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CHAPTER

ONE

UNRELIABLE GUIDE TO HACKING THE LINUX KERNEL

Author Rusty Russell

1.1 Introduction

Welcome, gentle reader, to Rusty’s Remarkably Unreliable Guide to Linux Kernel Hacking. This document
describes the common routines and general requirements for kernel code: its goal is to serve as a primer
for Linux kernel development for experienced C programmers. I avoid implementation details: that’s what
the code is for, and I ignore whole tracts of useful routines.
Before you read this, please understand that I never wanted to write this document, being grossly under-
qualified, but I always wanted to read it, and this was the only way. I hope it will grow into a compendium
of best practice, common starting points and random information.

1.2 The Players

At any time each of the CPUs in a system can be:
• not associated with any process, serving a hardware interrupt;
• not associated with any process, serving a softirq or tasklet;
• running in kernel space, associated with a process (user context);
• running a process in user space.

There is an ordering between these. The bottom two can preempt each other, but above that is a strict
hierarchy: each can only be preempted by the ones above it. For example, while a softirq is running on a
CPU, no other softirq will preempt it, but a hardware interrupt can. However, any other CPUs in the system
execute independently.
We’ll see a number of ways that the user context can block interrupts, to become truly non-preemptable.

1.2.1 User Context

User context is when you are coming in from a system call or other trap: like userspace, you can be
preempted by more important tasks and by interrupts. You can sleep, by calling schedule().

Note:

You are always in user context on module load and unload, and on operations on the block device
layer.

1
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In user context, the current pointer (indicating the task we are currently executing) is valid, and
in_interrupt() (include/linux/preempt.h) is false.

Warning:

Beware that if you have preemption or softirqs disabled (see below), in_interrupt() will return a
false positive.

1.2.2 Hardware Interrupts (Hard IRQs)

Timer ticks, network cards and keyboard are examples of real hardware which produce interrupts at any
time. The kernel runs interrupt handlers, which services the hardware. The kernel guarantees that this
handler is never re-entered: if the same interrupt arrives, it is queued (or dropped). Because it disables
interrupts, this handler has to be fast: frequently it simply acknowledges the interrupt, marks a ‘software
interrupt’ for execution and exits.
You can tell you are in a hardware interrupt, because in_irq() returns true.

Warning:

Beware that this will return a false positive if interrupts are disabled (see below).

1.2.3 Software Interrupt Context: Softirqs and Tasklets

Whenever a system call is about to return to userspace, or a hardware interrupt handler exits, any ‘soft-
ware interrupts’ which are marked pending (usually by hardware interrupts) are run (kernel/softirq.c).
Much of the real interrupt handling work is done here. Early in the transition to SMP, there were only
‘bottom halves’ (BHs), which didn’t take advantage of multiple CPUs. Shortly after we switched from wind-
up computers made of match-sticks and snot, we abandoned this limitation and switched to ‘softirqs’.
include/linux/interrupt.h lists the different softirqs. A very important softirq is the timer softirq
(include/linux/timer.h): you can register to have it call functions for you in a given length of time.
Softirqs are often a pain to deal with, since the same softirq will run simultaneously on more than one
CPU. For this reason, tasklets (include/linux/interrupt.h) are more often used: they are dynamically-
registrable (meaning you can have as many as you want), and they also guarantee that any tasklet will
only run on one CPU at any time, although different tasklets can run simultaneously.

Warning:

The name ‘tasklet’ is misleading: they have nothing to do with ‘tasks’, and probably more to do
with some bad vodka Alexey Kuznetsov had at the time.

You can tell you are in a softirq (or tasklet) using the in_softirq() macro (include/linux/preempt.h).

Warning:

Beware that this will return a false positive if a botton half lock is held.

2 Chapter 1. Unreliable Guide To Hacking The Linux Kernel
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1.3 Some Basic Rules

No memory protection If you corrupt memory, whether in user context or interrupt context, the whole
machine will crash. Are you sure you can’t do what you want in userspace?

No floating point or MMX The FPU context is not saved; even in user context the FPU state probably
won’t correspond with the current process: you would mess with some user process’ FPU state. If
you really want to do this, you would have to explicitly save/restore the full FPU state (and avoid
context switches). It is generally a bad idea; use fixed point arithmetic first.

A rigid stack limit Depending on configuration options the kernel stack is about 3K to 6K for most 32-bit
architectures: it’s about 14K on most 64-bit archs, and often shared with interrupts so you can’t use
it all. Avoid deep recursion and huge local arrays on the stack (allocate them dynamically instead).

The Linux kernel is portable Let’s keep it that way. Your code should be 64-bit clean, and endian-
independent. You should also minimize CPU specific stuff, e.g. inline assembly should be cleanly
encapsulated and minimized to ease porting. Generally it should be restricted to the architecture-
dependent part of the kernel tree.

1.4 ioctls: Not writing a new system call

A system call generally looks like this:

asmlinkage long sys_mycall(int arg)
{

return 0;
}

First, in most cases you don’t want to create a new system call. You create a character device and
implement an appropriate ioctl for it. This is much more flexible than system calls, doesn’t have to be
entered in every architecture’s include/asm/unistd.h and arch/kernel/entry.S file, and is much more
likely to be accepted by Linus.
If all your routine does is read or write some parameter, consider implementing a sysfs() interface
instead.
Inside the ioctl you’re in user context to a process. When a error occurs you return a negated
errno (see include/uapi/asm-generic/errno-base.h, include/uapi/asm-generic/errno.h and in-
clude/linux/errno.h), otherwise you return 0.
After you slept you should check if a signal occurred: the Unix/Linux way of handling signals is to tem-
porarily exit the system call with the -ERESTARTSYS error. The system call entry code will switch back to
user context, process the signal handler and then your system call will be restarted (unless the user dis-
abled that). So you should be prepared to process the restart, e.g. if you’re in the middle of manipulating
some data structure.

if (signal_pending(current))
return -ERESTARTSYS;

If you’re doing longer computations: first think userspace. If you really want to do it in kernel you should
regularly check if you need to give up the CPU (remember there is cooperative multitasking per CPU).
Idiom:

cond_resched(); /* Will sleep */

A short note on interface design: the UNIX system call motto is “Provide mechanism not policy”.

1.3. Some Basic Rules 3



Unreliable Guide To Hacking The Linux Kernel, Release 4.13.0-rc4+

1.5 Recipes for Deadlock

You cannot call any routines which may sleep, unless:
• You are in user context.
• You do not own any spinlocks.
• You have interrupts enabled (actually, Andi Kleen says that the scheduling code will enable them for
you, but that’s probably not what you wanted).

Note that some functions may sleep implicitly: common ones are the user space access functions (*_user)
and memory allocation functions without GFP_ATOMIC.
You should always compile your kernel CONFIG_DEBUG_ATOMIC_SLEEP on, and it will warn you if you break
these rules. If you do break the rules, you will eventually lock up your box.
Really.

1.6 Common Routines

1.6.1 printk()

Defined in include/linux/printk.h
printk() feeds kernel messages to the console, dmesg, and the syslog daemon. It is useful for debugging
and reporting errors, and can be used inside interrupt context, but use with caution: a machine which has
its console flooded with printk messages is unusable. It uses a format string mostly compatible with ANSI
C printf, and C string concatenation to give it a first “priority” argument:

printk(KERN_INFO "i = %u\n", i);

See include/linux/kern_levels.h; for other KERN_ values; these are interpreted by syslog as the level.
Special case: for printing an IP address use:

__be32 ipaddress;
printk(KERN_INFO "my ip: %pI4\n", &ipaddress);

printk() internally uses a 1K buffer and does not catch overruns. Make sure that will be enough.

Note:

You will know when you are a real kernel hacker when you start typoing printf as printk in your user
programs :)

Note:

Another sidenote: the original Unix Version 6 sources had a comment on top of its printf function:
“Printf should not be used for chit-chat”. You should follow that advice.

