it an offset returned to it earlier by the means
of vidioc_querybuf handler. That offset acts as a “cookie”, which is then used to identify the plane to be
mapped. This function finds a plane with a matching offset and a mapping is performed by the means of
a provided memory operation.
The return values from this function are intended to be directly returned from the mmap handler in driver.

unsigned int vb2_core_poll(struct vb2_queue * q, struct file * file, poll_table * wait)
implements poll userspace operation

Parameters
struct vb2_queue * q videobuf2 queue
struct file * file file argument passed to the poll file operation handler
poll_table * wait wait argument passed to the poll file operation handler

726 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
This function implements poll file operation handler for a driver. For CAPTURE queues, if a buffer is ready
to be dequeued, the userspace will be informed that the file descriptor of a video device is available for
reading. For OUTPUT queues, if a buffer is ready to be dequeued, the file descriptor will be reported as
available for writing.
The return values from this function are intended to be directly returned from poll handler in driver.
vb2_thread_fnc

Typedef: callback function for use with vb2_thread
Syntax

int vb2_thread_fnc (struct vb2_buffer * vb,void * priv);

Parameters
struct vb2_buffer * vb pointer to struct vb2_buffer
void * priv pointer to a private pointer
Description
This is called whenever a buffer is dequeued in the thread.
int vb2_thread_start(struct vb2_queue * q, vb2_thread_fnc fnc, void * priv, const char

* thread_name)
start a thread for the given queue.

Parameters
struct vb2_queue * q videobuf queue
vb2_thread_fnc fnc callback function
void * priv priv pointer passed to the callback function
const char * thread_name the name of the thread. This will be prefixed with “vb2-”.
Description
This starts a thread that will queue and dequeue until an error occurs or vb2_thread_stop is called.

Attention:

This function should not be used for anything else but the videobuf2-dvb support. If you think you
have another good use-case for this, then please contact the linux-media mailing list first.

int vb2_thread_stop(struct vb2_queue * q)
stop the thread for the given queue.

Parameters
struct vb2_queue * q videobuf queue
bool vb2_is_streaming(struct vb2_queue * q)

return streaming status of the queue
Parameters
struct vb2_queue * q videobuf queue
bool vb2_fileio_is_active(struct vb2_queue * q)

return true if fileio is active.
Parameters
struct vb2_queue * q videobuf queue

2.1. Video4Linux devices 727

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
This returns true if read() or write() is used to stream the data as opposed to stream I/O. This is almost
never an important distinction, except in rare cases. One such case is that using read() or write() to
stream a format using V4L2_FIELD_ALTERNATE is not allowed since there is no way you can pass the field
information of each buffer to/from userspace. A driver that supports this field format should check for this
in the queue_setup op and reject it if this function returns true.
bool vb2_is_busy(struct vb2_queue * q)

return busy status of the queue
Parameters
struct vb2_queue * q videobuf queue
Description
This function checks if queue has any buffers allocated.
void * vb2_get_drv_priv(struct vb2_queue * q)

return driver private data associated with the queue
Parameters
struct vb2_queue * q videobuf queue
void vb2_set_plane_payload(struct vb2_buffer * vb, unsigned int plane_no, unsigned long size)

set bytesused for the plane plane_no
Parameters
struct vb2_buffer * vb buffer for which plane payload should be set
unsigned int plane_no plane number for which payload should be set
unsigned long size payload in bytes
unsigned long vb2_get_plane_payload(struct vb2_buffer * vb, unsigned int plane_no)

get bytesused for the plane plane_no
Parameters
struct vb2_buffer * vb buffer for which plane payload should be set
unsigned int plane_no plane number for which payload should be set
unsigned long vb2_plane_size(struct vb2_buffer * vb, unsigned int plane_no)

return plane size in bytes
Parameters
struct vb2_buffer * vb buffer for which plane size should be returned
unsigned int plane_no plane number for which size should be returned
bool vb2_start_streaming_called(struct vb2_queue * q)

return streaming status of driver
Parameters
struct vb2_queue * q videobuf queue
void vb2_clear_last_buffer_dequeued(struct vb2_queue * q)

clear last buffer dequeued flag of queue
Parameters
struct vb2_queue * q videobuf queue
bool vb2_buffer_in_use(struct vb2_queue * q, struct vb2_buffer * vb)

return true if the buffer is in use and the queue cannot be freed (by the means of REQBUFS(0)) call
Parameters

728 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct vb2_queue * q videobuf queue
struct vb2_buffer * vb buffer for which plane size should be returned
int vb2_verify_memory_type(struct vb2_queue * q, enum vb2_memory memory, unsigned

int type)
Check whether the memory type and buffer type passed to a buffer operation are compatible with
the queue.

Parameters
struct vb2_queue * q videobuf queue
enum vb2_memory memory memory model, as defined by enum vb2_memory.
unsigned int type private buffer type whose content is defined by the vb2-core caller. For example, for

V4L2, it should match the types defined on enum v4l2_buf_type

struct vb2_v4l2_buffer
video buffer information for v4l2

Definition

struct vb2_v4l2_buffer {
struct vb2_buffer vb2_buf;
__u32 flags;
__u32 field;
struct v4l2_timecode timecode;
__u32 sequence;

};

Members
vb2_buf video buffer 2
flags buffer informational flags
field enum v4l2_field; field order of the image in the buffer
timecode frame timecode
sequence sequence count of this frame
Description
Should contain enough information to be able to cover all the fields of struct v4l2_buffer at videodev2.h
int vb2_reqbufs(struct vb2_queue * q, struct v4l2_requestbuffers * req)

Wrapper for vb2_core_reqbufs() that also verifies the memory and type values.
Parameters
struct vb2_queue * q videobuf2 queue
struct v4l2_requestbuffers * req struct passed from userspace to vidioc_reqbufs handler in driver
int vb2_create_bufs(struct vb2_queue * q, struct v4l2_create_buffers * create)

Wrapper for vb2_core_create_bufs() that also verifies the memory and type values.
Parameters
struct vb2_queue * q videobuf2 queue
struct v4l2_create_buffers * create creation parameters, passed from userspace to vid-

ioc_create_bufs handler in driver
int vb2_prepare_buf(struct vb2_queue * q, struct v4l2_buffer * b)

Pass ownership of a buffer from userspace to the kernel
Parameters
struct vb2_queue * q videobuf2 queue

2.1. Video4Linux devices 729

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_buffer * b buffer structure passed from userspace to vidioc_prepare_buf handler in driver
Description
Should be called from vidioc_prepare_buf ioctl handler of a driver. This function:

1. verifies the passed buffer,
2. calls buf_prepare callback in the driver (if provided), in which driver-specific buffer initialization can

be performed.
The return values from this function are intended to be directly returned from vidioc_prepare_buf handler
in driver.
int vb2_qbuf(struct vb2_queue * q, struct v4l2_buffer * b)

Queue a buffer from userspace
Parameters
struct vb2_queue * q videobuf2 queue
struct v4l2_buffer * b buffer structure passed from userspace to VIDIOC_QBUF() handler in driver
Description
Should be called from VIDIOC_QBUF() ioctl handler of a driver.
This function:

1. verifies the passed buffer,
2. if necessary, calls buf_prepare callback in the driver (if provided), in which driver-specific buffer

initialization can be performed,
3. if streaming is on, queues the buffer in driver by the means of buf_queue callback for processing.

The return values from this function are intended to be directly returned from VIDIOC_QBUF() handler in
driver.
int vb2_expbuf(struct vb2_queue * q, struct v4l2_exportbuffer * eb)

Export a buffer as a file descriptor
Parameters
struct vb2_queue * q videobuf2 queue
struct v4l2_exportbuffer * eb export buffer structure passed from userspace to VIDIOC_EXPBUF()

handler in driver
Description
The return values from this function are intended to be directly returned from VIDIOC_EXPBUF() handler
in driver.
int vb2_dqbuf(struct vb2_queue * q, struct v4l2_buffer * b, bool nonblocking)

Dequeue a buffer to the userspace
Parameters
struct vb2_queue * q videobuf2 queue
struct v4l2_buffer * b buffer structure passed from userspace to VIDIOC_DQBUF() handler in driver
bool nonblocking if true, this call will not sleep waiting for a buffer if no buffers ready for dequeuing are

present. Normally the driver would be passing (file->f_flags & O_NONBLOCK) here
Description
Should be called from VIDIOC_DQBUF() ioctl handler of a driver.
This function:

1. verifies the passed buffer,

730 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

2. calls buf_finish callback in the driver (if provided), in which driver can perform any additional opera-
tions that may be required before returning the buffer to userspace, such as cache sync,

3. the buffer struct members are filled with relevant information for the userspace.
The return values from this function are intended to be directly returned from VIDIOC_DQBUF() handler in
driver.
int vb2_streamon(struct vb2_queue * q, enum v4l2_buf_type type)

start streaming
Parameters
struct vb2_queue * q videobuf2 queue
enum v4l2_buf_type type type argument passed from userspace to vidioc_streamon handler
Description
Should be called from vidioc_streamon handler of a driver.
This function:

1. verifies current state
2. passes any previously queued buffers to the driver and starts streaming

The return values from this function are intended to be directly returned from vidioc_streamon handler in
the driver.
int vb2_streamoff(struct vb2_queue * q, enum v4l2_buf_type type)

stop streaming
Parameters
struct vb2_queue * q videobuf2 queue
enum v4l2_buf_type type type argument passed from userspace to vidioc_streamoff handler
Description
Should be called from vidioc_streamoff handler of a driver.
This function:

1. verifies current state,
2. stop streaming and dequeues any queued buffers, including those previously passed to the driver

(after waiting for the driver to finish).
This call can be used for pausing playback. The return values from this function are intended to be directly
returned from vidioc_streamoff handler in the driver
int vb2_queue_init(struct vb2_queue * q)

initialize a videobuf2 queue
Parameters
struct vb2_queue * q videobuf2 queue; this structure should be allocated in driver
Description
The vb2_queue structure should be allocated by the driver. The driver is responsible of clearing it’s
content and setting initial values for some required entries before calling this function. q->ops, q-
>mem_ops, q->type and q->io_modes are mandatory. Please refer to the struct vb2_queue description
in include/media/videobuf2-core.h for more information.
void vb2_queue_release(struct vb2_queue * q)

stop streaming, release the queue and free memory
Parameters
struct vb2_queue * q videobuf2 queue

2.1. Video4Linux devices 731

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
This function stops streaming and performs necessary clean ups, including freeing video buffer memory.
The driver is responsible for freeing the vb2_queue structure itself.
unsigned int vb2_poll(struct vb2_queue * q, struct file * file, poll_table * wait)

implements poll userspace operation
Parameters
struct vb2_queue * q videobuf2 queue
struct file * file file argument passed to the poll file operation handler
poll_table * wait wait argument passed to the poll file operation handler
Description
This function implements poll file operation handler for a driver. For CAPTURE queues, if a buffer is ready
to be dequeued, the userspace will be informed that the file descriptor of a video device is available for
reading. For OUTPUT queues, if a buffer is ready to be dequeued, the file descriptor will be reported as
available for writing.
If the driver uses struct v4l2_fh, then vb2_poll() will also check for any pending events.
The return values from this function are intended to be directly returned from poll handler in driver.
void vb2_ops_wait_prepare(struct vb2_queue * vq)

helper function to lock a struct vb2_queue
Parameters
struct vb2_queue * vq pointer to struct vb2_queue
Description
..note:: only use if vq->lock is non-NULL.
void vb2_ops_wait_finish(struct vb2_queue * vq)

helper function to unlock a struct vb2_queue
Parameters
struct vb2_queue * vq pointer to struct vb2_queue
Description
..note:: only use if vq->lock is non-NULL.
struct vb2_vmarea_handler

common vma refcount tracking handler
Definition

struct vb2_vmarea_handler {
refcount_t * refcount;
void (* put) (void *arg);
void * arg;

};

Members
refcount pointer to refcount entry in the buffer
put callback to function that decreases buffer refcount
arg argument for put callback

732 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

2.1.15 V4L2 clocks

Attention:

This is a temporary API and it shall be replaced by the generic clock API, when the latter becomes
widely available.

Many subdevices, like camera sensors, TV decoders and encoders, need a clock signal to be supplied
by the system. Often this clock is supplied by the respective bridge device. The Linux kernel provides a
Common Clock Framework for this purpose. However, it is not (yet) available on all architectures. Besides,
the nature of the multi-functional (clock, data + synchronisation, I2C control) connection of subdevices
to the system might impose special requirements on the clock API usage. E.g. V4L2 has to support
clock provider driver unregistration while a subdevice driver is holding a reference to the clock. For these
reasons a V4L2 clock helper API has been developed and is provided to bridge and subdevice drivers.
The API consists of two parts: two functions to register and unregister a V4L2 clock source:
v4l2_clk_register() and v4l2_clk_unregister() and calls to control a clock object, similar to the re-
spective generic clock API calls: v4l2_clk_get(), v4l2_clk_put(), v4l2_clk_enable(), v4l2_clk_disable(),
v4l2_clk_get_rate(), and v4l2_clk_set_rate(). Clock suppliers have to provide clock operations that will
be called when clock users invoke respective API methods.
It is expected that once the CCF becomes available on all relevant architectures this API will be removed.

2.1.16 V4L2 DV Timings functions

v4l2_check_dv_timings_fnc
Typedef: timings check callback

Syntax
bool v4l2_check_dv_timings_fnc (const struct v4l2_dv_timings * t,void * han-
dle);

Parameters
const struct v4l2_dv_timings * t the v4l2_dv_timings struct.
void * handle a handle from the driver.
Description
Returns true if the given timings are valid.
bool v4l2_valid_dv_timings(const struct v4l2_dv_timings * t, const struct v4l2_dv_timings_cap

* cap, v4l2_check_dv_timings_fnc fnc, void * fnc_handle)
are these timings valid?

Parameters
const struct v4l2_dv_timings * t the v4l2_dv_timings struct.
const struct v4l2_dv_timings_cap * cap the v4l2_dv_timings_cap capabilities.
v4l2_check_dv_timings_fnc fnc callback to check if this timing is OK. May be NULL.
void * fnc_handle a handle that is passed on to fnc.
Description
Returns true if the given dv_timings struct is supported by the hardware capabilities and the callback
function (if non-NULL), returns false otherwise.

2.1. Video4Linux devices 733

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings * t, const struct v4l2_dv_timings_cap
* cap, v4l2_check_dv_timings_fnc fnc, void * fnc_handle)

Helper function to enumerate possible DV timings based on capabilities
Parameters
struct v4l2_enum_dv_timings * t the v4l2_enum_dv_timings struct.
const struct v4l2_dv_timings_cap * cap the v4l2_dv_timings_cap capabilities.
v4l2_check_dv_timings_fnc fnc callback to check if this timing is OK. May be NULL.
void * fnc_handle a handle that is passed on to fnc.
Description
This enumerates dv_timings using the full list of possible CEA-861 and DMT timings, filtering out any
timings that are not supported based on the hardware capabilities and the callback function (if non-NULL).
If a valid timing for the given index is found, it will fill in t and return 0, otherwise it returns -EINVAL.
bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings * t, const struct v4l2_dv_timings_cap

* cap, unsigned pclock_delta, v4l2_check_dv_timings_fnc fnc,
void * fnc_handle)

Find the closest timings struct
Parameters
struct v4l2_dv_timings * t the v4l2_enum_dv_timings struct.
const struct v4l2_dv_timings_cap * cap the v4l2_dv_timings_cap capabilities.
unsigned pclock_delta maximum delta between t->pixelclock and the timing struct under considera-

tion.
v4l2_check_dv_timings_fnc fnc callback to check if a given timings struct is OK. May be NULL.
void * fnc_handle a handle that is passed on to fnc.
Description
This function tries to map the given timings to an entry in the full list of possible CEA-861 and DMT tim-
ings, filtering out any timings that are not supported based on the hardware capabilities and the callback
function (if non-NULL).
On success it will fill in t with the found timings and it returns true. On failure it will return false.
bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings * t, u8 vic)

find timings based on CEA-861 VIC
Parameters
struct v4l2_dv_timings * t the timings data.
u8 vic CEA-861 VIC code
Description
On success it will fill in t with the found timings and it returns true. On failure it will return false.
bool v4l2_match_dv_timings(const struct v4l2_dv_timings * measured, const struct

v4l2_dv_timings * standard, unsigned pclock_delta,
bool match_reduced_fps)

do two timings match?
Parameters
const struct v4l2_dv_timings * measured the measured timings data.
const struct v4l2_dv_timings * standard the timings according to the standard.
unsigned pclock_delta maximum delta in Hz between standard->pixelclock and the measured timings.

734 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

bool match_reduced_fps if true, then fail if V4L2_DV_FL_REDUCED_FPS does not match.
Description
Returns true if the two timings match, returns false otherwise.
void v4l2_print_dv_timings(const char * dev_prefix, const char * prefix, const struct

v4l2_dv_timings * t, bool detailed)
log the contents of a dv_timings struct

Parameters
const char * dev_prefix device prefix for each log line.
const char * prefix additional prefix for each log line, may be NULL.
const struct v4l2_dv_timings * t the timings data.
bool detailed if true, give a detailed log.
bool v4l2_detect_cvt(unsigned frame_height, unsigned hfreq, unsigned vsync, un-

signed active_width, u32 polarities, bool interlaced, struct v4l2_dv_timings
* fmt)

detect if the given timings follow the CVT standard
Parameters
unsigned frame_height the total height of the frame (including blanking) in lines.
unsigned hfreq the horizontal frequency in Hz.
unsigned vsync the height of the vertical sync in lines.
unsigned active_width active width of image (does not include blanking). This information is needed

only in case of version 2 of reduced blanking. In other cases, this parameter does not have any effect
on timings.

u32 polarities the horizontal and vertical polarities (same as struct v4l2_bt_timings polarities).
bool interlaced if this flag is true, it indicates interlaced format
struct v4l2_dv_timings * fmt the resulting timings.
Description
This function will attempt to detect if the given values correspond to a valid CVT format. If so, then it will
return true, and fmt will be filled in with the found CVT timings.
bool v4l2_detect_gtf(unsigned frame_height, unsigned hfreq, unsigned vsync, u32 polarities,

bool interlaced, struct v4l2_fract aspect, struct v4l2_dv_timings * fmt)
detect if the given timings follow the GTF standard

Parameters
unsigned frame_height the total height of the frame (including blanking) in lines.
unsigned hfreq the horizontal frequency in Hz.
unsigned vsync the height of the vertical sync in lines.
u32 polarities the horizontal and vertical polarities (same as struct v4l2_bt_timings polarities).
bool interlaced if this flag is true, it indicates interlaced format
struct v4l2_fract aspect preferred aspect ratio. GTF has no method of determining the aspect ratio

in order to derive the image width from the image height, so it has to be passed explicitly. Usually
the native screen aspect ratio is used for this. If it is not filled in correctly, then 16:9 will be assumed.

struct v4l2_dv_timings * fmt the resulting timings.

2.1. Video4Linux devices 735

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
This function will attempt to detect if the given values correspond to a valid GTF format. If so, then it will
return true, and fmt will be filled in with the found GTF timings.
struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)

calculate the aspect ratio based on bytes 0x15 and 0x16 from the EDID.
Parameters
u8 hor_landscape byte 0x15 from the EDID.
u8 vert_portrait byte 0x16 from the EDID.
Description
Determines the aspect ratio from the EDID. See VESA Enhanced EDID standard, release A, rev 2, section
3.6.2: “Horizontal and Vertical Screen Size or Aspect Ratio”
struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings * t)

calculate the aspect ratio based on the v4l2_dv_timings information.
Parameters
const struct v4l2_dv_timings * t the timings data.

2.1.17 V4L2 flash functions and data structures

struct v4l2_flash_ctrl_data
flash control initialization data, filled basing on the features declared by the LED flash class driver in
the v4l2_flash_config

Definition

struct v4l2_flash_ctrl_data {
struct v4l2_ctrl_config config;
u32 cid;

};

Members
config initialization data for a control
cid contains v4l2 flash control id if the config field was initialized, 0 otherwise
struct v4l2_flash_ops

V4L2 flash operations
Definition

struct v4l2_flash_ops {
int (* external_strobe_set) (struct v4l2_flash *v4l2_flash, bool enable);
enum led_brightness (* intensity_to_led_brightness) (struct v4l2_flash *v4l2_flash, s32␣

↪→intensity);
s32 (* led_brightness_to_intensity) (struct v4l2_flash *v4l2_flash, enum led_brightness);

};

Members
external_strobe_set Setup strobing the flash by hardware pin state assertion.
intensity_to_led_brightness Convert intensity to brightness in a device specific manner
led_brightness_to_intensity convert brightness to intensity in a device specific manner.
struct v4l2_flash_config

V4L2 Flash sub-device initialization data

736 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Definition

struct v4l2_flash_config {
char dev_name;
struct led_flash_setting intensity;
u32 flash_faults;
unsigned int has_external_strobe:1;

};

Members
dev_name the name of the media entity, unique in the system
intensity non-flash strobe constraints for the LED
flash_faults bitmask of flash faults that the LED flash class device can report; corresponding

LED_FAULT* bit definitions are available in the header file <linux/led-class-flash.h>
has_external_strobe external strobe capability
struct v4l2_flash

Flash sub-device context
Definition

struct v4l2_flash {
struct led_classdev_flash * fled_cdev;
struct led_classdev * iled_cdev;
const struct v4l2_flash_ops * ops;
struct v4l2_subdev sd;
struct v4l2_ctrl_handler hdl;
struct v4l2_ctrl ** ctrls;

};

Members
fled_cdev LED flash class device controlled by this sub-device
iled_cdev LED class device representing indicator LED associated with the LED flash class device
ops V4L2 specific flash ops
sd V4L2 sub-device
hdl flash controls handler
ctrls array of pointers to controls, whose values define the sub-device state
struct v4l2_flash * v4l2_flash_init(struct device * dev, struct fwnode_handle * fwn, struct

led_classdev_flash * fled_cdev, const struct v4l2_flash_ops
* ops, struct v4l2_flash_config * config)

initialize V4L2 flash led sub-device
Parameters
struct device * dev flash device, e.g. an I2C device
struct fwnode_handle * fwn fwnode_handle of the LED, may be NULL if the same as device’s
struct led_classdev_flash * fled_cdev LED flash class device to wrap
const struct v4l2_flash_ops * ops V4L2 Flash device ops
struct v4l2_flash_config * config initialization data for V4L2 Flash sub-device
Description
Create V4L2 Flash sub-device wrapping given LED subsystem device. The ops pointer is stored by the
V4L2 flash framework. No references are held to config nor its contents once this function has returned.
Return

2.1. Video4Linux devices 737

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

A valid pointer, or, when an error occurs, the return value is encoded using ERR_PTR(). Use IS_ERR() to
check and PTR_ERR() to obtain the numeric return value.
struct v4l2_flash * v4l2_flash_indicator_init(struct device * dev, struct fwnode_handle

* fwn, struct led_classdev * iled_cdev, struct
v4l2_flash_config * config)

initialize V4L2 indicator sub-device
Parameters
struct device * dev flash device, e.g. an I2C device
struct fwnode_handle * fwn fwnode_handle of the LED, may be NULL if the same as device’s
struct led_classdev * iled_cdev LED flash class device representing the indicator LED
struct v4l2_flash_config * config initialization data for V4L2 Flash sub-device
Description
Create V4L2 Flash sub-device wrapping given LED subsystem device. The ops pointer is stored by the
V4L2 flash framework. No references are held to config nor its contents once this function has returned.
Return
A valid pointer, or, when an error occurs, the return value is encoded using ERR_PTR(). Use IS_ERR() to
check and PTR_ERR() to obtain the numeric return value.
void v4l2_flash_release(struct v4l2_flash * v4l2_flash)

release V4L2 Flash sub-device
Parameters
struct v4l2_flash * v4l2_flash the V4L2 Flash sub-device to release
Description
Release V4L2 Flash sub-device.

2.1.18 V4L2 Media Controller functions and data structures

enum tuner_pad_index
tuner pad index for MEDIA_ENT_F_TUNER

Constants
TUNER_PAD_RF_INPUT Radiofrequency (RF) sink pad, usually linked to a RF connector entity.
TUNER_PAD_OUTPUT Tuner video output source pad. Contains the video chrominance and luminance or the

hole bandwidth of the signal converted to an Intermediate Frequency (IF) or to baseband (on zero-IF
tuners).

TUNER_PAD_AUD_OUT Tuner audio output source pad. Tuners used to decode analog TV signals have an
extra pad for audio output. Old tuners use an analog stage with a saw filter for the audio IF frequency.
The output of the pad is, in this case, the audio IF, with should be decoded either by the bridge chipset
(that’s the case of cx2388x chipsets) or may require an external IF sound processor, like msp34xx.
On modern silicon tuners, the audio IF decoder is usually incorporated at the tuner. On such case,
the output of this pad is an audio sampled data.

TUNER_NUM_PADS Number of pads of the tuner.
enum if_vid_dec_pad_index

video IF-PLL pad index for MEDIA_ENT_F_IF_VID_DECODER
Constants
IF_VID_DEC_PAD_IF_INPUT video Intermediate Frequency (IF) sink pad

738 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

IF_VID_DEC_PAD_OUT IF-PLL video output source pad. Contains the video chrominance and luminance IF
signals.

IF_VID_DEC_PAD_NUM_PADS Number of pads of the video IF-PLL.
enum if_aud_dec_pad_index

audio/sound IF-PLL pad index for MEDIA_ENT_F_IF_AUD_DECODER
Constants
IF_AUD_DEC_PAD_IF_INPUT audio Intermediate Frequency (IF) sink pad
IF_AUD_DEC_PAD_OUT IF-PLL audio output source pad. Contains the audio sampled stream data, usually

connected to the bridge bus via an Inter-IC Sound (I2S) bus.
IF_AUD_DEC_PAD_NUM_PADS Number of pads of the audio IF-PLL.
enum demod_pad_index

analog TV pad index for MEDIA_ENT_F_ATV_DECODER
Constants
DEMOD_PAD_IF_INPUT IF input sink pad.
DEMOD_PAD_VID_OUT Video output source pad.
DEMOD_PAD_VBI_OUT Vertical Blank Interface (VBI) output source pad.
DEMOD_PAD_AUDIO_OUT Audio output source pad.
DEMOD_NUM_PADS Maximum number of output pads.
int v4l2_mc_create_media_graph(struct media_device * mdev)

create Media Controller links at the graph.
Parameters
struct media_device * mdev pointer to the media_device struct.
Description
Add links between the entities commonly found on PC customer’s hardware at the V4L2 side: camera
sensors, audio and video PLL-IF decoders, tuners, analog TV decoder and I/O entities (video, VBI and
Software Defined Radio).

Note:

Webcams are modelled on a very simple way: the sensor is connected directly to the I/O entity. All
dirty details, like scaler and crop HW are hidden. While such mapping is enough for v4l2 interface
centric PC-consumer’s hardware, V4L2 subdev centric camera hardware should not use this routine,
as it will not build the right graph.

int v4l_enable_media_source(struct video_device * vdev)
Hold media source for exclusive use if free

Parameters
struct video_device * vdev pointer to struct video_device
Description
This interface calls enable_source handler to determine if media source is free for use. The enable_source
handler is responsible for checking is the media source is free and start a pipeline between the media
source and the media entity associated with the video device. This interface should be called from v4l2-
core and dvb-core interfaces that change the source configuration.
Return
returns zero on success or a negative error code.

2.1. Video4Linux devices 739

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void v4l_disable_media_source(struct video_device * vdev)
Release media source

Parameters
struct video_device * vdev pointer to struct video_device
Description
This interface calls disable_source handler to release the media source. The disable_source handler stops
the active media pipeline between the media source and the media entity associated with the video
device.
Return
returns zero on success or a negative error code.
int v4l2_pipeline_pm_use(struct media_entity * entity, int use)

Update the use count of an entity
Parameters
struct media_entity * entity The entity
int use Use (1) or stop using (0) the entity
Description
Update the use count of all entities in the pipeline and power entities on or off accordingly.
This function is intended to be called in video node open (use == 1) and release (use == 0). It uses
struct media_entity.use_count to track the power status. The use of this function should be paired with
v4l2_pipeline_link_notify().
Return 0 on success or a negative error code on failure. Powering entities off is assumed to never fail. No
failure can occur when the use parameter is set to 0.
int v4l2_pipeline_link_notify(struct media_link * link, u32 flags, unsigned int notification)

Link management notification callback
Parameters
struct media_link * link The link
u32 flags New link flags that will be applied
unsigned int notification The link’s state change notification type (MEDIA_DEV_NOTIFY_*)
Description
React to link management on powered pipelines by updating the use count of all entities in the source
and sink sides of the link. Entities are powered on or off accordingly. The use of this function should be
paired with v4l2_pipeline_pm_use().
Return 0 on success or a negative error code on failure. Powering entities off is assumed to never fail.
This function will not fail for disconnection events.

2.1.19 V4L2 Media Bus functions and data structures

enum v4l2_mbus_type
media bus type

Constants
V4L2_MBUS_PARALLEL parallel interface with hsync and vsync
V4L2_MBUS_BT656 parallel interface with embedded synchronisation, can also be used for BT.1120
V4L2_MBUS_CSI1 MIPI CSI-1 serial interface
V4L2_MBUS_CCP2 CCP2 (Compact Camera Port 2)

740 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

V4L2_MBUS_CSI2 MIPI CSI-2 serial interface
struct v4l2_mbus_config

media bus configuration
Definition

struct v4l2_mbus_config {
enum v4l2_mbus_type type;
unsigned int flags;

};

Members
type in: interface type
flags in / out: configuration flags, depending on type

2.1.20 V4L2 Memory to Memory functions and data structures

struct v4l2_m2m_ops
mem-to-mem device driver callbacks

Definition

struct v4l2_m2m_ops {
void (* device_run) (void *priv);
int (* job_ready) (void *priv);
void (* job_abort) (void *priv);
void (* lock) (void *priv);
void (* unlock) (void *priv);

};

Members
device_run required. Begin the actual job (transaction) inside this callback. The job does NOT

have to end before this callback returns (and it will be the usual case). When the job finishes,
v4l2_m2m_job_finish() has to be called.

job_ready optional. Should return 0 if the driver does not have a job fully prepared to run yet (i.e. it
will not be able to finish a transaction without sleeping). If not provided, it will be assumed that one
source and one destination buffer are all that is required for the driver to perform one full transaction.
This method may not sleep.

job_abort required. Informs the driver that it has to abort the currently running transaction as soon as
possible (i.e. as soon as it can stop the device safely; e.g. in the next interrupt handler), even if the
transaction would not have been finished by then. After the driver performs the necessary steps, it
has to call v4l2_m2m_job_finish() (as if the transaction ended normally). This function does not
have to (and will usually not) wait until the device enters a state when it can be stopped.

lock optional. Define a driver’s own lock callback, instead of using v4l2_m2m_ctx->q_lock.
unlock optional. Define a driver’s own unlock callback, instead of using v4l2_m2m_ctx->q_lock.
struct v4l2_m2m_queue_ctx

represents a queue for buffers ready to be processed
Definition

struct v4l2_m2m_queue_ctx {
struct vb2_queue q;
struct list_head rdy_queue;
spinlock_t rdy_spinlock;
u8 num_rdy;

2.1. Video4Linux devices 741

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

bool buffered;
};

Members
q pointer to struct vb2_queue
rdy_queue List of V4L2 mem-to-mem queues
rdy_spinlock spin lock to protect the struct usage
num_rdy number of buffers ready to be processed
buffered is the queue buffered?
Description
Queue for buffers ready to be processed as soon as this instance receives access to the device.
struct v4l2_m2m_ctx

Memory to memory context structure
Definition

struct v4l2_m2m_ctx {
struct mutex * q_lock;
struct v4l2_m2m_dev * m2m_dev;
struct v4l2_m2m_queue_ctx cap_q_ctx;
struct v4l2_m2m_queue_ctx out_q_ctx;
struct list_head queue;
unsigned long job_flags;
wait_queue_head_t finished;
void * priv;

};

Members
q_lock struct mutex lock
m2m_dev opaque pointer to the internal data to handle M2M context
cap_q_ctx Capture (output to memory) queue context
out_q_ctx Output (input from memory) queue context
queue List of memory to memory contexts
job_flags Job queue flags, used internally by v4l2-mem2mem.c: TRANS_QUEUED, TRANS_RUNNING and

TRANS_ABORT.
finished Wait queue used to signalize when a job queue finished.
priv Instance private data
Description
The memory to memory context is specific to a file handle, NOT to e.g. a device.
struct v4l2_m2m_buffer

Memory to memory buffer
Definition

struct v4l2_m2m_buffer {
struct vb2_v4l2_buffer vb;
struct list_head list;

};

Members

742 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

vb pointer to struct vb2_v4l2_buffer
list list of m2m buffers
void * v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev * m2m_dev)

return driver private data for the currently running instance or NULL if no instance is running
Parameters
struct v4l2_m2m_dev * m2m_dev opaque pointer to the internal data to handle M2M context
struct vb2_queue * v4l2_m2m_get_vq(struct v4l2_m2m_ctx * m2m_ctx, enum v4l2_buf_type type)

return vb2_queue for the given type
Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
enum v4l2_buf_type type type of the V4L2 buffer, as defined by enum v4l2_buf_type

void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx * m2m_ctx)
check whether an instance is ready to be added to the pending job queue and add it if so.

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
Description
There are three basic requirements an instance has to meet to be able to run: 1) at least one source buffer
has to be queued, 2) at least one destination buffer has to be queued, 3) streaming has to be on.
If a queue is buffered (for example a decoder hardware ringbuffer that has to be drained before doing
streamoff), allow scheduling without v4l2 buffers on that queue.
There may also be additional, custom requirements. In such case the driver should supply a custom
callback (job_ready in v4l2_m2m_ops) that should return 1 if the instance is ready. An example of the
above could be an instance that requires more than one src/dst buffer per transaction.
void v4l2_m2m_job_finish(struct v4l2_m2m_dev * m2m_dev, struct v4l2_m2m_ctx * m2m_ctx)

inform the framework that a job has been finished and have it clean up
Parameters
struct v4l2_m2m_dev * m2m_dev opaque pointer to the internal data to handle M2M context
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
Description
Called by a driver to yield back the device after it has finished with it. Should be called as soon as possible
after reaching a state which allows other instances to take control of the device.
This function has to be called only after v4l2_m2m_ops->device_run callback has been called on the
driver. To prevent recursion, it should not be called directly from the v4l2_m2m_ops->device_run callback
though.
int v4l2_m2m_reqbufs(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct v4l2_requestbuffers

* reqbufs)
multi-queue-aware REQBUFS multiplexer

Parameters
struct file * file pointer to struct file
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct v4l2_requestbuffers * reqbufs pointer to struct v4l2_requestbuffers
int v4l2_m2m_querybuf(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct v4l2_buffer * buf)

multi-queue-aware QUERYBUF multiplexer
Parameters

2.1. Video4Linux devices 743

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct file * file pointer to struct file
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct v4l2_buffer * buf pointer to struct v4l2_buffer
Description
See v4l2_m2m_mmap() documentation for details.
int v4l2_m2m_qbuf(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct v4l2_buffer * buf)

enqueue a source or destination buffer, depending on the type
Parameters
struct file * file pointer to struct file
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct v4l2_buffer * buf pointer to struct v4l2_buffer
int v4l2_m2m_dqbuf(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct v4l2_buffer * buf)

dequeue a source or destination buffer, depending on the type
Parameters
struct file * file pointer to struct file
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct v4l2_buffer * buf pointer to struct v4l2_buffer
int v4l2_m2m_prepare_buf(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct v4l2_buffer

* buf)
prepare a source or destination buffer, depending on the type

Parameters
struct file * file pointer to struct file
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct v4l2_buffer * buf pointer to struct v4l2_buffer
int v4l2_m2m_create_bufs(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct

v4l2_create_buffers * create)
create a source or destination buffer, depending on the type

Parameters
struct file * file pointer to struct file
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct v4l2_create_buffers * create pointer to struct v4l2_create_buffers
int v4l2_m2m_expbuf(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct v4l2_exportbuffer

* eb)
export a source or destination buffer, depending on the type

Parameters
struct file * file pointer to struct file
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct v4l2_exportbuffer * eb pointer to struct v4l2_exportbuffer
int v4l2_m2m_streamon(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, enum v4l2_buf_type type)

turn on streaming for a video queue
Parameters
struct file * file pointer to struct file

744 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
enum v4l2_buf_type type type of the V4L2 buffer, as defined by enum v4l2_buf_type

int v4l2_m2m_streamoff(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, enum
v4l2_buf_type type)

turn off streaming for a video queue
Parameters
struct file * file pointer to struct file
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
enum v4l2_buf_type type type of the V4L2 buffer, as defined by enum v4l2_buf_type

unsigned int v4l2_m2m_poll(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct
poll_table_struct * wait)

poll replacement, for destination buffers only
Parameters
struct file * file pointer to struct file
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct poll_table_struct * wait pointer to struct poll_table_struct
Description
Call from the driver’s poll() function. Will poll both queues. If a buffer is available to dequeue (with
dqbuf) from the source queue, this will indicate that a non-blocking write can be performed, while read
will be returned in case of the destination queue.
int v4l2_m2m_mmap(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct vm_area_struct * vma)

source and destination queues-aware mmap multiplexer
Parameters
struct file * file pointer to struct file
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct vm_area_struct * vma pointer to struct vm_area_struct
Description
Call from driver’s mmap() function. Will handle mmap() for both queues seamlessly for videobuffer, which
will receive normal per-queue offsets and proper videobuf queue pointers. The differentiation is made
outside videobuf by adding a predefined offset to buffers from one of the queues and subtracting it before
passing it back to videobuf. Only drivers (and thus applications) receive modified offsets.
struct v4l2_m2m_dev * v4l2_m2m_init(const struct v4l2_m2m_ops * m2m_ops)

initialize per-driver m2m data
Parameters
const struct v4l2_m2m_ops * m2m_ops pointer to struct v4l2_m2m_ops
Description
Usually called from driver’s :c:func:`probe()` function.
Return
returns an opaque pointer to the internal data to handle M2M context
void v4l2_m2m_release(struct v4l2_m2m_dev * m2m_dev)

cleans up and frees a m2m_dev structure
Parameters
struct v4l2_m2m_dev * m2m_dev opaque pointer to the internal data to handle M2M context

2.1. Video4Linux devices 745

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
Usually called from driver’s :c:func:`remove()` function.
struct v4l2_m2m_ctx * v4l2_m2m_ctx_init(struct v4l2_m2m_dev * m2m_dev, void * drv_priv, int

(*queue_init) (void *priv, struct vb2_queue *src_vq,
struct vb2_queue *dst_vq)

allocate and initialize a m2m context
Parameters
struct v4l2_m2m_dev * m2m_dev opaque pointer to the internal data to handle M2M context
void * drv_priv driver’s instance private data
int (*)(void *priv,struct vb2_queue *src_vq,struct vb2_queue *dst_vq) queue_init a call-

back for queue type-specific initialization function to be used for initializing videobuf_queues
Description
Usually called from driver’s :c:func:`open()` function.
void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx * m2m_ctx)

release m2m context
Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
Description
Usually called from driver’s release() function.
void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx * m2m_ctx, struct vb2_v4l2_buffer * vbuf)

add a buffer to the proper ready buffers list.
Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct vb2_v4l2_buffer * vbuf pointer to struct vb2_v4l2_buffer
Description
Call from videobuf_queue_ops->ops->buf_queue, videobuf_queue_ops callback.
unsigned int v4l2_m2m_num_src_bufs_ready(struct v4l2_m2m_ctx * m2m_ctx)

return the number of source buffers ready for use
Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
unsigned int v4l2_m2m_num_dst_bufs_ready(struct v4l2_m2m_ctx * m2m_ctx)

return the number of destination buffers ready for use
Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
void * v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx * q_ctx)

return next buffer from the list of ready buffers
Parameters
struct v4l2_m2m_queue_ctx * q_ctx pointer to struct v4l2_m2m_queue_ctx
void * v4l2_m2m_next_src_buf(struct v4l2_m2m_ctx * m2m_ctx)

return next source buffer from the list of ready buffers
Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx

746 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void * v4l2_m2m_next_dst_buf(struct v4l2_m2m_ctx * m2m_ctx)
return next destination buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
v4l2_m2m_for_each_dst_buf(m2m_ctx, b)

iterate over a list of destination ready buffers
Parameters
m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
b current buffer of type struct v4l2_m2m_buffer
v4l2_m2m_for_each_src_buf(m2m_ctx, b)

iterate over a list of source ready buffers
Parameters
m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
b current buffer of type struct v4l2_m2m_buffer
v4l2_m2m_for_each_dst_buf_safe(m2m_ctx, b, n)

iterate over a list of destination ready buffers safely
Parameters
m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
b current buffer of type struct v4l2_m2m_buffer
n used as temporary storage
v4l2_m2m_for_each_src_buf_safe(m2m_ctx, b, n)

iterate over a list of source ready buffers safely
Parameters
m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
b current buffer of type struct v4l2_m2m_buffer
n used as temporary storage
struct vb2_queue * v4l2_m2m_get_src_vq(struct v4l2_m2m_ctx * m2m_ctx)

return vb2_queue for source buffers
Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct vb2_queue * v4l2_m2m_get_dst_vq(struct v4l2_m2m_ctx * m2m_ctx)

return vb2_queue for destination buffers
Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
void * v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx * q_ctx)

take off a buffer from the list of ready buffers and return it
Parameters
struct v4l2_m2m_queue_ctx * q_ctx pointer to struct v4l2_m2m_queue_ctx
void * v4l2_m2m_src_buf_remove(struct v4l2_m2m_ctx * m2m_ctx)

take off a source buffer from the list of ready buffers and return it
Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx

2.1. Video4Linux devices 747

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void * v4l2_m2m_dst_buf_remove(struct v4l2_m2m_ctx * m2m_ctx)
take off a destination buffer from the list of ready buffers and return it

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx * q_ctx, struct vb2_v4l2_buffer

* vbuf)
take off exact buffer from the list of ready buffers

Parameters
struct v4l2_m2m_queue_ctx * q_ctx pointer to struct v4l2_m2m_queue_ctx
struct vb2_v4l2_buffer * vbuf the buffer to be removed
void v4l2_m2m_src_buf_remove_by_buf(struct v4l2_m2m_ctx * m2m_ctx, struct vb2_v4l2_buffer

* vbuf)
take off exact source buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct vb2_v4l2_buffer * vbuf the buffer to be removed
void v4l2_m2m_dst_buf_remove_by_buf(struct v4l2_m2m_ctx * m2m_ctx, struct vb2_v4l2_buffer

* vbuf)
take off exact destination buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx
struct vb2_v4l2_buffer * vbuf the buffer to be removed

2.1.21 V4L2 fwnode kAPI

struct v4l2_fwnode_bus_mipi_csi2
MIPI CSI-2 bus data structure

Definition

struct v4l2_fwnode_bus_mipi_csi2 {
unsigned int flags;
unsigned char data_lanes;
unsigned char clock_lane;
unsigned short num_data_lanes;
bool lane_polarities;

};

Members
flags media bus (V4L2_MBUS_*) flags
data_lanes an array of physical data lane indexes
clock_lane physical lane index of the clock lane
num_data_lanes number of data lanes
lane_polarities polarity of the lanes. The order is the same of the physical lanes.
struct v4l2_fwnode_bus_parallel

parallel data bus data structure
Definition

748 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_fwnode_bus_parallel {
unsigned int flags;
unsigned char bus_width;
unsigned char data_shift;

};

Members
flags media bus (V4L2_MBUS_*) flags
bus_width bus width in bits
data_shift data shift in bits
struct v4l2_fwnode_bus_mipi_csi1

CSI-1/CCP2 data bus structure
Definition

struct v4l2_fwnode_bus_mipi_csi1 {
bool clock_inv;
bool strobe;
bool lane_polarity;
unsigned char data_lane;
unsigned char clock_lane;

};

Members
clock_inv polarity of clock/strobe signal false - not inverted, true - inverted
strobe false - data/clock, true - data/strobe
lane_polarity the polarities of the clock (index 0) and data lanes index (1)
data_lane the number of the data lane
clock_lane the number of the clock lane
struct v4l2_fwnode_endpoint

the endpoint data structure
Definition

struct v4l2_fwnode_endpoint {
struct fwnode_endpoint base;
enum v4l2_mbus_type bus_type;
union bus;
u64 * link_frequencies;
unsigned int nr_of_link_frequencies;

};

Members
base fwnode endpoint of the v4l2_fwnode
bus_type bus type
bus bus configuration data structure
link_frequencies array of supported link frequencies
nr_of_link_frequencies number of elements in link_frequenccies array
struct v4l2_fwnode_link

a link between two endpoints
Definition

2.1. Video4Linux devices 749

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_fwnode_link {
struct fwnode_handle * local_node;
unsigned int local_port;
struct fwnode_handle * remote_node;
unsigned int remote_port;

};

Members
local_node pointer to device_node of this endpoint
local_port identifier of the port this endpoint belongs to
remote_node pointer to device_node of the remote endpoint
remote_port identifier of the port the remote endpoint belongs to

2.1.22 V4L2 rect helper functions

void v4l2_rect_set_size_to(struct v4l2_rect * r, const struct v4l2_rect * size)
copy the width/height values.

Parameters
struct v4l2_rect * r rect whose width and height fields will be set
const struct v4l2_rect * size rect containing the width and height fields you need.
void v4l2_rect_set_min_size(struct v4l2_rect * r, const struct v4l2_rect * min_size)

width and height of r should be >= min_size.
Parameters
struct v4l2_rect * r rect whose width and height will be modified
const struct v4l2_rect * min_size rect containing the minimal width and height
void v4l2_rect_set_max_size(struct v4l2_rect * r, const struct v4l2_rect * max_size)

width and height of r should be <= max_size
Parameters
struct v4l2_rect * r rect whose width and height will be modified
const struct v4l2_rect * max_size rect containing the maximum width and height
void v4l2_rect_map_inside(struct v4l2_rect * r, const struct v4l2_rect * boundary)

r should be inside boundary.
Parameters
struct v4l2_rect * r rect that will be modified
const struct v4l2_rect * boundary rect containing the boundary for r
bool v4l2_rect_same_size(const struct v4l2_rect * r1, const struct v4l2_rect * r2)

return true if r1 has the same size as r2
Parameters
const struct v4l2_rect * r1 rectangle.
const struct v4l2_rect * r2 rectangle.
Description
Return true if both rectangles have the same size.

750 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void v4l2_rect_intersect(struct v4l2_rect * r, const struct v4l2_rect * r1, const struct v4l2_rect
* r2)

calculate the intersection of two rects.
Parameters
struct v4l2_rect * r intersection of r1 and r2.
const struct v4l2_rect * r1 rectangle.
const struct v4l2_rect * r2 rectangle.
void v4l2_rect_scale(struct v4l2_rect * r, const struct v4l2_rect * from, const struct v4l2_rect * to)

scale rect r by to/from
Parameters
struct v4l2_rect * r rect to be scaled.
const struct v4l2_rect * from from rectangle.
const struct v4l2_rect * to to rectangle.
Description
This scales rectangle r horizontally by to->width / from->width and vertically by to->height / from-
>height.
Typically r is a rectangle inside from and you want the rectangle as it would appear after scaling from to
to. So the resulting r will be the scaled rectangle inside to.
bool v4l2_rect_overlap(const struct v4l2_rect * r1, const struct v4l2_rect * r2)

do r1 and r2 overlap?
Parameters
const struct v4l2_rect * r1 rectangle.
const struct v4l2_rect * r2 rectangle.
Description
Returns true if r1 and r2 overlap.

2.1.23 Tuner functions and data structures

enum tuner_mode
Mode of the tuner

Constants
T_RADIO Tuner core will work in radio mode
T_ANALOG_TV Tuner core will work in analog TV mode
Description
Older boards only had a single tuner device, but some devices have a separate tuner for radio. In any
case, the tuner-core needs to know if the tuner chip(s) will be used in radio mode or analog TV mode, as,
on radio mode, frequencies are specified on a different range than on TV mode. This enum is used by the
tuner core in order to work with the proper tuner range and eventually use a different tuner chip while in
radio mode.
struct tuner_setup

setup the tuner chipsets
Definition

2.1. Video4Linux devices 751

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct tuner_setup {
unsigned short addr;
unsigned int type;
unsigned int mode_mask;
void * config;
int (* tuner_callback) (void *dev, int component, int cmd, int arg);

};

Members
addr I2C address used to control the tuner device/chipset
type Type of the tuner, as defined at the TUNER_* macros. Each different tuner model should have an

unique identifier.
mode_mask Mask with the allowed tuner modes: V4L2_TUNER_RADIO, V4L2_TUNER_ANALOG_TV and/or

V4L2_TUNER_DIGITAL_TV, describing if the tuner should be used to support Radio, analog TV and/or
digital TV.

config Used to send tuner-specific configuration for complex tuners that require extra parameters to be
set. Only a very few tuners require it and its usage on newer tuners should be avoided.

tuner_callback Some tuners require to call back the bridge driver, in order to do some tasks like rising
a GPIO at the bridge chipset, in order to do things like resetting the device.

Description
Older boards only had a single tuner device. Nowadays multiple tuner devices may be present on a single
board. Using TUNER_SET_TYPE_ADDR to pass the tuner_setup structure it is possible to setup each tuner
device in turn.
Since multiple devices may be present it is no longer sufficient to send a command to a single i2c device.
Instead you should broadcast the command to all i2c devices.
By setting the mode_mask correctly you can select which commands are accepted by a specific tuner
device. For example, set mode_mask to T_RADIO if the device is a radio-only tuner. That specific tuner
will only accept commands when the tuner is in radio mode and ignore them when the tuner is set to TV
mode.
enum param_type

type of the tuner pameters
Constants
TUNER_PARAM_TYPE_RADIO Tuner params are for FM and/or AM radio
TUNER_PARAM_TYPE_PAL Tuner params are for PAL color TV standard
TUNER_PARAM_TYPE_SECAM Tuner params are for SECAM color TV standard
TUNER_PARAM_TYPE_NTSC Tuner params are for NTSC color TV standard
TUNER_PARAM_TYPE_DIGITAL Tuner params are for digital TV
struct tuner_range

define the frequencies supported by the tuner
Definition

struct tuner_range {
unsigned short limit;
unsigned char config;
unsigned char cb;

};

Members

752 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

limit Max frequency supported by that range, in 62.5 kHz (TV) or 62.5 Hz (Radio), as defined by
V4L2_TUNER_CAP_LOW.

config Value of the band switch byte (BB) to setup this mode.
cb Value of the CB byte to setup this mode.
Description
Please notice that digital tuners like xc3028/xc4000/xc5000 don’t use those ranges, as they’re defined
inside the driver. This is used by analog tuners that are compatible with the “Philips way” to setup the
tuners. On those devices, the tuner set is done via 4 bytes:

1. divider byte1 (DB1)
2. divider byte 2 (DB2)
3. Control byte (CB)
4. band switch byte (BB)

Some tuners also have an additional optional Auxiliary byte (AB).
struct tuner_params

Parameters to be used to setup the tuner. Those are used by drivers/media/tuners/tuner-types.c in
order to specify the tuner properties. Most of the parameters are for tuners based on tda9887 IF-PLL
multi-standard analog TV/Radio demodulator, with is very common on legacy analog tuners.

Definition

struct tuner_params {
enum param_type type;
unsigned int cb_first_if_lower_freq:1;
unsigned int has_tda9887:1;
unsigned int port1_fm_high_sensitivity:1;
unsigned int port2_fm_high_sensitivity:1;
unsigned int fm_gain_normal:1;
unsigned int intercarrier_mode:1;
unsigned int port1_active:1;
unsigned int port2_active:1;
unsigned int port1_invert_for_secam_lc:1;
unsigned int port2_invert_for_secam_lc:1;
unsigned int port1_set_for_fm_mono:1;
unsigned int default_pll_gating_18:1;
unsigned int radio_if:2;
signed int default_top_low:5;
signed int default_top_mid:5;
signed int default_top_high:5;
signed int default_top_secam_low:5;
signed int default_top_secam_mid:5;
signed int default_top_secam_high:5;
u16 iffreq;
unsigned int count;
struct tuner_range * ranges;

};

Members
type Type of the tuner parameters, as defined at enum param_type. If the tuner supports multiple stan-

dards, an array should be used, with one row per different standard.
cb_first_if_lower_freq Many Philips-based tuners have a comment in their datasheet like “For channel

selection involving band switching, and to ensure smooth tuning to the desired channel without
causing unnecessary charge pump action, it is recommended to consider the difference between
wanted channel frequency and the current channel frequency. Unnecessary charge pump action
will result in very low tuning voltage which may drive the oscillator to extreme conditions”. Set
cb_first_if_lower_freq to 1, if this check is required for this tuner. I tested this for PAL by first setting

2.1. Video4Linux devices 753

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

the TV frequency to 203 MHz and then switching to 96.6 MHz FM radio. The result was static unless
the control byte was sent first.

has_tda9887 Set to 1 if this tuner uses a tda9887
port1_fm_high_sensitivity Many Philips tuners use tda9887 PORT1 to select the FM radio sensitivity.

If this setting is 1, then set PORT1 to 1 to get proper FM reception.
port2_fm_high_sensitivity Some Philips tuners use tda9887 PORT2 to select the FM radio sensitivity.

If this setting is 1, then set PORT2 to 1 to get proper FM reception.
fm_gain_normal Some Philips tuners use tda9887 cGainNormal to select the FM radio sensitivity. If this

setting is 1, e register will use cGainNormal instead of cGainLow.
intercarrier_mode Most tuners with a tda9887 use QSS mode. Some (cheaper) tuners use Intercarrier

mode. If this setting is 1, then the tuner needs to be set to intercarrier mode.
port1_active This setting sets the default value for PORT1. 0 means inactive, 1 means active. Note: the

actual bit value written to the tda9887 is inverted. So a 0 here means a 1 in the B6 bit.
port2_active This setting sets the default value for PORT2. 0 means inactive, 1 means active. Note: the

actual bit value written to the tda9887 is inverted. So a 0 here means a 1 in the B7 bit.
port1_invert_for_secam_lc Sometimes PORT1 is inverted when the SECAM-L’ standard is selected. Set

this bit to 1 if this is needed.
port2_invert_for_secam_lc Sometimes PORT2 is inverted when the SECAM-L’ standard is selected. Set

this bit to 1 if this is needed.
port1_set_for_fm_mono Some cards require PORT1 to be 1 for mono Radio FM and 0 for stereo.
default_pll_gating_18 Select 18% (or according to datasheet 0%) L standard PLL gating, vs the driver

default of 36%.
radio_if IF to use in radio mode. Tuners with a separate radio IF filter seem to use 10.7, while those

without use 33.3 for PAL/SECAM tuners and 41.3 for NTSC tuners. 0 = 10.7, 1 = 33.3, 2 = 41.3
default_top_low Default tda9887 TOP value in dB for the low band. Default is 0. Range: -16:+15
default_top_mid Default tda9887 TOP value in dB for the mid band. Default is 0. Range: -16:+15
default_top_high Default tda9887 TOP value in dB for the high band. Default is 0. Range: -16:+15
default_top_secam_low Default tda9887 TOP value in dB for SECAM-L/L’ for the low band. Default is 0.

Several tuners require a different TOP value for the SECAM-L/L’ standards. Range: -16:+15
default_top_secam_mid Default tda9887 TOP value in dB for SECAM-L/L’ for the mid band. Default is 0.

Several tuners require a different TOP value for the SECAM-L/L’ standards. Range: -16:+15
default_top_secam_high Default tda9887 TOP value in dB for SECAM-L/L’ for the high band. Default is

0. Several tuners require a different TOP value for the SECAM-L/L’ standards. Range: -16:+15
iffreq Intermediate frequency (IF) used by the tuner on digital mode.
count Size of the ranges array.
ranges Array with the frequency ranges supported by the tuner.

2.1.24 V4L2 common functions and data structures

int v4l2_ctrl_query_fill(struct v4l2_queryctrl * qctrl, s32 min, s32 max, s32 step, s32 def)
Fill in a struct v4l2_queryctrl

Parameters
struct v4l2_queryctrl * qctrl pointer to the struct v4l2_queryctrl to be filled
s32 min minimum value for the control
s32 max maximum value for the control

754 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

s32 step control step
s32 def default value for the control
Description
Fills the struct v4l2_queryctrl fields for the query control.

Note:

This function assumes that the qctrl->id field is filled.

Returns -EINVAL if the control is not known by the V4L2 core, 0 on success.
struct v4l2_subdev * v4l2_i2c_new_subdev(struct v4l2_device * v4l2_dev, struct i2c_adapter

* adapter, const char * client_type, u8 addr, const un-
signed short * probe_addrs)

Load an i2c module and return an initialized struct v4l2_subdev.
Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

struct i2c_adapter * adapter pointer to struct i2c_adapter
const char * client_type name of the chip that’s on the adapter.
u8 addr I2C address. If zero, it will use probe_addrs
const unsigned short * probe_addrs array with a list of address. The last entry at such array should

be I2C_CLIENT_END.
Description
returns a struct v4l2_subdev pointer.
struct v4l2_subdev * v4l2_i2c_new_subdev_board(struct v4l2_device * v4l2_dev, struct

i2c_adapter * adapter, struct i2c_board_info
* info, const unsigned short * probe_addrs)

Load an i2c module and return an initialized struct v4l2_subdev.
Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

struct i2c_adapter * adapter pointer to struct i2c_adapter
struct i2c_board_info * info pointer to struct i2c_board_info used to replace the irq, platform_data

and addr arguments.
const unsigned short * probe_addrs array with a list of address. The last entry at such array should

be I2C_CLIENT_END.
Description
returns a struct v4l2_subdev pointer.
void v4l2_i2c_subdev_init(struct v4l2_subdev * sd, struct i2c_client * client, const struct

v4l2_subdev_ops * ops)
Initializes a struct v4l2_subdev with data from an i2c_client struct.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct i2c_client * client pointer to struct i2c_client
const struct v4l2_subdev_ops * ops pointer to struct v4l2_subdev_ops

2.1. Video4Linux devices 755

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

unsigned short v4l2_i2c_subdev_addr(struct v4l2_subdev * sd)
returns i2c client address of struct v4l2_subdev.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

Description
Returns the address of an I2C sub-device
struct v4l2_subdev * v4l2_spi_new_subdev(struct v4l2_device * v4l2_dev, struct spi_master * mas-

ter, struct spi_board_info * info)
Load an spi module and return an initialized struct v4l2_subdev.

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device.
struct spi_master * master pointer to struct spi_master.
struct spi_board_info * info pointer to struct spi_board_info.
Description
returns a struct v4l2_subdev pointer.
void v4l2_spi_subdev_init(struct v4l2_subdev * sd, struct spi_device * spi, const struct

v4l2_subdev_ops * ops)
Initialize a v4l2_subdev with data from an spi_device struct.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct spi_device * spi pointer to struct spi_device.
const struct v4l2_subdev_ops * ops pointer to struct v4l2_subdev_ops

struct v4l2_ioctl_ops
describe operations for each V4L2 ioctl

Definition

struct v4l2_ioctl_ops {
int (* vidioc_querycap) (struct file *file, void *fh, struct v4l2_capability *cap);
int (* vidioc_enum_fmt_vid_cap) (struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (* vidioc_enum_fmt_vid_overlay) (struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (* vidioc_enum_fmt_vid_out) (struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (* vidioc_enum_fmt_vid_cap_mplane) (struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (* vidioc_enum_fmt_vid_out_mplane) (struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (* vidioc_enum_fmt_sdr_cap) (struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (* vidioc_enum_fmt_sdr_out) (struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (* vidioc_enum_fmt_meta_cap) (struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (* vidioc_g_fmt_vid_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_g_fmt_vid_overlay) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_g_fmt_vid_out) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_g_fmt_vid_out_overlay) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_g_fmt_vbi_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_g_fmt_vbi_out) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_g_fmt_sliced_vbi_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_g_fmt_sliced_vbi_out) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_g_fmt_vid_cap_mplane) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_g_fmt_vid_out_mplane) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_g_fmt_sdr_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_g_fmt_sdr_out) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_g_fmt_meta_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_s_fmt_vid_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_s_fmt_vid_overlay) (struct file *file, void *fh, struct v4l2_format *f);

756 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int (* vidioc_s_fmt_vid_out) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_s_fmt_vid_out_overlay) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_s_fmt_vbi_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_s_fmt_vbi_out) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_s_fmt_sliced_vbi_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_s_fmt_sliced_vbi_out) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_s_fmt_vid_cap_mplane) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_s_fmt_vid_out_mplane) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_s_fmt_sdr_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_s_fmt_sdr_out) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_s_fmt_meta_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_vid_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_vid_overlay) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_vid_out) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_vid_out_overlay) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_vbi_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_vbi_out) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_sliced_vbi_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_sliced_vbi_out) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_vid_cap_mplane) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_vid_out_mplane) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_sdr_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_sdr_out) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_try_fmt_meta_cap) (struct file *file, void *fh, struct v4l2_format *f);
int (* vidioc_reqbufs) (struct file *file, void *fh, struct v4l2_requestbuffers *b);
int (* vidioc_querybuf) (struct file *file, void *fh, struct v4l2_buffer *b);
int (* vidioc_qbuf) (struct file *file, void *fh, struct v4l2_buffer *b);
int (* vidioc_expbuf) (struct file *file, void *fh, struct v4l2_exportbuffer *e);
int (* vidioc_dqbuf) (struct file *file, void *fh, struct v4l2_buffer *b);
int (* vidioc_create_bufs) (struct file *file, void *fh, struct v4l2_create_buffers *b);
int (* vidioc_prepare_buf) (struct file *file, void *fh, struct v4l2_buffer *b);
int (* vidioc_overlay) (struct file *file, void *fh, unsigned int i);
int (* vidioc_g_fbuf) (struct file *file, void *fh, struct v4l2_framebuffer *a);
int (* vidioc_s_fbuf) (struct file *file, void *fh, const struct v4l2_framebuffer *a);
int (* vidioc_streamon) (struct file *file, void *fh, enum v4l2_buf_type i);
int (* vidioc_streamoff) (struct file *file, void *fh, enum v4l2_buf_type i);
int (* vidioc_g_std) (struct file *file, void *fh, v4l2_std_id *norm);
int (* vidioc_s_std) (struct file *file, void *fh, v4l2_std_id norm);
int (* vidioc_querystd) (struct file *file, void *fh, v4l2_std_id *a);
int (* vidioc_enum_input) (struct file *file, void *fh, struct v4l2_input *inp);
int (* vidioc_g_input) (struct file *file, void *fh, unsigned int *i);
int (* vidioc_s_input) (struct file *file, void *fh, unsigned int i);
int (* vidioc_enum_output) (struct file *file, void *fh, struct v4l2_output *a);
int (* vidioc_g_output) (struct file *file, void *fh, unsigned int *i);
int (* vidioc_s_output) (struct file *file, void *fh, unsigned int i);
int (* vidioc_queryctrl) (struct file *file, void *fh, struct v4l2_queryctrl *a);
int (* vidioc_query_ext_ctrl) (struct file *file, void *fh, struct v4l2_query_ext_ctrl *a);
int (* vidioc_g_ctrl) (struct file *file, void *fh, struct v4l2_control *a);
int (* vidioc_s_ctrl) (struct file *file, void *fh, struct v4l2_control *a);
int (* vidioc_g_ext_ctrls) (struct file *file, void *fh, struct v4l2_ext_controls *a);
int (* vidioc_s_ext_ctrls) (struct file *file, void *fh, struct v4l2_ext_controls *a);
int (* vidioc_try_ext_ctrls) (struct file *file, void *fh, struct v4l2_ext_controls *a);
int (* vidioc_querymenu) (struct file *file, void *fh, struct v4l2_querymenu *a);
int (* vidioc_enumaudio) (struct file *file, void *fh, struct v4l2_audio *a);
int (* vidioc_g_audio) (struct file *file, void *fh, struct v4l2_audio *a);
int (* vidioc_s_audio) (struct file *file, void *fh, const struct v4l2_audio *a);
int (* vidioc_enumaudout) (struct file *file, void *fh, struct v4l2_audioout *a);
int (* vidioc_g_audout) (struct file *file, void *fh, struct v4l2_audioout *a);
int (* vidioc_s_audout) (struct file *file, void *fh, const struct v4l2_audioout *a);
int (* vidioc_g_modulator) (struct file *file, void *fh, struct v4l2_modulator *a);
int (* vidioc_s_modulator) (struct file *file, void *fh, const struct v4l2_modulator *a);
int (* vidioc_cropcap) (struct file *file, void *fh, struct v4l2_cropcap *a);
int (* vidioc_g_crop) (struct file *file, void *fh, struct v4l2_crop *a);

2.1. Video4Linux devices 757

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int (* vidioc_s_crop) (struct file *file, void *fh, const struct v4l2_crop *a);
int (* vidioc_g_selection) (struct file *file, void *fh, struct v4l2_selection *s);
int (* vidioc_s_selection) (struct file *file, void *fh, struct v4l2_selection *s);
int (* vidioc_g_jpegcomp) (struct file *file, void *fh, struct v4l2_jpegcompression *a);
int (* vidioc_s_jpegcomp) (struct file *file, void *fh, const struct v4l2_jpegcompression *a);
int (* vidioc_g_enc_index) (struct file *file, void *fh, struct v4l2_enc_idx *a);
int (* vidioc_encoder_cmd) (struct file *file, void *fh, struct v4l2_encoder_cmd *a);
int (* vidioc_try_encoder_cmd) (struct file *file, void *fh, struct v4l2_encoder_cmd *a);
int (* vidioc_decoder_cmd) (struct file *file, void *fh, struct v4l2_decoder_cmd *a);
int (* vidioc_try_decoder_cmd) (struct file *file, void *fh, struct v4l2_decoder_cmd *a);
int (* vidioc_g_parm) (struct file *file, void *fh, struct v4l2_streamparm *a);
int (* vidioc_s_parm) (struct file *file, void *fh, struct v4l2_streamparm *a);
int (* vidioc_g_tuner) (struct file *file, void *fh, struct v4l2_tuner *a);
int (* vidioc_s_tuner) (struct file *file, void *fh, const struct v4l2_tuner *a);
int (* vidioc_g_frequency) (struct file *file, void *fh, struct v4l2_frequency *a);
int (* vidioc_s_frequency) (struct file *file, void *fh, const struct v4l2_frequency *a);
int (* vidioc_enum_freq_bands) (struct file *file, void *fh, struct v4l2_frequency_band␣

↪→*band);
int (* vidioc_g_sliced_vbi_cap) (struct file *file, void *fh, struct v4l2_sliced_vbi_cap *a);
int (* vidioc_log_status) (struct file *file, void *fh);
int (* vidioc_s_hw_freq_seek) (struct file *file, void *fh, const struct v4l2_hw_freq_seek␣

↪→*a);
#ifdef CONFIG_VIDEO_ADV_DEBUG
int (* vidioc_g_register) (struct file *file, void *fh, struct v4l2_dbg_register *reg);
int (* vidioc_s_register) (struct file *file, void *fh, const struct v4l2_dbg_register *reg);
int (* vidioc_g_chip_info) (struct file *file, void *fh, struct v4l2_dbg_chip_info *chip);

#endif
int (* vidioc_enum_framesizes) (struct file *file, void *fh, struct v4l2_frmsizeenum *fsize);
int (* vidioc_enum_frameintervals) (struct file *file, void *fh, struct v4l2_frmivalenum␣

↪→*fival);
int (* vidioc_s_dv_timings) (struct file *file, void *fh, struct v4l2_dv_timings *timings);
int (* vidioc_g_dv_timings) (struct file *file, void *fh, struct v4l2_dv_timings *timings);
int (* vidioc_query_dv_timings) (struct file *file, void *fh, struct v4l2_dv_timings␣

↪→*timings);
int (* vidioc_enum_dv_timings) (struct file *file, void *fh, struct v4l2_enum_dv_timings␣

↪→*timings);
int (* vidioc_dv_timings_cap) (struct file *file, void *fh, struct v4l2_dv_timings_cap *cap);
int (* vidioc_g_edid) (struct file *file, void *fh, struct v4l2_edid *edid);
int (* vidioc_s_edid) (struct file *file, void *fh, struct v4l2_edid *edid);
int (* vidioc_subscribe_event) (struct v4l2_fh *fh, const struct v4l2_event_subscription␣

↪→*sub);
int (* vidioc_unsubscribe_event) (struct v4l2_fh *fh, const struct v4l2_event_subscription␣

↪→*sub);
long (* vidioc_default) (struct file *file, void *fh, bool valid_prio, unsigned int cmd, void␣

↪→*arg);
};

Members
vidioc_querycap pointer to the function that implements VIDIOC_QUERYCAP ioctl
vidioc_enum_fmt_vid_cap pointer to the function that implements VIDIOC_ENUM_FMT ioctl logic for

video capture in single plane mode
vidioc_enum_fmt_vid_overlay pointer to the function that implements VIDIOC_ENUM_FMT ioctl logic

for video overlay
vidioc_enum_fmt_vid_out pointer to the function that implements VIDIOC_ENUM_FMT ioctl logic for

video output in single plane mode
vidioc_enum_fmt_vid_cap_mplane pointer to the function that implements VIDIOC_ENUM_FMT ioctl

logic for video capture in multiplane mode
vidioc_enum_fmt_vid_out_mplane pointer to the function that implements VIDIOC_ENUM_FMT ioctl

758 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

logic for video output in multiplane mode
vidioc_enum_fmt_sdr_cap pointer to the function that implements VIDIOC_ENUM_FMT ioctl logic for

Software Defined Radio capture
vidioc_enum_fmt_sdr_out pointer to the function that implements VIDIOC_ENUM_FMT ioctl logic for

Software Defined Radio output
vidioc_enum_fmt_meta_cap pointer to the function that implements VIDIOC_ENUM_FMT ioctl logic for

metadata capture
vidioc_g_fmt_vid_cap pointer to the function that implements VIDIOC_G_FMT ioctl logic for video cap-

ture in single plane mode
vidioc_g_fmt_vid_overlay pointer to the function that implements VIDIOC_G_FMT ioctl logic for video

overlay
vidioc_g_fmt_vid_out pointer to the function that implements VIDIOC_G_FMT ioctl logic for video out

in single plane mode
vidioc_g_fmt_vid_out_overlay pointer to the function that implements VIDIOC_G_FMT ioctl logic for

video overlay output
vidioc_g_fmt_vbi_cap pointer to the function that implements VIDIOC_G_FMT ioctl logic for raw VBI

capture
vidioc_g_fmt_vbi_out pointer to the function that implements VIDIOC_G_FMT ioctl logic for raw VBI

output
vidioc_g_fmt_sliced_vbi_cap pointer to the function that implements VIDIOC_G_FMT ioctl logic for

sliced VBI capture
vidioc_g_fmt_sliced_vbi_out pointer to the function that implements VIDIOC_G_FMT ioctl logic for

sliced VBI output
vidioc_g_fmt_vid_cap_mplane pointer to the function that implements VIDIOC_G_FMT ioctl logic for

video capture in multiple plane mode
vidioc_g_fmt_vid_out_mplane pointer to the function that implements VIDIOC_G_FMT ioctl logic for

video out in multiplane plane mode
vidioc_g_fmt_sdr_cap pointer to the function that implements VIDIOC_G_FMT ioctl logic for Software

Defined Radio capture
vidioc_g_fmt_sdr_out pointer to the function that implements VIDIOC_G_FMT ioctl logic for Software

Defined Radio output
vidioc_g_fmt_meta_cap pointer to the function that implements VIDIOC_G_FMT ioctl logic for metadata

capture
vidioc_s_fmt_vid_cap pointer to the function that implements VIDIOC_S_FMT ioctl logic for video cap-

ture in single plane mode
vidioc_s_fmt_vid_overlay pointer to the function that implements VIDIOC_S_FMT ioctl logic for video

overlay
vidioc_s_fmt_vid_out pointer to the function that implements VIDIOC_S_FMT ioctl logic for video out

in single plane mode
vidioc_s_fmt_vid_out_overlay pointer to the function that implements VIDIOC_S_FMT ioctl logic for

video overlay output
vidioc_s_fmt_vbi_cap pointer to the function that implements VIDIOC_S_FMT ioctl logic for raw VBI

capture
vidioc_s_fmt_vbi_out pointer to the function that implements VIDIOC_S_FMT ioctl logic for raw VBI

output
vidioc_s_fmt_sliced_vbi_cap pointer to the function that implements VIDIOC_S_FMT ioctl logic for

sliced VBI capture

2.1. Video4Linux devices 759

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

vidioc_s_fmt_sliced_vbi_out pointer to the function that implements VIDIOC_S_FMT ioctl logic for
sliced VBI output

vidioc_s_fmt_vid_cap_mplane pointer to the function that implements VIDIOC_S_FMT ioctl logic for
video capture in multiple plane mode

vidioc_s_fmt_vid_out_mplane pointer to the function that implements VIDIOC_S_FMT ioctl logic for
video out in multiplane plane mode

vidioc_s_fmt_sdr_cap pointer to the function that implements VIDIOC_S_FMT ioctl logic for Software
Defined Radio capture

vidioc_s_fmt_sdr_out pointer to the function that implements VIDIOC_S_FMT ioctl logic for Software
Defined Radio output

vidioc_s_fmt_meta_cap pointer to the function that implements VIDIOC_S_FMT ioctl logic for metadata
capture

vidioc_try_fmt_vid_cap pointer to the function that implements VIDIOC_TRY_FMT ioctl logic for video
capture in single plane mode

vidioc_try_fmt_vid_overlay pointer to the function that implements VIDIOC_TRY_FMT ioctl logic for
video overlay

vidioc_try_fmt_vid_out pointer to the function that implements VIDIOC_TRY_FMT ioctl logic for video
out in single plane mode

vidioc_try_fmt_vid_out_overlay pointer to the function that implements VIDIOC_TRY_FMT ioctl logic
for video overlay output

vidioc_try_fmt_vbi_cap pointer to the function that implements VIDIOC_TRY_FMT ioctl logic for raw
VBI capture

vidioc_try_fmt_vbi_out pointer to the function that implements VIDIOC_TRY_FMT ioctl logic for raw
VBI output

vidioc_try_fmt_sliced_vbi_cap pointer to the function that implements VIDIOC_TRY_FMT ioctl logic
for sliced VBI capture

vidioc_try_fmt_sliced_vbi_out pointer to the function that implements VIDIOC_TRY_FMT ioctl logic
for sliced VBI output

vidioc_try_fmt_vid_cap_mplane pointer to the function that implements VIDIOC_TRY_FMT ioctl logic
for video capture in multiple plane mode

vidioc_try_fmt_vid_out_mplane pointer to the function that implements VIDIOC_TRY_FMT ioctl logic
for video out in multiplane plane mode

vidioc_try_fmt_sdr_cap pointer to the function that implements VIDIOC_TRY_FMT ioctl logic for Soft-
ware Defined Radio capture

vidioc_try_fmt_sdr_out pointer to the function that implements VIDIOC_TRY_FMT ioctl logic for Soft-
ware Defined Radio output

vidioc_try_fmt_meta_cap pointer to the function that implements VIDIOC_TRY_FMT ioctl logic for meta-
data capture

vidioc_reqbufs pointer to the function that implements VIDIOC_REQBUFS ioctl
vidioc_querybuf pointer to the function that implements VIDIOC_QUERYBUF ioctl
vidioc_qbuf pointer to the function that implements VIDIOC_QBUF ioctl
vidioc_expbuf pointer to the function that implements VIDIOC_EXPBUF ioctl
vidioc_dqbuf pointer to the function that implements VIDIOC_DQBUF ioctl
vidioc_create_bufs pointer to the function that implements VIDIOC_CREATE_BUFS ioctl
vidioc_prepare_buf pointer to the function that implements VIDIOC_PREPARE_BUF ioctl

760 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

vidioc_overlay pointer to the function that implements VIDIOC_OVERLAY ioctl
vidioc_g_fbuf pointer to the function that implements VIDIOC_G_FBUF ioctl
vidioc_s_fbuf pointer to the function that implements VIDIOC_S_FBUF ioctl
vidioc_streamon pointer to the function that implements VIDIOC_STREAMON ioctl
vidioc_streamoff pointer to the function that implements VIDIOC_STREAMOFF ioctl
vidioc_g_std pointer to the function that implements VIDIOC_G_STD ioctl
vidioc_s_std pointer to the function that implements VIDIOC_S_STD ioctl
vidioc_querystd pointer to the function that implements VIDIOC_QUERYSTD ioctl
vidioc_enum_input pointer to the function that implements VIDIOC_ENUM_INPUT ioctl
vidioc_g_input pointer to the function that implements VIDIOC_G_INPUT ioctl
vidioc_s_input pointer to the function that implements VIDIOC_S_INPUT ioctl
vidioc_enum_output pointer to the function that implements VIDIOC_ENUM_OUTPUT ioctl
vidioc_g_output pointer to the function that implements VIDIOC_G_OUTPUT ioctl
vidioc_s_output pointer to the function that implements VIDIOC_S_OUTPUT ioctl
vidioc_queryctrl pointer to the function that implements VIDIOC_QUERYCTRL ioctl
vidioc_query_ext_ctrl pointer to the function that implements VIDIOC_QUERY_EXT_CTRL ioctl
vidioc_g_ctrl pointer to the function that implements VIDIOC_G_CTRL ioctl
vidioc_s_ctrl pointer to the function that implements VIDIOC_S_CTRL ioctl
vidioc_g_ext_ctrls pointer to the function that implements VIDIOC_G_EXT_CTRLS ioctl
vidioc_s_ext_ctrls pointer to the function that implements VIDIOC_S_EXT_CTRLS ioctl
vidioc_try_ext_ctrls pointer to the function that implements VIDIOC_TRY_EXT_CTRLS ioctl
vidioc_querymenu pointer to the function that implements VIDIOC_QUERYMENU ioctl
vidioc_enumaudio pointer to the function that implements VIDIOC_ENUMAUDIO ioctl
vidioc_g_audio pointer to the function that implements VIDIOC_G_AUDIO ioctl
vidioc_s_audio pointer to the function that implements VIDIOC_S_AUDIO ioctl
vidioc_enumaudout pointer to the function that implements VIDIOC_ENUMAUDOUT ioctl
vidioc_g_audout pointer to the function that implements VIDIOC_G_AUDOUT ioctl
vidioc_s_audout pointer to the function that implements VIDIOC_S_AUDOUT ioctl
vidioc_g_modulator pointer to the function that implements VIDIOC_G_MODULATOR ioctl
vidioc_s_modulator pointer to the function that implements VIDIOC_S_MODULATOR ioctl
vidioc_cropcap pointer to the function that implements VIDIOC_CROPCAP ioctl
vidioc_g_crop pointer to the function that implements VIDIOC_G_CROP ioctl
vidioc_s_crop pointer to the function that implements VIDIOC_S_CROP ioctl
vidioc_g_selection pointer to the function that implements VIDIOC_G_SELECTION ioctl
vidioc_s_selection pointer to the function that implements VIDIOC_S_SELECTION ioctl
vidioc_g_jpegcomp pointer to the function that implements VIDIOC_G_JPEGCOMP ioctl
vidioc_s_jpegcomp pointer to the function that implements VIDIOC_S_JPEGCOMP ioctl
vidioc_g_enc_index pointer to the function that implements VIDIOC_G_ENC_INDEX ioctl
vidioc_encoder_cmd pointer to the function that implements VIDIOC_ENCODER_CMD ioctl

2.1. Video4Linux devices 761

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

vidioc_try_encoder_cmd pointer to the function that implements VIDIOC_TRY_ENCODER_CMD ioctl
vidioc_decoder_cmd pointer to the function that implements VIDIOC_DECODER_CMD ioctl
vidioc_try_decoder_cmd pointer to the function that implements VIDIOC_TRY_DECODER_CMD ioctl
vidioc_g_parm pointer to the function that implements VIDIOC_G_PARM ioctl
vidioc_s_parm pointer to the function that implements VIDIOC_S_PARM ioctl
vidioc_g_tuner pointer to the function that implements VIDIOC_G_TUNER ioctl
vidioc_s_tuner pointer to the function that implements VIDIOC_S_TUNER ioctl
vidioc_g_frequency pointer to the function that implements VIDIOC_G_FREQUENCY ioctl
vidioc_s_frequency pointer to the function that implements VIDIOC_S_FREQUENCY ioctl
vidioc_enum_freq_bands pointer to the function that implements VIDIOC_ENUM_FREQ_BANDS ioctl
vidioc_g_sliced_vbi_cap pointer to the function that implements VIDIOC_G_SLICED_VBI_CAP ioctl
vidioc_log_status pointer to the function that implements VIDIOC_LOG_STATUS ioctl
vidioc_s_hw_freq_seek pointer to the function that implements VIDIOC_S_HW_FREQ_SEEK ioctl
vidioc_g_register pointer to the function that implements VIDIOC_DBG_G_REGISTER ioctl
vidioc_s_register pointer to the function that implements VIDIOC_DBG_S_REGISTER ioctl
vidioc_g_chip_info pointer to the function that implements VIDIOC_DBG_G_CHIP_INFO ioctl
vidioc_enum_framesizes pointer to the function that implements VIDIOC_ENUM_FRAMESIZES ioctl
vidioc_enum_frameintervals pointer to the function that implements VIDIOC_ENUM_FRAMEINTERVALS

ioctl
vidioc_s_dv_timings pointer to the function that implements VIDIOC_S_DV_TIMINGS ioctl
vidioc_g_dv_timings pointer to the function that implements VIDIOC_G_DV_TIMINGS ioctl
vidioc_query_dv_timings pointer to the function that implements VIDIOC_QUERY_DV_TIMINGS ioctl
vidioc_enum_dv_timings pointer to the function that implements VIDIOC_ENUM_DV_TIMINGS ioctl
vidioc_dv_timings_cap pointer to the function that implements VIDIOC_DV_TIMINGS_CAP ioctl
vidioc_g_edid pointer to the function that implements VIDIOC_G_EDID ioctl
vidioc_s_edid pointer to the function that implements VIDIOC_S_EDID ioctl
vidioc_subscribe_event pointer to the function that implements VIDIOC_SUBSCRIBE_EVENT ioctl
vidioc_unsubscribe_event pointer to the function that implements VIDIOC_UNSUBSCRIBE_EVENT ioctl
vidioc_default pointed used to allow other ioctls
const char * v4l2_norm_to_name(v4l2_std_id id)

Ancillary routine to analog TV standard name from its ID.
Parameters
v4l2_std_id id analog TV standard ID.
Return
returns a string with the name of the analog TV standard. If the standard is not found or if id points to
multiple standard, it returns “Unknown”.
void v4l2_video_std_frame_period(int id, struct v4l2_fract * frameperiod)

Ancillary routine that fills a struct v4l2_fract pointer with the default framerate fraction.
Parameters
int id analog TV sdandard ID.

762 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct v4l2_fract * frameperiod struct v4l2_fract pointer to be filled
int v4l2_video_std_construct(struct v4l2_standard * vs, int id, const char * name)

Ancillary routine that fills in the fields of a v4l2_standard structure according to the id parameter.
Parameters
struct v4l2_standard * vs struct v4l2_standard pointer to be filled
int id analog TV sdandard ID.
const char * name name of the standard to be used
Description

Note:

This ancillary routine is obsolete. Shouldn’t be used on newer drivers.

void v4l_printk_ioctl(const char * prefix, unsigned int cmd)
Ancillary routine that prints the ioctl in a human-readable format.

Parameters
const char * prefix prefix to be added at the ioctl prints.
unsigned int cmd ioctl name
Description

Note:

If prefix != NULL, then it will issue a printk(KERN_DEBUG "``s: ”, prefix)‘‘ first.

struct mutex * v4l2_ioctl_get_lock(struct video_device * vdev, unsigned int cmd)
get the mutex (if any) that it is need to lock for a given command.

Parameters
struct video_device * vdev Pointer to struct video_device.
unsigned int cmd Ioctl name.
Description

Note:

Internal use only. Should not be used outside V4L2 core.

long int v4l2_compat_ioctl32(struct file * file, unsigned int cmd, unsigned long arg)
32 Bits compatibility layer for 64 bits processors

Parameters
struct file * file Pointer to struct file.
unsigned int cmd Ioctl name.
unsigned long arg Ioctl argument.
v4l2_kioctl

Typedef: Typedef used to pass an ioctl handler.
Syntax

2.1. Video4Linux devices 763

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

long v4l2_kioctl (struct file * file,unsigned int cmd,void * arg);

Parameters
struct file * file Pointer to struct file.
unsigned int cmd Ioctl name.
void * arg Ioctl argument.
long int video_usercopy(struct file * file, unsigned int cmd, unsigned long int arg, v4l2_kioctl func)

copies data from/to userspace memory when an ioctl is issued.
Parameters
struct file * file Pointer to struct file.
unsigned int cmd Ioctl name.
unsigned long int arg Ioctl argument.
v4l2_kioctl func function that will handle the ioctl
Description

Note:

This routine should be used only inside the V4L2 core.

long int video_ioctl2(struct file * file, unsigned int cmd, unsigned long int arg)
Handles a V4L2 ioctl.

Parameters
struct file * file Pointer to struct file.
unsigned int cmd Ioctl name.
unsigned long int arg Ioctl argument.
Description
Method used to hancle an ioctl. Should be used to fill the v4l2_ioctl_ops.unlocked_ioctl on all V4L2
drivers.

2.1.25 Hauppauge TV EEPROM functions and data structures

enum tveeprom_audio_processor
Specifies the type of audio processor used on a Hauppauge device.

Constants
TVEEPROM_AUDPROC_NONE No audio processor present
TVEEPROM_AUDPROC_INTERNAL The audio processor is internal to the video processor
TVEEPROM_AUDPROC_MSP The audio processor is a MSPXXXX device
TVEEPROM_AUDPROC_OTHER The audio processor is another device
struct tveeprom

Contains the fields parsed from Hauppauge eeproms
Definition

764 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct tveeprom {
u32 has_radio;
u32 has_ir;
u32 has_MAC_address;
u32 tuner_type;
u32 tuner_formats;
u32 tuner_hauppauge_model;
u32 tuner2_type;
u32 tuner2_formats;
u32 tuner2_hauppauge_model;
u32 audio_processor;
u32 decoder_processor;
u32 model;
u32 revision;
u32 serial_number;
char rev_str;
u8 MAC_address;

};

Members
has_radio 1 if the device has radio; 0 otherwise.
has_ir If has_ir == 0, then it is unknown what the IR capabilities are. Otherwise: bit 0) 1 (= IR capabilities

are known); bit 1) IR receiver present; bit 2) IR transmitter (blaster) present.
has_MAC_address 0: no MAC, 1: MAC present, 2: unknown.
tuner_type type of the tuner (TUNER_*, as defined at include/media/tuner.h).
tuner_formats Supported analog TV standards (V4L2_STD_*).
tuner_hauppauge_model Hauppauge’s code for the device model number.
tuner2_type type of the second tuner (TUNER_*, as defined at include/media/tuner.h).
tuner2_formats Tuner 2 supported analog TV standards (V4L2_STD_*).
tuner2_hauppauge_model tuner 2 Hauppauge’s code for the device model number.
audio_processor analog audio decoder, as defined by enum tveeprom_audio_processor.
decoder_processor Hauppauge’s code for the decoder chipset. Unused by the drivers, as they probe

the decoder based on the PCI or USB ID.
model Hauppauge’s model number
revision Card revision number
serial_number Card’s serial number
rev_str Card revision converted to number
MAC_address MAC address for the network interface
void tveeprom_hauppauge_analog(struct tveeprom * tvee, unsigned char * eeprom_data)

Fill struct tveeprom using the contents of the eeprom previously filled at eeprom_data field.
Parameters
struct tveeprom * tvee Struct to where the eeprom parsed data will be filled;
unsigned char * eeprom_data Array with the contents of the eeprom_data. It should contain 256 bytes

filled with the contents of the eeprom read from the Hauppauge device.
int tveeprom_read(struct i2c_client * c, unsigned char * eedata, int len)

Reads the contents of the eeprom found at the Hauppauge devices.
Parameters

2.1. Video4Linux devices 765

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct i2c_client * c I2C client struct
unsigned char * eedata Array where the eeprom content will be stored.
int len Size of eedata array. If the eeprom content will be latter be parsed by tveep-

rom_hauppauge_analog(), len should be, at least, 256.

2.2 Digital TV (DVB) devices

Digital TV devices are implemented by several different drivers:
• A bridge driver that is responsible to talk with the bus where the other devices are connected (PCI,

USB, SPI), bind to the other drivers and implement the digital demux logic (either in software or in
hardware);

• Frontend drivers that are usually implemented as two separate drivers:
– A tuner driver that implements the logic with commands the part of the hardware with is repon-

sible to tune into a digital TV transponder or physical channel. The output of a tuner is usually
a baseband or Intermediate Frequency (IF) signal;

– A demodulator driver (a.k.a “demod”) that implements the logic with commands the digital TV
decoding hardware. The output of a demod is a digital stream, with multiple audio, video and
data channels typically multiplexed using MPEG Transport Stream 1.

On most hardware, the frontend drivers talk with the bridge driver using an I2C bus.

2.3 Digital TV Common functions

unsigned int intlog2(u32 value)
computes log2 of a value; the result is shifted left by 24 bits

Parameters
u32 value The value (must be != 0)
Description
to use rational values you can use the following method:

intlog2(value) = intlog2(value * 2^x) - x * 2^24
Some usecase examples:

intlog2(8) will give 3 << 24 = 3 * 2^24
intlog2(9) will give 3 << 24 + ... = 3.16... * 2^24
intlog2(1.5) = intlog2(3) - 2^24 = 0.584... * 2^24

Return
log2(value) * 2^24
unsigned int intlog10(u32 value)

computes log10 of a value; the result is shifted left by 24 bits
Parameters
u32 value The value (must be != 0)
Description
to use rational values you can use the following method:

1 Some standards use TCP/IP for multiplexing data, like DVB-H (an abandoned standard, not used anymore) and ATSC version 3.0
current proposals. Currently, the DVB subsystem doesn’t implement those standards.

766 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

intlog10(value) = intlog10(value * 10^x) - x * 2^24
An usecase example:

intlog10(1000) will give 3 << 24 = 3 * 2^24
due to the implementation intlog10(1000) might be not exactly 3 * 2^24

look at intlog2 for similar examples
Return
log10(value) * 2^24
struct dvb_adapter

represents a Digital TV adapter using Linux DVB API
Definition

struct dvb_adapter {
int num;
struct list_head list_head;
struct list_head device_list;
const char * name;
u8 proposed_mac;
void * priv;
struct device * device;
struct module * module;
int mfe_shared;
struct dvb_device * mfe_dvbdev;
struct mutex mfe_lock;

#if defined(CONFIG_MEDIA_CONTROLLER_DVB
struct media_device * mdev;
struct media_entity * conn;
struct media_pad * conn_pads;

#endif
};

Members
num Number of the adapter
list_head List with the DVB adapters
device_list List with the DVB devices
name Name of the adapter
proposed_mac proposed MAC address for the adapter
priv private data
device pointer to struct device
module pointer to struct module
mfe_shared mfe shared: indicates mutually exclusive frontends Thie usage of this flag is currently dep-

recated
mfe_dvbdev Frontend device in use, in the case of MFE
mfe_lock Lock to prevent using the other frontends when MFE is used.
mdev pointer to struct media_device, used when the media controller is used.
conn RF connector. Used only if the device has no separate tuner.
conn_pads pointer to struct media_pad associated with conn;
struct dvb_device

represents a DVB device node

2.3. Digital TV Common functions 767

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Definition

struct dvb_device {
struct list_head list_head;
const struct file_operations * fops;
struct dvb_adapter * adapter;
int type;
int minor;
u32 id;
int readers;
int writers;
int users;
wait_queue_head_t wait_queue;
int (* kernel_ioctl) (struct file *file, unsigned int cmd, void *arg);

#if defined(CONFIG_MEDIA_CONTROLLER_DVB
const char * name;
struct media_intf_devnode * intf_devnode;
unsigned tsout_num_entities;
struct media_entity * entity;
struct media_entity * tsout_entity;
struct media_pad * pads;
struct media_pad * tsout_pads;

#endif
void * priv;

};

Members
list_head List head with all DVB devices
fops pointer to struct file_operations
adapter pointer to the adapter that holds this device node
type type of the device: DVB_DEVICE_SEC, DVB_DEVICE_FRONTEND, DVB_DEVICE_DEMUX,

DVB_DEVICE_DVR, DVB_DEVICE_CA, DVB_DEVICE_NET
minor devnode minor number. Major number is always DVB_MAJOR.
id device ID number, inside the adapter
readers Initialized by the caller. Each call to open() in Read Only mode decreases this counter by one.
writers Initialized by the caller. Each call to open() in Read/Write mode decreases this counter by one.
users Initialized by the caller. Each call to open() in any mode decreases this counter by one.
wait_queue wait queue, used to wait for certain events inside one of the DVB API callers
kernel_ioctl callback function used to handle ioctl calls from userspace.
name Name to be used for the device at the Media Controller
intf_devnode Pointer to media_intf_devnode. Used by the dvbdev core to store the MC device node

interface
tsout_num_entities Number of Transport Stream output entities
entity pointer to struct media_entity associated with the device node
tsout_entity array with MC entities associated to each TS output node
pads pointer to struct media_pad associated with entity;
tsout_pads array with the source pads for each tsout_entity
priv private data
Description

768 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

This structure is used by the DVB core (frontend, CA, net, demux) in order to create the device nodes.
Usually, driver should not initialize this struct diretly.
int dvb_register_adapter(struct dvb_adapter * adap, const char * name, struct module * module,

struct device * device, short * adapter_nums)
Registers a new DVB adapter

Parameters
struct dvb_adapter * adap pointer to struct dvb_adapter
const char * name Adapter’s name
struct module * module initialized with THIS_MODULE at the caller
struct device * device pointer to struct device that corresponds to the device driver
short * adapter_nums Array with a list of the numbers for dvb_register_adapter; to select among

them. Typically, initialized with: DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nums)
int dvb_unregister_adapter(struct dvb_adapter * adap)

Unregisters a DVB adapter
Parameters
struct dvb_adapter * adap pointer to struct dvb_adapter
int dvb_register_device(struct dvb_adapter * adap, struct dvb_device ** pdvbdev, const struct

dvb_device * template, void * priv, int type, int demux_sink_pads)
Registers a new DVB device

Parameters
struct dvb_adapter * adap pointer to struct dvb_adapter
struct dvb_device ** pdvbdev pointer to the place where the new struct dvb_device will be stored
const struct dvb_device * template Template used to create pdvbdev;
void * priv private data
int type type of the device: DVB_DEVICE_SEC, DVB_DEVICE_FRONTEND, DVB_DEVICE_DEMUX,

DVB_DEVICE_DVR, DVB_DEVICE_CA, DVB_DEVICE_NET
int demux_sink_pads Number of demux outputs, to be used to create the TS outputs via the Media

Controller.
void dvb_remove_device(struct dvb_device * dvbdev)

Remove a registered DVB device
Parameters
struct dvb_device * dvbdev pointer to struct dvb_device
Description
This does not free memory. To do that, call dvb_free_device().
void dvb_free_device(struct dvb_device * dvbdev)

Free memory occupied by a DVB device.
Parameters
struct dvb_device * dvbdev pointer to struct dvb_device
Description
Call dvb_unregister_device() before calling this function.
void dvb_unregister_device(struct dvb_device * dvbdev)

Unregisters a DVB device
Parameters

2.3. Digital TV Common functions 769

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct dvb_device * dvbdev pointer to struct dvb_device
Description
This is a combination of dvb_remove_device() and dvb_free_device(). Using this function is usually a
mistake, and is often an indicator for a use-after-free bug (when a userspace process keeps a file handle
to a detached device).
int dvb_create_media_graph(struct dvb_adapter * adap, bool create_rf_connector)

Creates media graph for the Digital TV part of the device.
Parameters
struct dvb_adapter * adap pointer to struct dvb_adapter
bool create_rf_connector if true, it creates the RF connector too
Description
This function checks all DVB-related functions at the media controller entities and creates the needed
links for the media graph. It is capable of working with multiple tuners or multiple frontends, but it won’t
create links if the device has multiple tuners and multiple frontends or if the device has multiple muxes.
In such case, the caller driver should manually create the remaining links.

2.4 Digital TV Ring buffer

Those routines implement ring buffers used to handle digital TV data and copy it from/to userspace.