1.6.2 copy_to_user() / copy_from_user() / get_user() / put_user()

Defined in include/linux/uaccess.h / asm/uaccess.h
[SLEEPS]

4 Chapter 1. Unreliable Guide To Hacking The Linux Kernel
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put_user() and get_user() are used to get and put single values (such as an int, char, or long) from
and to userspace. A pointer into userspace should never be simply dereferenced: data should be copied
using these routines. Both return -EFAULT or 0.
copy_to_user() and copy_from_user() are more general: they copy an arbitrary amount of data to and
from userspace.

Warning:

Unlike put_user() and get_user(), they return the amount of uncopied data (ie. 0 still means
success).

[Yes, this moronic interface makes me cringe. The flamewar comes up every year or so. –RR.]
The functions may sleep implicitly. This should never be called outside user context (it makes no sense),
with interrupts disabled, or a spinlock held.

1.6.3 kmalloc()/kfree()

Defined in include/linux/slab.h
[MAY SLEEP: SEE BELOW]
These routines are used to dynamically request pointer-aligned chunks of memory, like malloc and free
do in userspace, but kmalloc() takes an extra flag word. Important values:
GFP_KERNEL May sleep and swap to free memory. Only allowed in user context, but is the most reliable

way to allocate memory.
GFP_ATOMIC Don’t sleep. Less reliable than GFP_KERNEL, but may be called from interrupt context. You

should really have a good out-of-memory error-handling strategy.
GFP_DMA Allocate ISA DMA lower than 16MB. If you don’t know what that is you don’t need it. Very unre-

liable.
If you see a sleeping function called from invalid context warning message, then maybe you called a
sleeping allocation function from interrupt context without GFP_ATOMIC. You should really fix that. Run,
don’t walk.
If you are allocating at least PAGE_SIZE (asm/page.h or asm/page_types.h) bytes, consider using
__get_free_pages() (include/linux/gfp.h). It takes an order argument (0 for page sized, 1 for double
page, 2 for four pages etc.) and the same memory priority flag word as above.
If you are allocating more than a page worth of bytes you can use vmalloc(). It’ll allocate virtual memory
in the kernel map. This block is not contiguous in physical memory, but the MMU makes it look like it is
for you (so it’ll only look contiguous to the CPUs, not to external device drivers). If you really need large
physically contiguous memory for some weird device, you have a problem: it is poorly supported in Linux
because after some time memory fragmentation in a running kernel makes it hard. The best way is to
allocate the block early in the boot process via the alloc_bootmem() routine.
Before inventing your own cache of often-used objects consider using a slab cache in in-
clude/linux/slab.h

1.6.4 current()

Defined in include/asm/current.h
This global variable (really a macro) contains a pointer to the current task structure, so is only valid in
user context. For example, when a process makes a system call, this will point to the task structure of the
calling process. It is not NULL in interrupt context.

1.6. Common Routines 5



Unreliable Guide To Hacking The Linux Kernel, Release 4.13.0-rc4+

1.6.5 mdelay()/udelay()

Defined in include/asm/delay.h / include/linux/delay.h
The udelay() and ndelay() functions can be used for small pauses. Do not use large values with them
as you risk overflow - the helper function mdelay() is useful here, or consider msleep().

1.6.6 cpu_to_be32()/be32_to_cpu()/cpu_to_le32()/le32_to_cpu()

Defined in include/asm/byteorder.h
The cpu_to_be32() family (where the “32” can be replaced by 64 or 16, and the “be” can be replaced
by “le”) are the general way to do endian conversions in the kernel: they return the converted value. All
variations supply the reverse as well: be32_to_cpu(), etc.
There are two major variations of these functions: the pointer variation, such as cpu_to_be32p(), which
take a pointer to the given type, and return the converted value. The other variation is the “in-situ” family,
such as cpu_to_be32s(), which convert value referred to by the pointer, and return void.

1.6.7 local_irq_save()/local_irq_restore()

Defined in include/linux/irqflags.h
These routines disable hard interrupts on the local CPU, and restore them. They are reentrant; saving the
previous state in their one unsigned long flags argument. If you know that interrupts are enabled, you
can simply use local_irq_disable() and local_irq_enable().

1.6.8 local_bh_disable()/local_bh_enable()

Defined in include/linux/bottom_half.h
These routines disable soft interrupts on the local CPU, and restore them. They are reentrant; if soft
interrupts were disabled before, they will still be disabled after this pair of functions has been called.
They prevent softirqs and tasklets from running on the current CPU.

1.6.9 smp_processor_id()

Defined in include/linux/smp.h
get_cpu() disables preemption (so you won’t suddenly get moved to another CPU) and returns the current
processor number, between 0 and NR_CPUS. Note that the CPU numbers are not necessarily continuous.
You return it again with put_cpu() when you are done.
If you know you cannot be preempted by another task (ie. you are in interrupt context, or have preemption
disabled) you can use smp_processor_id().

1.6.10 __init/__exit/__initdata

Defined in include/linux/init.h
After boot, the kernel frees up a special section; functions marked with __init and data structures marked
with __initdata are dropped after boot is complete: similarly modules discard this memory after initial-
ization. __exit is used to declare a function which is only required on exit: the function will be dropped if
this file is not compiled as a module. See the header file for use. Note that it makes no sense for a function
marked with __init to be exported to modules with EXPORT_SYMBOL() or EXPORT_SYMBOL_GPL()- this will
break.

6 Chapter 1. Unreliable Guide To Hacking The Linux Kernel
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1.6.11 __initcall()/module_init()

Defined in include/linux/init.h / include/linux/module.h
Many parts of the kernel are well served as a module (dynamically-loadable parts of the kernel). Using
the module_init() and module_exit()macros it is easy to write code without #ifdefs which can operate
both as a module or built into the kernel.
The module_init() macro defines which function is to be called at module insertion time (if the file is
compiled as a module), or at boot time: if the file is not compiled as a module the module_init() macro
becomes equivalent to __initcall(), which through linker magic ensures that the function is called on
boot.
The function can return a negative error number to cause module loading to fail (unfortunately, this has
no effect if the module is compiled into the kernel). This function is called in user context with interrupts
enabled, so it can sleep.

1.6.12 module_exit()

Defined in include/linux/module.h
This macro defines the function to be called at module removal time (or never, in the case of the file
compiled into the kernel). It will only be called if the module usage count has reached zero. This function
can also sleep, but cannot fail: everything must be cleaned up by the time it returns.
Note that this macro is optional: if it is not present, your module will not be removable (except for ‘rmmod
-f’).

1.6.13 try_module_get()/module_put()

Defined in include/linux/module.h
These manipulate the module usage count, to protect against removal (a module also can’t be removed if
another module uses one of its exported symbols: see below). Before calling into module code, you should
call try_module_get() on that module: if it fails, then the module is being removed and you should act
as if it wasn’t there. Otherwise, you can safely enter the module, and call module_put() when you’re
finished.
Most registerable structures have an owner field, such as in the struct file_operations structure. Set
this field to the macro THIS_MODULE.

1.7 Wait Queues include/linux/wait.h

[SLEEPS]
A wait queue is used to wait for someone to wake you up when a certain condition is true. They must be
used carefully to ensure there is no race condition. You declare a wait_queue_head_t, and then processes
which want to wait for that condition declare a wait_queue_entry_t referring to themselves, and place
that in the queue.

1.7.1 Declaring

You declare a wait_queue_head_t using the DECLARE_WAIT_QUEUE_HEAD() macro, or using the
init_waitqueue_head() routine in your initialization code.

1.7. Wait Queues include/linux/wait.h 7
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1.7.2 Queuing

Placing yourself in the waitqueue is fairly complex, because you must put yourself in the queue
before checking the condition. There is a macro to do this: wait_event_interruptible()
(include/linux/wait.h) The first argument is the wait queue head, and the second is an expression
which is evaluated; the macro returns 0 when this expression is true, or -ERESTARTSYS if a signal is re-
ceived. The wait_event() version ignores signals.

1.7.3 Waking Up Queued Tasks

Call wake_up() (include/linux/wait.h);, which will wake up every process in the queue. The exception
is if one has TASK_EXCLUSIVE set, in which case the remainder of the queue will not be woken. There are
other variants of this basic function available in the same header.

1.8 Atomic Operations

Certain operations are guaranteed atomic on all platforms. The first class of operations work on atomic_t
(include/asm/atomic.h); this contains a signed integer (at least 32 bits long), and you must use these
functions to manipulate or read atomic_t variables. atomic_read() and atomic_set() get and set the
counter, atomic_add(), atomic_sub(), atomic_inc(), atomic_dec(), and atomic_dec_and_test() (re-
turns true if it was decremented to zero).
Yes. It returns true (i.e. != 0) if the atomic variable is zero.
Note that these functions are slower than normal arithmetic, and so should not be used unnecessarily.
The second class of atomic operations is atomic bit operations on an unsigned long, defined in in-
clude/linux/bitops.h. These operations generally take a pointer to the bit pattern, and a bit number:
0 is the least significant bit. set_bit(), clear_bit() and change_bit() set, clear, and flip the given bit.
test_and_set_bit(), test_and_clear_bit() and test_and_change_bit() do the same thing, except
return true if the bit was previously set; these are particularly useful for atomically setting flags.
It is possible to call these operations with bit indices greater than BITS_PER_LONG. The resulting behavior
is strange on big-endian platforms though so it is a good idea not to do this.

1.9 Symbols

Within the kernel proper, the normal linking rules apply (ie. unless a symbol is declared to be file scope
with the static keyword, it can be used anywhere in the kernel). However, for modules, a special exported
symbol table is kept which limits the entry points to the kernel proper. Modules can also export symbols.

1.9.1 EXPORT_SYMBOL()

Defined in include/linux/export.h
This is the classic method of exporting a symbol: dynamically loaded modules will be able to use the
symbol as normal.

1.9.2 EXPORT_SYMBOL_GPL()

Defined in include/linux/export.h
Similar to EXPORT_SYMBOL() except that the symbols exported by EXPORT_SYMBOL_GPL() can only be
seen by modules with a MODULE_LICENSE() that specifies a GPL compatible license. It implies that the

8 Chapter 1. Unreliable Guide To Hacking The Linux Kernel
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function is considered an internal implementation issue, and not really an interface. Some maintainers
and developers may however require EXPORT_SYMBOL_GPL() when adding any new APIs or functionality.

1.10 Routines and Conventions

1.10.1 Double-linked lists include/linux/list.h

There used to be three sets of linked-list routines in the kernel headers, but this one is the winner. If you
don’t have some particular pressing need for a single list, it’s a good choice.
In particular, list_for_each_entry() is useful.

1.10.2 Return Conventions

For code called in user context, it’s very common to defy C convention, and return 0 for success, and a
negative error number (eg. -EFAULT) for failure. This can be unintuitive at first, but it’s fairly widespread
in the kernel.
Using ERR_PTR() (include/linux/err.h) to encode a negative error number into a pointer, and IS_ERR()
and PTR_ERR() to get it back out again: avoids a separate pointer parameter for the error number. Icky,
but in a good way.

1.10.3 Breaking Compilation

Linus and the other developers sometimes change function or structure names in development kernels;
this is not done just to keep everyone on their toes: it reflects a fundamental change (eg. can no longer be
called with interrupts on, or does extra checks, or doesn’t do checks which were caught before). Usually
this is accompanied by a fairly complete note to the linux-kernel mailing list; search the archive. Simply
doing a global replace on the file usually makes things worse.

1.10.4 Initializing structure members

The preferred method of initializing structures is to use designated initialisers, as defined by ISO C99, eg:

static struct block_device_operations opt_fops = {
.open = opt_open,
.release = opt_release,
.ioctl = opt_ioctl,
.check_media_change = opt_media_change,

};

This makes it easy to grep for, and makes it clear which structure fields are set. You should do this because
it looks cool.

1.10.5 GNU Extensions

GNU Extensions are explicitly allowed in the Linux kernel. Note that some of the more complex ones are
not very well supported, due to lack of general use, but the following are considered standard (see the
GCC info page section “C Extensions” for more details - Yes, really the info page, the man page is only a
short summary of the stuff in info).
• Inline functions
• Statement expressions (ie. the ({ and }) constructs).
• Declaring attributes of a function / variable / type (__attribute__)

1.10. Routines and Conventions 9
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• typeof
• Zero length arrays
• Macro varargs
• Arithmetic on void pointers
• Non-Constant initializers
• Assembler Instructions (not outside arch/ and include/asm/)
• Function names as strings (__func__).
• __builtin_constant_p()

Be wary when using long long in the kernel, the code gcc generates for it is horrible and worse: division
and multiplication does not work on i386 because the GCC runtime functions for it are missing from the
kernel environment.

1.10.6 C++

Using C++ in the kernel is usually a bad idea, because the kernel does not provide the necessary runtime
environment and the include files are not tested for it. It is still possible, but not recommended. If you
really want to do this, forget about exceptions at least.

1.10.7 NUMif

It is generally considered cleaner to use macros in header files (or at the top of .c files) to abstract away
functions rather than using ‘#if’ pre-processor statements throughout the source code.

1.11 Putting Your Stuff in the Kernel

In order to get your stuff into shape for official inclusion, or even to make a neat patch, there’s adminis-
trative work to be done:
• Figure out whose pond you’ve been pissing in. Look at the top of the source files, inside the MAIN-
TAINERS file, and last of all in the CREDITS file. You should coordinate with this person to make sure
you’re not duplicating effort, or trying something that’s already been rejected.
Make sure you put your name and EMail address at the top of any files you create or mangle signif-
icantly. This is the first place people will look when they find a bug, or when they want to make a
change.

• Usually you want a configuration option for your kernel hack. Edit Kconfig in the appropriate direc-
tory. The Config language is simple to use by cut and paste, and there’s complete documentation in
Documentation/kbuild/kconfig-language.txt.
In your description of the option, make sure you address both the expert user and the user who
knows nothing about your feature. Mention incompatibilities and issues here. Definitely end your
description with “if in doubt, say N” (or, occasionally, ‘Y’); this is for people who have no idea what
you are talking about.

• Edit the Makefile: the CONFIG variables are exported here so you can usually just
add a “obj-$(CONFIG_xxx) += xxx.o” line. The syntax is documented in Documenta-
tion/kbuild/makefiles.txt.

• Put yourself in CREDITS if you’ve done something noteworthy, usually beyond a single file (your name
should be at the top of the source files anyway). MAINTAINERSmeans you want to be consulted when
changes are made to a subsystem, and hear about bugs; it implies a more-than-passing commitment
to some part of the code.
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• Finally, don’t forget to read Documentation/process/submitting-patches.rst and possibly Doc-
umentation/process/submitting-drivers.rst.

1.12 Kernel Cantrips

Some favorites from browsing the source. Feel free to add to this list.
arch/x86/include/asm/delay.h:

#define ndelay(n) (__builtin_constant_p(n) ? \
((n) > 20000 ? __bad_ndelay() : __const_udelay((n) * 5ul)) : \
__ndelay(n))

include/linux/fs.h:

/*
* Kernel pointers have redundant information, so we can use a
* scheme where we can return either an error code or a dentry
* pointer with the same return value.
*
* This should be a per-architecture thing, to allow different
* error and pointer decisions.
*/
#define ERR_PTR(err) ((void *)((long)(err)))
#define PTR_ERR(ptr) ((long)(ptr))
#define IS_ERR(ptr) ((unsigned long)(ptr) > (unsigned long)(-1000))

arch/x86/include/asm/uaccess_32.h::

#define copy_to_user(to,from,n) \
(__builtin_constant_p(n) ? \
__constant_copy_to_user((to),(from),(n)) : \
__generic_copy_to_user((to),(from),(n)))

arch/sparc/kernel/head.S::

/*
* Sun people can't spell worth damn. "compatability" indeed.
* At least we *know* we can't spell, and use a spell-checker.
*/

/* Uh, actually Linus it is I who cannot spell. Too much murky
* Sparc assembly will do this to ya.
*/
C_LABEL(cputypvar):

.asciz "compatibility"

/* Tested on SS-5, SS-10. Probably someone at Sun applied a spell-checker. */
.align 4

C_LABEL(cputypvar_sun4m):
.asciz "compatible"

arch/sparc/lib/checksum.S::

/* Sun, you just can't beat me, you just can't. Stop trying,
* give up. I'm serious, I am going to kick the living shit
* out of you, game over, lights out.
*/
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1.13 Thanks

Thanks to Andi Kleen for the idea, answering my questions, fixing my mistakes, filling content, etc. Philipp
Rumpf for more spelling and clarity fixes, and some excellent non-obvious points. Werner Almesberger
for giving me a great summary of disable_irq(), and Jes Sorensen and Andrea Arcangeli added caveats.
Michael Elizabeth Chastain for checking and adding to the Configure section. Telsa Gwynne for teaching
me DocBook.
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CHAPTER

TWO

UNRELIABLE GUIDE TO LOCKING

Author Rusty Russell

2.1 Introduction

Welcome, to Rusty’s Remarkably Unreliable Guide to Kernel Locking issues. This document describes the
locking systems in the Linux Kernel in 2.6.
With the wide availability of HyperThreading, and preemption in the Linux Kernel, everyone hacking on
the kernel needs to know the fundamentals of concurrency and locking for SMP.