Note:

1. For performance reasons read and write routines don’t check buffer sizes and/or number of bytes
free/available. This has to be done before these routines are called. For example:

/* write @buflen: bytes */
free = dvb_ringbuffer_free(rbuf);
if (free >= buflen)

count = dvb_ringbuffer_write(rbuf, buffer, buflen);
else

/* do something */

/* read min. 1000, max. @bufsize: bytes */
avail = dvb_ringbuffer_avail(rbuf);
if (avail >= 1000)

count = dvb_ringbuffer_read(rbuf, buffer, min(avail, bufsize));
else

/* do something */

2. If there is exactly one reader and one writer, there is no need to lock read or write operations.
Two or more readers must be locked against each other. Flushing the buffer counts as a read
operation. Resetting the buffer counts as a read and write operation. Two or more writers must
be locked against each other.

struct dvb_ringbuffer
Describes a ring buffer used at DVB framework

Definition

struct dvb_ringbuffer {
u8 * data;
ssize_t size;
ssize_t pread;

770 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ssize_t pwrite;
int error;
wait_queue_head_t queue;
spinlock_t lock;

};

Members
data Area were the ringbuffer data is written
size size of the ringbuffer
pread next position to read
pwrite next position to write
error used by ringbuffer clients to indicate that an error happened.
queue Wait queue used by ringbuffer clients to indicate when buffer was filled
lock Spinlock used to protect the ringbuffer
void dvb_ringbuffer_init(struct dvb_ringbuffer * rbuf, void * data, size_t len)

initialize ring buffer, lock and queue
Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer
void * data pointer to the buffer where the data will be stored
size_t len bytes from ring buffer into buf
int dvb_ringbuffer_empty(struct dvb_ringbuffer * rbuf)

test whether buffer is empty
Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer
ssize_t dvb_ringbuffer_free(struct dvb_ringbuffer * rbuf)

returns the number of free bytes in the buffer
Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer
Return
number of free bytes in the buffer
ssize_t dvb_ringbuffer_avail(struct dvb_ringbuffer * rbuf)

returns the number of bytes waiting in the buffer
Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer
Return
number of bytes waiting in the buffer
void dvb_ringbuffer_reset(struct dvb_ringbuffer * rbuf)

resets the ringbuffer to initial state
Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer
Description
Resets the read and write pointers to zero and flush the buffer.

2.4. Digital TV Ring buffer 771

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

This counts as a read and write operation
void dvb_ringbuffer_flush(struct dvb_ringbuffer * rbuf)

flush buffer
Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer
void dvb_ringbuffer_flush_spinlock_wakeup(struct dvb_ringbuffer * rbuf)

flush buffer protected by spinlock and wake-up waiting task(s)
Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer
DVB_RINGBUFFER_PEEK(rbuf, offs)

peek at byte offs in the buffer
Parameters
rbuf pointer to struct dvb_ringbuffer
offs offset inside the ringbuffer
DVB_RINGBUFFER_SKIP(rbuf, num)

advance read ptr by num bytes
Parameters
rbuf pointer to struct dvb_ringbuffer
num number of bytes to advance
ssize_t dvb_ringbuffer_read_user(struct dvb_ringbuffer * rbuf, u8 __user * buf, size_t len)

Reads a buffer into a user pointer
Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer
u8 __user * buf pointer to the buffer where the data will be stored
size_t len bytes from ring buffer into buf
Description
This variant assumes that the buffer is a memory at the userspace. So, it will internally call
copy_to_user().
Return
number of bytes transferred or -EFAULT
void dvb_ringbuffer_read(struct dvb_ringbuffer * rbuf, u8 * buf, size_t len)

Reads a buffer into a pointer
Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer
u8 * buf pointer to the buffer where the data will be stored
size_t len bytes from ring buffer into buf
Description
This variant assumes that the buffer is a memory at the Kernel space
Return
number of bytes transferred or -EFAULT
DVB_RINGBUFFER_WRITE_BYTE(rbuf, byte)

write single byte to ring buffer

772 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Parameters
rbuf pointer to struct dvb_ringbuffer
byte byte to write
ssize_t dvb_ringbuffer_write(struct dvb_ringbuffer * rbuf, const u8 * buf, size_t len)

Writes a buffer into the ringbuffer
Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer
const u8 * buf pointer to the buffer where the data will be read
size_t len bytes from ring buffer into buf
Description
This variant assumes that the buffer is a memory at the Kernel space
Return
number of bytes transferred or -EFAULT
ssize_t dvb_ringbuffer_write_user(struct dvb_ringbuffer * rbuf, const u8 __user * buf, size_t len)

Writes a buffer received via a user pointer
Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer
const u8 __user * buf pointer to the buffer where the data will be read
size_t len bytes from ring buffer into buf
Description
This variant assumes that the buffer is a memory at the userspace. So, it will internally call
copy_from_user().
Return
number of bytes transferred or -EFAULT
ssize_t dvb_ringbuffer_pkt_write(struct dvb_ringbuffer * rbuf, u8 * buf, size_t len)

Write a packet into the ringbuffer.
Parameters
struct dvb_ringbuffer * rbuf Ringbuffer to write to.
u8 * buf Buffer to write.
size_t len Length of buffer (currently limited to 65535 bytes max).
Return
Number of bytes written, or -EFAULT, -ENOMEM, -EVINAL.
ssize_t dvb_ringbuffer_pkt_read_user(struct dvb_ringbuffer * rbuf, size_t idx, int offset, u8

__user * buf, size_t len)
Read from a packet in the ringbuffer.

Parameters
struct dvb_ringbuffer * rbuf Ringbuffer concerned.
size_t idx Packet index as returned by dvb_ringbuffer_pkt_next().
int offset Offset into packet to read from.
u8 __user * buf Destination buffer for data.
size_t len Size of destination buffer.

2.4. Digital TV Ring buffer 773

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Return
Number of bytes read, or -EFAULT.

Note:

unlike dvb_ringbuffer_read(), this does NOT update the read pointer in the ringbuffer. You must
use dvb_ringbuffer_pkt_dispose() to mark a packet as no longer required.

ssize_t dvb_ringbuffer_pkt_read(struct dvb_ringbuffer * rbuf, size_t idx, int offset, u8 * buf,
size_t len)

Read from a packet in the ringbuffer.
Parameters
struct dvb_ringbuffer * rbuf Ringbuffer concerned.
size_t idx Packet index as returned by dvb_ringbuffer_pkt_next().
int offset Offset into packet to read from.
u8 * buf Destination buffer for data.
size_t len Size of destination buffer.
Note
unlike dvb_ringbuffer_read_user(), this DOES update the read pointer in the ringbuffer.
Return
Number of bytes read, or -EFAULT.
void dvb_ringbuffer_pkt_dispose(struct dvb_ringbuffer * rbuf, size_t idx)

Dispose of a packet in the ring buffer.
Parameters
struct dvb_ringbuffer * rbuf Ring buffer concerned.
size_t idx Packet index as returned by dvb_ringbuffer_pkt_next().
ssize_t dvb_ringbuffer_pkt_next(struct dvb_ringbuffer * rbuf, size_t idx, size_t * pktlen)

Get the index of the next packet in a ringbuffer.
Parameters
struct dvb_ringbuffer * rbuf Ringbuffer concerned.
size_t idx Previous packet index, or -1 to return the first packet index.
size_t * pktlen On success, will be updated to contain the length of the packet in bytes. returns Packet

index (if >=0), or -1 if no packets available.

2.5 Digital TV Frontend kABI

2.5.1 Digital TV Frontend

The Digital TV Frontend kABI defines a driver-internal interface for registering low-level, hardware specific
driver to a hardware independent frontend layer. It is only of interest for Digital TV device driver writers.
The header file for this API is named dvb_frontend.h and located in drivers/media/dvb-core.

774 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Demodulator driver

The demodulator driver is responsible to talk with the decoding part of the hardware. Such driver
should implement dvb_frontend_ops, with tells what type of digital TV standards are supported, and
points to a series of functions that allow the DVB core to command the hardware via the code under
drivers/media/dvb-core/dvb_frontend.c.
A typical example of such struct in a driver foo is:

static struct dvb_frontend_ops foo_ops = {
.delsys = { SYS_DVBT, SYS_DVBT2, SYS_DVBC_ANNEX_A },
.info = {

.name = "foo DVB-T/T2/C driver",

.caps = FE_CAN_FEC_1_2 |
FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 |
FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK |
FE_CAN_QAM_16 |
FE_CAN_QAM_32 |
FE_CAN_QAM_64 |
FE_CAN_QAM_128 |
FE_CAN_QAM_256 |
FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO |
FE_CAN_MUTE_TS |
FE_CAN_2G_MODULATION,

.frequency_min = 42000000, /* Hz */

.frequency_max = 1002000000, /* Hz */

.symbol_rate_min = 870000,

.symbol_rate_max = 11700000
},
.init = foo_init,
.sleep = foo_sleep,
.release = foo_release,
.set_frontend = foo_set_frontend,
.get_frontend = foo_get_frontend,
.read_status = foo_get_status_and_stats,
.tune = foo_tune,
.i2c_gate_ctrl = foo_i2c_gate_ctrl,
.get_frontend_algo = foo_get_algo,

};

A typical example of such struct in a driver bar meant to be used on Satellite TV reception is:

static const struct dvb_frontend_ops bar_ops = {
.delsys = { SYS_DVBS, SYS_DVBS2 },
.info = {

.name = "Bar DVB-S/S2 demodulator",

.frequency_min = 500000, /* KHz */

.frequency_max = 2500000, /* KHz */

.frequency_stepsize = 0,

.symbol_rate_min = 1000000,

.symbol_rate_max = 45000000,

.symbol_rate_tolerance = 500,

.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK,

},

2.5. Digital TV Frontend kABI 775

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

.init = bar_init,

.sleep = bar_sleep,

.release = bar_release,

.set_frontend = bar_set_frontend,

.get_frontend = bar_get_frontend,

.read_status = bar_get_status_and_stats,

.i2c_gate_ctrl = bar_i2c_gate_ctrl,

.get_frontend_algo = bar_get_algo,

.tune = bar_tune,

/* Satellite-specific */
.diseqc_send_master_cmd = bar_send_diseqc_msg,
.diseqc_send_burst = bar_send_burst,
.set_tone = bar_set_tone,
.set_voltage = bar_set_voltage,

};

Note:

1. For satellite digital TV standards (DVB-S, DVB-S2, ISDB-S), the frequencies are specified in kHz,
while, for terrestrial and cable standards, they’re specified in Hz. Due to that, if the same frontend
supports both types, you’ll need to have two separate dvb_frontend_ops structures, one for each
standard.

2. The .i2c_gate_ctrl field is present only when the hardware has allows controlling an I2C gate
(either directly of via some GPIO pin), in order to remove the tuner from the I2C bus after a channel
is tuned.

3. All new drivers should implement the DVBv5 statistics via .read_status. Yet, there are a number
of callbacks meant to get statistics for signal strength, S/N and UCB. Those are there to provide
backward compatibility with legacy applications that don’t support the DVBv5 API. Implementing
those callbacks are optional. Those callbacks may be removed in the future, after we have all
existing drivers supporting DVBv5 stats.

4. Other callbacks are required for satellite TV standards, in order to control LNBf and DiSEqC: .dis-
eqc_send_master_cmd, .diseqc_send_burst, .set_tone, .set_voltage.

The drivers/media/dvb-core/dvb_frontend.c has a kernel thread with is responsible for tuning the
device. It supports multiple algoritms to detect a channel, as defined at enum dvbfe_algo().
The algorithm to be used is obtained via .get_frontend_algo. If the driver doesn’t fill its field at struct
dvb_frontend_ops, it will default to DVBFE_ALGO_SW, meaning that the dvb-core will do a zigzag when
tuning, e. g. it will try first to use the specified center frequency f, then, it will do f + ∆, f - ∆, f + 2 x ∆,
f - 2 x ∆ and so on.
If the hardware has internally a some sort of zigzag algorithm, you should define a .get_frontend_algo
function that would return DVBFE_ALGO_HW.

Note:

The core frontend support also supports a third type (DVBFE_ALGO_CUSTOM), in order to allow the
driver to define its own hardware-assisted algorithm. Very few hardware need to use it nowadays.
Using DVBFE_ALGO_CUSTOM require to provide other function callbacks at struct dvb_frontend_ops.

Attaching frontend driver to the bridge driver

Before using the Digital TV frontend core, the bridge driver should attach the frontend demod, tuner and
SEC devices and call dvb_register_frontend(), in order to register the new frontend at the subsys-
tem. At device detach/removal, the bridge driver should call dvb_unregister_frontend() to remove the

776 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

frontend from the core and then dvb_frontend_detach() to free the memory allocated by the frontend
drivers.
The drivers should also call dvb_frontend_suspend() as part of their handler for the de-
vice_driver.suspend(), and dvb_frontend_resume() as part of their handler for de-
vice_driver.resume().
A few other optional functions are provided to handle some special cases.

2.5.2 Digital TV Frontend statistics

Introduction

Digital TV frontends provide a range of statistics meant to help tuning the device and measuring the
quality of service.
For each statistics measurement, the driver should set the type of scale used, or
FE_SCALE_NOT_AVAILABLE if the statistics is not available on a given time. Drivers should also pro-
vide the number of statistics for each type. that’s usually 1 for most video standards 2.
Drivers should initialize each statistic counters with length and scale at its init code. For example, if the
frontend provides signal strength, it should have, on its init code:

struct dtv_frontend_properties *c = &state->fe.dtv_property_cache;

c->strength.len = 1;
c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;

And, when the statistics got updated, set the scale:

c->strength.stat[0].scale = FE_SCALE_DECIBEL;
c->strength.stat[0].uvalue = strength;

Note:

Please prefer to use FE_SCALE_DECIBEL instead of FE_SCALE_RELATIVE for signal strength and CNR
measurements.

Groups of statistics

There are several groups of statistics currently supported:
Signal strength (DTV_STAT_SIGNAL_STRENGTH)

• Measures the signal strength level at the analog part of the tuner or demod.
• Typically obtained from the gain applied to the tuner and/or frontend in order to detect the carrier.

When no carrier is detected, the gain is at the maximum value (so, strength is on its minimal).
2 For ISDB-T, it may provide both a global statistics and a per-layer set of statistics. On such cases, len should be equal to 4. The

first value corresponds to the global stat; the other ones to each layer, e. g.:
• c->cnr.stat[0] for global S/N carrier ratio,
• c->cnr.stat[1] for Layer A S/N carrier ratio,
• c->cnr.stat[2] for layer B S/N carrier ratio,
• c->cnr.stat[3] for layer C S/N carrier ratio.

2.5. Digital TV Frontend kABI 777

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• As the gain is visible through the set of registers that adjust the gain, typically, this statistics is
always available 3.

• Drivers should try to make it available all the times, as this statistics can be used when adjusting
an antenna position and to check for troubles at the cabling.

Carrier Signal to Noise ratio (DTV_STAT_CNR)
• Signal to Noise ratio for the main carrier.
• Signal to Noise measurement depends on the device. On some hardware, is available when the

main carrier is detected. On those hardware, CNR measurement usually comes from the tuner
(e. g. after FE_HAS_CARRIER, see fe_status).
On other devices, it requires inner FEC decoding, as the frontend measures it indirectly from
other parameters (e. g. after FE_HAS_VITERBI, see fe_status).
Having it available after inner FEC is more common.

Bit counts post-FEC (DTV_STAT_POST_ERROR_BIT_COUNT and DTV_STAT_POST_TOTAL_BIT_COUNT)

• Those counters measure the number of bits and bit errors errors after the forward error correction
(FEC) on the inner coding block (after Viterbi, LDPC or other inner code).

• Due to its nature, those statistics depend on full coding lock (e. g. after FE_HAS_SYNC or after
FE_HAS_LOCK, see fe_status).

Bit counts pre-FEC (DTV_STAT_PRE_ERROR_BIT_COUNT and DTV_STAT_PRE_TOTAL_BIT_COUNT)

• Those counters measure the number of bits and bit errors errors before the forward error cor-
rection (FEC) on the inner coding block (before Viterbi, LDPC or other inner code).

• Not all frontends provide this kind of statistics.
• Due to its nature, those statistics depend on inner coding lock (e. g. after FE_HAS_VITERBI, see
fe_status).

Block counts (DTV_STAT_ERROR_BLOCK_COUNT and DTV-STAT_TOTAL_BLOCK_COUNT)
• Those counters measure the number of blocks and block errors errors after the forward error

correction (FEC) on the inner coding block (before Viterbi, LDPC or other inner code).
• Due to its nature, those statistics depend on full coding lock (e. g. after FE_HAS_SYNC or after
FE_HAS_LOCK, see fe_status).

Note:

All counters should be monotonically increased as they’re collected from the hardware.

A typical example of the logic that handle status and statistics is:

static int foo_get_status_and_stats(struct dvb_frontend *fe)
{

struct foo_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;

int rc;
enum fe_status *status;

/* Both status and strength are always available */
rc = foo_read_status(fe, &status);

3 On a few devices, the gain keeps floating if no carrier. On such devices, strength report should check first if carrier is detected
at the tuner (FE_HAS_CARRIER, see fe_status), and otherwise return the lowest possible value.

778 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

if (rc < 0)
return rc;

rc = foo_read_strength(fe);
if (rc < 0)

return rc;

/* Check if CNR is available */
if (!(fe->status & FE_HAS_CARRIER))

return 0;

rc = foo_read_cnr(fe);
if (rc < 0)

return rc;

/* Check if pre-BER stats are available */
if (!(fe->status & FE_HAS_VITERBI))

return 0;

rc = foo_get_pre_ber(fe);
if (rc < 0)

return rc;

/* Check if post-BER stats are available */
if (!(fe->status & FE_HAS_SYNC))

return 0;

rc = foo_get_post_ber(fe);
if (rc < 0)

return rc;
}

static const struct dvb_frontend_ops ops = {
/* ... */
.read_status = foo_get_status_and_stats,

};

Statistics collect

On almost all frontend hardware, the bit and byte counts are stored by the hardware after a certain amount
of time or after the total bit/block counter reaches a certain value (usually programable), for example, on
every 1000 ms or after receiving 1,000,000 bits.
So, if you read the registers too soon, you’ll end by reading the same value as in the previous reading,
causing the monotonic value to be incremented too often.
Drivers should take the responsibility to avoid too often reads. That can be done using two approaches:

if the driver have a bit that indicates when a collected data is ready

Driver should check such bit before making the statistics available.
An example of such behavior can be found at this code snippet (adapted from mb86a20s driver’s logic):

static int foo_get_pre_ber(struct dvb_frontend *fe)
{

struct foo_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int rc, bit_error;

2.5. Digital TV Frontend kABI 779

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/* Check if the BER measures are already available */
rc = foo_read_u8(state, 0x54);
if (rc < 0)

return rc;

if (!rc)
return 0;

/* Read Bit Error Count */
bit_error = foo_read_u32(state, 0x55);
if (bit_error < 0)

return bit_error;

/* Read Total Bit Count */
rc = foo_read_u32(state, 0x51);
if (rc < 0)

return rc;

c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_error.stat[0].uvalue += bit_error;
c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_count.stat[0].uvalue += rc;

return 0;
}

If the driver doesn’t provide a statistics available check bit

A few devices, however, may not provide a way to check if the stats are available (or the way to check it
is unknown). They may not even provide a way to directly read the total number of bits or blocks.
On those devices, the driver need to ensure that it won’t be reading from the register too often and/or
estimate the total number of bits/blocks.
On such drivers, a typical routine to get statistics would be like (adapted from dib8000 driver’s logic):

struct foo_state {
/* ... */

unsigned long per_jiffies_stats;
}

static int foo_get_pre_ber(struct dvb_frontend *fe)
{

struct foo_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int rc, bit_error;
u64 bits;

/* Check if time for stats was elapsed */
if (!time_after(jiffies, state->per_jiffies_stats))

return 0;

/* Next stat should be collected in 1000 ms */
state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000);

/* Read Bit Error Count */
bit_error = foo_read_u32(state, 0x55);
if (bit_error < 0)

return bit_error;

780 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/*
* On this particular frontend, there's no register that
* would provide the number of bits per 1000ms sample. So,
* some function would calculate it based on DTV properties
*/
bits = get_number_of_bits_per_1000ms(fe);

c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_error.stat[0].uvalue += bit_error;
c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_count.stat[0].uvalue += bits;

return 0;
}

Please notice that, on both cases, we’re getting the statistics using the dvb_frontend_ops .read_status
callback. The rationale is that the frontend core will automatically call this function periodically (usually,
3 times per second, when the frontend is locked).
That warrants that we won’t miss to collect a counter and increment the monotonic stats at the right time.

2.5.3 Digital TV Frontend functions and types

struct dvb_frontend_tune_settings
parameters to adjust frontend tuning

Definition

struct dvb_frontend_tune_settings {
int min_delay_ms;
int step_size;
int max_drift;

};

Members
min_delay_ms minimum delay for tuning, in ms
step_size step size between two consecutive frequencies
max_drift maximum drift
NOTE
step_size is in Hz, for terrestrial/cable or kHz for satellite
struct dvb_tuner_info

Frontend name and min/max ranges/bandwidths
Definition

struct dvb_tuner_info {
char name;
u32 frequency_min;
u32 frequency_max;
u32 frequency_step;
u32 bandwidth_min;
u32 bandwidth_max;
u32 bandwidth_step;

};

Members
name name of the Frontend

2.5. Digital TV Frontend kABI 781

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

frequency_min minimal frequency supported
frequency_max maximum frequency supported
frequency_step frequency step
bandwidth_min minimal frontend bandwidth supported
bandwidth_max maximum frontend bandwidth supported
bandwidth_step frontend bandwidth step
NOTE
frequency parameters are in Hz, for terrestrial/cable or kHz for satellite.
struct analog_parameters

Parameters to tune into an analog/radio channel
Definition

struct analog_parameters {
unsigned int frequency;
unsigned int mode;
unsigned int audmode;
u64 std;

};

Members
frequency Frequency used by analog TV tuner (either in 62.5 kHz step, for TV, or 62.5 Hz for radio)
mode Tuner mode, as defined on enum v4l2_tuner_type
audmode Audio mode as defined for the rxsubchans field at videodev2.h, e. g. V4L2_TUNER_MODE_*
std TV standard bitmap as defined at videodev2.h, e. g. V4L2_STD_*
Description
Hybrid tuners should be supported by both V4L2 and DVB APIs. This struct contains the data that are used
by the V4L2 side. To avoid dependencies from V4L2 headers, all enums here are declared as integers.
enum dvbfe_algo

defines the algorithm used to tune into a channel
Constants
DVBFE_ALGO_HW Hardware Algorithm - Devices that support this algorithm do everything in hardware and

no software support is needed to handle them. Requesting these devices to LOCK is the only thing
required, device is supposed to do everything in the hardware.

DVBFE_ALGO_SW Software Algorithm - These are dumb devices, that require software to do everything
DVBFE_ALGO_CUSTOM Customizable Agorithm - Devices having this algorithm can be customized to have

specific algorithms in the frontend driver, rather than simply doing a software zig-zag. In this case the
zigzag maybe hardware assisted or it maybe completely done in hardware. In all cases, usage of this
algorithm, in conjunction with the search and track callbacks, utilizes the driver specific algorithm.

DVBFE_ALGO_RECOVERY Recovery Algorithm - These devices have AUTO recovery capabilities from LOCK
failure

enum dvbfe_search
search callback possible return status

Constants
DVBFE_ALGO_SEARCH_SUCCESS The frontend search algorithm completed and returned successfully
DVBFE_ALGO_SEARCH_ASLEEP The frontend search algorithm is sleeping
DVBFE_ALGO_SEARCH_FAILED The frontend search for a signal failed

782 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

DVBFE_ALGO_SEARCH_INVALID The frontend search algorith was probably supplied with invalid parame-
ters and the search is an invalid one

DVBFE_ALGO_SEARCH_AGAIN The frontend search algorithm was requested to search again
DVBFE_ALGO_SEARCH_ERROR The frontend search algorithm failed due to some error
struct dvb_tuner_ops

Tuner information and callbacks
Definition

struct dvb_tuner_ops {
struct dvb_tuner_info info;
void (* release) (struct dvb_frontend *fe);
int (* init) (struct dvb_frontend *fe);
int (* sleep) (struct dvb_frontend *fe);
int (* suspend) (struct dvb_frontend *fe);
int (* resume) (struct dvb_frontend *fe);
int (* set_params) (struct dvb_frontend *fe);
int (* set_analog_params) (struct dvb_frontend *fe, struct analog_parameters *p);
int (* set_config) (struct dvb_frontend *fe, void *priv_cfg);
int (* get_frequency) (struct dvb_frontend *fe, u32 *frequency);
int (* get_bandwidth) (struct dvb_frontend *fe, u32 *bandwidth);
int (* get_if_frequency) (struct dvb_frontend *fe, u32 *frequency);

#define TUNER_STATUS_LOCKED 1
#define TUNER_STATUS_STEREO 2
int (* get_status) (struct dvb_frontend *fe, u32 *status);
int (* get_rf_strength) (struct dvb_frontend *fe, u16 *strength);
int (* get_afc) (struct dvb_frontend *fe, s32 *afc);
int (* calc_regs) (struct dvb_frontend *fe, u8 *buf, int buf_len);
int (* set_frequency) (struct dvb_frontend *fe, u32 frequency);
int (* set_bandwidth) (struct dvb_frontend *fe, u32 bandwidth);

};

Members
info embedded struct dvb_tuner_info with tuner properties
release callback function called when frontend is dettached. drivers should free any allocated memory.
init callback function used to initialize the tuner device.
sleep callback function used to put the tuner to sleep.
suspend callback function used to inform that the Kernel will suspend.
resume callback function used to inform that the Kernel is resuming from suspend.
set_params callback function used to inform the tuner to tune into a digital TV channel. The properties

to be used are stored at dvb_frontend.dtv_property_cache;. The tuner demod can change the
parameters to reflect the changes needed for the channel to be tuned, and update statistics. This is
the recommended way to set the tuner parameters and should be used on newer drivers.

set_analog_params callback function used to tune into an analog TV channel on hybrid tuners. It passes
analog_parameters; to the driver.

set_config callback function used to send some tuner-specific parameters.
get_frequency get the actual tuned frequency
get_bandwidth get the bandwitdh used by the low pass filters
get_if_frequency get the Intermediate Frequency, in Hz. For baseband, should return 0.
get_status returns the frontend lock status
get_rf_strength returns the RF signal strengh. Used mostly to support analog TV and radio. Digital TV

should report, instead, via DVBv5 API (dvb_frontend.dtv_property_cache;).

2.5. Digital TV Frontend kABI 783

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

get_afc Used only by analog TV core. Reports the frequency drift due to AFC.
calc_regs callback function used to pass register data settings for simple tuners. Shouldn’t be used on

newer drivers.
set_frequency Set a new frequency. Shouldn’t be used on newer drivers.
set_bandwidth Set a new frequency. Shouldn’t be used on newer drivers.
NOTE
frequencies used on get_frequency and set_frequency are in Hz for terrestrial/cable or kHz for satellite.
struct analog_demod_info

Information struct for analog TV part of the demod
Definition

struct analog_demod_info {
char * name;

};

Members
name Name of the analog TV demodulator
struct analog_demod_ops

Demodulation information and callbacks for analog TV and radio
Definition

struct analog_demod_ops {
struct analog_demod_info info;
void (* set_params) (struct dvb_frontend *fe, struct analog_parameters *params);
int (* has_signal) (struct dvb_frontend *fe, u16 *signal);
int (* get_afc) (struct dvb_frontend *fe, s32 *afc);
void (* tuner_status) (struct dvb_frontend *fe);
void (* standby) (struct dvb_frontend *fe);
void (* release) (struct dvb_frontend *fe);
int (* i2c_gate_ctrl) (struct dvb_frontend *fe, int enable);
int (* set_config) (struct dvb_frontend *fe, void *priv_cfg);

};

Members
info pointer to struct analog_demod_info
set_params callback function used to inform the demod to set the demodulator parameters needed to

decode an analog or radio channel. The properties are passed via struct analog_params;.
has_signal returns 0xffff if has signal, or 0 if it doesn’t.
get_afc Used only by analog TV core. Reports the frequency drift due to AFC.
tuner_status callback function that returns tuner status bits, e. g. TUNER_STATUS_LOCKED and

TUNER_STATUS_STEREO.
standby set the tuner to standby mode.
release callback function called when frontend is dettached. drivers should free any allocated memory.
i2c_gate_ctrl controls the I2C gate. Newer drivers should use I2C mux support instead.
set_config callback function used to send some tuner-specific parameters.
struct dvb_frontend_ops

Demodulation information and callbacks for ditialt TV
Definition

784 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct dvb_frontend_ops {
struct dvb_frontend_info info;
u8 delsys;
void (* detach) (struct dvb_frontend *fe);
void (* release) (struct dvb_frontend* fe);
void (* release_sec) (struct dvb_frontend* fe);
int (* init) (struct dvb_frontend* fe);
int (* sleep) (struct dvb_frontend* fe);
int (* write) (struct dvb_frontend* fe, const u8 buf[], int len);
int (* tune) (struct dvb_frontend* fe,bool re_tune,unsigned int mode_flags,unsigned int␣

↪→*delay, enum fe_status *status);
enum dvbfe_algo (* get_frontend_algo) (struct dvb_frontend *fe);
int (* set_frontend) (struct dvb_frontend *fe);
int (* get_tune_settings) (struct dvb_frontend* fe, struct dvb_frontend_tune_settings*␣

↪→settings);
int (* get_frontend) (struct dvb_frontend *fe, struct dtv_frontend_properties *props);
int (* read_status) (struct dvb_frontend *fe, enum fe_status *status);
int (* read_ber) (struct dvb_frontend* fe, u32* ber);
int (* read_signal_strength) (struct dvb_frontend* fe, u16* strength);
int (* read_snr) (struct dvb_frontend* fe, u16* snr);
int (* read_ucblocks) (struct dvb_frontend* fe, u32* ucblocks);
int (* diseqc_reset_overload) (struct dvb_frontend* fe);
int (* diseqc_send_master_cmd) (struct dvb_frontend* fe, struct dvb_diseqc_master_cmd* cmd);
int (* diseqc_recv_slave_reply) (struct dvb_frontend* fe, struct dvb_diseqc_slave_reply*␣

↪→reply);
int (* diseqc_send_burst) (struct dvb_frontend *fe, enum fe_sec_mini_cmd minicmd);
int (* set_tone) (struct dvb_frontend *fe, enum fe_sec_tone_mode tone);
int (* set_voltage) (struct dvb_frontend *fe, enum fe_sec_voltage voltage);
int (* enable_high_lnb_voltage) (struct dvb_frontend* fe, long arg);
int (* dishnetwork_send_legacy_command) (struct dvb_frontend* fe, unsigned long cmd);
int (* i2c_gate_ctrl) (struct dvb_frontend* fe, int enable);
int (* ts_bus_ctrl) (struct dvb_frontend* fe, int acquire);
int (* set_lna) (struct dvb_frontend *);
enum dvbfe_search (* search) (struct dvb_frontend *fe);
struct dvb_tuner_ops tuner_ops;
struct analog_demod_ops analog_ops;
int (* set_property) (struct dvb_frontend* fe, struct dtv_property* tvp);
int (* get_property) (struct dvb_frontend* fe, struct dtv_property* tvp);

};

Members
info embedded struct dvb_tuner_info with tuner properties
delsys Delivery systems supported by the frontend
detach callback function called when frontend is detached. drivers should clean up, but not yet free the

struct dvb_frontend allocation.
release callback function called when frontend is ready to be freed. drivers should free any allocated

memory.
release_sec callback function requesting that the Satelite Equipment Control (SEC) driver to release and

free any memory allocated by the driver.
init callback function used to initialize the tuner device.
sleep callback function used to put the tuner to sleep.
write callback function used by some demod legacy drivers to allow other drivers to write data into their

registers. Should not be used on new drivers.
tune callback function used by demod drivers that use DVBFE_ALGO_HW; to tune into a frequency.
get_frontend_algo returns the desired hardware algorithm.

2.5. Digital TV Frontend kABI 785

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

set_frontend callback function used to inform the demod to set the parameters for demodulating a
digital TV channel. The properties to be used are stored at dvb_frontend.dtv_property_cache;. The
demod can change the parameters to reflect the changes needed for the channel to be decoded,
and update statistics.

get_tune_settings callback function
get_frontend callback function used to inform the parameters actuall in use. The properties to be used

are stored at dvb_frontend.dtv_property_cache; and update statistics. Please notice that it should
not return an error code if the statistics are not available because the demog is not locked.

read_status returns the locking status of the frontend.
read_ber legacy callback function to return the bit error rate. Newer drivers should provide such info

via DVBv5 API, e. g. set_frontend;/get_frontend;, implementing this callback only if DVBv3 API
compatibility is wanted.

read_signal_strength legacy callback function to return the signal strength. Newer drivers should pro-
vide such info via DVBv5 API, e. g. set_frontend;/get_frontend;, implementing this callback only
if DVBv3 API compatibility is wanted.

read_snr legacy callback function to return the Signal/Noise rate. Newer drivers should provide such info
via DVBv5 API, e. g. set_frontend;/get_frontend;, implementing this callback only if DVBv3 API
compatibility is wanted.

read_ucblocks legacy callback function to return the Uncorrected Error Blocks. Newer drivers should
provide such info via DVBv5 API, e. g. set_frontend;/get_frontend;, implementing this callback
only if DVBv3 API compatibility is wanted.

diseqc_reset_overload callback function to implement the FE_DISEQC_RESET_OVERLOAD ioctl (only
Satellite)

diseqc_send_master_cmd callback function to implement the FE_DISEQC_SEND_MASTER_CMD ioctl (only
Satellite).

diseqc_recv_slave_reply callback function to implement the FE_DISEQC_RECV_SLAVE_REPLY ioctl (only
Satellite)

diseqc_send_burst callback function to implement the FE_DISEQC_SEND_BURST ioctl (only Satellite).
set_tone callback function to implement the FE_SET_TONE ioctl (only Satellite).
set_voltage callback function to implement the FE_SET_VOLTAGE ioctl (only Satellite).
enable_high_lnb_voltage callback function to implement the FE_ENABLE_HIGH_LNB_VOLTAGE ioctl

(only Satellite).
dishnetwork_send_legacy_command callback function to implement the FE_DISHNETWORK_SEND_LEGACY_CMD

ioctl (only Satellite). Drivers should not use this, except when the DVB core emulation fails to provide
proper support (e.g. if set_voltage takes more than 8ms to work), and when backward compatibility
with this legacy API is required.

i2c_gate_ctrl controls the I2C gate. Newer drivers should use I2C mux support instead.
ts_bus_ctrl callback function used to take control of the TS bus.
set_lna callback function to power on/off/auto the LNA.
search callback function used on some custom algo search algos.
tuner_ops pointer to struct dvb_tuner_ops
analog_ops pointer to struct analog_demod_ops
set_property callback function to allow the frontend to validade incoming properties. Should not be

used on new drivers.
get_property callback function to allow the frontend to override outcoming properties. Should not be

used on new drivers.

786 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct dtv_frontend_properties
contains a list of properties that are specific to a digital TV standard.

Definition

struct dtv_frontend_properties {
u32 frequency;
enum fe_modulation modulation;
enum fe_sec_voltage voltage;
enum fe_sec_tone_mode sectone;
enum fe_spectral_inversion inversion;
enum fe_code_rate fec_inner;
enum fe_transmit_mode transmission_mode;
u32 bandwidth_hz;
enum fe_guard_interval guard_interval;
enum fe_hierarchy hierarchy;
u32 symbol_rate;
enum fe_code_rate code_rate_HP;
enum fe_code_rate code_rate_LP;
enum fe_pilot pilot;
enum fe_rolloff rolloff;
enum fe_delivery_system delivery_system;
enum fe_interleaving interleaving;
u8 isdbt_partial_reception;
u8 isdbt_sb_mode;
u8 isdbt_sb_subchannel;
u32 isdbt_sb_segment_idx;
u32 isdbt_sb_segment_count;
u8 isdbt_layer_enabled;
struct layer;
u32 stream_id;
u8 atscmh_fic_ver;
u8 atscmh_parade_id;
u8 atscmh_nog;
u8 atscmh_tnog;
u8 atscmh_sgn;
u8 atscmh_prc;
u8 atscmh_rs_frame_mode;
u8 atscmh_rs_frame_ensemble;
u8 atscmh_rs_code_mode_pri;
u8 atscmh_rs_code_mode_sec;
u8 atscmh_sccc_block_mode;
u8 atscmh_sccc_code_mode_a;
u8 atscmh_sccc_code_mode_b;
u8 atscmh_sccc_code_mode_c;
u8 atscmh_sccc_code_mode_d;
u32 lna;
struct dtv_fe_stats strength;
struct dtv_fe_stats cnr;
struct dtv_fe_stats pre_bit_error;
struct dtv_fe_stats pre_bit_count;
struct dtv_fe_stats post_bit_error;
struct dtv_fe_stats post_bit_count;
struct dtv_fe_stats block_error;
struct dtv_fe_stats block_count;

};

Members
frequency frequency in Hz for terrestrial/cable or in kHz for Satellite
modulation Frontend modulation type
voltage SEC voltage (only Satellite)

2.5. Digital TV Frontend kABI 787

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

sectone SEC tone mode (only Satellite)
inversion Spectral inversion
fec_inner Forward error correction inner Code Rate
transmission_mode Transmission Mode
bandwidth_hz Bandwidth, in Hz. A zero value means that userspace wants to autodetect.
guard_interval Guard Interval
hierarchy Hierarchy
symbol_rate Symbol Rate
code_rate_HP high priority stream code rate
code_rate_LP low priority stream code rate
pilot Enable/disable/autodetect pilot tones
rolloff Rolloff factor (alpha)
delivery_system FE delivery system (e. g. digital TV standard)
interleaving interleaving
isdbt_partial_reception ISDB-T partial reception (only ISDB standard)
isdbt_sb_mode ISDB-T Sound Broadcast (SB) mode (only ISDB standard)
isdbt_sb_subchannel ISDB-T SB subchannel (only ISDB standard)
isdbt_sb_segment_idx ISDB-T SB segment index (only ISDB standard)
isdbt_sb_segment_count ISDB-T SB segment count (only ISDB standard)
isdbt_layer_enabled ISDB Layer enabled (only ISDB standard)
layer per layer interleaving.
stream_id If different than zero, enable substream filtering, if hardware supports (DVB-S2 and DVB-T2).
atscmh_fic_ver Version number of the FIC (Fast Information Channel) signaling data (only ATSC-M/H)
atscmh_parade_id Parade identification number (only ATSC-M/H)
atscmh_nog Number of MH groups per MH subframe for a designated parade (only ATSC-M/H)
atscmh_tnog Total number of MH groups including all MH groups belonging to all MH parades in one MH

subframe (only ATSC-M/H)
atscmh_sgn Start group number (only ATSC-M/H)
atscmh_prc Parade repetition cycle (only ATSC-M/H)
atscmh_rs_frame_mode Reed Solomon (RS) frame mode (only ATSC-M/H)
atscmh_rs_frame_ensemble RS frame ensemble (only ATSC-M/H)
atscmh_rs_code_mode_pri RS code mode pri (only ATSC-M/H)
atscmh_rs_code_mode_sec RS code mode sec (only ATSC-M/H)
atscmh_sccc_block_mode Series Concatenated Convolutional Code (SCCC) Block Mode (only ATSC-M/H)
atscmh_sccc_code_mode_a SCCC code mode A (only ATSC-M/H)
atscmh_sccc_code_mode_b SCCC code mode B (only ATSC-M/H)
atscmh_sccc_code_mode_c SCCC code mode C (only ATSC-M/H)
atscmh_sccc_code_mode_d SCCC code mode D (only ATSC-M/H)
lna Power ON/OFF/AUTO the Linear Now-noise Amplifier (LNA)

788 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

strength DVBv5 API statistics: Signal Strength
cnr DVBv5 API statistics: Signal to Noise ratio of the (main) carrier
pre_bit_error DVBv5 API statistics: pre-Viterbi bit error count
pre_bit_count DVBv5 API statistics: pre-Viterbi bit count
post_bit_error DVBv5 API statistics: post-Viterbi bit error count
post_bit_count DVBv5 API statistics: post-Viterbi bit count
block_error DVBv5 API statistics: block error count
block_count DVBv5 API statistics: block count
NOTE
derivated statistics like Uncorrected Error blocks (UCE) are calculated on userspace.
Only a subset of the properties are needed for a given delivery system. For more info, consult the me-
dia_api.html with the documentation of the Userspace API.
struct dvb_frontend

Frontend structure to be used on drivers.
Definition

struct dvb_frontend {
struct kref refcount;
struct dvb_frontend_ops ops;
struct dvb_adapter * dvb;
void * demodulator_priv;
void * tuner_priv;
void * frontend_priv;
void * sec_priv;
void * analog_demod_priv;
struct dtv_frontend_properties dtv_property_cache;

#define DVB_FRONTEND_COMPONENT_TUNER 0
#define DVB_FRONTEND_COMPONENT_DEMOD 1
int (* callback) (void *adapter_priv, int component, int cmd, int arg);
int id;
unsigned int exit;

};

Members
refcount refcount to keep track of struct dvb_frontend references
ops embedded struct dvb_frontend_ops
dvb pointer to struct dvb_adapter
demodulator_priv demod private data
tuner_priv tuner private data
frontend_priv frontend private data
sec_priv SEC private data
analog_demod_priv Analog demod private data
dtv_property_cache embedded struct dtv_frontend_properties
callback callback function used on some drivers to call either the tuner or the demodulator.
id Frontend ID
exit Used to inform the DVB core that the frontend thread should exit (usually, means that the hardware

got disconnected.

2.5. Digital TV Frontend kABI 789

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int dvb_register_frontend(struct dvb_adapter * dvb, struct dvb_frontend * fe)
Registers a DVB frontend at the adapter

Parameters
struct dvb_adapter * dvb pointer to the dvb adapter
struct dvb_frontend * fe pointer to the frontend struct
Description
Allocate and initialize the private data needed by the frontend core to manage the frontend and calls
dvb_register_device() to register a new frontend. It also cleans the property cache that stores the
frontend parameters and selects the first available delivery system.
int dvb_unregister_frontend(struct dvb_frontend * fe)

Unregisters a DVB frontend
Parameters
struct dvb_frontend * fe pointer to the frontend struct
Description
Stops the frontend kthread, calls dvb_unregister_device() and frees the private frontend data allocated
by dvb_register_frontend().
NOTE
This function doesn’t frees the memory allocated by the demod, by the SEC driver and by the tuner. In
order to free it, an explicit call to dvb_frontend_detach() is needed, after calling this function.
void dvb_frontend_detach(struct dvb_frontend * fe)

Detaches and frees frontend specific data
Parameters
struct dvb_frontend * fe pointer to the frontend struct
Description
This function should be called after dvb_unregister_frontend(). It calls the SEC, tuner and
demod release functions: dvb_frontend_ops.release_sec, dvb_frontend_ops.tuner_ops.release,
dvb_frontend_ops.analog_ops.release and dvb_frontend_ops.release.
If the driver is compiled with CONFIG_MEDIA_ATTACH, it also decreases the module reference count,
needed to allow userspace to remove the previously used DVB frontend modules.
int dvb_frontend_suspend(struct dvb_frontend * fe)

Suspends a Digital TV frontend
Parameters
struct dvb_frontend * fe pointer to the frontend struct
Description
This function prepares a Digital TV frontend to suspend.
In order to prepare the tuner to suspend, if dvb_frontend_ops.tuner_ops.suspend() is available, it calls
it. Otherwise, it will call dvb_frontend_ops.tuner_ops.sleep(), if available.
It will also call dvb_frontend_ops.sleep() to put the demod to suspend.
The drivers should also call dvb_frontend_suspend() as part of their handler for the de-
vice_driver.suspend().
int dvb_frontend_resume(struct dvb_frontend * fe)

Resumes a Digital TV frontend
Parameters
struct dvb_frontend * fe pointer to the frontend struct

790 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
This function resumes the usual operation of the tuner after resume.
In order to resume the frontend, it calls the demod dvb_frontend_ops.init().
If dvb_frontend_ops.tuner_ops.resume() is available, It, it calls it. Otherwise,t will call
dvb_frontend_ops.tuner_ops.init(), if available.
Once tuner and demods are resumed, it will enforce that the SEC voltage and tone are restored to their
previous values and wake up the frontend’s kthread in order to retune the frontend.
The drivers should also call dvb_frontend_resume() as part of their handler for the de-
vice_driver.resume().
void dvb_frontend_reinitialise(struct dvb_frontend * fe)

forces a reinitialisation at the frontend
Parameters
struct dvb_frontend * fe pointer to the frontend struct
Description
Calls dvb_frontend_ops.init() and dvb_frontend_ops.tuner_ops.init(), and resets SEC tone and volt-
age (for Satellite systems).
NOTE
Currently, this function is used only by one driver (budget-av). It seems to be due to address some special
issue with that specific frontend.
void dvb_frontend_sleep_until(ktime_t * waketime, u32 add_usec)

Sleep for the amount of time given by add_usec parameter
Parameters
ktime_t * waketime pointer to a struct ktime_t
u32 add_usec time to sleep, in microseconds
Description
This function is used to measure the time required for the FE_DISHNETWORK_SEND_LEGACY_CMD ioctl to
work. It needs to be as precise as possible, as it affects the detection of the dish tone command at the
satellite subsystem.
Its used internally by the DVB frontend core, in order to emulate FE_DISHNETWORK_SEND_LEGACY_CMD using
the dvb_frontend_ops.set_voltage() callback.
NOTE
it should not be used at the drivers, as the emulation for the legacy callback is provided by the Ker-
nel. The only situation where this should be at the drivers is when there are some bugs at the hard-
ware that would prevent the core emulation to work. On such cases, the driver would be writing a
dvb_frontend_ops.dishnetwork_send_legacy_command() and calling this function directly.

2.6 Digital TV Demux kABI

2.6.1 Digital TV Demux

The Kernel Digital TV Demux kABI defines a driver-internal interface for registering low-level, hardware
specific driver to a hardware independent demux layer. It is only of interest for Digital TV device driver
writers. The header file for this kABI is named demux.h and located in drivers/media/dvb-core.

2.6. Digital TV Demux kABI 791

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The demux kABI should be implemented for each demux in the system. It is used to select the TS source
of a demux and to manage the demux resources. When the demux client allocates a resource via the
demux kABI, it receives a pointer to the kABI of that resource.
Each demux receives its TS input from a DVB front-end or from memory, as set via this demux kABI. In a
system with more than one front-end, the kABI can be used to select one of the DVB front-ends as a TS
source for a demux, unless this is fixed in the HW platform.
The demux kABI only controls front-ends regarding to their connections with demuxes; the kABI used to
set the other front-end parameters, such as tuning, are devined via the Digital TV Frontend kABI.
The functions that implement the abstract interface demux should be defined static or module private
and registered to the Demux core for external access. It is not necessary to implement every function
in the struct &dmx_demux. For example, a demux interface might support Section filtering, but not PES
filtering. The kABI client is expected to check the value of any function pointer before calling the function:
the value of NULL means that the function is not available.
Whenever the functions of the demux API modify shared data, the possibilities of lost update and race
condition problems should be addressed, e.g. by protecting parts of code with mutexes.
Note that functions called from a bottom half context must not sleep. Even a simple memory allocation
without using GFP_ATOMIC can result in a kernel thread being put to sleep if swapping is needed. For
example, the Linux Kernel calls the functions of a network device interface from a bottom half context.
Thus, if a demux kABI function is called from network device code, the function must not sleep.

2.7 Demux Callback API

2.7.1 Demux Callback

This kernel-space API comprises the callback functions that deliver filtered data to the demux client. Unlike
the other DVB kABIs, these functions are provided by the client and called from the demux code.
The function pointers of this abstract interface are not packed into a structure as in the other demux APIs,
because the callback functions are registered and used independent of each other. As an example, it is
possible for the API client to provide several callback functions for receiving TS packets and no callbacks
for PES packets or sections.
The functions that implement the callback API need not be re-entrant: when a demux driver calls one of
these functions, the driver is not allowed to call the function again before the original call returns. If a
callback is triggered by a hardware interrupt, it is recommended to use the Linux bottom half mechanism
or start a tasklet instead of making the callback function call directly from a hardware interrupt.
This mechanism is implemented by dmx_ts_cb() and dmx_section_cb() callbacks.
enum ts_filter_type

filter type bitmap for dmx_ts_feed.set()
Constants
TS_PACKET Send TS packets (188 bytes) to callback (default).
TS_PAYLOAD_ONLY In case TS_PACKET is set, only send the TS payload (<=184 bytes per packet) to call-

back
TS_DECODER Send stream to built-in decoder (if present).
TS_DEMUX In case TS_PACKET is set, send the TS to the demux device, not to the dvr device
struct dmx_ts_feed

Structure that contains a TS feed filter
Definition

792 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct dmx_ts_feed {
int is_filtering;
struct dmx_demux * parent;
void * priv;
int (* set) (struct dmx_ts_feed *feed,u16 pid,int type,enum dmx_ts_pes pes_type, ktime_t␣

↪→timeout);
int (* start_filtering) (struct dmx_ts_feed *feed);
int (* stop_filtering) (struct dmx_ts_feed *feed);

};

Members
is_filtering Set to non-zero when filtering in progress
parent pointer to struct dmx_demux
priv pointer to private data of the API client
set sets the TS filter
start_filtering starts TS filtering
stop_filtering stops TS filtering
Description
A TS feed is typically mapped to a hardware PID filter on the demux chip. Using this API, the client can
set the filtering properties to start/stop filtering TS packets on a particular TS feed.
struct dmx_section_filter

Structure that describes a section filter
Definition

struct dmx_section_filter {
u8 filter_value;
u8 filter_mask;
u8 filter_mode;
struct dmx_section_feed * parent;
void * priv;

};

Members
filter_value Contains up to 16 bytes (128 bits) of the TS section header that will be matched by the

section filter
filter_mask Contains a 16 bytes (128 bits) filter mask with the bits specified by filter_value that will

be used on the filter match logic.
filter_mode Contains a 16 bytes (128 bits) filter mode.
parent Pointer to struct dmx_section_feed.
priv Pointer to private data of the API client.
Description
The filter_mask controls which bits of filter_value are compared with the section headers/payload. On
a binary value of 1 in filter_mask, the corresponding bits are compared. The filter only accepts sections
that are equal to filter_value in all the tested bit positions.
struct dmx_section_feed

Structure that contains a section feed filter
Definition

2.7. Demux Callback API 793

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct dmx_section_feed {
int is_filtering;
struct dmx_demux * parent;
void * priv;
int check_crc;
int (* set) (struct dmx_section_feed *feed,u16 pid, int check_crc);
int (* allocate_filter) (struct dmx_section_feed *feed, struct dmx_section_filter **filter);
int (* release_filter) (struct dmx_section_feed *feed, struct dmx_section_filter *filter);
int (* start_filtering) (struct dmx_section_feed *feed);
int (* stop_filtering) (struct dmx_section_feed *feed);

};

Members
is_filtering Set to non-zero when filtering in progress
parent pointer to struct dmx_demux
priv pointer to private data of the API client
check_crc If non-zero, check the CRC values of filtered sections.
set sets the section filter
allocate_filter This function is used to allocate a section filter on the demux. It should only be called

when no filtering is in progress on this section feed. If a filter cannot be allocated, the function fails
with -ENOSPC.

release_filter This function releases all the resources of a previously allocated section filter. The func-
tion should not be called while filtering is in progress on this section feed. After calling this function,
the caller should not try to dereference the filter pointer.

start_filtering starts section filtering
stop_filtering stops section filtering
Description
A TS feed is typically mapped to a hardware PID filter on the demux chip. Using this API, the client can
set the filtering properties to start/stop filtering TS packets on a particular TS feed.
dmx_ts_cb

Typedef: DVB demux TS filter callback function prototype
Syntax

int dmx_ts_cb (const u8 * buffer1,size_t buffer1_length,const u8 *
buffer2,size_t buffer2_length,struct dmx_ts_feed * source);

Parameters
const u8 * buffer1 Pointer to the start of the filtered TS packets.
size_t buffer1_length Length of the TS data in buffer1.
const u8 * buffer2 Pointer to the tail of the filtered TS packets, or NULL.
size_t buffer2_length Length of the TS data in buffer2.
struct dmx_ts_feed * source Indicates which TS feed is the source of the callback.
Description
This function callback prototype, provided by the client of the demux API, is called from the demux code.
The function is only called when filtering on a TS feed has been enabled using the start_filtering() function
at the dmx_demux. Any TS packets that match the filter settings are copied to a circular buffer. The filtered
TS packets are delivered to the client using this callback function. It is expected that the buffer1 and
buffer2 callback parameters point to addresses within the circular buffer, but other implementations are

794 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

also possible. Note that the called party should not try to free the memory the buffer1 and buffer2
parameters point to.
When this function is called, the buffer1 parameter typically points to the start of the first undelivered TS
packet within a circular buffer. The buffer2 buffer parameter is normally NULL, except when the received
TS packets have crossed the last address of the circular buffer and “wrapped” to the beginning of the
buffer. In the latter case the buffer1 parameter would contain an address within the circular buffer,
while the buffer2 parameter would contain the first address of the circular buffer. The number of bytes
delivered with this function (i.e. buffer1_length + buffer2_length) is usually equal to the value of
callback_length parameter given in the set() function, with one exception: if a timeout occurs before
receiving callback_length bytes of TS data, any undelivered packets are immediately delivered to the
client by calling this function. The timeout duration is controlled by the set() function in the TS Feed API.
If a TS packet is received with errors that could not be fixed by the TS-level forward error correction (FEC),
the Transport_error_indicator flag of the TS packet header should be set. The TS packet should not be
discarded, as the error can possibly be corrected by a higher layer protocol. If the called party is slow
in processing the callback, it is possible that the circular buffer eventually fills up. If this happens, the
demux driver should discard any TS packets received while the buffer is full and return -EOVERFLOW.
The type of data returned to the callback can be selected by the dmx_ts_feed.**set** function. The type
parameter decides if the raw TS packet (TS_PACKET) or just the payload (TS_PACKET|TS_PAYLOAD_ONLY)
should be returned. If additionally the TS_DECODER bit is set the stream will also be sent to the hardware
MPEG decoder.
Return

• 0, on success;
• -EOVERFLOW, on buffer overflow.

dmx_section_cb
Typedef: DVB demux TS filter callback function prototype

Syntax
int dmx_section_cb (const u8 * buffer1,size_t buffer1_len,const u8 *
buffer2,size_t buffer2_len,struct dmx_section_filter * source);

Parameters
const u8 * buffer1 Pointer to the start of the filtered section, e.g. within the circular buffer of the

demux driver.
size_t buffer1_len Length of the filtered section data in buffer1, including headers and CRC.
const u8 * buffer2 Pointer to the tail of the filtered section data, or NULL. Useful to handle the wrapping

of a circular buffer.
size_t buffer2_len Length of the filtered section data in buffer2, including headers and CRC.
struct dmx_section_filter * source Indicates which section feed is the source of the callback.
Description
This function callback prototype, provided by the client of the demux API, is called from the demux
code. The function is only called when filtering of sections has been enabled using the function
dmx_ts_feed.**start_filtering**. When the demux driver has received a complete section that matches
at least one section filter, the client is notified via this callback function. Normally this function is called
for each received section; however, it is also possible to deliver multiple sections with one callback, for
example when the system load is high. If an error occurs while receiving a section, this function should be
called with the corresponding error type set in the success field, whether or not there is data to deliver.
The Section Feed implementation should maintain a circular buffer for received sections. However, this is
not necessary if the Section Feed API is implemented as a client of the TS Feed API, because the TS Feed
implementation then buffers the received data. The size of the circular buffer can be configured using the
dmx_ts_feed.**set** function in the Section Feed API. If there is no room in the circular buffer when a new
section is received, the section must be discarded. If this happens, the value of the success parameter
should be DMX_OVERRUN_ERROR on the next callback.

2.7. Demux Callback API 795

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

enum dmx_frontend_source
Used to identify the type of frontend

Constants
DMX_MEMORY_FE The source of the demux is memory. It means that the MPEG-TS to be filtered comes from

userspace, via write() syscall.
DMX_FRONTEND_0 The source of the demux is a frontend connected to the demux.
struct dmx_frontend

Structure that lists the frontends associated with a demux
Definition

struct dmx_frontend {
struct list_head connectivity_list;
enum dmx_frontend_source source;

};

Members
connectivity_list List of front-ends that can be connected to a particular demux;
source Type of the frontend.
Description
FIXME: this structure should likely be replaced soon by some media-controller based logic.
enum dmx_demux_caps

MPEG-2 TS Demux capabilities bitmap
Constants
DMX_TS_FILTERING set if TS filtering is supported;
DMX_SECTION_FILTERING set if section filtering is supported;
DMX_MEMORY_BASED_FILTERING set if write() available.
Description
Those flags are OR’ed in the dmx_demux.capabilities field
DMX_FE_ENTRY(list)

Casts elements in the list of registered front-ends from the generic type struct list_head to the type
* struct dmx_frontend

Parameters
list list of struct dmx_frontend
struct dmx_demux

Structure that contains the demux capabilities and callbacks.
Definition

struct dmx_demux {
enum dmx_demux_caps capabilities;
struct dmx_frontend * frontend;
void * priv;
int (* open) (struct dmx_demux *demux);
int (* close) (struct dmx_demux *demux);
int (* write) (struct dmx_demux *demux, const char __user *buf, size_t count);
int (* allocate_ts_feed) (struct dmx_demux *demux,struct dmx_ts_feed **feed, dmx_ts_cb␣

↪→callback);
int (* release_ts_feed) (struct dmx_demux *demux, struct dmx_ts_feed *feed);
int (* allocate_section_feed) (struct dmx_demux *demux,struct dmx_section_feed **feed, dmx_

↪→section_cb callback);

796 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int (* release_section_feed) (struct dmx_demux *demux, struct dmx_section_feed *feed);
int (* add_frontend) (struct dmx_demux *demux, struct dmx_frontend *frontend);
int (* remove_frontend) (struct dmx_demux *demux, struct dmx_frontend *frontend);
struct list_head *(* get_frontends) (struct dmx_demux *demux);
int (* connect_frontend) (struct dmx_demux *demux, struct dmx_frontend *frontend);
int (* disconnect_frontend) (struct dmx_demux *demux);
int (* get_pes_pids) (struct dmx_demux *demux, u16 *pids);

};

Members
capabilities Bitfield of capability flags.
frontend Front-end connected to the demux
priv Pointer to private data of the API client
open This function reserves the demux for use by the caller and, if necessary, initializes the demux. When

the demux is no longer needed, the function close should be called. It should be possible for multiple
clients to access the demux at the same time. Thus, the function implementation should increment
the demux usage count when open is called and decrement it when close is called. The demux
function parameter contains a pointer to the demux API and instance data. It returns: 0 on success;
-EUSERS, if maximum usage count was reached; -EINVAL, on bad parameter.

close This function reserves the demux for use by the caller and, if necessary, initializes the demux.
When the demux is no longer needed, the function close should be called. It should be possible for
multiple clients to access the demux at the same time. Thus, the function implementation should
increment the demux usage count when open is called and decrement it when close is called. The
demux function parameter contains a pointer to the demux API and instance data. It returns: 0 on
success; -ENODEV, if demux was not in use (e. g. no users); -EINVAL, on bad parameter.

write This function provides the demux driver with a memory buffer containing TS packets. Instead
of receiving TS packets from the DVB front-end, the demux driver software will read packets from
memory. Any clients of this demux with active TS, PES or Section filters will receive filtered data
via the Demux callback API (see 0). The function returns when all the data in the buffer has been
consumed by the demux. Demux hardware typically cannot read TS from memory. If this is the case,
memory-based filtering has to be implemented entirely in software. The demux function parameter
contains a pointer to the demux API and instance data. The buf function parameter contains a
pointer to the TS data in kernel-space memory. The count function parameter contains the length
of the TS data. It returns: 0 on success; -ERESTARTSYS, if mutex lock was interrupted; -EINTR, if a
signal handling is pending; -ENODEV, if demux was removed; -EINVAL, on bad parameter.

allocate_ts_feed Allocates a new TS feed, which is used to filter the TS packets carrying a certain PID.
The TS feed normally corresponds to a hardware PID filter on the demux chip. The demux function
parameter contains a pointer to the demux API and instance data. The feed function parameter
contains a pointer to the TS feed API and instance data. The callback function parameter con-
tains a pointer to the callback function for passing received TS packet. It returns: 0 on success;
-ERESTARTSYS, if mutex lock was interrupted; -EBUSY, if no more TS feeds is available; -EINVAL, on
bad parameter.

release_ts_feed Releases the resources allocated with allocate_ts_feed. Any filtering in progress on
the TS feed should be stopped before calling this function. The demux function parameter contains
a pointer to the demux API and instance data. The feed function parameter contains a pointer to
the TS feed API and instance data. It returns: 0 on success; -EINVAL on bad parameter.

allocate_section_feed Allocates a new section feed, i.e. a demux resource for filtering and receiving
sections. On platforms with hardware support for section filtering, a section feed is directly mapped
to the demux HW. On other platforms, TS packets are first PID filtered in hardware and a hardware
section filter then emulated in software. The caller obtains an API pointer of type dmx_section_feed_t
as an out parameter. Using this API the caller can set filtering parameters and start receiving sections.
The demux function parameter contains a pointer to the demux API and instance data. The feed
function parameter contains a pointer to the TS feed API and instance data. The callback function

2.7. Demux Callback API 797

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

parameter contains a pointer to the callback function for passing received TS packet. It returns: 0
on success; -EBUSY, if no more TS feeds is available; -EINVAL, on bad parameter.

release_section_feed Releases the resources allocated with allocate_section_feed, including allo-
cated filters. Any filtering in progress on the section feed should be stopped before calling this
function. The demux function parameter contains a pointer to the demux API and instance data.
The feed function parameter contains a pointer to the TS feed API and instance data. It returns: 0
on success; -EINVAL, on bad parameter.

add_frontend Registers a connectivity between a demux and a front-end, i.e., indicates that the demux
can be connected via a call to connect_frontend to use the given front-end as a TS source. The client
of this function has to allocate dynamic or static memory for the frontend structure and initialize its
fields before calling this function. This function is normally called during the driver initialization. The
caller must not free the memory of the frontend struct before successfully calling remove_frontend.
The demux function parameter contains a pointer to the demux API and instance data. The frontend
function parameter contains a pointer to the front-end instance data. It returns: 0 on success; -
EINVAL, on bad parameter.

remove_frontend Indicates that the given front-end, registered by a call to add_frontend, can no longer
be connected as a TS source by this demux. The function should be called when a front-end driver
or a demux driver is removed from the system. If the front-end is in use, the function fails with
the return value of -EBUSY. After successfully calling this function, the caller can free the memory of
the frontend struct if it was dynamically allocated before the add_frontend operation. The demux
function parameter contains a pointer to the demux API and instance data. The frontend function
parameter contains a pointer to the front-end instance data. It returns: 0 on success; -ENODEV, if
the front-end was not found, -EINVAL, on bad parameter.

get_frontends Provides the APIs of the front-ends that have been registered for this demux. Any of the
front-ends obtained with this call can be used as a parameter for connect_frontend. The include file
demux.h contains the macro DMX_FE_ENTRY() for converting an element of the generic type struct
list_head * to the type struct dmx_frontend . The caller must not free the memory of any of the
elements obtained via this function call. The **demux* function parameter contains a pointer to the
demux API and instance data. It returns a struct list_head pointer to the list of front-end interfaces,
or NULL in the case of an empty list.

connect_frontend Connects the TS output of the front-end to the input of the demux. A demux can only
be connected to a front-end registered to the demux with the function add_frontend. It may or may
not be possible to connect multiple demuxes to the same front-end, depending on the capabilities of
the HW platform. When not used, the front-end should be released by calling disconnect_frontend.
The demux function parameter contains a pointer to the demux API and instance data. The frontend
function parameter contains a pointer to the front-end instance data. It returns: 0 on success; -
EINVAL, on bad parameter.

disconnect_frontend Disconnects the demux and a front-end previously connected by a con-
nect_frontend call. The demux function parameter contains a pointer to the demux API and in-
stance data. It returns: 0 on success; -EINVAL on bad parameter.

get_pes_pids Get the PIDs for DMX_PES_AUDIO0, DMX_PES_VIDEO0, DMX_PES_TELETEXT0,
DMX_PES_SUBTITLE0 and DMX_PES_PCR0. The demux function parameter contains a pointer
to the demux API and instance data. The pids function parameter contains an array with five u16
elements where the PIDs will be stored. It returns: 0 on success; -EINVAL on bad parameter.

2.8 Digital TV Conditional Access kABI

struct dvb_ca_en50221
Structure describing a CA interface

Definition

798 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct dvb_ca_en50221 {
struct module * owner;
int (* read_attribute_mem) (struct dvb_ca_en50221 *ca, int slot, int address);
int (* write_attribute_mem) (struct dvb_ca_en50221 *ca, int slot, int address, u8 value);
int (* read_cam_control) (struct dvb_ca_en50221 *ca, int slot, u8 address);
int (* write_cam_control) (struct dvb_ca_en50221 *ca, int slot, u8 address, u8 value);
int (* read_data) (struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
int (* write_data) (struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
int (* slot_reset) (struct dvb_ca_en50221 *ca, int slot);
int (* slot_shutdown) (struct dvb_ca_en50221 *ca, int slot);
int (* slot_ts_enable) (struct dvb_ca_en50221 *ca, int slot);
int (* poll_slot_status) (struct dvb_ca_en50221 *ca, int slot, int open);
void * data;
void * private;

};

Members
owner the module owning this structure
read_attribute_mem function for reading attribute memory on the CAM
write_attribute_mem function for writing attribute memory on the CAM
read_cam_control function for reading the control interface on the CAM
write_cam_control function for reading the control interface on the CAM
read_data function for reading data (block mode)
write_data function for writing data (block mode)
slot_reset function to reset the CAM slot
slot_shutdown function to shutdown a CAM slot
slot_ts_enable function to enable the Transport Stream on a CAM slot
poll_slot_status function to poll slot status. Only necessary if DVB_CA_FLAG_EN50221_IRQ_CAMCHANGE

is not set.
data private data, used by caller.
private Opaque data used by the dvb_ca core. Do not modify!
NOTE
the read_*, write_* and poll_slot_status functions will be called for different slots concurrently and need
to use locks where and if appropriate. There will be no concurrent access to one slot.
void dvb_ca_en50221_camchange_irq(struct dvb_ca_en50221 * pubca, int slot, int change_type)

A CAMCHANGE IRQ has occurred.
Parameters
struct dvb_ca_en50221 * pubca CA instance.
int slot Slot concerned.
int change_type One of the DVB_CA_CAMCHANGE_* values
void dvb_ca_en50221_camready_irq(struct dvb_ca_en50221 * pubca, int slot)

A CAMREADY IRQ has occurred.
Parameters
struct dvb_ca_en50221 * pubca CA instance.
int slot Slot concerned.

2.8. Digital TV Conditional Access kABI 799

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void dvb_ca_en50221_frda_irq(struct dvb_ca_en50221 * ca, int slot)
An FR or a DA IRQ has occurred.

Parameters
struct dvb_ca_en50221 * ca CA instance.
int slot Slot concerned.
int dvb_ca_en50221_init(struct dvb_adapter * dvb_adapter, struct dvb_ca_en50221 * ca, int flags,

int slot_count)
Initialise a new DVB CA device.

Parameters
struct dvb_adapter * dvb_adapter DVB adapter to attach the new CA device to.
struct dvb_ca_en50221 * ca The dvb_ca instance.
int flags Flags describing the CA device (DVB_CA_EN50221_FLAG_*).
int slot_count Number of slots supported.
Description
return 0 on success, nonzero on failure
void dvb_ca_en50221_release(struct dvb_ca_en50221 * ca)

Release a DVB CA device.
Parameters
struct dvb_ca_en50221 * ca The associated dvb_ca instance.

2.9 Remote Controller devices

2.9.1 Remote Controller core

enum rc_driver_type
type of the RC output

Constants
RC_DRIVER_SCANCODE Driver or hardware generates a scancode
RC_DRIVER_IR_RAW Driver or hardware generates pulse/space sequences. It needs a Infra-Red

pulse/space decoder
RC_DRIVER_IR_RAW_TX Device transmitter only, driver requires pulse/space data sequence.
struct rc_scancode_filter

Filter scan codes.
Definition

struct rc_scancode_filter {
u32 data;
u32 mask;

};

Members
data Scancode data to match.
mask Mask of bits of scancode to compare.
enum rc_filter_type

Filter type constants.

800 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Constants
RC_FILTER_NORMAL Filter for normal operation.
RC_FILTER_WAKEUP Filter for waking from suspend.
RC_FILTER_MAX Number of filter types.
struct rc_dev

represents a remote control device
Definition

struct rc_dev {
struct device dev;
bool managed_alloc;
const struct attribute_group * sysfs_groups;
const char * device_name;
const char * input_phys;
struct input_id input_id;
const char * driver_name;
const char * map_name;
struct rc_map rc_map;
struct mutex lock;
unsigned int minor;
struct ir_raw_event_ctrl * raw;
struct input_dev * input_dev;
enum rc_driver_type driver_type;
bool idle;
bool encode_wakeup;
u64 allowed_protocols;
u64 enabled_protocols;
u64 allowed_wakeup_protocols;
enum rc_proto wakeup_protocol;
struct rc_scancode_filter scancode_filter;
struct rc_scancode_filter scancode_wakeup_filter;
u32 scancode_mask;
u32 users;
void * priv;
spinlock_t keylock;
bool keypressed;
unsigned long keyup_jiffies;
struct timer_list timer_keyup;
u32 last_keycode;
enum rc_proto last_protocol;
u32 last_scancode;
u8 last_toggle;
u32 timeout;
u32 min_timeout;
u32 max_timeout;
u32 rx_resolution;
u32 tx_resolution;
int (* change_protocol) (struct rc_dev *dev, u64 *rc_proto);
int (* open) (struct rc_dev *dev);
void (* close) (struct rc_dev *dev);
int (* s_tx_mask) (struct rc_dev *dev, u32 mask);
int (* s_tx_carrier) (struct rc_dev *dev, u32 carrier);
int (* s_tx_duty_cycle) (struct rc_dev *dev, u32 duty_cycle);
int (* s_rx_carrier_range) (struct rc_dev *dev, u32 min, u32 max);
int (* tx_ir) (struct rc_dev *dev, unsigned *txbuf, unsigned n);
void (* s_idle) (struct rc_dev *dev, bool enable);
int (* s_learning_mode) (struct rc_dev *dev, int enable);
int (* s_carrier_report) (struct rc_dev *dev, int enable);
int (* s_filter) (struct rc_dev *dev, struct rc_scancode_filter *filter);
int (* s_wakeup_filter) (struct rc_dev *dev, struct rc_scancode_filter *filter);

2.9. Remote Controller devices 801

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int (* s_timeout) (struct rc_dev *dev, unsigned int timeout);
};

Members
dev driver model’s view of this device
managed_alloc devm_rc_allocate_device was used to create rc_dev
sysfs_groups sysfs attribute groups
device_name name of the rc child device
input_phys physical path to the input child device
input_id id of the input child device (struct input_id)
driver_name name of the hardware driver which registered this device
map_name name of the default keymap
rc_map current scan/key table
lock used to ensure we’ve filled in all protocol details before anyone can call show_protocols or

store_protocols
minor unique minor remote control device number
raw additional data for raw pulse/space devices
input_dev the input child device used to communicate events to userspace
driver_type specifies if protocol decoding is done in hardware or software
idle used to keep track of RX state
encode_wakeup wakeup filtering uses IR encode API, therefore the allowed wakeup protocols is the set of

all raw encoders
allowed_protocols bitmask with the supported RC_PROTO_BIT_* protocols
enabled_protocols bitmask with the enabled RC_PROTO_BIT_* protocols
allowed_wakeup_protocols bitmask with the supported RC_PROTO_BIT_* wakeup protocols
wakeup_protocol the enabled RC_PROTO_* wakeup protocol or RC_PROTO_UNKNOWN if disabled.
scancode_filter scancode filter
scancode_wakeup_filter scancode wakeup filters
scancode_mask some hardware decoders are not capable of providing the full scancode to the application.

As this is a hardware limit, we can’t do anything with it. Yet, as the same keycode table can be used
with other devices, a mask is provided to allow its usage. Drivers should generally leave this field in
blank

users number of current users of the device
priv driver-specific data
keylock protects the remaining members of the struct
keypressed whether a key is currently pressed
keyup_jiffies time (in jiffies) when the current keypress should be released
timer_keyup timer for releasing a keypress
last_keycode keycode of last keypress
last_protocol protocol of last keypress
last_scancode scancode of last keypress

802 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

last_toggle toggle value of last command
timeout optional time after which device stops sending data
min_timeout minimum timeout supported by device
max_timeout maximum timeout supported by device
rx_resolution resolution (in ns) of input sampler
tx_resolution resolution (in ns) of output sampler
change_protocol allow changing the protocol used on hardware decoders
open callback to allow drivers to enable polling/irq when IR input device is opened.
close callback to allow drivers to disable polling/irq when IR input device is opened.
s_tx_mask set transmitter mask (for devices with multiple tx outputs)
s_tx_carrier set transmit carrier frequency
s_tx_duty_cycle set transmit duty cycle (0% - 100%)
s_rx_carrier_range inform driver about carrier it is expected to handle
tx_ir transmit IR
s_idle enable/disable hardware idle mode, upon which, device doesn’t interrupt host until it sees IR

pulses
s_learning_mode enable wide band receiver used for learning
s_carrier_report enable carrier reports
s_filter set the scancode filter
s_wakeup_filter set the wakeup scancode filter. If the mask is zero then wakeup should be disabled.

wakeup_protocol will be set to a valid protocol if mask is nonzero.
s_timeout set hardware timeout in ns
struct rc_dev * rc_allocate_device(enum rc_driver_type)

Allocates a RC device
Parameters
enum rc_driver_type specifies the type of the RC output to be allocated returns a pointer to struct

rc_dev.
struct rc_dev * devm_rc_allocate_device(struct device * dev, enum rc_driver_type)

Managed RC device allocation
Parameters
struct device * dev pointer to struct device
enum rc_driver_type specifies the type of the RC output to be allocated returns a pointer to struct

rc_dev.
void rc_free_device(struct rc_dev * dev)

Frees a RC device
Parameters
struct rc_dev * dev pointer to struct rc_dev.
int rc_register_device(struct rc_dev * dev)

Registers a RC device
Parameters
struct rc_dev * dev pointer to struct rc_dev.

2.9. Remote Controller devices 803

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int devm_rc_register_device(struct device * parent, struct rc_dev * dev)
Manageded registering of a RC device

Parameters
struct device * parent pointer to struct device.
struct rc_dev * dev pointer to struct rc_dev.
void rc_unregister_device(struct rc_dev * dev)

Unregisters a RC device
Parameters
struct rc_dev * dev pointer to struct rc_dev.
int rc_open(struct rc_dev * rdev)

Opens a RC device
Parameters
struct rc_dev * rdev pointer to struct rc_dev.
void rc_close(struct rc_dev * rdev)

Closes a RC device
Parameters
struct rc_dev * rdev pointer to struct rc_dev.
enum rc_proto

the Remote Controller protocol
Constants
RC_PROTO_UNKNOWN Protocol not known
RC_PROTO_OTHER Protocol known but proprietary
RC_PROTO_RC5 Philips RC5 protocol
RC_PROTO_RC5X_20 Philips RC5x 20 bit protocol
RC_PROTO_RC5_SZ StreamZap variant of RC5
RC_PROTO_JVC JVC protocol
RC_PROTO_SONY12 Sony 12 bit protocol
RC_PROTO_SONY15 Sony 15 bit protocol
RC_PROTO_SONY20 Sony 20 bit protocol
RC_PROTO_NEC NEC protocol
RC_PROTO_NECX Extended NEC protocol
RC_PROTO_NEC32 NEC 32 bit protocol
RC_PROTO_SANYO Sanyo protocol
RC_PROTO_MCIR2_KBD RC6-ish MCE keyboard
RC_PROTO_MCIR2_MSE RC6-ish MCE mouse
RC_PROTO_RC6_0 Philips RC6-0-16 protocol
RC_PROTO_RC6_6A_20 Philips RC6-6A-20 protocol
RC_PROTO_RC6_6A_24 Philips RC6-6A-24 protocol
RC_PROTO_RC6_6A_32 Philips RC6-6A-32 protocol
RC_PROTO_RC6_MCE MCE (Philips RC6-6A-32 subtype) protocol
RC_PROTO_SHARP Sharp protocol

804 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

RC_PROTO_XMP XMP protocol
RC_PROTO_CEC CEC protocol
struct rc_map_table

represents a scancode/keycode pair
Definition

struct rc_map_table {
u32 scancode;
u32 keycode;

};

Members
scancode scan code (u32)
keycode Linux input keycode
struct rc_map

represents a keycode map table
Definition

struct rc_map {
struct rc_map_table * scan;
unsigned int size;
unsigned int len;
unsigned int alloc;
enum rc_proto rc_proto;
const char * name;
spinlock_t lock;

};

Members
scan pointer to struct rc_map_table
size Max number of entries
len Number of entries that are in use
alloc size of *scan, in bytes
rc_proto type of the remote controller protocol, as defined at enum rc_proto

name name of the key map table
lock lock to protect access to this structure
struct rc_map_list

list of the registered rc_map maps
Definition

struct rc_map_list {
struct list_head list;
struct rc_map map;

};

Members
list pointer to struct list_head
map pointer to struct rc_map
int rc_map_register(struct rc_map_list * map)

Registers a Remote Controler scancode map

2.9. Remote Controller devices 805

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Parameters
struct rc_map_list * map pointer to struct rc_map_list
void rc_map_unregister(struct rc_map_list * map)

Unregisters a Remote Controler scancode map
Parameters
struct rc_map_list * map pointer to struct rc_map_list
struct rc_map * rc_map_get(const char * name)

gets an RC map from its name
Parameters
const char * name name of the RC scancode map

2.9.2 LIRC

struct lirc_driver
Defines the parameters on a LIRC driver

Definition

struct lirc_driver {
char name;
int minor;
__u32 code_length;
unsigned int buffer_size;
__u32 features;
unsigned int chunk_size;
void * data;
int min_timeout;
int max_timeout;
struct lirc_buffer * rbuf;
struct rc_dev * rdev;
const struct file_operations * fops;
struct device * dev;
struct module * owner;

};

Members
name this string will be used for logs
minor indicates minor device (/dev/lirc) number for registered driver if caller fills it with negative value,

then the first free minor number will be used (if available).
code_length length of the remote control key code expressed in bits.
buffer_size Number of FIFO buffers with chunk_size size. If zero, creates a buffer with BUFLEN size (16

bytes).
features lirc compatible hardware features, like LIRC_MODE_RAW, LIRC_CAN_*, as defined at in-

clude/media/lirc.h.
chunk_size Size of each FIFO buffer.
data it may point to any driver data and this pointer will be passed to all callback functions.
min_timeout Minimum timeout for record. Valid only if LIRC_CAN_SET_REC_TIMEOUT is defined.
max_timeout Maximum timeout for record. Valid only if LIRC_CAN_SET_REC_TIMEOUT is defined.
rbuf if not NULL, it will be used as a read buffer, you will have to write to the buffer by other means, like

irq’s (see also lirc_serial.c).

806 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

rdev Pointed to struct rc_dev associated with the LIRC device.
fops file_operations for drivers which don’t fit the current driver model. Some ioctl’s can be directly

handled by lirc_dev if the driver’s ioctl function is NULL or if it returns -ENOIOCTLCMD (see also
lirc_serial.c).

dev pointer to the struct device associated with the LIRC device.
owner the module owning this struct

2.10 Media Controller devices

2.10.1 Media Controller

The media controller userspace API is documented in the Media Controller uAPI book . This document
focus on the kernel-side implementation of the media framework.

Abstract media device model

Discovering a device internal topology, and configuring it at runtime, is one of the goals of the media
framework. To achieve this, hardware devices are modelled as an oriented graph of building blocks called
entities connected through pads.
An entity is a basic media hardware building block. It can correspond to a large variety of logical blocks
such as physical hardware devices (CMOS sensor for instance), logical hardware devices (a building block
in a System-on-Chip image processing pipeline), DMA channels or physical connectors.
A pad is a connection endpoint through which an entity can interact with other entities. Data (not restricted
to video) produced by an entity flows from the entity’s output to one or more entity inputs. Pads should
not be confused with physical pins at chip boundaries.
A link is a point-to-point oriented connection between two pads, either on the same entity or on different
entities. Data flows from a source pad to a sink pad.

Media device

A media device is represented by a struct media_device instance, defined in include/media/media-
device.h. Allocation of the structure is handled by the media device driver, usually by embedding the
media_device instance in a larger driver-specific structure.
Drivers register media device instances by calling __media_device_register() via the macro me-
dia_device_register() and unregistered by calling media_device_unregister().

Entities

Entities are represented by a struct media_entity instance, defined in include/media/media-entity.h.
The structure is usually embedded into a higher-level structure, such as v4l2_subdev or video_device
instances, although drivers can allocate entities directly.
Drivers initialize entity pads by calling media_entity_pads_init().
Drivers register entities with a media device by calling media_device_register_entity() and unreg-
istred by calling media_device_unregister_entity().

2.10. Media Controller devices 807

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Interfaces

Interfaces are represented by a struct media_interface instance, defined in include/media/media-
entity.h. Currently, only one type of interface is defined: a device node. Such interfaces are represented
by a struct media_intf_devnode.
Drivers initialize and create device node interfaces by calling media_devnode_create() and remove them
by calling: media_devnode_remove().

Pads

Pads are represented by a struct media_pad instance, defined in include/media/media-entity.h. Each
entity stores its pads in a pads array managed by the entity driver. Drivers usually embed the array in a
driver-specific structure.
Pads are identified by their entity and their 0-based index in the pads array.
Both information are stored in the struct media_pad, making the struct media_pad pointer the canonical
way to store and pass link references.
Pads have flags that describe the pad capabilities and state.
MEDIA_PAD_FL_SINK indicates that the pad supports sinking data. MEDIA_PAD_FL_SOURCE indicates that
the pad supports sourcing data.

Note:

One and only one of MEDIA_PAD_FL_SINK or MEDIA_PAD_FL_SOURCE must be set for each pad.

Links

Links are represented by a struct media_link instance, defined in include/media/media-entity.h.
There are two types of links:
1. pad to pad links:
Associate two entities via their PADs. Each entity has a list that points to all links originating at or targeting
any of its pads. A given link is thus stored twice, once in the source entity and once in the target entity.
Drivers create pad to pad links by calling: media_create_pad_link() and remove with me-
dia_entity_remove_links().
2. interface to entity links:
Associate one interface to a Link.
Drivers create interface to entity links by calling: media_create_intf_link() and remove with me-
dia_remove_intf_links().

Note:

Links can only be created after having both ends already created.

Links have flags that describe the link capabilities and state. The valid values are described at me-
dia_create_pad_link() and media_create_intf_link().

808 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Graph traversal

The media framework provides APIs to iterate over entities in a graph.
To iterate over all entities belonging to a media device, drivers can use the media_device_for_each_entity
macro, defined in include/media/media-device.h.

struct media_entity *entity;

media_device_for_each_entity(entity, mdev) {
// entity will point to each entity in turn
...
}

Drivers might also need to iterate over all entities in a graph that can be reached only through enabled
links starting at a given entity. The media framework provides a depth-first graph traversal API for that
purpose.

Note:

Graphs with cycles (whether directed or undirected) are NOT supported by the graph traver-
sal API. To prevent infinite loops, the graph traversal code limits the maximum depth to ME-
DIA_ENTITY_ENUM_MAX_DEPTH, currently defined as 16.

Drivers initiate a graph traversal by calling media_graph_walk_start()

The graph structure, provided by the caller, is initialized to start graph traversal at the given entity.
Drivers can then retrieve the next entity by calling media_graph_walk_next()

When the graph traversal is complete the function will return NULL.
Graph traversal can be interrupted at any moment. No cleanup function call is required and the graph
structure can be freed normally.
Helper functions can be used to find a link between two given pads, or a pad connected to another pad
through an enabled link media_entity_find_link() and media_entity_remote_pad().

Use count and power handling

Due to the wide differences between drivers regarding power management needs, the media controller
does not implement power management. However, the struct media_entity includes a use_count field
that media drivers can use to track the number of users of every entity for power management needs.
The media_entity.use_count field is owned by media drivers and must not be touched by entity drivers.
Access to the field must be protected by the media_device.graph_mutex lock.

Links setup

Link properties can be modified at runtime by calling media_entity_setup_link().

Pipelines and media streams

When starting streaming, drivers must notify all entities in the pipeline to prevent link states from being
modified during streaming by calling media_pipeline_start().
The function will mark all entities connected to the given entity through enabled links, either directly or
indirectly, as streaming.

2.10. Media Controller devices 809

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The struct media_pipeline instance pointed to by the pipe argument will be stored in every entity in the
pipeline. Drivers should embed the struct media_pipeline in higher-level pipeline structures and can
then access the pipeline through the struct media_entity pipe field.
Calls to media_pipeline_start() can be nested. The pipeline pointer must be identical for all nested
calls to the function.
media_pipeline_start() may return an error. In that case, it will clean up any of the changes it did by
itself.
When stopping the stream, drivers must notify the entities with media_pipeline_stop().
If multiple calls to media_pipeline_start() have been made the same number of me-
dia_pipeline_stop() calls are required to stop streaming. The media_entity.pipe field is reset
to NULL on the last nested stop call.
Link configuration will fail with -EBUSY by default if either end of the link is a streaming entity. Links that
can be modified while streaming must be marked with the MEDIA_LNK_FL_DYNAMIC flag.
If other operations need to be disallowed on streaming entities (such as changing entities configuration
parameters) drivers can explicitly check the media_entity stream_count field to find out if an entity is
streaming. This operation must be done with the media_device graph_mutex held.

Link validation

Link validation is performed by media_pipeline_start() for any entity which has sink pads in the
pipeline. The media_entity.link_validate() callback is used for that purpose. In link_validate()
callback, entity driver should check that the properties of the source pad of the connected entity and its
own sink pad match. It is up to the type of the entity (and in the end, the properties of the hardware)
what matching actually means.
Subsystems should facilitate link validation by providing subsystem specific helper functions to provide
easy access for commonly needed information, and in the end provide a way to use driver-specific call-
backs.
struct media_entity_notify

Media Entity Notify
Definition

struct media_entity_notify {
struct list_head list;
void * notify_data;
void (* notify) (struct media_entity *entity, void *notify_data);

};

Members
list List head
notify_data Input data to invoke the callback
notify Callback function pointer
Description
Drivers may register a callback to take action when new entities get registered with the media device.
This handler is intended for creating links between existing entities and should not create entities and
register them.
struct media_device_ops

Media device operations
Definition

810 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct media_device_ops {
int (* link_notify) (struct media_link *link, u32 flags, unsigned int notification);

};

Members
link_notify Link state change notification callback. This callback is called with the graph_mutex held.
struct media_device

Media device
Definition

struct media_device {
struct device * dev;
struct media_devnode * devnode;
char model;
char driver_name;
char serial;
char bus_info;
u32 hw_revision;
u64 topology_version;
u32 id;
struct ida entity_internal_idx;
int entity_internal_idx_max;
struct list_head entities;
struct list_head interfaces;
struct list_head pads;
struct list_head links;
struct list_head entity_notify;
struct mutex graph_mutex;
struct media_graph pm_count_walk;
void * source_priv;
int (* enable_source) (struct media_entity *entity, struct media_pipeline *pipe);
void (* disable_source) (struct media_entity *entity);
const struct media_device_ops * ops;

};

Members
dev Parent device
devnode Media device node
model Device model name
driver_name Optional device driver name. If not set, calls to MEDIA_IOC_DEVICE_INFO will return dev-

>driver->name. This is needed for USB drivers for example, as otherwise they’ll all appear as if the
driver name was “usb”.

serial Device serial number (optional)
bus_info Unique and stable device location identifier
hw_revision Hardware device revision
topology_version Monotonic counter for storing the version of the graph topology. Should be incre-

mented each time the topology changes.
id Unique ID used on the last registered graph object
entity_internal_idx Unique internal entity ID used by the graph traversal algorithms
entity_internal_idx_max Allocated internal entity indices
entities List of registered entities
interfaces List of registered interfaces

2.10. Media Controller devices 811

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

pads List of registered pads
links List of registered links
entity_notify List of registered entity_notify callbacks
graph_mutex Protects access to struct media_device data
pm_count_walk Graph walk for power state walk. Access serialised using graph_mutex.
source_priv Driver Private data for enable/disable source handlers
enable_source Enable Source Handler function pointer
disable_source Disable Source Handler function pointer
ops Operation handler callbacks
Description
This structure represents an abstract high-level media device. It allows easy access to entities and pro-
vides basic media device-level support. The structure can be allocated directly or embedded in a larger
structure.
The parent dev is a physical device. It must be set before registering the media device.
model is a descriptive model name exported through sysfs. It doesn’t have to be unique.
enable_source is a handler to find source entity for the sink entity and activate the link between them if
source entity is free. Drivers should call this handler before accessing the source.
disable_source is a handler to find source entity for the sink entity and deactivate the link between them.
Drivers should call this handler to release the source.
Use-case: find tuner entity connected to the decoder entity and check if it is available, and activate the
the link between them from enable_source and deactivate from disable_source.

Note:

Bridge driver is expected to implement and set the handler when media_device is registered or when
bridge driver finds the media_device during probe. Bridge driver sets source_priv with information
necessary to run enable_source and disable_source handlers. Callers should hold graph_mutex to
access and call enable_source and disable_source handlers.

int media_entity_enum_init(struct media_entity_enum * ent_enum, struct media_device * mdev)
Initialise an entity enumeration

Parameters
struct media_entity_enum * ent_enum Entity enumeration to be initialised
struct media_device * mdev The related media device
Return
zero on success or a negative error code.
void media_device_init(struct media_device * mdev)

Initializes a media device element
Parameters
struct media_device * mdev pointer to struct media_device
Description
This function initializes the media device prior to its registration. The media device initialization and
registration is split in two functions to avoid race conditions and make the media device available to
user-space before the media graph has been completed.

812 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

So drivers need to first initialize the media device, register any entity within the media device, create pad
to pad links and then finally register the media device by calling media_device_register() as a final
step.
void media_device_cleanup(struct media_device * mdev)

Cleanups a media device element
Parameters
struct media_device * mdev pointer to struct media_device
Description
This function that will destroy the graph_mutex that is initialized in media_device_init().
int __media_device_register(struct media_device * mdev, struct module * owner)

Registers a media device element
Parameters
struct media_device * mdev pointer to struct media_device
struct module * owner should be filled with THIS_MODULE

Description
Users, should, instead, call the media_device_register() macro.
The caller is responsible for initializing the media_device structure before registration. The following fields
of media_device must be set:

• media_entity.dev must point to the parent device (usually a pci_dev, usb_interface or plat-
form_device instance).

• media_entity.model must be filled with the device model name as a NUL-terminated UTF-8 string.
The device/model revision must not be stored in this field.

The following fields are optional:
• media_entity.serial is a unique serial number stored as a NUL-terminated ASCII string. The field

is big enough to store a GUID in text form. If the hardware doesn’t provide a unique serial number
this field must be left empty.

• media_entity.bus_info represents the location of the device in the system as a NUL-terminated
ASCII string. For PCI/PCIe devices media_entity.bus_infomust be set to “PCI:” (or “PCIe:”) followed
by the value of pci_name(). For USB devices,the usb_make_path() function must be used. This field
is used by applications to distinguish between otherwise identical devices that don’t provide a serial
number.

• media_entity.hw_revision is the hardware device revision in a driver-specific format. When pos-
sible the revision should be formatted with the KERNEL_VERSION() macro.

Note:

1. Upon successful registration a character device named media[0-9]+ is created. The device major
and minor numbers are dynamic. The model name is exported as a sysfs attribute.

2. Unregistering a media device that hasn’t been registered is NOT safe.

Return
returns zero on success or a negative error code.
media_device_register(mdev)

Registers a media device element
Parameters
mdev pointer to struct media_device

2.10. Media Controller devices 813

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
This macro calls __media_device_register() passing THIS_MODULE as the __media_device_register()
second argument (owner).
void media_device_unregister(struct media_device * mdev)

Unregisters a media device element
Parameters
struct media_device * mdev pointer to struct media_device
Description
It is safe to call this function on an unregistered (but initialised) media device.
int media_device_register_entity(struct media_device * mdev, struct media_entity * entity)

registers a media entity inside a previously registered media device.
Parameters
struct media_device * mdev pointer to struct media_device
struct media_entity * entity pointer to struct media_entity to be registered
Description
Entities are identified by a unique positive integer ID. The media controller framework will such ID au-
tomatically. IDs are not guaranteed to be contiguous, and the ID number can change on newer Kernel
versions. So, neither the driver nor userspace should hardcode ID numbers to refer to the entities, but,
instead, use the framework to find the ID, when needed.
The media_entity name, type and flags fields should be initialized before calling me-
dia_device_register_entity(). Entities embedded in higher-level standard structures can have
some of those fields set by the higher-level framework.
If the device has pads, media_entity_pads_init() should be called before this function. Otherwise, the
media_entity.pad and media_entity.num_pads should be zeroed before calling this function.
Entities have flags that describe the entity capabilities and state:
MEDIA_ENT_FL_DEFAULT indicates the default entity for a given type. This can be used to report the

default audio and video devices or the default camera sensor.

Note:

Drivers should set the entity function before calling this function. Please notice that the values ME-
DIA_ENT_F_V4L2_SUBDEV_UNKNOWN and MEDIA_ENT_F_UNKNOWN should not be used by the drivers.

void media_device_unregister_entity(struct media_entity * entity)
unregisters a media entity.

Parameters
struct media_entity * entity pointer to struct media_entity to be unregistered
Description
All links associated with the entity and all PADs are automatically unregistered from the media_device
when this function is called.
Unregistering an entity will not change the IDs of the other entities and the previoully used ID will never
be reused for a newly registered entities.
When a media device is unregistered, all its entities are unregistered automatically. No manual entities
unregistration is then required.

814 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

The media_entity instance itself must be freed explicitly by the driver if required.

int media_device_register_entity_notify(struct media_device * mdev, struct me-
dia_entity_notify * nptr)

Registers a media entity_notify callback
Parameters
struct media_device * mdev The media device
struct media_entity_notify * nptr The media_entity_notify
Description

Note:

When a new entity is registered, all the registered media_entity_notify callbacks are invoked.

void media_device_unregister_entity_notify(struct media_device * mdev, struct me-
dia_entity_notify * nptr)

Unregister a media entity notify callback
Parameters
struct media_device * mdev The media device
struct media_entity_notify * nptr The media_entity_notify
void media_device_pci_init(struct media_device * mdev, struct pci_dev * pci_dev, const char

* name)
create and initialize a struct media_device from a PCI device.

Parameters
struct media_device * mdev pointer to struct media_device
struct pci_dev * pci_dev pointer to struct pci_dev
const char * name media device name. If NULL, the routine will use the default name for the pci device,

given by pci_name() macro.
void __media_device_usb_init(struct media_device * mdev, struct usb_device * udev, const char

* board_name, const char * driver_name)
create and initialize a struct media_device from a PCI device.

Parameters
struct media_device * mdev pointer to struct media_device
struct usb_device * udev pointer to struct usb_device
const char * board_name media device name. If NULL, the routine will use the usb product name, if

available.
const char * driver_name name of the driver. if NULL, the routine will use the name given by udev-

>dev->driver->name, with is usually the wrong thing to do.
Description

2.10. Media Controller devices 815

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

It is better to call media_device_usb_init() instead, as such macro fills driver_name with
KBUILD_MODNAME.

media_device_usb_init(mdev, udev, name)
create and initialize a struct media_device from a PCI device.