2.2 The Problem With Concurrency

(Skip this if you know what a Race Condition is).
In a normal program, you can increment a counter like so:

very_important_count++;

This is what they would expect to happen:

Table 2.1: Expected Results
Instance 1 Instance 2
read very_important_count (5)
add 1 (6)
write very_important_count (6)

read very_important_count (6)
add 1 (7)
write very_important_count (7)

This is what might happen:

Table 2.2: Possible Results
Instance 1 Instance 2
read very_important_count (5)

read very_important_count (5)
add 1 (6)

add 1 (6)
write very_important_count (6)

write very_important_count (6)
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2.2.1 Race Conditions and Critical Regions

This overlap, where the result depends on the relative timing of multiple tasks, is called a race condition.
The piece of code containing the concurrency issue is called a critical region. And especially since Linux
starting running on SMP machines, they became one of the major issues in kernel design and implemen-
tation.
Preemption can have the same effect, even if there is only one CPU: by preempting one task during the
critical region, we have exactly the same race condition. In this case the thread which preempts might
run the critical region itself.
The solution is to recognize when these simultaneous accesses occur, and use locks to make sure that
only one instance can enter the critical region at any time. There are many friendly primitives in the Linux
kernel to help you do this. And then there are the unfriendly primitives, but I’ll pretend they don’t exist.

2.3 Locking in the Linux Kernel

If I could give you one piece of advice: never sleep with anyone crazier than yourself. But if I had to give
you advice on locking: keep it simple.
Be reluctant to introduce new locks.
Strangely enough, this last one is the exact reverse of my advice when you have slept with someone
crazier than yourself. And you should think about getting a big dog.

2.3.1 Two Main Types of Kernel Locks: Spinlocks and Mutexes

There are two main types of kernel locks. The fundamental type is the spinlock
(include/asm/spinlock.h), which is a very simple single-holder lock: if you can’t get the spin-
lock, you keep trying (spinning) until you can. Spinlocks are very small and fast, and can be used
anywhere.
The second type is a mutex (include/linux/mutex.h): it is like a spinlock, but you may block holding
a mutex. If you can’t lock a mutex, your task will suspend itself, and be woken up when the mutex is
released. This means the CPU can do something else while you are waiting. There are many cases when
you simply can’t sleep (see What Functions Are Safe To Call From Interrupts?), and so have to use a
spinlock instead.
Neither type of lock is recursive: see Deadlock: Simple and Advanced.

2.3.2 Locks and Uniprocessor Kernels

For kernels compiled without CONFIG_SMP, and without CONFIG_PREEMPT spinlocks do not exist at all. This
is an excellent design decision: when no-one else can run at the same time, there is no reason to have a
lock.
If the kernel is compiled without CONFIG_SMP, but CONFIG_PREEMPT is set, then spinlocks simply disable
preemption, which is sufficient to prevent any races. For most purposes, we can think of preemption as
equivalent to SMP, and not worry about it separately.
You should always test your locking code with CONFIG_SMP and CONFIG_PREEMPT enabled, even if you don’t
have an SMP test box, because it will still catch some kinds of locking bugs.
Mutexes still exist, because they are required for synchronization between user contexts, as we will see
below.
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2.3.3 Locking Only In User Context

If you have a data structure which is only ever accessed from user context, then you can use a simple
mutex (include/linux/mutex.h) to protect it. This is the most trivial case: you initialize the mutex. Then
you can call mutex_lock_interruptible() to grab the mutex, and mutex_unlock() to release it. There
is also a mutex_lock(), which should be avoided, because it will not return if a signal is received.
Example: net/netfilter/nf_sockopt.c allows registration of new setsockopt() and getsockopt()
calls, with nf_register_sockopt(). Registration and de-registration are only done on module load and
unload (and boot time, where there is no concurrency), and the list of registrations is only consulted for an
unknown setsockopt() or getsockopt() system call. The nf_sockopt_mutex is perfect to protect this,
especially since the setsockopt and getsockopt calls may well sleep.

2.3.4 Locking Between User Context and Softirqs

If a softirq shares data with user context, you have two problems. Firstly, the current user context can be
interrupted by a softirq, and secondly, the critical region could be entered from another CPU. This is where
spin_lock_bh() (include/linux/spinlock.h) is used. It disables softirqs on that CPU, then grabs the
lock. spin_unlock_bh() does the reverse. (The ‘_bh’ suffix is a historical reference to “Bottom Halves”,
the old name for software interrupts. It should really be called spin_lock_softirq()’ in a perfect world).
Note that you can also use spin_lock_irq() or spin_lock_irqsave() here, which stop hardware inter-
rupts as well: see Hard IRQ Context.
This works perfectly for UP as well: the spin lock vanishes, and this macro simply becomes lo-
cal_bh_disable() (include/linux/interrupt.h), which protects you from the softirq being run.

2.3.5 Locking Between User Context and Tasklets

This is exactly the same as above, because tasklets are actually run from a softirq.

2.3.6 Locking Between User Context and Timers

This, too, is exactly the same as above, because timers are actually run from a softirq. From a locking
point of view, tasklets and timers are identical.

2.3.7 Locking Between Tasklets/Timers

Sometimes a tasklet or timer might want to share data with another tasklet or timer.

The Same Tasklet/Timer

Since a tasklet is never run on two CPUs at once, you don’t need to worry about your tasklet being reentrant
(running twice at once), even on SMP.

Different Tasklets/Timers

If another tasklet/timer wants to share data with your tasklet or timer , you will both need to use
spin_lock() and spin_unlock() calls. spin_lock_bh() is unnecessary here, as you are already in a
tasklet, and none will be run on the same CPU.

2.3.8 Locking Between Softirqs

Often a softirq might want to share data with itself or a tasklet/timer.
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The Same Softirq

The same softirq can run on the other CPUs: you can use a per-CPU array (see Per-CPU Data) for better
performance. If you’re going so far as to use a softirq, you probably care about scalable performance
enough to justify the extra complexity.
You’ll need to use spin_lock() and spin_unlock() for shared data.

Different Softirqs

You’ll need to use spin_lock() and spin_unlock() for shared data, whether it be a timer, tasklet, differ-
ent softirq or the same or another softirq: any of them could be running on a different CPU.

2.4 Hard IRQ Context

Hardware interrupts usually communicate with a tasklet or softirq. Frequently this involves putting work
in a queue, which the softirq will take out.