Parameters
mdev pointer to struct media_device
udev pointer to struct usb_device
name media device name. If NULL, the routine will use the usb product name, if available.
Description
This macro calls media_device_usb_init() passing the media_device_usb_init() driver_name pa-
rameter filled with KBUILD_MODNAME.
struct media_file_operations

Media device file operations
Definition

struct media_file_operations {
struct module * owner;
ssize_t (* read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (* write) (struct file *, const char __user *, size_t, loff_t *);
unsigned int (* poll) (struct file *, struct poll_table_struct *);
long (* ioctl) (struct file *, unsigned int, unsigned long);
long (* compat_ioctl) (struct file *, unsigned int, unsigned long);
int (* open) (struct file *);
int (* release) (struct file *);

};

Members
owner should be filled with THIS_MODULE

read pointer to the function that implements read() syscall
write pointer to the function that implements write() syscall
poll pointer to the function that implements poll() syscall
ioctl pointer to the function that implements ioctl() syscall
compat_ioctl pointer to the function that will handle 32 bits userspace calls to the the ioctl() syscall

on a Kernel compiled with 64 bits.
open pointer to the function that implements open() syscall
release pointer to the function that will release the resources allocated by the open function.
struct media_devnode

Media device node
Definition

struct media_devnode {
struct media_device * media_dev;
const struct media_file_operations * fops;
struct device dev;
struct cdev cdev;
struct device * parent;

816 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

int minor;
unsigned long flags;
void (* release) (struct media_devnode *devnode);

};

Members
media_dev pointer to struct media_device
fops pointer to struct media_file_operations with media device ops
dev pointer to struct device containing the media controller device
cdev struct cdev pointer character device
parent parent device
minor device node minor number
flags flags, combination of the MEDIA_FLAG_* constants
release release callback called at the end of :c:func:`media_devnode_release()` routine at media-

device.c.
Description
This structure represents a media-related device node.
The parent is a physical device. It must be set by core or device drivers before registering the node.
int media_devnode_register(structmedia_device * mdev, structmedia_devnode * devnode, struct

module * owner)
register a media device node

Parameters
struct media_device * mdev struct media_device we want to register a device node
struct media_devnode * devnode media device node structure we want to register
struct module * owner should be filled with THIS_MODULE

Description
The registration code assigns minor numbers and registers the new device node with the kernel. An error
is returned if no free minor number can be found, or if the registration of the device node fails.
Zero is returned on success.
Note that if the media_devnode_register call fails, the release() callback of the media_devnode structure
is not called, so the caller is responsible for freeing any data.
void media_devnode_unregister_prepare(struct media_devnode * devnode)

clear the media device node register bit
Parameters
struct media_devnode * devnode the device node to prepare for unregister
Description
This clears the passed device register bit. Future open calls will be met with errors. Should be called
before media_devnode_unregister() to avoid races with unregister and device file open calls.
This function can safely be called if the device node has never been registered or has already been un-
registered.
void media_devnode_unregister(struct media_devnode * devnode)

unregister a media device node
Parameters

2.10. Media Controller devices 817

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct media_devnode * devnode the device node to unregister
Description
This unregisters the passed device. Future open calls will be met with errors.
Should be called after media_devnode_unregister_prepare()
struct media_devnode * media_devnode_data(struct file * filp)

returns a pointer to the media_devnode

Parameters
struct file * filp pointer to struct file
int media_devnode_is_registered(struct media_devnode * devnode)

returns true if media_devnode is registered; false otherwise.
Parameters
struct media_devnode * devnode pointer to struct media_devnode.
Note
If mdev is NULL, it also returns false.
enum media_gobj_type

type of a graph object
Constants
MEDIA_GRAPH_ENTITY Identify a media entity
MEDIA_GRAPH_PAD Identify a media pad
MEDIA_GRAPH_LINK Identify a media link
MEDIA_GRAPH_INTF_DEVNODE Identify a media Kernel API interface via a device node
struct media_gobj

Define a graph object.
Definition

struct media_gobj {
struct media_device * mdev;
u32 id;
struct list_head list;

};

Members
mdev Pointer to the struct media_device that owns the object
id Non-zero object ID identifier. The ID should be unique inside a media_device, as it is composed by

MEDIA_BITS_PER_TYPE to store the type plus MEDIA_BITS_PER_ID to store the ID
list List entry stored in one of the per-type mdev object lists
Description
All objects on the media graph should have this struct embedded
struct media_entity_enum

An enumeration of media entities.
Definition

struct media_entity_enum {
unsigned long * bmap;
int idx_max;

};

818 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Members
bmap Bit map in which each bit represents one entity at struct media_entity->internal_idx.
idx_max Number of bits in bmap
struct media_graph

Media graph traversal state
Definition

struct media_graph {
struct stack;
struct media_entity_enum ent_enum;
int top;

};

Members
stack Graph traversal stack; the stack contains information on the path the media entities to be walked

and the links through which they were reached.
ent_enum Visited entities
top The top of the stack
struct media_pipeline

Media pipeline related information
Definition

struct media_pipeline {
int streaming_count;
struct media_graph graph;

};

Members
streaming_count Streaming start count - streaming stop count
graph Media graph walk during pipeline start / stop
struct media_link

A link object part of a media graph.
Definition

struct media_link {
struct media_gobj graph_obj;
struct list_head list;
union {unnamed_union};
struct media_link * reverse;
unsigned long flags;
bool is_backlink;

};

Members
graph_obj Embedded structure containing the media object common data
list Linked list associated with an entity or an interface that owns the link.
{unnamed_union} anonymous
reverse Pointer to the link for the reverse direction of a pad to pad link.
flags Link flags, as defined in uapi/media.h (MEDIA_LNK_FL_*)
is_backlink Indicate if the link is a backlink.

2.10. Media Controller devices 819

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct media_pad
A media pad graph object.

Definition

struct media_pad {
struct media_gobj graph_obj;
struct media_entity * entity;
u16 index;
unsigned long flags;

};

Members
graph_obj Embedded structure containing the media object common data
entity Entity this pad belongs to
index Pad index in the entity pads array, numbered from 0 to n
flags Pad flags, as defined in include/uapi/linux/media.h (seek for MEDIA_PAD_FL_*)
struct media_entity_operations

Media entity operations
Definition

struct media_entity_operations {
int (* get_fwnode_pad) (struct fwnode_endpoint *endpoint);
int (* link_setup) (struct media_entity *entity,const struct media_pad *local, const struct␣

↪→media_pad *remote, u32 flags);
int (* link_validate) (struct media_link *link);

};

Members
get_fwnode_pad Return the pad number based on a fwnode endpoint or a negative value on error. This

operation can be used to map a fwnode to a media pad number. Optional.
link_setup Notify the entity of link changes. The operation can return an error, in which case link setup

will be cancelled. Optional.
link_validate Return whether a link is valid from the entity point of view. The media_pipeline_start()

function validates all links by calling this operation. Optional.
Description

Note:

Those these callbacks are called with struct media_device.graph_mutex mutex held.

enum media_entity_type
Media entity type

Constants
MEDIA_ENTITY_TYPE_BASE The entity isn’t embedded in another subsystem structure.
MEDIA_ENTITY_TYPE_VIDEO_DEVICE The entity is embedded in a struct video_device instance.
MEDIA_ENTITY_TYPE_V4L2_SUBDEV The entity is embedded in a struct v4l2_subdev instance.
Description
Media entity objects are often not instantiated directly, but the media entity structure is inherited by
(through embedding) other subsystem-specific structures. The media entity type identifies the type of
the subclass structure that implements a media entity instance.

820 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

This allows runtime type identification of media entities and safe casting to the correct object type. For
instance, a media entity structure instance embedded in a v4l2_subdev structure instance will have the
type MEDIA_ENTITY_TYPE_V4L2_SUBDEV and can safely be cast to a v4l2_subdev structure using the con-
tainer_of() macro.
struct media_entity

A media entity graph object.
Definition

struct media_entity {
struct media_gobj graph_obj;
const char * name;
enum media_entity_type obj_type;
u32 function;
unsigned long flags;
u16 num_pads;
u16 num_links;
u16 num_backlinks;
int internal_idx;
struct media_pad * pads;
struct list_head links;
const struct media_entity_operations * ops;
int stream_count;
int use_count;
struct media_pipeline * pipe;
union info;

};

Members
graph_obj Embedded structure containing the media object common data.
name Entity name.
obj_type Type of the object that implements the media_entity.
function Entity main function, as defined in include/uapi/linux/media.h (seek for MEDIA_ENT_F_*)
flags Entity flags, as defined in include/uapi/linux/media.h (seek for MEDIA_ENT_FL_*)
num_pads Number of sink and source pads.
num_links Total number of links, forward and back, enabled and disabled.
num_backlinks Number of backlinks
internal_idx An unique internal entity specific number. The numbers are re-used if entities are unreg-

istered or registered again.
pads Pads array with the size defined by num_pads.
links List of data links.
ops Entity operations.
stream_count Stream count for the entity.
use_count Use count for the entity.
pipe Pipeline this entity belongs to.
info Union with devnode information. Kept just for backward compatibility.
Description

2.10. Media Controller devices 821

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

stream_count and use_count reference counts must never be negative, but are signed integers on
purpose: a simple WARN_ON(<0) check can be used to detect reference count bugs that would make
them negative.

struct media_interface
A media interface graph object.

Definition

struct media_interface {
struct media_gobj graph_obj;
struct list_head links;
u32 type;
u32 flags;

};

Members
graph_obj embedded graph object
links List of links pointing to graph entities
type Type of the interface as defined in include/uapi/linux/media.h (seek for MEDIA_INTF_T_*)
flags Interface flags as defined in include/uapi/linux/media.h (seek for MEDIA_INTF_FL_*)
Description

Note:

Currently, no flags for media_interface is defined.

struct media_intf_devnode
A media interface via a device node.

Definition

struct media_intf_devnode {
struct media_interface intf;
u32 major;
u32 minor;

};

Members
intf embedded interface object
major Major number of a device node
minor Minor number of a device node
u32 media_entity_id(struct media_entity * entity)

return the media entity graph object id
Parameters
struct media_entity * entity pointer to media_entity

enum media_gobj_type media_type(struct media_gobj * gobj)
return the media object type

Parameters

822 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct media_gobj * gobj Pointer to the struct media_gobj graph object
u32 media_id(struct media_gobj * gobj)

return the media object ID
Parameters
struct media_gobj * gobj Pointer to the struct media_gobj graph object
u32 media_gobj_gen_id(enum media_gobj_type type, u64 local_id)

encapsulates type and ID on at the object ID
Parameters
enum media_gobj_type type object type as define at enum media_gobj_type.
u64 local_id next ID, from struct media_device.id.
bool is_media_entity_v4l2_video_device(struct media_entity * entity)

Check if the entity is a video_device
Parameters
struct media_entity * entity pointer to entity
Return
true if the entity is an instance of a video_device object and can safely be cast to a struct video_device
using the container_of() macro, or false otherwise.
bool is_media_entity_v4l2_subdev(struct media_entity * entity)

Check if the entity is a v4l2_subdev
Parameters
struct media_entity * entity pointer to entity
Return
true if the entity is an instance of a v4l2_subdev object and can safely be cast to a struct v4l2_subdev
using the container_of() macro, or false otherwise.
int __media_entity_enum_init(struct media_entity_enum * ent_enum, int idx_max)

Initialise an entity enumeration
Parameters
struct media_entity_enum * ent_enum Entity enumeration to be initialised
int idx_max Maximum number of entities in the enumeration
Return
Returns zero on success or a negative error code.
void media_entity_enum_cleanup(struct media_entity_enum * ent_enum)

Release resources of an entity enumeration
Parameters
struct media_entity_enum * ent_enum Entity enumeration to be released
void media_entity_enum_zero(struct media_entity_enum * ent_enum)

Clear the entire enum
Parameters
struct media_entity_enum * ent_enum Entity enumeration to be cleared
void media_entity_enum_set(struct media_entity_enum * ent_enum, struct media_entity * entity)

Mark a single entity in the enum
Parameters

2.10. Media Controller devices 823

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct media_entity_enum * ent_enum Entity enumeration
struct media_entity * entity Entity to be marked
void media_entity_enum_clear(struct media_entity_enum * ent_enum, struct media_entity * en-

tity)
Unmark a single entity in the enum

Parameters
struct media_entity_enum * ent_enum Entity enumeration
struct media_entity * entity Entity to be unmarked
bool media_entity_enum_test(struct media_entity_enum * ent_enum, struct media_entity * en-

tity)
Test whether the entity is marked

Parameters
struct media_entity_enum * ent_enum Entity enumeration
struct media_entity * entity Entity to be tested
Description
Returns true if the entity was marked.
bool media_entity_enum_test_and_set(struct media_entity_enum * ent_enum, struct me-

dia_entity * entity)
Test whether the entity is marked, and mark it

Parameters
struct media_entity_enum * ent_enum Entity enumeration
struct media_entity * entity Entity to be tested
Description
Returns true if the entity was marked, and mark it before doing so.
bool media_entity_enum_empty(struct media_entity_enum * ent_enum)

Test whether the entire enum is empty
Parameters
struct media_entity_enum * ent_enum Entity enumeration
Return
true if the entity was empty.
bool media_entity_enum_intersects(struct media_entity_enum * ent_enum1, struct me-

dia_entity_enum * ent_enum2)
Test whether two enums intersect

Parameters
struct media_entity_enum * ent_enum1 First entity enumeration
struct media_entity_enum * ent_enum2 Second entity enumeration
Return
true if entity enumerations ent_enum1 and ent_enum2 intersect, otherwise false.
gobj_to_entity(gobj)

returns the struct media_entity pointer from the gobj contained on it.
Parameters
gobj Pointer to the struct media_gobj graph object

824 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

gobj_to_pad(gobj)
returns the struct media_pad pointer from the gobj contained on it.

Parameters
gobj Pointer to the struct media_gobj graph object
gobj_to_link(gobj)

returns the struct media_link pointer from the gobj contained on it.
Parameters
gobj Pointer to the struct media_gobj graph object
gobj_to_intf(gobj)

returns the struct media_interface pointer from the gobj contained on it.
Parameters
gobj Pointer to the struct media_gobj graph object
intf_to_devnode(intf)

returns the struct media_intf_devnode pointer from the intf contained on it.
Parameters
intf Pointer to struct media_intf_devnode
void media_gobj_create(struct media_device * mdev, enum media_gobj_type type, struct me-

dia_gobj * gobj)
Initialize a graph object

Parameters
struct media_device * mdev Pointer to the media_device that contains the object
enum media_gobj_type type Type of the object
struct media_gobj * gobj Pointer to the struct media_gobj graph object
Description
This routine initializes the embedded struct media_gobj inside a media graph object. It is called auto-
matically if media_*_create function calls are used. However, if the object (entity, link, pad, interface) is
embedded on some other object, this function should be called before registering the object at the media
controller.
void media_gobj_destroy(struct media_gobj * gobj)

Stop using a graph object on a media device
Parameters
struct media_gobj * gobj Pointer to the struct media_gobj graph object
Description
This should be called by all routines like media_device_unregister() that remove/destroy media graph
objects.
int media_entity_pads_init(struct media_entity * entity, u16 num_pads, struct media_pad

* pads)
Initialize the entity pads

Parameters
struct media_entity * entity entity where the pads belong
u16 num_pads total number of sink and source pads
struct media_pad * pads Array of num_pads pads.

2.10. Media Controller devices 825

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
The pads array is managed by the entity driver and passed to media_entity_pads_init() where its
pointer will be stored in the media_entity structure.
If no pads are needed, drivers could either directly fill media_entity->num_pads with 0 and me-
dia_entity->pads with NULL or call this function that will do the same.
As the number of pads is known in advance, the pads array is not allocated dynamically but is managed by
the entity driver. Most drivers will embed the pads array in a driver-specific structure, avoiding dynamic
allocation.
Drivers must set the direction of every pad in the pads array before calling media_entity_pads_init().
The function will initialize the other pads fields.
void media_entity_cleanup(struct media_entity * entity)

free resources associated with an entity
Parameters
struct media_entity * entity entity where the pads belong
Description
This function must be called during the cleanup phase after unregistering the entity (currently, it does
nothing).
int media_create_pad_link(struct media_entity * source, u16 source_pad, struct media_entity

* sink, u16 sink_pad, u32 flags)
creates a link between two entities.

Parameters
struct media_entity * source pointer to media_entity of the source pad.
u16 source_pad number of the source pad in the pads array
struct media_entity * sink pointer to media_entity of the sink pad.
u16 sink_pad number of the sink pad in the pads array.
u32 flags Link flags, as defined in include/uapi/linux/media.h (seek for MEDIA_LNK_FL_*)
Description
Valid values for flags:
MEDIA_LNK_FL_ENABLED Indicates that the link is enabled and can be used to transfer media data. When

two or more links target a sink pad, only one of them can be enabled at a time.
MEDIA_LNK_FL_IMMUTABLE Indicates that the link enabled state can’t be modified at runtime. If ME-

DIA_LNK_FL_IMMUTABLE is set, then MEDIA_LNK_FL_ENABLED must also be set, since an immutable
link is always enabled.

Note:

Before calling this function, media_entity_pads_init() and media_device_register_entity()
should be called previously for both ends.

int media_create_pad_links(const struct media_device * mdev, const u32 source_function,
struct media_entity * source, const u16 source_pad, const
u32 sink_function, struct media_entity * sink, const u16 sink_pad,
u32 flags, const bool allow_both_undefined)

creates a link between two entities.
Parameters
const struct media_device * mdev Pointer to the media_device that contains the object

826 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

const u32 source_function Function of the source entities. Used only if source is NULL.
struct media_entity * source pointer to media_entity of the source pad. If NULL, it will use all enti-

ties that matches the sink_function.
const u16 source_pad number of the source pad in the pads array
const u32 sink_function Function of the sink entities. Used only if sink is NULL.
struct media_entity * sink pointer to media_entity of the sink pad. If NULL, it will use all entities

that matches the sink_function.
const u16 sink_pad number of the sink pad in the pads array.
u32 flags Link flags, as defined in include/uapi/linux/media.h.
const bool allow_both_undefined if true, then both source and sink can be NULL. In such case, it

will create a crossbar between all entities that matches source_function to all entities that matches
sink_function. If false, it will return 0 and won’t create any link if both source and sink are NULL.

Description
Valid values for flags:
A MEDIA_LNK_FL_ENABLED flag indicates that the link is enabled and can be used to transfer me-

dia data. If multiple links are created and this flag is passed as an argument, only the first created
link will have this flag.

A MEDIA_LNK_FL_IMMUTABLE flag indicates that the link enabled state can’t be modified at run-
time. If MEDIA_LNK_FL_IMMUTABLE is set, then MEDIA_LNK_FL_ENABLED must also be set since an
immutable link is always enabled.

It is common for some devices to have multiple source and/or sink entities of the same type that should
be linked. While media_create_pad_link() creates link by link, this function is meant to allow 1:n, n:1
and even cross-bar (n:n) links.

Note:

Before calling this function, media_entity_pads_init() and media_device_register_entity()
should be called previously for the entities to be linked.

void media_entity_remove_links(struct media_entity * entity)
remove all links associated with an entity

Parameters
struct media_entity * entity pointer to media_entity

Description

Note:

This is called automatically when an entity is unregistered via media_device_register_entity().

int __media_entity_setup_link(struct media_link * link, u32 flags)
Configure a media link without locking

Parameters
struct media_link * link The link being configured
u32 flags Link configuration flags
Description

2.10. Media Controller devices 827

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The bulk of link setup is handled by the two entities connected through the link. This function notifies
both entities of the link configuration change.
If the link is immutable or if the current and new configuration are identical, return immediately.
The user is expected to hold link->source->parent->mutex. If not, media_entity_setup_link() should
be used instead.
int media_entity_setup_link(struct media_link * link, u32 flags)

changes the link flags properties in runtime
Parameters
struct media_link * link pointer to media_link

u32 flags the requested new link flags
Description
The only configurable property is the MEDIA_LNK_FL_ENABLED link flag flag to enable/disable a link. Links
marked with the MEDIA_LNK_FL_IMMUTABLE link flag can not be enabled or disabled.
When a link is enabled or disabled, the media framework calls the link_setup operation for the two entities
at the source and sink of the link, in that order. If the second link_setup call fails, another link_setup call
is made on the first entity to restore the original link flags.
Media device drivers can be notified of link setup operations by setting the media_device.link_notify
pointer to a callback function. If provided, the notification callback will be called before enabling and after
disabling links.
Entity drivers must implement the link_setup operation if any of their links is non-immutable. The opera-
tion must either configure the hardware or store the configuration information to be applied later.
Link configuration must not have any side effect on other links. If an enabled link at a sink pad prevents
another link at the same pad from being enabled, the link_setup operation must return -EBUSY and can’t
implicitly disable the first enabled link.

Note:

The valid values of the flags for the link is the same as described on media_create_pad_link(), for
pad to pad links or the same as described on media_create_intf_link(), for interface to entity links.

struct media_link * media_entity_find_link(struct media_pad * source, struct media_pad * sink)
Find a link between two pads

Parameters
struct media_pad * source Source pad
struct media_pad * sink Sink pad
Return
returns a pointer to the link between the two entities. If no such link exists, return NULL.
struct media_pad * media_entity_remote_pad(const struct media_pad * pad)

Find the pad at the remote end of a link
Parameters
const struct media_pad * pad Pad at the local end of the link
Description
Search for a remote pad connected to the given pad by iterating over all links originating or terminating
at that pad until an enabled link is found.
Return

828 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

returns a pointer to the pad at the remote end of the first found enabled link, or NULL if no enabled link
has been found.
struct media_entity * media_entity_get(struct media_entity * entity)

Get a reference to the parent module
Parameters
struct media_entity * entity The entity
Description
Get a reference to the parent media device module.
The function will return immediately if entity is NULL.
Return
returns a pointer to the entity on success or NULL on failure.
int media_entity_get_fwnode_pad(struct media_entity * entity, struct fwnode_handle * fwnode,

unsigned long direction_flags)
Get pad number from fwnode

Parameters
struct media_entity * entity The entity
struct fwnode_handle * fwnode Pointer to the fwnode_handle which should be used to find the pad
unsigned long direction_flags Expected direction of the pad, as defined in in-

clude/uapi/linux/media.h (seek for MEDIA_PAD_FL_*)
Description
This function can be used to resolve the media pad number from a fwnode. This is useful for devices
which use more complex mappings of media pads.
If the entity dose not implement the get_fwnode_pad() operation then this function searches the entity
for the first pad that matches the direction_flags.
Return
returns the pad number on success or a negative error code.
int media_graph_walk_init(struct media_graph * graph, struct media_device * mdev)

Allocate resources used by graph walk.
Parameters
struct media_graph * graph Media graph structure that will be used to walk the graph
struct media_device * mdev Pointer to the media_device that contains the object
void media_graph_walk_cleanup(struct media_graph * graph)

Release resources used by graph walk.
Parameters
struct media_graph * graph Media graph structure that will be used to walk the graph
void media_entity_put(struct media_entity * entity)

Release the reference to the parent module
Parameters
struct media_entity * entity The entity
Description
Release the reference count acquired by media_entity_get().
The function will return immediately if entity is NULL.

2.10. Media Controller devices 829

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

void media_graph_walk_start(struct media_graph * graph, struct media_entity * entity)
Start walking the media graph at a given entity

Parameters
struct media_graph * graph Media graph structure that will be used to walk the graph
struct media_entity * entity Starting entity
Description
Before using this function, media_graph_walk_init()must be used to allocate resources used for walking
the graph. This function initializes the graph traversal structure to walk the entities graph starting at the
given entity. The traversal structure must not be modified by the caller during graph traversal. After the
graph walk, the resources must be released using media_graph_walk_cleanup().
struct media_entity * media_graph_walk_next(struct media_graph * graph)

Get the next entity in the graph
Parameters
struct media_graph * graph Media graph structure
Description
Perform a depth-first traversal of the given media entities graph.
The graph structure must have been previously initialized with a call to media_graph_walk_start().
Return
returns the next entity in the graph or NULL if the whole graph have been traversed.
int media_pipeline_start(struct media_entity * entity, struct media_pipeline * pipe)

Mark a pipeline as streaming
Parameters
struct media_entity * entity Starting entity
struct media_pipeline * pipe Media pipeline to be assigned to all entities in the pipeline.
Description
Mark all entities connected to a given entity through enabled links, either directly or indirectly, as stream-
ing. The given pipeline object is assigned to every entity in the pipeline and stored in the media_entity
pipe field.
Calls to this function can be nested, in which case the same number of media_pipeline_stop() calls
will be required to stop streaming. The pipeline pointer must be identical for all nested calls to me-
dia_pipeline_start().
int __media_pipeline_start(struct media_entity * entity, struct media_pipeline * pipe)

Mark a pipeline as streaming
Parameters
struct media_entity * entity Starting entity
struct media_pipeline * pipe Media pipeline to be assigned to all entities in the pipeline.
Description
..note:: This is the non-locking version of media_pipeline_start()
void media_pipeline_stop(struct media_entity * entity)

Mark a pipeline as not streaming
Parameters
struct media_entity * entity Starting entity

830 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
Mark all entities connected to a given entity through enabled links, either directly or indirectly, as not
streaming. The media_entity pipe field is reset to NULL.
If multiple calls to media_pipeline_start() have been made, the same number of calls to this function
are required to mark the pipeline as not streaming.
void __media_pipeline_stop(struct media_entity * entity)

Mark a pipeline as not streaming
Parameters
struct media_entity * entity Starting entity
Description

Note:

This is the non-locking version of media_pipeline_stop()

struct media_intf_devnode * media_devnode_create(struct media_device * mdev, u32 type,
u32 flags, u32 major, u32 minor)

creates and initializes a device node interface
Parameters
struct media_device * mdev pointer to struct media_device
u32 type type of the interface, as given by include/uapi/linux/media.h (seek for MEDIA_INTF_T_*)

macros.
u32 flags Interface flags, as defined in include/uapi/linux/media.h (seek for MEDIA_INTF_FL_*)
u32 major Device node major number.
u32 minor Device node minor number.
Return
if succeeded, returns a pointer to the newly allocated media_intf_devnode pointer.

Note:

Currently, no flags for media_interface is defined.

void media_devnode_remove(struct media_intf_devnode * devnode)
removes a device node interface

Parameters
struct media_intf_devnode * devnode pointer to media_intf_devnode to be freed.
Description
When a device node interface is removed, all links to it are automatically removed.
media_create_intf_link(struct media_entity * entity, struct media_interface * intf, u32 flags)

creates a link between an entity and an interface
Parameters
struct media_entity * entity pointer to media_entity

struct media_interface * intf pointer to media_interface

u32 flags Link flags, as defined in include/uapi/linux/media.h (seek for MEDIA_LNK_FL_*)

2.10. Media Controller devices 831

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
Valid values for flags:
MEDIA_LNK_FL_ENABLED Indicates that the interface is connected to the entity hardware. That’s the de-

fault value for interfaces. An interface may be disabled if the hardware is busy due to the usage of
some other interface that it is currently controlling the hardware.
A typical example is an hybrid TV device that handle only one type of stream on a given time. So,
when the digital TV is streaming, the V4L2 interfaces won’t be enabled, as such device is not able to
also stream analog TV or radio.

Note:

Before calling this function, media_devnode_create() should be called for the interface and me-
dia_device_register_entity() should be called for the interface that will be part of the link.

void __media_remove_intf_link(struct media_link * link)
remove a single interface link

Parameters
struct media_link * link pointer to media_link.
Description

Note:

This is an unlocked version of media_remove_intf_link()

void media_remove_intf_link(struct media_link * link)
remove a single interface link

Parameters
struct media_link * link pointer to media_link.
Description

Note:

Prefer to use this one, instead of __media_remove_intf_link()

void __media_remove_intf_links(struct media_interface * intf)
remove all links associated with an interface

Parameters
struct media_interface * intf pointer to media_interface

Description

Note:

This is an unlocked version of media_remove_intf_links().

void media_remove_intf_links(struct media_interface * intf)
remove all links associated with an interface

Parameters

832 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

struct media_interface * intf pointer to media_interface

Description

Note:

1. This is called automatically when an entity is unregistered via media_device_register_entity()
and by media_devnode_remove().

2. Prefer to use this one, instead of __media_remove_intf_links().

media_entity_call(entity, operation, args...)
Calls a struct media_entity_operations operation on an entity

Parameters
entity entity where the operation will be called
operation type of the operation. Should be the name of a member of struct media_entity_operations.
args... variable arguments
Description
This helper function will check if operation is not NULL. On such case, it will issue a call to opera-
tion(entity, args).

2.11 CEC Kernel Support

The CEC framework provides a unified kernel interface for use with HDMI CEC hardware. It is designed to
handle a multiple types of hardware (receivers, transmitters, USB dongles). The framework also gives the
option to decide what to do in the kernel driver and what should be handled by userspace applications. In
addition it integrates the remote control passthrough feature into the kernel’s remote control framework.

2.11.1 The CEC Protocol

The CEC protocol enables consumer electronic devices to communicate with each other through the HDMI
connection. The protocol uses logical addresses in the communication. The logical address is strictly
connected with the functionality provided by the device. The TV acting as the communication hub is
always assigned address 0. The physical address is determined by the physical connection between
devices.
The CEC framework described here is up to date with the CEC 2.0 specification. It is documented in the
HDMI 1.4 specification with the new 2.0 bits documented in the HDMI 2.0 specification. But for most of
the features the freely available HDMI 1.3a specification is sufficient:
http://www.microprocessor.org/HDMISpecification13a.pdf

2.11.2 CEC Adapter Interface

The struct cec_adapter represents the CEC adapter hardware. It is created by calling
cec_allocate_adapter() and deleted by calling cec_delete_adapter():
struct cec_adapter *cec_allocate_adapter(const struct cec_adap_ops *ops, void *priv,
const char *name, u32 caps, u8 available_las);

void cec_delete_adapter(struct cec_adapter *adap);

To create an adapter you need to pass the following information:
ops: adapter operations which are called by the CEC framework and that you have to implement.

2.11. CEC Kernel Support 833

http://www.microprocessor.org/HDMISpecification13a.pdf

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

priv: will be stored in adap->priv and can be used by the adapter ops. Use cec_get_drvdata(adap) to get
the priv pointer.

name: the name of the CEC adapter. Note: this name will be copied.
caps: capabilities of the CEC adapter. These capabilities determine the capabilities of the hardware

and which parts are to be handled by userspace and which parts are handled by kernelspace. The
capabilities are returned by CEC_ADAP_G_CAPS.

available_las: the number of simultaneous logical addresses that this adapter can handle. Must be 1
<= available_las <= CEC_MAX_LOG_ADDRS.

To obtain the priv pointer use this helper function:
void *cec_get_drvdata(const struct cec_adapter *adap);

To register the /dev/cecX device node and the remote control device (if CEC_CAP_RC is set) you call:
int cec_register_adapter(struct cec_adapter *adap, struct device *parent);

where parent is the parent device.
To unregister the devices call:
void cec_unregister_adapter(struct cec_adapter *adap);

Note: if cec_register_adapter() fails, then call cec_delete_adapter() to clean up. But if
cec_register_adapter() succeeded, then only call cec_unregister_adapter() to clean up, never
cec_delete_adapter(). The unregister function will delete the adapter automatically once the last user
of that /dev/cecX device has closed its file handle.

2.11.3 Implementing the Low-Level CEC Adapter

The following low-level adapter operations have to be implemented in your driver:
struct cec_adap_ops

struct cec_adap_ops
{

/* Low-level callbacks */
int (*adap_enable)(struct cec_adapter *adap, bool enable);
int (*adap_monitor_all_enable)(struct cec_adapter *adap, bool enable);
int (*adap_log_addr)(struct cec_adapter *adap, u8 logical_addr);
int (*adap_transmit)(struct cec_adapter *adap, u8 attempts,

u32 signal_free_time, struct cec_msg *msg);
void (*adap_status)(struct cec_adapter *adap, struct seq_file *file);
void (*adap_free)(struct cec_adapter *adap);

/* High-level callbacks */
...

};

The five low-level ops deal with various aspects of controlling the CEC adapter hardware:
To enable/disable the hardware:
int (*adap_enable)(struct cec_adapter *adap, bool enable);

This callback enables or disables the CEC hardware. Enabling the CEC hardware means powering it up
in a state where no logical addresses are claimed. This op assumes that the physical address (adap-
>phys_addr) is valid when enable is true and will not change while the CEC adapter remains enabled. The
initial state of the CEC adapter after calling cec_allocate_adapter() is disabled.
Note that adap_enable must return 0 if enable is false.
To enable/disable the ‘monitor all’ mode:
int (*adap_monitor_all_enable)(struct cec_adapter *adap, bool enable);

834 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

If enabled, then the adapter should be put in a mode to also monitor messages that not for us. Not all
hardware supports this and this function is only called if the CEC_CAP_MONITOR_ALL capability is set. This
callback is optional (some hardware may always be in ‘monitor all’ mode).
Note that adap_monitor_all_enable must return 0 if enable is false.
To program a new logical address:
int (*adap_log_addr)(struct cec_adapter *adap, u8 logical_addr);

If logical_addr == CEC_LOG_ADDR_INVALID then all programmed logical addresses are to be erased. Oth-
erwise the given logical address should be programmed. If the maximum number of available logical
addresses is exceeded, then it should return -ENXIO. Once a logical address is programmed the CEC hard-
ware can receive directed messages to that address.
Note that adap_log_addr must return 0 if logical_addr is CEC_LOG_ADDR_INVALID.
To transmit a new message:
int (*adap_transmit)(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg);

This transmits a new message. The attempts argument is the suggested number of attempts for the
transmit.
The signal_free_time is the number of data bit periods that the adapter should wait when the line is free
before attempting to send a message. This value depends on whether this transmit is a retry, a message
from a new initiator or a new message for the same initiator. Most hardware will handle this automatically,
but in some cases this information is needed.
The CEC_FREE_TIME_TO_USEC macro can be used to convert signal_free_time to microseconds (one data
bit period is 2.4 ms).
To log the current CEC hardware status:
void (*adap_status)(struct cec_adapter *adap, struct seq_file *file);

This optional callback can be used to show the status of the CEC hardware. The status is available through
debugfs: cat /sys/kernel/debug/cec/cecX/status
To free any resources when the adapter is deleted:
void (*adap_free)(struct cec_adapter *adap);

This optional callback can be used to free any resources that might have been allocated by the driver. It’s
called from cec_delete_adapter.
Your adapter driver will also have to react to events (typically interrupt driven) by calling into the frame-
work in the following situations:
When a transmit finished (successfully or otherwise):
void cec_transmit_done(struct cec_adapter *adap, u8 status, u8 arb_lost_cnt,
u8 nack_cnt, u8 low_drive_cnt, u8 error_cnt);

or:
void cec_transmit_attempt_done(struct cec_adapter *adap, u8 status);

The status can be one of:
CEC_TX_STATUS_OK: the transmit was successful.
CEC_TX_STATUS_ARB_LOST: arbitration was lost: another CEC initiator took control of the CEC line and

you lost the arbitration.
CEC_TX_STATUS_NACK: the message was nacked (for a directed message) or acked (for a broadcast

message). A retransmission is needed.
CEC_TX_STATUS_LOW_DRIVE: low drive was detected on the CEC bus. This indicates that a follower

detected an error on the bus and requested a retransmission.

2.11. CEC Kernel Support 835

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CEC_TX_STATUS_ERROR: some unspecified error occurred: this can be one of the previous two if the
hardware cannot differentiate or something else entirely.

CEC_TX_STATUS_MAX_RETRIES: could not transmit the message after trying multiple times. Should
only be set by the driver if it has hardware support for retrying messages. If set, then the framework
assumes that it doesn’t have to make another attempt to transmit the message since the hardware
did that already.

The *_cnt arguments are the number of error conditions that were seen. This may be 0 if no information
is available. Drivers that do not support hardware retry can just set the counter corresponding to the
transmit error to 1, if the hardware does support retry then either set these counters to 0 if the hardware
provides no feedback of which errors occurred and how many times, or fill in the correct values as reported
by the hardware.
The cec_transmit_attempt_done() function is a helper for cases where the hardware never retries, so the
transmit is always for just a single attempt. It will call cec_transmit_done() in turn, filling in 1 for the count
argument corresponding to the status. Or all 0 if the status was OK.
When a CEC message was received:
void cec_received_msg(struct cec_adapter *adap, struct cec_msg *msg);

Speaks for itself.

2.11.4 Implementing the interrupt handler

Typically the CEC hardware provides interrupts that signal when a transmit finished and whether it was
successful or not, and it provides and interrupt when a CEC message was received.
The CEC driver should always process the transmit interrupts first before handling the receive interrupt.
The framework expects to see the cec_transmit_done call before the cec_received_msg call, otherwise it
can get confused if the received message was in reply to the transmitted message.

2.11.5 Implementing the High-Level CEC Adapter

The low-level operations drive the hardware, the high-level operations are CEC protocol driven. The fol-
lowing high-level callbacks are available:

struct cec_adap_ops {
/* Low-level callbacks */
...

/* High-level CEC message callback */
int (*received)(struct cec_adapter *adap, struct cec_msg *msg);

};

The received() callback allows the driver to optionally handle a newly received CEC message
int (*received)(struct cec_adapter *adap, struct cec_msg *msg);

If the driver wants to process a CEC message, then it can implement this callback. If it doesn’t want to
handle this message, then it should return -ENOMSG, otherwise the CEC framework assumes it processed
this message and it will not do anything with it.

2.11.6 CEC framework functions

CEC Adapter drivers can call the following CEC framework functions:
int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
bool block);

836 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Transmit a CEC message. If block is true, then wait until the message has been transmitted, otherwise
just queue it and return.
void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr,
bool block);

Change the physical address. This function will set adap->phys_addr and send an event if it has changed.
If cec_s_log_addrs() has been called and the physical address has become valid, then the CEC framework
will start claiming the logical addresses. If block is true, then this function won’t return until this process
has finished.
When the physical address is set to a valid value the CEC adapter will be enabled (see the adap_enable
op). When it is set to CEC_PHYS_ADDR_INVALID, then the CEC adapter will be disabled. If you change
a valid physical address to another valid physical address, then this function will first set the address to
CEC_PHYS_ADDR_INVALID before enabling the new physical address.
void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
const struct edid *edid);

A helper function that extracts the physical address from the edid struct and calls cec_s_phys_addr() with
that address, or CEC_PHYS_ADDR_INVALID if the EDID did not contain a physical address or edid was a
NULL pointer.
int cec_s_log_addrs(struct cec_adapter *adap,
struct cec_log_addrs *log_addrs, bool block);

Claim the CEC logical addresses. Should never be called if CEC_CAP_LOG_ADDRS is set. If block is true,
then wait until the logical addresses have been claimed, otherwise just queue it and return. To unconfigure
all logical addresses call this function with log_addrs set to NULL or with log_addrs->num_log_addrs set
to 0. The block argument is ignored when unconfiguring. This function will just return if the physical
address is invalid. Once the physical address becomes valid, then the framework will attempt to claim
these logical addresses.

2.11.7 CEC Pin framework

Most CEC hardware operates on full CEC messages where the software provides the message and the
hardware handles the low-level CEC protocol. But some hardware only drives the CEC pin and software
has to handle the low-level CEC protocol. The CEC pin framework was created to handle such devices.
Note that due to the close-to-realtime requirements it can never be guaranteed to work 100%. This
framework uses highres timers internally, but if a timer goes off too late by more than 300 microseconds
wrong results can occur. In reality it appears to be fairly reliable.
One advantage of this low-level implementation is that it can be used as a cheap CEC analyser, especially
if interrupts can be used to detect CEC pin transitions from low to high or vice versa.
struct cec_pin_ops

low-level CEC pin operations
Definition

struct cec_pin_ops {
bool (* read) (struct cec_adapter *adap);
void (* low) (struct cec_adapter *adap);
void (* high) (struct cec_adapter *adap);
bool (* enable_irq) (struct cec_adapter *adap);
void (* disable_irq) (struct cec_adapter *adap);
void (* free) (struct cec_adapter *adap);
void (* status) (struct cec_adapter *adap, struct seq_file *file);

};

Members
read read the CEC pin. Return true if high, false if low.

2.11. CEC Kernel Support 837

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

low drive the CEC pin low.
high stop driving the CEC pin. The pull-up will drive the pin high, unless someone else is driving the pin

low.
enable_irq optional, enable the interrupt to detect pin voltage changes.
disable_irq optional, disable the interrupt.
free optional. Free any allocated resources. Called when the adapter is deleted.
status optional, log status information.
Description
These operations are used by the cec pin framework to manipulate the CEC pin.
void cec_pin_changed(struct cec_adapter * adap, bool value)

update pin state from interrupt
Parameters
struct cec_adapter * adap pointer to the cec adapter
bool value when true the pin is high, otherwise it is low
Description
If changes of the CEC voltage are detected via an interrupt, then cec_pin_changed is called from the
interrupt with the new value.
struct cec_adapter * cec_pin_allocate_adapter(const struct cec_pin_ops * pin_ops, void * priv,

const char * name, u32 caps)
allocate a pin-based cec adapter

Parameters
const struct cec_pin_ops * pin_ops low-level pin operations
void * priv will be stored in adap->priv and can be used by the adapter ops. Use cec_get_drvdata(adap)

to get the priv pointer.
const char * name the name of the CEC adapter. Note: this name will be copied.
u32 caps capabilities of the CEC adapter. This will be ORed with CEC_CAP_MONITOR_ALL and

CEC_CAP_MONITOR_PIN.
Description
Allocate a cec adapter using the cec pin framework.
Return
a pointer to the cec adapter or an error pointer

2.11.8 CEC Notifier framework

Most drm HDMI implementations have an integrated CEC implementation and no notifier support is
needed. But some have independent CEC implementations that have their own driver. This could be
an IP block for an SoC or a completely separate chip that deals with the CEC pin. For those cases a drm
driver can install a notifier and use the notifier to inform the CEC driver about changes in the physical
address.
struct cec_notifier * cec_notifier_get(struct device * dev)

find or create a new cec_notifier for the given device.
Parameters
struct device * dev device that sends the events.

838 Chapter 2. Media subsystem kernel internal API

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
If a notifier for device dev already exists, then increase the refcount and return that notifier.
If it doesn’t exist, then allocate a new notifier struct and return a pointer to that new struct.
Return NULL if the memory could not be allocated.
void cec_notifier_put(struct cec_notifier * n)

decrease refcount and delete when the refcount reaches 0.
Parameters
struct cec_notifier * n notifier
void cec_notifier_set_phys_addr(struct cec_notifier * n, u16 pa)

set a new physical address.
Parameters
struct cec_notifier * n the CEC notifier
u16 pa the CEC physical address
Description
Set a new CEC physical address. Does nothing if n == NULL.
void cec_notifier_set_phys_addr_from_edid(struct cec_notifier * n, const struct edid * edid)

set parse the PA from the EDID.
Parameters
struct cec_notifier * n the CEC notifier
const struct edid * edid the struct edid pointer
Description
Parses the EDID to obtain the new CEC physical address and set it. Does nothing if n == NULL.
void cec_notifier_register(struct cec_notifier * n, struct cec_adapter * adap, void (*callback)

(struct cec_adapter *adap, u16 pa)
register a callback with the notifier

Parameters
struct cec_notifier * n the CEC notifier
struct cec_adapter * adap the CEC adapter, passed as argument to the callback function
void (*)(struct cec_adapter *adap,u16 pa) callback the callback function
void cec_notifier_unregister(struct cec_notifier * n)

unregister the callback from the notifier.
Parameters
struct cec_notifier * n the CEC notifier
void cec_register_cec_notifier(struct cec_adapter * adap, struct cec_notifier * notifier)

register the notifier with the cec adapter.
Parameters
struct cec_adapter * adap the CEC adapter
struct cec_notifier * notifier the CEC notifier
void cec_notifier_phys_addr_invalidate(struct cec_notifier * n)

set the physical address to INVALID
Parameters
struct cec_notifier * n the CEC notifier

2.11. CEC Kernel Support 839

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description
This is a simple helper function to invalidate the physical address. Does nothing if n == NULL.

2.12 MIPI CSI-2

CSI-2 is a data bus intended for transferring images from cameras to the host SoC. It is defined by the
MIPI alliance.

2.12.1 Transmitter drivers

CSI-2 transmitter, such as a sensor or a TV tuner, drivers need to provide the CSI-2 receiver with informa-
tion on the CSI-2 bus configuration. These include the V4L2_CID_LINK_FREQ and V4L2_CID_PIXEL_RATE
controls and (v4l2_subdev_video_ops->s_stream() callback). These interface elements must be present
on the sub-device represents the CSI-2 transmitter.
The V4L2_CID_LINK_FREQ control is used to tell the receiver driver the frequency (and not the symbol
rate) of the link. The V4L2_CID_PIXEL_RATE is may be used by the receiver to obtain the pixel rate the
transmitter uses. The v4l2_subdev_video_ops->s_stream() callback provides an ability to start and stop
the stream.
The value of the V4L2_CID_PIXEL_RATE is calculated as follows:

pixel_rate = link_freq * 2 * nr_of_lanes / bits_per_sample

where

Table 2.1: variables in pixel rate calculation
variable or
constant

description

link_freq The value of the V4L2_CID_LINK_FREQ integer64 menu item.
nr_of_lanes Number of data lanes used on the CSI-2 link. This can be obtained from the OF

endpoint configuration.
2 Two bits are transferred per clock cycle per lane.
bits_per_sample Number of bits per sample.
The transmitter drivers must, if possible, configure the CSI-2 transmitter to LP-11 mode whenever the
transmitter is powered on but not active. Some transmitters do this automatically but some have to be
explicitly programmed to do so, and some are unable to do so altogether due to hardware constraints.

Stopping the transmitter

A transmitter stops sending the stream of images as a result of calling the .s_stream() callback. Some
transmitters may stop the stream at a frame boundary whereas others stop immediately, effectively
leaving the current frame unfinished. The receiver driver should not make assumptions either way, but
function properly in both cases.

2.12.2 Receiver drivers

Before the receiver driver may enable the CSI-2 transmitter by using the v4l2_subdev_video_ops-
>s_stream(), it must have powered the transmitter up by using the v4l2_subdev_core_ops->s_power()
callback. This may take place either indirectly by using v4l2_pipeline_pm_use() or directly.

840 Chapter 2. Media subsystem kernel internal API

http://www.mipi.org/

CHAPTER

THREE

LINUX DIGITAL TV DRIVER-SPECIFIC DOCUMENTATION

Copyright © 2001-2016 : LinuxTV Developers
This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
For more details see the file COPYING in the source distribution of Linux.

3.1 Introduction

The main development site and GIT repository for these drivers is https://linuxtv.org.
The DVB mailing list linux-dvb is hosted at vger. Please see http://vger.kernel.org/vger-lists.html#
linux-media for details.
There are also some other old lists hosted at https://linuxtv.org/lists.php. Please check the archive https:
//linuxtv.org/pipermail/linux-dvb/.
The media subsystem Wiki is hosted at https://linuxtv.org/wiki/. Please check it before asking newbie
questions on the list.
API documentation is documented at the Kernel. You’ll also find useful documentation at: https://linuxtv.
org/docs.php.
You may also find useful material at https://linuxtv.org/downloads/.
In order to get firmware from proprietary drivers, there’s a script at the kernel tree, at
scripts/get_dvb_firmware.

3.2 HOWTO: Get An Avermedia DVB-T working under Linux

February 14th 2006

Note:

This documentation is outdated. Please check at the DVB wiki at https://linuxtv.org/wiki for more
updated info.
There’s a section there specific for Avermedia boards at: https://linuxtv.org/wiki/index.php/AVerMedia

841

https://linuxtv.org
http://vger.kernel.org/vger-lists.html#linux-media
http://vger.kernel.org/vger-lists.html#linux-media
https://linuxtv.org/lists.php
https://linuxtv.org/pipermail/linux-dvb/
https://linuxtv.org/pipermail/linux-dvb/
https://linuxtv.org/wiki/
https://linuxtv.org/docs.php
https://linuxtv.org/docs.php
https://linuxtv.org/downloads/
https://linuxtv.org/wiki
https://linuxtv.org/wiki/index.php/AVerMedia

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

3.2.1 Assumptions and Introduction

It is assumed that the reader understands the basic structure of the Linux Kernel DVB drivers and the
general principles of Digital TV.
One significant difference between Digital TV and Analogue TV that the unwary (like myself) should con-
sider is that, although the component structure of budget DVB-T cards are substantially similar to Analogue
TV cards, they function in substantially different ways.
The purpose of an Analogue TV is to receive and display an Analogue Television signal. An Analogue TV
signal (otherwise known as composite video) is an analogue encoding of a sequence of image frames (25
per second) rasterised using an interlacing technique. Interlacing takes two fields to represent one frame.
Computers today are at their best when dealing with digital signals, not analogue signals and a composite
video signal is about as far removed from a digital data stream as you can get. Therefore, an Analogue
TV card for a PC has the following purpose:

• Tune the receiver to receive a broadcast signal
• demodulate the broadcast signal
• demultiplex the analogue video signal and analogue audio signal. NOTE: some countries employ a

digital audio signal embedded within the modulated composite analogue signal - NICAM.)
• digitize the analogue video signal and make the resulting datastream available to the data bus.

The digital datastream from an Analogue TV card is generated by circuitry on the card and is often pre-
sented uncompressed. For a PAL TV signal encoded at a resolution of 768x576 24-bit color pixels over 25
frames per second - a fair amount of data is generated and must be processed by the PC before it can be
displayed on the video monitor screen. Some Analogue TV cards for PCs have onboard MPEG2 encoders
which permit the raw digital data stream to be presented to the PC in an encoded and compressed form
- similar to the form that is used in Digital TV.
The purpose of a simple budget digital TV card (DVB-T,C or S) is to simply:

• Tune the received to receive a broadcast signal.
• Extract the encoded digital datastream from the broadcast signal.
• Make the encoded digital datastream (MPEG2) available to the data bus.

The significant difference between the two is that the tuner on the analogue TV card spits out an Analogue
signal, whereas the tuner on the digital TV card spits out a compressed encoded digital datastream. As the
signal is already digitised, it is trivial to pass this datastream to the PC databus with minimal additional
processing and then extract the digital video and audio datastreams passing them to the appropriate
software or hardware for decoding and viewing.

3.2.2 The Avermedia DVB-T

The Avermedia DVB-T is a budget PCI DVB card. It has 3 inputs:
• RF Tuner Input
• Composite Video Input (RCA Jack)
• SVIDEO Input (Mini-DIN)

The RF Tuner Input is the input to the tuner module of the card. The Tuner is otherwise known as the
“Frontend” . The Frontend of the Avermedia DVB-T is a Microtune 7202D. A timely post to the linux-dvb
mailing list ascertained that the Microtune 7202D is supported by the sp887x driver which is found in the
dvb-hw CVS module.
The DVB-T card is based around the BT878 chip which is a very common multimedia bridge and often
found on Analogue TV cards. There is no on-board MPEG2 decoder, which means that all MPEG2 decoding
must be done in software, or if you have one, on an MPEG2 hardware decoding card or chipset.

842 Chapter 3. Linux Digital TV driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

3.2.3 Getting the card going

In order to fire up the card, it is necessary to load a number of modules from the DVB driver set. Prior to
this it will have been necessary to download these drivers from the linuxtv CVS server and compile them
successfully.
Depending on the card’s feature set, the Device Driver API for DVB under Linux will expose some of the
following device files in the /dev tree:

• /dev/dvb/adapter0/audio0
• /dev/dvb/adapter0/ca0
• /dev/dvb/adapter0/demux0
• /dev/dvb/adapter0/dvr0
• /dev/dvb/adapter0/frontend0
• /dev/dvb/adapter0/net0
• /dev/dvb/adapter0/osd0
• /dev/dvb/adapter0/video0

The primary device nodes that we are interested in (at this stage) for the Avermedia DVB-T are:
• /dev/dvb/adapter0/dvr0
• /dev/dvb/adapter0/frontend0

The dvr0 device node is used to read the MPEG2 Data Stream and the frontend0 node is used to tune the
frontend tuner module.
At this stage, it has not been able to ascertain the functionality of the remaining device nodes in respect of
the Avermedia DVBT. However, full functionality in respect of tuning, receiving and supplying the MPEG2
data stream is possible with the currently available versions of the driver. It may be possible that additional
functionality is available from the card (i.e. viewing the additional analogue inputs that the card presents),
but this has not been tested yet. If I get around to this, I’ll update the document with whatever I find.
To power up the card, load the following modules in the following order:

• modprobe bttv (normally loaded automatically)
• modprobe dvb-bt8xx (or place dvb-bt8xx in /etc/modules)

Insertion of these modules into the running kernel will activate the appropriate DVB device nodes. It is
then possible to start accessing the card with utilities such as scan, tzap, dvbstream etc.
The frontend module sp887x.o, requires an external firmware. Please use the command
“get_dvb_firmware sp887x” to download it. Then copy it to /usr/lib/hotplug/firmware or /lib/firmware/
(depending on configuration of firmware hotplug).

3.2.4 Receiving DVB-T in Australia

I have no experience of DVB-T in other countries other than Australia, so I will attempt to explain how it
works here in Melbourne and how this affects the configuration of the DVB-T card.
The Digital Broadcasting Australia website has a Reception locatortool which provides information on
transponder channels and frequencies. My local transmitter happens to be Mount Dandenong.
The frequencies broadcast by Mount Dandenong are:
Table 1. Transponder Frequencies Mount Dandenong, Vic, Aus. Broadcaster Channel Frequency ABC VHF
12 226.5 MHz TEN VHF 11 219.5 MHz NINE VHF 8 191.625 MHz SEVEN VHF 6 177.5 MHz SBS UHF 29 536.5
MHz

3.2. HOWTO: Get An Avermedia DVB-T working under Linux 843

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The Scan utility has a set of compiled-in defaults for various countries and regions, but if they do not suit,
or if you have a pre-compiled scan binary, you can specify a data file on the command line which contains
the transponder frequencies. Here is a sample file for the above channel transponders:

Data file for DVB scan program
#
C Frequency SymbolRate FEC QAM
S Frequency Polarisation SymbolRate FEC
T Frequency Bandwidth FEC FEC2 QAM Mode Guard Hier
T 226500000 7MHz 2/3 NONE QAM64 8k 1/8 NONE
T 191625000 7MHz 2/3 NONE QAM64 8k 1/8 NONE
T 219500000 7MHz 2/3 NONE QAM64 8k 1/8 NONE
T 177500000 7MHz 2/3 NONE QAM64 8k 1/8 NONE
T 536500000 7MHz 2/3 NONE QAM64 8k 1/8 NONE

The defaults for the transponder frequency and other modulation parameters were obtained from
www.dba.org.au.
When Scan runs, it will output channels.conf information for any channel’s transponders which the card’s
frontend can lock onto. (i.e. any whose signal is strong enough at your antenna).
Here’s my channels.conf file for anyone who’s interested:

ABC HDTV:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_16:HIERARCHY_NONE:2307:0:560

ABC TV Melbourne:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64:TRANSMISSION_
↪→MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:561

ABC TV 2:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:562

ABC TV 3:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:563

ABC TV 4:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:564

ABC DiG Radio:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64:TRANSMISSION_MODE_
↪→8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:0:2311:566

TEN Digital:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1585

TEN Digital 1:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_
↪→8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1586

TEN Digital 2:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_
↪→8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1587

TEN Digital 3:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_
↪→8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1588

TEN Digital:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1589

TEN Digital 4:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_
↪→8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1590

TEN Digital:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1591

TEN HD:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_16:HIERARCHY_NONE:514:0:1592

TEN Digital:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1593

Nine Digital:191625000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_
↪→8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:513:660:1072

Nine Digital HD:191625000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_
↪→MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:0:1073

Nine Guide:191625000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_16:HIERARCHY_NONE:514:670:1074

7 Digital:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_8:HIERARCHY_NONE:769:770:1328

7 Digital 1:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_8:HIERARCHY_NONE:769:770:1329

7 Digital 2:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_8:HIERARCHY_NONE:769:770:1330

844 Chapter 3. Linux Digital TV driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

7 Digital 3:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_8:HIERARCHY_NONE:769:770:1331

7 HD Digital:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_
↪→8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:833:834:1332

7 Program Guide:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_
↪→MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:865:866:1334

SBS HD:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_8:HIERARCHY_NONE:102:103:784

SBS DIGITAL 1:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_
↪→8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:161:81:785

SBS DIGITAL 2:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_
↪→8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:162:83:786

SBS EPG:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_8:HIERARCHY_NONE:163:85:787

SBS RADIO 1:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_8:HIERARCHY_NONE:0:201:798

SBS RADIO 2:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:
↪→GUARD_INTERVAL_1_8:HIERARCHY_NONE:0:202:799

3.2.5 Known Limitations

At present I can say with confidence that the frontend tunes via /dev/dvb/adapter{x}/frontend0 and sup-
plies an MPEG2 stream via /dev/dvb/adapter{x}/dvr0. I have not tested the functionality of any other part
of the card yet. I will do so over time and update this document.
There are some limitations in the i2c layer due to a returned error message inconsistency. Although this
generates errors in dmesg and the system logs, it does not appear to affect the ability of the frontend to
function correctly.

3.2.6 Further Update

dvbstream and VideoLAN Client on windows works a treat with DVB, in fact this is currently serving as my
main way of viewing DVB-T at the moment. Additionally, VLC is happily decoding HDTV signals, although
the PC is dropping the odd frame here and there - I assume due to processing capability - as all the
decoding is being done under windows in software.
Many thanks to Nigel Pearson for the updates to this document since the recent revision of the driver.

3.3 How to get the bt8xx cards working

Authors: Richard Walker, Jamie Honan, Michael Hunold, Manu Abraham, Uwe Bugla, Michael Krufky

Note:

This documentation is outdated. Please check at the DVB wiki at https://linuxtv.org/wiki for more
updated info.

3.3.1 General information

This class of cards has a bt878a as the PCI interface, and require the bttv driver for accessing the i2c bus
and the gpio pins of the bt8xx chipset. Please see Documentation/dvb/cards.txt => o Cards based on the
Conexant Bt8xx PCI bridge:
Compiling kernel please enable:

3.3. How to get the bt8xx cards working 845

https://linuxtv.org/wiki

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1. Device drivers => Multimedia devices => Video For Linux => Enable Video for Linux
API 1 (DEPRECATED)

2. Device drivers => Multimedia devices => Video For Linux => Video Capture Adapters =>
BT848 Video For Linux

3. Device drivers => Multimedia devices => Digital Video Broadcasting Devices => DVB
for Linux DVB Core Support Bt8xx based PCI Cards

Please use the following options with care as deselection of drivers which are in fact necessary
may result in DVB devices that cannot be tuned due to lack of driver support: You can save RAM
by deselecting every frontend module that your DVB card does not need.
First please remove the static dependency of DVB card drivers on all frontend modules for all
possible card variants by enabling:

1. Device drivers => Multimedia devices => Digital Video Broadcasting Devices => DVB
for Linux DVB Core Support Load and attach frontend modules as needed

If you know the frontend driver that your card needs please enable:
1. Device drivers => Multimedia devices => Digital Video Broadcasting Devices => DVB

for Linux DVB Core Support Customise DVB Frontends => Customise the frontend modules
to build

Then please select your card-specific frontend module.

3.3.2 Loading Modules

Regular case: If the bttv driver detects a bt8xx-based DVB card, all frontend and backend modules will be
loaded automatically. Exceptions are: - Old TwinHan DST cards or clones with or without CA slot and not
containing an Eeprom. People running udev please see Documentation/dvb/udev.txt.
In the following cases overriding the PCI type detection for dvb-bt8xx might be necessary:

Running TwinHan and Clones

$ modprobe bttv card=113
$ modprobe dst

Useful parameters for verbosity level and debugging the dst module:

verbose=0: messages are disabled
1: only error messages are displayed
2: notifications are displayed
3: other useful messages are displayed
4: debug setting

dst_addons=0: card is a free to air (FTA) card only
0x20: card has a conditional access slot for scrambled channels

The autodetected values are determined by the cards’ “response string”. In your logs see f. ex.:
dst_get_device_id: Recognize [DSTMCI]. For bug reports please send in a complete log with verbose=4
activated. Please also see Documentation/dvb/ci.txt.

Running multiple cards

Examples of card ID’s:

Pinnacle PCTV Sat: 94
Nebula Electronics Digi TV: 104
pcHDTV HD-2000 TV: 112

846 Chapter 3. Linux Digital TV driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Twinhan DST and clones: 113
Avermedia AverTV DVB-T 771: 123
Avermedia AverTV DVB-T 761: 124
DViCO FusionHDTV DVB-T Lite: 128
DViCO FusionHDTV 5 Lite: 135

Note:

The order of the card ID should be uprising:
Example:

$ modprobe bttv card=113 card=135

For a full list of card ID’s please see Documentation/video4linux/CARDLIST.bttv. In case of further problems
please subscribe and send questions to the mailing list: linux-dvb@linuxtv.org.

Probing the cards with broken PCI subsystem ID

There are some TwinHan cards that the EEPROM has become corrupted for some reason. The cards do
not have correct PCI subsystem ID. But we can force probing the cards with broken PCI subsystem ID

$ echo 109e 0878 $subvendor $subdevice > \
/sys/bus/pci/drivers/bt878/new_id

109e: PCI_VENDOR_ID_BROOKTREE
0878: PCI_DEVICE_ID_BROOKTREE_878

3.4 Hardware supported by the linuxtv.org DVB drivers

Note:

This documentation is outdated. Please check at the DVB wiki at https://linuxtv.org/wiki for more
updated info.
Please look at https://linuxtv.org/wiki/index.php/Hardware_Device_Information for an updated list of
supported cards.

Generally, the DVB hardware manufacturers frequently change the frontends (i.e. tuner / demodulator
units) used, usually without changing the product name, revision number or specs. Some cards are also
available in versions with different frontends for DVB-S/DVB-C/DVB-T. Thus the frontend drivers are listed
separately.

Note:

1. There is no guarantee that every frontend driver works out of the box with every card, because
of different wiring.

2. The demodulator chips can be used with a variety of tuner/PLL chips, and not all combinations
are supported. Often the demodulator and tuner/PLL chip are inside a metal box for shielding,
and the whole metal box has its own part number.

• Frontends drivers:

3.4. Hardware supported by the linuxtv.org DVB drivers 847

mailto:linux-dvb@linuxtv.org
https://linuxtv.org/wiki
https://linuxtv.org/wiki/index.php/Hardware_Device_Information

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

– dvb_dummy_fe: for testing...
DVB-S:

– ves1x93 : Alps BSRV2 (ves1893 demodulator) and dbox2 (ves1993)
– cx24110 : Conexant HM1221/HM1811 (cx24110 or cx24106 demod, cx24108 PLL)
– grundig_29504-491 : Grundig 29504-491 (Philips TDA8083 demodulator), tsa5522 PLL
– mt312 : Zarlink mt312 or Mitel vp310 demodulator, sl1935 or tsa5059 PLLi, Technisat Sky2Pc

with bios Rev. 2.3
– stv0299 [Alps BSRU6 (tsa5059 PLL), LG TDQB-S00x (tsa5059 PLL),] LG TDQF-S001F

(sl1935 PLL), Philips SU1278 (tua6100 PLL), Philips SU1278SH (tsa5059 PLL), Samsung
TBMU24112IMB, Technisat Sky2Pc with bios Rev. 2.6

DVB-C:
– ves1820 : various (ves1820 demodulator, sp5659c or spXXXX PLL)
– at76c651 : Atmel AT76c651(B) with DAT7021 PLL

DVB-T:
– alps_tdlb7 : Alps TDLB7 (sp8870 demodulator, sp5659 PLL)
– alps_tdmb7 : Alps TDMB7 (cx22700 demodulator)
– grundig_29504-401 : Grundig 29504-401 (LSI L64781 demodulator), tsa5060 PLL
– tda1004x : Philips tda10045h (td1344 or tdm1316l PLL)
– nxt6000 : Alps TDME7 (MITEL SP5659 PLL), Alps TDED4 (TI ALP510 PLL), Comtech DVBT-6k07

(SP5730 PLL), (NxtWave Communications NXT6000 demodulator)
– sp887x : Microtune 7202D
– dib3000mb : DiBcom 3000-MB demodulator

DVB-S/C/T:
– dst : TwinHan DST Frontend

ATSC:
– nxt200x : Nxtwave NXT2002 & NXT2004
– or51211 : or51211 based (pcHDTV HD2000 card)
– or51132 : or51132 based (pcHDTV HD3000 card)
– bcm3510 : Broadcom BCM3510
– lgdt330x : LG Electronics DT3302 & DT3303

• Cards based on the Phillips saa7146 multimedia PCI bridge chip:
– TI AV7110 based cards (i.e. with hardware MPEG decoder): - Siemens/Technotrend/Hauppauge

PCI DVB card revision 1.1, 1.3, 1.5, 1.6, 2.1 (aka Hauppauge Nexus)
– “budget” cards (i.e. without hardware MPEG decoder): - Technotrend Budget / Hauppauge

WinTV-Nova PCI Cards - SATELCO Multimedia PCI - KNC1 DVB-S, Typhoon DVB-S, Terratec Cinergy
1200 DVB-S (no CI support) - Typhoon DVB-S budget - Fujitsu-Siemens Activy DVB-S budget card

• Cards based on the B2C2 Inc. FlexCopII/IIb/III:
– Technisat SkyStar2 PCI DVB card revision 2.3, 2.6B, 2.6C

• Cards based on the Conexant Bt8xx PCI bridge:
– Pinnacle PCTV Sat DVB
– Nebula Electronics DigiTV

848 Chapter 3. Linux Digital TV driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

– TwinHan DST
– Avermedia DVB-T
– ChainTech digitop DST-1000 DVB-S
– pcHDTV HD-2000 TV
– DViCO FusionHDTV DVB-T Lite
– DViCO FusionHDTV5 Lite

• Technotrend / Hauppauge DVB USB devices:
– Nova USB
– DEC 2000-T, 3000-S, 2540-T

• DiBcom DVB-T USB based devices:
– Twinhan VisionPlus VisionDTV USB-Ter DVB-T Device
– HAMA DVB-T USB device
– CTS Portable (Chinese Television System)
– KWorld V-Stream XPERT DTV DVB-T USB
– JetWay DTV DVB-T USB
– ADSTech Instant TV DVB-T USB
– Ultima Electronic/Artec T1 USB TVBOX (AN2135 and AN2235)
– Compro Videomate DVB-U2000 - DVB-T USB
– Grandtec USB DVB-T
– Avermedia AverTV DVBT USB
– DiBcom USB DVB-T reference device (non-public)
– Yakumo DVB-T mobile USB2.0
– DiBcom USB2.0 DVB-T reference device (non-public)

• Experimental support for the analog module of the Siemens DVB-C PCI card
• Cards based on the Conexant cx2388x PCI bridge:

– ADS Tech Instant TV DVB-T PCI
– ATI HDTV Wonder
– digitalnow DNTV Live! DVB-T
– DViCO FusionHDTV DVB-T1
– DViCO FusionHDTV DVB-T Plus
– DViCO FusionHDTV3 Gold-Q
– DViCO FusionHDTV3 Gold-T
– DViCO FusionHDTV5 Gold
– Hauppauge Nova-T DVB-T
– KWorld/VStream XPert DVB-T
– pcHDTV HD3000 HDTV
– TerraTec Cinergy 1400 DVB-T
– WinFast DTV1000-T

• Cards based on the Phillips saa7134 PCI bridge:

3.4. Hardware supported by the linuxtv.org DVB drivers 849

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

– Medion 7134
– Pinnacle PCTV 300i DVB-T + PAL
– LifeView FlyDVB-T DUO
– Typhoon DVB-T Duo Digital/Analog Cardbus
– Philips TOUGH DVB-T reference design
– Philips EUROPA V3 reference design
– Compro Videomate DVB-T300
– Compro Videomate DVB-T200
– AVerMedia AVerTVHD MCE A180
– KWorld PC150-U ATSC Hybrid

3.5 Digital TV Conditional Access Interface (CI API)

Note:

This documentation is outdated.

This document describes the usage of the high level CI API as in accordance to the Linux DVB API. This is
a not a documentation for the, existing low level CI API.

Note:

For the Twinhan/Twinhan clones, the dst_ca module handles the CI hardware handling.This module
is loaded automatically if a CI (Common Interface, that holds the CAM (Conditional Access Module) is
detected.

3.5.1 ca_zap

A userspace application, like ca_zap is required to handle encrypted MPEG-TS streams.
The ca_zap userland application is in charge of sending the descrambling related information to the Con-
ditional Access Module (CAM).
This application requires the following to function properly as of now.

1. Tune to a valid channel, with szap.
eg: $ szap -c channels.conf -r “TMC” -x

2. a channels.conf containing a valid PMT PID
eg: TMC:11996:h:0:27500:278:512:650:321
here 278 is a valid PMT PID. the rest of the values are the same ones that szap uses.

3. after running a szap, you have to run ca_zap, for the descrambler to function,
eg: $ ca_zap channels.conf “TMC”

4. Hopefully enjoy your favourite subscribed channel as you do with a FTA card.

850 Chapter 3. Linux Digital TV driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

Currently ca_zap, and dst_test, both are meant for demonstration purposes only, they can become
full fledged applications if necessary.

3.5.2 Cards that fall in this category

At present the cards that fall in this category are the Twinhan and its clones, these cards are available as
VVMER, Tomato, Hercules, Orange and so on.

3.5.3 CI modules that are supported

The CI module support is largely dependent upon the firmware on the cards Some cards do support almost
all of the available CI modules. There is nothing much that can be done in order to make additional CI
modules working with these cards.
Modules that have been tested by this driver at present are

1. Irdeto 1 and 2 from SCM
2. Viaccess from SCM
3. Dragoncam

3.5.4 The High level CI API

For the programmer

With the High Level CI approach any new card with almost any random architecture can be implemented
with this style, the definitions inside the switch statement can be easily adapted for any card, thereby
eliminating the need for any additional ioctls.
The disadvantage is that the driver/hardware has to manage the rest. For the application programmer it
would be as simple as sending/receiving an array to/from the CI ioctls as defined in the Linux DVB API. No
changes have been made in the API to accommodate this feature.

3.5.5 Why the need for another CI interface?

This is one of the most commonly asked question. Well a nice question. Strictly speaking this is not a new
interface.
The CI interface is defined in the DVB API in ca.h as:

typedef struct ca_slot_info {
int num; /* slot number */

int type; /* CA interface this slot supports */
#define CA_CI 1 /* CI high level interface */
#define CA_CI_LINK 2 /* CI link layer level interface */
#define CA_CI_PHYS 4 /* CI physical layer level interface */
#define CA_DESCR 8 /* built-in descrambler */
#define CA_SC 128 /* simple smart card interface */

unsigned int flags;
#define CA_CI_MODULE_PRESENT 1 /* module (or card) inserted */
#define CA_CI_MODULE_READY 2
} ca_slot_info_t;

3.5. Digital TV Conditional Access Interface (CI API) 851

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

This CI interface follows the CI high level interface, which is not implemented by most applications. Hence
this area is revisited.
This CI interface is quite different in the case that it tries to accommodate all other CI based devices, that
fall into the other categories.
This means that this CI interface handles the EN50221 style tags in the Application layer only and no
session management is taken care of by the application. The driver/hardware will take care of all that.
This interface is purely an EN50221 interface exchanging APDU’s. This means that no session manage-
ment, link layer or a transport layer do exist in this case in the application to driver communication. It is
as simple as that. The driver/hardware has to take care of that.
With this High Level CI interface, the interface can be defined with the regular ioctls.
All these ioctls are also valid for the High level CI interface
#define CA_RESET _IO(‘o’, 128) #define CA_GET_CAP _IOR(‘o’, 129, ca_caps_t) #define
CA_GET_SLOT_INFO _IOR(‘o’, 130, ca_slot_info_t) #define CA_GET_DESCR_INFO _IOR(‘o’, 131,
ca_descr_info_t) #define CA_GET_MSG _IOR(‘o’, 132, ca_msg_t) #define CA_SEND_MSG _IOW(‘o’,
133, ca_msg_t) #define CA_SET_DESCR _IOW(‘o’, 134, ca_descr_t)
On querying the device, the device yields information thus:

CA_GET_SLOT_INFO

Command = [info]
APP: Number=[1]
APP: Type=[1]
APP: flags=[1]
APP: CI High level interface
APP: CA/CI Module Present

CA_GET_CAP

Command = [caps]
APP: Slots=[1]
APP: Type=[1]
APP: Descrambler keys=[16]
APP: Type=[1]

CA_SEND_MSG

Descriptors(Program Level)=[09 06 06 04 05 50 ff f1]
Found CA descriptor @ program level

(20) ES type=[2] ES pid=[201] ES length =[0 (0x0)]
(25) ES type=[4] ES pid=[301] ES length =[0 (0x0)]
ca_message length is 25 (0x19) bytes
EN50221 CA MSG=[9f 80 32 19 03 01 2d d1 f0 08 01 09 06 06 04 05 50 ff f1 02 e0 c9 00 00 04 e1␣

↪→2d 00 00]

Not all ioctl’s are implemented in the driver from the API, the other features of the hardware that cannot
be implemented by the API are achieved using the CA_GET_MSG and CA_SEND_MSG ioctls. An EN50221
style wrapper is used to exchange the data to maintain compatibility with other hardware.

/* a message to/from a CI-CAM */
typedef struct ca_msg {

unsigned int index;
unsigned int type;
unsigned int length;
unsigned char msg[256];

} ca_msg_t;

The flow of data can be described thus,

852 Chapter 3. Linux Digital TV driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

App (User)

parse

|
|
v

en50221 APDU (package)

| | | High Level CI driver
| | |
| v |
| en50221 APDU (unpackage) |
| | |
| | |
| v |
| sanity checks |
| | |
| | |
| v |
do (H/W dep)

| Hardware
|
v

The High Level CI interface uses the EN50221 DVB standard, following a standard ensures futureproofness.

3.6 Idea behind the dvb-usb-framework

Note:

1. This documentation is outdated. Please check at the DVB wiki at https://linuxtv.org/wiki for more
updated info.

2. deprecated: Newer DVB USB drivers should use the dvb-usb-v2 framework.

In March 2005 I got the new Twinhan USB2.0 DVB-T device. They provided specs and a firmware.
Quite keen I wanted to put the driver (with some quirks of course) into dibusb. After reading some specs
and doing some USB snooping, it realized, that the dibusb-driver would be a complete mess afterwards.
So I decided to do it in a different way: With the help of a dvb-usb-framework.
The framework provides generic functions (mostly kernel API calls), such as:

• Transport Stream URB handling in conjunction with dvb-demux-feed-control (bulk and isoc are sup-
ported)

• registering the device for the DVB-API
• registering an I2C-adapter if applicable
• remote-control/input-device handling
• firmware requesting and loading (currently just for the Cypress USB controllers)
• other functions/methods which can be shared by several drivers (such as functions for bulk-control-

commands)
• TODO: a I2C-chunker. It creates device-specific chunks of register-accesses depending on length of

a register and the number of values that can be multi-written and multi-read.

3.6. Idea behind the dvb-usb-framework 853

https://linuxtv.org/wiki

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The source code of the particular DVB USB devices does just the communication with the device via the
bus. The connection between the DVB-API-functionality is done via callbacks, assigned in a static device-
description (struct dvb_usb_device) each device-driver has to have.
For an example have a look in drivers/media/usb/dvb-usb/vp7045*.
Objective is to migrate all the usb-devices (dibusb, cinergyT2, maybe the ttusb; flexcop-usb already ben-
efits from the generic flexcop-device) to use the dvb-usb-lib.
TODO: dynamic enabling and disabling of the pid-filter in regard to number of feeds requested.

3.6.1 Supported devices

See the LinuxTV DVB Wiki at https://linuxtv.org for a complete list of cards/drivers/firmwares: https://
linuxtv.org/wiki/index.php/DVB_USB

0. History & News:
2005-06-30

• added support for WideView WT-220U (Thanks to Steve Chang)
2005-05-30

• added basic isochronous support to the dvb-usb-framework
• added support for Conexant Hybrid reference design and Nebula DigiTV USB

2005-04-17
• all dibusb devices ported to make use of the dvb-usb-framework

2005-04-02
• re-enabled and improved remote control code.

2005-03-31
• ported the Yakumo/Hama/Typhoon DVB-T USB2.0 device to dvb-usb.

2005-03-30
• first commit of the dvb-usb-module based on the dibusb-source. First device is a new driver

for the TwinhanDTV Alpha / MagicBox II USB2.0-only DVB-T device.
• (change from dvb-dibusb to dvb-usb)

2005-03-28
• added support for the AVerMedia AverTV DVB-T USB2.0 device (Thanks to Glen Harris and

Jiun-Kuei Jung, AVerMedia)
2005-03-14

• added support for the Typhoon/Yakumo/HAMA DVB-T mobile USB2.0
2005-02-11

• added support for the KWorld/ADSTech Instant DVB-T USB2.0. Thanks a lot to Joachim von
Caron

2005-02-02 - added support for the Hauppauge Win-TV Nova-T USB2
2005-01-31 - distorted streaming is gone for USB1.1 devices
2005-01-13

• moved the mirrored pid_filter_table back to dvb-dibusb first almost working version for Han-
fTek UMT-010 found out, that Yakumo/HAMA/Typhoon are predecessors of the HanfTek UMT-
010

2005-01-10

854 Chapter 3. Linux Digital TV driver-specific documentation

https://linuxtv.org
https://linuxtv.org/wiki/index.php/DVB_USB
https://linuxtv.org/wiki/index.php/DVB_USB

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• refactoring completed, now everything is very delightful
• tuner quirks for some weird devices (Artec T1 AN2235 device has sometimes a Panasonic

Tuner assembled). Tunerprobing implemented. Thanks a lot to Gunnar Wittich.
2004-12-29

• after several days of struggling around bug of no returning URBs fixed.
2004-12-26

• refactored the dibusb-driver, splitted into separate files
• i2c-probing enabled

2004-12-06
• possibility for demod i2c-address probing
• new usb IDs (Compro, Artec)

2004-11-23
• merged changes from DiB3000MC_ver2.1
• revised the debugging
• possibility to deliver the complete TS for USB2.0

2004-11-21
• first working version of the dib3000mc/p frontend driver.

2004-11-12
• added additional remote control keys. Thanks to Uwe Hanke.

2004-11-07
• added remote control support. Thanks to David Matthews.

2004-11-05
• added support for a new devices (Grandtec/Avermedia/Artec)
• merged my changes (for dib3000mb/dibusb) to the FE_REFACTORING, because it became

HEAD
• moved transfer control (pid filter, fifo control) from usb driver to frontend, it seems better

settled there (added xfer_ops-struct)
• created a common files for frontends (mc/p/mb)

2004-09-28
• added support for a new device (Unknown, vendor ID is Hyper-Paltek)

2004-09-20
• added support for a new device (Compro DVB-U2000), thanks to Amaury Demol for report-

ing
• changed usb TS transfer method (several urbs, stopping transfer before setting a new pid)

2004-09-13
• added support for a new device (Artec T1 USB TVBOX), thanks to Christian Motschke for

reporting
2004-09-05

• released the dibusb device and dib3000mb-frontend driver (old news for vp7041.c)
2004-07-15

• found out, by accident, that the device has a TUA6010XS for PLL

3.6. Idea behind the dvb-usb-framework 855

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

2004-07-12
• figured out, that the driver should also work with the CTS Portable (Chinese Television Sys-

tem)
2004-07-08

• firmware-extraction-2.422-problem solved, driver is now working properly with firmware
extracted from 2.422

• #if for 2.6.4 (dvb), compile issue
• changed firmware handling, see vp7041.txt sec 1.1

2004-07-02
• some tuner modifications, v0.1, cleanups, first public

2004-06-28
• now using the dvb_dmx_swfilter_packets, everything runs fine now

2004-06-27
• able to watch and switching channels (pre-alpha)
• no section filtering yet

2004-06-06
• first TS received, but kernel oops :/

2004-05-14
• firmware loader is working

2004-05-11
• start writing the driver

3.6.2 How to use?

Firmware

Most of the USB drivers need to download a firmware to the device before start working.
Have a look at the Wikipage for the DVB-USB-drivers to find out, which firmware you need for your device:
https://linuxtv.org/wiki/index.php/DVB_USB

Compiling

Since the driver is in the linux kernel, activating the driver in your favorite config-environment should
sufficient. I recommend to compile the driver as module. Hotplug does the rest.
If you use dvb-kernel enter the build-2.6 directory run ‘make’ and ‘insmod.sh load’ afterwards.

Loading the drivers

Hotplug is able to load the driver, when it is needed (because you plugged in the device).
If you want to enable debug output, you have to load the driver manually and from within the dvb-kernel
cvs repository.
first have a look, which debug level are available:

856 Chapter 3. Linux Digital TV driver-specific documentation

https://linuxtv.org/wiki/index.php/DVB_USB

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

modinfo dvb-usb
modinfo dvb-usb-vp7045

etc.

modprobe dvb-usb debug=<level>
modprobe dvb-usb-vp7045 debug=<level>
etc.

should do the trick.
When the driver is loaded successfully, the firmware file was in the right place and the device is connected,
the “Power”-LED should be turned on.
At this point you should be able to start a dvb-capable application. I’m use (t|s)zap, mplayer and dvbscan
to test the basics. VDR-xine provides the long-term test scenario.

3.6.3 Known problems and bugs

• Don’t remove the USB device while running an DVB application, your system will go crazy or die most
likely.

Adding support for devices

TODO

USB1.1 Bandwidth limitation

A lot of the currently supported devices are USB1.1 and thus they have a maximum bandwidth of about
5-6 MBit/s when connected to a USB2.0 hub. This is not enough for receiving the complete transport
stream of a DVB-T channel (which is about 16 MBit/s). Normally this is not a problem, if you only want to
watch TV (this does not apply for HDTV), but watching a channel while recording another channel on the
same frequency simply does not work very well. This applies to all USB1.1 DVB-T devices, not just the
dvb-usb-devices)
The bug, where the TS is distorted by a heavy usage of the device is gone definitely. All dvb-usb-devices
I was using (Twinhan, Kworld, DiBcom) are working like charm now with VDR. Sometimes I even was able
to record a channel and watch another one.

Comments

Patches, comments and suggestions are very very welcome.

3.6.4 3. Acknowledgements

Amaury Demol (Amaury.Demol@parrot.com) and Francois Kanounnikoff from DiBcom for pro-
viding specs, code and help, on which the dvb-dibusb, dib3000mb and dib3000mc are based.
David Matthews for identifying a new device type (Artec T1 with AN2235) and for extending
dibusb with remote control event handling. Thank you.
Alex Woods for frequently answering question about usb and dvb stuff, a big thank you.
Bernd Wagner for helping with huge bug reports and discussions.
Gunnar Wittich and Joachim von Caron for their trust for providing root-shells on their machines
to implement support for new devices.

3.6. Idea behind the dvb-usb-framework 857

mailto:Amaury.Demol@parrot.com

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Allan Third and Michael Hutchinson for their help to write the Nebula digitv-driver.
Glen Harris for bringing up, that there is a new dibusb-device and Jiun-Kuei Jung from AVerMedia
who kindly provided a special firmware to get the device up and running in Linux.
Jennifer Chen, Jeff and Jack from Twinhan for kindly supporting by writing the vp7045-driver.
Steve Chang from WideView for providing information for new devices and firmware files.
Michael Paxton for submitting remote control keymaps.
Some guys on the linux-dvb mailing list for encouraging me.
Peter Schildmann >peter.schildmann-nospam-at-web.de< for his user-level firmware loader,
which saves a lot of time (when writing the vp7041 driver)
Ulf Hermenau for helping me out with traditional chinese.
André Smoktun and Christian Frömmel for supporting me with hardware and listening to my
problems very patiently.

3.7 FAQ

Note:

This documentation is outdated. Please check at the DVB wiki at https://linuxtv.org/wiki for more
updated info.

Some very frequently asked questions about linuxtv-dvb
1. The signal seems to die a few seconds after tuning.

It’s not a bug, it’s a feature. Because the frontends have significant power requirements
(and hence get very hot), they are powered down if they are unused (i.e. if the frontend
device is closed). The dvb-core.o module parameter “dvb_shutdown_timeout” allow you
to change the timeout (default 5 seconds). Setting the timeout to 0 disables the timeout
feature.

2. How can I watch TV?
The driver distribution includes some simple utilities which are mainly intended for testing
and to demonstrate how the DVB API works.
Depending on whether you have a DVB-S, DVB-C or DVB-T card, use apps/szap/szap, czap
or tzap. You must supply a channel list in ~/.[sct]zap/channels.conf. If you are lucky you
can just copy one of the supplied channel lists, or you can create a new one by running
apps/scan/scan. If you run scan on an unknown network you might have to supply some
start data in apps/scan/initial.h.
If you have a card with a built-in hardware MPEG-decoder the drivers create a video4linux
device (/dev/v4l/video0) which you can use to watch TV with any v4l application. xawtv is
known to work. Note that you cannot change channels with xawtv, you have to zap using
[sct]zap. If you want a nice application for TV watching and record/playback, have a look at
VDR.
If your card does not have a hardware MPEG decoder you need a software MPEG decoder.
Mplayer or xine are known to work. Newsflash: MythTV also has DVB support now. Note:
Only very recent versions of Mplayer and xine can decode. MPEG2 transport streams (TS)
directly. Then, run ‘[sct]zap channelname -r’ in one xterm, and keep it running, and start
‘mplayer - < /dev/dvb/adapter0/dvr0’ or ‘xine stdin://mpeg2 < /dev/dvb/adapter0/dvr0’ in
a second xterm. That’s all far from perfect, but it seems no one has written a nice DVB
application which includes a builtin software MPEG decoder yet.

858 Chapter 3. Linux Digital TV driver-specific documentation

https://linuxtv.org/wiki

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Newsflash: Newest xine directly supports DVB. Just copy your channels.conf to ~/.xine and
start ‘xine dvb://’, or select the DVB button in the xine GUI. Channel switching works using
the numpad pgup/pgdown (NP9 / NP3) keys to scroll through the channel osd menu and
pressing numpad-enter to switch to the selected channel.
Note: Older versions of xine and mplayer understand MPEG program streams (PS) only, and
can be used in conjunction with the ts2ps tool from the Metzler Brother’s dvb-mpegtools
package.

3. Which other DVB applications exist?
http://www.cadsoft.de/people/kls/vdr/ Klaus Schmidinger’s Video Disk Recorder
http://www.metzlerbros.org/dvb/ Metzler Bros. DVB development; alternate drivers

and DVB utilities, include dvb-mpegtools and tuxzap.
http://sourceforge.net/projects/dvbtools/ Dave Chapman’s dvbtools package, includ-

ing dvbstream and dvbtune
http://www.linuxdvb.tv/ Henning Holtschneider’s site with many interesting links and

docs
http://www.dbox2.info/ LinuxDVB on the dBox2
http://www.tuxbox.org/ and http://cvs.tuxbox.org/ the TuxBox CVS many interesting

DVB applications and the dBox2 DVB source
https://linuxtv.org/downloads DVB Swiss Army Knife library and utilities
http://www.nenie.org/misc/mpsys/ MPSYS: a MPEG2 system library and tools
http://mplayerhq.hu/ mplayer
http://xine.sourceforge.net/ and http://xinehq.de/ xine
http://www.mythtv.org/ MythTV - analog TV PVR, but now with DVB support, too (with

software MPEG decode)
http://dvbsnoop.sourceforge.net/ DVB sniffer program to monitor, analyze, debug,

dump or view dvb/mpeg/dsm-cc/mhp stream information (TS, PES, SECTION)
4. Can’t get a signal tuned correctly

If you are using a Technotrend/Hauppauge DVB-C card without analog module, you might
have to use module parameter adac=-1 (dvb-ttpci.o).

5. The dvb_net device doesn’t give me any packets at all
Run tcpdump on the dvb0_0 interface. This sets the interface into promiscuous mode so it
accepts any packets from the PID you have configured with the dvbnet utility. Check if there
are any packets with the IP addr and MAC addr you have configured with ifconfig.
If tcpdump doesn’t give you any output, check the statistics which ifconfig outputs. (Note:
If the MAC address is wrong, dvb_net won’t get any input; thus you have to run tcpdump
before checking the statistics.) If there are no packets at all then maybe the PID is wrong. If
there are error packets, then either the PID is wrong or the stream does not conform to the
MPE standard (EN 301 192, http://www.etsi.org/). You can use e.g. dvbsnoop for debugging.

6. The dvb_net device doesn’t give me any multicast packets
Check your routes if they include the multicast address range. Additionally make sure that
“source validation by reversed path lookup” is disabled:

$ "echo 0 > /proc/sys/net/ipv4/conf/dvb0/rp_filter"

7. What the hell are all those modules that need to be loaded?
For a dvb-ttpci av7110 based full-featured card the following modules are loaded:

3.7. FAQ 859

http://www.cadsoft.de/people/kls/vdr/
http://www.metzlerbros.org/dvb/
http://sourceforge.net/projects/dvbtools/
http://www.linuxdvb.tv/
http://www.dbox2.info/
http://www.tuxbox.org/
http://cvs.tuxbox.org/
https://linuxtv.org/downloads
http://www.nenie.org/misc/mpsys/
http://mplayerhq.hu/
http://xine.sourceforge.net/
http://xinehq.de/
http://www.mythtv.org/
http://dvbsnoop.sourceforge.net/
http://www.etsi.org/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• videodev: Video4Linux core module. This is the base module that gives you access to
the “analog” tv picture of the av7110 mpeg2 decoder.

• v4l2-common: common functions for Video4Linux-2 drivers
• v4l1-compat: backward compatibility layer for Video4Linux-1 legacy applications
• dvb-core: DVB core module. This provides you with the /dev/dvb/adapter entries
• saa7146: SAA7146 core driver. This is need to access any SAA7146 based card in your

system.
• saa7146_vv: SAA7146 video and vbi functions. These are only needed for full-featured

cards.
• videobuf-dma-sg: capture helper module for the saa7146_vv driver. This one is respon-

sible to handle capture buffers.
• dvb-ttpci: The main driver for AV7110 based, full-featured DVB-S/C/T cards

3.8 Firmware files for lmedm04 cards

To extract firmware for the DM04/QQBOX you need to copy the following file(s) to this directory.

3.8.1 For DM04+/QQBOX LME2510C (Sharp 7395 Tuner)

The Sharp 7395 driver can be found in windows/system32/drivers
US2A0D.sys (dated 17 Mar 2009)
and run:

scripts/get_dvb_firmware lme2510c_s7395

will produce dvb-usb-lme2510c-s7395.fw
An alternative but older firmware can be found on the driver disk DVB-S_EN_3.5A in BDADriver/driver
LMEBDA_DVBS7395C.sys (dated 18 Jan 2008)
and run:

./get_dvb_firmware lme2510c_s7395_old

will produce dvb-usb-lme2510c-s7395.fw
The LG firmware can be found on the driver disk DM04+_5.1A[LG] in BDADriver/driver

3.8.2 For DM04 LME2510 (LG Tuner)

LMEBDA_DVBS.sys (dated 13 Nov 2007)
and run:

./get_dvb_firmware lme2510_lg

will produce dvb-usb-lme2510-lg.fw
Other LG firmware can be extracted manually from US280D.sys only found in windows/system32/drivers
dd if=US280D.sys ibs=1 skip=42360 count=3924 of=dvb-usb-lme2510-lg.fw

860 Chapter 3. Linux Digital TV driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

3.8.3 For DM04 LME2510C (LG Tuner)

dd if=US280D.sys ibs=1 skip=35200 count=3850 of=dvb-usb-lme2510c-lg.fw

The Sharp 0194 tuner driver can be found in windows/system32/drivers
US290D.sys (dated 09 Apr 2009)

3.8.4 For LME2510

dd if=US290D.sys ibs=1 skip=36856 count=3976 of=dvb-usb-lme2510-s0194.fw

3.8.5 For LME2510C

dd if=US290D.sys ibs=1 skip=33152 count=3697 of=dvb-usb-lme2510c-s0194.fw

The m88rs2000 tuner driver can be found in windows/system32/drivers
US2B0D.sys (dated 29 Jun 2010)

dd if=US2B0D.sys ibs=1 skip=34432 count=3871 of=dvb-usb-lme2510c-rs2000.fw

We need to modify id of rs2000 firmware or it will warm boot id 3344:1120.

echo -ne \\xF0\\x22 | dd conv=notrunc bs=1 count=2 seek=266 of=dvb-usb-lme2510c-rs2000.fw

Copy the firmware file(s) to /lib/firmware

3.9 Opera firmware

Author: Marco Gittler <g.marco@freenet.de>
To extract the firmware for the Opera DVB-S1 USB-Box you need to copy the files:
2830SCap2.sys 2830SLoad2.sys
from the windriver disk into this directory.
Then run:

scripts/get_dvb_firmware opera1

and after that you have 2 files:
dvb-usb-opera-01.fw dvb-usb-opera1-fpga-01.fw
in here.
Copy them into /lib/firmware/ .
After that the driver can load the firmware (if you have enabled firmware loading in kernel config and have
hotplug running).

3.9. Opera firmware 861

mailto:g.marco@freenet.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

3.10 How to set up the Technisat/B2C2 Flexcop devices

Note:

This documentation is outdated.

Author: Uwe Bugla <uwe.bugla@gmx.de> August 2009

3.10.1 Find out what device you have

Important Notice: The driver does NOT support Technisat USB 2 devices!
First start your linux box with a shipped kernel:

lspci -vvv for a PCI device (lsusb -vvv for an USB device) will show you for example:
02:0b.0 Network controller: Techsan Electronics Co Ltd B2C2 FlexCopII DVB chip /
Technisat SkyStar2 DVB card (rev 02)

dmesg | grep frontend may show you for example:
DVB: registering frontend 0 (Conexant CX24123/CX24109)...

3.10.2 Kernel compilation:

If the Flexcop / Technisat is the only DVB / TV / Radio device in your box get rid of unnecessary modules
and check this one:
Multimedia support => Customise analog and hybrid tuner modules to build

In this directory uncheck every driver which is activated there (except Simple tuner support for ATSC
3rd generation only -> see case 9 please).
Then please activate:

• Main module part:
Multimedia support => DVB/ATSC adapters => Technisat/B2C2 FlexcopII(b) and Flex-
CopIII adapters

1. => Technisat/B2C2 Air/Sky/Cable2PC PCI (PCI card) or
2. => Technisat/B2C2 Air/Sky/Cable2PC USB (USB 1.1 adapter) and for troubleshooting pur-

poses:
3. => Enable debug for the B2C2 FlexCop drivers

• Frontend / Tuner / Demodulator module part:
Multimedia support => DVB/ATSC adapters => Customise the frontend modules to build

Customise DVB frontends =>
– SkyStar DVB-S Revision 2.3:

1. => Zarlink VP310/MT312/ZL10313 based

2. => Generic I2C PLL based tuners

– SkyStar DVB-S Revision 2.6:
1. => ST STV0299 based

2. => Generic I2C PLL based tuners

– SkyStar DVB-S Revision 2.7:

862 Chapter 3. Linux Digital TV driver-specific documentation

mailto:uwe.bugla@gmx.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1. => Samsung S5H1420 based

2. => Integrant ITD1000 Zero IF tuner for DVB-S/DSS

3. => ISL6421 SEC controller

– SkyStar DVB-S Revision 2.8:
1. => Conexant CX24123 based

2. => Conexant CX24113/CX24128 tuner for DVB-S/DSS

3. => ISL6421 SEC controller

– AirStar DVB-T card:
1. => Zarlink MT352 based

2. => Generic I2C PLL based tuners

– CableStar DVB-C card:
1. => ST STV0297 based

2. => Generic I2C PLL based tuners

– AirStar ATSC card 1st generation:
1. => Broadcom BCM3510

– AirStar ATSC card 2nd generation:
1. => NxtWave Communications NXT2002/NXT2004 based

2. => Generic I2C PLL based tuners

– AirStar ATSC card 3rd generation:
1. => LG Electronics LGDT3302/LGDT3303 based

2. Multimedia support => Customise analog and hybrid tuner modules to build =>
Simple tuner support

3.11 TechnoTrend/Hauppauge DEC USB Driver

3.11.1 Driver Status

Supported:
• DEC2000-t
• DEC2450-t
• DEC3000-s
• Video Streaming
• Audio Streaming
• Section Filters
• Channel Zapping
• Hotplug firmware loader

To Do:
• Tuner status information
• DVB network interface
• Streaming video PC->DEC

3.11. TechnoTrend/Hauppauge DEC USB Driver 863

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• Conax support for 2450-t

3.11.2 Getting the Firmware

To download the firmware, use the following commands:

scripts/get_dvb_firmware dec2000t
scripts/get_dvb_firmware dec2540t
scripts/get_dvb_firmware dec3000s

3.11.3 Hotplug Firmware Loading

Since 2.6 kernels, the firmware is loaded at the point that the driver module is loaded.
Copy the three files downloaded above into the /usr/lib/hotplug/firmware or /lib/firmware directory (de-
pending on configuration of firmware hotplug).

3.12 UDEV rules for DVB

Note:

1. This documentation is outdated. Udev on modern distributions auto-detect the DVB devices.
2. TODO: change this document to explain how tomake DVB devices persistent, as, when amachine
has multiple devices, they may be detected on different orders, which could cause apps that relies
on the device numbers to fail.