2.4.1 Locking Between Hard IRQ and Softirqs/Tasklets

If a hardware irq handler shares data with a softirq, you have two concerns. Firstly, the softirq processing
can be interrupted by a hardware interrupt, and secondly, the critical region could be entered by a hard-
ware interrupt on another CPU. This is where spin_lock_irq() is used. It is defined to disable interrupts
on that cpu, then grab the lock. spin_unlock_irq() does the reverse.
The irq handler does not to use spin_lock_irq(), because the softirq cannot run while the irq handler
is running: it can use spin_lock(), which is slightly faster. The only exception would be if a different
hardware irq handler uses the same lock: spin_lock_irq() will stop that from interrupting us.
This works perfectly for UP as well: the spin lock vanishes, and this macro simply becomes lo-
cal_irq_disable() (include/asm/smp.h), which protects you from the softirq/tasklet/BH being run.
spin_lock_irqsave() (include/linux/spinlock.h) is a variant which saves whether interrupts were
on or off in a flags word, which is passed to spin_unlock_irqrestore(). This means that the same code
can be used inside an hard irq handler (where interrupts are already off) and in softirqs (where the irq
disabling is required).
Note that softirqs (and hence tasklets and timers) are run on return from hardware interrupts, so
spin_lock_irq() also stops these. In that sense, spin_lock_irqsave() is themost general and powerful
locking function.

2.4.2 Locking Between Two Hard IRQ Handlers

It is rare to have to share data between two IRQ handlers, but if you do, spin_lock_irqsave() should be
used: it is architecture-specific whether all interrupts are disabled inside irq handlers themselves.

2.5 Cheat Sheet For Locking

Pete Zaitcev gives the following summary:
• If you are in a process context (any syscall) and want to lock other process out, use a mutex. You
can take a mutex and sleep (copy_from_user*( or kmalloc(x,GFP_KERNEL)).

• Otherwise (== data can be touched in an interrupt), use spin_lock_irqsave() and
spin_unlock_irqrestore().
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• Avoid holding spinlock for more than 5 lines of code and across any function call (except accessors
like readb()).

2.5.1 Table of Minimum Requirements

The following table lists the minimum locking requirements between various contexts. In some cases,
the same context can only be running on one CPU at a time, so no locking is required for that context (eg.
a particular thread can only run on one CPU at a time, but if it needs shares data with another thread,
locking is required).
Remember the advice above: you can always use spin_lock_irqsave(), which is a superset of all other
spinlock primitives.
. IRQ

Handler
A

IRQ
Handler
B

Softirq
A

Softirq
B

Tasklet
A

Tasklet
B

Timer
A

Timer
B

User
Context
A

User
Context
B

IRQ
Handler
A

None

IRQ
Handler
B

SLIS None

Softirq A SLI SLI SL
Softirq B SLI SLI SL SL
Tasklet A SLI SLI SL SL None
Tasklet B SLI SLI SL SL SL None
Timer A SLI SLI SL SL SL SL None
Timer B SLI SLI SL SL SL SL SL None
User
Context
A

SLI SLI SLBH SLBH SLBH SLBH SLBH SLBH None

User
Context
B

SLI SLI SLBH SLBH SLBH SLBH SLBH SLBH MLI None

Table: Table of Locking Requirements
SLIS spin_lock_irqsave
SLI spin_lock_irq
SL spin_lock
SLBH spin_lock_bh
MLI mutex_lock_interruptible
Table: Legend for Locking Requirements Table

2.6 The trylock Functions

There are functions that try to acquire a lock only once and immediately return a value telling about
success or failure to acquire the lock. They can be used if you need no access to the data protected with
the lock when some other thread is holding the lock. You should acquire the lock later if you then need
access to the data protected with the lock.
spin_trylock() does not spin but returns non-zero if it acquires the spinlock on the first try or 0 if not.
This function can be used in all contexts like spin_lock(): you must have disabled the contexts that
might interrupt you and acquire the spin lock.
mutex_trylock() does not suspend your task but returns non-zero if it could lock the mutex on the first
try or 0 if not. This function cannot be safely used in hardware or software interrupt contexts despite not
sleeping.
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2.7 Common Examples

Let’s step through a simple example: a cache of number to name mappings. The cache keeps a count of
how often each of the objects is used, and when it gets full, throws out the least used one.

2.7.1 All In User Context

For our first example, we assume that all operations are in user context (ie. from system calls), so we can
sleep. This means we can use a mutex to protect the cache and all the objects within it. Here’s the code:

#include <linux/list.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/mutex.h>
#include <asm/errno.h>

struct object
{

struct list_head list;
int id;
char name[32];
int popularity;

};

/* Protects the cache, cache_num, and the objects within it */
static DEFINE_MUTEX(cache_lock);
static LIST_HEAD(cache);
static unsigned int cache_num = 0;
#define MAX_CACHE_SIZE 10

/* Must be holding cache_lock */
static struct object *__cache_find(int id)
{

struct object *i;

list_for_each_entry(i, &cache, list)
if (i->id == id) {

i->popularity++;
return i;

}
return NULL;

}

/* Must be holding cache_lock */
static void __cache_delete(struct object *obj)
{

BUG_ON(!obj);
list_del(&obj->list);
kfree(obj);
cache_num--;

}

/* Must be holding cache_lock */
static void __cache_add(struct object *obj)
{

list_add(&obj->list, &cache);
if (++cache_num > MAX_CACHE_SIZE) {

struct object *i, *outcast = NULL;
list_for_each_entry(i, &cache, list) {

if (!outcast || i->popularity < outcast->popularity)
outcast = i;

18 Chapter 2. Unreliable Guide To Locking



Unreliable Guide To Hacking The Linux Kernel, Release 4.13.0-rc4+

}
__cache_delete(outcast);

}
}

int cache_add(int id, const char *name)
{

struct object *obj;

if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
return -ENOMEM;

strlcpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;

mutex_lock(&cache_lock);
__cache_add(obj);
mutex_unlock(&cache_lock);
return 0;

}

void cache_delete(int id)
{

mutex_lock(&cache_lock);
__cache_delete(__cache_find(id));
mutex_unlock(&cache_lock);

}

int cache_find(int id, char *name)
{

struct object *obj;
int ret = -ENOENT;

mutex_lock(&cache_lock);
obj = __cache_find(id);
if (obj) {

ret = 0;
strcpy(name, obj->name);

}
mutex_unlock(&cache_lock);
return ret;

}

Note that we always make sure we have the cache_lock when we add, delete, or look up the cache: both
the cache infrastructure itself and the contents of the objects are protected by the lock. In this case it’s
easy, since we copy the data for the user, and never let them access the objects directly.
There is a slight (and common) optimization here: in cache_add() we set up the fields of the object before
grabbing the lock. This is safe, as no-one else can access it until we put it in cache.

2.7.2 Accessing From Interrupt Context

Now consider the case where cache_find() can be called from interrupt context: either a hardware
interrupt or a softirq. An example would be a timer which deletes object from the cache.
The change is shown below, in standard patch format: the - are lines which are taken away, and the +
are lines which are added.

--- cache.c.usercontext 2003-12-09 13:58:54.000000000 +1100
+++ cache.c.interrupt 2003-12-09 14:07:49.000000000 +1100
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@@ -12,7 +12,7 @@
int popularity;

};

-static DEFINE_MUTEX(cache_lock);
+static DEFINE_SPINLOCK(cache_lock);
static LIST_HEAD(cache);
static unsigned int cache_num = 0;
#define MAX_CACHE_SIZE 10
@@ -55,6 +55,7 @@
int cache_add(int id, const char *name)
{

struct object *obj;
+ unsigned long flags;

if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
return -ENOMEM;

@@ -63,30 +64,33 @@
obj->id = id;
obj->popularity = 0;

- mutex_lock(&cache_lock);
+ spin_lock_irqsave(&cache_lock, flags);

__cache_add(obj);
- mutex_unlock(&cache_lock);
+ spin_unlock_irqrestore(&cache_lock, flags);

return 0;
}

void cache_delete(int id)
{
- mutex_lock(&cache_lock);
+ unsigned long flags;
+
+ spin_lock_irqsave(&cache_lock, flags);

__cache_delete(__cache_find(id));
- mutex_unlock(&cache_lock);
+ spin_unlock_irqrestore(&cache_lock, flags);
}

int cache_find(int id, char *name)
{

struct object *obj;
int ret = -ENOENT;

+ unsigned long flags;

- mutex_lock(&cache_lock);
+ spin_lock_irqsave(&cache_lock, flags);

obj = __cache_find(id);
if (obj) {

ret = 0;
strcpy(name, obj->name);

}
- mutex_unlock(&cache_lock);
+ spin_unlock_irqrestore(&cache_lock, flags);

return ret;
}

Note that the spin_lock_irqsave() will turn off interrupts if they are on, otherwise does nothing (if we
are already in an interrupt handler), hence these functions are safe to call from any context.
Unfortunately, cache_add() calls kmalloc() with the GFP_KERNEL flag, which is only legal in user context.
I have assumed that cache_add() is still only called in user context, otherwise this should become a
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parameter to cache_add().

2.7.3 Exposing Objects Outside This File

If our objects contained more information, it might not be sufficient to copy the information in and out:
other parts of the code might want to keep pointers to these objects, for example, rather than looking up
the id every time. This produces two problems.
The first problem is that we use the cache_lock to protect objects: we’d need to make this non-static so
the rest of the code can use it. This makes locking trickier, as it is no longer all in one place.
The second problem is the lifetime problem: if another structure keeps a pointer to an object, it presumably
expects that pointer to remain valid. Unfortunately, this is only guaranteed while you hold the lock,
otherwise someone might call cache_delete() and even worse, add another object, re-using the same
address.
As there is only one lock, you can’t hold it forever: no-one else would get any work done.
The solution to this problem is to use a reference count: everyone who has a pointer to the object increases
it when they first get the object, and drops the reference count when they’re finished with it. Whoever
drops it to zero knows it is unused, and can actually delete it.
Here is the code:

--- cache.c.interrupt 2003-12-09 14:25:43.000000000 +1100
+++ cache.c.refcnt 2003-12-09 14:33:05.000000000 +1100
@@ -7,6 +7,7 @@
struct object
{

struct list_head list;
+ unsigned int refcnt;

int id;
char name[32];
int popularity;

@@ -17,6 +18,35 @@
static unsigned int cache_num = 0;
#define MAX_CACHE_SIZE 10

+static void __object_put(struct object *obj)
+{
+ if (--obj->refcnt == 0)
+ kfree(obj);
+}
+
+static void __object_get(struct object *obj)
+{
+ obj->refcnt++;
+}
+
+void object_put(struct object *obj)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&cache_lock, flags);
+ __object_put(obj);
+ spin_unlock_irqrestore(&cache_lock, flags);
+}
+
+void object_get(struct object *obj)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&cache_lock, flags);
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+ __object_get(obj);
+ spin_unlock_irqrestore(&cache_lock, flags);
+}
+
/* Must be holding cache_lock */
static struct object *__cache_find(int id)
{
@@ -35,6 +65,7 @@
{

BUG_ON(!obj);
list_del(&obj->list);

+ __object_put(obj);
cache_num--;

}

@@ -63,6 +94,7 @@
strlcpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;

+ obj->refcnt = 1; /* The cache holds a reference */

spin_lock_irqsave(&cache_lock, flags);
__cache_add(obj);

@@ -79,18 +111,15 @@
spin_unlock_irqrestore(&cache_lock, flags);

}

-int cache_find(int id, char *name)
+struct object *cache_find(int id)
{

struct object *obj;
- int ret = -ENOENT;

unsigned long flags;

spin_lock_irqsave(&cache_lock, flags);
obj = __cache_find(id);

- if (obj) {
- ret = 0;
- strcpy(name, obj->name);
- }
+ if (obj)
+ __object_get(obj);

spin_unlock_irqrestore(&cache_lock, flags);
- return ret;
+ return obj;
}

We encapsulate the reference counting in the standard ‘get’ and ‘put’ functions. Now we can return the
object itself from cache_find() which has the advantage that the user can now sleep holding the object
(eg. to copy_to_user() to name to userspace).
The other point to note is that I said a reference should be held for every pointer to the object: thus the
reference count is 1 when first inserted into the cache. In some versions the framework does not hold a
reference count, but they are more complicated.

Using Atomic Operations For The Reference Count

In practice, atomic_t would usually be used for refcnt. There are a number of atomic operations defined
in include/asm/atomic.h: these are guaranteed to be seen atomically from all CPUs in the system, so
no lock is required. In this case, it is simpler than using spinlocks, although for anything non-trivial using
spinlocks is clearer. The atomic_inc() and atomic_dec_and_test() are used instead of the standard
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increment and decrement operators, and the lock is no longer used to protect the reference count itself.

--- cache.c.refcnt 2003-12-09 15:00:35.000000000 +1100
+++ cache.c.refcnt-atomic 2003-12-11 15:49:42.000000000 +1100
@@ -7,7 +7,7 @@
struct object
{

struct list_head list;
- unsigned int refcnt;
+ atomic_t refcnt;

int id;
char name[32];
int popularity;

@@ -18,33 +18,15 @@
static unsigned int cache_num = 0;
#define MAX_CACHE_SIZE 10

-static void __object_put(struct object *obj)
-{
- if (--obj->refcnt == 0)
- kfree(obj);
-}
-
-static void __object_get(struct object *obj)
-{
- obj->refcnt++;
-}
-
void object_put(struct object *obj)
{
- unsigned long flags;
-
- spin_lock_irqsave(&cache_lock, flags);
- __object_put(obj);
- spin_unlock_irqrestore(&cache_lock, flags);
+ if (atomic_dec_and_test(&obj->refcnt))
+ kfree(obj);
}

void object_get(struct object *obj)
{
- unsigned long flags;
-
- spin_lock_irqsave(&cache_lock, flags);
- __object_get(obj);
- spin_unlock_irqrestore(&cache_lock, flags);
+ atomic_inc(&obj->refcnt);
}

/* Must be holding cache_lock */
@@ -65,7 +47,7 @@
{

BUG_ON(!obj);
list_del(&obj->list);

- __object_put(obj);
+ object_put(obj);

cache_num--;
}

@@ -94,7 +76,7 @@
strlcpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
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- obj->refcnt = 1; /* The cache holds a reference */
+ atomic_set(&obj->refcnt, 1); /* The cache holds a reference */

spin_lock_irqsave(&cache_lock, flags);
__cache_add(obj);

@@ -119,7 +101,7 @@
spin_lock_irqsave(&cache_lock, flags);
obj = __cache_find(id);
if (obj)

- __object_get(obj);
+ object_get(obj);

spin_unlock_irqrestore(&cache_lock, flags);
return obj;

}

2.7.4 Protecting The Objects Themselves

In these examples, we assumed that the objects (except the reference counts) never changed once they
are created. If we wanted to allow the name to change, there are three possibilities:
• You can make cache_lock non-static, and tell people to grab that lock before changing the name in
any object.

• You can provide a cache_obj_rename() which grabs this lock and changes the name for the caller,
and tell everyone to use that function.

• You can make the cache_lock protect only the cache itself, and use another lock to protect the name.
Theoretically, you can make the locks as fine-grained as one lock for every field, for every object. In
practice, the most common variants are:
• One lock which protects the infrastructure (the cache list in this example) and all the objects. This is
what we have done so far.

• One lock which protects the infrastructure (including the list pointers inside the objects), and one
lock inside the object which protects the rest of that object.

• Multiple locks to protect the infrastructure (eg. one lock per hash chain), possibly with a separate
per-object lock.

Here is the “lock-per-object” implementation:

--- cache.c.refcnt-atomic 2003-12-11 15:50:54.000000000 +1100
+++ cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100
@@ -6,11 +6,17 @@

struct object
{
+ /* These two protected by cache_lock. */

struct list_head list;
+ int popularity;
+

atomic_t refcnt;
+
+ /* Doesn't change once created. */

int id;
+
+ spinlock_t lock; /* Protects the name */

char name[32];
- int popularity;
};

static DEFINE_SPINLOCK(cache_lock);
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@@ -77,6 +84,7 @@
obj->id = id;
obj->popularity = 0;
atomic_set(&obj->refcnt, 1); /* The cache holds a reference */

+ spin_lock_init(&obj->lock);

spin_lock_irqsave(&cache_lock, flags);
__cache_add(obj);

Note that I decide that the popularity count should be protected by the cache_lock rather than the per-
object lock: this is because it (like the struct list_head inside the object) is logically part of the infras-
tructure. This way, I don’t need to grab the lock of every object in __cache_add() when seeking the least
popular.
I also decided that the id member is unchangeable, so I don’t need to grab each object lock in
__cache_find() to examine the id: the object lock is only used by a caller who wants to read or write the
name field.
Note also that I added a comment describing what data was protected by which locks. This is extremely
important, as it describes the runtime behavior of the code, and can be hard to gain from just reading.
And as Alan Cox says, “Lock data, not code”.