The DVB subsystem currently registers to the sysfs subsystem using the “class_simple” interface.
This means that only the basic information like module loading parameters are presented through sysfs.
Other things that might be interesting are currently not available.
Nevertheless it’s now possible to add proper udev rules so that the DVB device nodes are created auto-
matically.
We assume that you have udev already up and running and that have been creating the DVB device nodes
manually up to now due to the missing sysfs support.
0. Don’t forget to disable your current method of creating the device nodes manually.
1. Unfortunately, you’ll need a helper script to transform the kernel sysfs device name into the well known
dvb adapter / device naming scheme. The script should be called “dvb.sh” and should be placed into a
script dir where udev can execute it, most likely /etc/udev/scripts/
So, create a new file /etc/udev/scripts/dvb.sh and add the following:

#!/bin/sh
/bin/echo $1 | /bin/sed -e 's,dvb\([0-9]\)\.\([^0-9]*\)\([0-9]\),dvb/adapter\1/\2\3,'

Don’t forget to make the script executable with “chmod”.
1. You need to create a proper udev rule that will create the device nodes like you know them. All real
distributions out there scan the /etc/udev/rules.d directory for rule files. The main udev configuration file
/etc/udev/udev.conf will tell you the directory where the rules are, most likely it’s /etc/udev/rules.d/
Create a new rule file in that directory called “dvb.rule” and add the following line:

KERNEL="dvb*", PROGRAM="/etc/udev/scripts/dvb.sh %k", NAME="%c"

864 Chapter 3. Linux Digital TV driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

If you want more control over the device nodes (for example a special group membership) have a look at
“man udev”.
For every device that registers to the sysfs subsystem with a “dvb” prefix, the helper script
/etc/udev/scripts/dvb.sh is invoked, which will then create the proper device node in your /dev/ directory.

3.13 Contributors

Note:

This documentation is outdated. There are several other DVB contributors that aren’t listed below.

Thanks go to the following people for patches and contributions:
• Michael Hunold <m.hunold@gmx.de>

– for the initial saa7146 driver and its recent overhaul
• Christian Theiss

– for his work on the initial Linux DVB driver
• Marcus Metzler <mocm@metzlerbros.de> and Ralph Metzler <rjkm@metzlerbros.de>

– for their continuing work on the DVB driver
• Michael Holzt <kju@debian.org>

– for his contributions to the dvb-net driver
• Diego Picciani <d.picciani@novacomp.it>

– for CyberLogin for Linux which allows logging onto EON (in case you are wondering where Cy-
berLogin is, EON changed its login procedure and CyberLogin is no longer used.)

• Martin Schaller <martin@smurf.franken.de>
– for patching the cable card decoder driver

• Klaus Schmidinger <Klaus.Schmidinger@cadsoft.de>
– for various fixes regarding tuning, OSD and CI stuff and his work on VDR

• Steve Brown <sbrown@cortland.com>
– for his AFC kernel thread

• Christoph Martin <martin@uni-mainz.de>
– for his LIRC infrared handler

• Andreas Oberritter <obi@linuxtv.org>, Dennis Noermann <dennis.noermann@noernet.de>,
Felix Domke <tmbinc@elitedvb.net>, Florian Schirmer <jolt@tuxbox.org>, Ronny Strutz
<3des@elitedvb.de>, Wolfram Joost <dbox2@frokaschwei.de> and all the other dbox2 people
– for many bugfixes in the generic DVB Core, frontend drivers and their work on the dbox2 port of

the DVB driver
• Oliver Endriss <o.endriss@gmx.de>

– for many bugfixes
• Andrew de Quincey <adq_dvb@lidskialf.net>

– for the tda1004x frontend driver, and various bugfixes
• Peter Schildmann <peter.schildmann@web.de>

3.13. Contributors 865

mailto:m.hunold@gmx.de
mailto:mocm@metzlerbros.de
mailto:rjkm@metzlerbros.de
mailto:kju@debian.org
mailto:d.picciani@novacomp.it
mailto:martin@smurf.franken.de
mailto:Klaus.Schmidinger@cadsoft.de
mailto:sbrown@cortland.com
mailto:martin@uni-mainz.de
mailto:obi@linuxtv.org
mailto:dennis.noermann@noernet.de
mailto:tmbinc@elitedvb.net
mailto:jolt@tuxbox.org
mailto:3des@elitedvb.de
mailto:dbox2@frokaschwei.de
mailto:o.endriss@gmx.de
mailto:adq_dvb@lidskialf.net
mailto:peter.schildmann@web.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

– for the driver for the Technisat SkyStar2 PCI DVB card
• Vadim Catana <skystar@moldova.cc>, Roberto Ragusa <r.ragusa@libero.it> and Augusto Cardoso

<augusto@carhil.net>
– for all the work for the FlexCopII chipset by B2C2,Inc.

• Davor Emard <emard@softhome.net>
– for his work on the budget drivers, the demux code, the module unloading problems, ...

• Hans-Frieder Vogt <hfvogt@arcor.de>
– for his work on calculating and checking the crc’s for the TechnoTrend/Hauppauge DEC driver

firmware
• Michael Dreher <michael@5dot1.de> and Andreas ‘randy’ Weinberger

– for the support of the Fujitsu-Siemens Activy budget DVB-S
• Kenneth Aafløy <ke-aa@frisurf.no>

– for adding support for Typhoon DVB-S budget card
• Ernst Peinlich <e.peinlich@inode.at>

– for tuning/DiSEqC support for the DEC 3000-s
• Peter Beutner <p.beutner@gmx.net>

– for the IR code for the ttusb-dec driver
• Wilson Michaels <wilsonmichaels@earthlink.net>

– for the lgdt330x frontend driver, and various bugfixes
• Michael Krufky <mkrufky@linuxtv.org>

– for maintaining v4l/dvb inter-tree dependencies
• Taylor Jacob <rtjacob@earthlink.net>

– for the nxt2002 frontend driver
• Jean-Francois Thibert <jeanfrancois@sagetv.com>

– for the nxt2004 frontend driver
• Kirk Lapray <kirk.lapray@gmail.com>

– for the or51211 and or51132 frontend drivers, and for merging the nxt2002 and nxt2004 mod-
ules into a single nxt200x frontend driver.

(If you think you should be in this list, but you are not, drop a line to the DVB mailing list)

866 Chapter 3. Linux Digital TV driver-specific documentation

mailto:skystar@moldova.cc
mailto:r.ragusa@libero.it
mailto:augusto@carhil.net
mailto:emard@softhome.net
mailto:hfvogt@arcor.de
mailto:michael@5dot1.de
mailto:ke-aa@frisurf.no
mailto:e.peinlich@inode.at
mailto:p.beutner@gmx.net
mailto:wilsonmichaels@earthlink.net
mailto:mkrufky@linuxtv.org
mailto:rtjacob@earthlink.net
mailto:jeanfrancois@sagetv.com
mailto:kirk.lapray@gmail.com

CHAPTER

FOUR

VIDEO4LINUX (V4L) DRIVER-SPECIFIC DOCUMENTATION

Copyright © 1999-2016 : LinuxTV Developers
This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
For more details see the file COPYING in the source distribution of Linux.

4.1 Guidelines for Video4Linux pixel format 4CCs

Guidelines for Video4Linux 4CC codes defined using v4l2_fourcc() are specified in this document. First of
the characters defines the nature of the pixel format, compression and colour space. The interpretation
of the other three characters depends on the first one.
Existing 4CCs may not obey these guidelines.

4.1.1 Raw bayer

The following first characters are used by raw bayer formats:
• B: raw bayer, uncompressed
• b: raw bayer, DPCM compressed
• a: A-law compressed
• u: u-law compressed

2nd character: pixel order
• B: BGGR
• G: GBRG
• g: GRBG
• R: RGGB

3rd character: uncompressed bits-per-pixel 0–9, A–
4th character: compressed bits-per-pixel 0–9, A–

4.2 Infrared remote control support in video4linux drivers

Authors: Gerd Hoffmann, Mauro Carvalho Chehab

867

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.2.1 Basics

Most analog and digital TV boards support remote controllers. Several of them have a microprocessor that
receives the IR carriers, convert into pulse/space sequences and then to scan codes, returning such codes
to userspace (“scancode mode”). Other boards return just the pulse/space sequences (“raw mode”).
The support for remote controller in scancode mode is provided by the standard Linux input layer. The
support for raw mode is provided via LIRC.
In order to check the support and test it, it is suggested to download the v4l-utils. It provides two tools to
handle remote controllers:

• ir-keytable: provides a way to query the remote controller, list the protocols it supports, enable in-
kernel support for IR decoder or switch the protocol and to test the reception of scan codes;

• ir-ctl: provide tools to handle remote controllers that support raw mode via LIRC interface.
Usually, the remote controller module is auto-loaded when the TV card is detected. However, for a few
devices, you need to manually load the ir-kbd-i2c module.

4.2.2 How it works

The modules register the remote as keyboard within the linux input layer, i.e. you’ll see the keys of the
remote as normal key strokes (if CONFIG_INPUT_KEYBOARD is enabled).
Using the event devices (CONFIG_INPUT_EVDEV) it is possible for applications to access the remote via
/dev/input/event<n> devices. The udev/systemd will automatically create the devices. If you install the
v4l-utils, it may also automatically load a different keytable than the default one. Please see v4l-utils
ir-keytable.1 man page for details.
The ir-keytable tool is nice for trouble shooting, i.e. to check whenever the input device is really present,
which of the devices it is, check whenever pressing keys on the remote actually generates events and the
like. You can also use any other input utility that changes the keymaps, like the input kbd utility.

4.3 Using with lircd

The latest versions of the lircd daemon supports reading events from the linux input layer (via event
device). It also supports receiving IR codes in lirc mode.

4.4 Using without lircd

Xorg recognizes several IR keycodes that have its numerical value lower than 247. With the advent of
Wayland, the input driver got updated too, and should now accept all keycodes. Yet, you may want to just
reasign the keycodes to something that your favorite media application likes.
This can be done by setting v4l-utils to load your own keytable in runtime. Please read ir-keytable.1 man
page for details.

4.5 Tuner drivers

4.5.1 Simple tuner Programming

There are some flavors of Tuner programming APIs. These differ mainly by the bandswitch byte.
• L= LG_API (VHF_LO=0x01, VHF_HI=0x02, UHF=0x08, radio=0x04)
• P= PHILIPS_API (VHF_LO=0xA0, VHF_HI=0x90, UHF=0x30, radio=0x04)

868 Chapter 4. Video4Linux (V4L) driver-specific documentation

https://git.linuxtv.org/v4l-utils.git/
https://git.linuxtv.org/v4l-utils.git/
https://git.linuxtv.org/v4l-utils.git/
https://git.linuxtv.org/v4l-utils.git/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• T= TEMIC_API (VHF_LO=0x02, VHF_HI=0x04, UHF=0x01)
• A= ALPS_API (VHF_LO=0x14, VHF_HI=0x12, UHF=0x11)
• M= PHILIPS_MK3 (VHF_LO=0x01, VHF_HI=0x02, UHF=0x04, radio=0x19)

4.5.2 Tuner Manufacturers

• SAMSUNG Tuner identification: (e.g. TCPM9091PD27)

TCP [ABCJLMNQ] 90[89][125] [DP] [ACD] 27 [ABCD]
[ABCJLMNQ]:
A= BG+DK
B= BG
C= I+DK
J= NTSC-Japan
L= Secam LL
M= BG+I+DK
N= NTSC
Q= BG+I+DK+LL

[89]: ?
[125]:
2: No FM
5: With FM

[DP]:
D= NTSC
P= PAL

[ACD]:
A= F-connector
C= Phono connector
D= Din Jack

[ABCD]:
3-wire/I2C tuning, 2-band/3-band

These Tuners are PHILIPS_API compatible.
Philips Tuner identification: (e.g. FM1216MF)

F[IRMQ]12[1345]6{MF|ME|MP}
F[IRMQ]:
FI12x6: Tuner Series
FR12x6: Tuner + Radio IF
FM12x6: Tuner + FM
FQ12x6: special
FMR12x6: special
TD15xx: Digital Tuner ATSC
12[1345]6:
1216: PAL BG
1236: NTSC
1246: PAL I
1256: Pal DK
{MF|ME|MP}
MF: BG LL w/ Secam (Multi France)
ME: BG DK I LL (Multi Europe)
MP: BG DK I (Multi PAL)
MR: BG DK M (?)
MG: BG DKI M (?)
MK2 series PHILIPS_API, most tuners are compatible to this one !
MK3 series introduced in 2002 w/ PHILIPS_MK3_API

Temic Tuner identification: (.e.g 4006FH5)

4.5. Tuner drivers 869

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4[01][0136][269]F[HYNR]5
40x2: Tuner (5V/33V), TEMIC_API.
40x6: Tuner 5V
41xx: Tuner compact
40x9: Tuner+FM compact
[0136]
xx0x: PAL BG
xx1x: Pal DK, Secam LL
xx3x: NTSC
xx6x: PAL I
F[HYNR]5
FH5: Pal BG
FY5: others
FN5: multistandard
FR5: w/ FM radio
3X xxxx: order number with specific connector
Note: Only 40x2 series has TEMIC_API, all newer tuners have PHILIPS_API.

LG Innotek Tuner:
• TPI8NSR11 : NTSC J/M (TPI8NSR01 w/FM) (P,210/497)
• TPI8PSB11 : PAL B/G (TPI8PSB01 w/FM) (P,170/450)
• TAPC-I701 : PAL I (TAPC-I001 w/FM) (P,170/450)
• TPI8PSB12 : PAL D/K+B/G (TPI8PSB02 w/FM) (P,170/450)
• TAPC-H701P: NTSC_JP (TAPC-H001P w/FM) (L,170/450)
• TAPC-G701P: PAL B/G (TAPC-G001P w/FM) (L,170/450)
• TAPC-W701P: PAL I (TAPC-W001P w/FM) (L,170/450)
• TAPC-Q703P: PAL D/K (TAPC-Q001P w/FM) (L,170/450)
• TAPC-Q704P: PAL D/K+I (L,170/450)
• TAPC-G702P: PAL D/K+B/G (L,170/450)
• TADC-H002F: NTSC (L,175/410?; 2-B, C-W+11, W+12-69)
• TADC-M201D: PAL D/K+B/G+I (L,143/425) (sound control at I2C address 0xc8)
• TADC-T003F: NTSC Taiwan (L,175/410?; 2-B, C-W+11, W+12-69)

Suffix:
• P= Standard phono female socket
• D= IEC female socket
• F= F-connector

Other Tuners:
• TCL2002MB-1 : PAL BG + DK =TUNER_LG_PAL_NEW_TAPC
• TCL2002MB-1F: PAL BG + DK w/FM =PHILIPS_PAL
• TCL2002MI-2 : PAL I = ??

ALPS Tuners:
• Most are LG_API compatible
• TSCH6 has ALPS_API (TSCH5 ?)
• TSBE1 has extra API 05,02,08 Control_byte=0xCB Source:1

1 conexant100029b-PCI-Decoder-ApplicationNote.pdf

870 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.6 Cards List

4.6.1 AU0828 cards list

Card
number

Card name USB IDs

0 Unknown board
1 Hauppauge HVR950Q 2040:7200, 2040:7210, 2040:7217, 2040:721b,

2040:721e, 2040:721f, 2040:7280, 0fd9:0008,
2040:7260, 2040:7213, 2040:7270

2 Hauppauge HVR850 2040:7240
3 DViCO FusionHDTV USB 0fe9:d620
4 Hauppauge HVR950Q rev xxF8 2040:7201, 2040:7211, 2040:7281
5 Hauppauge Woodbury 05e1:0480, 2040:8200

4.6.2 BTTV cards list

Card
number

Card name PCI IDs

0 * UNKNOWN/GENERIC *
1 MIRO PCTV
2 Hauppauge (bt848)
3 STB, Gateway P/N 6000699 (bt848)
4 Intel Create and Share PCI/ Smart Video Recorder III
5 Diamond DTV2000
6 AVerMedia TVPhone
7 MATRIX-Vision MV-Delta
8 Lifeview FlyVideo II (Bt848) LR26 / MAXI TV Video PCI2 LR26
9 IMS/IXmicro TurboTV
10 Hauppauge (bt878) 0070:13eb, 0070:3900,

2636:10b4
11 MIRO PCTV pro
12 ADS Technologies Channel Surfer TV (bt848)
13 AVerMedia TVCapture 98 1461:0002, 1461:0004,

1461:0300
14 Aimslab Video Highway Xtreme (VHX)
15 Zoltrix TV-Max a1a0:a0fc
16 Prolink Pixelview PlayTV (bt878)
17 Leadtek WinView 601
18 AVEC Intercapture
19 Lifeview FlyVideo II EZ /FlyKit LR38 Bt848 (capture only)
20 CEI Raffles Card
21 Lifeview FlyVideo 98/ Lucky Star Image World ConferenceTV

LR50
22 Askey CPH050/ Phoebe Tv Master + FM 14ff:3002
23 Modular Technology MM201/MM202/MM205/MM210/MM215

PCTV, bt878
14c7:0101

24 Askey CPH05X/06X (bt878) [many vendors] 144f:3002, 144f:3005,
144f:5000, 14ff:3000

25 Terratec TerraTV+ Version 1.0 (Bt848)/ Terra TValue Version 1.0/
Vobis TV-Boostar

26 Hauppauge WinCam newer (bt878)
27 Lifeview FlyVideo 98/ MAXI TV Video PCI2 LR50

Continued on next page

4.6. Cards List 871

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.1 – continued from previous page
Card
number

Card name PCI IDs

28 Terratec TerraTV+ Version 1.1 (bt878) 153b:1127, 1852:1852
29 Imagenation PXC200 1295:200a
30 Lifeview FlyVideo 98 LR50 1f7f:1850
31 Formac iProTV, Formac ProTV I (bt848)
32 Intel Create and Share PCI/ Smart Video Recorder III
33 Terratec TerraTValue Version Bt878 153b:1117, 153b:1118,

153b:1119, 153b:111a,
153b:1134, 153b:5018

34 Leadtek WinFast 2000/ WinFast 2000 XP 107d:6606, 107d:6609,
6606:217d, f6ff:fff6

35 Lifeview FlyVideo 98 LR50 / Chronos Video Shuttle II 1851:1850, 1851:a050
36 Lifeview FlyVideo 98FM LR50 / Typhoon TView TV/FM Tuner 1852:1852
37 Prolink PixelView PlayTV pro
38 Askey CPH06X TView99 144f:3000, 144f:a005,

a04f:a0fc
39 Pinnacle PCTV Studio/Rave 11bd:0012, bd11:1200,

bd11:ff00, 11bd:ff12
40 STB TV PCI FM, Gateway P/N 6000704 (bt878), 3Dfx VoodooTV

100
10b4:2636, 10b4:2645,
121a:3060

41 AVerMedia TVPhone 98 1461:0001, 1461:0003
42 ProVideo PV951 aa0c:146c
43 Little OnAir TV
44 Sigma TVII-FM
45 MATRIX-Vision MV-Delta 2
46 Zoltrix Genie TV/FM 15b0:4000, 15b0:400a,

15b0:400d, 15b0:4010,
15b0:4016

47 Terratec TV/Radio+ 153b:1123
48 Askey CPH03x/ Dynalink Magic TView
49 IODATA GV-BCTV3/PCI 10fc:4020
50 Prolink PV-BT878P+4E / PixelView PlayTV PAK / Lenco MXTV-

9578 CP
51 Eagle Wireless Capricorn2 (bt878A)
52 Pinnacle PCTV Studio Pro
53 Typhoon TView RDS + FM Stereo / KNC1 TV Station RDS
54 Lifeview FlyVideo 2000 /FlyVideo A2/ Lifetec LT 9415 TV [LR90]
55 Askey CPH031/ BESTBUY Easy TV
56 Lifeview FlyVideo 98FM LR50 a051:41a0
57 GrandTec ‘Grand Video Capture’ (Bt848) 4344:4142
58 Askey CPH060/ Phoebe TV Master Only (No FM)
59 Askey CPH03x TV Capturer
60 Modular Technology MM100PCTV
61 AG Electronics GMV1 15cb:0101
62 Askey CPH061/ BESTBUY Easy TV (bt878)
63 ATI TV-Wonder 1002:0001
64 ATI TV-Wonder VE 1002:0003
65 Lifeview FlyVideo 2000S LR90
66 Terratec TValueRadio 153b:1135, 153b:ff3b
67 IODATA GV-BCTV4/PCI 10fc:4050
68 3Dfx VoodooTV FM (Euro) 10b4:2637
69 Active Imaging AIMMS
70 Prolink Pixelview PV-BT878P+ (Rev.4C,8E)

Continued on next page

872 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.1 – continued from previous page
Card
number

Card name PCI IDs

71 Lifeview FlyVideo 98EZ (capture only) LR51 1851:1851
72 Prolink Pixelview PV-BT878P+9B (PlayTV Pro rev.9B FM+NICAM) 1554:4011
73 Sensoray 311/611 6000:0311, 6000:0611
74 RemoteVision MX (RV605)
75 Powercolor MTV878/ MTV878R/ MTV878F
76 Canopus WinDVR PCI (COMPAQ Presario 3524JP, 5112JP) 0e11:0079
77 GrandTec Multi Capture Card (Bt878)
78 Jetway TV/Capture JW-TV878-FBK, Kworld KW-TV878RF 0a01:17de
79 DSP Design TCVIDEO
80 Hauppauge WinTV PVR 0070:4500
81 IODATA GV-BCTV5/PCI 10fc:4070, 10fc:d018
82 Osprey 100/150 (878) 0070:ff00
83 Osprey 100/150 (848)
84 Osprey 101 (848)
85 Osprey 101/151
86 Osprey 101/151 w/ svid
87 Osprey 200/201/250/251
88 Osprey 200/250 0070:ff01
89 Osprey 210/220/230
90 Osprey 500 0070:ff02
91 Osprey 540 0070:ff04
92 Osprey 2000 0070:ff03
93 IDS Eagle
94 Pinnacle PCTV Sat 11bd:001c
95 Formac ProTV II (bt878)
96 MachTV
97 Euresys Picolo
98 ProVideo PV150 aa00:1460, aa01:1461,

aa02:1462, aa03:1463,
aa04:1464, aa05:1465,
aa06:1466, aa07:1467

99 AD-TVK503
100 Hercules Smart TV Stereo
101 Pace TV & Radio Card
102 IVC-200 0000:a155, 0001:a155,

0002:a155, 0003:a155,
0100:a155, 0101:a155,
0102:a155, 0103:a155,
0800:a155, 0801:a155,
0802:a155, 0803:a155

103 Grand X-Guard / Trust 814PCI 0304:0102
104 Nebula Electronics DigiTV 0071:0101
105 ProVideo PV143 aa00:1430, aa00:1431,

aa00:1432, aa00:1433,
aa03:1433

106 PHYTEC VD-009-X1 VD-011 MiniDIN (bt878)
107 PHYTEC VD-009-X1 VD-011 Combi (bt878)
108 PHYTEC VD-009 MiniDIN (bt878)
109 PHYTEC VD-009 Combi (bt878)
110 IVC-100 ff00:a132

Continued on next page

4.6. Cards List 873

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.1 – continued from previous page
Card
number

Card name PCI IDs

111 IVC-120G ff00:a182, ff01:a182,
ff02:a182, ff03:a182,
ff04:a182, ff05:a182,
ff06:a182, ff07:a182,
ff08:a182, ff09:a182,
ff0a:a182, ff0b:a182,
ff0c:a182, ff0d:a182,
ff0e:a182, ff0f:a182

112 pcHDTV HD-2000 TV 7063:2000
113 Twinhan DST + clones 11bd:0026, 1822:0001,

270f:fc00, 1822:0026
114 Winfast VC100 107d:6607
115 Teppro TEV-560/InterVision IV-560
116 SIMUS GVC1100 aa6a:82b2
117 NGS NGSTV+
118 LMLBT4
119 Tekram M205 PRO
120 Conceptronic CONTVFMi
121 Euresys Picolo Tetra 1805:0105, 1805:0106,

1805:0107, 1805:0108
122 Spirit TV Tuner
123 AVerMedia AVerTV DVB-T 771 1461:0771
124 AverMedia AverTV DVB-T 761 1461:0761
125 MATRIX Vision Sigma-SQ
126 MATRIX Vision Sigma-SLC
127 APAC Viewcomp 878(AMAX)
128 DViCO FusionHDTV DVB-T Lite 18ac:db10, 18ac:db11
129 V-Gear MyVCD
130 Super TV Tuner
131 Tibet Systems ‘Progress DVR’ CS16
132 Kodicom 4400R (master)
133 Kodicom 4400R (slave)
134 Adlink RTV24
135 DViCO FusionHDTV 5 Lite 18ac:d500
136 Acorp Y878F 9511:1540
137 Conceptronic CTVFMi v2 036e:109e
138 Prolink Pixelview PV-BT878P+ (Rev.2E)
139 Prolink PixelView PlayTV MPEG2 PV-M4900
140 Osprey 440 0070:ff07
141 Asound Skyeye PCTV
142 Sabrent TV-FM (bttv version)
143 Hauppauge ImpactVCB (bt878) 0070:13eb
144 MagicTV
145 SSAI Security Video Interface 4149:5353
146 SSAI Ultrasound Video Interface 414a:5353
147 VoodooTV 200 (USA) 121a:3000
148 DViCO FusionHDTV 2 dbc0:d200
149 Typhoon TV-Tuner PCI (50684)
150 Geovision GV-600 008a:763c
151 Kozumi KTV-01C
152 Encore ENL TV-FM-2 1000:1801
153 PHYTEC VD-012 (bt878)

Continued on next page

874 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.1 – continued from previous page
Card
number

Card name PCI IDs

154 PHYTEC VD-012-X1 (bt878)
155 PHYTEC VD-012-X2 (bt878)
156 IVCE-8784 0000:f050, 0001:f050,

0002:f050, 0003:f050
157 Geovision GV-800(S) (master) 800a:763d
158 Geovision GV-800(S) (slave) 800b:763d, 800c:763d,

800d:763d
159 ProVideo PV183 1830:1540, 1831:1540,

1832:1540, 1833:1540,
1834:1540, 1835:1540,
1836:1540, 1837:1540

160 Tongwei Video Technology TD-3116 f200:3116
161 Aposonic W-DVR 0279:0228
162 Adlink MPG24
163 Bt848 Capture 14MHz
164 CyberVision CV06 (SV)
165 Kworld V-Stream Xpert TV PVR878
166 PCI-8604PW

4.6.3 cx23885 cards list

Card
number

Card name PCI IDs

0 UNKNOWN/GENERIC 0070:3400
1 Hauppauge WinTV-HVR1800lp 0070:7600
2 Hauppauge WinTV-HVR1800 0070:7800, 0070:7801,

0070:7809
3 Hauppauge WinTV-HVR1250 0070:7911
4 DViCO FusionHDTV5 Express 18ac:d500
5 Hauppauge WinTV-HVR1500Q 0070:7790, 0070:7797
6 Hauppauge WinTV-HVR1500 0070:7710, 0070:7717
7 Hauppauge WinTV-HVR1200 0070:71d1, 0070:71d3
8 Hauppauge WinTV-HVR1700 0070:8101
9 Hauppauge WinTV-HVR1400 0070:8010
10 DViCO FusionHDTV7 Dual Express 18ac:d618
11 DViCO FusionHDTV DVB-T Dual Express 18ac:db78
12 Leadtek Winfast PxDVR3200 H 107d:6681
13 Compro VideoMate E650F 185b:e800
14 TurboSight TBS 6920 6920:8888
15 TeVii S470 d470:9022
16 DVBWorld DVB-S2 2005 0001:2005
17 NetUP Dual DVB-S2 CI 1b55:2a2c
18 Hauppauge WinTV-HVR1270 0070:2211
19 Hauppauge WinTV-HVR1275 0070:2215, 0070:221d,

0070:22f2
20 Hauppauge WinTV-HVR1255 0070:2251, 0070:22f1
21 Hauppauge WinTV-HVR1210 0070:2291, 0070:2295,

0070:2299, 0070:229d,
0070:22f0, 0070:22f3,
0070:22f4, 0070:22f5

22 Mygica X8506 DMB-TH 14f1:8651
Continued on next page

4.6. Cards List 875

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.2 – continued from previous page
Card
number

Card name PCI IDs

23 Magic-Pro ProHDTV Extreme 2 14f1:8657
24 Hauppauge WinTV-HVR1850 0070:8541
25 Compro VideoMate E800 1858:e800
26 Hauppauge WinTV-HVR1290 0070:8551
27 Mygica X8558 PRO DMB-TH 14f1:8578
28 LEADTEK WinFast PxTV1200 107d:6f22
29 GoTView X5 3D Hybrid 5654:2390
30 NetUP Dual DVB-T/C-CI RF 1b55:e2e4
31 Leadtek Winfast PxDVR3200 H XC4000 107d:6f39
32 MPX-885
33 Mygica X8502/X8507 ISDB-T 14f1:8502
34 TerraTec Cinergy T PCIe Dual 153b:117e
35 TeVii S471 d471:9022
36 Hauppauge WinTV-HVR1255 0070:2259
37 Prof Revolution DVB-S2 8000 8000:3034
38 Hauppauge WinTV-HVR4400/HVR5500 0070:c108, 0070:c138,

0070:c1f8
39 AVerTV Hybrid Express Slim HC81R 1461:d939
40 TurboSight TBS 6981 6981:8888
41 TurboSight TBS 6980 6980:8888
42 Leadtek Winfast PxPVR2200 107d:6f21
43 Hauppauge ImpactVCB-e 0070:7133
44 DViCO FusionHDTV DVB-T Dual Express2 18ac:db98
45 DVBSky T9580 4254:9580
46 DVBSky T980C 4254:980c
47 DVBSky S950C 4254:950c
48 Technotrend TT-budget CT2-4500 CI 13c2:3013
49 DVBSky S950 4254:0950
50 DVBSky S952 4254:0952
51 DVBSky T982 4254:0982
52 Hauppauge WinTV-HVR5525 0070:f038
53 Hauppauge WinTV Starburst 0070:c12a
54 ViewCast 260e 1576:0260
55 ViewCast 460e 1576:0460
56 Hauppauge WinTV-QuadHD-DVB 0070:6a28, 0070:6b28
57 Hauppauge WinTV-QuadHD-ATSC 0070:6a18, 0070:6b18

4.6.4 CX88 cards list

Card
number

Card name PCI IDs

0 UNKNOWN/GENERIC
1 Hauppauge WinTV 34xxx models 0070:3400, 0070:3401
2 GDI Black Gold 14c7:0106, 14c7:0107
3 PixelView 1554:4811
4 ATI TV Wonder Pro 1002:00f8, 1002:00f9
5 Leadtek Winfast 2000XP Expert 107d:6611, 107d:6613
6 AverTV Studio 303 (M126) 1461:000b
7 MSI TV-@nywhere Master 1462:8606
8 Leadtek Winfast DV2000 107d:6620, 107d:6621

Continued on next page

876 Chapter 4. Video4Linux (V4L) driver-specific documentation

mailto:TV-@nywhere

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.3 – continued from previous page
Card
number

Card name PCI IDs

9 Leadtek PVR 2000 107d:663b, 107d:663c,
107d:6632, 107d:6630,
107d:6638, 107d:6631,
107d:6637, 107d:663d

10 IODATA GV-VCP3/PCI 10fc:d003
11 Prolink PlayTV PVR
12 ASUS PVR-416 1043:4823, 1461:c111
13 MSI TV-@nywhere
14 KWorld/VStream XPert DVB-T 17de:08a6
15 DViCO FusionHDTV DVB-T1 18ac:db00
16 KWorld LTV883RF
17 DViCO FusionHDTV 3 Gold-Q 18ac:d810, 18ac:d800
18 Hauppauge Nova-T DVB-T 0070:9002, 0070:9001,

0070:9000
19 Conexant DVB-T reference design 14f1:0187
20 Provideo PV259 1540:2580
21 DViCO FusionHDTV DVB-T Plus 18ac:db10, 18ac:db11
22 pcHDTV HD3000 HDTV 7063:3000
23 digitalnow DNTV Live! DVB-T 17de:a8a6
24 Hauppauge WinTV 28xxx (Roslyn) models 0070:2801
25 Digital-Logic MICROSPACE Entertainment Center (MEC) 14f1:0342
26 IODATA GV/BCTV7E 10fc:d035
27 PixelView PlayTV Ultra Pro (Stereo)
28 DViCO FusionHDTV 3 Gold-T 18ac:d820
29 ADS Tech Instant TV DVB-T PCI 1421:0334
30 TerraTec Cinergy 1400 DVB-T 153b:1166
31 DViCO FusionHDTV 5 Gold 18ac:d500
32 AverMedia UltraTV Media Center PCI 550 1461:8011
33 Kworld V-Stream Xpert DVD
34 ATI HDTV Wonder 1002:a101
35 WinFast DTV1000-T 107d:665f
36 AVerTV 303 (M126) 1461:000a
37 Hauppauge Nova-S-Plus DVB-S 0070:9201, 0070:9202
38 Hauppauge Nova-SE2 DVB-S 0070:9200
39 KWorld DVB-S 100 17de:08b2, 1421:0341
40 Hauppauge WinTV-HVR1100 DVB-T/Hybrid 0070:9400, 0070:9402
41 Hauppauge WinTV-HVR1100 DVB-T/Hybrid (Low Profile) 0070:9800, 0070:9802
42 digitalnow DNTV Live! DVB-T Pro 1822:0025, 1822:0019
43 KWorld/VStream XPert DVB-T with cx22702 17de:08a1, 12ab:2300
44 DViCO FusionHDTV DVB-T Dual Digital 18ac:db50, 18ac:db54
45 KWorld HardwareMpegTV XPert 17de:0840, 1421:0305
46 DViCO FusionHDTV DVB-T Hybrid 18ac:db40, 18ac:db44
47 pcHDTV HD5500 HDTV 7063:5500
48 Kworld MCE 200 Deluxe 17de:0841
49 PixelView PlayTV P7000 1554:4813
50 NPG Tech Real TV FM Top 10 14f1:0842
51 WinFast DTV2000 H 107d:665e
52 Geniatech DVB-S 14f1:0084
53 Hauppauge WinTV-HVR3000 TriMode Analog/DVB-S/DVB-T 0070:1404, 0070:1400,

0070:1401, 0070:1402
54 Norwood Micro TV Tuner
55 Shenzhen Tungsten Ages Tech TE-DTV-250 / Swann OEM c180:c980

Continued on next page

4.6. Cards List 877

mailto:TV-@nywhere

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.3 – continued from previous page
Card
number

Card name PCI IDs

56 Hauppauge WinTV-HVR1300 DVB-T/Hybrid MPEG Encoder 0070:9600, 0070:9601,
0070:9602

57 ADS Tech Instant Video PCI 1421:0390
58 Pinnacle PCTV HD 800i 11bd:0051
59 DViCO FusionHDTV 5 PCI nano 18ac:d530
60 Pinnacle Hybrid PCTV 12ab:1788
61 Leadtek TV2000 XP Global 107d:6f18, 107d:6618,

107d:6619
62 PowerColor RA330 14f1:ea3d
63 Geniatech X8000-MT DVBT 14f1:8852
64 DViCO FusionHDTV DVB-T PRO 18ac:db30
65 DViCO FusionHDTV 7 Gold 18ac:d610
66 Prolink Pixelview MPEG 8000GT 1554:4935
67 Kworld PlusTV HD PCI 120 (ATSC 120) 17de:08c1
68 Hauppauge WinTV-HVR4000 DVB-S/S2/T/Hybrid 0070:6900, 0070:6904,

0070:6902
69 Hauppauge WinTV-HVR4000(Lite) DVB-S/S2 0070:6905, 0070:6906
70 TeVii S460 DVB-S/S2 d460:9022
71 Omicom SS4 DVB-S/S2 PCI A044:2011
72 TBS 8920 DVB-S/S2 8920:8888
73 TeVii S420 DVB-S d420:9022
74 Prolink Pixelview Global Extreme 1554:4976
75 PROF 7300 DVB-S/S2 B033:3033
76 SATTRADE ST4200 DVB-S/S2 b200:4200
77 TBS 8910 DVB-S 8910:8888
78 Prof 6200 DVB-S b022:3022
79 Terratec Cinergy HT PCI MKII 153b:1177
80 Hauppauge WinTV-IR Only 0070:9290
81 Leadtek WinFast DTV1800 Hybrid 107d:6654
82 WinFast DTV2000 H rev. J 107d:6f2b
83 Prof 7301 DVB-S/S2 b034:3034
84 Samsung SMT 7020 DVB-S 18ac:dc00, 18ac:dccd
85 Twinhan VP-1027 DVB-S 1822:0023
86 TeVii S464 DVB-S/S2 d464:9022
87 Leadtek WinFast DTV2000 H PLUS 107d:6f42
88 Leadtek WinFast DTV1800 H (XC4000) 107d:6f38
89 Leadtek TV2000 XP Global (SC4100) 107d:6f36
90 Leadtek TV2000 XP Global (XC4100) 107d:6f43

4.6.5 EM28xx cards list

Card
number

Card name Empia
Chip

USB IDs

0 Unknown EM2800 video grabber em2800 eb1a:2800
1 Unknown EM2750/28xx video grabber em2820 or

em2840
eb1a:2710, eb1a:2820,
eb1a:2821, eb1a:2860,
eb1a:2861, eb1a:2862,
eb1a:2863, eb1a:2870,
eb1a:2881, eb1a:2883,
eb1a:2868, eb1a:2875

2 Terratec Cinergy 250 USB em2820 or
em2840

0ccd:0036

Continued on next page

878 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.4 – continued from previous page
Card
number

Card name Empia
Chip

USB IDs

3 Pinnacle PCTV USB 2 em2820 or
em2840

2304:0208

4 Hauppauge WinTV USB 2 em2820 or
em2840

2040:4200, 2040:4201

5 MSI VOX USB 2.0 em2820 or
em2840

6 Terratec Cinergy 200 USB em2800
7 Leadtek Winfast USB II em2800 0413:6023
8 Kworld USB2800 em2800
9 Pinnacle Dazzle DVC 90/100/101/107 / Kaiser Baas Video

to DVD maker / Kworld DVD Maker 2 / Plextor ConvertX
PX-AV100U

em2820 or
em2840

1b80:e302, 1b80:e304,
2304:0207, 2304:021a,
093b:a003

10 Hauppauge WinTV HVR 900 em2880 2040:6500
11 Terratec Hybrid XS em2880
12 Kworld PVR TV 2800 RF em2820 or

em2840
13 Terratec Prodigy XS em2880
14 SIIG AVTuner-PVR / Pixelview Prolink PlayTV USB 2.0 em2820 or

em2840
15 V-Gear PocketTV em2800
16 Hauppauge WinTV HVR 950 em2883 2040:6513, 2040:6517,

2040:651b
17 Pinnacle PCTV HD Pro Stick em2880 2304:0227
18 Hauppauge WinTV HVR 900 (R2) em2880 2040:6502
19 EM2860/SAA711X Reference Design em2860
20 AMD ATI TV Wonder HD 600 em2880 0438:b002
21 eMPIA Technology, Inc. GrabBeeX+ Video Encoder em2800 eb1a:2801
22 EM2710/EM2750/EM2751 webcam grabber em2750 eb1a:2750, eb1a:2751
23 Huaqi DLCW-130 em2750
24 D-Link DUB-T210 TV Tuner em2820 or

em2840
2001:f112

25 Gadmei UTV310 em2820 or
em2840

26 Hercules Smart TV USB 2.0 em2820 or
em2840

27 Pinnacle PCTV USB 2 (Philips FM1216ME) em2820 or
em2840

28 Leadtek Winfast USB II Deluxe em2820 or
em2840

29 EM2860/TVP5150 Reference Design em2860 eb1a:5051
30 Videology 20K14XUSB USB2.0 em2820 or

em2840
31 Usbgear VD204v9 em2821
32 Supercomp USB 2.0 TV em2821
33 Elgato Video Capture em2860 0fd9:0033
34 Terratec Cinergy A Hybrid XS em2860 0ccd:004f
35 Typhoon DVD Maker em2860
36 NetGMBH Cam em2860
37 Gadmei UTV330 em2860 eb1a:50a6
38 Yakumo MovieMixer em2861
39 KWorld PVRTV 300U em2861 eb1a:e300
40 Plextor ConvertX PX-TV100U em2861 093b:a005

Continued on next page

4.6. Cards List 879

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.4 – continued from previous page
Card
number

Card name Empia
Chip

USB IDs

41 Kworld 350 U DVB-T em2870 eb1a:e350
42 Kworld 355 U DVB-T em2870 eb1a:e355, eb1a:e357,

eb1a:e359
43 Terratec Cinergy T XS em2870
44 Terratec Cinergy T XS (MT2060) em2870 0ccd:0043
45 Pinnacle PCTV DVB-T em2870
46 Compro, VideoMate U3 em2870 185b:2870
47 KWorld DVB-T 305U em2880 eb1a:e305
48 KWorld DVB-T 310U em2880
49 MSI DigiVox A/D em2880 eb1a:e310
50 MSI DigiVox A/D II em2880 eb1a:e320
51 Terratec Hybrid XS Secam em2880 0ccd:004c
52 DNT DA2 Hybrid em2881
53 Pinnacle Hybrid Pro em2881
54 Kworld VS-DVB-T 323UR em2882 eb1a:e323
55 Terratec Cinnergy Hybrid T USB XS (em2882) em2882 0ccd:005e, 0ccd:0042
56 Pinnacle Hybrid Pro (330e) em2882 2304:0226
57 Kworld PlusTV HD Hybrid 330 em2883 eb1a:a316
58 Compro VideoMate ForYou/Stereo em2820 or

em2840
185b:2041

59 Pinnacle PCTV HD Mini em2874 2304:023f
60 Hauppauge WinTV HVR 850 em2883 2040:651f
61 Pixelview PlayTV Box 4 USB 2.0 em2820 or

em2840
62 Gadmei TVR200 em2820 or

em2840
63 Kaiomy TVnPC U2 em2860 eb1a:e303
64 Easy Cap Capture DC-60 em2860 1b80:e309
65 IO-DATA GV-MVP/SZ em2820 or

em2840
04bb:0515

66 Empire dual TV em2880
67 Terratec Grabby em2860 0ccd:0096, 0ccd:10AF
68 Terratec AV350 em2860 0ccd:0084
69 KWorld ATSC 315U HDTV TV Box em2882 eb1a:a313
70 Evga inDtube em2882
71 Silvercrest Webcam 1.3mpix em2820 or

em2840
72 Gadmei UTV330+ em2861
73 Reddo DVB-C USB TV Box em2870
74 Actionmaster/LinXcel/Digitus VC211A em2800
75 Dikom DK300 em2882
76 KWorld PlusTV 340U or UB435-Q (ATSC) em2870 1b80:a340
77 EM2874 Leadership ISDBT em2874
78 PCTV nanoStick T2 290e em28174 2013:024f
79 Terratec Cinergy H5 em2884 eb1a:2885, 0ccd:10a2,

0ccd:10ad, 0ccd:10b6
80 PCTV DVB-S2 Stick (460e) em28174 2013:024c
81 Hauppauge WinTV HVR 930C em2884 2040:1605
82 Terratec Cinergy HTC Stick em2884 0ccd:00b2
83 Honestech Vidbox NW03 em2860 eb1a:5006
84 MaxMedia UB425-TC em2874 1b80:e425
85 PCTV QuatroStick (510e) em2884 2304:0242

Continued on next page

880 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.4 – continued from previous page
Card
number

Card name Empia
Chip

USB IDs

86 PCTV QuatroStick nano (520e) em2884 2013:0251
87 Terratec Cinergy HTC USB XS em2884 0ccd:008e, 0ccd:00ac
88 C3 Tech Digital Duo HDTV/SDTV USB em2884 1b80:e755
89 Delock 61959 em2874 1b80:e1cc
90 KWorld USB ATSC TV Stick UB435-Q V2 em2874 1b80:e346
91 SpeedLink Vicious And Devine Laplace webcam em2765 1ae7:9003, 1ae7:9004
92 PCTV DVB-S2 Stick (461e) em28178 2013:0258
93 KWorld USB ATSC TV Stick UB435-Q V3 em2874 1b80:e34c
94 PCTV tripleStick (292e) em28178 2013:025f, 2040:0264
95 Leadtek VC100 em2861 0413:6f07
96 Terratec Cinergy T2 Stick HD em28178 eb1a:8179
97 Elgato EyeTV Hybrid 2008 INT em2884 0fd9:0018
98 PLEX PX-BCUD em28178 3275:0085
99 Hauppauge WinTV-dualHD DVB em28174 2040:0265
100 Hauppauge WinTV-dualHD 01595 ATSC/QAM em28174 2040:026d
101 Terratec Cinergy H6 rev. 2 em2884 0ccd:10b2

4.6.6 IVTV cards list

Card
number

Card name PCI IDs

0 Hauppauge WinTV PVR-250 IVTV16 104d:813d
1 Hauppauge WinTV PVR-350 IVTV16 104d:813d
2 Hauppauge WinTV PVR-150 IVTV16 104d:813d
3 AVerMedia M179 IVTV15 1461:a3cf,

IVTV15 1461:a3ce
4 Yuan MPG600, Kuroutoshikou ITVC16-STVLP IVTV16 12ab:fff3,

IVTV16 12ab:ffff
5 YUAN MPG160, Kuroutoshikou ITVC15-STVLP, I/O Data GV-M2TV/PCI IVTV15 10fc:40a0
6 Yuan PG600, Diamond PVR-550 IVTV16 ff92:0070,

IVTV16 ffab:0600
7 Adaptec VideOh! AVC-2410 IVTV16 9005:0093
8 Adaptec VideOh! AVC-2010 IVTV16 9005:0092
9 Nagase Transgear 5000TV IVTV16 1461:bfff
10 AOpen VA2000MAX-SNT6 IVTV16 0000:ff5f
11 Yuan MPG600GR, Kuroutoshikou CX23416GYC-STVLP IVTV16 12ab:0600,

IVTV16 fbab:0600,
IVTV16 1154:0523

12 I/O Data GV-MVP/RX, GV-MVP/RX2W (dual tuner) IVTV16 10fc:d01e,
IVTV16 10fc:d038,
IVTV16 10fc:d039

13 I/O Data GV-MVP/RX2E IVTV16 10fc:d025
14 GotView PCI DVD IVTV16 12ab:0600
15 GotView PCI DVD2 Deluxe IVTV16 ffac:0600
16 Yuan MPC622 IVTV16 ff01:d998
17 Digital Cowboy DCT-MTVP1 IVTV16 1461:bfff
18 Yuan PG600-2, GotView PCI DVD Lite IVTV16 ffab:0600,

IVTV16 ffad:0600
19 Club3D ZAP-TV1x01 IVTV16 ffab:0600
20 AVerTV MCE 116 Plus IVTV16 1461:c439

Continued on next page

4.6. Cards List 881

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.5 – continued from previous page
Card
number

Card name PCI IDs

21 ASUS Falcon2 IVTV16 1043:4b66,
IVTV16 1043:462e,
IVTV16 1043:4b2e

22 AVerMedia PVR-150 Plus / AVerTV M113 Partsnic (Daewoo) Tuner IVTV16 1461:c034,
IVTV16 1461:c035

23 AVerMedia EZMaker PCI Deluxe IVTV16 1461:c03f
24 AVerMedia M104 IVTV16 1461:c136
25 Buffalo PC-MV5L/PCI IVTV16 1154:052b
26 AVerMedia UltraTV 1500 MCE / AVerTV M113 Philips Tuner IVTV16 1461:c019,

IVTV16 1461:c01b
27 Sony VAIO Giga Pocket (ENX Kikyou) IVTV16 104d:813d
28 Hauppauge WinTV PVR-350 (V1) IVTV16 104d:813d
29 Yuan MPG600GR, Kuroutoshikou CX23416GYC-STVLP (no GR) IVTV16 104d:813d
30 Yuan MPG600GR, Kuroutoshikou CX23416GYC-STVLP (no GR/YCS) IVTV16 104d:813d

4.6.7 SAA7134 cards list

Card
number

Card name PCI IDs

0 UNKNOWN/GENERIC
1 Proteus Pro [philips reference design] 1131:2001, 1131:2001
2 LifeView FlyVIDEO3000 5168:0138, 4e42:0138
3 LifeView/Typhoon FlyVIDEO2000 5168:0138, 4e42:0138
4 EMPRESS 1131:6752
5 SKNet Monster TV 1131:4e85
6 Tevion MD 9717
7 KNC One TV-Station RDS / Typhoon TV Tuner RDS 1131:fe01, 1894:fe01
8 Terratec Cinergy 400 TV 153b:1142
9 Medion 5044
10 Kworld/KuroutoShikou SAA7130-TVPCI
11 Terratec Cinergy 600 TV 153b:1143
12 Medion 7134 16be:0003, 16be:5000
13 Typhoon TV+Radio 90031
14 ELSA EX-VISION 300TV 1048:226b
15 ELSA EX-VISION 500TV 1048:226a
16 ASUS TV-FM 7134 1043:4842, 1043:4830,

1043:4840
17 AOPEN VA1000 POWER 1131:7133
18 BMK MPEX No Tuner
19 Compro VideoMate TV 185b:c100
20 Matrox CronosPlus 102B:48d0
21 10MOONS PCI TV CAPTURE CARD 1131:2001
22 AverMedia M156 / Medion 2819 1461:a70b
23 BMK MPEX Tuner
24 KNC One TV-Station DVR 1894:a006
25 ASUS TV-FM 7133 1043:4843
26 Pinnacle PCTV Stereo (saa7134) 11bd:002b
27 Manli MuchTV M-TV002
28 Manli MuchTV M-TV001
29 Nagase Sangyo TransGear 3000TV 1461:050c
30 Elitegroup ECS TVP3XP FM1216 Tuner Card(PAL-BG,FM) 1019:4cb4

Continued on next page

882 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.6 – continued from previous page
Card
number

Card name PCI IDs

31 Elitegroup ECS TVP3XP FM1236 Tuner Card (NTSC,FM) 1019:4cb5
32 AVACS SmartTV
33 AVerMedia DVD EZMaker 1461:10ff
34 Noval Prime TV 7133
35 AverMedia AverTV Studio 305 1461:2115
36 UPMOST PURPLE TV 12ab:0800
37 Items MuchTV Plus / IT-005
38 Terratec Cinergy 200 TV 153b:1152
39 LifeView FlyTV Platinum Mini 5168:0212, 4e42:0212,

5169:1502
40 Compro VideoMate TV PVR/FM 185b:c100
41 Compro VideoMate TV Gold+ 185b:c100
42 Sabrent SBT-TVFM (saa7130)
43 :Zolid Xpert TV7134
44 Empire PCI TV-Radio LE
45 Avermedia AVerTV Studio 307 1461:9715
46 AVerMedia Cardbus TV/Radio (E500) 1461:d6ee
47 Terratec Cinergy 400 mobile 153b:1162
48 Terratec Cinergy 600 TV MK3 153b:1158
49 Compro VideoMate Gold+ Pal 185b:c200
50 Pinnacle PCTV 300i DVB-T + PAL 11bd:002d
51 ProVideo PV952 1540:9524
52 AverMedia AverTV/305 1461:2108
53 ASUS TV-FM 7135 1043:4845
54 LifeView FlyTV Platinum FM / Gold 5168:0214, 5168:5214,

1489:0214, 5168:0304
55 LifeView FlyDVB-T DUO / MSI TV@nywhere Duo 5168:0306, 4E42:0306
56 Avermedia AVerTV 307 1461:a70a
57 Avermedia AVerTV GO 007 FM 1461:f31f
58 ADS Tech Instant TV (saa7135) 1421:0350, 1421:0351,

1421:0370, 1421:1370
59 Kworld/Tevion V-Stream Xpert TV PVR7134
60 LifeView/Typhoon/Genius FlyDVB-T Duo Cardbus 5168:0502, 4e42:0502,

1489:0502
61 Philips TOUGH DVB-T reference design 1131:2004
62 Compro VideoMate TV Gold+II
63 Kworld Xpert TV PVR7134
64 FlyTV mini Asus Digimatrix 1043:0210
65 V-Stream Studio TV Terminator
66 Yuan TUN-900 (saa7135)
67 Beholder BeholdTV 409 FM 0000:4091
68 GoTView 7135 PCI 5456:7135
69 Philips EUROPA V3 reference design 1131:2004
70 Compro Videomate DVB-T300 185b:c900
71 Compro Videomate DVB-T200 185b:c901
72 RTD Embedded Technologies VFG7350 1435:7350
73 RTD Embedded Technologies VFG7330 1435:7330
74 LifeView FlyTV Platinum Mini2 14c0:1212
75 AVerMedia AVerTVHD MCE A180 1461:1044
76 SKNet MonsterTV Mobile 1131:4ee9
77 Pinnacle PCTV 40i/50i/110i (saa7133) 11bd:002e
78 ASUSTeK P7131 Dual 1043:4862

Continued on next page

4.6. Cards List 883

mailto:TV@nywhere

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.6 – continued from previous page
Card
number

Card name PCI IDs

79 Sedna/MuchTV PC TV Cardbus TV/Radio (ITO25 Rev:2B)
80 ASUS Digimatrix TV 1043:0210
81 Philips Tiger reference design 1131:2018
82 MSI TV@Anywhere plus 1462:6231, 1462:8624
83 Terratec Cinergy 250 PCI TV 153b:1160
84 LifeView FlyDVB Trio 5168:0319
85 AverTV DVB-T 777 1461:2c05, 1461:2c05
86 LifeView FlyDVB-T / Genius VideoWonder DVB-T 5168:0301, 1489:0301
87 ADS Instant TV Duo Cardbus PTV331 0331:1421
88 Tevion/KWorld DVB-T 220RF 17de:7201
89 ELSA EX-VISION 700TV 1048:226c
90 Kworld ATSC110/115 17de:7350, 17de:7352
91 AVerMedia A169 B 1461:7360
92 AVerMedia A169 B1 1461:6360
93 Medion 7134 Bridge #2 16be:0005
94 LifeView FlyDVB-T Hybrid Cardbus/MSI TV @nywhere A/D NB 5168:3306, 5168:3502,

5168:3307, 4e42:3502
95 LifeView FlyVIDEO3000 (NTSC) 5169:0138
96 Medion Md8800 Quadro 16be:0007, 16be:0008,

16be:000d
97 LifeView FlyDVB-S /Acorp TV134DS 5168:0300, 4e42:0300
98 Proteus Pro 2309 0919:2003
99 AVerMedia TV Hybrid A16AR 1461:2c00
100 Asus Europa2 OEM 1043:4860
101 Pinnacle PCTV 310i 11bd:002f
102 Avermedia AVerTV Studio 507 1461:9715
103 Compro Videomate DVB-T200A
104 Hauppauge WinTV-HVR1110 DVB-T/Hybrid 0070:6700, 0070:6701,

0070:6702, 0070:6703,
0070:6704, 0070:6705

105 Terratec Cinergy HT PCMCIA 153b:1172
106 Encore ENLTV 1131:2342, 1131:2341,

3016:2344
107 Encore ENLTV-FM 1131:230f
108 Terratec Cinergy HT PCI 153b:1175
109 Philips Tiger - S Reference design
110 Avermedia M102 1461:f31e
111 ASUS P7131 4871 1043:4871
112 ASUSTeK P7131 Hybrid 1043:4876
113 Elitegroup ECS TVP3XP FM1246 Tuner Card (PAL,FM) 1019:4cb6
114 KWorld DVB-T 210 17de:7250
115 Sabrent PCMCIA TV-PCB05 0919:2003
116 10MOONS TM300 TV Card 1131:2304
117 Avermedia Super 007 1461:f01d
118 Beholder BeholdTV 401 0000:4016
119 Beholder BeholdTV 403 0000:4036
120 Beholder BeholdTV 403 FM 0000:4037
121 Beholder BeholdTV 405 0000:4050
122 Beholder BeholdTV 405 FM 0000:4051
123 Beholder BeholdTV 407 0000:4070
124 Beholder BeholdTV 407 FM 0000:4071
125 Beholder BeholdTV 409 0000:4090

Continued on next page

884 Chapter 4. Video4Linux (V4L) driver-specific documentation

mailto:TV@Anywhere

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.6 – continued from previous page
Card
number

Card name PCI IDs

126 Beholder BeholdTV 505 FM 5ace:5050
127 Beholder BeholdTV 507 FM / BeholdTV 509 FM 5ace:5070, 5ace:5090
128 Beholder BeholdTV Columbus TV/FM 0000:5201
129 Beholder BeholdTV 607 FM 5ace:6070
130 Beholder BeholdTV M6 5ace:6190
131 Twinhan Hybrid DTV-DVB 3056 PCI 1822:0022
132 Genius TVGO AM11MCE
133 NXP Snake DVB-S reference design
134 Medion/Creatix CTX953 Hybrid 16be:0010
135 MSI TV@nywhere A/D v1.1 1462:8625
136 AVerMedia Cardbus TV/Radio (E506R) 1461:f436
137 AVerMedia Hybrid TV/Radio (A16D) 1461:f936
138 Avermedia M115 1461:a836
139 Compro VideoMate T750 185b:c900
140 Avermedia DVB-S Pro A700 1461:a7a1
141 Avermedia DVB-S Hybrid+FM A700 1461:a7a2
142 Beholder BeholdTV H6 5ace:6290
143 Beholder BeholdTV M63 5ace:6191
144 Beholder BeholdTV M6 Extra 5ace:6193
145 AVerMedia MiniPCI DVB-T Hybrid M103 1461:f636, 1461:f736
146 ASUSTeK P7131 Analog
147 Asus Tiger 3in1 1043:4878
148 Encore ENLTV-FM v5.3 1a7f:2008
149 Avermedia PCI pure analog (M135A) 1461:f11d
150 Zogis Real Angel 220
151 ADS Tech Instant HDTV 1421:0380
152 Asus Tiger Rev:1.00 1043:4857
153 Kworld Plus TV Analog Lite PCI 17de:7128
154 Avermedia AVerTV GO 007 FM Plus 1461:f31d
155 Hauppauge WinTV-HVR1150 ATSC/QAM-Hybrid 0070:6706, 0070:6708
156 Hauppauge WinTV-HVR1120 DVB-T/Hybrid 0070:6707, 0070:6709,

0070:670a
157 Avermedia AVerTV Studio 507UA 1461:a11b
158 AVerMedia Cardbus TV/Radio (E501R) 1461:b7e9
159 Beholder BeholdTV 505 RDS 0000:505B
160 Beholder BeholdTV 507 RDS 0000:5071
161 Beholder BeholdTV 507 RDS 0000:507B
162 Beholder BeholdTV 607 FM 5ace:6071
163 Beholder BeholdTV 609 FM 5ace:6090
164 Beholder BeholdTV 609 FM 5ace:6091
165 Beholder BeholdTV 607 RDS 5ace:6072
166 Beholder BeholdTV 607 RDS 5ace:6073
167 Beholder BeholdTV 609 RDS 5ace:6092
168 Beholder BeholdTV 609 RDS 5ace:6093
169 Compro VideoMate S350/S300 185b:c900
170 AverMedia AverTV Studio 505 1461:a115
171 Beholder BeholdTV X7 5ace:7595
172 RoverMedia TV Link Pro FM 19d1:0138
173 Zolid Hybrid TV Tuner PCI 1131:2004
174 Asus Europa Hybrid OEM 1043:4847
175 Leadtek Winfast DTV1000S 107d:6655
176 Beholder BeholdTV 505 RDS 0000:5051

Continued on next page

4.6. Cards List 885

mailto:TV@nywhere

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.6 – continued from previous page
Card
number

Card name PCI IDs

177 Hawell HW-404M7
178 Beholder BeholdTV H7 5ace:7190
179 Beholder BeholdTV A7 5ace:7090
180 Avermedia PCI M733A 1461:4155, 1461:4255
181 TechoTrend TT-budget T-3000 13c2:2804
182 Kworld PCI SBTVD/ISDB-T Full-Seg Hybrid 17de:b136
183 Compro VideoMate Vista M1F 185b:c900
184 Encore ENLTV-FM 3 1a7f:2108
185 MagicPro ProHDTV Pro2 DMB-TH/Hybrid 17de:d136
186 Beholder BeholdTV 501 5ace:5010
187 Beholder BeholdTV 503 FM 5ace:5030
188 Sensoray 811/911 6000:0811, 6000:0911
189 Kworld PC150-U 17de:a134
190 Asus My Cinema PS3-100 1043:48cd
191 Hawell HW-9004V1
192 AverMedia AverTV Satellite Hybrid+FM A706 1461:2055
193 WIS Voyager or compatible 1905:7007
194 AverMedia AverTV/505 1461:a10a
195 Leadtek Winfast TV2100 FM 107d:6f3a
196 SnaZio* TVPVR PRO 1779:13cf

4.6.8 SAA7164 cards list

Card
number

Card name PCI IDs

0 Unknown
1 Generic Rev2
2 Generic Rev3
3 Hauppauge WinTV-HVR2250 0070:8880, 0070:8810
4 Hauppauge WinTV-HVR2200 0070:8980
5 Hauppauge WinTV-HVR2200 0070:8900
6 Hauppauge WinTV-HVR2200 0070:8901
7 Hauppauge WinTV-HVR2250 0070:8891, 0070:8851
8 Hauppauge WinTV-HVR2250 0070:88A1
9 Hauppauge WinTV-HVR2200 0070:8940
10 Hauppauge WinTV-HVR2200 0070:8953
11 Hauppauge WinTV-HVR2255(proto) 0070:f111
12 Hauppauge WinTV-HVR2255 0070:f111
13 Hauppauge WinTV-HVR2205 0070:f123, 0070:f120

886 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.6.9 TM6000 cards list

Card
number

Card name USB IDs

0 Unknown tm6000 video grabber
1 Generic tm5600 board 6000:0001
2 Generic tm6000 board
3 Generic tm6010 board 6000:0002
4 10Moons UT 821
5 10Moons UT 330
6 ADSTECH Dual TV USB 06e1:f332
7 Freecom Hybrid Stick / Moka DVB-T Receiver Dual 14aa:0620
8 ADSTECH Mini Dual TV USB 06e1:b339
9 Hauppauge WinTV HVR-900H / WinTV USB2-Stick 2040:6600, 2040:6601,

2040:6610, 2040:6611
10 Beholder Wander DVB-T/TV/FM USB2.0 6000:dec0
11 Beholder Voyager TV/FM USB2.0 6000:dec1
12 Terratec Cinergy Hybrid XE / Cinergy Hybrid-Stick 0ccd:0086, 0ccd:00A5
13 Twinhan TU501(704D1) 13d3:3240, 13d3:3241,

13d3:3243, 13d3:3264
14 Beholder Wander Lite DVB-T/TV/FM USB2.0 6000:dec2
15 Beholder Voyager Lite TV/FM USB2.0 6000:dec3
16 Terratec Grabster AV 150/250 MX 0ccd:0079

4.6.10 Tuner cards list

Tuner number Card name
0 Temic PAL (4002 FH5)
1 Philips PAL_I (FI1246 and compatibles)
2 Philips NTSC (FI1236,FM1236 and compatibles)
3 Philips (SECAM+PAL_BG) (FI1216MF, FM1216MF, FR1216MF)
4 NoTuner
5 Philips PAL_BG (FI1216 and compatibles)
6 Temic NTSC (4032 FY5)
7 Temic PAL_I (4062 FY5)
8 Temic NTSC (4036 FY5)
9 Alps HSBH1
10 Alps TSBE1
11 Alps TSBB5
12 Alps TSBE5
13 Alps TSBC5
14 Temic PAL_BG (4006FH5)
15 Alps TSCH6
16 Temic PAL_DK (4016 FY5)
17 Philips NTSC_M (MK2)
18 Temic PAL_I (4066 FY5)
19 Temic PAL* auto (4006 FN5)
20 Temic PAL_BG (4009 FR5) or PAL_I (4069 FR5)
21 Temic NTSC (4039 FR5)
22 Temic PAL/SECAM multi (4046 FM5)
23 Philips PAL_DK (FI1256 and compatibles)
24 Philips PAL/SECAM multi (FQ1216ME)
25 LG PAL_I+FM (TAPC-I001D)
26 LG PAL_I (TAPC-I701D)

Continued on next page

4.6. Cards List 887

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.7 – continued from previous page
Tuner number Card name
27 LG NTSC+FM (TPI8NSR01F)
28 LG PAL_BG+FM (TPI8PSB01D)
29 LG PAL_BG (TPI8PSB11D)
30 Temic PAL* auto + FM (4009 FN5)
31 SHARP NTSC_JP (2U5JF5540)
32 Samsung PAL TCPM9091PD27
33 MT20xx universal
34 Temic PAL_BG (4106 FH5)
35 Temic PAL_DK/SECAM_L (4012 FY5)
36 Temic NTSC (4136 FY5)
37 LG PAL (newer TAPC series)
38 Philips PAL/SECAM multi (FM1216ME MK3)
39 LG NTSC (newer TAPC series)
40 HITACHI V7-J180AT
41 Philips PAL_MK (FI1216 MK)
42 Philips FCV1236D ATSC/NTSC dual in
43 Philips NTSC MK3 (FM1236MK3 or FM1236/F)
44 Philips 4 in 1 (ATI TV Wonder Pro/Conexant)
45 Microtune 4049 FM5
46 Panasonic VP27s/ENGE4324D
47 LG NTSC (TAPE series)
48 Tenna TNF 8831 BGFF)
49 Microtune 4042 FI5 ATSC/NTSC dual in
50 TCL 2002N
51 Philips PAL/SECAM_D (FM 1256 I-H3)
52 Thomson DTT 7610 (ATSC/NTSC)
53 Philips FQ1286
54 Philips/NXP TDA 8290/8295 + 8275/8275A/18271
55 TCL 2002MB
56 Philips PAL/SECAM multi (FQ1216AME MK4)
57 Philips FQ1236A MK4
58 Ymec TVision TVF-8531MF/8831MF/8731MF
59 Ymec TVision TVF-5533MF
60 Thomson DTT 761X (ATSC/NTSC)
61 Tena TNF9533-D/IF/TNF9533-B/DF
62 Philips TEA5767HN FM Radio
63 Philips FMD1216ME MK3 Hybrid Tuner
64 LG TDVS-H06xF
65 Ymec TVF66T5-B/DFF
66 LG TALN series
67 Philips TD1316 Hybrid Tuner
68 Philips TUV1236D ATSC/NTSC dual in
69 Tena TNF 5335 and similar models
70 Samsung TCPN 2121P30A
71 Xceive xc2028/xc3028 tuner
72 Thomson FE6600
73 Samsung TCPG 6121P30A
75 Philips TEA5761 FM Radio
76 Xceive 5000 tuner
77 TCL tuner MF02GIP-5N-E
78 Philips FMD1216MEX MK3 Hybrid Tuner
79 Philips PAL/SECAM multi (FM1216 MK5)
80 Philips FQ1216LME MK3 PAL/SECAM w/active loopthrough

Continued on next page

888 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.7 – continued from previous page
Tuner number Card name
81 Partsnic (Daewoo) PTI-5NF05
82 Philips CU1216L
83 NXP TDA18271
84 Sony BTF-Pxn01Z
85 Philips FQ1236 MK5
86 Tena TNF5337 MFD
87 Xceive 4000 tuner
88 Xceive 5000C tuner
89 Sony BTF-PG472Z PAL/SECAM
90 Sony BTF-PK467Z NTSC-M-JP
91 Sony BTF-PB463Z NTSC-M

4.6.11 USBvision cards list

Card
number

Card name USB IDs

0 Xanboo 0a6f:0400
1 Belkin USB VideoBus II Adapter 050d:0106
2 Belkin Components USB VideoBus 050d:0207
3 Belkin USB VideoBus II 050d:0208
4 echoFX InterView Lite 0571:0002
5 USBGear USBG-V1 resp. HAMA USB 0573:0003
6 D-Link V100 0573:0400
7 X10 USB Camera 0573:2000
8 Hauppauge WinTV USB Live (PAL B/G) 0573:2d00
9 Hauppauge WinTV USB Live Pro (NTSC M/N) 0573:2d01
10 Zoran Co. PMD (Nogatech) AV-grabber Manhattan 0573:2101
11 Nogatech USB-TV (NTSC) FM 0573:4100
12 PNY USB-TV (NTSC) FM 0573:4110
13 PixelView PlayTv-USB PRO (PAL) FM 0573:4450
14 ZTV ZT-721 2.4GHz USB A/V Receiver 0573:4550
15 Hauppauge WinTV USB (NTSC M/N) 0573:4d00
16 Hauppauge WinTV USB (PAL B/G) 0573:4d01
17 Hauppauge WinTV USB (PAL I) 0573:4d02
18 Hauppauge WinTV USB (PAL/SECAM L) 0573:4d03
19 Hauppauge WinTV USB (PAL D/K) 0573:4d04
20 Hauppauge WinTV USB (NTSC FM) 0573:4d10
21 Hauppauge WinTV USB (PAL B/G FM) 0573:4d11
22 Hauppauge WinTV USB (PAL I FM) 0573:4d12
23 Hauppauge WinTV USB (PAL D/K FM) 0573:4d14
24 Hauppauge WinTV USB Pro (NTSC M/N) 0573:4d2a
25 Hauppauge WinTV USB Pro (NTSC M/N) V2 0573:4d2b
26 Hauppauge WinTV USB Pro (PAL/SECAM B/G/I/D/K/L) 0573:4d2c
27 Hauppauge WinTV USB Pro (NTSC M/N) V3 0573:4d20
28 Hauppauge WinTV USB Pro (PAL B/G) 0573:4d21
29 Hauppauge WinTV USB Pro (PAL I) 0573:4d22
30 Hauppauge WinTV USB Pro (PAL/SECAM L) 0573:4d23
31 Hauppauge WinTV USB Pro (PAL D/K) 0573:4d24
32 Hauppauge WinTV USB Pro (PAL/SECAM BGDK/I/L) 0573:4d25
33 Hauppauge WinTV USB Pro (PAL/SECAM BGDK/I/L) V2 0573:4d26
34 Hauppauge WinTV USB Pro (PAL B/G) V2 0573:4d27
35 Hauppauge WinTV USB Pro (PAL B/G,D/K) 0573:4d28

Continued on next page

4.6. Cards List 889

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.8 – continued from previous page
Card
number

Card name USB IDs

36 Hauppauge WinTV USB Pro (PAL I,D/K) 0573:4d29
37 Hauppauge WinTV USB Pro (NTSC M/N FM) 0573:4d30
38 Hauppauge WinTV USB Pro (PAL B/G FM) 0573:4d31
39 Hauppauge WinTV USB Pro (PAL I FM) 0573:4d32
40 Hauppauge WinTV USB Pro (PAL D/K FM) 0573:4d34
41 Hauppauge WinTV USB Pro (Temic PAL/SECAM B/G/I/D/K/L FM) 0573:4d35
42 Hauppauge WinTV USB Pro (Temic PAL B/G FM) 0573:4d36
43 Hauppauge WinTV USB Pro (PAL/SECAM B/G/I/D/K/L FM) 0573:4d37
44 Hauppauge WinTV USB Pro (NTSC M/N FM) V2 0573:4d38
45 Camtel Technology USB TV Genie Pro FM Model TVB330 0768:0006
46 Digital Video Creator I 07d0:0001
47 Global Village GV-007 (NTSC) 07d0:0002
48 Dazzle Fusion Model DVC-50 Rev 1 (NTSC) 07d0:0003
49 Dazzle Fusion Model DVC-80 Rev 1 (PAL) 07d0:0004
50 Dazzle Fusion Model DVC-90 Rev 1 (SECAM) 07d0:0005
51 Eskape Labs MyTV2Go 07f8:9104
52 Pinnacle Studio PCTV USB (PAL) 2304:010d
53 Pinnacle Studio PCTV USB (SECAM) 2304:0109
54 Pinnacle Studio PCTV USB (PAL) FM 2304:0110
55 Miro PCTV USB 2304:0111
56 Pinnacle Studio PCTV USB (NTSC) FM 2304:0112
57 Pinnacle Studio PCTV USB (PAL) FM V2 2304:0210
58 Pinnacle Studio PCTV USB (NTSC) FM V2 2304:0212
59 Pinnacle Studio PCTV USB (PAL) FM V3 2304:0214
60 Pinnacle Studio Linx Video input cable (NTSC) 2304:0300
61 Pinnacle Studio Linx Video input cable (PAL) 2304:0301
62 Pinnacle PCTV Bungee USB (PAL) FM 2304:0419
63 Hauppauge WinTv-USB 2400:4200
64 Pinnacle Studio PCTV USB (NTSC) FM V3 2304:0113
65 Nogatech USB MicroCam NTSC (NV3000N) 0573:3000
66 Nogatech USB MicroCam PAL (NV3001P) 0573:3001

4.6.12 The gspca cards list

The modules for the gspca webcam drivers are:
• gspca_main: main driver
• gspca_driver: subdriver module with driver as follows

driver vend:prod Device
spca501 0000:0000 MystFromOri Unknown Camera
spca508 0130:0130 Clone Digital Webcam 11043
se401 03e8:0004 Endpoints/AoxSE401
zc3xx 03f0:1b07 HP Premium Starter Cam
m5602 0402:5602 ALi Video Camera Controller
spca501 040a:0002 Kodak DVC-325
spca500 040a:0300 Kodak EZ200
zc3xx 041e:041e Creative WebCam Live!
ov519 041e:4003 Video Blaster WebCam Go Plus
stv0680 041e:4007 Go Mini
spca500 041e:400a Creative PC-CAM 300
sunplus 041e:400b Creative PC-CAM 600

Continued on next page

890 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.9 – continued from previous page
driver vend:prod Device
sunplus 041e:4012 PC-Cam350
sunplus 041e:4013 Creative Pccam750
zc3xx 041e:4017 Creative Webcam Mobile PD1090
spca508 041e:4018 Creative Webcam Vista (PD1100)
spca561 041e:401a Creative Webcam Vista (PD1100)
zc3xx 041e:401c Creative NX
spca505 041e:401d Creative Webcam NX ULTRA
zc3xx 041e:401e Creative Nx Pro
zc3xx 041e:401f Creative Webcam Notebook PD1171
zc3xx 041e:4022 Webcam NX Pro
pac207 041e:4028 Creative Webcam Vista Plus
zc3xx 041e:4029 Creative WebCam Vista Pro
zc3xx 041e:4034 Creative Instant P0620
zc3xx 041e:4035 Creative Instant P0620D
zc3xx 041e:4036 Creative Live !
sq930x 041e:4038 Creative Joy-IT
zc3xx 041e:403a Creative Nx Pro 2
spca561 041e:403b Creative Webcam Vista (VF0010)
sq930x 041e:403c Creative Live! Ultra
sq930x 041e:403d Creative Live! Ultra for Notebooks
sq930x 041e:4041 Creative Live! Motion
zc3xx 041e:4051 Creative Live!Cam Notebook Pro (VF0250)
ov519 041e:4052 Creative Live! VISTA IM
zc3xx 041e:4053 Creative Live!Cam Video IM
vc032x 041e:405b Creative Live! Cam Notebook Ultra (VC0130)
ov519 041e:405f Creative Live! VISTA VF0330
ov519 041e:4060 Creative Live! VISTA VF0350
ov519 041e:4061 Creative Live! VISTA VF0400
ov519 041e:4064 Creative Live! VISTA VF0420
ov519 041e:4067 Creative Live! Cam Video IM (VF0350)
ov519 041e:4068 Creative Live! VISTA VF0470
sn9c2028 0458:7003 GeniusVideocam Live v2
spca561 0458:7004 Genius VideoCAM Express V2
sn9c2028 0458:7005 Genius Smart 300, version 2
sunplus 0458:7006 Genius Dsc 1.3 Smart
zc3xx 0458:7007 Genius VideoCam V2
zc3xx 0458:700c Genius VideoCam V3
zc3xx 0458:700f Genius VideoCam Web V2
sonixj 0458:7025 Genius Eye 311Q
sn9c20x 0458:7029 Genius Look 320s
sonixj 0458:702e Genius Slim 310 NB
sn9c20x 0458:7045 Genius Look 1320 V2
sn9c20x 0458:704a Genius Slim 1320
sn9c20x 0458:704c Genius i-Look 1321
sn9c20x 045e:00f4 LifeCam VX-6000 (SN9C20x + OV9650)
sonixj 045e:00f5 MicroSoft VX3000
sonixj 045e:00f7 MicroSoft VX1000
ov519 045e:028c Micro$oft xbox cam
kinect 045e:02ae Xbox NUI Camera
kinect 045e:02bf Kinect for Windows NUI Camera
spca561 0461:0815 Micro Innovations IC200 Webcam
sunplus 0461:0821 Fujifilm MV-1
zc3xx 0461:0a00 MicroInnovation WebCam320

Continued on next page

4.6. Cards List 891

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.9 – continued from previous page
driver vend:prod Device
stv06xx 046D:08F0 QuickCamMessenger
stv06xx 046D:08F5 QuickCamCommunicate
stv06xx 046D:08F6 QuickCamMessenger (new)
stv06xx 046d:0840 QuickCamExpress
stv06xx 046d:0850 LEGOcam / QuickCam Web
stv06xx 046d:0870 DexxaWebCam USB
spca500 046d:0890 Logitech QuickCam traveler
vc032x 046d:0892 Logitech Orbicam
vc032x 046d:0896 Logitech Orbicam
vc032x 046d:0897 Logitech QuickCam for Dell notebooks
zc3xx 046d:089d Logitech QuickCam E2500
zc3xx 046d:08a0 Logitech QC IM
zc3xx 046d:08a1 Logitech QC IM 0x08A1 +sound
zc3xx 046d:08a2 Labtec Webcam Pro
zc3xx 046d:08a3 Logitech QC Chat
zc3xx 046d:08a6 Logitech QCim
zc3xx 046d:08a7 Logitech QuickCam Image
zc3xx 046d:08a9 Logitech Notebook Deluxe
zc3xx 046d:08aa Labtec Webcam Notebook
zc3xx 046d:08ac Logitech QuickCam Cool
zc3xx 046d:08ad Logitech QCCommunicate STX
zc3xx 046d:08ae Logitech QuickCam for Notebooks
zc3xx 046d:08af Logitech QuickCam Cool
zc3xx 046d:08b9 Logitech QuickCam Express
zc3xx 046d:08d7 Logitech QCam STX
zc3xx 046d:08d8 Logitech Notebook Deluxe
zc3xx 046d:08d9 Logitech QuickCam IM/Connect
zc3xx 046d:08da Logitech QuickCam Messenger
zc3xx 046d:08dd Logitech QuickCam for Notebooks
spca500 046d:0900 Logitech Inc. ClickSmart 310
spca500 046d:0901 Logitech Inc. ClickSmart 510
sunplus 046d:0905 Logitech ClickSmart 820
tv8532 046d:0920 Logitech QuickCam Express
tv8532 046d:0921 Labtec Webcam
spca561 046d:0928 Logitech QC Express Etch2
spca561 046d:0929 Labtec Webcam Elch2
spca561 046d:092a Logitech QC for Notebook
spca561 046d:092b Labtec Webcam Plus
spca561 046d:092c Logitech QC chat Elch2
spca561 046d:092d Logitech QC Elch2
spca561 046d:092e Logitech QC Elch2
spca561 046d:092f Logitech QuickCam Express Plus
sunplus 046d:0960 Logitech ClickSmart 420
nw80x 046d:d001 Logitech QuickCam Pro (dark focus ring)
se401 0471:030b PhilipsPCVC665K
sunplus 0471:0322 Philips DMVC1300K
zc3xx 0471:0325 Philips SPC 200 NC
zc3xx 0471:0326 Philips SPC 300 NC
sonixj 0471:0327 Philips SPC 600 NC
sonixj 0471:0328 Philips SPC 700 NC
zc3xx 0471:032d Philips SPC 210 NC
zc3xx 0471:032e Philips SPC 315 NC
sonixj 0471:0330 Philips SPC 710 NC

Continued on next page

892 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.9 – continued from previous page
driver vend:prod Device
se401 047d:5001 Kensington67014
se401 047d:5002 Kensington6701(5/7)
se401 047d:5003 Kensington67016
spca501 0497:c001 Smile International
sunplus 04a5:3003 Benq DC 1300
sunplus 04a5:3008 Benq DC 1500
sunplus 04a5:300a Benq DC 3410
spca500 04a5:300c Benq DC 1016
benq 04a5:3035 Benq DC E300
vicam 04c1:009d HomeConnect Webcam [vicam]
konica 04c8:0720 IntelYC 76
finepix 04cb:0104 Fujifilm FinePix 4800
finepix 04cb:0109 Fujifilm FinePix A202
finepix 04cb:010b Fujifilm FinePix A203
finepix 04cb:010f Fujifilm FinePix A204
finepix 04cb:0111 Fujifilm FinePix A205
finepix 04cb:0113 Fujifilm FinePix A210
finepix 04cb:0115 Fujifilm FinePix A303
finepix 04cb:0117 Fujifilm FinePix A310
finepix 04cb:0119 Fujifilm FinePix F401
finepix 04cb:011b Fujifilm FinePix F402
finepix 04cb:011d Fujifilm FinePix F410
finepix 04cb:0121 Fujifilm FinePix F601
finepix 04cb:0123 Fujifilm FinePix F700
finepix 04cb:0125 Fujifilm FinePix M603
finepix 04cb:0127 Fujifilm FinePix S300
finepix 04cb:0129 Fujifilm FinePix S304
finepix 04cb:012b Fujifilm FinePix S500
finepix 04cb:012d Fujifilm FinePix S602
finepix 04cb:012f Fujifilm FinePix S700
finepix 04cb:0131 Fujifilm FinePix unknown model
finepix 04cb:013b Fujifilm FinePix unknown model
finepix 04cb:013d Fujifilm FinePix unknown model
finepix 04cb:013f Fujifilm FinePix F420
sunplus 04f1:1001 JVC GC A50
spca561 04fc:0561 Flexcam 100
spca1528 04fc:1528 Sunplus MD80 clone
sunplus 04fc:500c Sunplus CA500C
sunplus 04fc:504a Aiptek Mini PenCam 1.3
sunplus 04fc:504b Maxell MaxPocket LE 1.3
sunplus 04fc:5330 Digitrex 2110
sunplus 04fc:5360 Sunplus Generic
spca500 04fc:7333 PalmPixDC85
sunplus 04fc:ffff Pure DigitalDakota
nw80x 0502:d001 DVC V6
spca501 0506:00df 3Com HomeConnect Lite
sunplus 052b:1507 Megapixel 5 Pretec DC-1007
sunplus 052b:1513 Megapix V4
sunplus 052b:1803 MegaImage VI
nw80x 052b:d001 EZCam Pro p35u
tv8532 0545:808b Veo Stingray
tv8532 0545:8333 Veo Stingray
sunplus 0546:3155 Polaroid PDC3070

Continued on next page

4.6. Cards List 893

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.9 – continued from previous page
driver vend:prod Device
sunplus 0546:3191 Polaroid Ion 80
sunplus 0546:3273 Polaroid PDC2030
touptek 0547:6801 TTUCMOS08000KPB, AS MU800
dtcs033 0547:7303 Anchor Chips, Inc
ov519 054c:0154 Sonny toy4
ov519 054c:0155 Sonny toy5
cpia1 0553:0002 CPIA CPiA (version1) based cameras
stv0680 0553:0202 STV0680 Camera
zc3xx 055f:c005 Mustek Wcam300A
spca500 055f:c200 Mustek Gsmart 300
sunplus 055f:c211 Kowa Bs888e Microcamera
spca500 055f:c220 Gsmart Mini
sunplus 055f:c230 Mustek Digicam 330K
sunplus 055f:c232 Mustek MDC3500
sunplus 055f:c360 Mustek DV4000 Mpeg4
sunplus 055f:c420 Mustek gSmart Mini 2
sunplus 055f:c430 Mustek Gsmart LCD 2
sunplus 055f:c440 Mustek DV 3000
sunplus 055f:c520 Mustek gSmart Mini 3
sunplus 055f:c530 Mustek Gsmart LCD 3
sunplus 055f:c540 Gsmart D30
sunplus 055f:c630 Mustek MDC4000
sunplus 055f:c650 Mustek MDC5500Z
nw80x 055f:d001 Mustek Wcam 300 mini
zc3xx 055f:d003 Mustek WCam300A
zc3xx 055f:d004 Mustek WCam300 AN
conex 0572:0041 Creative Notebook cx11646
ov519 05a9:0511 Video Blaster WebCam 3/WebCam Plus, D-Link USB Digital Video Camera
ov519 05a9:0518 Creative WebCam
ov519 05a9:0519 OV519 Microphone
ov519 05a9:0530 OmniVision
ov534_9 05a9:1550 OmniVision VEHO Filmscanner
ov519 05a9:2800 OmniVision SuperCAM
ov519 05a9:4519 Webcam Classic
ov534_9 05a9:8065 OmniVision test kit ov538+ov9712
ov519 05a9:8519 OmniVision
ov519 05a9:a511 D-Link USB Digital Video Camera
ov519 05a9:a518 D-Link DSB-C310 Webcam
sunplus 05da:1018 Digital Dream Enigma 1.3
stk014 05e1:0893 Syntek DV4000
gl860 05e3:0503 Genesys Logic PC Camera
gl860 05e3:f191 Genesys Logic PC Camera
vicam 0602:1001 ViCam Webcam
spca561 060b:a001 Maxell Compact Pc PM3
zc3xx 0698:2003 CTX M730V built in
topro 06a2:0003 TP6800 PC Camera, CmoX CX0342 webcam
topro 06a2:6810 Creative Qmax
nw80x 06a5:0000 Typhoon Webcam 100 USB
nw80x 06a5:d001 Divio based webcams
nw80x 06a5:d800 Divio Chicony TwinkleCam, Trust SpaceCam
spca500 06bd:0404 Agfa CL20
spca500 06be:0800 Optimedia
nw80x 06be:d001 EZCam Pro p35u

Continued on next page

894 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.9 – continued from previous page
driver vend:prod Device
sunplus 06d6:0031 Trust 610 LCD PowerC@m Zoom
sunplus 06d6:0041 Aashima Technology B.V.
spca506 06e1:a190 ADS Instant VCD
ov534 06f8:3002 Hercules Blog Webcam
ov534_9 06f8:3003 Hercules Dualpix HD Weblog
sonixj 06f8:3004 Hercules Classic Silver
sonixj 06f8:3008 Hercules Deluxe Optical Glass
pac7302 06f8:3009 Hercules Classic Link
pac7302 06f8:301b Hercules Link
nw80x 0728:d001 AVerMedia Camguard
spca508 0733:0110 ViewQuest VQ110
spca501 0733:0401 Intel Create and Share
spca501 0733:0402 ViewQuest M318B
spca505 0733:0430 Intel PC Camera Pro
sunplus 0733:1311 Digital Dream Epsilon 1.3
sunplus 0733:1314 Mercury 2.1MEG Deluxe Classic Cam
sunplus 0733:2211 Jenoptik jdc 21 LCD
sunplus 0733:2221 Mercury Digital Pro 3.1p
sunplus 0733:3261 Concord 3045 spca536a
sunplus 0733:3281 Cyberpix S550V
spca506 0734:043b 3DeMon USB Capture aka
cpia1 0813:0001 QX3 camera
ov519 0813:0002 Dual Mode USB Camera Plus
spca500 084d:0003 D-Link DSC-350
spca500 08ca:0103 Aiptek PocketDV
sunplus 08ca:0104 Aiptek PocketDVII 1.3
sunplus 08ca:0106 Aiptek Pocket DV3100+
mr97310a 08ca:0110 Trust Spyc@m 100
mr97310a 08ca:0111 Aiptek PenCam VGA+
sunplus 08ca:2008 Aiptek Mini PenCam 2 M
sunplus 08ca:2010 Aiptek PocketCam 3M
sunplus 08ca:2016 Aiptek PocketCam 2 Mega
sunplus 08ca:2018 Aiptek Pencam SD 2M
sunplus 08ca:2020 Aiptek Slim 3000F
sunplus 08ca:2022 Aiptek Slim 3200
sunplus 08ca:2024 Aiptek DV3500 Mpeg4
sunplus 08ca:2028 Aiptek PocketCam4M
sunplus 08ca:2040 Aiptek PocketDV4100M
sunplus 08ca:2042 Aiptek PocketDV5100
sunplus 08ca:2050 Medion MD 41437
sunplus 08ca:2060 Aiptek PocketDV5300
tv8532 0923:010f ICM532 cams
mr97310a 093a:010e All known CIF cams with this ID
mr97310a 093a:010f All known VGA cams with this ID
mars 093a:050f Mars-Semi Pc-Camera
pac207 093a:2460 Qtec Webcam 100
pac207 093a:2461 HP Webcam
pac207 093a:2463 Philips SPC 220 NC
pac207 093a:2464 Labtec Webcam 1200
pac207 093a:2468 Webcam WB-1400T
pac207 093a:2470 Genius GF112
pac207 093a:2471 Genius VideoCam ge111
pac207 093a:2472 Genius VideoCam ge110

Continued on next page

4.6. Cards List 895

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.9 – continued from previous page
driver vend:prod Device
pac207 093a:2474 Genius iLook 111
pac207 093a:2476 Genius e-Messenger 112
pac7311 093a:2600 PAC7311 Typhoon
pac7311 093a:2601 Philips SPC 610 NC
pac7311 093a:2603 Philips SPC 500 NC
pac7311 093a:2608 Trust WB-3300p
pac7311 093a:260e Gigaware VGA PC Camera, Trust WB-3350p, SIGMA cam 2350
pac7311 093a:260f SnakeCam
pac7302 093a:2620 Apollo AC-905
pac7302 093a:2621 PAC731x
pac7302 093a:2622 Genius Eye 312
pac7302 093a:2623 Pixart Imaging, Inc.
pac7302 093a:2624 PAC7302
pac7302 093a:2625 Genius iSlim 310
pac7302 093a:2626 Labtec 2200
pac7302 093a:2627 Genius FaceCam 300
pac7302 093a:2628 Genius iLook 300
pac7302 093a:2629 Genious iSlim 300
pac7302 093a:262a Webcam 300k
pac7302 093a:262c Philips SPC 230 NC
jl2005bcd 0979:0227 Various brands, 19 known cameras supported
jeilinj 0979:0270 Sakar 57379
jeilinj 0979:0280 Sportscam DV15, Sakar 57379
zc3xx 0ac8:0301 Web Camera
zc3xx 0ac8:0302 Z-star Vimicro zc0302
vc032x 0ac8:0321 Vimicro generic vc0321
vc032x 0ac8:0323 Vimicro Vc0323
vc032x 0ac8:0328 A4Tech PK-130MG
zc3xx 0ac8:301b Z-Star zc301b
zc3xx 0ac8:303b Vimicro 0x303b
zc3xx 0ac8:305b Z-star Vimicro zc0305b
zc3xx 0ac8:307b PC Camera (ZS0211)
vc032x 0ac8:c001 Sony embedded vimicro
vc032x 0ac8:c002 Sony embedded vimicro
vc032x 0ac8:c301 Samsung Q1 Ultra Premium
spca508 0af9:0010 Hama USB Sightcam 100
spca508 0af9:0011 Hama USB Sightcam 100
ov519 0b62:0059 iBOT2 Webcam
sonixb 0c45:6001 Genius VideoCAM NB
sonixb 0c45:6005 Microdia Sweex Mini Webcam
sonixb 0c45:6007 Sonix sn9c101 + Tas5110D
sonixb 0c45:6009 spcaCam@120
sonixb 0c45:600d spcaCam@120
sonixb 0c45:6011 Microdia PC Camera (SN9C102)
sonixb 0c45:6019 Generic Sonix OV7630
sonixb 0c45:6024 Generic Sonix Tas5130c
sonixb 0c45:6025 Xcam Shanga
sonixb 0c45:6027 GeniusEye 310
sonixb 0c45:6028 Sonix Btc Pc380
sonixb 0c45:6029 spcaCam@150
sonixb 0c45:602a Meade ETX-105EC Camera
sonixb 0c45:602c Generic Sonix OV7630
sonixb 0c45:602d LIC-200 LG

Continued on next page

896 Chapter 4. Video4Linux (V4L) driver-specific documentation

mailto:spcaCam@120
mailto:spcaCam@120
mailto:spcaCam@150

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.9 – continued from previous page
driver vend:prod Device
sonixb 0c45:602e Genius VideoCam Messenger
sonixj 0c45:6040 Speed NVC 350K
sonixj 0c45:607c Sonix sn9c102p Hv7131R
sonixb 0c45:6083 VideoCAM Look
sonixb 0c45:608c VideoCAM Look
sonixb 0c45:608f PC Camera (SN9C103 + OV7630)
sonixb 0c45:60a8 VideoCAM Look
sonixb 0c45:60aa VideoCAM Look
sonixb 0c45:60af VideoCAM Look
sonixb 0c45:60b0 Genius VideoCam Look
sonixj 0c45:60c0 Sangha Sn535
sonixj 0c45:60ce USB-PC-Camera-168 (TALK-5067)
sonixj 0c45:60ec SN9C105+MO4000
sonixj 0c45:60fb Surfer NoName
sonixj 0c45:60fc LG-LIC300
sonixj 0c45:60fe Microdia Audio
sonixj 0c45:6100 PC Camera (SN9C128)
sonixj 0c45:6102 PC Camera (SN9C128)
sonixj 0c45:610a PC Camera (SN9C128)
sonixj 0c45:610b PC Camera (SN9C128)
sonixj 0c45:610c PC Camera (SN9C128)
sonixj 0c45:610e PC Camera (SN9C128)
sonixj 0c45:6128 Microdia/Sonix SNP325
sonixj 0c45:612a Avant Camera
sonixj 0c45:612b Speed-Link REFLECT2
sonixj 0c45:612c Typhoon Rasy Cam 1.3MPix
sonixj 0c45:612e PC Camera (SN9C110)
sonixj 0c45:6130 Sonix Pccam
sonixj 0c45:6138 Sn9c120 Mo4000
sonixj 0c45:613a Microdia Sonix PC Camera
sonixj 0c45:613b Surfer SN-206
sonixj 0c45:613c Sonix Pccam168
sonixj 0c45:613e PC Camera (SN9C120)
sonixj 0c45:6142 Hama PC-Webcam AC-150
sonixj 0c45:6143 Sonix Pccam168
sonixj 0c45:6148 Digitus DA-70811/ZSMC USB PC Camera ZS211/Microdia
sonixj 0c45:614a Frontech E-Ccam (JIL-2225)
sn9c20x 0c45:6240 PC Camera (SN9C201 + MT9M001)
sn9c20x 0c45:6242 PC Camera (SN9C201 + MT9M111)
sn9c20x 0c45:6248 PC Camera (SN9C201 + OV9655)
sn9c20x 0c45:624c PC Camera (SN9C201 + MT9M112)
sn9c20x 0c45:624e PC Camera (SN9C201 + SOI968)
sn9c20x 0c45:624f PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6251 PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6253 PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6260 PC Camera (SN9C201 + OV7670)
sn9c20x 0c45:6270 PC Camera (SN9C201 + MT9V011/MT9V111/MT9V112)
sn9c20x 0c45:627b PC Camera (SN9C201 + OV7660)
sn9c20x 0c45:627c PC Camera (SN9C201 + HV7131R)
sn9c20x 0c45:627f PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6280 PC Camera (SN9C202 + MT9M001)
sn9c20x 0c45:6282 PC Camera (SN9C202 + MT9M111)
sn9c20x 0c45:6288 PC Camera (SN9C202 + OV9655)

Continued on next page

4.6. Cards List 897

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.9 – continued from previous page
driver vend:prod Device
sn9c20x 0c45:628c PC Camera (SN9C201 + MT9M112)
sn9c20x 0c45:628e PC Camera (SN9C202 + SOI968)
sn9c20x 0c45:628f PC Camera (SN9C202 + OV9650)
sn9c20x 0c45:62a0 PC Camera (SN9C202 + OV7670)
sn9c20x 0c45:62b0 PC Camera (SN9C202 + MT9V011/MT9V111/MT9V112)
sn9c20x 0c45:62b3 PC Camera (SN9C202 + OV9655)
sn9c20x 0c45:62bb PC Camera (SN9C202 + OV7660)
sn9c20x 0c45:62bc PC Camera (SN9C202 + HV7131R)
sn9c2028 0c45:8001 Wild Planet Digital Spy Camera
sn9c2028 0c45:8003 Sakar #11199, #6637x, #67480 keychain cams
sn9c2028 0c45:8008 Mini-Shotz ms-350
sn9c2028 0c45:800a Vivitar Vivicam 3350B
sunplus 0d64:0303 Sunplus FashionCam DXG
ov519 0e96:c001 TRUST 380 USB2 SPACEC@M
etoms 102c:6151 Qcam Sangha CIF
etoms 102c:6251 Qcam xxxxxx VGA
ov519 1046:9967 W9967CF/W9968CF WebCam IC, Video Blaster WebCam Go
zc3xx 10fd:0128 Typhoon Webshot II USB 300k 0x0128
spca561 10fd:7e50 FlyCam Usb 100
zc3xx 10fd:804d Typhoon Webshot II Webcam [zc0301]
zc3xx 10fd:8050 Typhoon Webshot II USB 300k
ov534 1415:2000 Sony HD Eye for PS3 (SLEH 00201)
pac207 145f:013a Trust WB-1300N
pac7302 145f:013c Trust
sn9c20x 145f:013d Trust WB-3600R
vc032x 15b8:6001 HP 2.0 Megapixel
vc032x 15b8:6002 HP 2.0 Megapixel rz406aa
stk1135 174f:6a31 ASUSlaptop, MT9M112 sensor
spca501 1776:501c Arowana 300K CMOS Camera
t613 17a1:0128 TASCORP JPEG Webcam, NGS Cyclops
vc032x 17ef:4802 Lenovo Vc0323+MI1310_SOC
pac7302 1ae7:2001 SpeedLinkSnappy Mic SL-6825-SBK
pac207 2001:f115 D-Link DSB-C120
sq905c 2770:9050 Disney pix micro (CIF)
sq905c 2770:9051 Lego Bionicle
sq905c 2770:9052 Disney pix micro 2 (VGA)
sq905c 2770:905c All 11 known cameras with this ID
sq905 2770:9120 All 24 known cameras with this ID
sq905c 2770:913d All 4 known cameras with this ID
sq930x 2770:930b Sweex Motion Tracking / I-Tec iCam Tracer
sq930x 2770:930c Trust WB-3500T / NSG Robbie 2.0
spca500 2899:012c Toptro Industrial
ov519 8020:ef04 ov519
spca508 8086:0110 Intel Easy PC Camera
spca500 8086:0630 Intel Pocket PC Camera
spca506 99fa:8988 Grandtec V.cap
sn9c20x a168:0610 Dino-Lite Digital Microscope (SN9C201 + HV7131R)
sn9c20x a168:0611 Dino-Lite Digital Microscope (SN9C201 + HV7131R)
sn9c20x a168:0613 Dino-Lite Digital Microscope (SN9C201 + HV7131R)
sn9c20x a168:0614 Dino-Lite Digital Microscope (SN9C201 + MT9M111)
sn9c20x a168:0615 Dino-Lite Digital Microscope (SN9C201 + MT9M111)
sn9c20x a168:0617 Dino-Lite Digital Microscope (SN9C201 + MT9M111)
sn9c20x a168:0618 Dino-Lite Digital Microscope (SN9C201 + HV7131R)

Continued on next page

898 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Table 4.9 – continued from previous page
driver vend:prod Device
spca561 abcd:cdee Petcam

4.7 The bttv driver

4.7.1 Release notes for bttv

You’ll need at least these config options for bttv:

CONFIG_I2C=m
CONFIG_I2C_ALGOBIT=m
CONFIG_VIDEO_DEV=m

The latest bttv version is available from http://bytesex.org/bttv/

4.7.2 Make bttv work with your card

Just try “modprobe bttv” and see if that works.
If it doesn’t bttv likely could not autodetect your card and needs some insmod options. The most important
insmod option for bttv is “card=n” to select the correct card type. If you get video but no sound you’ve
very likely specified the wrong (or no) card type. A list of supported cards is in CARDLIST.bttv
If bttv takes very long to load (happens sometimes with the cheap cards which have no tuner), try adding
this to your modules.conf:

options i2c-algo-bit bit_test=1

For the WinTV/PVR you need one firmware file from the driver CD: hcwamc.rbf. The file is in the
pvr45xxx.exe archive (self-extracting zip file, unzip can unpack it). Put it into the /etc/pvr directory or
use the firm_altera=<path> insmod option to point the driver to the location of the file.
If your card isn’t listed in CARDLIST.bttv or if you have trouble making audio work, you should read the
Sound-FAQ.

4.7.3 Autodetecting cards

bttv uses the PCI Subsystem ID to autodetect the card type. lspci lists the Subsystem ID in the second
line, looks like this:

00:0a.0 Multimedia video controller: Brooktree Corporation Bt878 (rev 02)
Subsystem: Hauppauge computer works Inc. WinTV/GO
Flags: bus master, medium devsel, latency 32, IRQ 5
Memory at e2000000 (32-bit, prefetchable) [size=4K]

only bt878-based cards can have a subsystem ID (which does not mean that every card really has one).
bt848 cards can’t have a Subsystem ID and therefore can’t be autodetected. There is a list with the ID’s
in bttv-cards.c (in case you are intrested or want to mail patches with updates).

4.7.4 Still doesn’t work?

I do NOT have a lab with 30+ different grabber boards and a PAL/NTSC/SECAM test signal generator at
home, so I often can’t reproduce your problems. This makes debugging very difficult for me. If you have
some knowledge and spare time, please try to fix this yourself (patches very welcome of course...) You
know: The linux slogan is “Do it yourself”.

4.7. The bttv driver 899

http://bytesex.org/bttv/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

There is a mailing list at http://vger.kernel.org/vger-lists.html#linux-media
If you have trouble with some specific TV card, try to ask there instead of mailing me directly. The chance
that someone with the same card listens there is much higher...
For problems with sound: There are a lot of different systems used for TV sound all over the world. And
there are also different chips which decode the audio signal. Reports about sound problems (“stereo
does’nt work”) are pretty useless unless you include some details about your hardware and the TV sound
scheme used in your country (or at least the country you are living in).

4.7.5 Modprobe options

Note: “modinfo <module>” prints various information about a kernel module, among them a complete
and up-to-date list of insmod options. This list tends to be outdated because it is updated manually ...

bttv.o

the bt848/878 (grabber chip) driver

insmod args:
card=n card type, see CARDLIST for a list.
tuner=n tuner type, see CARDLIST for a list.
radio=0/1 card supports radio
pll=0/1/2 pll settings

0: don't use PLL
1: 28 MHz crystal installed
2: 35 MHz crystal installed

triton1=0/1 for Triton1 (+others) compatibility
vsfx=0/1 yet another chipset bug compatibility bit

see README.quirks for details on these two.

bigendian=n Set the endianness of the gfx framebuffer.
Default is native endian.

fieldnr=0/1 Count fields. Some TV descrambling software
needs this, for others it only generates
50 useless IRQs/sec. default is 0 (off).

autoload=0/1 autoload helper modules (tuner, audio).
default is 1 (on).

bttv_verbose=0/1/2 verbose level (at insmod time, while
looking at the hardware). default is 1.

bttv_debug=0/1 debug messages (for capture).
default is 0 (off).

irq_debug=0/1 irq handler debug messages.
default is 0 (off).

gbuffers=2-32 number of capture buffers for mmap'ed capture.
default is 4.

gbufsize= size of capture buffers. default and
maximum value is 0x208000 (~2MB)

no_overlay=0 Enable overlay on broken hardware. There
are some chipsets (SIS for example) which
are known to have problems with the PCI DMA
push used by bttv. bttv will disable overlay
by default on this hardware to avoid crashes.
With this insmod option you can override this.

no_overlay=1 Disable overlay. It should be used by broken
hardware that doesn't support PCI2PCI direct
transfers.

automute=0/1 Automatically mutes the sound if there is
no TV signal, on by default. You might try
to disable this if you have bad input signal

900 Chapter 4. Video4Linux (V4L) driver-specific documentation

http://vger.kernel.org/vger-lists.html#linux-media

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

quality which leading to unwanted sound
dropouts.

chroma_agc=0/1 AGC of chroma signal, off by default.
adc_crush=0/1 Luminance ADC crush, on by default.
i2c_udelay= Allow reduce I2C speed. Default is 5 usecs

(meaning 66,67 Kbps). The default is the
maximum supported speed by kernel bitbang
algorithm. You may use lower numbers, if I2C
messages are lost (16 is known to work on
all supported cards).

bttv_gpio=0/1
gpiomask=
audioall=
audiomux=

See Sound-FAQ for a detailed description.

remap, card, radio and pll accept up to four comma-separated arguments
(for multiple boards).

tuner.o

The tuner driver. You need this unless you want to use only
with a camera or external tuner ...

insmod args:
debug=1 print some debug info to the syslog
type=n type of the tuner chip. n as follows:

see CARDLIST for a complete list.
pal=[bdgil] select PAL variant (used for some tuners

only, important for the audio carrier).

tvaudio.o

new, experimental module which is supported to provide a single
driver for all simple i2c audio control chips (tda/tea*).

insmod args:
tda8425 = 1 enable/disable the support for the
tda9840 = 1 various chips.
tda9850 = 1 The tea6300 can't be autodetected and is
tda9855 = 1 therefore off by default, if you have
tda9873 = 1 this one on your card (STB uses these)
tda9874a = 1 you have to enable it explicitly.
tea6300 = 0 The two tda985x chips use the same i2c
tea6420 = 1 address and can't be disturgished from
pic16c54 = 1 each other, you might have to disable

the wrong one.
debug = 1 print debug messages

insmod args for tda9874a:
tda9874a_SIF=1/2 select sound IF input pin (1 or 2)

(default is pin 1)
tda9874a_AMSEL=0/1 auto-mute select for NICAM (default=0)

Please read note 3 below!
tda9874a_STD=n select TV sound standard (0..8):

0 - A2, B/G
1 - A2, M (Korea)
2 - A2, D/K (1)
3 - A2, D/K (2)
4 - A2, D/K (3)
5 - NICAM, I
6 - NICAM, B/G

4.7. The bttv driver 901

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

7 - NICAM, D/K (default)
8 - NICAM, L

Note 1: tda9874a supports both tda9874h (old) and tda9874a (new) chips.
Note 2: tda9874h/a and tda9875 (which is supported separately by
tda9875.o) use the same i2c address so both modules should not be
used at the same time.
Note 3: Using tda9874a_AMSEL option depends on your TV card design!

AMSEL=0: auto-mute will switch between NICAM sound
and the sound on 1st carrier (i.e. FM mono or AM).

AMSEL=1: auto-mute will switch between NICAM sound
and the analog mono input (MONOIN pin).

If tda9874a decoder on your card has MONOIN pin not connected, then
use only tda9874_AMSEL=0 or don't specify this option at all.
For example:

card=65 (FlyVideo 2000S) - set AMSEL=1 or AMSEL=0
card=72 (Prolink PV-BT878P rev.9B) - set AMSEL=0 only

msp3400.o

The driver for the msp34xx sound processor chips. If you have a
stereo card, you probably want to insmod this one.

insmod args:
debug=1/2 print some debug info to the syslog,

2 is more verbose.
simple=1 Use the "short programming" method. Newer

msp34xx versions support this. You need this
for dbx stereo. Default is on if supported by
the chip.

once=1 Don't check the TV-stations Audio mode
every few seconds, but only once after
channel switches.

amsound=1 Audio carrier is AM/NICAM at 6.5 Mhz. This
should improve things for french people, the
carrier autoscan seems to work with FM only...

tea6300.o - OBSOLETE (use tvaudio instead)

The driver for the tea6300 fader chip. If you have a stereo
card and the msp3400.o doesn't work, you might want to try this
one. This chip is seen on most STB TV/FM cards (usually from
Gateway OEM sold surplus on auction sites).

insmod args:
debug=1 print some debug info to the syslog.

tda8425.o - OBSOLETE (use tvaudio instead)

The driver for the tda8425 fader chip. This driver used to be
part of bttv.c, so if your sound used to work but does not
anymore, try loading this module.

insmod args:
debug=1 print some debug info to the syslog.

tda985x.o - OBSOLETE (use tvaudio instead)

The driver for the tda9850/55 audio chips.

insmod args:
debug=1 print some debug info to the syslog.
chip=9850/9855 set the chip type.

902 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.7.6 If the box freezes hard with bttv

It might be a bttv driver bug. It also might be bad hardware. It also might be something else ...
Just mailing me “bttv freezes” isn’t going to help much. This README has a few hints how you can help
to pin down the problem.

bttv bugs

If some version works and another doesn’t it is likely to be a driver bug. It is very helpful if you can tell
where exactly it broke (i.e. the last working and the first broken version).
With a hard freeze you probably doesn’t find anything in the logfiles. The only way to capture any kernel
messages is to hook up a serial console and let some terminal application log the messages. /me uses
screen. See Documentation/admin-guide/serial-console.rst for details on setting up a serial console.
Read Documentation/admin-guide/oops-tracing.rst to learn how to get any useful information out of a
register+stack dump printed by the kernel on protection faults (so-called “kernel oops”).
If you run into some kind of deadlock, you can try to dump a call trace for each process using sysrq-t (see
Documentation/admin-guide/sysrq.rst). This way it is possible to figure where exactly some process in
“D” state is stuck.
I’ve seen reports that bttv 0.7.x crashes whereas 0.8.x works rock solid for some people. Thus probably
a small buglet left somewhere in bttv 0.7.x. I have no idea where exactly, it works stable for me and a lot
of other people. But in case you have problems with the 0.7.x versions you can give 0.8.x a try ...

hardware bugs

Some hardware can’t deal with PCI-PCI transfers (i.e. grabber => vga). Sometimes problems show up
with bttv just because of the high load on the PCI bus. The bt848/878 chips have a few workarounds for
known incompatibilities, see README.quirks.
Some folks report that increasing the pci latency helps too, althrought I’m not sure whenever this really
fixes the problems or only makes it less likely to happen. Both bttv and btaudio have a insmod option to
set the PCI latency of the device.
Some mainboard have problems to deal correctly with multiple devices doing DMA at the same time. bttv
+ ide seems to cause this sometimes, if this is the case you likely see freezes only with video and hard
disk access at the same time. Updating the IDE driver to get the latest and greatest workarounds for
hardware bugs might fix these problems.

other

If you use some binary-only yunk (like nvidia module) try to reproduce the problem without.
IRQ sharing is known to cause problems in some cases. It works just fine in theory and many configura-
tions. Neverless it might be worth a try to shuffle around the PCI cards to give bttv another IRQ or make
it share the IRQ with some other piece of hardware. IRQ sharing with VGA cards seems to cause trouble
sometimes. I’ve also seen funny effects with bttv sharing the IRQ with the ACPI bridge (and apci-enabled
kernel).

4.7.7 Bttv quirks

Below is what the bt878 data book says about the PCI bug compatibility modes of the bt878 chip.

4.7. The bttv driver 903

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The triton1 insmod option sets the EN_TBFX bit in the control register. The vsfx insmod option does the
same for EN_VSFX bit. If you have stability problems you can try if one of these options makes your box
work solid.
drivers/pci/quirks.c knows about these issues, this way these bits are enabled automagically for known-
buggy chipsets (look at the kernel messages, bttv tells you).

Normal PCI Mode

The PCI REQ signal is the logical-or of the incoming function requests. The inter-nal GNT[0:1] signals are
gated asynchronously with GNT and demultiplexed by the audio request signal. Thus the arbiter defaults
to the video function at power-up and parks there during no requests for bus access. This is desirable
since the video will request the bus more often. However, the audio will have highest bus access priority.
Thus the audio will have first access to the bus even when issuing a request after the video request but
before the PCI external arbiter has granted access to the Bt879. Neither function can preempt the other
once on the bus. The duration to empty the entire video PCI FIFO onto the PCI bus is very short compared
to the bus access latency the audio PCI FIFO can tolerate.

430FX Compatibility Mode

When using the 430FX PCI, the following rules will ensure compatibility:
1. Deassert REQ at the same time as asserting FRAME.
2. Do not reassert REQ to request another bus transaction until after finish-ing the previous transaction.

Since the individual bus masters do not have direct control of REQ, a simple logical-or of video and audio
requests would violate the rules. Thus, both the arbiter and the initiator contain 430FX compatibility mode
logic. To enable 430FX mode, set the EN_TBFX bit as indicated in Device Control Register on page 104.
When EN_TBFX is enabled, the arbiter ensures that the two compatibility rules are satisfied. Before GNT
is asserted by the PCI arbiter, this internal arbiter may still logical-or the two requests. However, once
the GNT is issued, this arbiter must lock in its decision and now route only the granted request to the
REQ pin. The arbiter decision lock happens regardless of the state of FRAME because it does not know
when FRAME will be asserted (typically - each initiator will assert FRAME on the cycle following GNT).
When FRAME is asserted, it is the initiator s responsibility to remove its request at the same time. It is the
arbiters responsibility to allow this request to flow through to REQ and not allow the other request to hold
REQ asserted. The decision lock may be removed at the end of the transaction: for example, when the
bus is idle (FRAME and IRDY). The arbiter decision may then continue asynchronously until GNT is again
asserted.

Interfacing with Non-PCI 2.1 Compliant Core Logic

A small percentage of core logic devices may start a bus transaction during the same cycle that GNT
is de-asserted. This is non PCI 2.1 compliant. To ensure compatibility when using PCs with these PCI
controllers, the EN_VSFX bit must be enabled (refer to Device Control Register on page 104). When in
this mode, the arbiter does not pass GNT to the internal functions unless REQ is asserted. This prevents
a bus transaction from starting the same cycle as GNT is de-asserted. This also has the side effect of not
being able to take advantage of bus parking, thus lowering arbitration performance. The Bt879 drivers
must query for these non-compliant devices, and set the EN_VSFX bit only if required.

4.7.8 bttv and sound mini howto

There are a lot of different bt848/849/878/879 based boards available. Making video work often is not a
big deal, because this is handled completely by the bt8xx chip, which is common on all boards. But sound
is handled in slightly different ways on each board.

904 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

To handle the grabber boards correctly, there is a array tvcards[] in bttv-cards.c, which holds the informa-
tion required for each board. Sound will work only, if the correct entry is used (for video it often makes no
difference). The bttv driver prints a line to the kernel log, telling which card type is used. Like this one:

bttv0: model: BT848(Hauppauge old) [autodetected]

You should verify this is correct. If it isn’t, you have to pass the correct board type as insmod argument,
“insmod bttv card=2” for example. The file CARDLIST has a list of valid arguments for card. If your card
isn’t listed there, you might check the source code for new entries which are not listed yet. If there isn’t
one for your card, you can check if one of the existing entries does work for you (just trial and error...).
Some boards have an extra processor for sound to do stereo decoding and other nice features. The
msp34xx chips are used by Hauppauge for example. If your board has one, you might have to load a
helper module like msp3400.o to make sound work. If there isn’t one for the chip used on your board:
Bad luck. Start writing a new one. Well, you might want to check the video4linux mailing list archive
first...
Of course you need a correctly installed soundcard unless you have the speakers connected directly to the
grabber board. Hint: check the mixer settings too. ALSA for example has everything muted by default.

How sound works in detail

Still doesn’t work? Looks like some driver hacking is required. Below is a do-it-yourself description for
you.
The bt8xx chips have 32 general purpose pins, and registers to control these pins. One register is the
output enable register (BT848_GPIO_OUT_EN), it says which pins are actively driven by the bt848 chip.
Another one is the data register (BT848_GPIO_DATA), where you can get/set the status if these pins. They
can be used for input and output.
Most grabber board vendors use these pins to control an external chip which does the sound routing. But
every board is a little different. These pins are also used by some companies to drive remote control
receiver chips. Some boards use the i2c bus instead of the gpio pins to connect the mux chip.
As mentioned above, there is a array which holds the required information for each known board. You
basically have to create a new line for your board. The important fields are these two:

struct tvcard
{

[...]
u32 gpiomask;
u32 audiomux[6]; /* Tuner, Radio, external, internal, mute, stereo */

};

gpiomask specifies which pins are used to control the audio mux chip. The corresponding bits in the
output enable register (BT848_GPIO_OUT_EN) will be set as these pins must be driven by the bt848 chip.
The audiomux[] array holds the data values for the different inputs (i.e. which pins must be high/low for
tuner/mute/...). This will be written to the data register (BT848_GPIO_DATA) to switch the audio mux.
What you have to do is figure out the correct values for gpiomask and the audiomux array. If you have
Windows and the drivers four your card installed, you might to check out if you can read these registers
values used by the windows driver. A tool to do this is available from ftp://telepresence.dmem.strath.ac.
uk/pub/bt848/winutil, but it doesn’t work with bt878 boards according to some reports I received. Another
one with bt878 support is available from http://btwincap.sourceforge.net/Files/btspy2.00.zip
You might also dig around in the *.ini files of the Windows applications. You can have a look at the board
to see which of the gpio pins are connected at all and then start trial-and-error ...
Starting with release 0.7.41 bttv has a number of insmod options to make the gpio debugging easier:

bttv_gpio=0/1 enable/disable gpio debug messages
gpiomask=n set the gpiomask value

4.7. The bttv driver 905

ftp://telepresence.dmem.strath.ac.uk/pub/bt848/winutil
ftp://telepresence.dmem.strath.ac.uk/pub/bt848/winutil
http://btwincap.sourceforge.net/Files/btspy2.00.zip

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

audiomux=i,j,... set the values of the audiomux array
audioall=a set the values of the audiomux array (one

value for all array elements, useful to check
out which effect the particular value has).

The messages printed with bttv_gpio=1 look like this:

bttv0: gpio: en=00000027, out=00000024 in=00ffffd8 [audio: off]

en = output _en_able register (BT848_GPIO_OUT_EN)
out = _out_put bits of the data register (BT848_GPIO_DATA),

i.e. BT848_GPIO_DATA & BT848_GPIO_OUT_EN
in = _in_put bits of the data register,

i.e. BT848_GPIO_DATA & ~BT848_GPIO_OUT_EN

Other elements of the tvcards array

If you are trying to make a new card work you might find it useful to know what the other elements in the
tvcards array are good for:

video_inputs - # of video inputs the card has
audio_inputs - historical cruft, not used any more.
tuner - which input is the tuner
svhs - which input is svhs (all others are labeled composite)
muxsel - video mux, input->registervalue mapping
pll - same as pll= insmod option
tuner_type - same as tuner= insmod option
*_modulename - hint whenever some card needs this or that audio

module loaded to work properly.
has_radio - whenever this TV card has a radio tuner.
no_msp34xx - "1" disables loading of msp3400.o module
no_tda9875 - "1" disables loading of tda9875.o module
needs_tvaudio - set to "1" to load tvaudio.o module

If some config item is specified both from the tvcards array and as insmod option, the insmod option takes
precedence.

4.7.9 Cards

Note:

For amore updated list, please check https://linuxtv.org/wiki/index.php/Hardware_Device_Information

Supported cards: Bt848/Bt848a/Bt849/Bt878/Bt879 cards

All cards with Bt848/Bt848a/Bt849/Bt878/Bt879 and normal Composite/S-VHS inputs are supported. Tele-
text and Intercast support (PAL only) for ALL cards via VBI sample decoding in software.
Some cards with additional multiplexing of inputs or other additional fancy chips are only partially sup-
ported (unless specifications by the card manufacturer are given). When a card is listed here it isn’t
necessarily fully supported.
All other cards only differ by additional components as tuners, sound decoders, EEPROMs, teletext de-
coders ...

906 Chapter 4. Video4Linux (V4L) driver-specific documentation

https://linuxtv.org/wiki/index.php/Hardware_Device_Information

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

MATRIX Vision

MV-Delta - Bt848A - 4 Composite inputs, 1 S-VHS input (shared with 4th composite) - EEPROM
http://www.matrix-vision.de/
This card has no tuner but supports all 4 composite (1 shared with an S-VHS input) of the Bt848A. Very
nice card if you only have satellite TV but several tuners connected to the card via composite.
Many thanks to Matrix-Vision for giving us 2 cards for free which made Bt848a/Bt849 single crystal oper-
ation support possible!!!

Miro/Pinnacle PCTV

• Bt848 some (all??) come with 2 crystals for PAL/SECAM and NTSC
• PAL, SECAM or NTSC TV tuner (Philips or TEMIC)
• MSP34xx sound decoder on add on board decoder is supported but AFAIK does not yet work (other

sound MUX setting in GPIO port needed??? somebody who fixed this???)
• 1 tuner, 1 composite and 1 S-VHS input
• tuner type is autodetected

http://www.miro.de/ http://www.miro.com/
Many thanks for the free card which made first NTSC support possible back in 1997!

Hauppauge Win/TV pci

There are many different versions of the Hauppauge cards with different tuners (TV+Radio ...), teletext
decoders. Note that even cards with same model numbers have (depending on the revision) different
chips on it.

• Bt848 (and others but always in 2 crystal operation???) newer cards have a Bt878
• PAL, SECAM, NTSC or tuner with or without Radio support

e.g.:
• PAL:

– TDA5737: VHF, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
– TSA5522: 1.4 GHz I2C-bus controlled synthesizer, I2C 0xc2-0xc3

• NTSC:
– TDA5731: VHF, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
– TSA5518: no datasheet available on Philips site

• Philips SAA5246 or SAA5284 (or no) Teletext decoder chip with buffer RAM (e.g. Winbond W24257AS-
35: 32Kx8 CMOS static RAM) SAA5246 (I2C 0x22) is supported

• 256 bytes EEPROM: Microchip 24LC02B or Philips 8582E2Y with configuration information I2C address
0xa0 (24LC02B also responds to 0xa2-0xaf)

• 1 tuner, 1 composite and (depending on model) 1 S-VHS input
• 14052B: mux for selection of sound source
• sound decoder: TDA9800, MSP34xx (stereo cards)

4.7. The bttv driver 907

http://www.matrix-vision.de/
http://www.miro.de/
http://www.miro.com/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Askey CPH-Series

Developed by TelSignal(?), OEMed by many vendors (Typhoon, Anubis, Dynalink)
• Card series: - CPH01x: BT848 capture only - CPH03x: BT848 - CPH05x: BT878 with FM - CPH06x:

BT878 (w/o FM) - CPH07x: BT878 capture only
• TV standards: - CPH0x0: NTSC-M/M - CPH0x1: PAL-B/G - CPH0x2: PAL-I/I - CPH0x3: PAL-D/K - CPH0x4:

SECAM-L/L - CPH0x5: SECAM-B/G - CPH0x6: SECAM-D/K - CPH0x7: PAL-N/N - CPH0x8: PAL-B/H -
CPH0x9: PAL-M/M

• CPH03x was often sold as “TV capturer”.
Identifying:

1. 878 cards can be identified by PCI Subsystem-ID: - 144f:3000 = CPH06x - 144F:3002 =
CPH05x w/ FM - 144F:3005 = CPH06x_LC (w/o remote control)

2. The cards have a sticker with “CPH”-model on the back.
3. These cards have a number printed on the PCB just above the tuner metal box: - “80-

CP2000300-x” = CPH03X - “80-CP2000500-x” = CPH05X - “80-CP2000600-x” = CPH06X /
CPH06x_LC

Askey sells these cards as “Magic TView series”, Brand “MagicXpress”. Other OEM often call
these “Tview”, “TView99” or else.

Lifeview Flyvideo Series:

The naming of these series differs in time and space.
Identifying:

1. Some models can be identified by PCI subsystem ID:
• 1852:1852 = Flyvideo 98 FM
• 1851:1850 = Flyvideo 98
• 1851:1851 = Flyvideo 98 EZ (capture only)

2. There is a print on the PCB:
• LR25 = Flyvideo (Zoran ZR36120, SAA7110A)
• LR26 Rev.N = Flyvideo II (Bt848)
• LR26 Rev.O = Flyvideo II (Bt878)
• LR37 Rev.C = Flyvideo EZ (Capture only, ZR36120 + SAA7110)
• LR38 Rev.A1= Flyvideo II EZ (Bt848 capture only)
• LR50 Rev.Q = Flyvideo 98 (w/eeprom and PCI subsystem ID)
• LR50 Rev.W = Flyvideo 98 (no eeprom)
• LR51 Rev.E = Flyvideo 98 EZ (capture only)
• LR90 = Flyvideo 2000 (Bt878)
• LR90 Flyvideo 2000S (Bt878) w/Stereo TV (Package incl. LR91 daughterboard)
• LR91 = Stereo daughter card for LR90
• LR97 = Flyvideo DVBS
• LR99 Rev.E = Low profile card for OEM integration (only internal audio!) bt878
• LR136 = Flyvideo 2100/3100 (Low profile, SAA7130/SAA7134)
• LR137 = Flyvideo DV2000/DV3000 (SAA7130/SAA7134 + IEEE1394)

908 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• LR138 Rev.C= Flyvideo 2000 (SAA7130)
• LR138 Flyvideo 3000 (SAA7134) w/Stereo TV

– These exist in variations w/FM and w/Remote sometimes denoted by suffixes “FM” and
“R”.

3. You have a laptop (miniPCI card):
• Product = FlyTV Platinum Mini
• Model/Chip = LR212/saa7135
• Lifeview.com.tw states (Feb. 2002): “The FlyVideo2000 and FlyVideo2000s product name

have renamed to FlyVideo98.” Their Bt8x8 cards are listed as discontinued.
• Flyvideo 2000S was probably sold as Flyvideo 3000 in some contries(Europe?). The new

Flyvideo 2000/3000 are SAA7130/SAA7134 based.
“Flyvideo II” had been the name for the 848 cards, nowadays (in Germany) this name is re-used for LR50
Rev.W.
The Lifeview website mentioned Flyvideo III at some time, but such a card has not yet been seen (perhaps
it was the german name for LR90 [stereo]). These cards are sold by many OEMs too.
FlyVideo A2 (Elta 8680)= LR90 Rev.F (w/Remote, w/o FM, stereo TV by tda9821) {Germany}
Lifeview 3000 (Elta 8681) as sold by Plus(April 2002), Germany = LR138 w/ saa7134

lifeview config coding on gpio pins 0-9

• LR50 rev. Q (“PARTS: 7031505116), Tuner wurde als Nr. 5 erkannt, Eingänge SVideo, TV, Composite,
Audio, Remote:

• CP9..1=100001001 (1: 0-Ohm-Widerstand gegen GND unbestückt; 0: bestückt)

Typhoon TV card series:

These can be CPH, Flyvideo, Pixelview or KNC1 series. Typhoon is the brand of Anubis. Model 50680 got
re-used, some model no. had different contents over time.
Models:

• 50680 “TV Tuner PCI Pal BG”(old,red package)=can be CPH03x(bt848) or CPH06x(bt878)
• 50680 “TV Tuner Pal BG” (blue package)= Pixelview PV-BT878P+ (Rev 9B)
• 50681 “TV Tuner PCI Pal I” (variant of 50680)
• 50682 “TView TV/FM Tuner Pal BG” = Flyvideo 98FM (LR50 Rev.Q)

Note:

The package has a picture of CPH05x (which would be a real TView)

• 50683 “TV Tuner PCI SECAM” (variant of 50680)
• 50684 “TV Tuner Pal BG” = Pixelview 878TV(Rev.3D)
• 50686 “TV Tuner” = KNC1 TV Station
• 50687 “TV Tuner stereo” = KNC1 TV Station pro
• 50688 “TV Tuner RDS” (black package) = KNC1 TV Station RDS
• 50689 TV SAT DVB-S CARD CI PCI (SAA7146AH, SU1278?) = “KNC1 TV Station DVB-S”

4.7. The bttv driver 909

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• 50692 “TV/FM Tuner” (small PCB)
• 50694 TV TUNER CARD RDS (PHILIPS CHIPSET SAA7134HL)
• 50696 TV TUNER STEREO (PHILIPS CHIPSET SAA7134HL, MK3ME Tuner)
• 50804 PC-SAT TV/Audio Karte = Techni-PC-Sat (ZORAN 36120PQC, Tuner:Alps)
• 50866 TVIEW SAT RECEIVER+ADR
• 50868 “TV/FM Tuner Pal I” (variant of 50682)
• 50999 “TV/FM Tuner Secam” (variant of 50682)

Guillemot

Models:
• Maxi-TV PCI (ZR36120)
• Maxi TV Video 2 = LR50 Rev.Q (FI1216MF, PAL BG+SECAM)
• Maxi TV Video 3 = CPH064 (PAL BG + SECAM)

Mentor

Mentor TV card (“55-878TV-U1”) = Pixelview 878TV(Rev.3F) (w/FM w/Remote)

Prolink

• TV cards:
– PixelView Play TV pro - (Model: PV-BT878P+ REV 8E)
– PixelView Play TV pro - (Model: PV-BT878P+ REV 9D)
– PixelView Play TV pro - (Model: PV-BT878P+ REV 4C / 8D / 10A)
– PixelView Play TV - (Model: PV-BT848P+)
– 878TV - (Model: PV-BT878TV)

• Multimedia TV packages (card + software pack):
– PixelView Play TV Theater - (Model: PV-M4200) = PixelView Play TV pro + Software
– PixelView Play TV PAK - (Model: PV-BT878P+ REV 4E)
– PixelView Play TV/VCR - (Model: PV-M3200 REV 4C / 8D / 10A)
– PixelView Studio PAK - (Model: M2200 REV 4C / 8D / 10A)
– PixelView PowerStudio PAK - (Model: PV-M3600 REV 4E)
– PixelView DigitalVCR PAK - (Model: PV-M2400 REV 4C / 8D / 10A)
– PixelView PlayTV PAK II (TV/FM card + usb camera) PV-M3800
– PixelView PlayTV XP PV-M4700,PV-M4700(w/FM)
– PixelView PlayTV DVR PV-M4600 package contents:PixelView PlayTV pro, windvr & videoMail s/w

• Further Cards:
– PV-BT878P+rev.9B (Play TV Pro, opt. w/FM w/NICAM)
– PV-BT878P+rev.2F
– PV-BT878P Rev.1D (bt878, capture only)

910 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

– XCapture PV-CX881P (cx23881)
– PlayTV HD PV-CX881PL+, PV-CX881PL+(w/FM) (cx23881)
– DTV3000 PV-DTV3000P+ DVB-S CI = Twinhan VP-1030
– DTV2000 DVB-S = Twinhan VP-1020

• Video Conferencing:
– PixelView Meeting PAK - (Model: PV-BT878P)
– PixelView Meeting PAK Lite - (Model: PV-BT878P)
– PixelView Meeting PAK plus - (Model: PV-BT878P+rev 4C/8D/10A)
– PixelView Capture - (Model: PV-BT848P)
– PixelView PlayTV USB pro
– Model No. PV-NT1004+, PV-NT1004+ (w/FM) = NT1004 USB decoder chip + SAA7113 video

decoder chip

Dynalink

These are CPH series.

Phoebemicro

• TV Master = CPH030 or CPH060
• TV Master FM = CPH050

Genius/Kye

• Video Wonder/Genius Internet Video Kit = LR37 Rev.C
• Video Wonder Pro II (848 or 878) = LR26

Tekram

• VideoCap C205 (Bt848)
• VideoCap C210 (zr36120 +Philips)
• CaptureTV M200 (ISA)
• CaptureTV M205 (Bt848)

Lucky Star

• Image World Conference TV = LR50 Rev. Q

Leadtek

• WinView 601 (Bt848)
• WinView 610 (Zoran)
• WinFast2000
• WinFast2000 XP

4.7. The bttv driver 911

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Support for the Leadtek WinView 601 TV/FM

Author of this section: Jon Tombs <jon@gte.esi.us.es>
This card is basically the same as all the rest (Bt484A, Philips tuner), the main difference is that they have
attached a programmable attenuator to 3 GPIO lines in order to give some volume control. They have
also stuck an infra-red remote control decoded on the board, I will add support for this when I get time (it
simple generates an interrupt for each key press, with the key code is placed in the GPIO port).
I don’t yet have any application to test the radio support. The tuner frequency setting should work but it
is possible that the audio multiplexer is wrong. If it doesn’t work, send me email.

• No Thanks to Leadtek they refused to answer any questions about their hardware. The driver was
written by visual inspection of the card. If you use this driver, send an email insult to them, and tell
them you won’t continue buying their hardware unless they support Linux.

• Little thanks to Princeton Technology Corp (http://www.princeton.com.tw) who make the audio at-
tenuator. Their publicly available data-sheet available on their web site doesn’t include the chip
programming information! Hidden on their server are the full data-sheets, but don’t ask how I found
it.

To use the driver I use the following options, the tuner and pll settings might be different in your country
insmod videodev insmod i2c scan=1 i2c_debug=0 verbose=0 insmod tuner type=1 debug=0 insmod bttv
pll=1 radio=1 card=17

KNC One

• TV-Station
• TV-Station SE (+Software Bundle)
• TV-Station pro (+TV stereo)
• TV-Station FM (+Radio)
• TV-Station RDS (+RDS)
• TV Station SAT (analog satellite)
• TV-Station DVB-S

Note:

newer Cards have saa7134, but model name stayed the same?

Provideo

• PV951 or PV-951 (also are sold as: Boeder TV-FM Video Capture Card, Titanmedia Supervision
TV-2400, Provideo PV951 TF, 3DeMon PV951, MediaForte TV-Vision PV951, Yoko PV951, Vivanco
Tuner Card PCI Art.-Nr.: 68404,) now named PV-951T

• Surveillance Series:
• PV-141
• PV-143
• PV-147
• PV-148 (capture only)
• PV-150

912 Chapter 4. Video4Linux (V4L) driver-specific documentation

mailto:jon@gte.esi.us.es
http://www.princeton.com.tw

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• PV-151
• TV-FM Tuner Series:
• PV-951TDV (tv tuner + 1394)
• PV-951T/TF
• PV-951PT/TF
• PV-956T/TF Low Profile
• PV-911

Highscreen

Models:
• TV Karte = LR50 Rev.S
• TV-Boostar = Terratec Terra TV+ Version 1.0 (Bt848, tda9821) “ceb105.pcb”

Zoltrix

Models:
• Face to Face Capture (Bt848 capture only) (PCB “VP-2848”)
• Face To Face TV MAX (Bt848) (PCB “VP-8482 Rev1.3”)
• Genie TV (Bt878) (PCB “VP-8790 Rev 2.1”)
• Genie Wonder Pro

AVerMedia

• AVer FunTV Lite (ISA, AV3001 chipset) “M101.C”
• AVerTV
• AVerTV Stereo
• AVerTV Studio (w/FM)
• AVerMedia TV98 with Remote
• AVerMedia TV/FM98 Stereo
• AVerMedia TVCAM98
• TVCapture (Bt848)
• TVPhone (Bt848)
• TVCapture98 (=”AVerMedia TV98” in USA) (Bt878)
• TVPhone98 (Bt878, w/FM)

4.7. The bttv driver 913

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

PCB PCI-ID Model-Name Eeprom Tuner Sound Country
M101.C ISA !
M108-B Bt848 – FR1236 US 2, 3

M1A8-A Bt848 AVer TV-Phone FM1216 –
M168-T 1461:0003 AVerTV Studio 48:17 FM1216 TDA9840T D 1 w/FM w/Remote
M168-U 1461:0004 TVCapture98 40:11 FI1216 – D w/Remote
M168II-B 1461:0003 Medion MD9592 48:16 FM1216 TDA9873H D w/FM

• US site has different drivers for (as of 09/2002):
– EZ Capture/InterCam PCI (BT-848 chip)
– EZ Capture/InterCam PCI (BT-878 chip)
– TV-Phone (BT-848 chip)
– TV98 (BT-848 chip)
– TV98 With Remote (BT-848 chip)
– TV98 (BT-878 chip)
– TV98 With Remote (BT-878)
– TV/FM98 (BT-878 chip)
– AVerTV
– AverTV Stereo
– AVerTV Studio

DE hat diverse Treiber fuer diese Modelle (Stand 09/2002):
• TVPhone (848) mit Philips tuner FR12X6 (w/ FM radio)
• TVPhone (848) mit Philips tuner FM12X6 (w/ FM radio)
• TVCapture (848) w/Philips tuner FI12X6
• TVCapture (848) non-Philips tuner
• TVCapture98 (Bt878)
• TVPhone98 (Bt878)
• AVerTV und TVCapture98 w/VCR (Bt 878)
• AVerTVStudio und TVPhone98 w/VCR (Bt878)
• AVerTV GO Serie (Kein SVideo Input)
• AVerTV98 (BT-878 chip)
• AVerTV98 mit Fernbedienung (BT-878 chip)
• AVerTV/FM98 (BT-878 chip)
• VDOmate (www.averm.com.cn) = M168U ?

Aimslab

Models:
• Video Highway or “Video Highway TR200” (ISA)
• Video Highway Xtreme (aka “VHX”) (Bt848, FM w/ TEA5757)

2 Sony NE41S soldered (stereo sound?)
3 Daughterboard M118-A w/ pic 16c54 and 4 MHz quartz
1 Daughterboard MB68-A with TDA9820T and TDA9840T

914 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

IXMicro (former: IMS=Integrated Micro Solutions)

Models:
• IXTV BT848 (=TurboTV)
• IXTV BT878
• IMS TurboTV (Bt848)

Lifetec/Medion/Tevion/Aldi

Models:
• LT9306/MD9306 = CPH061
• LT9415/MD9415 = LR90 Rev.F or Rev.G
• MD9592 = Avermedia TVphone98 (PCI_ID=1461:0003), PCB-Rev=M168II-B (w/TDA9873H)
• MD9717 = KNC One (Rev D4, saa7134, FM1216 MK2 tuner)
• MD5044 = KNC One (Rev D4, saa7134, FM1216ME MK3 tuner)

Modular Technologies (www.modulartech.com) UK

Models:
• MM100 PCTV (Bt848)
• MM201 PCTV (Bt878, Bt832) w/ Quartzsight camera
• MM202 PCTV (Bt878, Bt832, tda9874)
• MM205 PCTV (Bt878)
• MM210 PCTV (Bt878) (Galaxy TV, Galaxymedia ?)

Terratec

Models:
• Terra TV+ Version 1.0 (Bt848), “ceb105.PCB” printed on the PCB, TDA9821
• Terra TV+ Version 1.1 (Bt878), “LR74 Rev.E” printed on the PCB, TDA9821
• Terra TValueRadio, “LR102 Rev.C” printed on the PCB
• Terra TV/Radio+ Version 1.0, “80-CP2830100-0” TTTV3 printed on the PCB, “CPH010-E83” on the

back, SAA6588T, TDA9873H
• Terra TValue Version BT878, “80-CP2830110-0 TTTV4” printed on the PCB, “CPH011-D83” on back
• Terra TValue Version 1.0 “ceb105.PCB” (really identical to Terra TV+ Version 1.0)
• Terra TValue New Revision “LR102 Rec.C”
• Terra Active Radio Upgrade (tea5757h, saa6588t)
• LR74 is a newer PCB revision of ceb105 (both incl. connector for Active Radio Upgrade)
• Cinergy 400 (saa7134), “E877 11(S)”, “PM820092D” printed on PCB
• Cinergy 600 (saa7134)

4.7. The bttv driver 915

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Technisat

Models:
• Discos ADR PC-Karte ISA (no TV!)
• Discos ADR PC-Karte PCI (probably no TV?)
• Techni-PC-Sat (Sat. analog) Rev 1.2 (zr36120, vpx3220, stv0030, saa5246, BSJE3-494A)
• Mediafocus I (zr36120/zr36125, drp3510, Sat. analog + ADR Radio)
• Mediafocus II (saa7146, Sat. analog)
• SatADR Rev 2.1 (saa7146a, saa7113h, stv0056a, msp3400c, drp3510a, BSKE3-307A)
• SkyStar 1 DVB (AV7110) = Technotrend Premium
• SkyStar 2 DVB (B2C2) (=Sky2PC)

Siemens

Multimedia eXtension Board (MXB) (SAA7146, SAA7111)

Powercolor

Models:
• MTV878 Package comes with different contents:

1. pcb “MTV878” (CARD=75)
2. Pixelview Rev. 4_

• MTV878R w/Remote Control
• MTV878F w/Remote Control w/FM radio

Pinnacle

PCTV models:
• Mirovideo PCTV (Bt848)
• Mirovideo PCTV SE (Bt848)
• Mirovideo PCTV Pro (Bt848 + Daughterboard for TV Stereo and FM)
• Studio PCTV Rave (Bt848 Version = Mirovideo PCTV)
• Studio PCTV Rave (Bt878 package w/o infrared)
• Studio PCTV (Bt878)
• Studio PCTV Pro (Bt878 stereo w/ FM)
• Pinnacle PCTV (Bt878, MT2032)
• Pinnacle PCTV Pro (Bt878, MT2032)
• Pinncale PCTV Sat (bt878a, HM1821/1221) [”Conexant CX24110 with CX24108 tuner, aka

HM1221/HM1811”]
• Pinnacle PCTV Sat XE

M(J)PEG capture and playback models:
• DC1+ (ISA)

916 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• DC10 (zr36057, zr36060, saa7110, adv7176)
• DC10+ (zr36067, zr36060, saa7110, adv7176)
• DC20 (ql16x24b,zr36050, zr36016, saa7110, saa7187 ...)
• DC30 (zr36057, zr36050, zr36016, vpx3220, adv7176, ad1843, tea6415, miro FST97A1)
• DC30+ (zr36067, zr36050, zr36016, vpx3220, adv7176)
• DC50 (zr36067, zr36050, zr36016, saa7112, adv7176 (2 pcs.?), ad1843, miro FST97A1, Lattice ???)

Lenco

Models:
• MXR-9565 (=Technisat Mediafocus?)
• MXR-9571 (Bt848) (=CPH031?)
• MXR-9575
• MXR-9577 (Bt878) (=Prolink 878TV Rev.3x)
• MXTV-9578CP (Bt878) (= Prolink PV-BT878P+4E)

Iomega

Buz (zr36067, zr36060, saa7111, saa7185)

LML

LML33 (zr36067, zr36060, bt819, bt856)

Grandtec

Models:
• Grand Video Capture (Bt848)
• Multi Capture Card (Bt878)

Koutech

Models:
• KW-606 (Bt848)
• KW-607 (Bt848 capture only)
• KW-606RSF
• KW-607A (capture only)
• KW-608 (Zoran capture only)

4.7. The bttv driver 917

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

IODATA (jp)

Models:
• GV-BCTV/PCI
• GV-BCTV2/PCI
• GV-BCTV3/PCI
• GV-BCTV4/PCI
• GV-VCP/PCI (capture only)
• GV-VCP2/PCI (capture only)

Canopus (jp)

WinDVR = Kworld “KW-TVL878RF”

www.sigmacom.co.kr

Sigma Cyber TV II

www.sasem.co.kr

Litte OnAir TV

hama

TV/Radio-Tuner Card, PCI (Model 44677) = CPH051

Sigma Designs

Hollywood plus (em8300, em9010, adv7175), (PCB “M340-10”) MPEG DVD decoder

Formac

Models:
• iProTV (Card for iMac Mezzanine slot, Bt848+SCSI)
• ProTV (Bt848)
• ProTV II = ProTV Stereo (Bt878) [”stereo” means FM stereo, tv is still mono]

ATI

Models:
• TV-Wonder
• TV-Wonder VE

Diamond Multimedia

DTV2000 (Bt848, tda9875)

918 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Aopen

• VA1000 Plus (w/ Stereo)
• VA1000 Lite
• VA1000 (=LR90)

Intel

Models:
• Smart Video Recorder (ISA full-length)
• Smart Video Recorder pro (ISA half-length)
• Smart Video Recorder III (Bt848)

STB

Models:
• STB Gateway 6000704 (bt878)
• STB Gateway 6000699 (bt848)
• STB Gateway 6000402 (bt848)
• STB TV130 PCI

Videologic

Models:
• Captivator Pro/TV (ISA?)
• Captivator PCI/VC (Bt848 bundled with camera) (capture only)

Technotrend

Models:
• TT-SAT PCI (PCB “Sat-PCI Rev.:1.3.1”; zr36125, vpx3225d, stc0056a, Tuner:BSKE6-155A
• TT-DVB-Sat

– revisions 1.1, 1.3, 1.5, 1.6 and 2.1
– This card is sold as OEM from:

* Siemens DVB-s Card
* Hauppauge WinTV DVB-S
* Technisat SkyStar 1 DVB
* Galaxis DVB Sat

– Now this card is called TT-PCline Premium Family
– TT-Budget (saa7146, bsru6-701a) This card is sold as OEM from:

* Hauppauge WinTV Nova
* Satelco Standard PCI (DVB-S)

– TT-DVB-C PCI

4.7. The bttv driver 919

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Teles

DVB-s (Rev. 2.2, BSRV2-301A, data only?)

Remote Vision

MX RV605 (Bt848 capture only)

Boeder

Models:
• PC ChatCam (Model 68252) (Bt848 capture only)
• Tv/Fm Capture Card (Model 68404) = PV951

Media-Surfer (esc-kathrein.de)

Models:
• Sat-Surfer (ISA)
• Sat-Surfer PCI = Techni-PC-Sat
• Cable-Surfer 1
• Cable-Surfer 2
• Cable-Surfer PCI (zr36120)
• Audio-Surfer (ISA Radio card)

Jetway (www.jetway.com.tw)

Models:
• JW-TV 878M
• JW-TV 878 = KWorld KW-TV878RF

Galaxis

Models:
• Galaxis DVB Card S CI
• Galaxis DVB Card C CI
• Galaxis DVB Card S
• Galaxis DVB Card C
• Galaxis plug.in S [neuer Name: Galaxis DVB Card S CI

Hauppauge

Models:
• many many WinTV models ...
• WinTV DVBs = Technotrend Premium 1.3
• WinTV NOVA = Technotrend Budget 1.1 “S-DVB DATA”

920 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• WinTV NOVA-CI “SDVBACI”
• WinTV Nova USB (=Technotrend USB 1.0)
• WinTV-Nexus-s (=Technotrend Premium 2.1 or 2.2)
• WinTV PVR
• WinTV PVR 250
• WinTV PVR 450

US models
-990 WinTV-PVR-350 (249USD) (iTVC15 chipset + radio) -980 WinTV-PVR-250 (149USD) (iTVC15 chipset)
-880 WinTV-PVR-PCI (199USD) (KFIR chipset + bt878) -881 WinTV-PVR-USB -190 WinTV-GO -191 WinTV-GO-
FM -404 WinTV -401 WinTV-radio -495 WinTV-Theater -602 WinTV-USB -621 WinTV-USB-FM -600 USB-Live
-698 WinTV-HD -697 WinTV-D -564 WinTV-Nexus-S
Deutsche Modelle:
-603 WinTV GO -719 WinTV Primio-FM -718 WinTV PCI-FM -497 WinTV Theater -569 WinTV USB -568 WinTV
USB-FM -882 WinTV PVR -981 WinTV PVR 250 -891 WinTV-PVR-USB -541 WinTV Nova -488 WinTV Nova-Ci
-564 WinTV-Nexus-s -727 WinTV-DVB-c -545 Common Interface -898 WinTV-Nova-USB
UK models:
-607 WinTV Go -693,793 WinTV Primio FM -647,747 WinTV PCI FM -498 WinTV Theater -883 WinTV PVR
-893 WinTV PVR USB (Duplicate entry) -566 WinTV USB (UK) -573 WinTV USB FM -429 Impact VCB (bt848)
-600 USB Live (Video-In 1x Comp, 1xSVHS) -542 WinTV Nova -717 WinTV DVB-S -909 Nova-t PCI -893
Nova-t USB (Duplicate entry) -802 MyTV -804 MyView -809 MyVideo -872 MyTV2Go FM -546 WinTV Nova-
S CI -543 WinTV Nova -907 Nova-S USB -908 Nova-T USB -717 WinTV Nexus-S -157 DEC3000-s Standalone
+ USB
Spain:
-685 WinTV-Go -690 WinTV-PrimioFM -416 WinTV-PCI Nicam Estereo -677 WinTV-PCI-FM -699 WinTV-
Theater -683 WinTV-USB -678 WinTV-USB-FM -983 WinTV-PVR-250 -883 WinTV-PVR-PCI -993 WinTV-PVR-
350 -893 WinTV-PVR-USB -728 WinTV-DVB-C PCI -832 MyTV2Go -869 MyTV2Go-FM -805 MyVideo (USB)

Matrix-Vision

Models:
• MATRIX-Vision MV-Delta
• MATRIX-Vision MV-Delta 2
• MVsigma-SLC (Bt848)

Conceptronic (.net)

Models:
• TVCON FM, TV card w/ FM = CPH05x
• TVCON = CPH06x

BestData

Models:
• HCC100 = VCC100rev1 + camera
• VCC100 rev1 (bt848)
• VCC100 rev2 (bt878)

4.7. The bttv driver 921

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Gallant (www.gallantcom.com) www.minton.com.tw

Models:
• Intervision IV-510 (capture only bt8x8)
• Intervision IV-550 (bt8x8)
• Intervision IV-100 (zoran)
• Intervision IV-1000 (bt8x8)

Asonic (www.asonic.com.cn) (website down)

SkyEye tv 878

Hoontech

878TV/FM

Teppro (www.itcteppro.com.tw)

Models:
• ITC PCITV (Card Ver 1.0) “Teppro TV1/TVFM1 Card”
• ITC PCITV (Card Ver 2.0)
• ITC PCITV (Card Ver 3.0) = “PV-BT878P+ (REV.9D)”
• ITC PCITV (Card Ver 4.0)
• TEPPRO IV-550 (For BT848 Main Chip)
• ITC DSTTV (bt878, satellite)
• ITC VideoMaker (saa7146, StreamMachine sm2110, tvtuner) “PV-SM2210P+ (REV:1C)”

Kworld (www.kworld.com.tw)

PC TV Station:
• KWORLD KW-TV878R TV (no radio)
• KWORLD KW-TV878RF TV (w/ radio)
• KWORLD KW-TVL878RF (low profile)
• KWORLD KW-TV713XRF (saa7134)

MPEG TV Station (same cards as above plus WinDVR Software MPEG en/decoder)
• KWORLD KW-TV878R -Pro TV (no Radio)
• KWORLD KW-TV878RF-Pro TV (w/ Radio)
• KWORLD KW-TV878R -Ultra TV (no Radio)
• KWORLD KW-TV878RF-Ultra TV (w/ Radio)

JTT/ Justy Corp.(http://www.jtt.ne.jp/)

JTT-02 (JTT TV) “TV watchmate pro” (bt848)

922 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

ADS www.adstech.com

Models:
• Channel Surfer TV (CHX-950)
• Channel Surfer TV+FM (CHX-960FM)

AVEC www.prochips.com

AVEC Intercapture (bt848, tea6320)

NoBrand

TV Excel = Australian Name for “PV-BT878P+ 8E” or “878TV Rev.3_”

Mach www.machspeed.com

Mach TV 878

Eline www.eline-net.com/

Models:
• Eline Vision TVMaster / TVMaster FM (ELV-TVM/ ELV-TVM-FM) = LR26 (bt878)
• Eline Vision TVMaster-2000 (ELV-TVM-2000, ELV-TVM-2000-FM)= LR138 (saa713x)

Spirit

• Spirit TV Tuner/Video Capture Card (bt848)

Boser www.boser.com.tw

Models:
• HS-878 Mini PCI Capture Add-on Card
• HS-879 Mini PCI 3D Audio and Capture Add-on Card (w/ ES1938 Solo-1)

Satelco www.citycom-gmbh.de, www.satelco.de

Models:
• TV-FM =KNC1 saa7134
• Standard PCI (DVB-S) = Technotrend Budget
• Standard PCI (DVB-S) w/ CI
• Satelco Highend PCI (DVB-S) = Technotrend Premium

Sensoray www.sensoray.com

Models:
• Sensoray 311 (PC/104 bus)
• Sensoray 611 (PCI)

4.7. The bttv driver 923

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CEI (Chartered Electronics Industries Pte Ltd [CEI] [FCC ID HBY])

Models:
• TV Tuner - HBY-33A-RAFFLES Brooktree Bt848KPF + Philips
• TV Tuner MG9910 - HBY33A-TVO CEI + Philips SAA7110 + OKI M548262 + ST STV8438CV
• Primetime TV (ISA)

– acquired by Singapore Technologies
– now operating as Chartered Semiconductor Manufacturing
– Manufacturer of video cards is listed as:

* Cogent Electronics Industries [CEI]

AITech

Models:
• Wavewatcher TV (ISA)
• AITech WaveWatcher TV-PCI = can be LR26 (Bt848) or LR50 (BT878)
• WaveWatcher TVR-202 TV/FM Radio Card (ISA)

MAXRON

Maxron MaxTV/FM Radio (KW-TV878-FNT) = Kworld or JW-TV878-FBK

www.ids-imaging.de

Models:
• Falcon Series (capture only)

In USA: http://www.theimagingsource.com/ - DFG/LC1

www.sknet-web.co.jp

SKnet Monster TV (saa7134)

A-Max www.amaxhk.com (Colormax, Amax, Napa)

APAC Viewcomp 878

Cybertainment

Models:
• CyberMail AV Video Email Kit w/ PCI Capture Card (capture only)
• CyberMail Xtreme

These are Flyvideo

VCR (http://www.vcrinc.com/)

Video Catcher 16

924 Chapter 4. Video4Linux (V4L) driver-specific documentation

http://www.theimagingsource.com/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Twinhan

Models:
• DST Card/DST-IP (bt878, twinhan asic) VP-1020 - Sold as:

– KWorld DVBS Satellite TV-Card
– Powercolor DSTV Satellite Tuner Card
– Prolink Pixelview DTV2000
– Provideo PV-911 Digital Satellite TV Tuner Card With Common Interface ?

• DST-CI Card (DVB Satellite) VP-1030
• DCT Card (DVB cable)

MSI

Models:
• MSI TV@nywhere Tuner Card (MS-8876) (CX23881/883) Not Bt878 compatible.
• MS-8401 DVB-S

Focus www.focusinfo.com

InVideo PCI (bt878)

Sdisilk www.sdisilk.com/

Models:
• SDI Silk 100
• SDI Silk 200 SDI Input Card

www.euresys.com

PICOLO series

PMC/Pace

www.pacecom.co.uk website closed

Mercury www.kobian.com (UK and FR)

Models:
• LR50
• LR138RBG-Rx == LR138

TEC sound

TV-Mate = Zoltrix VP-8482
Though educated googling found: www.techmakers.com
(package and manuals don’t have any other manufacturer info) TecSound

4.7. The bttv driver 925

mailto:TV@nywhere

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Lorenzen www.lorenzen.de

SL DVB-S PCI = Technotrend Budget PCI (su1278 or bsru version)

Origo (.uk) www.origo2000.com

PC TV Card = LR50

I/O Magic www.iomagic.com

PC PVR - Desktop TV Personal Video Recorder DR-PCTV100 = Pinnacle ROB2D-51009464 4.0 + Cyberlink
PowerVCR II

Arowana

TV-Karte / Poso Power TV (?) = Zoltrix VP-8482 (?)

iTVC15 boards

kuroutoshikou.com ITVC15 yuan.com MPG160 PCI TV (Internal PCI MPEG2 encoder card plus TV-tuner)

Asus www.asuscom.com

Models:
• Asus TV Tuner Card 880 NTSC (low profile, cx23880)
• Asus TV (saa7134)

Hoontech

http://www.hoontech.de/
• HART Vision 848 (H-ART Vision 848)
• HART Vision 878 (H-Art Vision 878)

4.7.10 Chips used at bttv devices

• all boards:
– Brooktree Bt848/848A/849/878/879: video capture chip

• Board specific
– Miro PCTV:

* Philips or Temic Tuner
– Hauppauge Win/TV pci (version 405):

* Microchip 24LC02B or Philips 8582E2Y:
· 256 Byte EEPROM with configuration information
· I2C 0xa0-0xa1, (24LC02B also responds to 0xa2-0xaf)

* Philips SAA5246AGP/E: Videotext decoder chip, I2C 0x22-0x23
* TDA9800: sound decoder

926 Chapter 4. Video4Linux (V4L) driver-specific documentation

http://www.hoontech.de/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

* Winbond W24257AS-35: 32Kx8 CMOS static RAM (Videotext buffer mem)
* 14052B: analog switch for selection of sound source

• PAL:
– TDA5737: VHF, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
– TSA5522: 1.4 GHz I2C-bus controlled synthesizer, I2C 0xc2-0xc3

• NTSC:
– TDA5731: VHF, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
– TSA5518: no datasheet available on Philips site

• STB TV pci:
– ???
– if you want better support for STB cards send me info! Look at the board! What chips are on it?

4.7.11 Specs

Philips http://www.Semiconductors.COM/pip/
Conexant http://www.conexant.com/
Micronas http://www.micronas.com/en/home/index.html

4.7.12 Thanks

Many thanks to:
• Markus Schroeder <schroedm@uni-duesseldorf.de> for information on the Bt848 and tuner program-

ming and his control program xtvc.
• Martin Buck <martin-2.buck@student.uni-ulm.de> for his great Videotext package.
• Gerd Hoffmann for the MSP3400 support and the modular I2C, tuner, ... support.
• MATRIX Vision for giving us 2 cards for free, which made support of single crystal operation possible.
• MIRO for providing a free PCTV card and detailed information about the components on their cards.

(E.g. how the tuner type is detected) Without their card I could not have debugged the NTSC mode.
• Hauppauge for telling how the sound input is selected and what components they do and will use on

their radio cards. Also many thanks for faxing me the FM1216 data sheet.

4.7.13 Contributors

Michael Chu <mmchu@pobox.com> AverMedia fix and more flexible card recognition
Alan Cox <alan@lxorguk.ukuu.org.uk> Video4Linux interface and 2.1.x kernel adaptation
Chris Kleitsch Hardware I2C
Gerd Hoffmann Radio card (ITT sound processor)
bigfoot <bigfoot@net-way.net>
Ragnar Hojland Espinosa <ragnar@macula.net> ConferenceTV card

• many more (please mail me if you are missing in this list and would like to be mentioned)

4.7. The bttv driver 927

http://www.Semiconductors.COM/pip/
http://www.conexant.com/
http://www.micronas.com/en/home/index.html
mailto:schroedm@uni-duesseldorf.de
mailto:martin-2.buck@student.uni-ulm.de
mailto:mmchu@pobox.com
mailto:alan@lxorguk.ukuu.org.uk
mailto:bigfoot@net-way.net
mailto:ragnar@macula.net

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.8 The cafe_ccic driver

Author: Jonathan Corbet <corbet@lwn.net>

4.8.1 Introduction

“cafe_ccic” is a driver for the Marvell 88ALP01 “cafe” CMOS camera controller. This is the controller found
in first-generation OLPC systems, and this driver was written with support from the OLPC project.
Current status: the core driver works. It can generate data in YUV422, RGB565, and RGB444 formats.
(Anybody looking at the code will see RGB32 as well, but that is a debugging aid which will be removed
shortly). VGA and QVGA modes work; CIF is there but the colors remain funky. Only the OV7670 sensor is
known to work with this controller at this time.
To try it out: either of these commands will work:

$ mplayer tv:// -tv driver=v4l2:width=640:height=480 -nosound
$ mplayer tv:// -tv driver=v4l2:width=640:height=480:outfmt=bgr16 -nosound

The “xawtv” utility also works; gqcam does not, for unknown reasons.

4.8.2 Load time options

There are a few load-time options, most of which can be changed after loading via sysfs as well:
• alloc_bufs_at_load: Normally, the driver will not allocate any DMA buffers until the time comes to

transfer data. If this option is set, then worst-case-sized buffers will be allocated at module load
time. This option nails down the memory for the life of the module, but perhaps decreases the
chances of an allocation failure later on.

• dma_buf_size: The size of DMA buffers to allocate. Note that this option is only consulted for load-
time allocation; when buffers are allocated at run time, they will be sized appropriately for the current
camera settings.

• n_dma_bufs: The controller can cycle through either two or three DMA buffers. Normally, the driver
tries to use three buffers; on faster systems, however, it will work well with only two.

• min_buffers: The minimum number of streaming I/O buffers that the driver will consent to work with.
Default is one, but, on slower systems, better behavior with mplayer can be achieved by setting to
a higher value (like six).

• max_buffers: The maximum number of streaming I/O buffers; default is ten. That number was care-
fully picked out of a hat and should not be assumed to actually mean much of anything.

• flip: If this boolean parameter is set, the sensor will be instructed to invert the video image. Whether
it makes sense is determined by how your particular camera is mounted.

4.9 The cpia2 driver

Authors: Peter Pregler <Peter_Pregler@email.com>, Scott J. Bertin <scottbertin@yahoo.com>, and Jarl
Totland <Jarl.Totland@bdc.no> for the original cpia driver, which this one was modelled from.

4.9.1 Introduction

This is a driver for STMicroelectronics’s CPiA2 (second generation Colour Processor Interface ASIC) based
cameras. This camera outputs an MJPEG stream at up to vga size. It implements the Video4Linux interface

928 Chapter 4. Video4Linux (V4L) driver-specific documentation

mailto:corbet@lwn.net
mailto:Peter_Pregler@email.com
mailto:scottbertin@yahoo.com
mailto:Jarl.Totland@bdc.no

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

as much as possible. Since the V4L interface does not support compressed formats, only an mjpeg enabled
application can be used with the camera. We have modified the gqcam application to view this stream.
The driver is implemented as two kernel modules. The cpia2 module contains the camera functions and
the V4L interface. The cpia2_usb module contains usb specific functions. The main reason for this was
the size of the module was getting out of hand, so I separated them. It is not likely that there will be a
parallel port version.

4.9.2 Features

• Supports cameras with the Vision stv6410 (CIF) and stv6500 (VGA) cmos sensors. I only have the
vga sensor, so can’t test the other.

• Image formats: VGA, QVGA, CIF, QCIF, and a number of sizes in between. VGA and QVGA are the
native image sizes for the VGA camera. CIF is done in the coprocessor by scaling QVGA. All other
sizes are done by clipping.

• Palette: YCrCb, compressed with MJPEG.
• Some compression parameters are settable.
• Sensor framerate is adjustable (up to 30 fps CIF, 15 fps VGA).
• Adjust brightness, color, contrast while streaming.
• Flicker control settable for 50 or 60 Hz mains frequency.

4.9.3 Making and installing the stv672 driver modules

Requirements

Video4Linux must be either compiled into the kernel or available as a module. Video4Linux2 is automati-
cally detected and made available at compile time.

Setup

Use ‘modprobe cpia2’ to load and ‘modprobe -r cpia2’ to unload. This may be done automatically by your
distribution.

Driver options

Option Description
video_nr video device to register (0=/dev/video0, etc) range -1 to 64. default is -1 (first available) If

you have more than 1 camera, this MUST be -1.
buffer_size Size for each frame buffer in bytes (default 68k)
num_buffers Number of frame buffers (1-32, default 3)
alternate USB Alternate (2-7, default 7)
flicker_freq Frequency for flicker reduction(50 or 60, default 60)
flicker_mode 0 to disable, or 1 to enable flicker reduction. (default 0). This is only effective if the camera

uses a stv0672 coprocessor.

Setting the options

If you are using modules, edit /etc/modules.conf and add an options line like this:

options cpia2 num_buffers=3 buffer_size=65535

4.9. The cpia2 driver 929

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

If the driver is compiled into the kernel, at boot time specify them like this:

cpia2.num_buffers=3 cpia2.buffer_size=65535

What buffer size should I use?

The maximum image size depends on the alternate you choose, and the frame rate achieved by the
camera. If the compression engine is able to keep up with the frame rate, the maximum image size is
given by the table below.
The compression engine starts out at maximum compression, and will increase image quality until it is
close to the size in the table. As long as the compression engine can keep up with the frame rate, after a
short time the images will all be about the size in the table, regardless of resolution.
At low alternate settings, the compression engine may not be able to compress the image enough and
will reduce the frame rate by producing larger images.
The default of 68k should be good for most users. This will handle any alternate at frame rates down
to 15fps. For lower frame rates, it may be necessary to increase the buffer size to avoid having frames
dropped due to insufficient space.
Alternate bytes/ms 15fps 30fps
2 128 8533 4267
3 384 25600 12800
4 640 42667 21333
5 768 51200 25600
6 896 59733 29867
7 1023 68200 34100
Table: Image size(bytes)

How many buffers should I use?

For normal streaming, 3 should give the best results. With only 2, it is possible for the camera to finish
sending one image just after a program has started reading the other. If this happens, the driver must
drop a frame. The exception to this is if you have a heavily loaded machine. In this case use 2 buffers.
You are probably not reading at the full frame rate. If the camera can send multiple images before a read
finishes, it could overwrite the third buffer before the read finishes, leading to a corrupt image. Single and
double buffering have extra checks to avoid overwriting.

Using the camera

We are providing a modified gqcam application to view the output. In order to avoid confusion, here it is
called mview. There is also the qx5view program which can also control the lights on the qx5 microscope.
MJPEG Tools (http://mjpeg.sourceforge.net) can also be used to record from the camera.

Notes to developers

• This is a driver version stripped of the 2.4 back compatibility and old MJPEG ioctl API. See cpia2.sf.net
for 2.4 support.

Programmer’s overview of cpia2 driver

Cpia2 is the second generation video coprocessor from VLSI Vision Ltd (now a division of ST Microelec-
tronics). There are two versions. The first is the STV0672, which is capable of up to 30 frames per second
(fps) in frame sizes up to CIF, and 15 fps for VGA frames. The STV0676 is an improved version, which
can handle up to 30 fps VGA. Both coprocessors can be attached to two CMOS sensors - the vvl6410 CIF

930 Chapter 4. Video4Linux (V4L) driver-specific documentation

http://mjpeg.sourceforge.net

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

sensor and the vvl6500 VGA sensor. These will be referred to as the 410 and the 500 sensors, or the CIF
and VGA sensors.
The two chipsets operate almost identically. The core is an 8051 processor, running two different versions
of firmware. The 672 runs the VP4 video processor code, the 676 runs VP5. There are a few differences in
register mappings for the two chips. In these cases, the symbols defined in the header files are marked
with VP4 or VP5 as part of the symbol name.
The cameras appear externally as three sets of registers. Setting register values is the only way to control
the camera. Some settings are interdependant, such as the sequence required to power up the camera.
I will try to make note of all of these cases.
The register sets are called blocks. Block 0 is the system block. This section is always powered on when
the camera is plugged in. It contains registers that control housekeeping functions such as powering
up the video processor. The video processor is the VP block. These registers control how the video
from the sensor is processed. Examples are timing registers, user mode (vga, qvga), scaling, cropping,
framerates, and so on. The last block is the video compressor (VC). The video stream sent from the camera
is compressed as Motion JPEG (JPEGA). The VC controls all of the compression parameters. Looking at the
file cpia2_registers.h, you can get a full view of these registers and the possible values for most of them.
One or more registers can be set or read by sending a usb control message to the camera. There are three
modes for this. Block mode requests a number of contiguous registers. Random mode reads or writes
random registers with a tuple structure containing address/value pairs. The repeat mode is only used by
VP4 to load a firmware patch. It contains a starting address and a sequence of bytes to be written into a
gpio port.

4.10 The cx18 driver

Note:

This documentation is outdated.

Some notes regarding the cx18 driver for the Conexant CX23418 MPEG encoder chip:
1. Currently supported are:

• Hauppauge HVR-1600
• Compro VideoMate H900
• Yuan MPC718
• Conexant Raptor PAL/SECAM devkit

2. Some people have problems getting the i2c bus to work. The symptom is that the eeprom cannot
be read and the card is unusable. This is probably fixed, but if you have problems then post to the
video4linux or ivtv-users mailing list.

3. VBI (raw or sliced) has not yet been implemented.
4. MPEG indexing is not yet implemented.
5. The driver is still a bit rough around the edges, this should improve over time.

Firmware:
You can obtain the firmware files here:
http://dl.ivtvdriver.org/ivtv/firmware/cx18-firmware.tar.gz
Untar and copy the .fw files to your firmware directory.

4.10. The cx18 driver 931

http://dl.ivtvdriver.org/ivtv/firmware/cx18-firmware.tar.gz

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.11 The cx2341x driver

4.11.1 Memory at cx2341x chips

This section describes the cx2341x memory map and documents some of the register space.

Note:

the memory long words are little-endian (‘intel format’).

Warning:

This information was figured out from searching through the memory and registers, this information
may not be correct and is certainly not complete, and was not derived from anything more than
searching through the memory space with commands like:

ivtvctl -O min=0x02000000,max=0x020000ff

So take this as is, I’m always searching for more stuff, it’s a large register space :-).

Memory Map

The cx2341x exposes its entire 64M memory space to the PCI host via the PCI BAR0 (Base Address Register
0). The addresses here are offsets relative to the address held in BAR0.

0x00000000-0x00ffffff Encoder memory space
0x00000000-0x0003ffff Encode.rom
???-??? MPEG buffer(s)
???-??? Raw video capture buffer(s)
???-??? Raw audio capture buffer(s)
???-??? Display buffers (6 or 9)

0x01000000-0x01ffffff Decoder memory space
0x01000000-0x0103ffff Decode.rom
???-??? MPEG buffers(s)
0x0114b000-0x0115afff Audio.rom (deprecated?)

0x02000000-0x0200ffff Register Space

Registers

The registers occupy the 64k space starting at the 0x02000000 offset from BAR0. All of these registers
are 32 bits wide.

DMA Registers 0x000-0xff:

0x00 - Control:
0=reset/cancel, 1=read, 2=write, 4=stop

0x04 - DMA status:
1=read busy, 2=write busy, 4=read error, 8=write error, 16=link list error

0x08 - pci DMA pointer for read link list
0x0c - pci DMA pointer for write link list
0x10 - read/write DMA enable:

1=read enable, 2=write enable
0x14 - always 0xffffffff, if set any lower instability occurs, 0x00 crashes

932 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

0x18 - ??
0x1c - always 0x20 or 32, smaller values slow down DMA transactions
0x20 - always value of 0x780a010a
0x24-0x3c - usually just random values???
0x40 - Interrupt status
0x44 - Write a bit here and shows up in Interrupt status 0x40
0x48 - Interrupt Mask
0x4C - always value of 0xfffdffff,

if changed to 0xffffffff DMA write interrupts break.
0x50 - always 0xffffffff
0x54 - always 0xffffffff (0x4c, 0x50, 0x54 seem like interrupt masks, are

3 processors on chip, Java ones, VPU, SPU, APU, maybe these are the
interrupt masks???).

0x60-0x7C - random values
0x80 - first write linked list reg, for Encoder Memory addr
0x84 - first write linked list reg, for pci memory addr
0x88 - first write linked list reg, for length of buffer in memory addr

(|0x80000000 or this for last link)
0x8c-0xdc - rest of write linked list reg, 8 sets of 3 total, DMA goes here

from linked list addr in reg 0x0c, firmware must push through or
something.

0xe0 - first (and only) read linked list reg, for pci memory addr
0xe4 - first (and only) read linked list reg, for Decoder memory addr
0xe8 - first (and only) read linked list reg, for length of buffer
0xec-0xff - Nothing seems to be in these registers, 0xec-f4 are 0x00000000.

Memory locations for Encoder Buffers 0x700-0x7ff:
These registers show offsets of memory locations pertaining to each buffer area used for encoding, have
to shift them by <<1 first.

• 0x07F8: Encoder SDRAM refresh
• 0x07FC: Encoder SDRAM pre-charge

Memory locations for Decoder Buffers 0x800-0x8ff:
These registers show offsets of memory locations pertaining to each buffer area used for decoding, have
to shift them by <<1 first.

• 0x08F8: Decoder SDRAM refresh
• 0x08FC: Decoder SDRAM pre-charge

Other memory locations:
• 0x2800: Video Display Module control
• 0x2D00: AO (audio output?) control
• 0x2D24: Bytes Flushed
• 0x7000: LSB I2C write clock bit (inverted)
• 0x7004: LSB I2C write data bit (inverted)
• 0x7008: LSB I2C read clock bit
• 0x700c: LSB I2C read data bit
• 0x9008: GPIO get input state
• 0x900c: GPIO set output state
• 0x9020: GPIO direction (Bit7 (GPIO 0..7) - 0:input, 1:output)
• 0x9050: SPU control
• 0x9054: Reset HW blocks

4.11. The cx2341x driver 933

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• 0x9058: VPU control
• 0xA018: Bit6: interrupt pending?
• 0xA064: APU command

Interrupt Status Register

The definition of the bits in the interrupt status register 0x0040, and the interrupt mask 0x0048. If a bit
is cleared in the mask, then we want our ISR to execute.

• bit 31 Encoder Start Capture
• bit 30 Encoder EOS
• bit 29 Encoder VBI capture
• bit 28 Encoder Video Input Module reset event
• bit 27 Encoder DMA complete
• bit 24 Decoder audio mode change detection event (through event notification)
• bit 22 Decoder data request
• bit 20 Decoder DMA complete
• bit 19 Decoder VBI re-insertion
• bit 18 Decoder DMA err (linked-list bad)

4.11.2 Missing documentation

• Encoder API post(?)
• Decoder API post(?)
• Decoder VTRACE event

4.11.3 The cx2341x firmware upload

This document describes how to upload the cx2341x firmware to the card.

How to find

See the web pages of the various projects that uses this chip for information on how to obtain the firmware.
The firmware stored in a Windows driver can be detected as follows:

• Each firmware image is 256k bytes.
• The 1st 32-bit word of the Encoder image is 0x0000da7
• The 1st 32-bit word of the Decoder image is 0x00003a7
• The 2nd 32-bit word of both images is 0xaa55bb66

How to load

• Issue the FWapi command to stop the encoder if it is running. Wait for the command to complete.
• Issue the FWapi command to stop the decoder if it is running. Wait for the command to complete.
• Issue the I2C command to the digitizer to stop emitting VSYNC events.

934 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• Issue the FWapi command to halt the encoder’s firmware.
• Sleep for 10ms.
• Issue the FWapi command to halt the decoder’s firmware.
• Sleep for 10ms.
• Write 0x00000000 to register 0x2800 to stop the Video Display Module.
• Write 0x00000005 to register 0x2D00 to stop the AO (audio output?).
• Write 0x00000000 to register 0xA064 to ping? the APU.
• Write 0xFFFFFFFE to register 0x9058 to stop the VPU.
• Write 0xFFFFFFFF to register 0x9054 to reset the HW blocks.
• Write 0x00000001 to register 0x9050 to stop the SPU.
• Sleep for 10ms.
• Write 0x0000001A to register 0x07FC to init the Encoder SDRAM’s pre-charge.
• Write 0x80000640 to register 0x07F8 to init the Encoder SDRAM’s refresh to 1us.
• Write 0x0000001A to register 0x08FC to init the Decoder SDRAM’s pre-charge.
• Write 0x80000640 to register 0x08F8 to init the Decoder SDRAM’s refresh to 1us.
• Sleep for 512ms. (600ms is recommended)
• Transfer the encoder’s firmware image to offset 0 in Encoder memory space.
• Transfer the decoder’s firmware image to offset 0 in Decoder memory space.
• Use a read-modify-write operation to Clear bit 0 of register 0x9050 to re-enable the SPU.
• Sleep for 1 second.
• Use a read-modify-write operation to Clear bits 3 and 0 of register 0x9058 to re-enable the VPU.
• Sleep for 1 second.
• Issue status API commands to both firmware images to verify.

4.11.4 How to call the firmware API

The preferred calling convention is known as the firmware mailbox. The mailboxes are basically a fixed
length array that serves as the call-stack.
Firmware mailboxes can be located by searching the encoder and decoder memory for a 16 byte signature.
That signature will be located on a 256-byte boundary.
Signature:

0x78, 0x56, 0x34, 0x12, 0x12, 0x78, 0x56, 0x34,
0x34, 0x12, 0x78, 0x56, 0x56, 0x34, 0x12, 0x78

The firmware implements 20 mailboxes of 20 32-bit words. The first 10 are reserved for API calls. The
second 10 are used by the firmware for event notification.

Index Name
0 Flags
1 Command
2 Return value
3 Timeout
4-19 Parameter/Result

The flags are defined in the following table. The direction is from the perspective of the firmware.

4.11. The cx2341x driver 935

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Bit Direction Purpose
2 O Firmware has processed the command.
1 I Driver has finished setting the parameters.
0 I Driver is using this mailbox.

The command is a 32-bit enumerator. The API specifics may be found in this chapter.
The return value is a 32-bit enumerator. Only two values are currently defined:

• 0=success
• -1=command undefined.

There are 16 parameters/results 32-bit fields. The driver populates these fields with values for all the
parameters required by the call. The driver overwrites these fields with result values returned by the call.
The timeout value protects the card from a hung driver thread. If the driver doesn’t handle the completed
call within the timeout specified, the firmware will reset that mailbox.
To make an API call, the driver iterates over each mailbox looking for the first one available (bit 0 has been
cleared). The driver sets that bit, fills in the command enumerator, the timeout value and any required
parameters. The driver then sets the parameter ready bit (bit 1). The firmware scans the mailboxes for
pending commands, processes them, sets the result code, populates the result value array with that call’s
return values and sets the call complete bit (bit 2). Once bit 2 is set, the driver should retrieve the results
and clear all the flags. If the driver does not perform this task within the time set in the timeout register,
the firmware will reset that mailbox.
Event notifications are sent from the firmware to the host. The host tells the firmware which events it is
interested in via an API call. That call tells the firmware which notification mailbox to use. The firmware
signals the host via an interrupt. Only the 16 Results fields are used, the Flags, Command, Return value
and Timeout words are not used.

4.11.5 OSD firmware API description

Note:

this API is part of the decoder firmware, so it’s cx23415 only.

CX2341X_OSD_GET_FRAMEBUFFER

Enum: 65/0x41

Description

Return base and length of contiguous OSD memory.

Result[0]

OSD base address

Result[1]

OSD length

936 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CX2341X_OSD_GET_PIXEL_FORMAT

Enum: 66/0x42

Description

Query OSD format

Result[0]

0=8bit index 1=16bit RGB 5:6:5 2=16bit ARGB 1:5:5:5 3=16bit ARGB 1:4:4:4 4=32bit ARGB 8:8:8:8

CX2341X_OSD_SET_PIXEL_FORMAT

Enum: 67/0x43

Description

Assign pixel format

Param[0]

• 0=8bit index
• 1=16bit RGB 5:6:5
• 2=16bit ARGB 1:5:5:5
• 3=16bit ARGB 1:4:4:4
• 4=32bit ARGB 8:8:8:8

CX2341X_OSD_GET_STATE

Enum: 68/0x44

Description

Query OSD state

Result[0]

• Bit 0 0=off, 1=on
• Bits 1:2 alpha control
• Bits 3:5 pixel format

CX2341X_OSD_SET_STATE

Enum: 69/0x45

4.11. The cx2341x driver 937

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

OSD switch

Param[0]

0=off, 1=on

CX2341X_OSD_GET_OSD_COORDS

Enum: 70/0x46

Description

Retrieve coordinates of OSD area blended with video

Result[0]

OSD buffer address

Result[1]

Stride in pixels

Result[2]

Lines in OSD buffer

Result[3]

Horizontal offset in buffer

Result[4]

Vertical offset in buffer

CX2341X_OSD_SET_OSD_COORDS

Enum: 71/0x47

Description

Assign the coordinates of the OSD area to blend with video

Param[0]

buffer address

938 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[1]

buffer stride in pixels

Param[2]

lines in buffer

Param[3]

horizontal offset

Param[4]

vertical offset

CX2341X_OSD_GET_SCREEN_COORDS

Enum: 72/0x48

Description

Retrieve OSD screen area coordinates

Result[0]

top left horizontal offset

Result[1]

top left vertical offset

Result[2]

bottom right horizontal offset

Result[3]

bottom right vertical offset

CX2341X_OSD_SET_SCREEN_COORDS

Enum: 73/0x49

Description

Assign the coordinates of the screen area to blend with video

4.11. The cx2341x driver 939

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[0]

top left horizontal offset

Param[1]

top left vertical offset

Param[2]

bottom left horizontal offset

Param[3]

bottom left vertical offset

CX2341X_OSD_GET_GLOBAL_ALPHA

Enum: 74/0x4A

Description

Retrieve OSD global alpha

Result[0]

global alpha: 0=off, 1=on

Result[1]

bits 0:7 global alpha

CX2341X_OSD_SET_GLOBAL_ALPHA

Enum: 75/0x4B

Description

Update global alpha

Param[0]

global alpha: 0=off, 1=on

Param[1]

global alpha (8 bits)

940 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[2]

local alpha: 0=on, 1=off

CX2341X_OSD_SET_BLEND_COORDS

Enum: 78/0x4C

Description

Move start of blending area within display buffer

Param[0]

horizontal offset in buffer

Param[1]

vertical offset in buffer

CX2341X_OSD_GET_FLICKER_STATE

Enum: 79/0x4F

Description

Retrieve flicker reduction module state

Result[0]

flicker state: 0=off, 1=on

CX2341X_OSD_SET_FLICKER_STATE

Enum: 80/0x50

Description

Set flicker reduction module state

Param[0]

State: 0=off, 1=on

CX2341X_OSD_BLT_COPY

Enum: 82/0x52

4.11. The cx2341x driver 941

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

BLT copy

Param[0]

'0000' zero
'0001' ~destination AND ~source
'0010' ~destination AND source
'0011' ~destination
'0100' destination AND ~source
'0101' ~source
'0110' destination XOR source
'0111' ~destination OR ~source
'1000' ~destination AND ~source
'1001' destination XNOR source
'1010' source
'1011' ~destination OR source
'1100' destination
'1101' destination OR ~source
'1110' destination OR source
'1111' one

Param[1]

Resulting alpha blending
• ‘01’ source_alpha
• ‘10’ destination_alpha
• ‘11’ source_alpha*destination_alpha+1 (zero if both source and destination alpha are zero)

Param[2]

'00' output_pixel = source_pixel

'01' if source_alpha=0:
output_pixel = destination_pixel

if 256 > source_alpha > 1:
output_pixel = ((source_alpha + 1)*source_pixel +

(255 - source_alpha)*destination_pixel)/256

'10' if destination_alpha=0:
output_pixel = source_pixel

if 255 > destination_alpha > 0:
output_pixel = ((255 - destination_alpha)*source_pixel +

(destination_alpha + 1)*destination_pixel)/256

'11' if source_alpha=0:
source_temp = 0

if source_alpha=255:
source_temp = source_pixel*256

if 255 > source_alpha > 0:
source_temp = source_pixel*(source_alpha + 1)

if destination_alpha=0:
destination_temp = 0

if destination_alpha=255:

942 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

destination_temp = destination_pixel*256
if 255 > destination_alpha > 0:

destination_temp = destination_pixel*(destination_alpha + 1)
output_pixel = (source_temp + destination_temp)/256

Param[3]

width

Param[4]

height

Param[5]

destination pixel mask

Param[6]

destination rectangle start address

Param[7]

destination stride in dwords

Param[8]

source stride in dwords

Param[9]

source rectangle start address

CX2341X_OSD_BLT_FILL

Enum: 83/0x53

Description

BLT fill color

Param[0]

Same as Param[0] on API 0x52

4.11. The cx2341x driver 943

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[1]

Same as Param[1] on API 0x52

Param[2]

Same as Param[2] on API 0x52

Param[3]

width

Param[4]

height

Param[5]

destination pixel mask

Param[6]

destination rectangle start address

Param[7]

destination stride in dwords

Param[8]

color fill value

CX2341X_OSD_BLT_TEXT

Enum: 84/0x54

Description

BLT for 8 bit alpha text source

Param[0]

Same as Param[0] on API 0x52

Param[1]

Same as Param[1] on API 0x52

944 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[2]

Same as Param[2] on API 0x52

Param[3]

width

Param[4]

height

Param[5]

destination pixel mask

Param[6]

destination rectangle start address

Param[7]

destination stride in dwords

Param[8]

source stride in dwords

Param[9]

source rectangle start address

Param[10]

color fill value

CX2341X_OSD_SET_FRAMEBUFFER_WINDOW

Enum: 86/0x56

Description

Positions the main output window on the screen. The coordinates must be such that the entire window
fits on the screen.

Param[0]

window width

4.11. The cx2341x driver 945

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[1]

window height

Param[2]

top left window corner horizontal offset

Param[3]

top left window corner vertical offset

CX2341X_OSD_SET_CHROMA_KEY

Enum: 96/0x60

Description

Chroma key switch and color

Param[0]

state: 0=off, 1=on

Param[1]

color

CX2341X_OSD_GET_ALPHA_CONTENT_INDEX

Enum: 97/0x61

Description

Retrieve alpha content index

Result[0]

alpha content index, Range 0:15

CX2341X_OSD_SET_ALPHA_CONTENT_INDEX

Enum: 98/0x62

Description

Assign alpha content index

946 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[0]

alpha content index, range 0:15

4.11.6 Encoder firmware API description

CX2341X_ENC_PING_FW

Enum: 128/0x80

Description

Does nothing. Can be used to check if the firmware is responding.

CX2341X_ENC_START_CAPTURE

Enum: 129/0x81

Description

Commences the capture of video, audio and/or VBI data. All encoding parameters must be initialized prior
to this API call. Captures frames continuously or until a predefined number of frames have been captured.

Param[0]

Capture stream type:
• 0=MPEG
• 1=Raw
• 2=Raw passthrough
• 3=VBI

Param[1]

Bitmask:
• Bit 0 when set, captures YUV
• Bit 1 when set, captures PCM audio
• Bit 2 when set, captures VBI (same as param[0]=3)
• Bit 3 when set, the capture destination is the decoder (same as param[0]=2)
• Bit 4 when set, the capture destination is the host

Note:

this parameter is only meaningful for RAW capture type.

4.11. The cx2341x driver 947

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CX2341X_ENC_STOP_CAPTURE

Enum: 130/0x82

Description

Ends a capture in progress

Param[0]

• 0=stop at end of GOP (generates IRQ)
• 1=stop immediate (no IRQ)

Param[1]

Stream type to stop, see param[0] of API 0x81

Param[2]

Subtype, see param[1] of API 0x81

CX2341X_ENC_SET_AUDIO_ID

Enum: 137/0x89

Description

Assigns the transport stream ID of the encoded audio stream

Param[0]

Audio Stream ID

CX2341X_ENC_SET_VIDEO_ID

Enum: 139/0x8B

Description

Set video transport stream ID

Param[0]

Video stream ID

CX2341X_ENC_SET_PCR_ID

Enum: 141/0x8D

948 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Assigns the transport stream ID for PCR packets

Param[0]

PCR Stream ID

CX2341X_ENC_SET_FRAME_RATE

Enum: 143/0x8F

Description

Set video frames per second. Change occurs at start of new GOP.

Param[0]

• 0=30fps
• 1=25fps

CX2341X_ENC_SET_FRAME_SIZE

Enum: 145/0x91

Description

Select video stream encoding resolution.

Param[0]

Height in lines. Default 480

Param[1]

Width in pixels. Default 720

CX2341X_ENC_SET_BIT_RATE

Enum: 149/0x95

Description

Assign average video stream bitrate.

Param[0]

0=variable bitrate, 1=constant bitrate

4.11. The cx2341x driver 949

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[1]

bitrate in bits per second

Param[2]

peak bitrate in bits per second, divided by 400

Param[3]

Mux bitrate in bits per second, divided by 400. May be 0 (default).

Param[4]

Rate Control VBR Padding

Param[5]

VBV Buffer used by encoder

Note:

1. Param[3] and Param[4] seem to be always 0
2. Param[5] doesn’t seem to be used.

CX2341X_ENC_SET_GOP_PROPERTIES

Enum: 151/0x97

Description

Setup the GOP structure

Param[0]

GOP size (maximum is 34)

Param[1]

Number of B frames between the I and P frame, plus 1. For example: IBBPBBPBBPBB –> GOP size: 12,
number of B frames: 2+1 = 3

Note:

GOP size must be a multiple of (B-frames + 1).

950 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CX2341X_ENC_SET_ASPECT_RATIO

Enum: 153/0x99

Description

Sets the encoding aspect ratio. Changes in the aspect ratio take effect at the start of the next GOP.

Param[0]

• ‘0000’ forbidden
• ‘0001’ 1:1 square
• ‘0010’ 4:3
• ‘0011’ 16:9
• ‘0100’ 2.21:1
• ‘0101’ to ‘1111’ reserved

CX2341X_ENC_SET_DNR_FILTER_MODE

Enum: 155/0x9B

Description

Assign Dynamic Noise Reduction operating mode

Param[0]

Bit0: Spatial filter, set=auto, clear=manual Bit1: Temporal filter, set=auto, clear=manual

Param[1]

Median filter:
• 0=Disabled
• 1=Horizontal
• 2=Vertical
• 3=Horiz/Vert
• 4=Diagonal

CX2341X_ENC_SET_DNR_FILTER_PROPS

Enum: 157/0x9D

Description

These Dynamic Noise Reduction filter values are only meaningful when the respective filter is set to “man-
ual” (See API 0x9B)

4.11. The cx2341x driver 951

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[0]

Spatial filter: default 0, range 0:15

Param[1]

Temporal filter: default 0, range 0:31

CX2341X_ENC_SET_CORING_LEVELS

Enum: 159/0x9F

Description

Assign Dynamic Noise Reduction median filter properties.

Param[0]

Threshold above which the luminance median filter is enabled. Default: 0, range 0:255

Param[1]

Threshold below which the luminance median filter is enabled. Default: 255, range 0:255

Param[2]

Threshold above which the chrominance median filter is enabled. Default: 0, range 0:255

Param[3]

Threshold below which the chrominance median filter is enabled. Default: 255, range 0:255

CX2341X_ENC_SET_SPATIAL_FILTER_TYPE

Enum: 161/0xA1

Description

Assign spatial prefilter parameters

Param[0]

Luminance filter
• 0=Off
• 1=1D Horizontal
• 2=1D Vertical

952 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• 3=2D H/V Separable (default)
• 4=2D Symmetric non-separable

Param[1]

Chrominance filter
• 0=Off
• 1=1D Horizontal (default)

CX2341X_ENC_SET_VBI_LINE

Enum: 183/0xB7

Description

Selects VBI line number.

Param[0]

• Bits 0:4 line number
• Bit 31 0=top_field, 1=bottom_field
• Bits 0:31 all set specifies “all lines”

Param[1]

VBI line information features: 0=disabled, 1=enabled

Param[2]

Slicing: 0=None, 1=Closed Caption Almost certainly not implemented. Set to 0.

Param[3]

Luminance samples in this line. Almost certainly not implemented. Set to 0.

Param[4]

Chrominance samples in this line Almost certainly not implemented. Set to 0.

CX2341X_ENC_SET_STREAM_TYPE

Enum: 185/0xB9

4.11. The cx2341x driver 953

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Assign stream type

Note:

Transport stream is not working in recent firmwares. And in older firmwares the timestamps in the TS
seem to be unreliable.

Param[0]

• 0=Program stream
• 1=Transport stream
• 2=MPEG1 stream
• 3=PES A/V stream
• 5=PES Video stream
• 7=PES Audio stream
• 10=DVD stream
• 11=VCD stream
• 12=SVCD stream
• 13=DVD_S1 stream
• 14=DVD_S2 stream

CX2341X_ENC_SET_OUTPUT_PORT

Enum: 187/0xBB

Description

Assign stream output port. Normally 0 when the data is copied through the PCI bus (DMA), and 1 when
the data is streamed to another chip (pvrusb and cx88-blackbird).

Param[0]

• 0=Memory (default)
• 1=Streaming
• 2=Serial

Param[1]

Unknown, but leaving this to 0 seems to work best. Indications are that this might have to do with USB
support, although passing anything but 0 only breaks things.

954 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CX2341X_ENC_SET_AUDIO_PROPERTIES

Enum: 189/0xBD

Description

Set audio stream properties, may be called while encoding is in progress.

Note:

All bitfields are consistent with ISO11172 documentation except bits 2:3 which ISO docs define as:
• ‘11’ Layer I
• ‘10’ Layer II
• ‘01’ Layer III
• ‘00’ Undefined

This discrepancy may indicate a possible error in the documentation. Testing indicated that only Layer
II is actually working, and that the minimum bitrate should be 192 kbps.

Param[0]

Bitmask:

0:1 '00' 44.1Khz
'01' 48Khz
'10' 32Khz
'11' reserved

2:3 '01'=Layer I
'10'=Layer II

4:7 Bitrate:
Index | Layer I | Layer II
------+-------------+------------
'0000' | free format | free format
'0001' | 32 kbit/s | 32 kbit/s
'0010' | 64 kbit/s | 48 kbit/s
'0011' | 96 kbit/s | 56 kbit/s
'0100' | 128 kbit/s | 64 kbit/s
'0101' | 160 kbit/s | 80 kbit/s
'0110' | 192 kbit/s | 96 kbit/s
'0111' | 224 kbit/s | 112 kbit/s
'1000' | 256 kbit/s | 128 kbit/s
'1001' | 288 kbit/s | 160 kbit/s
'1010' | 320 kbit/s | 192 kbit/s
'1011' | 352 kbit/s | 224 kbit/s
'1100' | 384 kbit/s | 256 kbit/s
'1101' | 416 kbit/s | 320 kbit/s
'1110' | 448 kbit/s | 384 kbit/s

.. note::

For Layer II, not all combinations of total bitrate
and mode are allowed. See ISO11172-3 3-Annex B,
Table 3-B.2

8:9 '00'=Stereo
'01'=JointStereo

4.11. The cx2341x driver 955

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

'10'=Dual
'11'=Mono

.. note::

The cx23415 cannot decode Joint Stereo properly.

10:11 Mode Extension used in joint_stereo mode.
In Layer I and II they indicate which subbands are in
intensity_stereo. All other subbands are coded in stereo.

'00' subbands 4-31 in intensity_stereo, bound==4
'01' subbands 8-31 in intensity_stereo, bound==8
'10' subbands 12-31 in intensity_stereo, bound==12
'11' subbands 16-31 in intensity_stereo, bound==16

12:13 Emphasis:
'00' None
'01' 50/15uS
'10' reserved
'11' CCITT J.17

14 CRC:
'0' off
'1' on

15 Copyright:
'0' off
'1' on

16 Generation:
'0' copy
'1' original

CX2341X_ENC_HALT_FW

Enum: 195/0xC3

Description

The firmware is halted and no further API calls are serviced until the firmware is uploaded again.

CX2341X_ENC_GET_VERSION

Enum: 196/0xC4

Description

Returns the version of the encoder firmware.

Result[0]

Version bitmask: - Bits 0:15 build - Bits 16:23 minor - Bits 24:31 major

956 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CX2341X_ENC_SET_GOP_CLOSURE

Enum: 197/0xC5

Description

Assigns the GOP open/close property.

Param[0]

• 0=Open
• 1=Closed

CX2341X_ENC_GET_SEQ_END

Enum: 198/0xC6

Description

Obtains the sequence end code of the encoder’s buffer. When a capture is started a number of interrupts
are still generated, the last of which will have Result[0] set to 1 and Result[1] will contain the size of the
buffer.

Result[0]

State of the transfer (1 if last buffer)

Result[1]

If Result[0] is 1, this contains the size of the last buffer, undefined otherwise.

CX2341X_ENC_SET_PGM_INDEX_INFO

Enum: 199/0xC7

Description

Sets the Program Index Information. The information is stored as follows:

struct info {
u32 length; // Length of this frame
u32 offset_low; // Offset in the file of the
u32 offset_high; // start of this frame
u32 mask1; // Bits 0-2 are the type mask:

// 1=I, 2=P, 4=B
// 0=End of Program Index, other fields
// are invalid.

u32 pts; // The PTS of the frame
u32 mask2; // Bit 0 is bit 32 of the pts.

};
u32 table_ptr;
struct info index[400];

4.11. The cx2341x driver 957

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The table_ptr is the encoder memory address in the table were new entries will be written.

Note:

This is a ringbuffer, so the table_ptr will wraparound.

Param[0]

Picture Mask: - 0=No index capture - 1=I frames - 3=I,P frames - 7=I,P,B frames
(Seems to be ignored, it always indexes I, P and B frames)

Param[1]

Elements requested (up to 400)

Result[0]

Offset in the encoder memory of the start of the table.

Result[1]

Number of allocated elements up to a maximum of Param[1]

CX2341X_ENC_SET_VBI_CONFIG

Enum: 200/0xC8

Description

Configure VBI settings

Param[0]

Bitmap:

0 Mode '0' Sliced, '1' Raw
1:3 Insertion:

'000' insert in extension & user data
'001' insert in private packets
'010' separate stream and user data
'111' separate stream and private data

8:15 Stream ID (normally 0xBD)

Param[1]

Frames per interrupt (max 8). Only valid in raw mode.

958 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[2]

Total raw VBI frames. Only valid in raw mode.

Param[3]

Start codes

Param[4]

Stop codes

Param[5]

Lines per frame

Param[6]

Byte per line

Result[0]

Observed frames per interrupt in raw mode only. Rage 1 to Param[1]

Result[1]

Observed number of frames in raw mode. Range 1 to Param[2]

Result[2]

Memory offset to start or raw VBI data

CX2341X_ENC_SET_DMA_BLOCK_SIZE

Enum: 201/0xC9

Description

Set DMA transfer block size

Param[0]

DMA transfer block size in bytes or frames. When unit is bytes, supported block sizes are 2^7, 2^8 and
2^9 bytes.

Param[1]

Unit: 0=bytes, 1=frames

4.11. The cx2341x driver 959

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CX2341X_ENC_GET_PREV_DMA_INFO_MB_10

Enum: 202/0xCA

Description

Returns information on the previous DMA transfer in conjunction with bit 27 of the interrupt mask. Uses
mailbox 10.

Result[0]

Type of stream

Result[1]

Address Offset

Result[2]

Maximum size of transfer

CX2341X_ENC_GET_PREV_DMA_INFO_MB_9

Enum: 203/0xCB

Description

Returns information on the previous DMA transfer in conjunction with bit 27 or 18 of the interrupt mask.
Uses mailbox 9.

Result[0]

Status bits: - 0 read completed - 1 write completed - 2 DMA read error - 3 DMA write error - 4 Scatter-Gather
array error

Result[1]

DMA type

Result[2]

Presentation Time Stamp bits 0..31

Result[3]

Presentation Time Stamp bit 32

960 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

CX2341X_ENC_SCHED_DMA_TO_HOST

Enum: 204/0xCC

Description

Setup DMA to host operation

Param[0]

Memory address of link list

Param[1]

Length of link list (wtf: what units ???)

Param[2]

DMA type (0=MPEG)

CX2341X_ENC_INITIALIZE_INPUT

Enum: 205/0xCD

Description

Initializes the video input

CX2341X_ENC_SET_FRAME_DROP_RATE

Enum: 208/0xD0

Description

For each frame captured, skip specified number of frames.

Param[0]

Number of frames to skip

CX2341X_ENC_PAUSE_ENCODER

Enum: 210/0xD2

Description

During a pause condition, all frames are dropped instead of being encoded.

4.11. The cx2341x driver 961

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[0]

• 0=Pause encoding
• 1=Continue encoding

CX2341X_ENC_REFRESH_INPUT

Enum: 211/0xD3

Description

Refreshes the video input

CX2341X_ENC_SET_COPYRIGHT

Enum: 212/0xD4

Description

Sets stream copyright property

Param[0]

• 0=Stream is not copyrighted
• 1=Stream is copyrighted

CX2341X_ENC_SET_EVENT_NOTIFICATION

Enum: 213/0xD5

Description

Setup firmware to notify the host about a particular event. Host must unmask the interrupt bit.

Param[0]

Event (0=refresh encoder input)

Param[1]

Notification 0=disabled 1=enabled

Param[2]

Interrupt bit

962 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[3]

Mailbox slot, -1 if no mailbox required.

CX2341X_ENC_SET_NUM_VSYNC_LINES

Enum: 214/0xD6

Description

Depending on the analog video decoder used, this assigns the number of lines for field 1 and 2.

Param[0]

Field 1 number of lines: - 0x00EF for SAA7114 - 0x00F0 for SAA7115 - 0x0105 for Micronas

Param[1]

Field 2 number of lines: - 0x00EF for SAA7114 - 0x00F0 for SAA7115 - 0x0106 for Micronas

CX2341X_ENC_SET_PLACEHOLDER

Enum: 215/0xD7

Description

Provides a mechanism of inserting custom user data in the MPEG stream.

Param[0]

• 0=extension & user data
• 1=private packet with stream ID 0xBD

Param[1]

Rate at which to insert data, in units of frames (for private packet) or GOPs (for ext. & user data)

Param[2]

Number of data DWORDs (below) to insert

Param[3]

Custom data 0

4.11. The cx2341x driver 963

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[4]

Custom data 1

Param[5]

Custom data 2

Param[6]

Custom data 3

Param[7]

Custom data 4

Param[8]

Custom data 5

Param[9]

Custom data 6

Param[10]

Custom data 7

Param[11]

Custom data 8

CX2341X_ENC_MUTE_VIDEO

Enum: 217/0xD9

Description

Video muting

Param[0]

Bit usage:

964 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

0 '0'=video not muted
'1'=video muted, creates frames with the YUV color defined below

1:7 Unused
8:15 V chrominance information
16:23 U chrominance information
24:31 Y luminance information

CX2341X_ENC_MUTE_AUDIO

Enum: 218/0xDA

Description

Audio muting

Param[0]

• 0=audio not muted
• 1=audio muted (produces silent mpeg audio stream)

CX2341X_ENC_SET_VERT_CROP_LINE

Enum: 219/0xDB

Description

Something to do with ‘Vertical Crop Line’

Param[0]

If saa7114 and raw VBI capture and 60 Hz, then set to 10001. Else 0.

CX2341X_ENC_MISC

Enum: 220/0xDC

Description

Miscellaneous actions. Not known for 100% what it does. It’s really a sort of ioctl call. The first parameter
is a command number, the second the value.

Param[0]

Command number:

4.11. The cx2341x driver 965

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1=set initial SCR value when starting encoding (works).
2=set quality mode (apparently some test setting).
3=setup advanced VIM protection handling.

Always 1 for the cx23416 and 0 for cx23415.
4=generate DVD compatible PTS timestamps
5=USB flush mode
6=something to do with the quantization matrix
7=set navigation pack insertion for DVD: adds 0xbf (private stream 2)

packets to the MPEG. The size of these packets is 2048 bytes (including
the header of 6 bytes: 0x000001bf + length). The payload is zeroed and
it is up to the application to fill them in. These packets are apparently
inserted every four frames.

8=enable scene change detection (seems to be a failure)
9=set history parameters of the video input module
10=set input field order of VIM
11=set quantization matrix
12=reset audio interface after channel change or input switch (has no argument).

Needed for the cx2584x, not needed for the mspx4xx, but it doesn't seem to
do any harm calling it regardless.

13=set audio volume delay
14=set audio delay

Param[1]

Command value.

4.11.7 Decoder firmware API description

Note:

this API is part of the decoder firmware, so it’s cx23415 only.

CX2341X_DEC_PING_FW

Enum: 0/0x00

Description

This API call does nothing. It may be used to check if the firmware is responding.

CX2341X_DEC_START_PLAYBACK

Enum: 1/0x01

Description

Begin or resume playback.

Param[0]

0 based frame number in GOP to begin playback from.

966 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[1]

Specifies the number of muted audio frames to play before normal audio resumes. (This is not imple-
mented in the firmware, leave at 0)

CX2341X_DEC_STOP_PLAYBACK

Enum: 2/0x02

Description

Ends playback and clears all decoder buffers. If PTS is not zero, playback stops at specified PTS.

Param[0]

Display 0=last frame, 1=black

Note:

this takes effect immediately, so if you want to wait for a PTS, then use ‘0’, otherwise the screen goes
to black at once. You can call this later (even if there is no playback) with a 1 value to set the screen
to black.

Param[1]

PTS low

Param[2]

PTS high

CX2341X_DEC_SET_PLAYBACK_SPEED

Enum: 3/0x03

Description

Playback stream at speed other than normal. There are two modes of operation:
• Smooth: host transfers entire stream and firmware drops unused frames.
• Coarse: host drops frames based on indexing as required to achieve desired speed.

Param[0]

Bitmap:
0:7 0 normal

1 fast only "1.5 times"
n nX fast, 1/nX slow

30 Framedrop:

4.11. The cx2341x driver 967

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

'0' during 1.5 times play, every other B frame is dropped
'1' during 1.5 times play, stream is unchanged (bitrate

must not exceed 8mbps)
31 Speed:

'0' slow
'1' fast

Note:

n is limited to 2. Anything higher does not result in faster playback. Instead the host should start
dropping frames.

Param[1]

Direction: 0=forward, 1=reverse

Note:

to make reverse playback work you have to write full GOPs in reverse order.

Param[2]

Picture mask:
1=I frames
3=I, P frames
7=I, P, B frames

Param[3]

B frames per GOP (for reverse play only)

Note:

for reverse playback the Picture Mask should be set to I or I, P. Adding B frames to the mask will result
in corrupt video. This field has to be set to the correct value in order to keep the timing correct.

Param[4]

Mute audio: 0=disable, 1=enable

Param[5]

Display 0=frame, 1=field

968 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[6]

Specifies the number of muted audio frames to play before normal audio resumes. (Not implemented in
the firmware, leave at 0)

CX2341X_DEC_STEP_VIDEO

Enum: 5/0x05

Description

Each call to this API steps the playback to the next unit defined below in the current playback direction.

Param[0]

0=frame, 1=top field, 2=bottom field

CX2341X_DEC_SET_DMA_BLOCK_SIZE

Enum: 8/0x08

Description

Set DMA transfer block size. Counterpart to API 0xC9

Param[0]

DMA transfer block size in bytes. A different size may be specified when issuing the DMA transfer com-
mand.

CX2341X_DEC_GET_XFER_INFO

Enum: 9/0x09

Description

This API call may be used to detect an end of stream condition.

Result[0]

Stream type

Result[1]

Address offset

4.11. The cx2341x driver 969

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Result[2]

Maximum bytes to transfer

Result[3]

Buffer fullness

CX2341X_DEC_GET_DMA_STATUS

Enum: 10/0x0A

Description

Status of the last DMA transfer

Result[0]

Bit 1 set means transfer complete Bit 2 set means DMA error Bit 3 set means linked list error

Result[1]

DMA type: 0=MPEG, 1=OSD, 2=YUV

CX2341X_DEC_SCHED_DMA_FROM_HOST

Enum: 11/0x0B

Description

Setup DMA from host operation. Counterpart to API 0xCC

Param[0]

Memory address of link list

Param[1]

Total # of bytes to transfer

Param[2]

DMA type (0=MPEG, 1=OSD, 2=YUV)

CX2341X_DEC_PAUSE_PLAYBACK

Enum: 13/0x0D

970 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Freeze playback immediately. In this mode, when internal buffers are full, no more data will be accepted
and data request IRQs will be masked.

Param[0]

Display: 0=last frame, 1=black

CX2341X_DEC_HALT_FW

Enum: 14/0x0E

Description

The firmware is halted and no further API calls are serviced until the firmware is uploaded again.

CX2341X_DEC_SET_STANDARD

Enum: 16/0x10

Description

Selects display standard

Param[0]

0=NTSC, 1=PAL

CX2341X_DEC_GET_VERSION

Enum: 17/0x11

Description

Returns decoder firmware version information

Result[0]

Version bitmask:
• Bits 0:15 build
• Bits 16:23 minor
• Bits 24:31 major

CX2341X_DEC_SET_STREAM_INPUT

Enum: 20/0x14

4.11. The cx2341x driver 971

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Select decoder stream input port

Param[0]

0=memory (default), 1=streaming

CX2341X_DEC_GET_TIMING_INFO

Enum: 21/0x15

Description

Returns timing information from start of playback

Result[0]

Frame count by decode order

Result[1]

Video PTS bits 0:31 by display order

Result[2]

Video PTS bit 32 by display order

Result[3]

SCR bits 0:31 by display order

Result[4]

SCR bit 32 by display order

CX2341X_DEC_SET_AUDIO_MODE

Enum: 22/0x16

Description

Select audio mode

Param[0]

Dual mono mode action 0=Stereo, 1=Left, 2=Right, 3=Mono, 4=Swap, -1=Unchanged

972 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[1]

Stereo mode action: 0=Stereo, 1=Left, 2=Right, 3=Mono, 4=Swap, -1=Unchanged

CX2341X_DEC_SET_EVENT_NOTIFICATION

Enum: 23/0x17

Description

Setup firmware to notify the host about a particular event. Counterpart to API 0xD5

Param[0]

Event:
• 0=Audio mode change between mono, (joint) stereo and dual channel.
• 3=Decoder started
• 4=Unknown: goes off 10-15 times per second while decoding.
• 5=Some sync event: goes off once per frame.

Param[1]

Notification 0=disabled, 1=enabled

Param[2]

Interrupt bit

Param[3]

Mailbox slot, -1 if no mailbox required.

CX2341X_DEC_SET_DISPLAY_BUFFERS

Enum: 24/0x18

Description

Number of display buffers. To decode all frames in reverse playback you must use nine buffers.

Param[0]

0=six buffers, 1=nine buffers

CX2341X_DEC_EXTRACT_VBI

Enum: 25/0x19

4.11. The cx2341x driver 973

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Description

Extracts VBI data

Param[0]

0=extract from extension & user data, 1=extract from private packets

Result[0]

VBI table location

Result[1]

VBI table size

CX2341X_DEC_SET_DECODER_SOURCE

Enum: 26/0x1A

Description

Selects decoder source. Ensure that the parameters passed to this API match the encoder settings.

Param[0]

Mode: 0=MPEG from host, 1=YUV from encoder, 2=YUV from host

Param[1]

YUV picture width

Param[2]

YUV picture height

Param[3]

Bitmap: see Param[0] of API 0xBD

CX2341X_DEC_SET_PREBUFFERING

Enum: 30/0x1E

Description

Decoder prebuffering, when enabled up to 128KB are buffered for streams <8mpbs or 640KB for streams
>8mbps

974 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Param[0]

0=off, 1=on

4.11.8 PVR350 Video decoder registers 0x02002800 -> 0x02002B00

Author: Ian Armstrong <ian@iarmst.demon.co.uk>
Version: v0.4
Date: 12 March 2007
This list has been worked out through trial and error. There will be mistakes and omissions. Some registers
have no obvious effect so it’s hard to say what they do, while others interact with each other, or require
a certain load sequence. Horizontal filter setup is one example, with six registers working in unison and
requiring a certain load sequence to correctly configure. The indexed colour palette is much easier to set
at just two registers, but again it requires a certain load sequence.
Some registers are fussy about what they are set to. Load in a bad value & the decoder will fail. A firmware
reload will often recover, but sometimes a reset is required. For registers containing size information,
setting them to 0 is generally a bad idea. For other control registers i.e. 2878, you’ll only find out what
values are bad when it hangs.

--
2800
bit 0

Decoder enable
0 = disable
1 = enable

--
2804
bits 0:31

Decoder horizontal Y alias register 1

2808
bits 0:31

Decoder horizontal Y alias register 2

280C
bits 0:31

Decoder horizontal Y alias register 3

2810
bits 0:31

Decoder horizontal Y alias register 4

2814
bits 0:31

Decoder horizontal Y alias register 5

2818
bits 0:31

Decoder horizontal Y alias trigger

These six registers control the horizontal aliasing filter for the Y plane.
The first five registers must all be loaded before accessing the trigger
(2818), as this register actually clocks the data through for the first
five.

To correctly program set the filter, this whole procedure must be done 16
times. The actual register contents are copied from a lookup-table in the
firmware which contains 4 different filter settings.

4.11. The cx2341x driver 975

mailto:ian@iarmst.demon.co.uk

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

--
281C
bits 0:31

Decoder horizontal UV alias register 1

2820
bits 0:31

Decoder horizontal UV alias register 2

2824
bits 0:31

Decoder horizontal UV alias register 3

2828
bits 0:31

Decoder horizontal UV alias register 4

282C
bits 0:31

Decoder horizontal UV alias register 5

2830
bits 0:31

Decoder horizontal UV alias trigger

These six registers control the horizontal aliasing for the UV plane.
Operation is the same as the Y filter, with 2830 being the trigger
register.

--
2834
bits 0:15

Decoder Y source width in pixels

bits 16:31
Decoder Y destination width in pixels

2838
bits 0:15

Decoder UV source width in pixels

bits 16:31
Decoder UV destination width in pixels

NOTE: For both registers, the resulting image must be fully visible on
screen. If the image exceeds the right edge both the source and destination
size must be adjusted to reflect the visible portion. For the source width,
you must take into account the scaling when calculating the new value.
--

283C
bits 0:31

Decoder Y horizontal scaling
Normally = Reg 2854 >> 2

2840
bits 0:31

Decoder ?? unknown - horizontal scaling
Usually 0x00080514

2844
bits 0:31

976 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Decoder UV horizontal scaling
Normally = Reg 2854 >> 2

2848
bits 0:31

Decoder ?? unknown - horizontal scaling
Usually 0x00100514

284C
bits 0:31

Decoder ?? unknown - Y plane
Usually 0x00200020

2850
bits 0:31

Decoder ?? unknown - UV plane
Usually 0x00200020

2854
bits 0:31

Decoder 'master' value for horizontal scaling

2858
bits 0:31

Decoder ?? unknown
Usually 0

285C
bits 0:31

Decoder ?? unknown
Normally = Reg 2854 >> 1

2860
bits 0:31

Decoder ?? unknown
Usually 0

2864
bits 0:31

Decoder ?? unknown
Normally = Reg 2854 >> 1

2868
bits 0:31

Decoder ?? unknown
Usually 0

Most of these registers either control horizontal scaling, or appear linked
to it in some way. Register 2854 contains the 'master' value & the other
registers can be calculated from that one. You must also remember to
correctly set the divider in Reg 2874.

To enlarge:
Reg 2854 = (source_width * 0x00200000) / destination_width
Reg 2874 = No divide

To reduce from full size down to half size:
Reg 2854 = (source_width/2 * 0x00200000) / destination width
Reg 2874 = Divide by 2

To reduce from half size down to quarter size:
Reg 2854 = (source_width/4 * 0x00200000) / destination width
Reg 2874 = Divide by 4

4.11. The cx2341x driver 977

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The result is always rounded up.

--
286C
bits 0:15

Decoder horizontal Y buffer offset

bits 15:31
Decoder horizontal UV buffer offset

Offset into the video image buffer. If the offset is gradually incremented,
the on screen image will move left & wrap around higher up on the right.

--
2870
bits 0:15

Decoder horizontal Y output offset

bits 16:31
Decoder horizontal UV output offset

Offsets the actual video output. Controls output alignment of the Y & UV
planes. The higher the value, the greater the shift to the left. Use
reg 2890 to move the image right.

--
2874
bits 0:1

Decoder horizontal Y output size divider
00 = No divide
01 = Divide by 2
10 = Divide by 3

bits 4:5
Decoder horizontal UV output size divider
00 = No divide
01 = Divide by 2
10 = Divide by 3

bit 8
Decoder ?? unknown
0 = Normal
1 = Affects video output levels

bit 16
Decoder ?? unknown
0 = Normal
1 = Disable horizontal filter

--
2878
bit 0

?? unknown

bit 1
osd on/off
0 = osd off
1 = osd on

bit 2
Decoder + osd video timing
0 = NTSC

978 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1 = PAL

bits 3:4
?? unknown

bit 5
Decoder + osd
Swaps upper & lower fields

--
287C
bits 0:10

Decoder & osd ?? unknown
Moves entire screen horizontally. Starts at 0x005 with the screen
shifted heavily to the right. Incrementing in steps of 0x004 will
gradually shift the screen to the left.

bits 11:31
?? unknown

Normally contents are 0x00101111 (NTSC) or 0x1010111d (PAL)

--
2880 -------- ?? unknown
2884 -------- ?? unknown
--
2888
bit 0

Decoder + osd ?? unknown
0 = Normal
1 = Misaligned fields (Correctable through 289C & 28A4)

bit 4
?? unknown

bit 8
?? unknown

Warning: Bad values will require a firmware reload to recover.
Known to be bad are 0x000,0x011,0x100,0x111

--
288C
bits 0:15

osd ?? unknown
Appears to affect the osd position stability. The higher the value the
more unstable it becomes. Decoder output remains stable.

bits 16:31
osd ?? unknown
Same as bits 0:15

--
2890
bits 0:11

Decoder output horizontal offset.

Horizontal offset moves the video image right. A small left shift is
possible, but it's better to use reg 2870 for that due to its greater
range.

NOTE: Video corruption will occur if video window is shifted off the right
edge. To avoid this read the notes for 2834 & 2838.
--

4.11. The cx2341x driver 979

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

2894
bits 0:23

Decoder output video surround colour.

Contains the colour (in yuv) used to fill the screen when the video is
running in a window.
--
2898
bits 0:23

Decoder video window colour
Contains the colour (in yuv) used to fill the video window when the
video is turned off.

bit 24
Decoder video output
0 = Video on
1 = Video off

bit 28
Decoder plane order
0 = Y,UV
1 = UV,Y

bit 29
Decoder second plane byte order
0 = Normal (UV)
1 = Swapped (VU)

In normal usage, the first plane is Y & the second plane is UV. Though the
order of the planes can be swapped, only the byte order of the second plane
can be swapped. This isn't much use for the Y plane, but can be useful for
the UV plane.

--
289C
bits 0:15

Decoder vertical field offset 1

bits 16:31
Decoder vertical field offset 2

Controls field output vertical alignment. The higher the number, the lower
the image on screen. Known starting values are 0x011E0017 (NTSC) &
0x01500017 (PAL)
--
28A0
bits 0:15

Decoder & osd width in pixels

bits 16:31
Decoder & osd height in pixels

All output from the decoder & osd are disabled beyond this area. Decoder
output will simply go black outside of this region. If the osd tries to
exceed this area it will become corrupt.
--
28A4
bits 0:11

osd left shift.

Has a range of 0x770->0x7FF. With the exception of 0, any value outside of
this range corrupts the osd.
--

980 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

28A8
bits 0:15

osd vertical field offset 1

bits 16:31
osd vertical field offset 2

Controls field output vertical alignment. The higher the number, the lower
the image on screen. Known starting values are 0x011E0017 (NTSC) &
0x01500017 (PAL)
--
28AC -------- ?? unknown
|
V
28BC -------- ?? unknown
--
28C0
bit 0

Current output field
0 = first field
1 = second field

bits 16:31
Current scanline
The scanline counts from the top line of the first field
through to the last line of the second field.

--
28C4 -------- ?? unknown
|
V
28F8 -------- ?? unknown
--
28FC
bit 0

?? unknown
0 = Normal
1 = Breaks decoder & osd output

--
2900
bits 0:31

Decoder vertical Y alias register 1

2904
bits 0:31

Decoder vertical Y alias register 2

2908
bits 0:31

Decoder vertical Y alias trigger

These three registers control the vertical aliasing filter for the Y plane.
Operation is similar to the horizontal Y filter (2804). The only real
difference is that there are only two registers to set before accessing
the trigger register (2908). As for the horizontal filter, the values are
taken from a lookup table in the firmware, and the procedure must be
repeated 16 times to fully program the filter.
--
290C
bits 0:31

Decoder vertical UV alias register 1

2910
bits 0:31

4.11. The cx2341x driver 981

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Decoder vertical UV alias register 2

2914
bits 0:31

Decoder vertical UV alias trigger

These three registers control the vertical aliasing filter for the UV
plane. Operation is the same as the Y filter, with 2914 being the trigger.
--
2918
bits 0:15

Decoder Y source height in pixels

bits 16:31
Decoder Y destination height in pixels

291C
bits 0:15

Decoder UV source height in pixels divided by 2

bits 16:31
Decoder UV destination height in pixels

NOTE: For both registers, the resulting image must be fully visible on
screen. If the image exceeds the bottom edge both the source and
destination size must be adjusted to reflect the visible portion. For the
source height, you must take into account the scaling when calculating the
new value.
--
2920
bits 0:31

Decoder Y vertical scaling
Normally = Reg 2930 >> 2

2924
bits 0:31

Decoder Y vertical scaling
Normally = Reg 2920 + 0x514

2928
bits 0:31

Decoder UV vertical scaling
When enlarging = Reg 2930 >> 2
When reducing = Reg 2930 >> 3

292C
bits 0:31

Decoder UV vertical scaling
Normally = Reg 2928 + 0x514

2930
bits 0:31

Decoder 'master' value for vertical scaling

2934
bits 0:31

Decoder ?? unknown - Y vertical scaling

2938
bits 0:31

Decoder Y vertical scaling
Normally = Reg 2930

982 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

293C
bits 0:31

Decoder ?? unknown - Y vertical scaling

2940
bits 0:31

Decoder UV vertical scaling
When enlarging = Reg 2930 >> 1
When reducing = Reg 2930

2944
bits 0:31

Decoder ?? unknown - UV vertical scaling

2948
bits 0:31

Decoder UV vertical scaling
Normally = Reg 2940

294C
bits 0:31

Decoder ?? unknown - UV vertical scaling

Most of these registers either control vertical scaling, or appear linked
to it in some way. Register 2930 contains the 'master' value & all other
registers can be calculated from that one. You must also remember to
correctly set the divider in Reg 296C

To enlarge:
Reg 2930 = (source_height * 0x00200000) / destination_height
Reg 296C = No divide

To reduce from full size down to half size:
Reg 2930 = (source_height/2 * 0x00200000) / destination height
Reg 296C = Divide by 2

To reduce from half down to quarter.
Reg 2930 = (source_height/4 * 0x00200000) / destination height
Reg 296C = Divide by 4

--
2950
bits 0:15

Decoder Y line index into display buffer, first field

bits 16:31
Decoder Y vertical line skip, first field

--
2954
bits 0:15

Decoder Y line index into display buffer, second field

bits 16:31
Decoder Y vertical line skip, second field

--
2958
bits 0:15

Decoder UV line index into display buffer, first field

bits 16:31
Decoder UV vertical line skip, first field

--
295C

4.11. The cx2341x driver 983

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

bits 0:15
Decoder UV line index into display buffer, second field

bits 16:31
Decoder UV vertical line skip, second field

--
2960
bits 0:15

Decoder destination height minus 1

bits 16:31
Decoder destination height divided by 2

--
2964
bits 0:15

Decoder Y vertical offset, second field

bits 16:31
Decoder Y vertical offset, first field

These two registers shift the Y plane up. The higher the number, the
greater the shift.
--
2968
bits 0:15

Decoder UV vertical offset, second field

bits 16:31
Decoder UV vertical offset, first field

These two registers shift the UV plane up. The higher the number, the
greater the shift.
--
296C
bits 0:1

Decoder vertical Y output size divider
00 = No divide
01 = Divide by 2
10 = Divide by 4

bits 8:9
Decoder vertical UV output size divider
00 = No divide
01 = Divide by 2
10 = Divide by 4

--
2970
bit 0

Decoder ?? unknown
0 = Normal
1 = Affect video output levels

bit 16
Decoder ?? unknown
0 = Normal
1 = Disable vertical filter

--
2974 -------- ?? unknown
|
V
29EF -------- ?? unknown
--

984 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

2A00
bits 0:2

osd colour mode
000 = 8 bit indexed
001 = 16 bit (565)
010 = 15 bit (555)
011 = 12 bit (444)
100 = 32 bit (8888)

bits 4:5
osd display bpp
01 = 8 bit
10 = 16 bit
11 = 32 bit

bit 8
osd global alpha
0 = Off
1 = On

bit 9
osd local alpha
0 = Off
1 = On

bit 10
osd colour key
0 = Off
1 = On

bit 11
osd ?? unknown
Must be 1

bit 13
osd colour space
0 = ARGB
1 = AYVU

bits 16:31
osd ?? unknown
Must be 0x001B (some kind of buffer pointer ?)

When the bits-per-pixel is set to 8, the colour mode is ignored and
assumed to be 8 bit indexed. For 16 & 32 bits-per-pixel the colour depth
is honoured, and when using a colour depth that requires fewer bytes than
allocated the extra bytes are used as padding. So for a 32 bpp with 8 bit
index colour, there are 3 padding bytes per pixel. It's also possible to
select 16bpp with a 32 bit colour mode. This results in the pixel width
being doubled, but the color key will not work as expected in this mode.

Colour key is as it suggests. You designate a colour which will become
completely transparent. When using 565, 555 or 444 colour modes, the
colour key is always 16 bits wide. The colour to key on is set in Reg 2A18.

Local alpha works differently depending on the colour mode. For 32bpp & 8
bit indexed, local alpha is a per-pixel 256 step transparency, with 0 being
transparent and 255 being solid. For the 16bpp modes 555 & 444, the unused
bit(s) act as a simple transparency switch, with 0 being solid & 1 being
fully transparent. There is no local alpha support for 16bit 565.

Global alpha is a 256 step transparency that applies to the entire osd,
with 0 being transparent & 255 being solid.

4.11. The cx2341x driver 985

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

It's possible to combine colour key, local alpha & global alpha.
--
2A04
bits 0:15

osd x coord for left edge

bits 16:31
osd y coord for top edge

2A08
bits 0:15

osd x coord for right edge

bits 16:31
osd y coord for bottom edge

For both registers, (0,0) = top left corner of the display area. These
registers do not control the osd size, only where it's positioned & how
much is visible. The visible osd area cannot exceed the right edge of the
display, otherwise the osd will become corrupt. See reg 2A10 for
setting osd width.
--
2A0C
bits 0:31

osd buffer index

An index into the osd buffer. Slowly incrementing this moves the osd left,
wrapping around onto the right edge
--
2A10
bits 0:11

osd buffer 32 bit word width

Contains the width of the osd measured in 32 bit words. This means that all
colour modes are restricted to a byte width which is divisible by 4.
--
2A14
bits 0:15

osd height in pixels

bits 16:32
osd line index into buffer
osd will start displaying from this line.

--
2A18
bits 0:31

osd colour key

Contains the colour value which will be transparent.
--
2A1C
bits 0:7

osd global alpha

Contains the global alpha value (equiv ivtvfbctl --alpha XX)
--
2A20 -------- ?? unknown
|
V
2A2C -------- ?? unknown
--
2A30

986 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

bits 0:7
osd colour to change in indexed palette

2A34
bits 0:31

osd colour for indexed palette

To set the new palette, first load the index of the colour to change into
2A30, then load the new colour into 2A34. The full palette is 256 colours,
so the index range is 0x00-0xFF
--
2A38 -------- ?? unknown
2A3C -------- ?? unknown
--
2A40
bits 0:31

osd ?? unknown

Affects overall brightness, wrapping around to black
--
2A44
bits 0:31

osd ?? unknown

Green tint
--
2A48
bits 0:31

osd ?? unknown

Red tint
--
2A4C
bits 0:31

osd ?? unknown

Affects overall brightness, wrapping around to black
--
2A50
bits 0:31

osd ?? unknown

Colour shift
--
2A54
bits 0:31

osd ?? unknown

Colour shift
--
2A58 -------- ?? unknown
|
V
2AFC -------- ?? unknown
--
2B00
bit 0

osd filter control
0 = filter off
1 = filter on

bits 1:4
osd ?? unknown

4.11. The cx2341x driver 987

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

--

4.11.9 The cx231xx DMA engine

This page describes the structures and procedures used by the cx2341x DMA engine.

Introduction

The cx2341x PCI interface is busmaster capable. This means it has a DMA engine to efficiently transfer
large volumes of data between the card and main memory without requiring help from a CPU. Like most
hardware, it must operate on contiguous physical memory. This is difficult to come by in large quantities
on virtual memory machines.
Therefore, it also supports a technique called “scatter-gather”. The card can transfer multiple buffers in
one operation. Instead of allocating one large contiguous buffer, the driver can allocate several smaller
buffers.
In practice, I’ve seen the average transfer to be roughly 80K, but transfers above 128K were not uncom-
mon, particularly at startup. The 128K figure is important, because that is the largest block that the kernel
can normally allocate. Even still, 128K blocks are hard to come by, so the driver writer is urged to choose
a smaller block size and learn the scatter-gather technique.
Mailbox #10 is reserved for DMA transfer information.
Note: the hardware expects little-endian data (‘intel format’).

Flow

This section describes, in general, the order of events when handling DMA transfers. Detailed information
follows this section.

• The card raises the Encoder interrupt.
• The driver reads the transfer type, offset and size from Mailbox #10.
• The driver constructs the scatter-gather array from enough free dma buffers to cover the size.
• The driver schedules the DMA transfer via the ScheduleDMAtoHost API call.
• The card raises the DMA Complete interrupt.
• The driver checks the DMA status register for any errors.
• The driver post-processes the newly transferred buffers.

NOTE! It is possible that the Encoder and DMA Complete interrupts get raised simultaneously. (End of the
last, start of the next, etc.)

Mailbox #10

The Flags, Command, Return Value and Timeout fields are ignored.
• Name: Mailbox #10
• Results[0]: Type: 0: MPEG.
• Results[1]: Offset: The position relative to the card’s memory space.
• Results[2]: Size: The exact number of bytes to transfer.

My speculation is that since the StartCapture API has a capture type of “RAW” available, that the type
field will have other values that correspond to YUV and PCM data.

988 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Scatter-Gather Array

The scatter-gather array is a contiguously allocated block of memory that tells the card the source and
destination of each data-block to transfer. Card “addresses” are derived from the offset supplied by
Mailbox #10. Host addresses are the physical memory location of the target DMA buffer.
Each S-G array element is a struct of three 32-bit words. The first word is the source address, the second
is the destination address. Both take up the entire 32 bits. The lowest 18 bits of the third word is the
transfer byte count. The high-bit of the third word is the “last” flag. The last-flag tells the card to raise
the DMA_DONE interrupt. From hard personal experience, if you forget to set this bit, the card will still
“work” but the stream will most likely get corrupted.
The transfer count must be a multiple of 256. Therefore, the driver will need to track how much data in
the target buffer is valid and deal with it accordingly.
Array Element:

• 32-bit Source Address
• 32-bit Destination Address
• 14-bit reserved (high bit is the last flag)
• 18-bit byte count

DMA Transfer Status

Register 0x0004 holds the DMA Transfer Status:
• bit 0: read completed
• bit 1: write completed
• bit 2: DMA read error
• bit 3: DMA write error
• bit 4: Scatter-Gather array error

4.11.10 Non-compressed file format

The cx23416 can produce (and the cx23415 can also read) raw YUV output. The format of a YUV frame
is specific to this chip and is called HM12. ‘HM’ stands for ‘Hauppauge Macroblock’, which is a misnomer
as ‘Conexant Macroblock’ would be more accurate.
The format is YUV 4:2:0 which uses 1 Y byte per pixel and 1 U and V byte per four pixels.
The data is encoded as two macroblock planes, the first containing the Y values, the second containing
UV macroblocks.
The Y plane is divided into blocks of 16x16 pixels from left to right and from top to bottom. Each block is
transmitted in turn, line-by-line.
So the first 16 bytes are the first line of the top-left block, the second 16 bytes are the second line of the
top-left block, etc. After transmitting this block the first line of the block on the right to the first block is
transmitted, etc.
The UV plane is divided into blocks of 16x8 UV values going from left to right, top to bottom. Each block
is transmitted in turn, line-by-line.
So the first 16 bytes are the first line of the top-left block and contain 8 UV value pairs (16 bytes in total).
The second 16 bytes are the second line of 8 UV pairs of the top-left block, etc. After transmitting this
block the first line of the block on the right to the first block is transmitted, etc.
The code below is given as an example on how to convert HM12 to separate Y, U and V planes. This code
assumes frames of 720x576 (PAL) pixels.

4.11. The cx2341x driver 989

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The width of a frame is always 720 pixels, regardless of the actual specified width.
If the height is not a multiple of 32 lines, then the captured video is missing macroblocks at the end and
is unusable. So the height must be a multiple of 32.

Raw format c example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static unsigned char frame[576*720*3/2];
static unsigned char framey[576*720];
static unsigned char frameu[576*720 / 4];
static unsigned char framev[576*720 / 4];

static void de_macro_y(unsigned char* dst, unsigned char *src, int dstride, int w, int h)
{
unsigned int y, x, i;

// descramble Y plane
// dstride = 720 = w
// The Y plane is divided into blocks of 16x16 pixels
// Each block in transmitted in turn, line-by-line.
for (y = 0; y < h; y += 16) {

for (x = 0; x < w; x += 16) {
for (i = 0; i < 16; i++) {

memcpy(dst + x + (y + i) * dstride, src, 16);
src += 16;

}
}

}
}

static void de_macro_uv(unsigned char *dstu, unsigned char *dstv, unsigned char *src, int␣
↪→dstride, int w, int h)

{
unsigned int y, x, i;

// descramble U/V plane
// dstride = 720 / 2 = w
// The U/V values are interlaced (UVUV...).
// Again, the UV plane is divided into blocks of 16x16 UV values.
// Each block in transmitted in turn, line-by-line.
for (y = 0; y < h; y += 16) {

for (x = 0; x < w; x += 8) {
for (i = 0; i < 16; i++) {

int idx = x + (y + i) * dstride;

dstu[idx+0] = src[0]; dstv[idx+0] = src[1];
dstu[idx+1] = src[2]; dstv[idx+1] = src[3];
dstu[idx+2] = src[4]; dstv[idx+2] = src[5];
dstu[idx+3] = src[6]; dstv[idx+3] = src[7];
dstu[idx+4] = src[8]; dstv[idx+4] = src[9];
dstu[idx+5] = src[10]; dstv[idx+5] = src[11];
dstu[idx+6] = src[12]; dstv[idx+6] = src[13];
dstu[idx+7] = src[14]; dstv[idx+7] = src[15];
src += 16;

}
}

}
}

990 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

/***/
int main(int argc, char **argv)
{
FILE *fin;
int i;

if (argc == 1) fin = stdin;
else fin = fopen(argv[1], "r");

if (fin == NULL) {
fprintf(stderr, "cannot open input\n");
exit(-1);

}
while (fread(frame, sizeof(frame), 1, fin) == 1) {

de_macro_y(framey, frame, 720, 720, 576);
de_macro_uv(frameu, framev, frame + 720 * 576, 720 / 2, 720 / 2, 576 / 2);
fwrite(framey, sizeof(framey), 1, stdout);
fwrite(framev, sizeof(framev), 1, stdout);
fwrite(frameu, sizeof(frameu), 1, stdout);

}
fclose(fin);
return 0;
}

4.11.11 Format of embedded V4L2_MPEG_STREAM_VBI_FMT_IVTV VBI data

Author: Hans Verkuil <hverkuil@xs4all.nl>
This section describes the V4L2_MPEG_STREAM_VBI_FMT_IVTV format of the VBI data embedded in an
MPEG-2 program stream. This format is in part dictated by some hardware limitations of the ivtv driver
(the driver for the Conexant cx23415/6 chips), in particular a maximum size for the VBI data. Anything
longer is cut off when the MPEG stream is played back through the cx23415.
The advantage of this format is it is very compact and that all VBI data for all lines can be stored while
still fitting within the maximum allowed size.
The stream ID of the VBI data is 0xBD. The maximum size of the embedded data is 4 + 43 * 36, which
is 4 bytes for a header and 2 * 18 VBI lines with a 1 byte header and a 42 bytes payload each. Anything
beyond this limit is cut off by the cx23415/6 firmware. Besides the data for the VBI lines we also need
36 bits for a bitmask determining which lines are captured and 4 bytes for a magic cookie, signifying that
this data package contains V4L2_MPEG_STREAM_VBI_FMT_IVTV VBI data. If all lines are used, then there
is no longer room for the bitmask. To solve this two different magic numbers were introduced:
‘itv0’: After this magic number two unsigned longs follow. Bits 0-17 of the first unsigned long denote
which lines of the first field are captured. Bits 18-31 of the first unsigned long and bits 0-3 of the second
unsigned long are used for the second field.
‘ITV0’: This magic number assumes all VBI lines are captured, i.e. it implicitly implies that the bitmasks
are 0xffffffff and 0xf.
After these magic cookies (and the 8 byte bitmask in case of cookie ‘itv0’) the captured VBI lines start:
For each line the least significant 4 bits of the first byte contain the data type. Possible values are shown
in the table below. The payload is in the following 42 bytes.
Here is the list of possible data types:

#define IVTV_SLICED_TYPE_TELETEXT 0x1 // Teletext (uses lines 6-22 for PAL)
#define IVTV_SLICED_TYPE_CC 0x4 // Closed Captions (line 21 NTSC)
#define IVTV_SLICED_TYPE_WSS 0x5 // Wide Screen Signal (line 23 PAL)
#define IVTV_SLICED_TYPE_VPS 0x7 // Video Programming System (PAL) (line 16)

4.11. The cx2341x driver 991

mailto:hverkuil@xs4all.nl

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.12 The cx88 driver

Author: Gerd Hoffmann
This is a v4l2 device driver for the cx2388x chip.

4.12.1 Current status

video
• Works.
• Overlay isn’t supported.

audio
• Works. The TV standard detection is made by the driver, as the hardware has bugs to auto-

detect.
• audio data dma (i.e. recording without loopback cable to the sound card) is supported via cx88-

alsa.
vbi

• Works.

4.12.2 How to add support for new cards

The driver needs some config info for the TV cards. This stuff is in cx88-cards.c. If the driver doesn’t
work well you likely need a new entry for your card in that file. Check the kernel log (using dmesg) to see
whenever the driver knows your card or not. There is a line like this one:

cx8800[0]: subsystem: 0070:3400, board: Hauppauge WinTV \
34xxx models [card=1,autodetected]

If your card is listed as “board: UNKNOWN/GENERIC” it is unknown to the driver. What to do then?
1. Try upgrading to the latest snapshot, maybe it has been added meanwhile.
2. You can try to create a new entry yourself, have a look at cx88-cards.c. If that worked, mail me your

changes as unified diff (“diff -u”).
3. Or you can mail me the config information. We need at least the following information to add the

card:
• the PCI Subsystem ID (“0070:3400” from the line above, “lspci -v” output is fine too).
• the tuner type used by the card. You can try to find one by trial-and-error using the tuner=<n>

insmod option. If you know which one the card has you can also have a look at the list in
CARDLIST.tuner

4.12.3 Documentation missing at the cx88 datasheet

MO_OUTPUT_FORMAT (0x310164)

Previous default from DScaler: 0x1c1f0008
Digit 8: 31-28
28: PREVREMOD = 1

Digit 7: 27-24 (0xc = 12 = b1100)
27: COMBALT = 1
26: PAL_INV_PHASE

992 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

(DScaler apparently set this to 1, resulted in sucky picture)

Digits 6,5: 23-16
25-16: COMB_RANGE = 0x1f [default] (9 bits -> max 512)

Digit 4: 15-12
15: DISIFX = 0
14: INVCBF = 0
13: DISADAPT = 0
12: NARROWADAPT = 0

Digit 3: 11-8
11: FORCE2H
10: FORCEREMD
9: NCHROMAEN
8: NREMODEN

Digit 2: 7-4
7-6: YCORE
5-4: CCORE

Digit 1: 3-0
3: RANGE = 1
2: HACTEXT
1: HSFMT

0x47 is the sync byte for MPEG-2 transport stream packets. Datasheet incorrectly states to use 47 decimal.
188 is the length. All DVB compliant frontends output packets with this start code.

4.12.4 Hauppauge WinTV cx88 IR information

The controls for the mux are GPIO [0,1] for source, and GPIO 2 for muting.
GPIO0 GPIO1
0 0 TV Audio
1 0 FM radio
0 1 Line-In
1 1 Mono tuner bypass or CD passthru (tuner specific)
GPIO 16(I believe) is tied to the IR port (if present).
From the data sheet:

• Register 24’h20004 PCI Interrupt Status
• bit [18] IR_SMP_INT Set when 32 input samples have been collected over
• gpio[16] pin into GP_SAMPLE register.

What’s missing from the data sheet:
• Setup 4KHz sampling rate (roughly 2x oversampled; good enough for our RC5 compat remote)
• set register 0x35C050 to 0xa80a80
• enable sampling
• set register 0x35C054 to 0x5
• enable the IRQ bit 18 in the interrupt mask register (and provide for a handler)

GP_SAMPLE register is at 0x35C058
Bits are then right shifted into the GP_SAMPLE register at the specified rate; you get an interrupt when a
full DWORD is received. You need to recover the actual RC5 bits out of the (oversampled) IR sensor bits.

4.12. The cx88 driver 993

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

(Hint: look for the 0/1and 1/0 crossings of the RC5 bi-phase data) An actual raw RC5 code will span 2-3
DWORDS, depending on the actual alignment.
I’m pretty sure when no IR signal is present the receiver is always in a marking state(1); but stray light,
etc can cause intermittent noise values as well. Remember, this is a free running sample of the IR receiver
state over time, so don’t assume any sample starts at any particular place.

Additional info

This data sheet (google search) seems to have a lovely description of the RC5 basics: http://www.atmel.
com/dyn/resources/prod_documents/doc2817.pdf
This document has more data: http://www.nenya.be/beor/electronics/rc5.htm
This document has a how to decode a bi-phase data stream: http://www.ee.washington.edu/circuit_
archive/text/ir_decode.txt
This document has still more info: http://www.xs4all.nl/~sbp/knowledge/ir/rc5.htm

4.13 The VPBE V4L2 driver design

4.13.1 File partitioning

V4L2 display device driver drivers/media/platform/davinci/vpbe_display.c
drivers/media/platform/davinci/vpbe_display.h

VPBE display controller drivers/media/platform/davinci/vpbe.c drivers/media/platform/davinci/vpbe.h
VPBE venc sub device driver drivers/media/platform/davinci/vpbe_venc.c

drivers/media/platform/davinci/vpbe_venc.h drivers/media/platform/davinci/vpbe_venc_regs.h
VPBE osd driver drivers/media/platform/davinci/vpbe_osd.c drivers/media/platform/davinci/vpbe_osd.h

drivers/media/platform/davinci/vpbe_osd_regs.h

4.13.2 Functional partitioning

Consists of the following (in the same order as the list under file partitioning):
1. V4L2 display driver Implements creation of video2 and video3 device nodes and provides v4l2 device

interface to manage VID0 and VID1 layers.
2. Display controller Loads up VENC, OSD and external encoders such as ths8200. It provides a set of API

calls to V4L2 drivers to set the output/standards in the VENC or external sub devices. It also provides
a device object to access the services from OSD subdevice using sub device ops. The connection
of external encoders to VENC LCD controller port is done at init time based on default output and
standard selection or at run time when application change the output through V4L2 IOCTLs.
When connected to an external encoder, vpbe controller is also responsible for setting up the in-
terface between VENC and external encoders based on board specific settings (specified in board-
xxx-evm.c). This allows interfacing external encoders such as ths8200. The setup_if_config() is
implemented for this as well as configure_venc() (part of the next patch) API to set timings in VENC
for a specific display resolution. As of this patch series, the interconnection and enabling and setting
of the external encoders is not present, and would be a part of the next patch series.

3. VENC subdevice module Responsible for setting outputs provided through internal DACs and also
setting timings at LCD controller port when external encoders are connected at the port or LCD
panel timings required. When external encoder/LCD panel is connected, the timings for a specific
standard/preset is retrieved from the board specific table and the values are used to set the timings
in venc using non-standard timing mode.

994 Chapter 4. Video4Linux (V4L) driver-specific documentation

http://www.atmel.com/dyn/resources/prod_documents/doc2817.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2817.pdf
http://www.nenya.be/beor/electronics/rc5.htm
http://www.ee.washington.edu/circuit_archive/text/ir_decode.txt
http://www.ee.washington.edu/circuit_archive/text/ir_decode.txt
http://www.xs4all.nl/~sbp/knowledge/ir/rc5.htm

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Support LCD Panel displays using the VENC. For example to support a Logic PD display, it requires
setting up the LCD controller port with a set of timings for the resolution supported and setting the dot
clock. So we could add the available outputs as a board specific entry (i.e add the “LogicPD” output
name to board-xxx-evm.c). A table of timings for various LCDs supported can be maintained in the
board specific setup file to support various LCD displays.As of this patch a basic driver is present,
and this support for external encoders and displays forms a part of the next patch series.

4. OSD module OSD module implements all OSD layer management and hardware specific features.
The VPBE module interacts with the OSD for enabling and disabling appropriate features of the OSD.

4.13.3 Current status

A fully functional working version of the V4L2 driver is available. This driver has been tested with NTSC
and PAL standards and buffer streaming.

4.13.4 To be done

vpbe display controller
• Add support for external encoders.
• add support for selecting external encoder as default at probe time.

vpbe venc sub device
• add timings for supporting ths8200
• add support for LogicPD LCD.

FB drivers
• Add support for fbdev drivers.- Ready and part of subsequent patches.

4.14 The Samsung S5P/EXYNOS4 FIMC driver

Copyright © 2012 - 2013 Samsung Electronics Co., Ltd.
The FIMC (Fully Interactive Mobile Camera) device available in Samsung SoC Application Processors is an
integrated camera host interface, color space converter, image resizer and rotator. It’s also capable of
capturing data from LCD controller (FIMD) through the SoC internal writeback data path. There are multiple
FIMC instances in the SoCs (up to 4), having slightly different capabilities, like pixel alignment constraints,
rotator availability, LCD writeback support, etc. The driver is located at drivers/media/platform/exynos4-is
directory.

4.14.1 Supported SoCs

S5PC100 (mem-to-mem only), S5PV210, EXYNOS4210

4.14.2 Supported features

• camera parallel interface capture (ITU-R.BT601/565);
• camera serial interface capture (MIPI-CSI2);
• memory-to-memory processing (color space conversion, scaling, mirror and rotation);
• dynamic pipeline re-configuration at runtime (re-attachment of any FIMC instance to any parallel

video input or any MIPI-CSI front-end);

4.14. The Samsung S5P/EXYNOS4 FIMC driver 995

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• runtime PM and system wide suspend/resume

4.14.3 Not currently supported

• LCD writeback input
• per frame clock gating (mem-to-mem)

4.14.4 Files partitioning

• media device driver drivers/media/platform/exynos4-is/media-dev.[ch]
• camera capture video device driver drivers/media/platform/exynos4-is/fimc-capture.c
• MIPI-CSI2 receiver subdev drivers/media/platform/exynos4-is/mipi-csis.[ch]
• video post-processor (mem-to-mem) drivers/media/platform/exynos4-is/fimc-core.c
• common files drivers/media/platform/exynos4-is/fimc-core.h drivers/media/platform/exynos4-

is/fimc-reg.h drivers/media/platform/exynos4-is/regs-fimc.h

4.14.5 User space interfaces

Media device interface

The driver supports Media Controller API as defined at Part IV - Media Controller API . The media device
driver name is “SAMSUNG S5P FIMC”.
The purpose of this interface is to allow changing assignment of FIMC instances to the SoC peripheral
camera input at runtime and optionally to control internal connections of the MIPI-CSIS device(s) to the
FIMC entities.
The media device interface allows to configure the SoC for capturing image data from the sensor through
more than one FIMC instance (e.g. for simultaneous viewfinder and still capture setup). Reconfiguration
is done by enabling/disabling media links created by the driver during initialization. The internal device
topology can be easily discovered through media entity and links enumeration.

Memory-to-memory video node

V4L2 memory-to-memory interface at /dev/video? device node. This is standalone video device, it has
no media pads. However please note the mem-to-mem and capture video node operation on same FIMC
instance is not allowed. The driver detects such cases but the applications should prevent them to avoid
an undefined behaviour.

Capture video node

The driver supports V4L2 Video Capture Interface as defined at Interfaces .
At the capture and mem-to-mem video nodes only the multi-planar API is supported. For more details see:
Single- and multi-planar APIs .

Camera capture subdevs

Each FIMC instance exports a sub-device node (/dev/v4l-subdev?), a sub-device node is also created per
each available and enabled at the platform level MIPI-CSI receiver device (currently up to two).

996 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

sysfs

In order to enable more precise camera pipeline control through the sub-device API the driver creates a
sysfs entry associated with “s5p-fimc-md” platform device. The entry path is: /sys/platform/devices/s5p-
fimc-md/subdev_conf_mode.
In typical use case there could be a following capture pipeline configuration: sensor subdev -> mipi-csi
subdev -> fimc subdev -> video node
When we configure these devices through sub-device API at user space, the configuration flow must be
from left to right, and the video node is configured as last one. When we don’t use sub-device user
space API the whole configuration of all devices belonging to the pipeline is done at the video node
driver. The sysfs entry allows to instruct the capture node driver not to configure the sub-devices (format,
crop), to avoid resetting the subdevs’ configuration when the last configuration steps at the video node
is performed.
For full sub-device control support (subdevs configured at user space before starting streaming):

echo "sub-dev" > /sys/platform/devices/s5p-fimc-md/subdev_conf_mode

For V4L2 video node control only (subdevs configured internally by the host driver):

echo "vid-dev" > /sys/platform/devices/s5p-fimc-md/subdev_conf_mode

This is a default option.

4.14.6 5. Device mapping to video and subdev device nodes

There are associated two video device nodes with each device instance in hardware - video capture and
mem-to-mem and additionally a subdev node for more precise FIMC capture subsystem control. In addition
a separate v4l2 sub-device node is created per each MIPI-CSIS device.
How to find out which /dev/video? or /dev/v4l-subdev? is assigned to which device?
You can either grep through the kernel log to find relevant information, i.e.

dmesg | grep -i fimc

(note that udev, if present, might still have rearranged the video nodes),
or retrieve the information from /dev/media? with help of the media-ctl tool:

media-ctl -p

4.14.7 7. Build

If the driver is built as a loadable kernel module (CONFIG_VIDEO_SAMSUNG_S5P_FIMC=m) two modules
are created (in addition to the core v4l2 modules): s5p-fimc.ko and optional s5p-csis.ko (MIPI-CSI receiver
subdev).

4.15 i.MX Video Capture Driver

4.15.1 Introduction

The Freescale i.MX5/6 contains an Image Processing Unit (IPU), which handles the flow of image frames
to and from capture devices and display devices.
For image capture, the IPU contains the following internal subunits:

4.15. i.MX Video Capture Driver 997

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• Image DMA Controller (IDMAC)
• Camera Serial Interface (CSI)
• Image Converter (IC)
• Sensor Multi-FIFO Controller (SMFC)
• Image Rotator (IRT)
• Video De-Interlacing or Combining Block (VDIC)

The IDMAC is the DMA controller for transfer of image frames to and from memory. Various dedicated
DMA channels exist for both video capture and display paths. During transfer, the IDMAC is also capable
of vertical image flip, 8x8 block transfer (see IRT description), pixel component re-ordering (for example
UYVY to YUYV) within the same colorspace, and even packed <–> planar conversion. It can also perform
a simple de-interlacing by interleaving even and odd lines during transfer (without motion compensation
which requires the VDIC).
The CSI is the backend capture unit that interfaces directly with camera sensors over Parallel, BT.656/1120,
and MIPI CSI-2 busses.
The IC handles color-space conversion, resizing (downscaling and upscaling), horizontal flip, and 90/270
degree rotation operations.
There are three independent “tasks” within the IC that can carry out conversions concurrently: pre-process
encoding, pre-process viewfinder, and post-processing. Within each task, conversions are split into three
sections: downsizing section, main section (upsizing, flip, colorspace conversion, and graphics plane
combining), and rotation section.
The IPU time-shares the IC task operations. The time-slice granularity is one burst of eight pixels in the
downsizing section, one image line in the main processing section, one image frame in the rotation section.
The SMFC is composed of four independent FIFOs that each can transfer captured frames from sensors
directly to memory concurrently via four IDMAC channels.
The IRT carries out 90 and 270 degree image rotation operations. The rotation operation is carried out on
8x8 pixel blocks at a time. This operation is supported by the IDMAC which handles the 8x8 block transfer
along with block reordering, in coordination with vertical flip.
The VDIC handles the conversion of interlaced video to progressive, with support for different motion
compensation modes (low, medium, and high motion). The deinterlaced output frames from the VDIC can
be sent to the IC pre-process viewfinder task for further conversions. The VDIC also contains a Combiner
that combines two image planes, with alpha blending and color keying.
In addition to the IPU internal subunits, there are also two units outside the IPU that are also involved in
video capture on i.MX:

• MIPI CSI-2 Receiver for camera sensors with the MIPI CSI-2 bus interface. This is a Synopsys Design-
Ware core.

• Two video multiplexers for selecting among multiple sensor inputs to send to a CSI.
For more info, refer to the latest versions of the i.MX5/6 reference manuals 1 and 2.

4.15.2 Features

Some of the features of this driver include:
• Many different pipelines can be configured via media controller API, that correspond to the hardware

video capture pipelines supported in the i.MX.
• Supports parallel, BT.565, and MIPI CSI-2 interfaces.

1 http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6DQRM.pdf
2 http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6SDLRM.pdf

998 Chapter 4. Video4Linux (V4L) driver-specific documentation

http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6DQRM.pdf
http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6SDLRM.pdf

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• Concurrent independent streams, by configuring pipelines to multiple video capture interfaces using
independent entities.

• Scaling, color-space conversion, horizontal and vertical flip, and image rotation via IC task subdevs.
• Many pixel formats supported (RGB, packed and planar YUV, partial planar YUV).
• The VDIC subdev supports motion compensated de-interlacing, with three motion compensation

modes: low, medium, and high motion. Pipelines are defined that allow sending frames to the VDIC
subdev directly from the CSI. There is also support in the future for sending frames to the VDIC from
memory buffers via a output/mem2mem devices.

• Includes a Frame Interval Monitor (FIM) that can correct vertical sync problems with the ADV718x
video decoders.

4.15.3 Entities

4.15.4 imx6-mipi-csi2

This is the MIPI CSI-2 receiver entity. It has one sink pad to receive the MIPI CSI-2 stream (usually from a
MIPI CSI-2 camera sensor). It has four source pads, corresponding to the four MIPI CSI-2 demuxed virtual
channel outputs. Multpiple source pads can be enabled to independently stream from multiple virtual
channels.
This entity actually consists of two sub-blocks. One is the MIPI CSI-2 core. This is a Synopsys Designware
MIPI CSI-2 core. The other sub-block is a “CSI-2 to IPU gasket”. The gasket acts as a demultiplexer of the
four virtual channels streams, providing four separate parallel buses containing each virtual channel that
are routed to CSIs or video multiplexers as described below.
On i.MX6 solo/dual-lite, all four virtual channel buses are routed to two video multiplexers. Both CSI0 and
CSI1 can receive any virtual channel, as selected by the video multiplexers.
On i.MX6 Quad, virtual channel 0 is routed to IPU1-CSI0 (after selected by a video mux), virtual channels 1
and 2 are hard-wired to IPU1-CSI1 and IPU2-CSI0, respectively, and virtual channel 3 is routed to IPU2-CSI1
(again selected by a video mux).

4.15.5 ipuX_csiY_mux

These are the video multiplexers. They have two or more sink pads to select from either camera sensors
with a parallel interface, or from MIPI CSI-2 virtual channels from imx6-mipi-csi2 entity. They have a single
source pad that routes to a CSI (ipuX_csiY entities).
On i.MX6 solo/dual-lite, there are two video mux entities. One sits in front of IPU1-CSI0 to select between
a parallel sensor and any of the four MIPI CSI-2 virtual channels (a total of five sink pads). The other mux
sits in front of IPU1-CSI1, and again has five sink pads to select between a parallel sensor and any of the
four MIPI CSI-2 virtual channels.
On i.MX6 Quad, there are two video mux entities. One sits in front of IPU1-CSI0 to select between a parallel
sensor and MIPI CSI-2 virtual channel 0 (two sink pads). The other mux sits in front of IPU2-CSI1 to select
between a parallel sensor and MIPI CSI-2 virtual channel 3 (two sink pads).

4.15.6 ipuX_csiY

These are the CSI entities. They have a single sink pad receiving from either a video mux or from a MIPI
CSI-2 virtual channel as described above.
This entity has two source pads. The first source pad can link directly to the ipuX_vdic entity or the
ipuX_ic_prp entity, using hardware links that require no IDMAC memory buffer transfer.
When the direct source pad is routed to the ipuX_ic_prp entity, frames from the CSI can be processed by
one or both of the IC pre-processing tasks.

4.15. i.MX Video Capture Driver 999

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

When the direct source pad is routed to the ipuX_vdic entity, the VDIC will carry out motion-compensated
de-interlace using “high motion” mode (see description of ipuX_vdic entity).
The second source pad sends video frames directly to memory buffers via the SMFC and an IDMAC channel,
bypassing IC pre-processing. This source pad is routed to a capture device node, with a node name of the
format “ipuX_csiY capture”.
Note that since the IDMAC source pad makes use of an IDMAC channel, it can do pixel reordering within
the same colorspace. For example, the sink pad can take UYVY2X8, but the IDMAC source pad can output
YUYV2X8. If the sink pad is receiving YUV, the output at the capture device can also be converted to a
planar YUV format such as YUV420.
It will also perform simple de-interlace without motion compensation, which is activated if the sink pad’s
field type is an interlaced type, and the IDMAC source pad field type is set to none.
This subdev can generate the following event when enabling the second IDMAC source pad:

• V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR
The user application can subscribe to this event from the ipuX_csiY subdev node. This event is generated
by the Frame Interval Monitor (see below for more on the FIM).

4.15.7 Cropping in ipuX_csiY

The CSI supports cropping the incoming raw sensor frames. This is implemented in the ipuX_csiY entities
at the sink pad, using the crop selection subdev API.
The CSI also supports fixed divide-by-two downscaling indepently in width and height. This is implemented
in the ipuX_csiY entities at the sink pad, using the compose selection subdev API.
The output rectangle at the ipuX_csiY source pad is the same as the compose rectangle at the sink pad.
So the source pad rectangle cannot be negotiated, it must be set using the compose selection API at sink
pad (if /2 downscale is desired, otherwise source pad rectangle is equal to incoming rectangle).
To give an example of crop and /2 downscale, this will crop a 1280x960 input frame to 640x480, and then
/2 downscale in both dimensions to 320x240 (assumes ipu1_csi0 is linked to ipu1_csi0_mux):
media-ctl -V “‘ipu1_csi0_mux’:2[fmt:UYVY2X8/1280x960]” media-ctl -V “‘ipu1_csi0’:0[crop:(0,0)/640x480]”
media-ctl -V “‘ipu1_csi0’:0[compose:(0,0)/320x240]”

4.15.8 Frame Skipping in ipuX_csiY

The CSI supports frame rate decimation, via frame skipping. Frame rate decimation is specified by setting
the frame intervals at sink and source pads. The ipuX_csiY entity then applies the best frame skip setting
to the CSI to achieve the desired frame rate at the source pad.
The following example reduces an assumed incoming 60 Hz frame rate by half at the IDMAC output source
pad:
media-ctl -V “‘ipu1_csi0’:0[fmt:UYVY2X8/640x480@1/60]” media-ctl -V “‘ipu1_csi0’:2[fmt:UYVY2X8/640x480@1/30]”

4.15.9 Frame Interval Monitor in ipuX_csiY

The adv718x decoders can occasionally send corrupt fields during NTSC/PAL signal re-sync (too little or
too many video lines). When this happens, the IPU triggers a mechanism to re-establish vertical sync by
adding 1 dummy line every frame, which causes a rolling effect from image to image, and can last a long
time before a stable image is recovered. Or sometimes the mechanism doesn’t work at all, causing a
permanent split image (one frame contains lines from two consecutive captured images).
From experiment it was found that during image rolling, the frame intervals (elapsed time between two
EOF’s) drop below the nominal value for the current standard, by about one frame time (60 usec), and
remain at that value until rolling stops.

1000 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

While the reason for this observation isn’t known (the IPU dummy line mechanism should show an increase
in the intervals by 1 line time every frame, not a fixed value), we can use it to detect the corrupt fields
using a frame interval monitor. If the FIM detects a bad frame interval, the ipuX_csiY subdev will send the
event V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR. Userland can register with the FIM event notification
on the ipuX_csiY subdev device node. Userland can issue a streaming restart when this event is received
to correct the rolling/split image.
The ipuX_csiY subdev includes custom controls to tweak some dials for FIM. If one of these controls is
changed during streaming, the FIM will be reset and will continue at the new settings.

• V4L2_CID_IMX_FIM_ENABLE
Enable/disable the FIM.

• V4L2_CID_IMX_FIM_NUM
How many frame interval measurements to average before comparing against the nominal frame interval
reported by the sensor. This can reduce noise caused by interrupt latency.

• V4L2_CID_IMX_FIM_TOLERANCE_MIN
If the averaged intervals fall outside nominal by this amount, in microseconds, the
V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR event is sent.

• V4L2_CID_IMX_FIM_TOLERANCE_MAX
If any intervals are higher than this value, those samples are discarded and do not enter into the average.
This can be used to discard really high interval errors that might be due to interrupt latency from high
system load.

• V4L2_CID_IMX_FIM_NUM_SKIP
How many frames to skip after a FIM reset or stream restart before FIM begins to average intervals.

• V4L2_CID_IMX_FIM_ICAP_CHANNEL
• V4L2_CID_IMX_FIM_ICAP_EDGE

These controls will configure an input capture channel as the method for measuring frame intervals. This
is superior to the default method of measuring frame intervals via EOF interrupt, since it is not subject to
uncertainty errors introduced by interrupt latency.
Input capture requires hardware support. A VSYNC signal must be routed to one of the i.MX6 input capture
channel pads.
V4L2_CID_IMX_FIM_ICAP_CHANNEL configures which i.MX6 input capture channel to use. This must be 0
or 1.
V4L2_CID_IMX_FIM_ICAP_EDGE configures which signal edge will trigger input capture events. By
default the input capture method is disabled with a value of IRQ_TYPE_NONE. Set this control to
IRQ_TYPE_EDGE_RISING, IRQ_TYPE_EDGE_FALLING, or IRQ_TYPE_EDGE_BOTH to enable input capture,
triggered on the given signal edge(s).
When input capture is disabled, frame intervals will be measured via EOF interrupt.

4.15.10 ipuX_vdic

The VDIC carries out motion compensated de-interlacing, with three motion compensation modes: low,
medium, and high motion. The mode is specified with the menu control V4L2_CID_DEINTERLACING_MODE.
It has two sink pads and a single source pad.
The direct sink pad receives from an ipuX_csiY direct pad. With this link the VDIC can only operate in high
motion mode.
When the IDMAC sink pad is activated, it receives from an output or mem2mem device node. With this
pipeline, it can also operate in low and medium modes, because these modes require receiving frames

4.15. i.MX Video Capture Driver 1001

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

from memory buffers. Note that an output or mem2mem device is not implemented yet, so this sink pad
currently has no links.
The source pad routes to the IC pre-processing entity ipuX_ic_prp.

4.15.11 ipuX_ic_prp

This is the IC pre-processing entity. It acts as a router, routing data from its sink pad to one or both of its
source pads.
It has a single sink pad. The sink pad can receive from the ipuX_csiY direct pad, or from ipuX_vdic.
This entity has two source pads. One source pad routes to the pre-process encode task entity
(ipuX_ic_prpenc), the other to the pre-process viewfinder task entity (ipuX_ic_prpvf). Both source pads
can be activated at the same time if the sink pad is receiving from ipuX_csiY. Only the source pad to the
pre-process viewfinder task entity can be activated if the sink pad is receiving from ipuX_vdic (frames
from the VDIC can only be processed by the pre-process viewfinder task).

4.15.12 ipuX_ic_prpenc

This is the IC pre-processing encode entity. It has a single sink pad from ipuX_ic_prp, and a single source
pad. The source pad is routed to a capture device node, with a node name of the format “ipuX_ic_prpenc
capture”.
This entity performs the IC pre-process encode task operations: color-space conversion, resizing (down-
scaling and upscaling), horizontal and vertical flip, and 90/270 degree rotation. Flip and rotation are
provided via standard V4L2 controls.
Like the ipuX_csiY IDMAC source, it can also perform simple de-interlace without motion compensation,
and pixel reordering.

4.15.13 ipuX_ic_prpvf

This is the IC pre-processing viewfinder entity. It has a single sink pad from ipuX_ic_prp, and a single source
pad. The source pad is routed to a capture device node, with a node name of the format “ipuX_ic_prpvf
capture”.
It is identical in operation to ipuX_ic_prpenc, with the same resizing and CSC operations and flip/rotation
controls. It will receive and process de-interlaced frames from the ipuX_vdic if ipuX_ic_prp is receiving
from ipuX_vdic.
Like the ipuX_csiY IDMAC source, it can perform simple de-interlace without motion compensation. How-
ever, note that if the ipuX_vdic is included in the pipeline (ipuX_ic_prp is receiving from ipuX_vdic), it’s
not possible to use simple de-interlace in ipuX_ic_prpvf, since the ipuX_vdic has already carried out de-
interlacing (with motion compensation) and therefore the field type output from ipuX_ic_prp can only be
none.

4.15.14 Capture Pipelines

The following describe the various use-cases supported by the pipelines.
The links shown do not include the backend sensor, video mux, or mipi csi-2 receiver links. This depends
on the type of sensor interface (parallel or mipi csi-2). So these pipelines begin with:
sensor -> ipuX_csiY_mux -> ...
for parallel sensors, or:
sensor -> imx6-mipi-csi2 -> (ipuX_csiY_mux) -> ...

1002 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

for mipi csi-2 sensors. The imx6-mipi-csi2 receiver may need to route to the video mux (ipuX_csiY_mux)
before sending to the CSI, depending on the mipi csi-2 virtual channel, hence ipuX_csiY_mux is shown in
parenthesis.

4.15.15 Unprocessed Video Capture:

Send frames directly from sensor to camera device interface node, with no conversions, via ipuX_csiY
IDMAC source pad:
-> ipuX_csiY:2 -> ipuX_csiY capture

4.15.16 IC Direct Conversions:

This pipeline uses the preprocess encode entity to route frames directly from the CSI to the IC, to carry
out scaling up to 1024x1024 resolution, CSC, flipping, and image rotation:
-> ipuX_csiY:1 -> 0:ipuX_ic_prp:1 -> 0:ipuX_ic_prpenc:1 -> ipuX_ic_prpenc capture

4.15.17 Motion Compensated De-interlace:

This pipeline routes frames from the CSI direct pad to the VDIC entity to support motion-compensated
de-interlacing (high motion mode only), scaling up to 1024x1024, CSC, flip, and rotation:
-> ipuX_csiY:1 -> 0:ipuX_vdic:2 -> 0:ipuX_ic_prp:2 -> 0:ipuX_ic_prpvf:1 -> ipuX_ic_prpvf capture

4.15.18 Usage Notes

To aid in configuration and for backward compatibility with V4L2 applications that access controls only
from video device nodes, the capture device interfaces inherit controls from the active entities in the
current pipeline, so controls can be accessed either directly from the subdev or from the active capture
device interface. For example, the FIM controls are available either from the ipuX_csiY subdevs or from
the active capture device.
The following are specific usage notes for the Sabre* reference boards:

4.15.19 SabreLite with OV5642 and OV5640

This platform requires the OmniVision OV5642 module with a parallel camera interface, and the OV5640
module with a MIPI CSI-2 interface. Both modules are available from Boundary Devices:
https://boundarydevices.com/product/nit6x_5mp https://boundarydevices.com/product/nit6x_5mp_mipi
Note that if only one camera module is available, the other sensor node can be disabled in the device
tree.
The OV5642 module is connected to the parallel bus input on the i.MX internal video mux to IPU1 CSI0.
It’s i2c bus connects to i2c bus 2.
The MIPI CSI-2 OV5640 module is connected to the i.MX internal MIPI CSI-2 receiver, and the four virtual
channel outputs from the receiver are routed as follows: vc0 to the IPU1 CSI0 mux, vc1 directly to IPU1
CSI1, vc2 directly to IPU2 CSI0, and vc3 to the IPU2 CSI1 mux. The OV5640 is also connected to i2c bus 2
on the SabreLite, therefore the OV5642 and OV5640 must not share the same i2c slave address.
The following basic example configures unprocessed video capture pipelines for both sensors. The OV5642
is routed to ipu1_csi0, and the OV5640, transmitting on MIPI CSI-2 virtual channel 1 (which is imx6-mipi-
csi2 pad 2), is routed to ipu1_csi1. Both sensors are configured to output 640x480, and the OV5642
outputs YUYV2X8, the OV5640 UYVY2X8:

4.15. i.MX Video Capture Driver 1003

https://boundarydevices.com/product/nit6x_5mp
https://boundarydevices.com/product/nit6x_5mp_mipi

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Setup links for OV5642
media-ctl -l "'ov5642 1-0042':0 -> 'ipu1_csi0_mux':1[1]"
media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
media-ctl -l "'ipu1_csi0':2 -> 'ipu1_csi0 capture':0[1]"
Setup links for OV5640
media-ctl -l "'ov5640 1-0040':0 -> 'imx6-mipi-csi2':0[1]"
media-ctl -l "'imx6-mipi-csi2':2 -> 'ipu1_csi1':0[1]"
media-ctl -l "'ipu1_csi1':2 -> 'ipu1_csi1 capture':0[1]"
Configure pads for OV5642 pipeline
media-ctl -V "'ov5642 1-0042':0 [fmt:YUYV2X8/640x480 field:none]"
media-ctl -V "'ipu1_csi0_mux':2 [fmt:YUYV2X8/640x480 field:none]"
media-ctl -V "'ipu1_csi0':2 [fmt:AYUV32/640x480 field:none]"
Configure pads for OV5640 pipeline
media-ctl -V "'ov5640 1-0040':0 [fmt:UYVY2X8/640x480 field:none]"
media-ctl -V "'imx6-mipi-csi2':2 [fmt:UYVY2X8/640x480 field:none]"
media-ctl -V "'ipu1_csi1':2 [fmt:AYUV32/640x480 field:none]"

Streaming can then begin independently on the capture device nodes “ipu1_csi0 capture” and “ipu1_csi1
capture”. The v4l2-ctl tool can be used to select any supported YUV pixelformat on the capture device
nodes, including planar.

4.15.20 SabreAuto with ADV7180 decoder

On the SabreAuto, an on-board ADV7180 SD decoder is connected to the parallel bus input on the internal
video mux to IPU1 CSI0.
The following example configures a pipeline to capture from the ADV7180 video decoder, assuming NTSC
720x480 input signals, with Motion Compensated de-interlacing. Pad field types assume the adv7180
outputs “interlaced”. $outputfmt can be any format supported by the ipu1_ic_prpvf entity at its output
pad:

Setup links
media-ctl -l "'adv7180 3-0021':0 -> 'ipu1_csi0_mux':1[1]"
media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
media-ctl -l "'ipu1_csi0':1 -> 'ipu1_vdic':0[1]"
media-ctl -l "'ipu1_vdic':2 -> 'ipu1_ic_prp':0[1]"
media-ctl -l "'ipu1_ic_prp':2 -> 'ipu1_ic_prpvf':0[1]"
media-ctl -l "'ipu1_ic_prpvf':1 -> 'ipu1_ic_prpvf capture':0[1]"
Configure pads
media-ctl -V "'adv7180 3-0021':0 [fmt:UYVY2X8/720x480]"
media-ctl -V "'ipu1_csi0_mux':2 [fmt:UYVY2X8/720x480 field:interlaced]"
media-ctl -V "'ipu1_csi0':1 [fmt:AYUV32/720x480 field:interlaced]"
media-ctl -V "'ipu1_vdic':2 [fmt:AYUV32/720x480 field:none]"
media-ctl -V "'ipu1_ic_prp':2 [fmt:AYUV32/720x480 field:none]"
media-ctl -V "'ipu1_ic_prpvf':1 [fmt:$outputfmt field:none]"

Streaming can then begin on the capture device node at “ipu1_ic_prpvf capture”. The v4l2-ctl tool can be
used to select any supported YUV or RGB pixelformat on the capture device node.
This platform accepts Composite Video analog inputs to the ADV7180 on Ain1 (connector J42).

4.15.21 SabreSD with MIPI CSI-2 OV5640

Similarly to SabreLite, the SabreSD supports a parallel interface OV5642 module on IPU1 CSI0, and a MIPI
CSI-2 OV5640 module. The OV5642 connects to i2c bus 1 and the OV5640 to i2c bus 2.
The device tree for SabreSD includes OF graphs for both the parallel OV5642 and the MIPI CSI-2 OV5640,
but as of this writing only the MIPI CSI-2 OV5640 has been tested, so the OV5642 node is currently disabled.
The OV5640 module connects to MIPI connector J5 (sorry I don’t have the compatible module part number
or URL).

1004 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The following example configures a direct conversion pipeline to capture from the OV5640, transmitting
on MIPI CSI-2 virtual channel 1. $sensorfmt can be any format supported by the OV5640. $sensordim
is the frame dimension part of $sensorfmt (minus the mbus pixel code). $outputfmt can be any format
supported by the ipu1_ic_prpenc entity at its output pad:

Setup links
media-ctl -l "'ov5640 1-003c':0 -> 'imx6-mipi-csi2':0[1]"
media-ctl -l "'imx6-mipi-csi2':2 -> 'ipu1_csi1':0[1]"
media-ctl -l "'ipu1_csi1':1 -> 'ipu1_ic_prp':0[1]"
media-ctl -l "'ipu1_ic_prp':1 -> 'ipu1_ic_prpenc':0[1]"
media-ctl -l "'ipu1_ic_prpenc':1 -> 'ipu1_ic_prpenc capture':0[1]"
Configure pads
media-ctl -V "'ov5640 1-003c':0 [fmt:$sensorfmt field:none]"
media-ctl -V "'imx6-mipi-csi2':2 [fmt:$sensorfmt field:none]"
media-ctl -V "'ipu1_csi1':1 [fmt:AYUV32/$sensordim field:none]"
media-ctl -V "'ipu1_ic_prp':1 [fmt:AYUV32/$sensordim field:none]"
media-ctl -V "'ipu1_ic_prpenc':1 [fmt:$outputfmt field:none]"

Streaming can then begin on “ipu1_ic_prpenc capture” node. The v4l2-ctl tool can be used to select any
supported YUV or RGB pixelformat on the capture device node.

4.15.22 Known Issues

1. When using 90 or 270 degree rotation control at capture resolutions near the IC resizer limit of
1024x1024, and combined with planar pixel formats (YUV420, YUV422p), frame capture will often
fail with no end-of-frame interrupts from the IDMAC channel. To work around this, use lower resolution
and/or packed formats (YUYV, RGB3, etc.) when 90 or 270 rotations are needed.

4.15.23 File list

drivers/staging/media/imx/ include/media/imx.h include/linux/imx-media.h

4.15.24 References

4.15.25 Authors

• Steve Longerbeam <steve_longerbeam@mentor.com>
• Philipp Zabel <kernel@pengutronix.de>
• Russell King <linux@armlinux.org.uk>

Copyright (C) 2012-2017 Mentor Graphics Inc.

4.16 The ivtv driver

Author: Hans Verkuil <hverkuil@xs4all.nl>
This is a v4l2 device driver for the Conexant cx23415/6 MPEG encoder/decoder. The cx23415 can do both
encoding and decoding, the cx23416 can only do MPEG encoding. Currently the only card featuring full
decoding support is the Hauppauge PVR-350.

4.16. The ivtv driver 1005

mailto:steve_longerbeam@mentor.com
mailto:kernel@pengutronix.de
mailto:linux@armlinux.org.uk
mailto:hverkuil@xs4all.nl

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

1. This driver requires the latest encoder firmware (version 2.06.039, size 376836 bytes). Get the
firmware from here:
https://linuxtv.org/downloads/firmware/#conexant

2. ‘normal’ TV applications do not work with this driver, you need an application that can handle
MPEG input such as mplayer, xine, MythTV, etc.

The primary goal of the IVTV project is to provide a “clean room” Linux Open Source driver implementation
for video capture cards based on the iCompression iTVC15 or Conexant CX23415/CX23416 MPEG Codec.

4.16.1 Features

• Hardware mpeg2 capture of broadcast video (and sound) via the tuner or S-Video/Composite and
audio line-in.

• Hardware mpeg2 capture of FM radio where hardware support exists
• Supports NTSC, PAL, SECAM with stereo sound
• Supports SAP and bilingual transmissions.
• Supports raw VBI (closed captions and teletext).
• Supports sliced VBI (closed captions and teletext) and is able to insert this into the captured MPEG

stream.
• Supports raw YUV and PCM input.

4.16.2 Additional features for the PVR-350 (CX23415 based)

• Provides hardware mpeg2 playback
• Provides comprehensive OSD (On Screen Display: ie. graphics overlaying the video signal)
• Provides a framebuffer (allowing X applications to appear on the video device)
• Supports raw YUV output.

IMPORTANT: In case of problems first read this page: https://help.ubuntu.com/community/Install_
IVTV_Troubleshooting

4.16.3 See also

https://linuxtv.org

4.16.4 IRC

irc://irc.freenode.net/#v4l

1006 Chapter 4. Video4Linux (V4L) driver-specific documentation

https://linuxtv.org/downloads/firmware/#conexant
https://help.ubuntu.com/community/Install_IVTV_Troubleshooting
https://help.ubuntu.com/community/Install_IVTV_Troubleshooting
https://linuxtv.org

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.16.5 Devices

A maximum of 12 ivtv boards are allowed at the moment.
Cards that don’t have a video output capability (i.e. non PVR350 cards) lack the vbi8, vbi16, video16 and
video48 devices. They also do not support the framebuffer device /dev/fbx for OSD.
The radio0 device may or may not be present, depending on whether the card has a radio tuner or not.
Here is a list of the base v4l devices:

crw-rw---- 1 root video 81, 0 Jun 19 22:22 /dev/video0
crw-rw---- 1 root video 81, 16 Jun 19 22:22 /dev/video16
crw-rw---- 1 root video 81, 24 Jun 19 22:22 /dev/video24
crw-rw---- 1 root video 81, 32 Jun 19 22:22 /dev/video32
crw-rw---- 1 root video 81, 48 Jun 19 22:22 /dev/video48
crw-rw---- 1 root video 81, 64 Jun 19 22:22 /dev/radio0
crw-rw---- 1 root video 81, 224 Jun 19 22:22 /dev/vbi0
crw-rw---- 1 root video 81, 228 Jun 19 22:22 /dev/vbi8
crw-rw---- 1 root video 81, 232 Jun 19 22:22 /dev/vbi16

4.16.6 Base devices

For every extra card you have the numbers increased by one. For example, /dev/video0 is listed as the
‘base’ encoding capture device so we have:

• /dev/video0 is the encoding capture device for the first card (card 0)
• /dev/video1 is the encoding capture device for the second card (card 1)
• /dev/video2 is the encoding capture device for the third card (card 2)

Note that if the first card doesn’t have a feature (eg no decoder, so no video16, the second card will still
use video17. The simple rule is ‘add the card number to the base device number’. If you have other
capture cards (e.g. WinTV PCI) that are detected first, then you have to tell the ivtv module about it so
that it will start counting at 1 (or 2, or whatever). Otherwise the device numbers can get confusing. The
ivtv ‘ivtv_first_minor’ module option can be used for that.

• /dev/video0
The encoding capture device(s).
Read-only.
Reading from this device gets you the MPEG1/2 program stream. Example:

cat /dev/video0 > my.mpg (you need to hit ctrl-c to exit)

• /dev/video16
The decoder output device(s)
Write-only. Only present if the MPEG decoder (i.e. CX23415) exists.
An mpeg2 stream sent to this device will appear on the selected video display, audio will appear on
the line-out/audio out. It is only available for cards that support video out. Example:

cat my.mpg >/dev/video16

• /dev/video24
The raw audio capture device(s).
Read-only
The raw audio PCM stereo stream from the currently selected tuner or audio line-in. Reading from
this device results in a raw (signed 16 bit Little Endian, 48000 Hz, stereo pcm) capture. This device

4.16. The ivtv driver 1007

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

only captures audio. This should be replaced by an ALSA device in the future. Note that there is no
corresponding raw audio output device, this is not supported in the decoder firmware.

• /dev/video32
The raw video capture device(s)
Read-only
The raw YUV video output from the current video input. The YUV format is non-standard
(V4L2_PIX_FMT_HM12).
Note that the YUV and PCM streams are not synchronized, so they are of limited use.

• /dev/video48
The raw video display device(s)
Write-only. Only present if the MPEG decoder (i.e. CX23415) exists.
Writes a YUV stream to the decoder of the card.

• /dev/radio0
The radio tuner device(s)
Cannot be read or written.
Used to enable the radio tuner and tune to a frequency. You cannot read or write audio streams with
this device. Once you use this device to tune the radio, use /dev/video24 to read the raw pcm stream
or /dev/video0 to get an mpeg2 stream with black video.

• /dev/vbi0
The ‘vertical blank interval’ (Teletext, CC, WSS etc) capture device(s)
Read-only
Captures the raw (or sliced) video data sent during the Vertical Blank Interval. This data is used to
encode teletext, closed captions, VPS, widescreen signalling, electronic program guide information,
and other services.

• /dev/vbi8
Processed vbi feedback device(s)
Read-only. Only present if the MPEG decoder (i.e. CX23415) exists.
The sliced VBI data embedded in an MPEG stream is reproduced on this device. So while playing
back a recording on /dev/video16, you can read the embedded VBI data from /dev/vbi8.

• /dev/vbi16
The vbi ‘display’ device(s)
Write-only. Only present if the MPEG decoder (i.e. CX23415) exists.
Can be used to send sliced VBI data to the video-out connector.

4.17 Maxim Integrated MAX2175 RF to bits tuner driver

The MAX2175 driver implements the following driver-specific controls:

4.17.1 V4L2_CID_MAX2175_I2S_ENABLE

Enable/Disable I2S output of the tuner. This is a private control that can be accessed only using
the subdev interface. Refer to Documentation/media/kapi/v4l2-controls for more details.

1008 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

(0) I2S output is disabled.
(1) I2S output is enabled.

4.17.2 V4L2_CID_MAX2175_HSLS

The high-side/low-side (HSLS) control of the tuner for a given band.
(0) The LO frequency position is below the desired frequency.
(1) The LO frequency position is above the desired frequency.

4.17.3 V4L2_CID_MAX2175_RX_MODE (menu)

The Rx mode controls a number of preset parameters of the tuner like sample clock (sck),
sampling rate etc. These multiple settings are provided under one single label called Rx mode
in the datasheet. The list below shows the supported modes with a brief description.

"Europe modes"
"FM 1.2"
(0)

This configures FM band with a sample rate of 0.512 million samples/sec with a 10.24
MHz sck.

"DAB 1.2"
(1)

This configures VHF band with a sample rate of 2.048 million samples/sec with a 32.768
MHz sck.

"North America modes"
"FM 1.0"
(0)

This configures FM band with a sample rate of 0.7441875 million samples/sec with a
14.88375 MHz sck.

"DAB 1.2"
(1)

This configures FM band with a sample rate of 0.372 million samples/sec with a 7.441875
MHz sck.

4.18 Vaio Picturebook Motion Eye Camera Driver

Copyright © 2001-2004 Stelian Pop <stelian@popies.net>
Copyright © 2001-2002 Alcôve <www.alcove.com>
Copyright © 2000 Andrew Tridgell <tridge@samba.org>
This driver enable the use of video4linux compatible applications with the Motion Eye camera. This driver
requires the “Sony Laptop Extras” driver (which can be found in the “Misc devices” section of the kernel
configuration utility) to be compiled and installed (using its “camera=1” parameter).
It can do at maximum 30 fps @ 320x240 or 15 fps @ 640x480.
Grabbing is supported in packed YUV colorspace only.
MJPEG hardware grabbing is supported via a private API (see below).

4.18.1 Hardware supported

This driver supports the ‘second’ version of the MotionEye camera :)
The first version was connected directly on the video bus of the Neomagic video card and is unsupported.
The second one, made by Kawasaki Steel is fully supported by this driver (PCI vendor/device is
0x136b/0xff01)
The third one, present in recent (more or less last year) Picturebooks (C1M* models), is not supported.
The manufacturer has given the specs to the developers under a NDA (which allows the development
of a GPL driver however), but things are not moving very fast (see http://r-engine.sourceforge.net/) (PCI
vendor/device is 0x10cf/0x2011).

4.18. Vaio Picturebook Motion Eye Camera Driver 1009

mailto:stelian@popies.net
mailto:tridge@samba.org
http://r-engine.sourceforge.net/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

There is a forth model connected on the USB bus in TR1* Vaio laptops. This camera is not supported at
all by the current driver, in fact little information if any is available for this camera (USB vendor/device is
0x054c/0x0107).

4.18.2 Driver options

Several options can be passed to the meye driver using the standard module argument syntax
(<param>=<value> when passing the option to the module or meye.<param>=<value> on the ker-
nel boot line when meye is statically linked into the kernel). Those options are:

gbuffers: number of capture buffers, default is 2 (32 max)

gbufsize: size of each capture buffer, default is 614400

video_nr: video device to register (0 = /dev/video0, etc)

4.18.3 Module use

In order to automatically load the meye module on use, you can put those lines in your
/etc/modprobe.d/meye.conf file:

alias char-major-81 videodev
alias char-major-81-0 meye
options meye gbuffers=32

4.18.4 Usage:

xawtv >= 3.49 (<http://bytesex.org/xawtv/>)
for display and uncompressed video capture:

xawtv -c /dev/video0 -geometry 640x480
or

xawtv -c /dev/video0 -geometry 320x240

motioneye (<http://popies.net/meye/>)
for getting ppm or jpg snapshots, mjpeg video

4.18.5 Private API

The driver supports frame grabbing with the video4linux API, so all video4linux tools (like xawtv) should
work with this driver.
Besides the video4linux interface, the driver has a private interface for accessing the Motion Eye extended
parameters (camera sharpness, agc, video framerate), the shapshot and the MJPEG capture facilities.
This interface consists of several ioctls (prototypes and structures can be found in include/linux/meye.h):
MEYEIOC_G_PARAMS and MEYEIOC_S_PARAMS Get and set the extended parameters of the motion

eye camera. The user should always query the current parameters with MEYEIOC_G_PARAMS, change
what he likes and then issue the MEYEIOC_S_PARAMS call (checking for -EINVAL). The extended pa-
rameters are described by the meye_params structure.

MEYEIOC_QBUF_CAPT Queue a buffer for capture (the buffers must have been obtained with a VID-
IOCGMBUF call and mmap’ed by the application). The argument to MEYEIOC_QBUF_CAPT is the
buffer number to queue (or -1 to end capture). The first call to MEYEIOC_QBUF_CAPT starts the
streaming capture.

1010 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

MEYEIOC_SYNC Takes as an argument the buffer number you want to sync. This ioctl blocks until the
buffer is filled and ready for the application to use. It returns the buffer size.

MEYEIOC_STILLCAPT and MEYEIOC_STILLJCAPT Takes a snapshot in an uncompressed or com-
pressed jpeg format. This ioctl blocks until the snapshot is done and returns (for jpeg snapshot)
the size of the image. The image data is available from the first mmap’ed buffer.

Look at the ‘motioneye’ application code for an actual example.

4.18.6 Bugs / Todo

• ‘motioneye’ still uses the meye private v4l1 API extensions.

4.19 OMAP 3 Image Signal Processor (ISP) driver

Copyright © 2010 Nokia Corporation
Copyright © 2009 Texas Instruments, Inc.
Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>, Sakari Ailus <sakari.ailus@iki.fi>,
David Cohen <dacohen@gmail.com>

4.19.1 Introduction

This file documents the Texas Instruments OMAP 3 Image Signal Processor (ISP) driver located under
drivers/media/platform/omap3isp. The original driver was written by Texas Instruments but since that it
has been rewritten (twice) at Nokia.
The driver has been successfully used on the following versions of OMAP 3:

• 3430
• 3530
• 3630

The driver implements V4L2, Media controller and v4l2_subdev interfaces. Sensor, lens and flash drivers
using the v4l2_subdev interface in the kernel are supported.

4.19.2 Split to subdevs

The OMAP 3 ISP is split into V4L2 subdevs, each of the blocks inside the ISP having one subdev to represent
it. Each of the subdevs provide a V4L2 subdev interface to userspace.

• OMAP3 ISP CCP2
• OMAP3 ISP CSI2a
• OMAP3 ISP CCDC
• OMAP3 ISP preview
• OMAP3 ISP resizer
• OMAP3 ISP AEWB
• OMAP3 ISP AF
• OMAP3 ISP histogram

Each possible link in the ISP is modelled by a link in the Media controller interface. For an example program
see 2.

2 http://git.ideasonboard.org/?p=media-ctl.git;a=summary

4.19. OMAP 3 Image Signal Processor (ISP) driver 1011

mailto:laurent.pinchart@ideasonboard.com
mailto:sakari.ailus@iki.fi
mailto:dacohen@gmail.com
http://git.ideasonboard.org/?p=media-ctl.git;a=summary

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.19.3 Controlling the OMAP 3 ISP

In general, the settings given to the OMAP 3 ISP take effect at the beginning of the following frame. This
is done when the module becomes idle during the vertical blanking period on the sensor. In memory-
to-memory operation the pipe is run one frame at a time. Applying the settings is done between the
frames.
All the blocks in the ISP, excluding the CSI-2 and possibly the CCP2 receiver, insist on receiving complete
frames. Sensors must thus never send the ISP partial frames.
Autoidle does have issues with some ISP blocks on the 3430, at least. Autoidle is only enabled on 3630
when the omap3isp module parameter autoidle is non-zero.

4.19.4 Events

The OMAP 3 ISP driver does support the V4L2 event interface on CCDC and statistics (AEWB, AF and
histogram) subdevs.
The CCDC subdev produces V4L2_EVENT_FRAME_SYNC type event on HS_VS interrupt which is used to
signal frame start. Earlier version of this driver used V4L2_EVENT_OMAP3ISP_HS_VS for this purpose. The
event is triggered exactly when the reception of the first line of the frame starts in the CCDC module. The
event can be subscribed on the CCDC subdev.
(When using parallel interface one must pay account to correct configuration of the VS signal polarity.
This is automatically correct when using the serial receivers.)
Each of the statistics subdevs is able to produce events. An event is generated whenever a statistics
buffer can be dequeued by a user space application using the VIDIOC_OMAP3ISP_STAT_REQ IOCTL. The
events available are:

• V4L2_EVENT_OMAP3ISP_AEWB
• V4L2_EVENT_OMAP3ISP_AF
• V4L2_EVENT_OMAP3ISP_HIST

The type of the event data is struct omap3isp_stat_event_status for these ioctls. If there is an error
calculating the statistics, there will be an event as usual, but no related statistics buffer. In this case
omap3isp_stat_event_status.buf_err is set to non-zero.

4.19.5 Private IOCTLs

The OMAP 3 ISP driver supports standard V4L2 IOCTLs and controls where possible and practical. Much
of the functions provided by the ISP, however, does not fall under the standard IOCTLs — gamma tables
and configuration of statistics collection are examples of such.
In general, there is a private ioctl for configuring each of the blocks containing hardware-dependent func-
tions.
The following private IOCTLs are supported:

• VIDIOC_OMAP3ISP_CCDC_CFG
• VIDIOC_OMAP3ISP_PRV_CFG
• VIDIOC_OMAP3ISP_AEWB_CFG
• VIDIOC_OMAP3ISP_HIST_CFG
• VIDIOC_OMAP3ISP_AF_CFG
• VIDIOC_OMAP3ISP_STAT_REQ
• VIDIOC_OMAP3ISP_STAT_EN

1012 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The parameter structures used by these ioctls are described in include/linux/omap3isp.h. The detailed
functions of the ISP itself related to a given ISP block is described in the Technical Reference Manuals
(TRMs) — see the end of the document for those.
While it is possible to use the ISP driver without any use of these private IOCTLs it is not possible to obtain
optimal image quality this way. The AEWB, AF and histogram modules cannot be used without configuring
them using the appropriate private IOCTLs.

4.19.6 CCDC and preview block IOCTLs

The VIDIOC_OMAP3ISP_CCDC_CFG and VIDIOC_OMAP3ISP_PRV_CFG IOCTLs are used to configure, en-
able and disable functions in the CCDC and preview blocks, respectively. Both IOCTLs control several
functions in the blocks they control. VIDIOC_OMAP3ISP_CCDC_CFG IOCTL accepts a pointer to struct
omap3isp_ccdc_update_config as its argument. Similarly VIDIOC_OMAP3ISP_PRV_CFG accepts a pointer
to struct omap3isp_prev_update_config. The definition of both structures is available in 1.
The update field in the structures tells whether to update the configuration for the specific function and
the flag tells whether to enable or disable the function.
The update and flag bit masks accept the following values. Each separate functions in the CCDC and
preview blocks is associated with a flag (either disable or enable; part of the flag field in the structure)
and a pointer to configuration data for the function.
Valid values for the update and flag fields are listed here for VIDIOC_OMAP3ISP_CCDC_CFG. Values may
be or’ed to configure more than one function in the same IOCTL call.

• OMAP3ISP_CCDC_ALAW
• OMAP3ISP_CCDC_LPF
• OMAP3ISP_CCDC_BLCLAMP
• OMAP3ISP_CCDC_BCOMP
• OMAP3ISP_CCDC_FPC
• OMAP3ISP_CCDC_CULL
• OMAP3ISP_CCDC_CONFIG_LSC
• OMAP3ISP_CCDC_TBL_LSC

The corresponding values for the VIDIOC_OMAP3ISP_PRV_CFG are here:
• OMAP3ISP_PREV_LUMAENH
• OMAP3ISP_PREV_INVALAW
• OMAP3ISP_PREV_HRZ_MED
• OMAP3ISP_PREV_CFA
• OMAP3ISP_PREV_CHROMA_SUPP
• OMAP3ISP_PREV_WB
• OMAP3ISP_PREV_BLKADJ
• OMAP3ISP_PREV_RGB2RGB
• OMAP3ISP_PREV_COLOR_CONV
• OMAP3ISP_PREV_YC_LIMIT
• OMAP3ISP_PREV_DEFECT_COR
• OMAP3ISP_PREV_GAMMABYPASS
• OMAP3ISP_PREV_DRK_FRM_CAPTURE

1 include/linux/omap3isp.h

4.19. OMAP 3 Image Signal Processor (ISP) driver 1013

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• OMAP3ISP_PREV_DRK_FRM_SUBTRACT
• OMAP3ISP_PREV_LENS_SHADING
• OMAP3ISP_PREV_NF
• OMAP3ISP_PREV_GAMMA

The associated configuration pointer for the function may not be NULL when enabling the function. When
disabling a function the configuration pointer is ignored.

4.19.7 Statistic blocks IOCTLs

The statistics subdevs do offer more dynamic configuration options than the other subdevs. They can be
enabled, disable and reconfigured when the pipeline is in streaming state.
The statistics blocks always get the input image data from the CCDC (as the histogram memory read isn’t
implemented). The statistics are dequeueable by the user from the statistics subdev nodes using private
IOCTLs.
The private IOCTLs offered by the AEWB, AF and histogram subdevs are heavily reflected by the regis-
ter level interface offered by the ISP hardware. There are aspects that are purely related to the driver
implementation and these are discussed next.

4.19.8 VIDIOC_OMAP3ISP_STAT_EN

This private IOCTL enables/disables a statistic module. If this request is done before streaming, it will take
effect as soon as the pipeline starts to stream. If the pipeline is already streaming, it will take effect as
soon as the CCDC becomes idle.

4.19.9 VIDIOC_OMAP3ISP_AEWB_CFG, VIDIOC_OMAP3ISP_HIST_CFG and
VIDIOC_OMAP3ISP_AF_CFG

Those IOCTLs are used to configure the modules. They require user applications to have an in-depth
knowledge of the hardware. Most of the fields explanation can be found on OMAP’s TRMs. The two follow-
ing fields common to all the above configure private IOCTLs require explanation for better understanding
as they are not part of the TRM.
omap3isp_[h3a_af/h3a_aewb/hist]_config.buf_size:
The modules handle their buffers internally. The necessary buffer size for the module’s data output de-
pends on the requested configuration. Although the driver supports reconfiguration while streaming, it
does not support a reconfiguration which requires bigger buffer size than what is already internally allo-
cated if the module is enabled. It will return -EBUSY on this case. In order to avoid such condition, either
disable/reconfigure/enable the module or request the necessary buffer size during the first configuration
while the module is disabled.
The internal buffer size allocation considers the requested configuration’s minimum buffer size and the
value set on buf_size field. If buf_size field is out of [minimum, maximum] buffer size range, it’s clamped
to fit in there. The driver then selects the biggest value. The corrected buf_size value is written back to
user application.
omap3isp_[h3a_af/h3a_aewb/hist]_config.config_counter:
As the configuration doesn’t take effect synchronously to the request, the driver must provide a way to
track this information to provide more accurate data. After a configuration is requested, the config_counter
returned to user space application will be an unique value associated to that request. When user appli-
cation receives an event for buffer availability or when a new buffer is requested, this config_counter is
used to match a buffer data and a configuration.

1014 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.19.10 VIDIOC_OMAP3ISP_STAT_REQ

Send to user space the oldest data available in the internal buffer queue and discards such buffer after-
wards. The field omap3isp_stat_data.frame_number matches with the video buffer’s field_count.

4.19.11 Technical reference manuals (TRMs) and other documentation

OMAP 3430 TRM: <URL:http://focus.ti.com/pdfs/wtbu/OMAP34xx_ES3.1.x_PUBLIC_TRM_vZM.zip> Refer-
enced 2011-03-05.
OMAP 35xx TRM: <URL:http://www.ti.com/litv/pdf/spruf98o> Referenced 2011-03-05.
OMAP 3630 TRM: <URL:http://focus.ti.com/pdfs/wtbu/OMAP36xx_ES1.x_PUBLIC_TRM_vQ.zip> Referenced
2011-03-05.
DM 3730 TRM: <URL:http://www.ti.com/litv/pdf/sprugn4h> Referenced 2011-03-06.

4.19.12 References

4.20 OMAP4 ISS Driver

Author: Sergio Aguirre <sergio.a.aguirre@gmail.com>
Copyright (C) 2012, Texas Instruments

4.20.1 Introduction

The OMAP44XX family of chips contains the Imaging SubSystem (a.k.a. ISS), Which contains several
components that can be categorized in 3 big groups:

• Interfaces (2 Interfaces: CSI2-A & CSI2-B/CCP2)
• ISP (Image Signal Processor)
• SIMCOP (Still Image Coprocessor)

For more information, please look in 1 for latest version of: “OMAP4430 Multimedia Device Silicon Revision
2.x”
As of Revision AB, the ISS is described in detail in section 8.
This driver is supporting only the CSI2-A/B interfaces for now.
It makes use of the Media Controller framework 2, and inherited most of the code from OMAP3 ISP driver
(found under drivers/media/platform/omap3isp/*), except that it doesn’t need an IOMMU now for ISS
buffers memory mapping.
Supports usage of MMAP buffers only (for now).

4.20.2 Tested platforms

• OMAP4430SDP, w/ ES2.1 GP & SEVM4430-CAM-V1-0 (Contains IMX060 & OV5640, in which only the
last one is supported, outputting YUV422 frames).

• TI Blaze MDP, w/ OMAP4430 ES2.2 EMU (Contains 1 IMX060 & 2 OV5650 sensors, in which only the
OV5650 are supported, outputting RAW10 frames).

1 http://focus.ti.com/general/docs/wtbu/wtbudocumentcenter.tsp?navigationId=12037&templateId=6123#62
2 http://lwn.net/Articles/420485/

4.20. OMAP4 ISS Driver 1015

mailto:sergio.a.aguirre@gmail.com
http://focus.ti.com/general/docs/wtbu/wtbudocumentcenter.tsp?navigationId=12037&templateId=6123#62
http://lwn.net/Articles/420485/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• PandaBoard, Rev. A2, w/ OMAP4430 ES2.1 GP & OV adapter board, tested with following sensors: *
OV5640 * OV5650

• Tested on mainline kernel:
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=summary

Tag: v3.3 (commit c16fa4f2ad19908a47c63d8fa436a1178438c7e7)

4.20.3 File list

drivers/staging/media/omap4iss/ include/linux/platform_data/media/omap4iss.h

4.20.4 References

4.21 Philips webcams (pwc driver)

This file contains some additional information for the Philips and OEM webcams. E-mail: web-
cam@smcc.demon.nl Last updated: 2004-01-19 Site: http://www.smcc.demon.nl/webcam/
As of this moment, the following cameras are supported:

• Philips PCA645
• Philips PCA646
• Philips PCVC675
• Philips PCVC680
• Philips PCVC690
• Philips PCVC720/40
• Philips PCVC730
• Philips PCVC740
• Philips PCVC750
• Askey VC010
• Creative Labs Webcam 5
• Creative Labs Webcam Pro Ex
• Logitech QuickCam 3000 Pro
• Logitech QuickCam 4000 Pro
• Logitech QuickCam Notebook Pro
• Logitech QuickCam Zoom
• Logitech QuickCam Orbit
• Logitech QuickCam Sphere
• Samsung MPC-C10
• Samsung MPC-C30
• Sotec Afina Eye
• AME CU-001
• Visionite VCS-UM100
• Visionite VCS-UC300

1016 Chapter 4. Video4Linux (V4L) driver-specific documentation

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=summary
mailto:webcam@smcc.demon.nl
mailto:webcam@smcc.demon.nl
http://www.smcc.demon.nl/webcam/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The main webpage for the Philips driver is at the address above. It contains a lot of extra information,
a FAQ, and the binary plugin ‘PWCX’. This plugin contains decompression routines that allow you to use
higher image sizes and framerates; in addition the webcam uses less bandwidth on the USB bus (handy if
you want to run more than 1 camera simultaneously). These routines fall under a NDA, and may therefore
not be distributed as source; however, its use is completely optional.
You can build this code either into your kernel, or as a module. I recommend the latter, since it makes
troubleshooting a lot easier. The built-in microphone is supported through the USB Audio class.
When you load the module you can set some default settings for the camera; some programs depend on
a particular image-size or -format and don’t know how to set it properly in the driver. The options are:
size Can be one of ‘sqcif’, ‘qsif’, ‘qcif’, ‘sif’, ‘cif’ or ‘vga’, for an image size of resp. 128x96, 160x120,

176x144, 320x240, 352x288 and 640x480 (of course, only for those cameras that support these
resolutions).

fps Specifies the desired framerate. Is an integer in the range of 4-30.
fbufs This parameter specifies the number of internal buffers to use for storing frames from the cam. This

will help if the process that reads images from the cam is a bit slow or momentarily busy. However,
on slow machines it only introduces lag, so choose carefully. The default is 3, which is reasonable.
You can set it between 2 and 5.

mbufs This is an integer between 1 and 10. It will tell the module the number of buffers to reserve for
mmap(), VIDIOCCGMBUF, VIDIOCMCAPTURE and friends. The default is 2, which is adequate for most
applications (double buffering).
Should you experience a lot of ‘Dumping frame...’ messages during grabbing with a tool that uses
mmap(), you might want to increase if. However, it doesn’t really buffer images, it just gives you a
bit more slack when your program is behind. But you need a multi-threaded or forked program to
really take advantage of these buffers.
The absolute maximum is 10, but don’t set it too high! Every buffer takes up 460 KB of RAM, so
unless you have a lot of memory setting this to something more than 4 is an absolute waste. This
memory is only allocated during open(), so nothing is wasted when the camera is not in use.

power_save When power_save is enabled (set to 1), the module will try to shut down the cam on close()
and re-activate on open(). This will save power and turn off the LED. Not all cameras support this
though (the 645 and 646 don’t have power saving at all), and some models don’t work either (they
will shut down, but never wake up). Consider this experimental. By default this option is disabled.

compression (only useful with the plugin) With this option you can control the compression factor
that the camera uses to squeeze the image through the USB bus. You can set the parameter between
0 and 3:

0 = prefer uncompressed images; if the requested mode is not available
in an uncompressed format, the driver will silently switch to low
compression.

1 = low compression.
2 = medium compression.
3 = high compression.

High compression takes less bandwidth of course, but it could also introduce some unwanted arte-
facts. The default is 2, medium compression. See the FAQ on the website for an overview of which
modes require compression.
The compression parameter does not apply to the 645 and 646 cameras and OEM models derived
from those (only a few). Most cams honour this parameter.

leds This settings takes 2 integers, that define the on/off time for the LED (in milliseconds). One of the
interesting things that you can do with this is let the LED blink while the camera is in use. This:

leds=500,500

will blink the LED once every second. But with:

4.21. Philips webcams (pwc driver) 1017

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

leds=0,0

the LED never goes on, making it suitable for silent surveillance.
By default the camera’s LED is on solid while in use, and turned off when the camera is not used
anymore.
This parameter works only with the ToUCam range of cameras (720, 730, 740, 750) and OEMs. For
other cameras this command is silently ignored, and the LED cannot be controlled.
Finally: this parameters does not take effect UNTIL the first time you open the camera device. Until
then, the LED remains on.

dev_hint A long standing problem with USB devices is their dynamic nature: you never know what device
a camera gets assigned; it depends on module load order, the hub configuration, the order in which
devices are plugged in, and the phase of the moon (i.e. it can be random). With this option you can
give the driver a hint as to what video device node (/dev/videoX) it should use with a specific camera.
This is also handy if you have two cameras of the same model.
A camera is specified by its type (the number from the camera model, like PCA645, PCVC750VC, etc)
and optionally the serial number (visible in /sys/kernel/debug/usb/devices). A hint consists of a string
with the following format:

[type[.serialnumber]:]node

The square brackets mean that both the type and the serialnumber are optional, but a serialnumber
cannot be specified without a type (which would be rather pointless). The serialnumber is separated
from the type by a ‘.’; the node number by a ‘:’.
This somewhat cryptic syntax is best explained by a few examples:

dev_hint=3,5 The first detected cam gets assigned
/dev/video3, the second /dev/video5. Any
other cameras will get the first free
available slot (see below).

dev_hint=645:1,680:2 The PCA645 camera will get /dev/video1,
and a PCVC680 /dev/video2.

dev_hint=645.0123:3,645.4567:0 The PCA645 camera with serialnumber
0123 goes to /dev/video3, the same
camera model with the 4567 serial
gets /dev/video0.

dev_hint=750:1,4,5,6 The PCVC750 camera will get /dev/video1, the
next 3 Philips cams will use /dev/video4
through /dev/video6.

Some points worth knowing:
• Serialnumbers are case sensitive and must be written full, including leading zeroes (it’s treated

as a string).
• If a device node is already occupied, registration will fail and the webcam is not available.
• You can have up to 64 video devices; be sure to make enough device nodes in /dev if you want

to spread the numbers. After /dev/video9 comes /dev/video10 (not /dev/videoA).
• If a camera does not match any dev_hint, it will simply get assigned the first available device

node, just as it used to be.
trace In order to better detect problems, it is now possible to turn on a ‘trace’ of some of the calls the

module makes; it logs all items in your kernel log at debug level.

1018 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The trace variable is a bitmask; each bit represents a certain feature. If you want to trace something,
look up the bit value(s) in the table below, add the values together and supply that to the trace
variable.
Value Value Description De-

fault
(dec) (hex)
1 0x1 Module initialization; this will log messages while loading and unloading the

module
On

2 0x2 probe() and disconnect() traces On
4 0x4 Trace open() and close() calls Off
8 0x8 read(), mmap() and associated ioctl() calls Off
16 0x10 Memory allocation of buffers, etc. Off
32 0x20 Showing underflow, overflow and Dumping frame messages On
64 0x40 Show viewport and image sizes Off
128 0x80 PWCX debugging Off
For example, to trace the open() & read() functions, sum 8 + 4 = 12, so you would supply trace=12
during insmod or modprobe. If you want to turn the initialization and probing tracing off, set trace=0.
The default value for trace is 35 (0x23).

Example:

modprobe pwc size=cif fps=15 power_save=1

The fbufs, mbufs and trace parameters are global and apply to all connected cameras. Each camera has
its own set of buffers.
size and fps only specify defaults when you open() the device; this is to accommodate some tools that
don’t set the size. You can change these settings after open() with the Video4Linux ioctl() calls. The
default of defaults is QCIF size at 10 fps.
The compression parameter is semiglobal; it sets the initial compression preference for all camera’s, but
this parameter can be set per camera with the VIDIOCPWCSCQUAL ioctl() call.
All parameters are optional.

4.22 The pvrusb2 driver

Author: Mike Isely <isely@pobox.com>

4.22.1 Background

This driver is intended for the “Hauppauge WinTV PVR USB 2.0”, which is a USB 2.0 hosted TV Tuner. This
driver is a work in progress. Its history started with the reverse-engineering effort by Björn Danielsson
<pvrusb2@dax.nu> whose web page can be found here: http://pvrusb2.dax.nu/
From there Aurelien Alleaume <slts@free.fr> began an effort to create a video4linux compatible driver. I
began with Aurelien’s last known snapshot and evolved the driver to the state it is in here.
More information on this driver can be found at: http://www.isely.net/pvrusb2.html
This driver has a strong separation of layers. They are very roughly:

1. Low level wire-protocol implementation with the device.
2. I2C adaptor implementation and corresponding I2C client drivers implemented elsewhere in V4L.
3. High level hardware driver implementation which coordinates all activities that ensure correct oper-

ation of the device.

4.22. The pvrusb2 driver 1019

mailto:isely@pobox.com
mailto:pvrusb2@dax.nu
http://pvrusb2.dax.nu/
mailto:slts@free.fr
http://www.isely.net/pvrusb2.html

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4. A “context” layer which manages instancing of driver, setup, tear-down, arbitration, and interaction
with high level interfaces appropriately as devices are hotplugged in the system.

5. High level interfaces which glue the driver to various published Linux APIs (V4L, sysfs, maybe DVB
in the future).

The most important shearing layer is between the top 2 layers. A lot of work went into the driver to ensure
that any kind of conceivable API can be laid on top of the core driver. (Yes, the driver internally leverages
V4L to do its work but that really has nothing to do with the API published by the driver to the outside
world.) The architecture allows for different APIs to simultaneously access the driver. I have a strong
sense of fairness about APIs and also feel that it is a good design principle to keep implementation and
interface isolated from each other. Thus while right now the V4L high level interface is the most complete,
the sysfs high level interface will work equally well for similar functions, and there’s no reason I see right
now why it shouldn’t be possible to produce a DVB high level interface that can sit right alongside V4L.

4.22.2 Building

To build these modules essentially amounts to just running “Make”, but you need the kernel source tree
nearby and you will likely also want to set a few controlling environment variables first in order to link
things up with that source tree. Please see the Makefile here for comments that explain how to do that.

4.22.3 Source file list / functional overview

(Note: The term “module” used below generally refers to loosely defined functional units within the
pvrusb2 driver and bears no relation to the Linux kernel’s concept of a loadable module.)
pvrusb2-audio.[ch] - This is glue logic that resides between this driver and the msp3400.ko I2C

client driver (which is found elsewhere in V4L).
pvrusb2-context.[ch] - This module implements the context for an instance of the driver. Every-

thing else eventually ties back to or is otherwise instanced within the data structures implemented
here. Hotplugging is ultimately coordinated here. All high level interfaces tie into the driver through
this module. This module helps arbitrate each interface’s access to the actual driver core, and is de-
signed to allow concurrent access through multiple instances of multiple interfaces (thus you can for
example change the tuner’s frequency through sysfs while simultaneously streaming video through
V4L out to an instance of mplayer).

pvrusb2-debug.h - This header defines a printk() wrapper and a mask of debugging bit defini-
tions for the various kinds of debug messages that can be enabled within the driver.

pvrusb2-debugifc.[ch] - This module implements a crude command line oriented debug inter-
face into the driver. Aside from being part of the process for implementing manual firmware ex-
traction (see the pvrusb2 web site mentioned earlier), probably I’m the only one who has ever used
this. It is mainly a debugging aid.

pvrusb2-eeprom.[ch] - This is glue logic that resides between this driver the tveeprom.ko mod-
ule, which is itself implemented elsewhere in V4L.

pvrusb2-encoder.[ch] - This module implements all protocol needed to interact with the Conex-
ant mpeg2 encoder chip within the pvrusb2 device. It is a crude echo of corresponding logic in ivtv,
however the design goals (strict isolation) and physical layer (proxy through USB instead of PCI) are
enough different that this implementation had to be completely different.

pvrusb2-hdw-internal.h - This header defines the core data structure in the driver used to track
ALL internal state related to control of the hardware. Nobody outside of the core hardware-handling
modules should have any business using this header. All external access to the driver should be
through one of the high level interfaces (e.g. V4L, sysfs, etc), and in fact even those high level
interfaces are restricted to the API defined in pvrusb2-hdw.h and NOT this header.

pvrusb2-hdw.h - This header defines the full internal API for controlling the hardware. High level
interfaces (e.g. V4L, sysfs) will work through here.

1020 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

pvrusb2-hdw.c - This module implements all the various bits of logic that handle overall control
of a specific pvrusb2 device. (Policy, instantiation, and arbitration of pvrusb2 devices fall within the
jurisdiction of pvrusb-context not here).

pvrusb2-i2c-chips-*.c - These modules implement the glue logic to tie together and configure
various I2C modules as they attach to the I2C bus. There are two versions of this file. The “v4l2”
version is intended to be used in-tree alongside V4L, where we implement just the logic that makes
sense for a pure V4L environment. The “all” version is intended for use outside of V4L, where we
might encounter other possibly “challenging” modules from ivtv or older kernel snapshots (or even
the support modules in the standalone snapshot).

pvrusb2-i2c-cmd-v4l1.[ch] - This module implements generic V4L1 compatible commands to the
I2C modules. It is here where state changes inside the pvrusb2 driver are translated into V4L1
commands that are in turn send to the various I2C modules.

pvrusb2-i2c-cmd-v4l2.[ch] - This module implements generic V4L2 compatible commands to the
I2C modules. It is here where state changes inside the pvrusb2 driver are translated into V4L2
commands that are in turn send to the various I2C modules.

pvrusb2-i2c-core.[ch] - This module provides an implementation of a kernel-friendly I2C adaptor
driver, through which other external I2C client drivers (e.g. msp3400, tuner, lirc) may connect and
operate corresponding chips within the pvrusb2 device. It is through here that other V4L modules
can reach into this driver to operate specific pieces (and those modules are in turn driven by glue
logic which is coordinated by pvrusb2-hdw, doled out by pvrusb2-context, and then ultimately made
available to users through one of the high level interfaces).

pvrusb2-io.[ch] - This module implements a very low level ring of transfer buffers, required in or-
der to stream data from the device. This module is very low level. It only operates the buffers and
makes no attempt to define any policy or mechanism for how such buffers might be used.

pvrusb2-ioread.[ch] - This module layers on top of pvrusb2-io.[ch] to provide a streaming API us-
able by a read() system call style of I/O. Right now this is the only layer on top of pvrusb2-io.[ch],
however the underlying architecture here was intended to allow for other styles of I/O to be imple-
mented with additional modules, like mmap()’ed buffers or something even more exotic.

pvrusb2-main.c - This is the top level of the driver. Module level and USB core entry points are
here. This is our “main”.

pvrusb2-sysfs.[ch] - This is the high level interface which ties the pvrusb2 driver into sysfs.
Through this interface you can do everything with the driver except actually stream data.

pvrusb2-tuner.[ch] - This is glue logic that resides between this driver and the tuner.ko I2C client
driver (which is found elsewhere in V4L).

pvrusb2-util.h - This header defines some common macros used throughout the driver. These
macros are not really specific to the driver, but they had to go somewhere.

pvrusb2-v4l2.[ch] - This is the high level interface which ties the pvrusb2 driver into
video4linux. It is through here that V4L applications can open and operate the driver in the
usual V4L ways. Note that ALL V4L functionality is published only through here and nowhere else.

pvrusb2-video-*.[ch] - This is glue logic that resides between this driver and the saa711x.ko I2C
client driver (which is found elsewhere in V4L). Note that saa711x.ko used to be known as saa7115.ko
in ivtv. There are two versions of this; one is selected depending on the particular saa711[5x].ko that
is found.

pvrusb2.h - This header contains compile time tunable parameters (and at the moment the
driver has very little that needs to be tuned).

4.23 PXA-Camera Host Driver

Author: Robert Jarzmik <robert.jarzmik@free.fr>

4.23. PXA-Camera Host Driver 1021

mailto:robert.jarzmik@free.fr

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.23.1 Constraints

1. Image size for YUV422P format All YUV422P images are enforced to have width x height % 16 = 0.
This is due to DMA constraints, which transfers only planes of 8 byte multiples.

4.23.2 Global video workflow

1. QCI stopped Initialy, the QCI interface is stopped. When a buffer is queued (pxa_videobuf_ops-
>buf_queue), the QCI starts.

2. QCI started More buffers can be queued while the QCI is started without halting the capture. The
new buffers are “appended” at the tail of the DMA chain, and smoothly captured one frame after the
other.
Once a buffer is filled in the QCI interface, it is marked as “DONE” and removed from the active
buffers list. It can be then requeud or dequeued by userland application.
Once the last buffer is filled in, the QCI interface stops.

3. Capture global finite state machine schema

+----+ +---+ +----+
| DQ | | Q | | DQ |
| v | v | v
+-----------+ +------------------------+
| STOP | | Wait for capture start |
+-----------+ Q +------------------------+
+-> | QCI: stop | ------------------> | QCI: run | <------------+
| | DMA: stop | | DMA: stop | |
| +-----------+ +-----> +------------------------+ |
/					
/ +---+ +----+					
capture list empty /	Q		DQ		QCI Irq EOF
/	v	v v			
+--------------------+ +----------------------+					
	DMA hotlink missed		Capture running		
+--------------------+ +----------------------+					
	QCI: run	+----->	QCI: run	<-+	
	DMA: stop	/	DMA: run		
+--------------------+ / +----------------------+	Other				
^ /DMA still		channels			
	capture list / running	DMA Irq End	not		
	not empty /		finished		
	/ v	yet			
+----------------------+ +----------------------+					
	Videobuf released		Channel completed		
+----------------------+ +----------------------+					
+--	QCI: run		QCI: run	--+	
DMA: run		DMA: run			
+----------------------+ +----------------------+ |

^ / | |
| no overrun / | overrun |
| / v |

+--------------------+ / +----------------------+ |
| Frame completed | / | Frame overran | |
+--------------------+ <-----+ +----------------------+ restart frame |
| QCI: run | | QCI: stop | --------------+
| DMA: run | | DMA: stop |
+--------------------+ +----------------------+

Legend: - each box is a FSM state
- each arrow is the condition to transition to another state
- an arrow with a comment is a mandatory transition (no condition)

1022 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

- arrow "Q" means : a buffer was enqueued
- arrow "DQ" means : a buffer was dequeued
- "QCI: stop" means the QCI interface is not enabled
- "DMA: stop" means all 3 DMA channels are stopped
- "DMA: run" means at least 1 DMA channel is still running

4.23.3 DMA usage

1. DMA flow
• first buffer queued for capture Once a first buffer is queued for capture, the QCI is started,

but data transfer is not started. On “End Of Frame” interrupt, the irq handler starts the DMA
chain.

• capture of one videobuffer The DMA chain starts transferring data into videobuffer RAM
pages. When all pages are transferred, the DMA irq is raised on “ENDINTR” status

• finishing one videobuffer The DMA irq handler marks the videobuffer as “done”, and removes
it from the active running queue Meanwhile, the next videobuffer (if there is one), is trans-
ferred by DMA

• finishing the last videobuffer On the DMA irq of the last videobuffer, the QCI is stopped.
2. DMA prepared buffer will have this structure

+------------+-----+---------------+-----------------+
| desc-sg[0] | ... | desc-sg[last] | finisher/linker |
+------------+-----+---------------+-----------------+

This structure is pointed by dma->sg_cpu. The descriptors are used as follows:
• desc-sg[i]: i-th descriptor, transferring the i-th sg element to the video buffer scatter gather
• finisher: has ddadr=DADDR_STOP, dcmd=ENDIRQEN
• linker: has ddadr= desc-sg[0] of next video buffer, dcmd=0

For the next schema, let’s assume d0=desc-sg[0] .. dN=desc-sg[N], “f” stands for finisher and “l” for
linker. A typical running chain is :

Videobuffer 1 Videobuffer 2
+---------+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+---+

| |
+----+

After the chaining is finished, the chain looks like :

Videobuffer 1 Videobuffer 2 Videobuffer 3
+---------+----+---+ +----+----+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+

| | | |
+----+ +----+

new_link

3. DMA hot chaining timeslice issue
As DMA chaining is done while DMA _is_ running, the linking may be done while the DMA jumps from one
Videobuffer to another. On the schema, that would be a problem if the following sequence is encountered
:

• DMA chain is Videobuffer1 + Videobuffer2

4.23. PXA-Camera Host Driver 1023

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• pxa_videobuf_queue() is called to queue Videobuffer3
• DMA controller finishes Videobuffer2, and DMA stops

=>
Videobuffer 1 Videobuffer 2

+---------+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+-^-+

| | |
+----+ +-- DMA DDADR loads DDADR_STOP

• pxa_dma_add_tail_buf() is called, the Videobuffer2 “finisher” is replaced by a “linker” to Videobuffer3
(creation of new_link)

• pxa_videobuf_queue() finishes
• the DMA irq handler is called, which terminates Videobuffer2
• Videobuffer3 capture is not scheduled on DMA chain (as it stopped !!!)

Videobuffer 1 Videobuffer 2 Videobuffer 3
+---------+----+---+ +----+----+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+

| | | |
+----+ +----+

new_link
DMA DDADR still is DDADR_STOP

• pxa_camera_check_link_miss() is called This checks if the DMA is finished and a buffer is still on the
pcdev->capture list. If that’s the case, the capture will be restarted, and Videobuffer3 is scheduled
on DMA chain.

• the DMA irq handler finishes

Note:

If DMA stops just after pxa_camera_check_link_miss() reads DDADR() value, we have the guar-
antee that the DMA irq handler will be called back when the DMA will finish the buffer, and
pxa_camera_check_link_miss() will be called again, to reschedule Videobuffer3.

4.24 Qualcomm Camera Subsystem driver

4.24.1 Introduction

This file documents the Qualcomm Camera Subsystem driver located under
drivers/media/platform/qcom/camss-8x16.
The current version of the driver supports the Camera Subsystem found on Qualcomm MSM8916 and
APQ8016 processors.
The driver implements V4L2, Media controller and V4L2 subdev interfaces. Camera sensor using V4L2
subdev interface in the kernel is supported.
The driver is implemented using as a reference the Qualcomm Camera Subsystem driver for Android as
found in Code Aurora 1.

1 https://source.codeaurora.org/quic/la/kernel/msm-3.10/

1024 Chapter 4. Video4Linux (V4L) driver-specific documentation

https://source.codeaurora.org/quic/la/kernel/msm-3.10/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.24.2 Qualcomm Camera Subsystem hardware

The Camera Subsystem hardware found on 8x16 processors and supported by the driver consists of:
• 2 CSIPHY modules. They handle the Physical layer of the CSI2 receivers. A separate camera sensor

can be connected to each of the CSIPHY module;
• 2 CSID (CSI Decoder) modules. They handle the Protocol and Application layer of the CSI2 receivers.

A CSID can decode data stream from any of the CSIPHY. Each CSID also contains a TG (Test Generator)
block which can generate artificial input data for test purposes;

• ISPIF (ISP Interface) module. Handles the routing of the data streams from the CSIDs to the inputs of
the VFE;

• VFE (Video Front End) module. Contains a pipeline of image processing hardware blocks. The VFE has
different input interfaces. The PIX (Pixel) input interface feeds the input data to the image processing
pipeline. The image processing pipeline contains also a scale and crop module at the end. Three RDI
(Raw Dump Interface) input interfaces bypass the image processing pipeline. The VFE also contains
the AXI bus interface which writes the output data to memory.

4.24.3 Supported functionality

The current version of the driver supports:
• Input from camera sensor via CSIPHY;
• Generation of test input data by the TG in CSID;
• RDI interface of VFE - raw dump of the input data to memory.

Supported formats:
– YUYV/UYVY/YVYU/VYUY (packed YUV 4:2:2 - V4L2_PIX_FMT_YUYV / V4L2_PIX_FMT_UYVY /

V4L2_PIX_FMT_YVYU / V4L2_PIX_FMT_VYUY);
– MIPI RAW8 (8bit Bayer RAW - V4L2_PIX_FMT_SRGGB8 / V4L2_PIX_FMT_SGRBG8 /

V4L2_PIX_FMT_SGBRG8 / V4L2_PIX_FMT_SBGGR8);
– MIPI RAW10 (10bit packed Bayer RAW - V4L2_PIX_FMT_SBGGR10P / V4L2_PIX_FMT_SGBRG10P /

V4L2_PIX_FMT_SGRBG10P / V4L2_PIX_FMT_SRGGB10P);
– MIPI RAW12 (12bit packed Bayer RAW - V4L2_PIX_FMT_SRGGB12P / V4L2_PIX_FMT_SGBRG12P /

V4L2_PIX_FMT_SGRBG12P / V4L2_PIX_FMT_SRGGB12P).
• PIX interface of VFE

– Format conversion of the input data.
Supported input formats:

* YUYV/UYVY/YVYU/VYUY (packed YUV 4:2:2 - V4L2_PIX_FMT_YUYV / V4L2_PIX_FMT_UYVY /
V4L2_PIX_FMT_YVYU / V4L2_PIX_FMT_VYUY).

Supported output formats:
* NV12/NV21 (two plane YUV 4:2:0 - V4L2_PIX_FMT_NV12 / V4L2_PIX_FMT_NV21);
* NV16/NV61 (two plane YUV 4:2:2 - V4L2_PIX_FMT_NV16 / V4L2_PIX_FMT_NV61).

– Scaling support. Configuration of the VFE Encoder Scale module for downscalling with ratio up
to 16x.

– Cropping support. Configuration of the VFE Encoder Crop module.
• Concurrent and independent usage of two data inputs - could be camera sensors and/or TG.

4.24. Qualcomm Camera Subsystem driver 1025

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.24.4 Driver Architecture and Design

The driver implements the V4L2 subdev interface. With the goal to model the hardware links between
the modules and to expose a clean, logical and usable interface, the driver is split into V4L2 sub-devices
as follows:

• 2 CSIPHY sub-devices - each CSIPHY is represented by a single sub-device;
• 2 CSID sub-devices - each CSID is represented by a single sub-device;
• 2 ISPIF sub-devices - ISPIF is represented by a number of sub-devices equal to the number of CSID

sub-devices;
• 4 VFE sub-devices - VFE is represented by a number of sub-devices equal to the number of the input

interfaces (3 RDI and 1 PIX).
The considerations to split the driver in this particular way are as follows:

• representing CSIPHY and CSID modules by a separate sub-device for each module allows to model
the hardware links between these modules;

• representing VFE by a separate sub-devices for each input interface allows to use the input interfaces
concurently and independently as this is supported by the hardware;

• representing ISPIF by a number of sub-devices equal to the number of CSID sub-devices allows to cre-
ate linear media controller pipelines when using two cameras simultaneously. This avoids branches
in the pipelines which otherwise will require a) userspace and b) media framework (e.g. power on/off
operations) to make assumptions about the data flow from a sink pad to a source pad on a single
media entity.

Each VFE sub-device is linked to a separate video device node.
The media controller pipeline graph is as follows (with connected two OV5645 camera sensors):

4.24.5 Implementation

Runtime configuration of the hardware (updating settings while streaming) is not required to implement
the currently supported functionality. The complete configuration on each hardware module is applied on
STREAMON ioctl based on the current active media links, formats and controls set.
The output size of the scaler module in the VFE is configured with the actual compose selection rectangle
on the sink pad of the ‘msm_vfe0_pix’ entity.
The crop output area of the crop module in the VFE is configured with the actual crop selection rectangle
on the source pad of the ‘msm_vfe0_pix’ entity.

4.24.6 Documentation

APQ8016 Specification: https://developer.qualcomm.com/download/sd410/
snapdragon-410-processor-device-specification.pdf Referenced 2016-11-24.

4.24.7 References

4.25 The Radiotrack radio driver

Author: Stephen M. Benoit <benoits@servicepro.com>
Date: Dec 14, 1996

1026 Chapter 4. Video4Linux (V4L) driver-specific documentation

https://developer.qualcomm.com/download/sd410/snapdragon-410-processor-device-specification.pdf
https://developer.qualcomm.com/download/sd410/snapdragon-410-processor-device-specification.pdf
mailto:benoits@servicepro.com

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

0

msm_csiphy0
/dev/v4l-subdev0

1

0

msm_csid0
/dev/v4l-subdev2

1

0

msm_csid1
/dev/v4l-subdev3

1

0

msm_ispif0
/dev/v4l-subdev4

1

0

msm_ispif1
/dev/v4l-subdev5

1

0

msm_csiphy1
/dev/v4l-subdev1

1

0

msm_vfe0_rdi0
/dev/v4l-subdev6

1

0

msm_vfe0_rdi1
/dev/v4l-subdev7

1

0

msm_vfe0_rdi2
/dev/v4l-subdev8

1

0

msm_vfe0_pix
/dev/v4l-subdev9

1

msm_vfe0_video0
/dev/video0

msm_vfe0_video1
/dev/video1

msm_vfe0_video2
/dev/video2

msm_vfe0_video3
/dev/video3

ov5645 1-0076
/dev/v4l-subdev10

0

ov5645 1-0074
/dev/v4l-subdev11

0

Fig. 4.1: Media pipeline graph

4.25. The Radiotrack radio driver 1027

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.25.1 ACKNOWLEDGMENTS

This document was made based on ‘C’ code for Linux from Gideon le Grange (legrang@active.co.za or
legrang@cs.sun.ac.za) in 1994, and elaborations from Frans Brinkman (brinkman@esd.nl) in 1996. The
results reported here are from experiments that the author performed on his own setup, so your mileage
may vary... I make no guarantees, claims or warranties to the suitability or validity of this information. No
other documentation on the AIMS Lab (http://www.aimslab.com/) RadioTrack card was made available to
the author. This document is offered in the hopes that it might help users who want to use the RadioTrack
card in an environment other than MS Windows.

4.25.2 WHY THIS DOCUMENT?

I have a RadioTrack card from back when I ran an MS-Windows platform. After converting to Linux, I
found Gideon le Grange’s command-line software for running the card, and found that it was good! Frans
Brinkman made a comfortable X-windows interface, and added a scanning feature. For hack value, I
wanted to see if the tuner could be tuned beyond the usual FM radio broadcast band, so I could pick up
the audio carriers from North American broadcast TV channels, situated just below and above the 87.0-
109.0 MHz range. I did not get much success, but I learned about programming ioports under Linux and
gained some insights about the hardware design used for the card.
So, without further delay, here are the details.

4.25.3 PHYSICAL DESCRIPTION

The RadioTrack card is an ISA 8-bit FM radio card. The radio frequency (RF) input is simply an antenna lead,
and the output is a power audio signal available through a miniature phone plug. Its RF frequencies of
operation are more or less limited from 87.0 to 109.0 MHz (the commercial FM broadcast band). Although
the registers can be programmed to request frequencies beyond these limits, experiments did not give
promising results. The variable frequency oscillator (VFO) that demodulates the intermediate frequency
(IF) signal probably has a small range of useful frequencies, and wraps around or gets clipped beyond the
limits mentioned above.

4.25.4 CONTROLLING THE CARD WITH IOPORT

The RadioTrack (base) ioport is configurable for 0x30c or 0x20c. Only one ioport seems to be involved. The
ioport decoding circuitry must be pretty simple, as individual ioport bits are directly matched to specific
functions (or blocks) of the radio card. This way, many functions can be changed in parallel with one write
to the ioport. The only feedback available through the ioports appears to be the “Stereo Detect” bit.
The bits of the ioport are arranged as follows:

MSb LSb
+------+------+------+--------+--------+-------+---------+--------+
VolA	VolB	????	Stereo	Radio	TuneA	TuneB	Tune
(+)	(-)		Detect	Audio	(bit)	(latch)	Update
			Enable	Enable			Enable
+------+------+------+--------+--------+-------+---------+--------+

VolA VolB Description
0 0 audio mute
0 1 volume + (some delay required)
1 0 volume - (some delay required)
1 1 stay at present volume

Stereo Detect Enable Description
0 No Detect
1 Detect

1028 Chapter 4. Video4Linux (V4L) driver-specific documentation

mailto:legrang@active.co.za
mailto:legrang@cs.sun.ac.za
mailto:brinkman@esd.nl
http://www.aimslab.com/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Results available by reading ioport >60 msec after last port write.
0xff ==> no stereo detected, 0xfd ==> stereo detected.

Radio to Audio (path) Enable Description
0 Disable path (silence)
1 Enable path (audio produced)

TuneA TuneB Description
0 0 “zero” bit phase 1
0 1 “zero” bit phase 2
1 0 “one” bit phase 1
1 1 “one” bit phase 2
24-bit code, where bits = (freq*40) + 10486188. The Most Significant 11 bits must be 1010 xxxx 0x0 to
be valid. The bits are shifted in LSb first.
Tune Update Enable Description
0 Tuner held constant
1 Tuner updating in progress

4.25.5 PROGRAMMING EXAMPLES

Default: BASE <-- 0xc8 (current volume, no stereo detect,
radio enable, tuner adjust disable)

Card Off: BASE <-- 0x00 (audio mute, no stereo detect,
radio disable, tuner adjust disable)

Card On: BASE <-- 0x00 (see "Card Off", clears any unfinished business)
BASE <-- 0xc8 (see "Default")

Volume Down: BASE <-- 0x48 (volume down, no stereo detect,
radio enable, tuner adjust disable)

wait 10 msec
BASE <-- 0xc8 (see "Default")

Volume Up: BASE <-- 0x88 (volume up, no stereo detect,
radio enable, tuner adjust disable)

wait 10 msec
BASE <-- 0xc8 (see "Default")

Check Stereo: BASE <-- 0xd8 (current volume, stereo detect,
radio enable, tuner adjust disable)

wait 100 msec
x <-- BASE (read ioport)
BASE <-- 0xc8 (see "Default")

x=0xff ==> "not stereo", x=0xfd ==> "stereo detected"

Set Frequency: code = (freq*40) + 10486188
foreach of the 24 bits in code,
(from Least to Most Significant):
to write a "zero" bit,
BASE <-- 0x01 (audio mute, no stereo detect, radio

disable, "zero" bit phase 1, tuner adjust)
BASE <-- 0x03 (audio mute, no stereo detect, radio

disable, "zero" bit phase 2, tuner adjust)
to write a "one" bit,
BASE <-- 0x05 (audio mute, no stereo detect, radio

disable, "one" bit phase 1, tuner adjust)

4.25. The Radiotrack radio driver 1029

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

BASE <-- 0x07 (audio mute, no stereo detect, radio
disable, "one" bit phase 2, tuner adjust)

4.26 Renesas R-Car Fine Display Processor (FDP1) Driver

The R-Car FDP1 driver implements driver-specific controls as follows.
V4L2_CID_DEINTERLACING_MODE (menu) The video deinterlacing mode (such as Bob, Weave, ...). The

R-Car FDP1 driver implements the following modes.
"Progres-
sive"
(0)

The input image video stream is progressive (not interlaced). No deinterlacing is
performed. Apart from (optional) format and encoding conversion output frames are
identical to the input frames.

"Adaptive
2D/3D" (1)

Motion adaptive version of 2D and 3D deinterlacing. Use 3D deinterlacing in the
presence of fast motion and 2D deinterlacing with diagonal interpolation otherwise.

"Fixed 2D"
(2)

The current field is scaled vertically by averaging adjacent lines to recover missing
lines. This method is also known as blending or Line Averaging (LAV).

"Fixed 3D"
(3)

The previous and next fields are averaged to recover lines missing from the current
field. This method is also known as Field Averaging (FAV).

"Previous
field" (4)

The current field is weaved with the previous field, i.e. the previous field is used to fill
missing lines from the current field. This method is also known as weave deinterlacing.

"Next field"
(5)

The current field is weaved with the next field, i.e. the next field is used to fill missing
lines from the current field. This method is also known as weave deinterlacing.

4.27 The saa7134 driver

Author Gerd Hoffmann
This is a v4l2/oss device driver for saa7130/33/34/35 based capture / TV boards. See http://www.
semiconductors.philips.com/pip/saa7134hl for a description.

4.27.1 Status

Almost everything is working. video, sound, tuner, radio, mpeg ts, ...
As with bttv, card-specific tweaks are needed. Check CARDLIST for a list of known TV cards and saa7134-
cards.c for the drivers card configuration info.

4.27.2 Build

Pick up videodev + v4l2 patches from http://bytesex.org/patches/. Configure, build, install + boot the new
kernel. You’ll need at least these config options:

CONFIG_I2C=m
CONFIG_VIDEO_DEV=m

Type “make” to build the driver now. “make install” installs the driver. “modprobe saa7134” should load
it. Depending on the card you might have to pass card=<nr> as insmod option, check CARDLIST for valid
choices.

4.27.3 Changes / Fixes

Please mail me unified diffs (“diff -u”) with your changes, and don’t forget to tell me what it changes /
which problem it fixes / whatever it is good for ...

1030 Chapter 4. Video4Linux (V4L) driver-specific documentation

http://www.semiconductors.philips.com/pip/saa7134hl
http://www.semiconductors.philips.com/pip/saa7134hl
http://bytesex.org/patches/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.27.4 Known Problems

• The tuner for the flyvideos isn’t detected automatically and the default might not work for you de-
pending on which version you have. There is a tuner= insmod option to override the driver’s default.

4.27.5 Card Variations:

Cards can use either of these two crystals (xtal):
• 32.11 MHz -> .audio_clock=0x187de7
• 24.576MHz -> .audio_clock=0x200000 (xtal * .audio_clock = 51539600)

Some details about 30/34/35:
• saa7130 - low-price chip, doesn’t have mute, that is why all those cards should have .mute field

defined in their tuner structure.
• saa7134 - usual chip
• saa7133/35 - saa7135 is probably a marketing decision, since all those chips identifies itself as 33

on pci.

4.27.6 LifeView GPIOs

This section was authored by: Peter Missel <peter.missel@onlinehome.de>
• LifeView FlyTV Platinum FM (LR214WF)

– GP27 MDT2005 PB4 pin 10
– GP26 MDT2005 PB3 pin 9
– GP25 MDT2005 PB2 pin 8
– GP23 MDT2005 PB1 pin 7
– GP22 MDT2005 PB0 pin 6
– GP21 MDT2005 PB5 pin 11
– GP20 MDT2005 PB6 pin 12
– GP19 MDT2005 PB7 pin 13
– nc MDT2005 PA3 pin 2
– Remote MDT2005 PA2 pin 1
– GP18 MDT2005 PA1 pin 18
– nc MDT2005 PA0 pin 17 strap low
– GP17 Strap “GP7”=High
– GP16 Strap “GP6”=High

* 0=Radio 1=TV
* Drives SA630D ENCH1 and HEF4052 A1 pinsto do FM radio through SIF input

– GP15 nc
– GP14 nc
– GP13 nc
– GP12 Strap “GP5” = High
– GP11 Strap “GP4” = High

4.27. The saa7134 driver 1031

mailto:peter.missel@onlinehome.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

– GP10 Strap “GP3” = High
– GP09 Strap “GP2” = Low
– GP08 Strap “GP1” = Low
– GP07.00 nc

4.27.7 Credits

andrew.stevens@philips.com + werner.leeb@philips.com for providing saa7134 hardware specs and sam-
ple board.

4.28 Cropping and Scaling algorithm, used in the
sh_mobile_ceu_camera driver

Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>

4.28.1 Terminology

sensor scales: horizontal and vertical scales, configured by the sensor driver host scales: -“- host driver
combined scales: sensor_scale * host_scale

4.28.2 Generic scaling / cropping scheme

-1--
|
-2-- -\
| --\
| --\
+-5-- . -- -3-- -\
| `... -\
| `... -4-- . - -7..
| `.
| `. .6--
|
| . .6'-
| .´
| ... -4'- .´
| ...´ - -7'.
+-5'- .´ -/
| -- -3'- -/
| --/
| --/
-2'- -/
|
|
-1'-

In the above chart minuses and slashes represent “real” data amounts, points and accents represent
“useful” data, basically, CEU scaled and cropped output, mapped back onto the client’s source plane.
Such a configuration can be produced by user requests:
S_CROP(left / top = (5) - (1), width / height = (5’) - (5)) S_FMT(width / height = (6’) - (6))
Here:

1032 Chapter 4. Video4Linux (V4L) driver-specific documentation

mailto:andrew.stevens@philips.com
mailto:werner.leeb@philips.com
mailto:g.liakhovetski@gmx.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

(1) to (1’) - whole max width or height (1) to (2) - sensor cropped left or top (2) to (2’) - sensor cropped
width or height (3) to (3’) - sensor scale (3) to (4) - CEU cropped left or top (4) to (4’) - CEU cropped width
or height (5) to (5’) - reverse sensor scale applied to CEU cropped width or height (2) to (5) - reverse
sensor scale applied to CEU cropped left or top (6) to (6’) - CEU scale - user window

4.28.3 S_FMT

Do not touch input rectangle - it is already optimal.
1. Calculate current sensor scales:

scale_s = ((2’) - (2)) / ((3’) - (3))
2. Calculate “effective” input crop (sensor subwindow) - CEU crop scaled back at current sensor scales
onto input window - this is user S_CROP:

width_u = (5’) - (5) = ((4’) - (4)) * scale_s
3. Calculate new combined scales from “effective” input window to requested user window:

scale_comb = width_u / ((6’) - (6))
4. Calculate sensor output window by applying combined scales to real input window:

width_s_out = ((7’) - (7)) = ((2’) - (2)) / scale_comb
5. Apply iterative sensor S_FMT for sensor output window.

subdev->video_ops->s_fmt(.width = width_s_out)
6. Retrieve sensor output window (g_fmt)
7. Calculate new sensor scales:

scale_s_new = ((3’)_new - (3)_new) / ((2’) - (2))
8. Calculate new CEU crop - apply sensor scales to previously calculated “effective” crop:

width_ceu = (4’)_new - (4)_new = width_u / scale_s_new left_ceu = (4)_new - (3)_new = ((5) -
(2)) / scale_s_new

9. Use CEU cropping to crop to the new window:
ceu_crop(.width = width_ceu, .left = left_ceu)

10. Use CEU scaling to scale to the requested user window:
scale_ceu = width_ceu / width

4.28.4 S_CROP

The API at http://v4l2spec.bytesex.org/spec/x1904.htm says:
”...specification does not define an origin or units. However by convention drivers should horizontally
count unscaled samples relative to 0H.”
We choose to follow the advise and interpret cropping units as client input pixels.
Cropping is performed in the following 6 steps:

1. Request exactly user rectangle from the sensor.
2. If smaller - iterate until a larger one is obtained. Result: sensor cropped to 2 : 2’, target crop 5 : 5’,

current output format 6’ - 6.
3. In the previous step the sensor has tried to preserve its output frame as good as possible, but it could

have changed. Retrieve it again.

4.28. Cropping and Scaling algorithm, used in the sh_mobile_ceu_camera driver 1033

http://v4l2spec.bytesex.org/spec/x1904.htm

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4. Sensor scaled to 3 : 3’. Sensor’s scale is (2’ - 2) / (3’ - 3). Calculate intermediate window: 4’ - 4 =
(5’ - 5) * (3’ - 3) / (2’ - 2)

5. Calculate and apply host scale = (6’ - 6) / (4’ - 4)
6. Calculate and apply host crop: 6 - 7 = (5 - 2) * (6’ - 6) / (5’ - 5)

4.29 The Silicon Labs Si470x FM Radio Receivers driver

Copyright © 2009 Tobias Lorenz <tobias.lorenz@gmx.net>

4.29.1 Information from Silicon Labs

Silicon Laboratories is the manufacturer of the radio ICs, that nowadays are the most often used radio
receivers in cell phones. Usually they are connected with I2C. But SiLabs also provides a reference design,
which integrates this IC, together with a small microcontroller C8051F321, to form a USB radio. Part of
this reference design is also a radio application in binary and source code. The software also contains an
automatic firmware upgrade to the most current version. Information on these can be downloaded here:
http://www.silabs.com/usbradio

4.29.2 Supported ICs

The following ICs have a very similar register set, so that they are or will be supported somewhen by the
driver:

• Si4700: FM radio receiver
• Si4701: FM radio receiver, RDS Support
• Si4702: FM radio receiver
• Si4703: FM radio receiver, RDS Support
• Si4704: FM radio receiver, no external antenna required
• Si4705: FM radio receiver, no external antenna required, RDS support, Dig I/O
• Si4706: Enhanced FM RDS/TMC radio receiver, no external antenna required, RDS

Support
• Si4707: Dedicated weather band radio receiver with SAME decoder, RDS Support
• Si4708: Smallest FM receivers
• Si4709: Smallest FM receivers, RDS Support

More information on these can be downloaded here: http://www.silabs.com/products/mcu/Pages/
USBFMRadioRD.aspx

4.29.3 Supported USB devices

Currently the following USB radios (vendor:product) with the Silicon Labs si470x chips are known to work:
• 10c4:818a: Silicon Labs USB FM Radio Reference Design
• 06e1:a155: ADS/Tech FM Radio Receiver (formerly Instant FM Music) (RDX-155-EF)
• 1b80:d700: KWorld USB FM Radio SnapMusic Mobile 700 (FM700)
• 10c5:819a: Sanei Electric, Inc. FM USB Radio (sold as DealExtreme.com PCear)

1034 Chapter 4. Video4Linux (V4L) driver-specific documentation

mailto:tobias.lorenz@gmx.net
http://www.silabs.com/usbradio
http://www.silabs.com/products/mcu/Pages/USBFMRadioRD.aspx
http://www.silabs.com/products/mcu/Pages/USBFMRadioRD.aspx

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.29.4 Software

Testing is usually done with most application under Debian/testing:
• fmtools - Utility for managing FM tuner cards
• gnomeradio - FM-radio tuner for the GNOME desktop
• gradio - GTK FM radio tuner
• kradio - Comfortable Radio Application for KDE
• radio - ncurses-based radio application
• mplayer - The Ultimate Movie Player For Linux
• v4l2-ctl - Collection of command line video4linux utilities

For example, you can use:

v4l2-ctl -d /dev/radio0 --set-ctrl=volume=10,mute=0 --set-freq=95.21 --all

There is also a library libv4l, which can be used. It’s going to have a function for frequency seeking, either
by using hardware functionality as in radio-si470x or by implementing a function as we currently have in
every of the mentioned programs. Somewhen the radio programs should make use of libv4l.
For processing RDS information, there is a project ongoing at: http://rdsd.berlios.de/
There is currently no project for making TMC sentences human readable.

4.29.5 Audio Listing

USB Audio is provided by the ALSA snd_usb_audio module. It is recommended to also select
SND_USB_AUDIO, as this is required to get sound from the radio. For listing you have to redirect the
sound, for example using one of the following commands. Please adjust the audio devices to your needs
(/dev/dsp* and hw:x,x).
If you just want to test audio (very poor quality):

cat /dev/dsp1 > /dev/dsp

If you use sox + OSS try:

sox -2 --endian little -r 96000 -t oss /dev/dsp1 -t oss /dev/dsp

or using sox + alsa:

sox --endian little -c 2 -S -r 96000 -t alsa hw:1 -t alsa -r 96000 hw:0

If you use arts try:

arecord -D hw:1,0 -r96000 -c2 -f S16_LE | artsdsp aplay -B -

If you use mplayer try:

mplayer -radio adevice=hw=1.0:arate=96000 \
-rawaudio rate=96000 \
radio://<frequency>/capture

4.29.6 Module Parameters

After loading the module, you still have access to some of them in the sysfs mount under
/sys/module/radio_si470x/parameters. The contents of read-only files (0444) are not updated, even if
space, band and de are changed using private video controls. The others are runtime changeable.

4.29. The Silicon Labs Si470x FM Radio Receivers driver 1035

http://rdsd.berlios.de/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.29.7 Errors

Increase tune_timeout, if you often get -EIO errors.
When timed out or band limit is reached, hw_freq_seek returns -EAGAIN.
If you get any errors from snd_usb_audio, please report them to the ALSA people.

4.29.8 Open Issues

V4L minor device allocation and parameter setting is not perfect. A solution is currently under discussion.
There is an USB interface for downloading/uploading new firmware images. Support for it can be imple-
mented using the request_firmware interface.
There is a RDS interrupt mode. The driver is already using the same interface for polling RDS information,
but is currently not using the interrupt mode.
There is a LED interface, which can be used to override the LED control programmed in the firmware. This
can be made available using the LED support functions in the kernel.

4.29.9 Other useful information and links

http://www.silabs.com/usbradio

4.30 The Silicon Labs Si4713 FM Radio Transmitter Driver

Copyright © 2009 Nokia Corporation
Contact: Eduardo Valentin <eduardo.valentin@nokia.com>

4.30.1 Information about the Device

This chip is a Silicon Labs product. It is a I2C device, currently on 0x63 address. Basically, it has trans-
mission and signal noise level measurement features.
The Si4713 integrates transmit functions for FM broadcast stereo transmission. The chip also allows
integrated receive power scanning to identify low signal power FM channels.
The chip is programmed using commands and responses. There are also several properties which can
change the behavior of this chip.
Users must comply with local regulations on radio frequency (RF) transmission.

4.30.2 Device driver description

There are two modules to handle this device. One is a I2C device driver and the other is a platform driver.
The I2C device driver exports a v4l2-subdev interface to the kernel. All properties can also be accessed
by v4l2 extended controls interface, by using the v4l2-subdev calls (g_ext_ctrls, s_ext_ctrls).
The platform device driver exports a v4l2 radio device interface to user land. So, it uses the I2C device
driver as a sub device in order to send the user commands to the actual device. Basically it is a wrapper
to the I2C device driver.
Applications can use v4l2 radio API to specify frequency of operation, mute state, etc. But mostly of its
properties will be present in the extended controls.
When the v4l2 mute property is set to 1 (true), the driver will turn the chip off.

1036 Chapter 4. Video4Linux (V4L) driver-specific documentation

http://www.silabs.com/usbradio
mailto:eduardo.valentin@nokia.com

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.30.3 Properties description

The properties can be accessed using v4l2 extended controls. Here is an output from v4l2-ctl util:

/ # v4l2-ctl -d /dev/radio0 --all -L
Driver Info:

Driver name : radio-si4713
Card type : Silicon Labs Si4713 Modulator
Bus info :
Driver version: 0
Capabilities : 0x00080800

RDS Output
Modulator

Audio output: 0 (FM Modulator Audio Out)
Frequency: 1408000 (88.000000 MHz)
Video Standard = 0x00000000
Modulator:

Name : FM Modulator
Capabilities : 62.5 Hz stereo rds
Frequency range : 76.0 MHz - 108.0 MHz
Subchannel modulation: stereo+rds

User Controls

mute (bool) : default=1 value=0

FM Radio Modulator Controls

rds_signal_deviation (int) : min=0 max=90000 step=10 default=200 value=200 flags=slider
rds_program_id (int) : min=0 max=65535 step=1 default=0 value=0

rds_program_type (int) : min=0 max=31 step=1 default=0 value=0
rds_ps_name (str) : min=0 max=96 step=8 value='si4713 '
rds_radio_text (str) : min=0 max=384 step=32 value=''

audio_limiter_feature_enabled (bool) : default=1 value=1
audio_limiter_release_time (int) : min=250 max=102390 step=50 default=5010 value=5010␣

↪→flags=slider
audio_limiter_deviation (int) : min=0 max=90000 step=10 default=66250 value=66250␣

↪→flags=slider
audio_compression_feature_enabl (bool) : default=1 value=1

audio_compression_gain (int) : min=0 max=20 step=1 default=15 value=15 flags=slider
audio_compression_threshold (int) : min=-40 max=0 step=1 default=-40 value=-40 flags=slider
audio_compression_attack_time (int) : min=0 max=5000 step=500 default=0 value=0 flags=slider
audio_compression_release_time (int) : min=100000 max=1000000 step=100000 default=1000000␣

↪→value=1000000 flags=slider
pilot_tone_feature_enabled (bool) : default=1 value=1

pilot_tone_deviation (int) : min=0 max=90000 step=10 default=6750 value=6750␣
↪→flags=slider

pilot_tone_frequency (int) : min=0 max=19000 step=1 default=19000 value=19000␣
↪→flags=slider

pre_emphasis_settings (menu) : min=0 max=2 default=1 value=1
tune_power_level (int) : min=0 max=120 step=1 default=88 value=88 flags=slider
tune_antenna_capacitor (int) : min=0 max=191 step=1 default=0 value=110 flags=slider

Here is a summary of them:
• Pilot is an audible tone sent by the device.
• pilot_frequency - Configures the frequency of the stereo pilot tone.
• pilot_deviation - Configures pilot tone frequency deviation level.
• pilot_enabled - Enables or disables the pilot tone feature.
• The si4713 device is capable of applying audio compression to the transmitted signal.

4.30. The Silicon Labs Si4713 FM Radio Transmitter Driver 1037

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• acomp_enabled - Enables or disables the audio dynamic range control feature.
• acomp_gain - Sets the gain for audio dynamic range control.
• acomp_threshold - Sets the threshold level for audio dynamic range control.
• acomp_attack_time - Sets the attack time for audio dynamic range control.
• acomp_release_time - Sets the release time for audio dynamic range control.
• Limiter setups audio deviation limiter feature. Once a over deviation occurs, it is possible to adjust

the front-end gain of the audio input and always prevent over deviation.
• limiter_enabled - Enables or disables the limiter feature.
• limiter_deviation - Configures audio frequency deviation level.
• limiter_release_time - Sets the limiter release time.
• Tuning power
• power_level - Sets the output power level for signal transmission. antenna_capacitor - This selects

the value of antenna tuning capacitor manually or automatically if set to zero.
• RDS related
• rds_ps_name - Sets the RDS ps name field for transmission.
• rds_radio_text - Sets the RDS radio text for transmission.
• rds_pi - Sets the RDS PI field for transmission.
• rds_pty - Sets the RDS PTY field for transmission.
• Region related
• preemphasis - sets the preemphasis to be applied for transmission.

4.30.4 RNL

This device also has an interface to measure received noise level. To do that, you should ioctl the device
node. Here is an code of example:

int main (int argc, char *argv[])
{

struct si4713_rnl rnl;
int fd = open("/dev/radio0", O_RDWR);
int rval;

if (argc < 2)
return -EINVAL;

if (fd < 0)
return fd;

sscanf(argv[1], "%d", &rnl.frequency);

rval = ioctl(fd, SI4713_IOC_MEASURE_RNL, &rnl);
if (rval < 0)

return rval;

printf("received noise level: %d\n", rnl.rnl);

close(fd);
}

The struct si4713_rnl and SI4713_IOC_MEASURE_RNL are defined under in-
clude/linux/platform_data/media/si4713.h.

1038 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.30.5 Stereo/Mono and RDS subchannels

The device can also be configured using the available sub channels for transmission. To do that use
S/G_MODULATOR ioctl and configure txsubchans properly. Refer to the V4L2 API specification for proper
use of this ioctl.

4.30.6 Testing

Testing is usually done with v4l2-ctl utility for managing FM tuner cards. The tool can be found in v4l-dvb
repository under v4l2-apps/util directory.
Example for setting rds ps name:

v4l2-ctl -d /dev/radio0 --set-ctrl=rds_ps_name="Dummy"

4.31 The SI476x Driver

Copyright © 2013 Andrey Smirnov <andrew.smirnov@gmail.com>

4.31.1 TODO for the driver

• According to the SiLabs’ datasheet it is possible to update the firmware of the radio chip in the run-
time, thus bringing it to the most recent version. Unfortunately I couldn’t find any mentioning of the
said firmware update for the old chips that I tested the driver against, so for chips like that the driver
only exposes the old functionality.

4.31.2 Parameters exposed over debugfs

SI476x allow user to get multiple characteristics that can be very useful for EoL testing/RF performance
estimation, parameters that have very little to do with V4L2 subsystem. Such parameters are exposed
via debugfs and can be accessed via regular file I/O operations.
The drivers exposes following files:

• /sys/kernel/debug/<device-name>/acf This file contains ACF(Automatically Controlled Features) sta-
tus information. The contents of the file is binary data of the following layout:
Offset Name Description
0x00 blend_int Flag, set when stereo separation has crossed below the blend threshold
0x01 hblend_int Flag, set when HiBlend cutoff frequency is lower than threshold
0x02 hicut_int Flag, set when HiCut cutoff frequency is lower than threshold
0x03 chbw_int Flag, set when channel filter bandwidth is less than threshold
0x04 softmute_int Flag indicating that softmute attenuation has increased above softmute

threshold
0x05 smute 0 - Audio is not soft muted 1 - Audio is soft muted
0x06 smattn Soft mute attenuation level in dB
0x07 chbw Channel filter bandwidth in kHz
0x08 hicut HiCut cutoff frequency in units of 100Hz
0x09 hiblend HiBlend cutoff frequency in units of 100 Hz
0x10 pilot 0 - Stereo pilot is not present 1 - Stereo pilot is present
0x11 stblend Stereo blend in %

• /sys/kernel/debug/<device-name>/rds_blckcnt This file contains statistics about RDS receptions. It’s
binary data has the following layout:

4.31. The SI476x Driver 1039

mailto:andrew.smirnov@gmail.com

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Offset Name Description
0x00 expected Number of expected RDS blocks
0x02 received Number of received RDS blocks
0x04 uncorrectableNumber of uncorrectable RDS blocks

• /sys/kernel/debug/<device-name>/agc This file contains information about parameters pertaining to
AGC(Automatic Gain Control)
The layout is:
Offset Name Description
0x00 mxhi 0 - FM Mixer PD high threshold is not tripped 1 - FM Mixer PD high threshold is

tripped
0x01 mxlo ditto for FM Mixer PD low
0x02 lnahi ditto for FM LNA PD high
0x03 lnalo ditto for FM LNA PD low
0x04 fmagc1 FMAGC1 attenuator resistance (see datasheet for more detail)
0x05 fmagc2 ditto for FMAGC2
0x06 pgagain PGA gain in dB
0x07 fmwblang FM/WB LNA Gain in dB

• /sys/kernel/debug/<device-name>/rsq This file contains information about parameters pertaining to
RSQ(Received Signal Quality)
The layout is:
Offset Name Description
0x00 multhint 0 - multipath value has not crossed the Multipath high threshold 1

- multipath value has crossed the Multipath high threshold
0x01 multlint ditto for Multipath low threshold
0x02 snrhint 0 - received signal’s SNR has not crossed high threshold 1 - re-

ceived signal’s SNR has crossed high threshold
0x03 snrlint ditto for low threshold
0x04 rssihint ditto for RSSI high threshold
0x05 rssilint ditto for RSSI low threshold
0x06 bltf Flag indicating if seek command reached/wrapped seek band limit
0x07 snr_ready Indicates that SNR metrics is ready
0x08 rssiready ditto for RSSI metrics
0x09 injside 0 - Low-side injection is being used 1 - High-side injection is used
0x10 afcrl Flag indicating if AFC rails
0x11 valid Flag indicating if channel is valid
0x12 readfreq Current tuned frequency
0x14 freqoff Signed frequency offset in units of 2ppm
0x15 rssi Signed value of RSSI in dBuV
0x16 snr Signed RF SNR in dB
0x17 issi Signed Image Strength Signal indicator
0x18 lassi Signed Low side adjacent Channel Strength indicator
0x19 hassi ditto fpr High side
0x20 mult Multipath indicator
0x21 dev Frequency deviation
0x24 assi Adjacent channel SSI
0x25 usn Ultrasonic noise indicator
0x26 pilotdev Pilot deviation in units of 100 Hz
0x27 rdsdev ditto for RDS
0x28 assidev ditto for ASSI
0x29 strongdev Frequency deviation
0x30 rdspi RDS PI code

• /sys/kernel/debug/<device-name>/rsq_primary This file contains information about parameters per-
taining to RSQ(Received Signal Quality) for primary tuner only. Layout is as the one above.

1040 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.32 The Soc-Camera Drivers

Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>

4.32.1 Terminology

The following terms are used in this document:
• camera / camera device / camera sensor - a video-camera sensor chip, capable of connecting

to a variety of systems and interfaces, typically uses i2c for control and configuration, and a
parallel or a serial bus for data.

• camera host - an interface, to which a camera is connected. Typically a specialised interface,
present on many SoCs, e.g. PXA27x and PXA3xx, SuperH, i.MX27, i.MX31.

• camera host bus - a connection between a camera host and a camera. Can be parallel or serial,
consists of data and control lines, e.g. clock, vertical and horizontal synchronization signals.

4.32.2 Purpose of the soc-camera subsystem

The soc-camera subsystem initially provided a unified API between camera host drivers and camera sensor
drivers. Later the soc-camera sensor API has been replaced with the V4L2 standard subdev API. This also
made camera driver re-use with non-soc-camera hosts possible. The camera host API to the soc-camera
core has been preserved.
Soc-camera implements a V4L2 interface to the user, currently only the “mmap” method is supported by
host drivers. However, the soc-camera core also provides support for the “read” method.
The subsystem has been designed to support multiple camera host interfaces and multiple cameras per
interface, although most applications have only one camera sensor.

4.32.3 Existing drivers

As of 3.7 there are seven host drivers in the mainline: atmel-isi.c, mx1_camera.c (broken, scheduled for
removal), mx2_camera.c, mx3_camera.c, omap1_camera.c, pxa_camera.c, sh_mobile_ceu_camera.c, and
multiple sensor drivers under drivers/media/i2c/soc_camera/.

4.32.4 Camera host API

A host camera driver is registered using the

soc_camera_host_register(struct soc_camera_host *);

function. The host object can be initialized as follows:

struct soc_camera_host *ici;
ici->drv_name = DRV_NAME;
ici->ops = &camera_host_ops;
ici->priv = pcdev;
ici->v4l2_dev.dev = &pdev->dev;
ici->nr = pdev->id;

All camera host methods are passed in a struct soc_camera_host_ops:

static struct soc_camera_host_ops camera_host_ops = {
.owner = THIS_MODULE,
.add = camera_add_device,
.remove = camera_remove_device,

4.32. The Soc-Camera Drivers 1041

mailto:g.liakhovetski@gmx.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

.set_fmt = camera_set_fmt_cap,

.try_fmt = camera_try_fmt_cap,

.init_videobuf2 = camera_init_videobuf2,

.poll = camera_poll,

.querycap = camera_querycap,

.set_bus_param = camera_set_bus_param,
/* The rest of host operations are optional */

};

.add and .remove methods are called when a sensor is attached to or detached from the host.

.set_bus_param is used to configure physical connection parameters between the host and the sensor.

.init_videobuf2 is called by soc-camera core when a video-device is opened, the host driver would typi-
cally call vb2_queue_init() in this method. Further video-buffer management is implemented completely
by the specific camera host driver. If the host driver supports non-standard pixel format conversion, it
should implement a .get_formats and, possibly, a .put_formats operations. See below for more details
about format conversion. The rest of the methods are called from respective V4L2 operations.

4.32.5 Camera API

Sensor drivers can use struct soc_camera_link, typically provided by the platform, and used to spec-
ify to which camera host bus the sensor is connected, and optionally provide platform .power and
.reset methods for the camera. This struct is provided to the camera driver via the I2C client de-
vice platform data and can be obtained, using the soc_camera_i2c_to_link() macro. Care should be
taken, when using soc_camera_vdev_to_subdev() and when accessing struct soc_camera_device, using
v4l2_get_subdev_hostdata(): both only work, when running on an soc-camera host. The actual cam-
era driver operation is implemented using the V4L2 subdev API. Additionally soc-camera camera drivers
can use auxiliary soc-camera helper functions like soc_camera_power_on() and soc_camera_power_off(),
which switch regulators, provided by the platform and call board-specific power switching methods.
soc_camera_apply_board_flags() takes camera bus configuration capability flags and applies any board
transformations, e.g. signal polarity inversion. soc_mbus_get_fmtdesc() can be used to obtain a pixel
format descriptor, corresponding to a certain media-bus pixel format code. soc_camera_limit_side() can
be used to restrict beginning and length of a frame side, based on camera capabilities.

4.32.6 VIDIOC_S_CROP and VIDIOC_S_FMT behaviour

Above user ioctls modify image geometry as follows:
VIDIOC_S_CROP: sets location and sizes of the sensor window. Unit is one sensor pixel. Changing sensor
window sizes preserves any scaling factors, therefore user window sizes change as well.
VIDIOC_S_FMT: sets user window. Should preserve previously set sensor window as much as possible by
modifying scaling factors. If the sensor window cannot be preserved precisely, it may be changed too.
In soc-camera there are two locations, where scaling and cropping can take place: in the camera driver
and in the host driver. User ioctls are first passed to the host driver, which then generally passes them
down to the camera driver. It is more efficient to perform scaling and cropping in the camera driver to
save camera bus bandwidth and maximise the framerate. However, if the camera driver failed to set the
required parameters with sufficient precision, the host driver may decide to also use its own scaling and
cropping to fulfill the user’s request.
Camera drivers are interfaced to the soc-camera core and to host drivers over the v4l2-subdev API, which
is completely functional, it doesn’t pass any data. Therefore all camera drivers shall reply to .g_fmt()
requests with their current output geometry. This is necessary to correctly configure the camera bus.
.s_fmt() and .try_fmt() have to be implemented too. Sensor window and scaling factors have to be main-
tained by camera drivers internally. According to the V4L2 API all capture drivers must support the VID-
IOC_CROPCAP ioctl, hence we rely on camera drivers implementing .cropcap(). If the camera driver does
not support cropping, it may choose to not implement .s_crop(), but to enable cropping support by the
camera host driver at least the .g_crop method must be implemented.

1042 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

User window geometry is kept in .user_width and .user_height fields in struct soc_camera_device and used
by the soc-camera core and host drivers. The core updates these fields upon successful completion of
a .s_fmt() call, but if these fields change elsewhere, e.g. during .s_crop() processing, the host driver is
responsible for updating them.

4.32.7 Format conversion

V4L2 distinguishes between pixel formats, as they are stored in memory, and as they are transferred
over a media bus. Soc-camera provides support to conveniently manage these formats. A table of stan-
dard transformations is maintained by soc-camera core, which describes, what FOURCC pixel format will
be obtained, if a media-bus pixel format is stored in memory according to certain rules. E.g. if ME-
DIA_BUS_FMT_YUYV8_2X8 data is sampled with 8 bits per sample and stored in memory in the little-endian
order with no gaps between bytes, data in memory will represent the V4L2_PIX_FMT_YUYV FOURCC for-
mat. These standard transformations will be used by soc-camera or by camera host drivers to configure
camera drivers to produce the FOURCC format, requested by the user, using the VIDIOC_S_FMT ioctl().
Apart from those standard format conversions, host drivers can also provide their own conversion rules
by implementing a .get_formats and, if required, a .put_formats methods.

4.33 The Linux USB Video Class (UVC) driver

This file documents some driver-specific aspects of the UVC driver, such as driver-specific ioctls and im-
plementation notes.
Questions and remarks can be sent to the Linux UVC development mailing list at linux-uvc-
devel@lists.berlios.de.

4.33.1 Extension Unit (XU) support

Introduction

The UVC specification allows for vendor-specific extensions through extension units (XUs). The Linux UVC
driver supports extension unit controls (XU controls) through two separate mechanisms:

• through mappings of XU controls to V4L2 controls
• through a driver-specific ioctl interface

The first one allows generic V4L2 applications to use XU controls by mapping certain XU controls onto
V4L2 controls, which then show up during ordinary control enumeration.
The second mechanism requires uvcvideo-specific knowledge for the application to access XU controls
but exposes the entire UVC XU concept to user space for maximum flexibility.
Both mechanisms complement each other and are described in more detail below.

Control mappings

The UVC driver provides an API for user space applications to define so-called control mappings at runtime.
These allow for individual XU controls or byte ranges thereof to be mapped to new V4L2 controls. Such
controls appear and function exactly like normal V4L2 controls (i.e. the stock controls, such as bright-
ness, contrast, etc.). However, reading or writing of such a V4L2 controls triggers a read or write of the
associated XU control.
The ioctl used to create these control mappings is called UVCIOC_CTRL_MAP. Previous driver versions
(before 0.2.0) required another ioctl to be used beforehand (UVCIOC_CTRL_ADD) to pass XU control infor-
mation to the UVC driver. This is no longer necessary as newer uvcvideo versions query the information
directly from the device.

4.33. The Linux USB Video Class (UVC) driver 1043

mailto:linux-uvc-devel@lists.berlios.de
mailto:linux-uvc-devel@lists.berlios.de

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

For details on the UVCIOC_CTRL_MAP ioctl please refer to the section titled “IOCTL reference” below.
3. Driver specific XU control interface

For applications that need to access XU controls directly, e.g. for testing purposes, firmware upload, or
accessing binary controls, a second mechanism to access XU controls is provided in the form of a driver-
specific ioctl, namely UVCIOC_CTRL_QUERY.
A call to this ioctl allows applications to send queries to the UVC driver that directly map to the low-level
UVC control requests.
In order to make such a request the UVC unit ID of the control’s extension unit and the control selector
need to be known. This information either needs to be hardcoded in the application or queried using other
ways such as by parsing the UVC descriptor or, if available, using the media controller API to enumerate
a device’s entities.
Unless the control size is already known it is necessary to first make a UVC_GET_LEN requests in order
to be able to allocate a sufficiently large buffer and set the buffer size to the correct value. Similarly, to
find out whether UVC_GET_CUR or UVC_SET_CUR are valid requests for a given control, a UVC_GET_INFO
request should be made. The bits 0 (GET supported) and 1 (SET supported) of the resulting byte indicate
which requests are valid.
With the addition of the UVCIOC_CTRL_QUERY ioctl the UVCIOC_CTRL_GET and UVCIOC_CTRL_SET ioctls
have become obsolete since their functionality is a subset of the former ioctl. For the time being they are
still supported but application developers are encouraged to use UVCIOC_CTRL_QUERY instead.
For details on the UVCIOC_CTRL_QUERY ioctl please refer to the section titled “IOCTL reference” below.

Security

The API doesn’t currently provide a fine-grained access control facility. The UVCIOC_CTRL_ADD and
UVCIOC_CTRL_MAP ioctls require super user permissions.
Suggestions on how to improve this are welcome.

Debugging

In order to debug problems related to XU controls or controls in general it is recommended to enable the
UVC_TRACE_CONTROL bit in the module parameter ‘trace’. This causes extra output to be written into
the system log.

IOCTL reference

UVCIOC_CTRL_MAP - Map a UVC control to a V4L2 control

Argument: struct uvc_xu_control_mapping
Description:

This ioctl creates a mapping between a UVC control or part of a UVC control and a V4L2 con-
trol. Once mappings are defined, userspace applications can access vendor-defined UVC control
through the V4L2 control API.
To create a mapping, applications fill the uvc_xu_control_mapping structure with information
about an existing UVC control defined with UVCIOC_CTRL_ADD and a new V4L2 control.
A UVC control can be mapped to several V4L2 controls. For instance, a UVC pan/tilt control
could be mapped to separate pan and tilt V4L2 controls. The UVC control is divided into non
overlapping fields using the ‘size’ and ‘offset’ fields and are then independently mapped to V4L2
control.

1044 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

For signed integer V4L2 controls the data_type field should be set to
UVC_CTRL_DATA_TYPE_SIGNED. Other values are currently ignored.

Return value:
On success 0 is returned. On error -1 is returned and errno is set appropriately.
ENOMEM Not enough memory to perform the operation.
EPERM Insufficient privileges (super user privileges are required).
EINVAL No such UVC control.
EOVERFLOW The requested offset and size would overflow the UVC control.
EEXIST Mapping already exists.

Data types:

* struct uvc_xu_control_mapping

__u32 id V4L2 control identifier
__u8 name[32] V4L2 control name
__u8 entity[16] UVC extension unit GUID
__u8 selector UVC control selector
__u8 size V4L2 control size (in bits)
__u8 offset V4L2 control offset (in bits)
enum v4l2_ctrl_type

v4l2_type V4L2 control type
enum uvc_control_data_type

data_type UVC control data type
struct uvc_menu_info

*menu_info Array of menu entries (for menu controls only)
__u32 menu_count Number of menu entries (for menu controls only)

* struct uvc_menu_info

__u32 value Menu entry value used by the device
__u8 name[32] Menu entry name

* enum uvc_control_data_type

UVC_CTRL_DATA_TYPE_RAW Raw control (byte array)
UVC_CTRL_DATA_TYPE_SIGNED Signed integer
UVC_CTRL_DATA_TYPE_UNSIGNED Unsigned integer
UVC_CTRL_DATA_TYPE_BOOLEAN Boolean
UVC_CTRL_DATA_TYPE_ENUM Enumeration
UVC_CTRL_DATA_TYPE_BITMASK Bitmask

UVCIOC_CTRL_QUERY - Query a UVC XU control

Argument: struct uvc_xu_control_query
Description:

This ioctl queries a UVC XU control identified by its extension unit ID and control selector.
There are a number of different queries available that closely correspond to the low-level control
requests described in the UVC specification. These requests are:
UVC_GET_CUR Obtain the current value of the control.
UVC_GET_MIN Obtain the minimum value of the control.
UVC_GET_MAX Obtain the maximum value of the control.

4.33. The Linux USB Video Class (UVC) driver 1045

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

UVC_GET_DEF Obtain the default value of the control.
UVC_GET_RES Query the resolution of the control, i.e. the step size of the allowed control

values.
UVC_GET_LEN Query the size of the control in bytes.
UVC_GET_INFO Query the control information bitmap, which indicates whether get/set re-

quests are supported.
UVC_SET_CUR Update the value of the control.
Applications must set the ‘size’ field to the correct length for the control. Exceptions are the
UVC_GET_LEN and UVC_GET_INFO queries, for which the size must be set to 2 and 1, respec-
tively. The ‘data’ field must point to a valid writable buffer big enough to hold the indicated
number of data bytes.
Data is copied directly from the device without any driver-side processing. Applications are
responsible for data buffer formatting, including little-endian/big-endian conversion. This is
particularly important for the result of the UVC_GET_LEN requests, which is always returned
as a little-endian 16-bit integer by the device.

Return value:
On success 0 is returned. On error -1 is returned and errno is set appropriately.
ENOENT The device does not support the given control or the specified extension unit could

not be found.
ENOBUFS The specified buffer size is incorrect (too big or too small).
EINVAL An invalid request code was passed.
EBADRQC The given request is not supported by the given control.
EFAULT The data pointer references an inaccessible memory area.

Data types:

* struct uvc_xu_control_query

__u8 unit Extension unit ID
__u8 selector Control selector
__u8 query Request code to send to the device
__u16 size Control data size (in bytes)
__u8 *data Control value

4.34 The Virtual Video Test Driver (vivid)

This driver emulates video4linux hardware of various types: video capture, video output, vbi capture
and output, radio receivers and transmitters and a software defined radio receiver. In addition a simple
framebuffer device is available for testing capture and output overlays.
Up to 64 vivid instances can be created, each with up to 16 inputs and 16 outputs.
Each input can be a webcam, TV capture device, S-Video capture device or an HDMI capture device. Each
output can be an S-Video output device or an HDMI output device.
These inputs and outputs act exactly as a real hardware device would behave. This allows you to use
this driver as a test input for application development, since you can test the various features without
requiring special hardware.
This document describes the features implemented by this driver:

• Support for read()/write(), MMAP, USERPTR and DMABUF streaming I/O.
• A large list of test patterns and variations thereof

1046 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• Working brightness, contrast, saturation and hue controls
• Support for the alpha color component
• Full colorspace support, including limited/full RGB range
• All possible control types are present
• Support for various pixel aspect ratios and video aspect ratios
• Error injection to test what happens if errors occur
• Supports crop/compose/scale in any combination for both input and output
• Can emulate up to 4K resolutions
• All Field settings are supported for testing interlaced capturing
• Supports all standard YUV and RGB formats, including two multiplanar YUV formats
• Raw and Sliced VBI capture and output support
• Radio receiver and transmitter support, including RDS support
• Software defined radio (SDR) support
• Capture and output overlay support

These features will be described in more detail below.

4.34.1 Configuring the driver

By default the driver will create a single instance that has a video capture device with webcam, TV, S-
Video and HDMI inputs, a video output device with S-Video and HDMI outputs, one vbi capture device, one
vbi output device, one radio receiver device, one radio transmitter device and one SDR device.
The number of instances, devices, video inputs and outputs and their types are all configurable using the
following module options:

• n_devs:
number of driver instances to create. By default set to 1. Up to 64 instances can be created.

• node_types:
which devices should each driver instance create. An array of hexadecimal values, one for
each instance. The default is 0x1d3d. Each value is a bitmask with the following meaning:
– bit 0: Video Capture node
– bit 2-3: VBI Capture node: 0 = none, 1 = raw vbi, 2 = sliced vbi, 3 = both
– bit 4: Radio Receiver node
– bit 5: Software Defined Radio Receiver node
– bit 8: Video Output node
– bit 10-11: VBI Output node: 0 = none, 1 = raw vbi, 2 = sliced vbi, 3 = both
– bit 12: Radio Transmitter node
– bit 16: Framebuffer for testing overlays

So to create four instances, the first two with just one video capture device, the second two
with just one video output device you would pass these module options to vivid:

n_devs=4 node_types=0x1,0x1,0x100,0x100

• num_inputs:

4.34. The Virtual Video Test Driver (vivid) 1047

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

the number of inputs, one for each instance. By default 4 inputs are created for each video
capture device. At most 16 inputs can be created, and there must be at least one.

• input_types:
the input types for each instance, the default is 0xe4. This defines what the type of each
input is when the inputs are created for each driver instance. This is a hexadecimal value
with up to 16 pairs of bits, each pair gives the type and bits 0-1 map to input 0, bits 2-3 map
to input 1, 30-31 map to input 15. Each pair of bits has the following meaning:
– 00: this is a webcam input
– 01: this is a TV tuner input
– 10: this is an S-Video input
– 11: this is an HDMI input

So to create a video capture device with 8 inputs where input 0 is a TV tuner, inputs 1-3 are
S-Video inputs and inputs 4-7 are HDMI inputs you would use the following module options:

num_inputs=8 input_types=0xffa9

• num_outputs:
the number of outputs, one for each instance. By default 2 outputs are created for each
video output device. At most 16 outputs can be created, and there must be at least one.

• output_types:
the output types for each instance, the default is 0x02. This defines what the type of each
output is when the outputs are created for each driver instance. This is a hexadecimal value
with up to 16 bits, each bit gives the type and bit 0 maps to output 0, bit 1 maps to output
1, bit 15 maps to output 15. The meaning of each bit is as follows:
– 0: this is an S-Video output
– 1: this is an HDMI output

So to create a video output device with 8 outputs where outputs 0-3 are S-Video outputs
and outputs 4-7 are HDMI outputs you would use the following module options:

num_outputs=8 output_types=0xf0

• vid_cap_nr:
give the desired videoX start number for each video capture device. The default is -1 which
will just take the first free number. This allows you to map capture video nodes to specific
videoX device nodes. Example:

n_devs=4 vid_cap_nr=2,4,6,8

This will attempt to assign /dev/video2 for the video capture device of the first vivid instance,
video4 for the next up to video8 for the last instance. If it can’t succeed, then it will just
take the next free number.

• vid_out_nr:
give the desired videoX start number for each video output device. The default is -1 which
will just take the first free number.

• vbi_cap_nr:
give the desired vbiX start number for each vbi capture device. The default is -1 which will
just take the first free number.

• vbi_out_nr:

1048 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

give the desired vbiX start number for each vbi output device. The default is -1 which will
just take the first free number.

• radio_rx_nr:
give the desired radioX start number for each radio receiver device. The default is -1 which
will just take the first free number.

• radio_tx_nr:
give the desired radioX start number for each radio transmitter device. The default is -1
which will just take the first free number.

• sdr_cap_nr:
give the desired swradioX start number for each SDR capture device. The default is -1 which
will just take the first free number.

• ccs_cap_mode:
specify the allowed video capture crop/compose/scaling combination for each driver in-
stance. Video capture devices can have any combination of cropping, composing and scaling
capabilities and this will tell the vivid driver which of those is should emulate. By default
the user can select this through controls.
The value is either -1 (controlled by the user) or a set of three bits, each enabling (1) or
disabling (0) one of the features:
– bit 0:

Enable crop support. Cropping will take only part of the incoming picture.
– bit 1:

Enable compose support. Composing will copy the incoming picture into a larger
buffer.

– bit 2:
Enable scaling support. Scaling can scale the incoming picture. The scaler of the
vivid driver can enlarge up or down to four times the original size. The scaler is
very simple and low-quality. Simplicity and speed were key, not quality.

Note that this value is ignored by webcam inputs: those enumerate discrete framesizes and
that is incompatible with cropping, composing or scaling.

• ccs_out_mode:
specify the allowed video output crop/compose/scaling combination for each driver instance.
Video output devices can have any combination of cropping, composing and scaling capa-
bilities and this will tell the vivid driver which of those is should emulate. By default the user
can select this through controls.
The value is either -1 (controlled by the user) or a set of three bits, each enabling (1) or
disabling (0) one of the features:
– bit 0:

Enable crop support. Cropping will take only part of the outgoing buffer.
– bit 1:

Enable compose support. Composing will copy the incoming buffer into a larger
picture frame.

– bit 2:
Enable scaling support. Scaling can scale the incoming buffer. The scaler of the
vivid driver can enlarge up or down to four times the original size. The scaler is
very simple and low-quality. Simplicity and speed were key, not quality.

4.34. The Virtual Video Test Driver (vivid) 1049

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• multiplanar:
select whether each device instance supports multi-planar formats, and thus the V4L2 multi-
planar API. By default device instances are single-planar.
This module option can override that for each instance. Values are:
– 1: this is a single-planar instance.
– 2: this is a multi-planar instance.

• vivid_debug:
enable driver debugging info

• no_error_inj:
if set disable the error injecting controls. This option is needed in order to run a tool like
v4l2-compliance. Tools like that exercise all controls including a control like ‘Disconnect’
which emulates a USB disconnect, making the device inaccessible and so all tests that v4l2-
compliance is doing will fail afterwards.
There may be other situations as well where you want to disable the error injection support
of vivid. When this option is set, then the controls that select crop, compose and scale
behavior are also removed. Unless overridden by ccs_cap_mode and/or ccs_out_mode the
will default to enabling crop, compose and scaling.

• allocators:
memory allocator selection, default is 0. It specifies the way buffers will be allocated.
– 0: vmalloc
– 1: dma-contig

Taken together, all these module options allow you to precisely customize the driver behavior and test
your application with all sorts of permutations. It is also very suitable to emulate hardware that is not yet
available, e.g. when developing software for a new upcoming device.

4.34.2 Video Capture

This is probably the most frequently used feature. The video capture device can be configured by using the
module options num_inputs, input_types and ccs_cap_mode (see section 1 for more detailed information),
but by default four inputs are configured: a webcam, a TV tuner, an S-Video and an HDMI input, one input
for each input type. Those are described in more detail below.
Special attention has been given to the rate at which new frames become available. The jitter will be
around 1 jiffie (that depends on the HZ configuration of your kernel, so usually 1/100, 1/250 or 1/1000 of a
second), but the long-term behavior is exactly following the framerate. So a framerate of 59.94 Hz is really
different from 60 Hz. If the framerate exceeds your kernel’s HZ value, then you will get dropped frames,
but the frame/field sequence counting will keep track of that so the sequence count will skip whenever
frames are dropped.

Webcam Input

The webcam input supports three framesizes: 320x180, 640x360 and 1280x720. It supports frames
per second settings of 10, 15, 25, 30, 50 and 60 fps. Which ones are available depends on the chosen
framesize: the larger the framesize, the lower the maximum frames per second.
The initially selected colorspace when you switch to the webcam input will be sRGB.

1050 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

TV and S-Video Inputs

The only difference between the TV and S-Video input is that the TV has a tuner. Otherwise they behave
identically.
These inputs support audio inputs as well: one TV and one Line-In. They both support all TV standards.
If the standard is queried, then the Vivid controls ‘Standard Signal Mode’ and ‘Standard’ determine what
the result will be.
These inputs support all combinations of the field setting. Special care has been taken to faithfully repro-
duce how fields are handled for the different TV standards. This is particularly noticeable when generating
a horizontally moving image so the temporal effect of using interlaced formats becomes clearly visible.
For 50 Hz standards the top field is the oldest and the bottom field is the newest in time. For 60 Hz
standards that is reversed: the bottom field is the oldest and the top field is the newest in time.
When you start capturing in V4L2_FIELD_ALTERNATE mode the first buffer will contain the top field for 50
Hz standards and the bottom field for 60 Hz standards. This is what capture hardware does as well.
Finally, for PAL/SECAM standards the first half of the top line contains noise. This simulates the Wide
Screen Signal that is commonly placed there.
The initially selected colorspace when you switch to the TV or S-Video input will be SMPTE-170M.
The pixel aspect ratio will depend on the TV standard. The video aspect ratio can be selected through
the ‘Standard Aspect Ratio’ Vivid control. Choices are ‘4x3’, ‘16x9’ which will give letterboxed widescreen
video and ‘16x9 Anamorphic’ which will give full screen squashed anamorphic widescreen video that will
need to be scaled accordingly.
The TV ‘tuner’ supports a frequency range of 44-958 MHz. Channels are available every 6 MHz, starting
from 49.25 MHz. For each channel the generated image will be in color for the +/- 0.25 MHz around it,
and in grayscale for +/- 1 MHz around the channel. Beyond that it is just noise. The VIDIOC_G_TUNER
ioctl will return 100% signal strength for +/- 0.25 MHz and 50% for +/- 1 MHz. It will also return correct
afc values to show whether the frequency is too low or too high.
The audio subchannels that are returned are MONO for the +/- 1 MHz range around a valid channel fre-
quency. When the frequency is within +/- 0.25 MHz of the channel it will return either MONO, STEREO,
either MONO | SAP (for NTSC) or LANG1 | LANG2 (for others), or STEREO | SAP.
Which one is returned depends on the chosen channel, each next valid channel will cycle through the pos-
sible audio subchannel combinations. This allows you to test the various combinations by just switching
channels..
Finally, for these inputs the v4l2_timecode struct is filled in in the dequeued v4l2_buffer struct.

HDMI Input

The HDMI inputs supports all CEA-861 and DMT timings, both progressive and interlaced, for pix-
elclock frequencies between 25 and 600 MHz. The field mode for interlaced formats is always
V4L2_FIELD_ALTERNATE. For HDMI the field order is always top field first, and when you start capturing
an interlaced format you will receive the top field first.
The initially selected colorspace when you switch to the HDMI input or select an HDMI timing is based on
the format resolution: for resolutions less than or equal to 720x576 the colorspace is set to SMPTE-170M,
for others it is set to REC-709 (CEA-861 timings) or sRGB (VESA DMT timings).
The pixel aspect ratio will depend on the HDMI timing: for 720x480 is it set as for the NTSC TV standard,
for 720x576 it is set as for the PAL TV standard, and for all others a 1:1 pixel aspect ratio is returned.
The video aspect ratio can be selected through the ‘DV Timings Aspect Ratio’ Vivid control. Choices are
‘Source Width x Height’ (just use the same ratio as the chosen format), ‘4x3’ or ‘16x9’, either of which
can result in pillarboxed or letterboxed video.
For HDMI inputs it is possible to set the EDID. By default a simple EDID is provided. You can only set the
EDID for HDMI inputs. Internally, however, the EDID is shared between all HDMI inputs.

4.34. The Virtual Video Test Driver (vivid) 1051

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

No interpretation is done of the EDID data with the exception of the physical address. See the CEC section
for more details.
There is a maximum of 15 HDMI inputs (if there are more, then they will be reduced to 15) since that’s
the limitation of the EDID physical address.

4.34.3 Video Output

The video output device can be configured by using the module options num_outputs, output_types and
ccs_out_mode (see section 1 for more detailed information), but by default two outputs are configured:
an S-Video and an HDMI input, one output for each output type. Those are described in more detail below.
Like with video capture the framerate is also exact in the long term.

S-Video Output

This output supports audio outputs as well: “Line-Out 1” and “Line-Out 2”. The S-Video output supports
all TV standards.
This output supports all combinations of the field setting.
The initially selected colorspace when you switch to the TV or S-Video input will be SMPTE-170M.

HDMI Output

The HDMI output supports all CEA-861 and DMT timings, both progressive and interlaced, for pix-
elclock frequencies between 25 and 600 MHz. The field mode for interlaced formats is always
V4L2_FIELD_ALTERNATE.
The initially selected colorspace when you switch to the HDMI output or select an HDMI timing is based on
the format resolution: for resolutions less than or equal to 720x576 the colorspace is set to SMPTE-170M,
for others it is set to REC-709 (CEA-861 timings) or sRGB (VESA DMT timings).
The pixel aspect ratio will depend on the HDMI timing: for 720x480 is it set as for the NTSC TV standard,
for 720x576 it is set as for the PAL TV standard, and for all others a 1:1 pixel aspect ratio is returned.
An HDMI output has a valid EDID which can be obtained through VIDIOC_G_EDID.
There is a maximum of 15 HDMI outputs (if there are more, then they will be reduced to 15) since that’s
the limitation of the EDID physical address. See also the CEC section for more details.

4.34.4 VBI Capture

There are three types of VBI capture devices: those that only support raw (undecoded) VBI, those that
only support sliced (decoded) VBI and those that support both. This is determined by the node_types
module option. In all cases the driver will generate valid VBI data: for 60 Hz standards it will generate
Closed Caption and XDS data. The closed caption stream will alternate between “Hello world!” and
“Closed captions test” every second. The XDS stream will give the current time once a minute. For 50 Hz
standards it will generate the Wide Screen Signal which is based on the actual Video Aspect Ratio control
setting and teletext pages 100-159, one page per frame.
The VBI device will only work for the S-Video and TV inputs, it will give back an error if the current input
is a webcam or HDMI.

4.34.5 VBI Output

There are three types of VBI output devices: those that only support raw (undecoded) VBI, those that only
support sliced (decoded) VBI and those that support both. This is determined by the node_types module
option.

1052 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The sliced VBI output supports the Wide Screen Signal and the teletext signal for 50 Hz standards and
Closed Captioning + XDS for 60 Hz standards.
The VBI device will only work for the S-Video output, it will give back an error if the current output is HDMI.

4.34.6 Radio Receiver

The radio receiver emulates an FM/AM/SW receiver. The FM band also supports RDS. The frequency ranges
are:

• FM: 64 MHz - 108 MHz
• AM: 520 kHz - 1710 kHz
• SW: 2300 kHz - 26.1 MHz

Valid channels are emulated every 1 MHz for FM and every 100 kHz for AM and SW. The signal strength
decreases the further the frequency is from the valid frequency until it becomes 0% at +/- 50 kHz (FM) or
5 kHz (AM/SW) from the ideal frequency. The initial frequency when the driver is loaded is set to 95 MHz.
The FM receiver supports RDS as well, both using ‘Block I/O’ and ‘Controls’ modes. In the ‘Controls’ mode
the RDS information is stored in read-only controls. These controls are updated every time the frequency
is changed, or when the tuner status is requested. The Block I/O method uses the read() interface to pass
the RDS blocks on to the application for decoding.
The RDS signal is ‘detected’ for +/- 12.5 kHz around the channel frequency, and the further the frequency
is away from the valid frequency the more RDS errors are randomly introduced into the block I/O stream,
up to 50% of all blocks if you are +/- 12.5 kHz from the channel frequency. All four errors can occur in
equal proportions: blocks marked ‘CORRECTED’, blocks marked ‘ERROR’, blocks marked ‘INVALID’ and
dropped blocks.
The generated RDS stream contains all the standard fields contained in a 0B group, and also radio text
and the current time.
The receiver supports HW frequency seek, either in Bounded mode, Wrap Around mode or both, which is
configurable with the “Radio HW Seek Mode” control.

4.34.7 Radio Transmitter

The radio transmitter emulates an FM/AM/SW transmitter. The FM band also supports RDS. The frequency
ranges are:

• FM: 64 MHz - 108 MHz
• AM: 520 kHz - 1710 kHz
• SW: 2300 kHz - 26.1 MHz

The initial frequency when the driver is loaded is 95.5 MHz.
The FM transmitter supports RDS as well, both using ‘Block I/O’ and ‘Controls’ modes. In the ‘Controls’
mode the transmitted RDS information is configured using controls, and in ‘Block I/O’ mode the blocks are
passed to the driver using write().

4.34.8 Software Defined Radio Receiver

The SDR receiver has three frequency bands for the ADC tuner:
• 300 kHz
• 900 kHz - 2800 kHz
• 3200 kHz

4.34. The Virtual Video Test Driver (vivid) 1053

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

The RF tuner supports 50 MHz - 2000 MHz.
The generated data contains the In-phase and Quadrature components of a 1 kHz tone that has an am-
plitude of sqrt(2).

4.34.9 Controls

Different devices support different controls. The sections below will describe each control and which
devices support them.

User Controls - Test Controls

The Button, Boolean, Integer 32 Bits, Integer 64 Bits, Menu, String, Bitmask and Integer Menu are controls
that represent all possible control types. The Menu control and the Integer Menu control both have ‘holes’
in their menu list, meaning that one or more menu items return EINVAL when VIDIOC_QUERYMENU is
called. Both menu controls also have a non-zero minimum control value. These features allow you to
check if your application can handle such things correctly. These controls are supported for every device
type.

User Controls - Video Capture

The following controls are specific to video capture.
The Brightness, Contrast, Saturation and Hue controls actually work and are standard. There is one special
feature with the Brightness control: each video input has its own brightness value, so changing input will
restore the brightness for that input. In addition, each video input uses a different brightness range
(minimum and maximum control values). Switching inputs will cause a control event to be sent with the
V4L2_EVENT_CTRL_CH_RANGE flag set. This allows you to test controls that can change their range.
The ‘Gain, Automatic’ and Gain controls can be used to test volatile controls: if ‘Gain, Automatic’ is set,
then the Gain control is volatile and changes constantly. If ‘Gain, Automatic’ is cleared, then the Gain
control is a normal control.
The ‘Horizontal Flip’ and ‘Vertical Flip’ controls can be used to flip the image. These combine with the
‘Sensor Flipped Horizontally/Vertically’ Vivid controls.
The ‘Alpha Component’ control can be used to set the alpha component for formats containing an alpha
channel.

User Controls - Audio

The following controls are specific to video capture and output and radio receivers and transmitters.
The ‘Volume’ and ‘Mute’ audio controls are typical for such devices to control the volume and mute the
audio. They don’t actually do anything in the vivid driver.

Vivid Controls

These vivid custom controls control the image generation, error injection, etc.

Test Pattern Controls

The Test Pattern Controls are all specific to video capture.
• Test Pattern:

1054 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

selects which test pattern to use. Use the CSC Colorbar for testing colorspace conversions:
the colors used in that test pattern map to valid colors in all colorspaces. The colorspace
conversion is disabled for the other test patterns.

• OSD Text Mode:
selects whether the text superimposed on the test pattern should be shown, and if so,
whether only counters should be displayed or the full text.

• Horizontal Movement:
selects whether the test pattern should move to the left or right and at what speed.

• Vertical Movement:
does the same for the vertical direction.

• Show Border:
show a two-pixel wide border at the edge of the actual image, excluding letter or pillarboxing.

• Show Square:
show a square in the middle of the image. If the image is displayed with the correct pixel
and image aspect ratio corrections, then the width and height of the square on the monitor
should be the same.

• Insert SAV Code in Image:
adds a SAV (Start of Active Video) code to the image. This can be used to check if such
codes in the image are inadvertently interpreted instead of being ignored.

• Insert EAV Code in Image:
does the same for the EAV (End of Active Video) code.

Capture Feature Selection Controls

These controls are all specific to video capture.
• Sensor Flipped Horizontally:

the image is flipped horizontally and the V4L2_IN_ST_HFLIP input status flag is set. This
emulates the case where a sensor is for example mounted upside down.

• Sensor Flipped Vertically:
the image is flipped vertically and the V4L2_IN_ST_VFLIP input status flag is set. This emu-
lates the case where a sensor is for example mounted upside down.

• Standard Aspect Ratio:
selects if the image aspect ratio as used for the TV or S-Video input should be 4x3, 16x9 or
anamorphic widescreen. This may introduce letterboxing.

• DV Timings Aspect Ratio:
selects if the image aspect ratio as used for the HDMI input should be the same as the
source width and height ratio, or if it should be 4x3 or 16x9. This may introduce letter or
pillarboxing.

• Timestamp Source:
selects when the timestamp for each buffer is taken.

• Colorspace:
selects which colorspace should be used when generating the image. This only applies if the
CSC Colorbar test pattern is selected, otherwise the test pattern will go through unconverted.

4.34. The Virtual Video Test Driver (vivid) 1055

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

This behavior is also what you want, since a 75% Colorbar should really have 75% signal
intensity and should not be affected by colorspace conversions.
Changing the colorspace will result in the V4L2_EVENT_SOURCE_CHANGE to be sent since
it emulates a detected colorspace change.

• Transfer Function:
selects which colorspace transfer function should be used when generating an image. This
only applies if the CSC Colorbar test pattern is selected, otherwise the test pattern will go
through unconverted. This behavior is also what you want, since a 75% Colorbar should
really have 75% signal intensity and should not be affected by colorspace conversions.
Changing the transfer function will result in the V4L2_EVENT_SOURCE_CHANGE to be sent
since it emulates a detected colorspace change.

• Y’CbCr Encoding:
selects which Y’CbCr encoding should be used when generating a Y’CbCr image. This only
applies if the format is set to a Y’CbCr format as opposed to an RGB format.
Changing the Y’CbCr encoding will result in the V4L2_EVENT_SOURCE_CHANGE to be sent
since it emulates a detected colorspace change.

• Quantization:
selects which quantization should be used for the RGB or Y’CbCr encoding when generating
the test pattern.
Changing the quantization will result in the V4L2_EVENT_SOURCE_CHANGE to be sent since
it emulates a detected colorspace change.

• Limited RGB Range (16-235):
selects if the RGB range of the HDMI source should be limited or full range. This combines
with the Digital Video ‘Rx RGB Quantization Range’ control and can be used to test what
happens if a source provides you with the wrong quantization range information. See the
description of that control for more details.

• Apply Alpha To Red Only:
apply the alpha channel as set by the ‘Alpha Component’ user control to the red color of the
test pattern only.

• Enable Capture Cropping:
enables crop support. This control is only present if the ccs_cap_mode module option is set
to the default value of -1 and if the no_error_inj module option is set to 0 (the default).

• Enable Capture Composing:
enables composing support. This control is only present if the ccs_cap_mode module option
is set to the default value of -1 and if the no_error_inj module option is set to 0 (the default).

• Enable Capture Scaler:
enables support for a scaler (maximum 4 times upscaling and downscaling). This control is
only present if the ccs_cap_mode module option is set to the default value of -1 and if the
no_error_inj module option is set to 0 (the default).

• Maximum EDID Blocks:
determines how many EDID blocks the driver supports. Note that the vivid driver does not
actually interpret new EDID data, it just stores it. It allows for up to 256 EDID blocks which
is the maximum supported by the standard.

• Fill Percentage of Frame:

1056 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

can be used to draw only the top X percent of the image. Since each frame has to be drawn
by the driver, this demands a lot of the CPU. For large resolutions this becomes problematic.
By drawing only part of the image this CPU load can be reduced.

Output Feature Selection Controls

These controls are all specific to video output.
• Enable Output Cropping:

enables crop support. This control is only present if the ccs_out_mode module option is set
to the default value of -1 and if the no_error_inj module option is set to 0 (the default).

• Enable Output Composing:
enables composing support. This control is only present if the ccs_out_mode module option
is set to the default value of -1 and if the no_error_inj module option is set to 0 (the default).

• Enable Output Scaler:
enables support for a scaler (maximum 4 times upscaling and downscaling). This control is
only present if the ccs_out_mode module option is set to the default value of -1 and if the
no_error_inj module option is set to 0 (the default).

Error Injection Controls

The following two controls are only valid for video and vbi capture.
• Standard Signal Mode:

selects the behavior of VIDIOC_QUERYSTD: what should it return?
Changing this control will result in the V4L2_EVENT_SOURCE_CHANGE to be sent since it
emulates a changed input condition (e.g. a cable was plugged in or out).

• Standard:
selects the standard that VIDIOC_QUERYSTD should return if the previous control is set to
“Selected Standard”.
Changing this control will result in the V4L2_EVENT_SOURCE_CHANGE to be sent since it
emulates a changed input standard.

The following two controls are only valid for video capture.
• DV Timings Signal Mode:

selects the behavior of VIDIOC_QUERY_DV_TIMINGS: what should it return?
Changing this control will result in the V4L2_EVENT_SOURCE_CHANGE to be sent since it
emulates a changed input condition (e.g. a cable was plugged in or out).

• DV Timings:
selects the timings the VIDIOC_QUERY_DV_TIMINGS should return if the previous control is
set to “Selected DV Timings”.
Changing this control will result in the V4L2_EVENT_SOURCE_CHANGE to be sent since it
emulates changed input timings.

The following controls are only present if the no_error_inj module option is set to 0 (the default). These
controls are valid for video and vbi capture and output streams and for the SDR capture device except for
the Disconnect control which is valid for all devices.

• Wrap Sequence Number:
test what happens when you wrap the sequence number in struct v4l2_buffer around.

4.34. The Virtual Video Test Driver (vivid) 1057

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• Wrap Timestamp:
test what happens when you wrap the timestamp in struct v4l2_buffer around.

• Percentage of Dropped Buffers:
sets the percentage of buffers that are never returned by the driver (i.e., they are dropped).

• Disconnect:
emulates a USB disconnect. The device will act as if it has been disconnected. Only after all
open filehandles to the device node have been closed will the device become ‘connected’
again.

• Inject V4L2_BUF_FLAG_ERROR:
when pressed, the next frame returned by the driver will have the error flag set (i.e. the
frame is marked corrupt).

• Inject VIDIOC_REQBUFS Error:
when pressed, the next REQBUFS or CREATE_BUFS ioctl call will fail with an error. To be
precise: the videobuf2 queue_setup() op will return -EINVAL.

• Inject VIDIOC_QBUF Error:
when pressed, the next VIDIOC_QBUF or VIDIOC_PREPARE_BUFFER ioctl call will fail with an
error. To be precise: the videobuf2 buf_prepare() op will return -EINVAL.

• Inject VIDIOC_STREAMON Error:
when pressed, the next VIDIOC_STREAMON ioctl call will fail with an error. To be precise:
the videobuf2 start_streaming() op will return -EINVAL.

• Inject Fatal Streaming Error:
when pressed, the streaming core will be marked as having suffered a fatal error, the
only way to recover from that is to stop streaming. To be precise: the videobuf2
vb2_queue_error() function is called.

VBI Raw Capture Controls

• Interlaced VBI Format:
if set, then the raw VBI data will be interlaced instead of providing it grouped by field.

Digital Video Controls

• Rx RGB Quantization Range:
sets the RGB quantization detection of the HDMI input. This combines with the Vivid ‘Limited
RGB Range (16-235)’ control and can be used to test what happens if a source provides you
with the wrong quantization range information. This can be tested by selecting an HDMI
input, setting this control to Full or Limited range and selecting the opposite in the ‘Limited
RGB Range (16-235)’ control. The effect is easy to see if the ‘Gray Ramp’ test pattern is
selected.

• Tx RGB Quantization Range:
sets the RGB quantization detection of the HDMI output. It is currently not used for anything
in vivid, but most HDMI transmitters would typically have this control.

• Transmit Mode:
sets the transmit mode of the HDMI output to HDMI or DVI-D. This affects the reported
colorspace since DVI_D outputs will always use sRGB.

1058 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

FM Radio Receiver Controls

• RDS Reception:
set if the RDS receiver should be enabled.

• RDS Program Type:
• RDS PS Name:
• RDS Radio Text:
• RDS Traffic Announcement:
• RDS Traffic Program:
• RDS Music:

these are all read-only controls. If RDS Rx I/O Mode is set to “Block I/O”, then they are
inactive as well. If RDS Rx I/O Mode is set to “Controls”, then these controls report the
received RDS data.

Note:

The vivid implementation of this is pretty basic: they are only updated when you set a new frequency
or when you get the tuner status (VIDIOC_G_TUNER).

• Radio HW Seek Mode:
can be one of “Bounded”, “Wrap Around” or “Both”. This determines if VID-
IOC_S_HW_FREQ_SEEK will be bounded by the frequency range or wrap-around or if it is
selectable by the user.

• Radio Programmable HW Seek:
if set, then the user can provide the lower and upper bound of the HW Seek. Otherwise the
frequency range boundaries will be used.

• Generate RBDS Instead of RDS:
if set, then generate RBDS (the US variant of RDS) data instead of RDS (European-style
RDS). This affects only the PICODE and PTY codes.

• RDS Rx I/O Mode:
this can be “Block I/O” where the RDS blocks have to be read() by the application, or “Con-
trols” where the RDS data is provided by the RDS controls mentioned above.

FM Radio Modulator Controls

• RDS Program ID:
• RDS Program Type:
• RDS PS Name:
• RDS Radio Text:
• RDS Stereo:
• RDS Artificial Head:
• RDS Compressed:
• RDS Dynamic PTY:
• RDS Traffic Announcement:
• RDS Traffic Program:

4.34. The Virtual Video Test Driver (vivid) 1059

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• RDS Music:
these are all controls that set the RDS data that is transmitted by the FM modulator.

• RDS Tx I/O Mode:
this can be “Block I/O” where the application has to use write() to pass the RDS blocks to the
driver, or “Controls” where the RDS data is Provided by the RDS controls mentioned above.

4.34.10 Video, VBI and RDS Looping

The vivid driver supports looping of video output to video input, VBI output to VBI input and RDS output to
RDS input. For video/VBI looping this emulates as if a cable was hooked up between the output and input
connector. So video and VBI looping is only supported between S-Video and HDMI inputs and outputs. VBI
is only valid for S-Video as it makes no sense for HDMI.
Since radio is wireless this looping always happens if the radio receiver frequency is close to the radio
transmitter frequency. In that case the radio transmitter will ‘override’ the emulated radio stations.
Looping is currently supported only between devices created by the same vivid driver instance.

Video and Sliced VBI looping

The way to enable video/VBI looping is currently fairly crude. A ‘Loop Video’ control is available in the
“Vivid” control class of the video capture and VBI capture devices. When checked the video looping will
be enabled. Once enabled any video S-Video or HDMI input will show a static test pattern until the video
output has started. At that time the video output will be looped to the video input provided that:

• the input type matches the output type. So the HDMI input cannot receive video from the S-Video
output.

• the video resolution of the video input must match that of the video output. So it is not possible to
loop a 50 Hz (720x576) S-Video output to a 60 Hz (720x480) S-Video input, or a 720p60 HDMI output
to a 1080p30 input.

• the pixel formats must be identical on both sides. Otherwise the driver would have to do pixel format
conversion as well, and that’s taking things too far.

• the field settings must be identical on both sides. Same reason as above: requiring the driver to
convert from one field format to another complicated matters too much. This also prohibits capturing
with ‘Field Top’ or ‘Field Bottom’ when the output video is set to ‘Field Alternate’. This combination,
while legal, became too complicated to support. Both sides have to be ‘Field Alternate’ for this to
work. Also note that for this specific case the sequence and field counting in struct v4l2_buffer on
the capture side may not be 100% accurate.

• field settings V4L2_FIELD_SEQ_TB/BT are not supported. While it is possible to implement this, it
would mean a lot of work to get this right. Since these field values are rarely used the decision was
made not to implement this for now.

• on the input side the “Standard Signal Mode” for the S-Video input or the “DV Timings Signal Mode”
for the HDMI input should be configured so that a valid signal is passed to the video input.

The framerates do not have to match, although this might change in the future.
By default you will see the OSD text superimposed on top of the looped video. This can be turned off by
changing the “OSD Text Mode” control of the video capture device.
For VBI looping to work all of the above must be valid and in addition the vbi output must be configured
for sliced VBI. The VBI capture side can be configured for either raw or sliced VBI. Note that at the moment
only CC/XDS (60 Hz formats) and WSS (50 Hz formats) VBI data is looped. Teletext VBI data is not looped.

1060 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Radio & RDS Looping

As mentioned in section 6 the radio receiver emulates stations are regular frequency intervals. Depend-
ing on the frequency of the radio receiver a signal strength value is calculated (this is returned by VID-
IOC_G_TUNER). However, it will also look at the frequency set by the radio transmitter and if that results
in a higher signal strength than the settings of the radio transmitter will be used as if it was a valid station.
This also includes the RDS data (if any) that the transmitter ‘transmits’. This is received faithfully on the
receiver side. Note that when the driver is loaded the frequencies of the radio receiver and transmitter
are not identical, so initially no looping takes place.

4.34.11 Cropping, Composing, Scaling

This driver supports cropping, composing and scaling in any combination. Normally which features are
supported can be selected through the Vivid controls, but it is also possible to hardcode it when the module
is loaded through the ccs_cap_mode and ccs_out_mode module options. See section 1 on the details of
these module options.
This allows you to test your application for all these variations.
Note that the webcam input never supports cropping, composing or scaling. That only applies to the
TV/S-Video/HDMI inputs and outputs. The reason is that webcams, including this virtual implementation,
normally use VIDIOC_ENUM_FRAMESIZES to list a set of discrete framesizes that it supports. And that
does not combine with cropping, composing or scaling. This is primarily a limitation of the V4L2 API which
is carefully reproduced here.
The minimum and maximum resolutions that the scaler can achieve are 16x16 and (4096 * 4) x (2160 x
4), but it can only scale up or down by a factor of 4 or less. So for a source resolution of 1280x720 the
minimum the scaler can do is 320x180 and the maximum is 5120x2880. You can play around with this
using the qv4l2 test tool and you will see these dependencies.
This driver also supports larger ‘bytesperline’ settings, something that VIDIOC_S_FMT allows but that few
drivers implement.
The scaler is a simple scaler that uses the Coarse Bresenham algorithm. It’s designed for speed and
simplicity, not quality.
If the combination of crop, compose and scaling allows it, then it is possible to change crop and compose
rectangles on the fly.

4.34.12 Formats

The driver supports all the regular packed and planar 4:4:4, 4:2:2 and 4:2:0 YUYV formats, 8, 16, 24 and
32 RGB packed formats and various multiplanar formats.
The alpha component can be set through the ‘Alpha Component’ User control for those formats that
support it. If the ‘Apply Alpha To Red Only’ control is set, then the alpha component is only used for the
color red and set to 0 otherwise.
The driver has to be configured to support the multiplanar formats. By default the driver instances are
single-planar. This can be changed by setting the multiplanar module option, see section 1 for more
details on that option.
If the driver instance is using the multiplanar formats/API, then the first single planar format (YUYV) and
the multiplanar NV16M and NV61M formats the will have a plane that has a non-zero data_offset of 128
bytes. It is rare for data_offset to be non-zero, so this is a useful feature for testing applications.
Video output will also honor any data_offset that the application set.

4.34. The Virtual Video Test Driver (vivid) 1061

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.34.13 Capture Overlay

Note: capture overlay support is implemented primarily to test the existing V4L2 capture overlay API. In
practice few if any GPUs support such overlays anymore, and neither are they generally needed anymore
since modern hardware is so much more capable. By setting flag 0x10000 in the node_types module
option the vivid driver will create a simple framebuffer device that can be used for testing this API. Whether
this API should be used for new drivers is questionable.
This driver has support for a destructive capture overlay with bitmap clipping and list clipping (up to
16 rectangles) capabilities. Overlays are not supported for multiplanar formats. It also honors the
struct v4l2_window field setting: if it is set to FIELD_TOP or FIELD_BOTTOM and the capture setting is
FIELD_ALTERNATE, then only the top or bottom fields will be copied to the overlay.
The overlay only works if you are also capturing at that same time. This is a vivid limitation since it copies
from a buffer to the overlay instead of filling the overlay directly. And if you are not capturing, then no
buffers are available to fill.
In addition, the pixelformat of the capture format and that of the framebuffer must be the same for the
overlay to work. Otherwise VIDIOC_OVERLAY will return an error.
In order to really see what it going on you will need to create two vivid instances: the first with a frame-
buffer enabled. You configure the capture overlay of the second instance to use the framebuffer of the
first, then you start capturing in the second instance. For the first instance you setup the output overlay
for the video output, turn on video looping and capture to see the blended framebuffer overlay that’s
being written to by the second instance. This setup would require the following commands:

$ sudo modprobe vivid n_devs=2 node_types=0x10101,0x1
$ v4l2-ctl -d1 --find-fb
/dev/fb1 is the framebuffer associated with base address 0x12800000
$ sudo v4l2-ctl -d2 --set-fbuf fb=1
$ v4l2-ctl -d1 --set-fbuf fb=1
$ v4l2-ctl -d0 --set-fmt-video=pixelformat='AR15'
$ v4l2-ctl -d1 --set-fmt-video-out=pixelformat='AR15'
$ v4l2-ctl -d2 --set-fmt-video=pixelformat='AR15'
$ v4l2-ctl -d0 -i2
$ v4l2-ctl -d2 -i2
$ v4l2-ctl -d2 -c horizontal_movement=4
$ v4l2-ctl -d1 --overlay=1
$ v4l2-ctl -d1 -c loop_video=1
$ v4l2-ctl -d2 --stream-mmap --overlay=1

And from another console:

$ v4l2-ctl -d1 --stream-out-mmap

And yet another console:

$ qv4l2

and start streaming.
As you can see, this is not for the faint of heart...

4.34.14 Output Overlay

Note: output overlays are primarily implemented in order to test the existing V4L2 output overlay API.
Whether this API should be used for new drivers is questionable.
This driver has support for an output overlay and is capable of:

• bitmap clipping,
• list clipping (up to 16 rectangles)

1062 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• chromakey
• source chromakey
• global alpha
• local alpha
• local inverse alpha

Output overlays are not supported for multiplanar formats. In addition, the pixelformat of the capture
format and that of the framebuffer must be the same for the overlay to work. Otherwise VIDIOC_OVERLAY
will return an error.
Output overlays only work if the driver has been configured to create a framebuffer by setting flag 0x10000
in the node_types module option. The created framebuffer has a size of 720x576 and supports ARGB
1:5:5:5 and RGB 5:6:5.
In order to see the effects of the various clipping, chromakeying or alpha processing capabilities you need
to turn on video looping and see the results on the capture side. The use of the clipping, chromakeying
or alpha processing capabilities will slow down the video loop considerably as a lot of checks have to be
done per pixel.

4.34.15 CEC (Consumer Electronics Control)

If there are HDMI inputs then a CEC adapter will be created that has the same number of input ports. This
is the equivalent of e.g. a TV that has that number of inputs. Each HDMI output will also create a CEC
adapter that is hooked up to the corresponding input port, or (if there are more outputs than inputs) is
not hooked up at all. In other words, this is the equivalent of hooking up each output device to an input
port of the TV. Any remaining output devices remain unconnected.
The EDID that each output reads reports a unique CEC physical address that is based on the physical
address of the EDID of the input. So if the EDID of the receiver has physical address A.B.0.0, then each
output will see an EDID containing physical address A.B.C.0 where C is 1 to the number of inputs. If there
are more outputs than inputs then the remaining outputs have a CEC adapter that is disabled and reports
an invalid physical address.

4.34.16 Some Future Improvements

Just as a reminder and in no particular order:
• Add a virtual alsa driver to test audio
• Add virtual sub-devices and media controller support
• Some support for testing compressed video
• Add support to loop raw VBI output to raw VBI input
• Add support to loop teletext sliced VBI output to VBI input
• Fix sequence/field numbering when looping of video with alternate fields
• Add support for V4L2_CID_BG_COLOR for video outputs
• Add ARGB888 overlay support: better testing of the alpha channel
• Improve pixel aspect support in the tpg code by passing a real v4l2_fract
• Use per-queue locks and/or per-device locks to improve throughput
• Add support to loop from a specific output to a specific input across vivid instances
• The SDR radio should use the same ‘frequencies’ for stations as the normal radio receiver, and give

back noise if the frequency doesn’t match up with a station frequency

4.34. The Virtual Video Test Driver (vivid) 1063

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• Make a thread for the RDS generation, that would help in particular for the “Controls” RDS Rx I/O
Mode as the read-only RDS controls could be updated in real-time.

• Changing the EDID should cause hotplug detect emulation to happen.

4.35 The Zoran driver

unified zoran driver (zr360x7, zoran, buz, dc10(+), dc30(+), lml33)
website: http://mjpeg.sourceforge.net/driver-zoran/

4.35.1 Frequently Asked Questions

4.35.2 What cards are supported

Iomega Buz, Linux Media Labs LML33/LML33R10, Pinnacle/Miro DC10/DC10+/DC30/DC30+ and related
boards (available under various names).

Iomega Buz

• Zoran zr36067 PCI controller
• Zoran zr36060 MJPEG codec
• Philips saa7111 TV decoder
• Philips saa7185 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, saa7111, saa7185, zr36060, zr36067
Inputs/outputs: Composite and S-video
Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
Card number: 7

AverMedia 6 Eyes AVS6EYES

• Zoran zr36067 PCI controller
• Zoran zr36060 MJPEG codec
• Samsung ks0127 TV decoder
• Conexant bt866 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, ks0127, bt866, zr36060, zr36067
Inputs/outputs: Six physical inputs. 1-6 are composite, 1-2, 3-4, 5-6 doubles as S-video, 1-3 triples as

component. One composite output.
Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
Card number: 8

Note:

Not autodetected, card=8 is necessary.

1064 Chapter 4. Video4Linux (V4L) driver-specific documentation

http://mjpeg.sourceforge.net/driver-zoran/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Linux Media Labs LML33

• Zoran zr36067 PCI controller
• Zoran zr36060 MJPEG codec
• Brooktree bt819 TV decoder
• Brooktree bt856 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, bt819, bt856, zr36060, zr36067
Inputs/outputs: Composite and S-video
Norms: PAL (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
Card number: 5

Linux Media Labs LML33R10

• Zoran zr36067 PCI controller
• Zoran zr36060 MJPEG codec
• Philips saa7114 TV decoder
• Analog Devices adv7170 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, saa7114, adv7170, zr36060, zr36067
Inputs/outputs: Composite and S-video
Norms: PAL (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
Card number: 6

Pinnacle/Miro DC10(new)

• Zoran zr36057 PCI controller
• Zoran zr36060 MJPEG codec
• Philips saa7110a TV decoder
• Analog Devices adv7176 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, saa7110, adv7175, zr36060, zr36067
Inputs/outputs: Composite, S-video and Internal
Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
Card number: 1

Pinnacle/Miro DC10+

• Zoran zr36067 PCI controller
• Zoran zr36060 MJPEG codec
• Philips saa7110a TV decoder
• Analog Devices adv7176 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, sa7110, adv7175, zr36060, zr36067
Inputs/outputs: Composite, S-video and Internal
Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)

4.35. The Zoran driver 1065

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Card number: 2

Pinnacle/Miro DC10(old)

• Zoran zr36057 PCI controller
• Zoran zr36050 MJPEG codec
• Zoran zr36016 Video Front End or Fuji md0211 Video Front End (clone?)
• Micronas vpx3220a TV decoder
• mse3000 TV encoder or Analog Devices adv7176 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, vpx3220, mse3000/adv7175, zr36050,
zr36016, zr36067
Inputs/outputs: Composite, S-video and Internal
Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
Card number: 0

Pinnacle/Miro DC30

• Zoran zr36057 PCI controller
• Zoran zr36050 MJPEG codec
• Zoran zr36016 Video Front End
• Micronas vpx3225d/vpx3220a/vpx3216b TV decoder
• Analog Devices adv7176 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, vpx3220/vpx3224, adv7175, zr36050,
zr36016, zr36067
Inputs/outputs: Composite, S-video and Internal
Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
Card number: 3

Pinnacle/Miro DC30+

• Zoran zr36067 PCI controller
• Zoran zr36050 MJPEG codec
• Zoran zr36016 Video Front End
• Micronas vpx3225d/vpx3220a/vpx3216b TV decoder
• Analog Devices adv7176 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, vpx3220/vpx3224, adv7175, zr36050,
zr36015, zr36067
Inputs/outputs: Composite, S-video and Internal
Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
Card number: 4

1066 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Note:

1. No module for the mse3000 is available yet
2. No module for the vpx3224 is available yet

4.35.3 1.1 What the TV decoder can do an what not

The best know TV standards are NTSC/PAL/SECAM. but for decoding a frame that information is not enough.
There are several formats of the TV standards. And not every TV decoder is able to handle every format.
Also the every combination is supported by the driver. There are currently 11 different tv broadcast
formats all aver the world.
The CCIR defines parameters needed for broadcasting the signal. The CCIR has defined different stan-
dards: A,B,D,E,F,G,D,H,I,K,K1,L,M,N,... The CCIR says not much about the colorsystem used !!! And talking
about a colorsystem says not to much about how it is broadcast.
The CCIR standards A,E,F are not used any more.
When you speak about NTSC, you usually mean the standard: CCIR - M using the NTSC colorsystem which
is used in the USA, Japan, Mexico, Canada and a few others.
When you talk about PAL, you usually mean: CCIR - B/G using the PAL colorsystem which is used in many
Countries.
When you talk about SECAM, you mean: CCIR - L using the SECAM Colorsystem which is used in France,
and a few others.
There the other version of SECAM, CCIR - D/K is used in Bulgaria, China, Slovakai, Hungary, Korea (Rep.),
Poland, Rumania and a others.
The CCIR - H uses the PAL colorsystem (sometimes SECAM) and is used in Egypt, Libya, Sri Lanka, Syrain
Arab. Rep.
The CCIR - I uses the PAL colorsystem, and is used in Great Britain, Hong Kong, Ireland, Nigeria, South
Africa.
The CCIR - N uses the PAL colorsystem and PAL frame size but the NTSC framerate, and is used in Argen-
tinia, Uruguay, an a few others
We do not talk about how the audio is broadcast !
A rather good sites about the TV standards are: http://www.sony.jp/support/ http://info.
electronicwerkstatt.de/bereiche/fernsehtechnik/frequenzen_und_normen/Fernsehnormen/ and
http://www.cabl.com/restaurant/channel.html
Other weird things around: NTSC 4.43 is a modificated NTSC, which is mainly used in PAL VCR’s that are
able to play back NTSC. PAL 60 seems to be the same as NTSC 4.43 . The Datasheets also talk about
NTSC 44, It seems as if it would be the same as NTSC 4.43. NTSC Combs seems to be a decoder mode
where the decoder uses a comb filter to split coma and luma instead of a Delay line.
But I did not defiantly find out what NTSC Comb is.

Philips saa7111 TV decoder

• was introduced in 1997, is used in the BUZ and
• can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43 and SECAM

4.35. The Zoran driver 1067

http://www.sony.jp/support/
http://info.electronicwerkstatt.de/bereiche/fernsehtechnik/frequenzen_und_normen/Fernsehnormen/
http://info.electronicwerkstatt.de/bereiche/fernsehtechnik/frequenzen_und_normen/Fernsehnormen/
http://www.cabl.com/restaurant/channel.html

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Philips saa7110a TV decoder

• was introduced in 1995, is used in the Pinnacle/Miro DC10(new), DC10+ and
• can handle: PAL B/G, NTSC M and SECAM

Philips saa7114 TV decoder

• was introduced in 2000, is used in the LML33R10 and
• can handle: PAL B/G/D/H/I/N, PAL N, PAL M, NTSC M, NTSC 4.43 and SECAM

Brooktree bt819 TV decoder

• was introduced in 1996, and is used in the LML33 and
• can handle: PAL B/D/G/H/I, NTSC M

Micronas vpx3220a TV decoder

• was introduced in 1996, is used in the DC30 and DC30+ and
• can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC 44, PAL 60, SECAM,NTSC Comb

Samsung ks0127 TV decoder

• is used in the AVS6EYES card and
• can handle: NTSC-M/N/44, PAL-M/N/B/G/H/I/D/K/L and SECAM

4.35.4 What the TV encoder can do an what not

The TV encoder are doing the “same” as the decoder, but in the oder direction. You feed them digital data
and the generate a Composite or SVHS signal. For information about the colorsystems and TV norm take
a look in the TV decoder section.

Philips saa7185 TV Encoder

• was introduced in 1996, is used in the BUZ
• can generate: PAL B/G, NTSC M

Brooktree bt856 TV Encoder

• was introduced in 1994, is used in the LML33
• can generate: PAL B/D/G/H/I/N, PAL M, NTSC M, PAL-N (Argentina)

Analog Devices adv7170 TV Encoder

• was introduced in 2000, is used in the LML300R10
• can generate: PAL B/D/G/H/I/N, PAL M, NTSC M, PAL 60

1068 Chapter 4. Video4Linux (V4L) driver-specific documentation

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

Analog Devices adv7175 TV Encoder

• was introduced in 1996, is used in the DC10, DC10+, DC10 old, DC30, DC30+
• can generate: PAL B/D/G/H/I/N, PAL M, NTSC M

ITT mse3000 TV encoder

• was introduced in 1991, is used in the DC10 old
• can generate: PAL , NTSC , SECAM

Conexant bt866 TV encoder

• is used in AVS6EYES, and
• can generate: NTSC/PAL, PAL M, PAL N

The adv717x, should be able to produce PAL N. But you find nothing PAL N specific in the registers. Seem
that you have to reuse a other standard to generate PAL N, maybe it would work if you use the PAL M
settings.

4.35.5 How do I get this damn thing to work

Load zr36067.o. If it can’t autodetect your card, use the card=X insmod option with X being the card
number as given in the previous section. To have more than one card, use card=X1[,X2[,X3,[X4[..]]]]
To automate this, add the following to your /etc/modprobe.d/zoran.conf:
options zr36067 card=X1[,X2[,X3[,X4[..]]]] alias char-major-81-0 zr36067
One thing to keep in mind is that this doesn’t load zr36067.o itself yet. It just automates loading. If you
start using xawtv, the device won’t load on some systems, since you’re trying to load modules as a user,
which is not allowed (“permission denied”). A quick workaround is to add ‘Load “v4l”’ to XF86Config-4
when you use X by default, or to run ‘v4l-conf -c <device>’ in one of your startup scripts (normally rc.local)
if you don’t use X. Both make sure that the modules are loaded on startup, under the root account.

4.35.6 What mainboard should I use (or why doesn’t my card work)

<insert lousy disclaimer here>. In short: good=SiS/Intel, bad=VIA.
Experience tells us that people with a Buz, on average, have more problems than users with a
DC10+/LML33. Also, it tells us that people owning a VIA- based mainboard (ktXXX, MVP3) have more
problems than users with a mainboard based on a different chipset. Here’s some notes from Andrew
Stevens:
Here’s my experience of using LML33 and Buz on various motherboards:

• VIA MVP3
– Forget it. Pointless. Doesn’t work.

• Intel 430FX (Pentium 200)
– LML33 perfect, Buz tolerable (3 or 4 frames dropped per movie)

• Intel 440BX (early stepping)
– LML33 tolerable. Buz starting to get annoying (6-10 frames/hour)

• Intel 440BX (late stepping)
– Buz tolerable, LML3 almost perfect (occasional single frame drops)

4.35. The Zoran driver 1069

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• SiS735
– LML33 perfect, Buz tolerable.

• VIA KT133(*)
– LML33 starting to get annoying, Buz poor enough that I have up.

• Both 440BX boards were dual CPU versions.
Bernhard Praschinger later added:

• AMD 751
– Buz perfect-tolerable

• AMD 760
– Buz perfect-tolerable

In general, people on the user mailinglist won’t give you much of a chance if you have a VIA-based
motherboard. They may be cheap, but sometimes, you’d rather want to spend some more money on
better boards. In general, VIA mainboard’s IDE/PCI performance will also suck badly compared to others.
You’ll noticed the DC10+/DC30+ aren’t mentioned anywhere in the overview. Basically, you can assume
that if the Buz works, the LML33 will work too. If the LML33 works, the DC10+/DC30+ will work too.
They’re most tolerant to different mainboard chipsets from all of the supported cards.
If you experience timeouts during capture, buy a better mainboard or lower the quality/buffersize during
capture (see ‘Concerning buffer sizes, quality, output size etc.’). If it hangs, there’s little we can do as of
now. Check your IRQs and make sure the card has its own interrupts.

4.35.7 Programming interface

This driver conforms to video4linux2. Support for V4L1 and for the custom zoran ioctls has been removed
in kernel 2.6.38.
For programming example, please, look at lavrec.c and lavplay.c code in the MJPEG-tools (http://mjpeg.sf.
net/).
Additional notes for software developers:

The driver returns maxwidth and maxheight parameters according to the current TV standard
(norm). Therefore, the software which communicates with the driver and “asks” for these pa-
rameters should first set the correct norm. Well, it seems logically correct: TV standard is “more
constant” for current country than geometry settings of a variety of TV capture cards which may
work in ITU or square pixel format.

4.35.8 Applications

Applications known to work with this driver:
TV viewing:

• xawtv
• kwintv
• probably any TV application that supports video4linux or video4linux2.

MJPEG capture/playback:
• mjpegtools/lavtools (or Linux Video Studio)
• gstreamer
• mplayer

General raw capture:

1070 Chapter 4. Video4Linux (V4L) driver-specific documentation

http://mjpeg.sf.net/
http://mjpeg.sf.net/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

• xawtv
• gstreamer
• probably any application that supports video4linux or video4linux2

Video editing:
• Cinelerra
• MainActor
• mjpegtools (or Linux Video Studio)

4.35.9 Concerning buffer sizes, quality, output size etc.

The zr36060 can do 1:2 JPEG compression. This is really the theoretical maximum that the chipset can
reach. The driver can, however, limit compression to a maximum (size) of 1:4. The reason for this is that
some cards (e.g. Buz) can’t handle 1:2 compression without stopping capture after only a few minutes.
With 1:4, it’ll mostly work. If you have a Buz, use ‘low_bitrate=1’ to go into 1:4 max. compression mode.
100% JPEG quality is thus 1:2 compression in practice. So for a full PAL frame (size 720x576). The JPEG
fields are stored in YUY2 format, so the size of the fields are 720x288x16/2 bits/field (2 fields/frame) =
207360 bytes/field x 2 = 414720 bytes/frame (add some more bytes for headers and DHT (huffman)/DQT
(quantization) tables, and you’ll get to something like 512kB per frame for 1:2 compression. For 1:4
compression, you’d have frames of half this size.
Some additional explanation by Martin Samuelsson, which also explains the importance of buffer sizes: –
> Hmm, I do not think it is really that way. With the current (downloaded > at 18:00 Monday) driver I get
that output sizes for 10 sec: > -q 50 -b 128 : 24.283.332 Bytes > -q 50 -b 256 : 48.442.368 > -q 25 -b
128 : 24.655.992 > -q 25 -b 256 : 25.859.820
I woke up, and can’t go to sleep again. I’ll kill some time explaining why this doesn’t look strange to me.
Let’s do some math using a width of 704 pixels. I’m not sure whether the Buz actually use that number
or not, but that’s not too important right now.
704x288 pixels, one field, is 202752 pixels. Divided by 64 pixels per block; 3168 blocks per field. Each
pixel consist of two bytes; 128 bytes per block; 1024 bits per block. 100% in the new driver mean 1:2
compression; the maximum output becomes 512 bits per block. Actually 510, but 512 is simpler to use
for calculations.
Let’s say that we specify d1q50. We thus want 256 bits per block; times 3168 becomes 811008 bits;
101376 bytes per field. We’re talking raw bits and bytes here, so we don’t need to do any fancy corrections
for bits-per-pixel or such things. 101376 bytes per field.
d1 video contains two fields per frame. Those sum up to 202752 bytes per frame, and one of those frames
goes into each buffer.
But wait a second! -b128 gives 128kB buffers! It’s not possible to cram 202752 bytes of JPEG data into
128kB!
This is what the driver notice and automatically compensate for in your examples. Let’s do some math
using this information:
128kB is 131072 bytes. In this buffer, we want to store two fields, which leaves 65536 bytes for each
field. Using 3168 blocks per field, we get 20.68686868... available bytes per block; 165 bits. We can’t
allow the request for 256 bits per block when there’s only 165 bits available! The -q50 option is silently
overridden, and the -b128 option takes precedence, leaving us with the equivalence of -q32.
This gives us a data rate of 165 bits per block, which, times 3168, sums up to 65340 bytes per field, out
of the allowed 65536. The current driver has another level of rate limiting; it won’t accept -q values that
fill more than 6/8 of the specified buffers. (I’m not sure why. “Playing it safe” seem to be a safe bet.
Personally, I think I would have lowered requested-bits-per-block by one, or something like that.) We can’t
use 165 bits per block, but have to lower it again, to 6/8 of the available buffer space: We end up with

4.35. The Zoran driver 1071

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

124 bits per block, the equivalence of -q24. With 128kB buffers, you can’t use greater than -q24 at -d1.
(And PAL, and 704 pixels width...)
The third example is limited to -q24 through the same process. The second example, using very similar
calculations, is limited to -q48. The only example that actually grab at the specified -q value is the last
one, which is clearly visible, looking at the file size. –
Conclusion: the quality of the resulting movie depends on buffer size, quality, whether or not you use
‘low_bitrate=1’ as insmod option for the zr36060.c module to do 1:4 instead of 1:2 compression, etc.
If you experience timeouts, lowering the quality/buffersize or using ‘low_bitrate=1 as insmod option for
zr36060.o might actually help, as is proven by the Buz.

4.35.10 It hangs/crashes/fails/whatevers! Help!

Make sure that the card has its own interrupts (see /proc/interrupts), check the output of dmesg at high
verbosity (load zr36067.o with debug=2, load all other modules with debug=1). Check that your main-
board is favorable (see question 2) and if not, test the card in another computer. Also see the notes given
in question 3 and try lowering quality/buffersize/capturesize if recording fails after a period of time.
If all this doesn’t help, give a clear description of the problem including detailed hardware information
(memory+brand, mainboard+chipset+brand, which MJPEG card, processor, other PCI cards that might
be of interest), give the system PnP information (/proc/interrupts, /proc/dma, /proc/devices), and give the
kernel version, driver version, glibc version, gcc version and any other information that might possibly
be of interest. Also provide the dmesg output at high verbosity. See ‘Contacting’ on how to contact the
developers.

4.35.11 Maintainers/Contacting

The driver is currently maintained by Laurent Pinchart and Ronald Bultje (<laurent.pinchart@skynet.be>
and <rbultje@ronald.bitfreak.net>). For bug reports or questions, please contact the mailinglist instead
of the developers individually. For user questions (i.e. bug reports or how-to questions), send an email
to <mjpeg-users@lists.sf.net>, for developers (i.e. if you want to help programming), send an email to
<mjpeg-developer@lists.sf.net>. See http://www.sf.net/projects/mjpeg/ for subscription information.
For bug reports, be sure to include all the information as described in the section ‘It
hangs/crashes/fails/whatevers! Help!’. Please make sure you’re using the latest version
(http://mjpeg.sf.net/driver-zoran/).
Previous maintainers/developers of this driver include Serguei Miridonov <mirsev@cicese.mx>,
Wolfgang Scherr <scherr@net4you.net>, Dave Perks <dperks@ibm.net> and Rainer Johanni
<Rainer@Johanni.de>.

4.35.12 Driver’s License

This driver is distributed under the terms of the General Public License.
This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

See http://www.gnu.org/ for more information.

1072 Chapter 4. Video4Linux (V4L) driver-specific documentation

mailto:laurent.pinchart@skynet.be
mailto:rbultje@ronald.bitfreak.net
mailto:mjpeg-users@lists.sf.net
mailto:mjpeg-developer@lists.sf.net
http://www.sf.net/projects/mjpeg/
http://mjpeg.sf.net/driver-zoran/
mailto:mirsev@cicese.mx
mailto:scherr@net4you.net
mailto:dperks@ibm.net
mailto:Rainer@Johanni.de
http://www.gnu.org/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.36 Zoran 364xx based USB webcam module

site: http://royale.zerezo.com/zr364xx/
mail: royale@zerezo.com

Note:

This documentation is outdated

4.36.1 Introduction

This brings support under Linux for the Aiptek PocketDV 3300 in webcam mode. If you just want to get on
your PC the pictures and movies on the camera, you should use the usb-storage module instead.
The driver works with several other cameras in webcam mode (see the list below).
Maybe this code can work for other JPEG/USB cams based on the Coach chips from Zoran?
Possible chipsets are : ZR36430 (ZR36430BGC) and maybe ZR36431, ZR36440, ZR36442...
You can try the experience changing the vendor/product ID values (look at the source code).
You can get these values by looking at /var/log/messages when you plug your camera, or by typing : cat
/sys/kernel/debug/usb/devices.
If you manage to use your cam with this code, you can send me a mail (royale@zerezo.com) with the
name of your cam and a patch if needed.
This is a beta release of the driver. Since version 0.70, this driver is only compatible with V4L2 API and
2.6.x kernels. If you need V4L1 or 2.4x kernels support, please use an older version, but the code is not
maintained anymore. Good luck!

4.36.2 Install

In order to use this driver, you must compile it with your kernel.
Location: Device Drivers -> Multimedia devices -> Video For Linux -> Video Capture Adapters -> V4L USB
devices

4.36.3 Usage

modprobe zr364xx debug=X mode=Y
• debug : set to 1 to enable verbose debug messages
• mode : 0 = 320x240, 1 = 160x120, 2 = 640x480

You can then use the camera with V4L2 compatible applications, for example Ekiga.
To capture a single image, try this: dd if=/dev/video0 of=test.jpg bs=1M count=1

4.36.4 links

http://mxhaard.free.fr/ (support for many others cams including some Aiptek PocketDV) http://www.
harmwal.nl/pccam880/ (this project also supports cameras based on this chipset)

4.36. Zoran 364xx based USB webcam module 1073

http://royale.zerezo.com/zr364xx/
mailto:royale@zerezo.com
mailto:royale@zerezo.com
http://mxhaard.free.fr/
http://www.harmwal.nl/pccam880/
http://www.harmwal.nl/pccam880/

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

4.36.5 Supported devices

Vendor Product Distributor Model
0x08ca 0x0109 Aiptek PocketDV 3300
0x08ca 0x0109 Maxell Maxcam PRO DV3
0x041e 0x4024 Creative PC-CAM 880
0x0d64 0x0108 Aiptek Fidelity 3200
0x0d64 0x0108 Praktica DCZ 1.3 S
0x0d64 0x0108 Genius Digital Camera (?)
0x0d64 0x0108 DXG Technology Fashion Cam
0x0546 0x3187 Polaroid iON 230
0x0d64 0x3108 Praktica Exakta DC 2200
0x0d64 0x3108 Genius G-Shot D211
0x0595 0x4343 Concord Eye-Q Duo 1300
0x0595 0x4343 Concord Eye-Q Duo 2000
0x0595 0x4343 Fujifilm EX-10
0x0595 0x4343 Ricoh RDC-6000
0x0595 0x4343 Digitrex DSC 1300
0x0595 0x4343 Firstline FDC 2000
0x0bb0 0x500d Concord EyeQ Go Wireless
0x0feb 0x2004 CRS Electronic 3.3 Digital Camera
0x0feb 0x2004 Packard Bell DSC-300
0x055f 0xb500 Mustek MDC 3000
0x08ca 0x2062 Aiptek PocketDV 5700
0x052b 0x1a18 Chiphead Megapix V12
0x04c8 0x0729 Konica Revio 2
0x04f2 0xa208 Creative PC-CAM 850
0x0784 0x0040 Traveler Slimline X5
0x06d6 0x0034 Trust Powerc@m 750
0x0a17 0x0062 Pentax Optio 50L
0x06d6 0x003b Trust Powerc@m 970Z
0x0a17 0x004e Pentax Optio 50
0x041e 0x405d Creative DiVi CAM 516
0x08ca 0x2102 Aiptek DV T300
0x06d6 0x003d Trust Powerc@m 910Z

1074 Chapter 4. Video4Linux (V4L) driver-specific documentation

CHAPTER

FIVE

CEC DRIVER-SPECIFIC DOCUMENTATION

Copyright © 2017 : LinuxTV Developers
This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
For more details see the file COPYING in the source distribution of Linux.

5.1 Pulse-Eight CEC Adapter driver

The pulse8-cec driver implements the following module option:

5.1.1 persistent_config

By default this is off, but when set to 1 the driver will store the current settings to the device’s internal
eeprom and restore it the next time the device is connected to the USB port.

1075

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

1076 Chapter 5. CEC driver-specific documentation

INDEX

Symbols
__media_device_register (C function), 813
__media_device_usb_init (C function), 815
__media_entity_enum_init (C function), 823
__media_entity_setup_link (C function), 827
__media_pipeline_start (C function), 830
__media_pipeline_stop (C function), 831
__media_remove_intf_link (C function), 832
__media_remove_intf_links (C function), 832
__v4l2_ctrl_handler_setup (C function), 701
__v4l2_ctrl_modify_range (C function), 705
__v4l2_ctrl_s_ctrl (C function), 707
__v4l2_ctrl_s_ctrl_int64 (C function), 708
__v4l2_ctrl_s_ctrl_string (C function), 708
__video_register_device (C function), 648

A
analog_demod_info (C type), 784
analog_demod_ops (C type), 784
analog_parameters (C type), 782
atscmh_rs_code_mode (C type), 417
atscmh_rs_frame_ensemble (C type), 417
atscmh_rs_frame_mode (C type), 417
atscmh_sccc_block_mode (C type), 417
atscmh_sccc_code_mode (C type), 417
audio_attributes (C type), 489
AUDIO_BILINGUAL_CHANNEL_SELECT (C function),

498
AUDIO_CHANNEL_SELECT (C function), 497
audio_channel_select (C type), 488
AUDIO_CLEAR_BUFFER (C function), 500
AUDIO_CONTINUE (C function), 494
AUDIO_GET_CAPABILITIES (C function), 500
AUDIO_GET_PTS (C function), 499
AUDIO_GET_STATUS (C function), 499
audio_karaoke (C type), 489
audio_mixer (C type), 489
AUDIO_PAUSE (C function), 493
AUDIO_PLAY (C function), 492
audio_play_state (C type), 488
AUDIO_SELECT_SOURCE (C function), 494
AUDIO_SET_ATTRIBUTES (C function), 504
AUDIO_SET_AV_SYNC (C function), 496
AUDIO_SET_BYPASS_MODE (C function), 496
AUDIO_SET_EXT_ID (C function), 503
AUDIO_SET_ID (C function), 501

AUDIO_SET_KARAOKE (C function), 504
AUDIO_SET_MIXER (C function), 502
AUDIO_SET_MUTE (C function), 495
AUDIO_SET_STREAMTYPE (C function), 502
audio_status (C type), 488
AUDIO_STOP (C function), 492
audio_stream_source (C type), 488

C
ca_caps (C type), 441
ca_descr (C type), 442
ca_descr_info (C type), 441
CA_GET_CAP (C function), 445
CA_GET_DESCR_INFO (C function), 446
CA_GET_MSG (C function), 446
CA_GET_SLOT_INFO (C function), 445
ca_msg (C type), 442
CA_RESET (C function), 444
CA_SEND_MSG (C function), 447
CA_SET_DESCR (C function), 447
ca_slot_info (C type), 440
cec-close (C function), 594
cec-ioctl (C function), 595
cec-open (C function), 593
cec-poll (C function), 596
CEC_ADAP_G_CAPS (C function), 596
CEC_ADAP_G_LOG_ADDRS (C function), 598
CEC_ADAP_G_PHYS_ADDR (C function), 602
cec_adap_ops (C type), 834
CEC_ADAP_S_LOG_ADDRS (C function), 598
CEC_ADAP_S_PHYS_ADDR (C function), 602
cec_caps (C type), 597
CEC_DQEVENT (C function), 603
cec_event (C type), 603
cec_event_lost_msgs (C type), 603
cec_event_state_change (C type), 603
CEC_G_MODE (C function), 605
cec_log_addrs (C type), 598
cec_msg (C type), 609
cec_notifier_get (C function), 838
cec_notifier_phys_addr_invalidate (C function), 839
cec_notifier_put (C function), 839
cec_notifier_register (C function), 839
cec_notifier_set_phys_addr (C function), 839
cec_notifier_set_phys_addr_from_edid (C function),

839
cec_notifier_unregister (C function), 839

1077

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

cec_pin_allocate_adapter (C function), 838
cec_pin_changed (C function), 838
cec_pin_ops (C type), 837
CEC_RECEIVE (C function), 609
cec_register_cec_notifier (C function), 839
CEC_S_MODE (C function), 605
CEC_TRANSMIT (C function), 609
close (C function), 465

D
demod_pad_index (C type), 739
devm_rc_allocate_device (C function), 803
devm_rc_register_device (C function), 803
DMX_ADD_PID (C function), 439
dmx_demux (C type), 796
dmx_demux_caps (C type), 796
DMX_FE_ENTRY (C function), 796
dmx_filter (C type), 430
dmx_frontend (C type), 796
dmx_frontend_source (C type), 795
DMX_GET_PES_PIDS (C function), 438
DMX_GET_STC (C function), 438
dmx_input (C type), 429
dmx_output (C type), 429
dmx_pes_filter_params (C type), 431
DMX_REMOVE_PID (C function), 440
dmx_sct_filter_params (C type), 430
dmx_section_cb (C type), 795
dmx_section_feed (C type), 793
dmx_section_filter (C type), 793
DMX_SET_BUFFER_SIZE (C function), 437
DMX_SET_FILTER (C function), 436
DMX_SET_PES_FILTER (C function), 436
DMX_START (C function), 435
dmx_stc (C type), 431
DMX_STOP (C function), 435
dmx_ts_cb (C type), 794
dmx_ts_feed (C type), 792
dmx_ts_pes (C type), 429
dtv_fe_stats (C type), 418
dtv_frontend_properties (C type), 786
dtv_properties (C type), 419
dtv_property (C type), 419
dtv_stats (C type), 418
dvb-audio-close (C function), 491
dvb-audio-open (C function), 490
dvb-audio-write (C function), 491
dvb-ca-close (C function), 443
dvb-ca-open (C function), 443
dvb-dmx-close (C function), 433
dvb-dmx-open (C function), 432
dvb-dmx-read (C function), 433
dvb-dmx-write (C function), 434
dvb-fe-close (C function), 421
dvb-fe-open (C function), 420
dvb_adapter (C type), 767
dvb_ca_en50221 (C type), 798
dvb_ca_en50221_camchange_irq (C function), 799

dvb_ca_en50221_camready_irq (C function), 799
dvb_ca_en50221_frda_irq (C function), 799
dvb_ca_en50221_init (C function), 800
dvb_ca_en50221_release (C function), 800
dvb_create_media_graph (C function), 770
dvb_device (C type), 767
dvb_diseqc_master_cmd (C type), 412
dvb_diseqc_slave_reply (C type), 412
dvb_free_device (C function), 769
dvb_frontend (C type), 789
dvb_frontend_detach (C function), 790
dvb_frontend_event (C type), 453
dvb_frontend_info (C type), 411
dvb_frontend_ops (C type), 784
dvb_frontend_parameters (C type), 452
dvb_frontend_reinitialise (C function), 791
dvb_frontend_resume (C function), 790
dvb_frontend_sleep_until (C function), 791
dvb_frontend_suspend (C function), 790
dvb_frontend_tune_settings (C type), 781
dvb_net_if (C type), 448
dvb_ofdm_parameters (C type), 453
dvb_qam_parameters (C type), 453
dvb_qpsk_parameters (C type), 452
dvb_register_adapter (C function), 769
dvb_register_device (C function), 769
dvb_register_frontend (C function), 789
dvb_remove_device (C function), 769
dvb_ringbuffer (C type), 770
dvb_ringbuffer_avail (C function), 771
dvb_ringbuffer_empty (C function), 771
dvb_ringbuffer_flush (C function), 772
dvb_ringbuffer_flush_spinlock_wakeup (C function),

772
dvb_ringbuffer_free (C function), 771
dvb_ringbuffer_init (C function), 771
DVB_RINGBUFFER_PEEK (C function), 772
dvb_ringbuffer_pkt_dispose (C function), 774
dvb_ringbuffer_pkt_next (C function), 774
dvb_ringbuffer_pkt_read (C function), 774
dvb_ringbuffer_pkt_read_user (C function), 773
dvb_ringbuffer_pkt_write (C function), 773
dvb_ringbuffer_read (C function), 772
dvb_ringbuffer_read_user (C function), 772
dvb_ringbuffer_reset (C function), 771
DVB_RINGBUFFER_SKIP (C function), 772
dvb_ringbuffer_write (C function), 773
DVB_RINGBUFFER_WRITE_BYTE (C function), 772
dvb_ringbuffer_write_user (C function), 773
dvb_tuner_info (C type), 781
dvb_tuner_ops (C type), 783
dvb_unregister_adapter (C function), 769
dvb_unregister_device (C function), 769
dvb_unregister_frontend (C function), 790
dvb_vsb_parameters (C type), 453
dvbfe_algo (C type), 782
dvbfe_search (C type), 782

1078 Index

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

F
fe_bandwidth (C type), 452
fe_caps (C type), 410
fe_code_rate (C type), 413
fe_delivery_system (C type), 416
FE_DISEQC_RECV_SLAVE_REPLY (C function), 425
FE_DISEQC_RESET_OVERLOAD (C function), 424
FE_DISEQC_SEND_BURST (C function), 425
FE_DISEQC_SEND_MASTER_CMD (C function), 424
FE_DISHNETWORK_SEND_LEGACY_CMD (C func-

tion), 459
FE_ENABLE_HIGH_LNB_VOLTAGE (C function), 428
FE_GET_EVENT (C function), 458
FE_GET_FRONTEND (C function), 457
FE_GET_INFO (C function), 421
FE_GET_PROPERTY (C function), 423
fe_guard_interval (C type), 415
fe_hierarchy (C type), 415
fe_interleaving (C type), 415
fe_modulation (C type), 414
fe_pilot (C type), 416
FE_READ_BER (C function), 454
FE_READ_SIGNAL_STRENGTH (C function), 455
FE_READ_SNR (C function), 455
FE_READ_STATUS (C function), 422
FE_READ_UNCORRECTED_BLOCKS (C function), 456
fe_rolloff (C type), 416
fe_sec_mini_cmd (C type), 413
fe_sec_tone_mode (C type), 413
fe_sec_voltage (C type), 413
FE_SET_FRONTEND (C function), 457
FE_SET_FRONTEND_TUNE_MODE (C function), 428
FE_SET_PROPERTY (C function), 423
FE_SET_TONE (C function), 426
FE_SET_VOLTAGE (C function), 427
fe_spectral_inversion (C type), 413
fe_status (C type), 413
fe_transmit_mode (C type), 414
fe_type (C type), 451
fecap_scale_params (C type), 417

G
gobj_to_entity (C function), 824
gobj_to_intf (C function), 825
gobj_to_link (C function), 825
gobj_to_pad (C function), 824

I
if_aud_dec_pad_index (C type), 739
if_vid_dec_pad_index (C type), 738
intf_to_devnode (C function), 825
intlog10 (C function), 766
intlog2 (C function), 766
is_media_entity_v4l2_subdev (C function), 823
is_media_entity_v4l2_video_device (C function),

823
isdbt_layer_interleaving_table (C type), 398

L
lirc-read (C function), 557
lirc-write (C function), 558
lirc_driver (C type), 806
LIRC_GET_FEATURES (C function), 559
LIRC_GET_LENGTH (C function), 564
LIRC_GET_MAX_TIMEOUT (C function), 563
LIRC_GET_MIN_TIMEOUT (C function), 563
LIRC_GET_REC_MODE (C function), 561
LIRC_GET_REC_RESOLUTION (C function), 562
LIRC_GET_SEND_MODE (C function), 560
LIRC_SET_MEASURE_CARRIER_MODE (C function),

568
LIRC_SET_REC_CARRIER (C function), 565
LIRC_SET_REC_CARRIER_RANGE (C function), 565
LIRC_SET_REC_MODE (C function), 561
LIRC_SET_REC_TIMEOUT (C function), 563
LIRC_SET_REC_TIMEOUT_REPORTS (C function), 567
LIRC_SET_SEND_CARRIER (C function), 566
LIRC_SET_SEND_DUTY_CYCLE (C function), 562
LIRC_SET_SEND_MODE (C function), 560
LIRC_SET_TRANSMITTER_MASK (C function), 566
LIRC_SET_WIDEBAND_RECEIVER (C function), 568

M
mc-close (C function), 577
mc-ioctl (C function), 578
mc-open (C function), 576
media_create_intf_link (C function), 831
media_create_pad_link (C function), 826
media_create_pad_links (C function), 826
media_device (C type), 811
media_device_cleanup (C function), 813
media_device_info (C type), 579
media_device_init (C function), 812
media_device_ops (C type), 810
media_device_pci_init (C function), 815
media_device_register (C function), 813
media_device_register_entity (C function), 814
media_device_register_entity_notify (C function),

815
media_device_unregister (C function), 814
media_device_unregister_entity (C function), 814
media_device_unregister_entity_notify (C function),

815
media_device_usb_init (C function), 816
media_devnode (C type), 816
media_devnode_create (C function), 831
media_devnode_data (C function), 818
media_devnode_is_registered (C function), 818
media_devnode_register (C function), 817
media_devnode_remove (C function), 831
media_devnode_unregister (C function), 817
media_devnode_unregister_prepare (C function),

817
media_entity (C type), 821
media_entity_call (C function), 833
media_entity_cleanup (C function), 826

Index 1079

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

media_entity_desc (C type), 582
media_entity_enum (C type), 818
media_entity_enum_cleanup (C function), 823
media_entity_enum_clear (C function), 824
media_entity_enum_empty (C function), 824
media_entity_enum_init (C function), 812
media_entity_enum_intersects (C function), 824
media_entity_enum_set (C function), 823
media_entity_enum_test (C function), 824
media_entity_enum_test_and_set (C function), 824
media_entity_enum_zero (C function), 823
media_entity_find_link (C function), 828
media_entity_get (C function), 829
media_entity_get_fwnode_pad (C function), 829
media_entity_id (C function), 822
media_entity_notify (C type), 810
media_entity_operations (C type), 820
media_entity_pads_init (C function), 825
media_entity_put (C function), 829
media_entity_remote_pad (C function), 828
media_entity_remove_links (C function), 827
media_entity_setup_link (C function), 828
media_entity_type (C type), 820
media_file_operations (C type), 816
media_gobj (C type), 818
media_gobj_create (C function), 825
media_gobj_destroy (C function), 825
media_gobj_gen_id (C function), 823
media_gobj_type (C type), 818
media_graph (C type), 819
media_graph_walk_cleanup (C function), 829
media_graph_walk_init (C function), 829
media_graph_walk_next (C function), 830
media_graph_walk_start (C function), 829
media_id (C function), 823
media_interface (C type), 822
media_intf_devnode (C type), 822
MEDIA_IOC_DEVICE_INFO (C function), 578
MEDIA_IOC_ENUM_ENTITIES (C function), 582
MEDIA_IOC_ENUM_LINKS (C function), 583
MEDIA_IOC_G_TOPOLOGY (C function), 580
MEDIA_IOC_SETUP_LINK (C function), 584
media_link (C type), 819
media_link_desc (C type), 584
media_links_enum (C type), 583
media_pad (C type), 819
media_pad_desc (C type), 583
media_pipeline (C type), 819
media_pipeline_start (C function), 830
media_pipeline_stop (C function), 830
media_remove_intf_link (C function), 832
media_remove_intf_links (C function), 832
media_type (C function), 822
media_v2_entity (C type), 580
media_v2_interface (C type), 581
media_v2_intf_devnode (C type), 581
media_v2_link (C type), 581
media_v2_pad (C type), 581

media_v2_topology (C type), 580

N
NET_ADD_IF (C function), 449
NET_GET_IF (C function), 450
NET_REMOVE_IF (C function), 449

O
open (C function), 464

P
param_type (C type), 752

R
rc_allocate_device (C function), 803
rc_close (C function), 804
rc_dev (C type), 801
rc_driver_type (C type), 800
rc_filter_type (C type), 800
rc_free_device (C function), 803
rc_map (C type), 805
rc_map_get (C function), 806
rc_map_list (C type), 805
rc_map_register (C function), 805
rc_map_table (C type), 805
rc_map_unregister (C function), 806
rc_open (C function), 804
rc_proto (C type), 804
rc_register_device (C function), 803
rc_scancode_filter (C type), 800
rc_unregister_device (C function), 804

T
ts_filter_type (C type), 792
tuner_mode (C type), 751
tuner_pad_index (C type), 738
tuner_params (C type), 753
tuner_range (C type), 752
tuner_setup (C type), 751
tveeprom (C type), 764
tveeprom_audio_processor (C type), 764
tveeprom_hauppauge_analog (C function), 765
tveeprom_read (C function), 765

V
v4l2-close (C function), 190
v4l2-ioctl (C function), 191
v4l2-mmap (C function), 305
v4l2-munmap (C function), 306
v4l2-open (C function), 307
v4l2-poll (C function), 308
v4l2-read (C function), 309
v4l2-select (C function), 311
v4l2-write (C function), 312
v4l2_async_match_type (C type), 678
v4l2_async_notifier (C type), 678
v4l2_async_notifier_register (C function), 679

1080 Index

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

v4l2_async_notifier_unregister (C function), 679
v4l2_async_register_subdev (C function), 679
v4l2_async_subdev (C type), 678
v4l2_async_unregister_subdev (C function), 679
v4l2_audio (C type), 228
v4l2_audioout (C type), 229
v4l2_bt_timings (C type), 233
v4l2_bt_timings_cap (C type), 205
v4l2_buf_type (C type), 119
v4l2_buffer (C type), 116
v4l2_calc_aspect_ratio (C function), 736
v4l2_capability (C type), 279
v4l2_captureparm (C type), 259
v4l2_check_dv_timings_fnc (C type), 733
v4l2_clip (C type), 132
v4l2_close (C function), 167
v4l2_colorspace (C type), 97
v4l2_compat_ioctl32 (C function), 763
v4l2_control (C type), 232
v4l2_create_buffers (C type), 192
v4l2_crop (C type), 230
v4l2_cropcap (C type), 194
v4l2_ctrl (C type), 696
v4l2_ctrl_activate (C function), 705
v4l2_ctrl_add_handler (C function), 704
v4l2_ctrl_auto_cluster (C function), 704
v4l2_ctrl_cluster (C function), 704
v4l2_ctrl_config (C type), 699
v4l2_ctrl_fill (C function), 700
v4l2_ctrl_filter (C type), 704
v4l2_ctrl_find (C function), 705
v4l2_ctrl_g_ctrl (C function), 707
v4l2_ctrl_g_ctrl_int64 (C function), 707
v4l2_ctrl_get_int_menu (C function), 707
v4l2_ctrl_get_menu (C function), 706
v4l2_ctrl_get_name (C function), 706
v4l2_ctrl_grab (C function), 705
v4l2_ctrl_handler (C type), 698
v4l2_ctrl_handler_free (C function), 701
v4l2_ctrl_handler_init (C function), 701
v4l2_ctrl_handler_init_class (C function), 700
v4l2_ctrl_handler_log_status (C function), 702
v4l2_ctrl_handler_setup (C function), 702
v4l2_ctrl_lock (C function), 701
v4l2_ctrl_log_status (C function), 709
v4l2_ctrl_merge (C function), 709
v4l2_ctrl_modify_range (C function), 706
v4l2_ctrl_new_custom (C function), 702
v4l2_ctrl_new_int_menu (C function), 703
v4l2_ctrl_new_std (C function), 702
v4l2_ctrl_new_std_menu (C function), 703
v4l2_ctrl_new_std_menu_items (C function), 703
v4l2_ctrl_notify (C function), 706
v4l2_ctrl_notify_fnc (C type), 696
v4l2_ctrl_ops (C type), 695
v4l2_ctrl_poll (C function), 709
v4l2_ctrl_ptr (C type), 695
v4l2_ctrl_query_fill (C function), 754

v4l2_ctrl_radio_filter (C function), 704
v4l2_ctrl_ref (C type), 698
v4l2_ctrl_replace (C function), 708
v4l2_ctrl_s_ctrl (C function), 707
v4l2_ctrl_s_ctrl_int64 (C function), 708
v4l2_ctrl_s_ctrl_string (C function), 708
v4l2_ctrl_subdev_log_status (C function), 711
v4l2_ctrl_subdev_subscribe_event (C function), 711
v4l2_ctrl_subscribe_event (C function), 709
v4l2_ctrl_type (C type), 285
v4l2_ctrl_type_ops (C type), 695
v4l2_ctrl_unlock (C function), 701
v4l2_dbg_chip_info (C type), 196
v4l2_dbg_match (C type), 197
v4l2_dbg_register (C type), 197
v4l2_decode_vbi_line (C type), 665
v4l2_decoder_cmd (C type), 198
v4l2_detect_cvt (C function), 735
v4l2_detect_gtf (C function), 735
v4l2_device (C type), 653
v4l2_device_disconnect (C function), 655
v4l2_device_get (C function), 654
v4l2_device_put (C function), 654
v4l2_device_register (C function), 654
v4l2_device_register_subdev (C function), 655
v4l2_device_register_subdev_nodes (C function),

656
v4l2_device_set_name (C function), 655
v4l2_device_unregister (C function), 655
v4l2_device_unregister_subdev (C function), 656
v4l2_disable_ioctl (C function), 650
v4l2_dup (C function), 167
v4l2_dv_timings (C type), 234
v4l2_dv_timings_aspect_ratio (C function), 736
v4l2_dv_timings_cap (C type), 205
v4l2_edid (C type), 237
v4l2_enc_idx (C type), 239
v4l2_enc_idx_entry (C type), 239
v4l2_encoder_cmd (C type), 207
v4l2_enum_dv_timings (C type), 210
v4l2_enum_dv_timings_cap (C function), 733
v4l2_event (C type), 201
v4l2_event_ctrl (C type), 203
v4l2_event_dequeue (C function), 682
v4l2_event_frame_sync (C type), 203
v4l2_event_motion_det (C type), 203
v4l2_event_pending (C function), 683
v4l2_event_queue (C function), 682
v4l2_event_queue_fh (C function), 682
v4l2_event_src_change (C type), 203
v4l2_event_subdev_unsubscribe (C function), 683
v4l2_event_subscribe (C function), 683
v4l2_event_subscription (C type), 304
v4l2_event_unsubscribe (C function), 683
v4l2_event_unsubscribe_all (C function), 683
v4l2_event_vsync (C type), 202
v4l2_exportbuffer (C type), 227
v4l2_ext_control (C type), 241

Index 1081

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

v4l2_ext_controls (C type), 241
v4l2_fd_open (C function), 167
v4l2_fh (C type), 658
v4l2_fh_add (C function), 659
v4l2_fh_del (C function), 659
v4l2_fh_exit (C function), 659
v4l2_fh_init (C function), 658
v4l2_fh_is_singular (C function), 660
v4l2_fh_is_singular_file (C function), 660
v4l2_fh_open (C function), 659
v4l2_fh_release (C function), 659
v4l2_field (C type), 124
v4l2_file_operations (C type), 646
v4l2_find_dv_timings_cap (C function), 734
v4l2_find_dv_timings_cea861_vic (C function), 734
v4l2_flash (C type), 737
v4l2_flash_config (C type), 736
v4l2_flash_ctrl_data (C type), 736
v4l2_flash_indicator_init (C function), 738
v4l2_flash_init (C function), 737
v4l2_flash_ops (C type), 736
v4l2_flash_release (C function), 738
v4l2_fmtdesc (C type), 211
v4l2_format (C type), 250
v4l2_fract (C type), 223
v4l2_framebuffer (C type), 245
v4l2_frequency (C type), 252
v4l2_frequency_band (C type), 216
v4l2_frmival_stepwise (C type), 215
v4l2_frmivalenum (C type), 215
v4l2_frmivaltypes (C type), 215
v4l2_frmsize_discrete (C type), 213
v4l2_frmsize_stepwise (C type), 213
v4l2_frmsizeenum (C type), 213
v4l2_frmsizetypes (C type), 213
v4l2_fwnode_bus_mipi_csi1 (C type), 749
v4l2_fwnode_bus_mipi_csi2 (C type), 748
v4l2_fwnode_bus_parallel (C type), 748
v4l2_fwnode_endpoint (C type), 749
v4l2_fwnode_link (C type), 749
v4l2_g_ctrl (C function), 710
v4l2_g_ext_ctrls (C function), 710
v4l2_get_control (C function), 167
v4l2_get_subdev_hostdata (C function), 677
v4l2_get_subdevdata (C function), 676
v4l2_hsv_encoding (C type), 98
v4l2_hw_freq_seek (C type), 292
v4l2_i2c_new_subdev (C function), 755
v4l2_i2c_new_subdev_board (C function), 755
v4l2_i2c_subdev_addr (C function), 755
v4l2_i2c_subdev_init (C function), 755
v4l2_input (C type), 218
v4l2_ioctl (C function), 167
v4l2_ioctl_get_lock (C function), 763
v4l2_ioctl_ops (C type), 756
v4l2_is_known_ioctl (C function), 650
v4l2_jpegcompression (C type), 254
v4l2_kevent (C type), 681

v4l2_kioctl (C type), 763
v4l2_m2m_buf_queue (C function), 746
v4l2_m2m_buf_remove (C function), 747
v4l2_m2m_buf_remove_by_buf (C function), 748
v4l2_m2m_buffer (C type), 742
v4l2_m2m_create_bufs (C function), 744
v4l2_m2m_ctx (C type), 742
v4l2_m2m_ctx_init (C function), 746
v4l2_m2m_ctx_release (C function), 746
v4l2_m2m_dqbuf (C function), 744
v4l2_m2m_dst_buf_remove (C function), 747
v4l2_m2m_dst_buf_remove_by_buf (C function),

748
v4l2_m2m_expbuf (C function), 744
v4l2_m2m_for_each_dst_buf (C function), 747
v4l2_m2m_for_each_dst_buf_safe (C function), 747
v4l2_m2m_for_each_src_buf (C function), 747
v4l2_m2m_for_each_src_buf_safe (C function), 747
v4l2_m2m_get_curr_priv (C function), 743
v4l2_m2m_get_dst_vq (C function), 747
v4l2_m2m_get_src_vq (C function), 747
v4l2_m2m_get_vq (C function), 743
v4l2_m2m_init (C function), 745
v4l2_m2m_job_finish (C function), 743
v4l2_m2m_mmap (C function), 745
v4l2_m2m_next_buf (C function), 746
v4l2_m2m_next_dst_buf (C function), 746
v4l2_m2m_next_src_buf (C function), 746
v4l2_m2m_num_dst_bufs_ready (C function), 746
v4l2_m2m_num_src_bufs_ready (C function), 746
v4l2_m2m_ops (C type), 741
v4l2_m2m_poll (C function), 745
v4l2_m2m_prepare_buf (C function), 744
v4l2_m2m_qbuf (C function), 744
v4l2_m2m_querybuf (C function), 743
v4l2_m2m_queue_ctx (C type), 741
v4l2_m2m_release (C function), 745
v4l2_m2m_reqbufs (C function), 743
v4l2_m2m_src_buf_remove (C function), 747
v4l2_m2m_src_buf_remove_by_buf (C function),

748
v4l2_m2m_streamoff (C function), 745
v4l2_m2m_streamon (C function), 744
v4l2_m2m_try_schedule (C function), 743
v4l2_match_dv_timings (C function), 734
v4l2_mbus_config (C type), 741
v4l2_mbus_frame_desc (C type), 668
v4l2_mbus_frame_desc_entry (C type), 668
v4l2_mbus_framefmt (C type), 158
v4l2_mbus_type (C type), 740
v4l2_mc_create_media_graph (C function), 739
v4l2_memory (C type), 123
v4l2_modulator (C type), 255
v4l2_mpeg_vbi_fmt_ivtv (C type), 145
v4l2_mpeg_vbi_ITV0 (C type), 146
v4l2_mpeg_vbi_itv0 (C type), 146
v4l2_mpeg_vbi_itv0_line (C type), 147
v4l2_norm_to_name (C function), 762

1082 Index

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

v4l2_open (C function), 167
v4l2_output (C type), 221
v4l2_outputparm (C type), 260
v4l2_pipeline_link_notify (C function), 740
v4l2_pipeline_pm_use (C function), 740
v4l2_pix_format (C type), 58
v4l2_pix_format_mplane (C type), 60
v4l2_plane (C type), 118
v4l2_plane_pix_format (C type), 60
v4l2_print_dv_timings (C function), 735
v4l2_prio_change (C function), 645
v4l2_prio_check (C function), 646
v4l2_prio_close (C function), 645
v4l2_prio_init (C function), 644
v4l2_prio_max (C function), 645
v4l2_prio_open (C function), 645
v4l2_prio_state (C type), 644
v4l2_priority (C type), 263
v4l2_quantization (C type), 98
v4l2_query_ext_ctrl (C function), 709
v4l2_queryctrl (C function), 709
v4l2_querymenu (C function), 710
v4l2_rds_data (C type), 149
v4l2_read (C function), 167
v4l2_rect (C type), 132
v4l2_rect_intersect (C function), 750
v4l2_rect_map_inside (C function), 750
v4l2_rect_overlap (C function), 751
v4l2_rect_same_size (C function), 750
v4l2_rect_scale (C function), 751
v4l2_rect_set_max_size (C function), 750
v4l2_rect_set_min_size (C function), 750
v4l2_rect_set_size_to (C function), 750
v4l2_requestbuffers (C type), 291
v4l2_s_ctrl (C function), 710
v4l2_s_ext_ctrls (C function), 710
v4l2_sdr_format (C type), 150
v4l2_selection (C type), 264
v4l2_set_control (C function), 167
v4l2_set_subdev_hostdata (C function), 676
v4l2_set_subdevdata (C function), 676
v4l2_sliced_vbi_cap (C type), 266
v4l2_sliced_vbi_data (C type), 143
v4l2_sliced_vbi_format (C type), 142
v4l2_spi_new_subdev (C function), 756
v4l2_spi_subdev_init (C function), 756
v4l2_src_change_event_subdev_subscribe (C func-

tion), 684
v4l2_src_change_event_subscribe (C function), 684
v4l2_standard (C type), 222
v4l2_streamparm (C type), 259
v4l2_subdev (C type), 675
v4l2_subdev_alloc_pad_config (C function), 677
v4l2_subdev_audio_ops (C type), 667
v4l2_subdev_core_ops (C type), 666
v4l2_subdev_crop (C type), 299
v4l2_subdev_fh (C type), 676
v4l2_subdev_format (C type), 300

v4l2_subdev_frame_interval (C type), 302
v4l2_subdev_frame_interval_enum (C type), 295
v4l2_subdev_frame_size_enum (C type), 297
v4l2_subdev_free_pad_config (C function), 677
v4l2_subdev_init (C function), 677
v4l2_subdev_internal_ops (C type), 674
v4l2_subdev_io_pin_config (C type), 665
v4l2_subdev_ir_mode (C type), 671
v4l2_subdev_ir_ops (C type), 671
v4l2_subdev_ir_parameters (C type), 671
v4l2_subdev_link_validate (C function), 677
v4l2_subdev_link_validate_default (C function), 677
v4l2_subdev_mbus_code_enum (C type), 298
v4l2_subdev_notify (C function), 656
v4l2_subdev_notify_event (C function), 677
v4l2_subdev_ops (C type), 673
v4l2_subdev_pad_config (C type), 672
v4l2_subdev_pad_ops (C type), 672
v4l2_subdev_platform_data (C type), 674
v4l2_subdev_selection (C type), 303
v4l2_subdev_sensor_ops (C type), 670
v4l2_subdev_tuner_ops (C type), 667
v4l2_subdev_vbi_ops (C type), 670
v4l2_subdev_video_ops (C type), 668
v4l2_subscribed_event (C type), 681
v4l2_subscribed_event_ops (C type), 681
v4l2_timecode (C type), 123
v4l2_try_ext_ctrls (C function), 710
v4l2_tuner (C type), 269
v4l2_tuner_type (C type), 270
v4l2_valid_dv_timings (C function), 733
v4l2_vbi_format (C type), 137
v4l2_video_std_construct (C function), 763
v4l2_video_std_frame_period (C function), 762
v4l2_window (C type), 131
v4l2_xfer_func (C type), 97
v4l2_ycbcr_encoding (C type), 97
v4l_disable_media_source (C function), 739
v4l_enable_media_source (C function), 739
v4l_printk_ioctl (C function), 763
vb2_buf_ops (C type), 720
vb2_buffer (C type), 719
vb2_buffer_done (C function), 722
vb2_buffer_in_use (C function), 728
vb2_buffer_state (C type), 718
vb2_clear_last_buffer_dequeued (C function), 728
vb2_core_create_bufs (C function), 724
vb2_core_dqbuf (C function), 725
vb2_core_expbuf (C function), 725
vb2_core_poll (C function), 726
vb2_core_prepare_buf (C function), 724
vb2_core_qbuf (C function), 724
vb2_core_querybuf (C function), 723
vb2_core_queue_init (C function), 725
vb2_core_queue_release (C function), 726
vb2_core_reqbufs (C function), 723
vb2_create_bufs (C function), 729
vb2_discard_done (C function), 723

Index 1083

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

vb2_dqbuf (C function), 730
vb2_expbuf (C function), 730
vb2_fileio_is_active (C function), 727
vb2_get_drv_priv (C function), 728
vb2_get_plane_payload (C function), 728
vb2_io_modes (C type), 718
vb2_is_busy (C function), 728
vb2_is_streaming (C function), 727
vb2_mem_ops (C type), 716
vb2_memory (C type), 716
vb2_mmap (C function), 726
vb2_ops (C type), 719
vb2_ops_wait_finish (C function), 732
vb2_ops_wait_prepare (C function), 732
vb2_plane (C type), 718
vb2_plane_cookie (C function), 722
vb2_plane_size (C function), 728
vb2_plane_vaddr (C function), 722
vb2_poll (C function), 732
vb2_prepare_buf (C function), 729
vb2_qbuf (C function), 730
vb2_queue (C type), 721
vb2_queue_error (C function), 726
vb2_queue_init (C function), 731
vb2_queue_release (C function), 731
vb2_reqbufs (C function), 729
vb2_set_plane_payload (C function), 728
vb2_start_streaming_called (C function), 728
vb2_streamoff (C function), 731
vb2_streamon (C function), 731
vb2_thread_fnc (C type), 727
vb2_thread_start (C function), 727
vb2_thread_stop (C function), 727
vb2_v4l2_buffer (C type), 729
vb2_verify_memory_type (C function), 729
vb2_vmarea_handler (C type), 732
vb2_wait_for_all_buffers (C function), 723
video_attributes_t (C type), 487
VIDEO_CLEAR_BUFFER (C function), 481
VIDEO_COMMAND (C function), 475
video_command (C type), 460, 475
VIDEO_CONTINUE (C function), 469
video_devdata (C function), 651
video_device (C type), 647
video_device_alloc (C function), 650
video_device_node_name (C function), 651
video_device_release (C function), 650
video_device_release_empty (C function), 650
video_drvdata (C function), 651
video_event (C type), 461, 474
VIDEO_FAST_FORWARD (C function), 478
video_format_t (C type), 483
VIDEO_FREEZE (C function), 468
VIDEO_GET_CAPABILITIES (C function), 480
video_get_drvdata (C function), 651
VIDEO_GET_EVENT (C function), 473
VIDEO_GET_FRAME_COUNT (C function), 471
VIDEO_GET_FRAME_RATE (C function), 473

VIDEO_GET_NAVI (C function), 486
VIDEO_GET_PTS (C function), 472
VIDEO_GET_SIZE (C function), 476
VIDEO_GET_STATUS (C function), 471
video_highlight (C type), 463, 484
video_ioctl2 (C function), 764
video_is_registered (C function), 651
video_navi_pack (C type), 464, 487
VIDEO_PLAY (C function), 467
video_register_device (C function), 649
video_register_device_no_warn (C function), 649
VIDEO_SELECT_SOURCE (C function), 469
VIDEO_SET_ATTRIBUTE (C function), 487
VIDEO_SET_BLANK (C function), 470
VIDEO_SET_DISPLAY_FORMAT (C function), 477
video_set_drvdata (C function), 651
VIDEO_SET_FORMAT (C function), 482
VIDEO_SET_HIGHLIGHT (C function), 484
VIDEO_SET_ID (C function), 480
VIDEO_SET_SPU (C function), 485
VIDEO_SET_SPU_PALETTE (C function), 486
VIDEO_SET_STREAMTYPE (C function), 482
VIDEO_SET_SYSTEM (C function), 483
video_size_t (C type), 477
VIDEO_SLOWMOTION (C function), 479
video_spu (C type), 463, 485
video_spu_palette (C type), 463, 486
video_status (C type), 461, 471
video_still_picture (C type), 462
VIDEO_STILLPICTURE (C function), 478
VIDEO_STOP (C function), 467
video_stream_source_t (C type), 469
VIDEO_TRY_COMMAND (C function), 476
video_unregister_device (C function), 650
video_usercopy (C function), 764
VIDIOC_CREATE_BUFS (C function), 192
VIDIOC_CROPCAP (C function), 193
VIDIOC_DBG_G_CHIP_INFO (C function), 195
VIDIOC_DBG_G_REGISTER (C function), 196
VIDIOC_DBG_S_REGISTER (C function), 196
VIDIOC_DECODER_CMD (C function), 198
VIDIOC_DQBUF (C function), 276
VIDIOC_DQEVENT (C function), 200
VIDIOC_DV_TIMINGS_CAP (C function), 204
VIDIOC_ENCODER_CMD (C function), 206
VIDIOC_ENUM_DV_TIMINGS (C function), 209
VIDIOC_ENUM_FMT (C function), 210
VIDIOC_ENUM_FRAMEINTERVALS (C function), 214
VIDIOC_ENUM_FRAMESIZES (C function), 212
VIDIOC_ENUM_FREQ_BANDS (C function), 216
VIDIOC_ENUMAUDIO (C function), 208
VIDIOC_ENUMAUDOUT (C function), 209
VIDIOC_ENUMINPUT (C function), 218
VIDIOC_ENUMOUTPUT (C function), 221
VIDIOC_ENUMSTD (C function), 222
VIDIOC_EXPBUF (C function), 225
VIDIOC_G_AUDIO (C function), 227
VIDIOC_G_AUDOUT (C function), 229

1084 Index

Linux Media Subsystem Documentation, Release 4.13.0-rc4+

VIDIOC_G_CROP (C function), 230
VIDIOC_G_CTRL (C function), 231
VIDIOC_G_DV_TIMINGS (C function), 232
VIDIOC_G_EDID (C function), 237
VIDIOC_G_ENC_INDEX (C function), 238
VIDIOC_G_EXT_CTRLS (C function), 240
VIDIOC_G_FBUF (C function), 245
VIDIOC_G_FMT (C function), 250
VIDIOC_G_FREQUENCY (C function), 251
VIDIOC_G_INPUT (C function), 252
VIDIOC_G_JPEGCOMP (C function), 253
VIDIOC_G_MODULATOR (C function), 254
VIDIOC_G_OUTPUT (C function), 258
VIDIOC_G_PARM (C function), 258
VIDIOC_G_PRIORITY (C function), 262
VIDIOC_G_SELECTION (C function), 263
VIDIOC_G_SLICED_VBI_CAP (C function), 266
VIDIOC_G_STD (C function), 268
VIDIOC_G_TUNER (C function), 268
VIDIOC_LOG_STATUS (C function), 274
VIDIOC_OVERLAY (C function), 274
VIDIOC_PREPARE_BUF (C function), 275
VIDIOC_QBUF (C function), 276
VIDIOC_QUERY_DV_TIMINGS (C function), 289
VIDIOC_QUERY_EXT_CTRL (C function), 282
VIDIOC_QUERYBUF (C function), 277
VIDIOC_QUERYCAP (C function), 278
VIDIOC_QUERYCTRL (C function), 282
VIDIOC_QUERYMENU (C function), 282
VIDIOC_QUERYSTD (C function), 290
VIDIOC_REQBUFS (C function), 290
VIDIOC_S_AUDIO (C function), 227
VIDIOC_S_AUDOUT (C function), 229
VIDIOC_S_CROP (C function), 230
VIDIOC_S_CTRL (C function), 231
VIDIOC_S_DV_TIMINGS (C function), 232
VIDIOC_S_EDID (C function), 237
VIDIOC_S_EXT_CTRLS (C function), 240
VIDIOC_S_FBUF (C function), 245
VIDIOC_S_FMT (C function), 250
VIDIOC_S_FREQUENCY (C function), 251
VIDIOC_S_HW_FREQ_SEEK (C function), 292
VIDIOC_S_INPUT (C function), 252
VIDIOC_S_JPEGCOMP (C function), 253
VIDIOC_S_MODULATOR (C function), 254
VIDIOC_S_OUTPUT (C function), 258
VIDIOC_S_PARM (C function), 258
VIDIOC_S_PRIORITY (C function), 262
VIDIOC_S_SELECTION (C function), 263
VIDIOC_S_STD (C function), 268
VIDIOC_S_TUNER (C function), 268
VIDIOC_STREAMOFF (C function), 294
VIDIOC_STREAMON (C function), 294
VIDIOC_SUBDEV_DV_TIMINGS_CAP (C function), 204
VIDIOC_SUBDEV_ENUM_DV_TIMINGS (C function),

209
VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL (C func-

tion), 295

VIDIOC_SUBDEV_ENUM_FRAME_SIZE (C function),
296

VIDIOC_SUBDEV_ENUM_MBUS_CODE (C function),
297

VIDIOC_SUBDEV_G_CROP (C function), 298
VIDIOC_SUBDEV_G_DV_TIMINGS (C function), 232
VIDIOC_SUBDEV_G_EDID (C function), 237
VIDIOC_SUBDEV_G_FMT (C function), 300
VIDIOC_SUBDEV_G_FRAME_INTERVAL (C function),

301
VIDIOC_SUBDEV_G_SELECTION (C function), 302
VIDIOC_SUBDEV_QUERY_DV_TIMINGS (C function),

289
VIDIOC_SUBDEV_S_CROP (C function), 298
VIDIOC_SUBDEV_S_DV_TIMINGS (C function), 232
VIDIOC_SUBDEV_S_EDID (C function), 237
VIDIOC_SUBDEV_S_FMT (C function), 300
VIDIOC_SUBDEV_S_FRAME_INTERVAL (C function),

301
VIDIOC_SUBDEV_S_SELECTION (C function), 302
VIDIOC_SUBSCRIBE_EVENT (C function), 303
VIDIOC_TRY_DECODER_CMD (C function), 198
VIDIOC_TRY_ENCODER_CMD (C function), 206
VIDIOC_TRY_EXT_CTRLS (C function), 240
VIDIOC_TRY_FMT (C function), 250
VIDIOC_UNSUBSCRIBE_EVENT (C function), 303

W
write (C function), 466

Index 1085

	Linux Media Infrastructure userspace API
	Introduction
	Part I - Video for Linux API
	Part II - Digital TV API
	Part III - Remote Controller API
	Part IV - Media Controller API
	Part V - Consumer Electronics Control API
	Generic Error Codes
	GNU Free Documentation License

	Media subsystem kernel internal API
	Video4Linux devices
	Digital TV (DVB) devices
	Digital TV Common functions
	Digital TV Ring buffer
	Digital TV Frontend kABI
	Digital TV Demux kABI
	Demux Callback API
	Digital TV Conditional Access kABI
	Remote Controller devices
	Media Controller devices
	CEC Kernel Support
	MIPI CSI-2

	Linux Digital TV driver-specific documentation
	Introduction
	HOWTO: Get An Avermedia DVB-T working under Linux
	How to get the bt8xx cards working
	Hardware supported by the linuxtv.org DVB drivers
	Digital TV Conditional Access Interface (CI API)
	Idea behind the dvb-usb-framework
	FAQ
	Firmware files for lmedm04 cards
	Opera firmware
	How to set up the Technisat/B2C2 Flexcop devices
	TechnoTrend/Hauppauge DEC USB Driver
	UDEV rules for DVB
	Contributors

	Video4Linux (V4L) driver-specific documentation
	Guidelines for Video4Linux pixel format 4CCs
	Infrared remote control support in video4linux drivers
	Using with lircd
	Using without lircd
	Tuner drivers
	Cards List
	The bttv driver
	The cafe_ccic driver
	The cpia2 driver
	The cx18 driver
	The cx2341x driver
	The cx88 driver
	The VPBE V4L2 driver design
	The Samsung S5P/EXYNOS4 FIMC driver
	i.MX Video Capture Driver
	The ivtv driver
	Maxim Integrated MAX2175 RF to bits tuner driver
	Vaio Picturebook Motion Eye Camera Driver
	OMAP 3 Image Signal Processor (ISP) driver
	OMAP4 ISS Driver
	Philips webcams (pwc driver)
	The pvrusb2 driver
	PXA-Camera Host Driver
	Qualcomm Camera Subsystem driver
	The Radiotrack radio driver
	Renesas R-Car Fine Display Processor (FDP1) Driver
	The saa7134 driver
	Cropping and Scaling algorithm, used in the sh_mobile_ceu_camera driver
	The Silicon Labs Si470x FM Radio Receivers driver
	The Silicon Labs Si4713 FM Radio Transmitter Driver
	The SI476x Driver
	The Soc-Camera Drivers
	The Linux USB Video Class (UVC) driver
	The Virtual Video Test Driver (vivid)
	The Zoran driver
	Zoran 364xx based USB webcam module

	CEC driver-specific documentation
	Pulse-Eight CEC Adapter driver

	Index