2.8 Common Problems

2.8.1 Deadlock: Simple and Advanced

There is a coding bug where a piece of code tries to grab a spinlock twice: it will spin forever, waiting
for the lock to be released (spinlocks, rwlocks and mutexes are not recursive in Linux). This is trivial to
diagnose: not a stay-up-five-nights-talk-to-fluffy-code-bunnies kind of problem.
For a slightly more complex case, imagine you have a region shared by a softirq and user context. If you
use a spin_lock() call to protect it, it is possible that the user context will be interrupted by the softirq
while it holds the lock, and the softirq will then spin forever trying to get the same lock.
Both of these are called deadlock, and as shown above, it can occur even with a single CPU (although
not on UP compiles, since spinlocks vanish on kernel compiles with CONFIG_SMP=n. You’ll still get data
corruption in the second example).
This complete lockup is easy to diagnose: on SMP boxes the watchdog timer or compiling with DE-
BUG_SPINLOCK set (include/linux/spinlock.h) will show this up immediately when it happens.
A more complex problem is the so-called ‘deadly embrace’, involving two or more locks. Say you have a
hash table: each entry in the table is a spinlock, and a chain of hashed objects. Inside a softirq handler,
you sometimes want to alter an object from one place in the hash to another: you grab the spinlock of
the old hash chain and the spinlock of the new hash chain, and delete the object from the old one, and
insert it in the new one.
There are two problems here. First, if your code ever tries to move the object to the same chain, it will
deadlock with itself as it tries to lock it twice. Secondly, if the same softirq on another CPU is trying to
move another object in the reverse direction, the following could happen:
CPU 1 CPU 2
Grab lock A -> OK Grab lock B -> OK
Grab lock B -> spin Grab lock A -> spin
Table: Consequences
The two CPUs will spin forever, waiting for the other to give up their lock. It will look, smell, and feel like
a crash.

2.8. Common Problems 25



Unreliable Guide To Hacking The Linux Kernel, Release 4.13.0-rc4+

2.8.2 Preventing Deadlock

Textbooks will tell you that if you always lock in the same order, you will never get this kind of deadlock.
Practice will tell you that this approach doesn’t scale: when I create a new lock, I don’t understand enough
of the kernel to figure out where in the 5000 lock hierarchy it will fit.
The best locks are encapsulated: they never get exposed in headers, and are never held around calls
to non-trivial functions outside the same file. You can read through this code and see that it will never
deadlock, because it never tries to grab another lock while it has that one. People using your code don’t
even need to know you are using a lock.
A classic problem here is when you provide callbacks or hooks: if you call these with the lock held, you
risk simple deadlock, or a deadly embrace (who knows what the callback will do?). Remember, the other
programmers are out to get you, so don’t do this.

Overzealous Prevention Of Deadlocks

Deadlocks are problematic, but not as bad as data corruption. Code which grabs a read lock, searches a
list, fails to find what it wants, drops the read lock, grabs a write lock and inserts the object has a race
condition.
If you don’t see why, please stay the fuck away from my code.

2.8.3 Racing Timers: A Kernel Pastime

Timers can produce their own special problems with races. Consider a collection of objects (list, hash, etc)
where each object has a timer which is due to destroy it.
If you want to destroy the entire collection (say on module removal), you might do the following:

/* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE
HUNGARIAN NOTATION */

spin_lock_bh(&list_lock);

while (list) {
struct foo *next = list->next;
del_timer(&list->timer);
kfree(list);
list = next;

}

spin_unlock_bh(&list_lock);

Sooner or later, this will crash on SMP, because a timer can have just gone off before the spin_lock_bh(),
and it will only get the lock after we spin_unlock_bh(), and then try to free the element (which has already
been freed!).
This can be avoided by checking the result of del_timer(): if it returns 1, the timer has been deleted. If
0, it means (in this case) that it is currently running, so we can do:

retry:
spin_lock_bh(&list_lock);

while (list) {
struct foo *next = list->next;
if (!del_timer(&list->timer)) {

/* Give timer a chance to delete this */
spin_unlock_bh(&list_lock);
goto retry;

}
kfree(list);
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list = next;
}

spin_unlock_bh(&list_lock);

Another common problem is deleting timers which restart themselves (by calling add_timer() at the end
of their timer function). Because this is a fairly common case which is prone to races, you should use
del_timer_sync() (include/linux/timer.h) to handle this case. It returns the number of times the
timer had to be deleted before we finally stopped it from adding itself back in.

2.9 Locking Speed

There are three main things to worry about when considering speed of some code which does locking. First
is concurrency: how many things are going to be waiting while someone else is holding a lock. Second is
the time taken to actually acquire and release an uncontended lock. Third is using fewer, or smarter locks.
I’m assuming that the lock is used fairly often: otherwise, you wouldn’t be concerned about efficiency.
Concurrency depends on how long the lock is usually held: you should hold the lock for as long as needed,
but no longer. In the cache example, we always create the object without the lock held, and then grab
the lock only when we are ready to insert it in the list.
Acquisition times depend on how much damage the lock operations do to the pipeline (pipeline stalls) and
how likely it is that this CPU was the last one to grab the lock (ie. is the lock cache-hot for this CPU): on
a machine with more CPUs, this likelihood drops fast. Consider a 700MHz Intel Pentium III: an instruction
takes about 0.7ns, an atomic increment takes about 58ns, a lock which is cache-hot on this CPU takes
160ns, and a cacheline transfer from another CPU takes an additional 170 to 360ns. (These figures from
Paul McKenney’s Linux Journal RCU article).
These two aims conflict: holding a lock for a short time might be done by splitting locks into parts (such
as in our final per-object-lock example), but this increases the number of lock acquisitions, and the results
are often slower than having a single lock. This is another reason to advocate locking simplicity.
The third concern is addressed below: there are some methods to reduce the amount of locking which
needs to be done.

2.9.1 Read/Write Lock Variants

Both spinlocks and mutexes have read/write variants: rwlock_t and struct rw_semaphore. These divide
users into two classes: the readers and the writers. If you are only reading the data, you can get a read
lock, but to write to the data you need the write lock. Many people can hold a read lock, but a writer must
be sole holder.
If your code divides neatly along reader/writer lines (as our cache code does), and the lock is held by
readers for significant lengths of time, using these locks can help. They are slightly slower than the
normal locks though, so in practice rwlock_t is not usually worthwhile.

2.9.2 Avoiding Locks: Read Copy Update

There is a special method of read/write locking called Read Copy Update. Using RCU, the readers can
avoid taking a lock altogether: as we expect our cache to be read more often than updated (otherwise
the cache is a waste of time), it is a candidate for this optimization.
How do we get rid of read locks? Getting rid of read locks means that writers may be changing the list
underneath the readers. That is actually quite simple: we can read a linked list while an element is being
added if the writer adds the element very carefully. For example, adding new to a single linked list called
list:
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new->next = list->next;
wmb();
list->next = new;

The wmb() is a write memory barrier. It ensures that the first operation (setting the new element’s next
pointer) is complete and will be seen by all CPUs, before the second operation is (putting the new element
into the list). This is important, since modern compilers and modern CPUs can both reorder instructions
unless told otherwise: we want a reader to either not see the new element at all, or see the new element
with the next pointer correctly pointing at the rest of the list.
Fortunately, there is a function to do this for standard struct list_head lists: list_add_rcu()
(include/linux/list.h).
Removing an element from the list is even simpler: we replace the pointer to the old element with a
pointer to its successor, and readers will either see it, or skip over it.

list->next = old->next;

There is list_del_rcu() (include/linux/list.h) which does this (the normal version poisons the old
object, which we don’t want).
The reader must also be careful: some CPUs can look through the next pointer to start reading the
contents of the next element early, but don’t realize that the pre-fetched contents is wrong when
the next pointer changes underneath them. Once again, there is a list_for_each_entry_rcu()
(include/linux/list.h) to help you. Of course, writers can just use list_for_each_entry(), since
there cannot be two simultaneous writers.
Our final dilemma is this: when can we actually destroy the removed element? Remember, a reader
might be stepping through this element in the list right now: if we free this element and the next pointer
changes, the reader will jump off into garbage and crash. We need to wait until we know that all the readers
who were traversing the list when we deleted the element are finished. We use call_rcu() to register
a callback which will actually destroy the object once all pre-existing readers are finished. Alternatively,
synchronize_rcu() may be used to block until all pre-existing are finished.
But how does Read Copy Update know when the readers are finished? The method is this: firstly, the
readers always traverse the list inside rcu_read_lock()/rcu_read_unlock() pairs: these simply disable
preemption so the reader won’t go to sleep while reading the list.
RCU then waits until every other CPU has slept at least once: since readers cannot sleep, we know that
any readers which were traversing the list during the deletion are finished, and the callback is triggered.
The real Read Copy Update code is a little more optimized than this, but this is the fundamental idea.

--- cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100
+++ cache.c.rcupdate 2003-12-11 17:55:14.000000000 +1100
@@ -1,15 +1,18 @@
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/string.h>
+#include <linux/rcupdate.h>
#include <linux/mutex.h>
#include <asm/errno.h>

struct object
{
- /* These two protected by cache_lock. */
+ /* This is protected by RCU */

struct list_head list;
int popularity;

+ struct rcu_head rcu;
+

atomic_t refcnt;
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/* Doesn't change once created. */
@@ -40,7 +43,7 @@
{

struct object *i;

- list_for_each_entry(i, &cache, list) {
+ list_for_each_entry_rcu(i, &cache, list) {

if (i->id == id) {
i->popularity++;
return i;

@@ -49,19 +52,25 @@
return NULL;

}

+/* Final discard done once we know no readers are looking. */
+static void cache_delete_rcu(void *arg)
+{
+ object_put(arg);
+}
+
/* Must be holding cache_lock */
static void __cache_delete(struct object *obj)
{

BUG_ON(!obj);
- list_del(&obj->list);
- object_put(obj);
+ list_del_rcu(&obj->list);

cache_num--;
+ call_rcu(&obj->rcu, cache_delete_rcu);
}

/* Must be holding cache_lock */
static void __cache_add(struct object *obj)
{
- list_add(&obj->list, &cache);
+ list_add_rcu(&obj->list, &cache);

if (++cache_num > MAX_CACHE_SIZE) {
struct object *i, *outcast = NULL;
list_for_each_entry(i, &cache, list) {

@@ -104,12 +114,11 @@
struct object *cache_find(int id)
{

struct object *obj;
- unsigned long flags;

- spin_lock_irqsave(&cache_lock, flags);
+ rcu_read_lock();

obj = __cache_find(id);
if (obj)

object_get(obj);
- spin_unlock_irqrestore(&cache_lock, flags);
+ rcu_read_unlock();

return obj;
}

Note that the reader will alter the popularity member in __cache_find(), and now it doesn’t hold a lock.
One solution would be to make it an atomic_t, but for this usage, we don’t really care about races: an
approximate result is good enough, so I didn’t change it.
The result is that cache_find() requires no synchronization with any other functions, so is almost as fast
on SMP as it would be on UP.
There is a further optimization possible here: remember our original cache code, where there were no
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reference counts and the caller simply held the lock whenever using the object? This is still possible: if
you hold the lock, no one can delete the object, so you don’t need to get and put the reference count.
Now, because the ‘read lock’ in RCU is simply disabling preemption, a caller which always has preemption
disabled between calling cache_find() and object_put() does not need to actually get and put the
reference count: we could expose __cache_find() by making it non-static, and such callers could simply
call that.
The benefit here is that the reference count is not written to: the object is not altered in any way, which
is much faster on SMP machines due to caching.

2.9.3 Per-CPU Data

Another technique for avoiding locking which is used fairly widely is to duplicate information for each CPU.
For example, if you wanted to keep a count of a common condition, you could use a spin lock and a single
counter. Nice and simple.
If that was too slow (it’s usually not, but if you’ve got a really big machine to test on and can show that
it is), you could instead use a counter for each CPU, then none of them need an exclusive lock. See
DEFINE_PER_CPU(), get_cpu_var() and put_cpu_var() (include/linux/percpu.h).
Of particular use for simple per-cpu counters is the local_t type, and the cpu_local_inc() and related
functions, which are more efficient than simple code on some architectures (include/asm/local.h).
Note that there is no simple, reliable way of getting an exact value of such a counter, without introducing
more locks. This is not a problem for some uses.

2.9.4 Data Which Mostly Used By An IRQ Handler

If data is always accessed from within the same IRQ handler, you don’t need a lock at all: the kernel
already guarantees that the irq handler will not run simultaneously on multiple CPUs.
Manfred Spraul points out that you can still do this, even if the data is very occasionally accessed in user
context or softirqs/tasklets. The irq handler doesn’t use a lock, and all other accesses are done as so:

spin_lock(&lock);
disable_irq(irq);
...
enable_irq(irq);
spin_unlock(&lock);

The disable_irq() prevents the irq handler from running (and waits for it to finish if it’s currently running
on other CPUs). The spinlock prevents any other accesses happening at the same time. Naturally, this is
slower than just a spin_lock_irq() call, so it only makes sense if this type of access happens extremely
rarely.

2.10 What Functions Are Safe To Call From Interrupts?

Many functions in the kernel sleep (ie. call schedule()) directly or indirectly: you can never call them while
holding a spinlock, or with preemption disabled. This also means you need to be in user context: calling
them from an interrupt is illegal.

2.10.1 Some Functions Which Sleep

The most common ones are listed below, but you usually have to read the code to find out if other calls
are safe. If everyone else who calls it can sleep, you probably need to be able to sleep, too. In particular,
registration and deregistration functions usually expect to be called from user context, and can sleep.
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• Accesses to userspace:
– copy_from_user()

– copy_to_user()

– get_user()

– put_user()

• kmalloc(GFP_KERNEL)

• mutex_lock_interruptible() and mutex_lock()
There is a mutex_trylock() which does not sleep. Still, it must not be used inside interrupt context
since its implementation is not safe for that. mutex_unlock() will also never sleep. It cannot be
used in interrupt context either since a mutex must be released by the same task that acquired it.

2.10.2 Some Functions Which Don’t Sleep

Some functions are safe to call from any context, or holding almost any lock.
• printk()

• kfree()

• add_timer() and del_timer()

2.11 Mutex API reference

mutex_init(mutex)
initialize the mutex

Parameters
mutex the mutex to be initialized
Description
Initialize the mutex to unlocked state.
It is not allowed to initialize an already locked mutex.
int mutex_is_locked(struct mutex * lock)

is the mutex locked
Parameters
struct mutex * lock the mutex to be queried
Description
Returns 1 if the mutex is locked, 0 if unlocked.
enum mutex_trylock_recursive_enum mutex_trylock_recursive(struct mutex * lock)

trylock variant that allows recursive locking
Parameters
struct mutex * lock mutex to be locked
Description
This function should not be used, _ever_. It is purely for hysterical GEM raisins, and once those are gone
this will be removed.
Return
• MUTEX_TRYLOCK_FAILED - trylock failed,
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• MUTEX_TRYLOCK_SUCCESS - lock acquired,
• MUTEX_TRYLOCK_RECURSIVE - we already owned the lock.

void __sched mutex_lock(struct mutex * lock)
acquire the mutex

Parameters
struct mutex * lock the mutex to be acquired
Description
Lock the mutex exclusively for this task. If the mutex is not available right now, it will sleep until it can
get it.
The mutex must later on be released by the same task that acquired it. Recursive locking is not allowed.
The task may not exit without first unlocking the mutex. Also, kernel memory where the mutex resides
must not be freed with the mutex still locked. The mutex must first be initialized (or statically defined)
before it can be locked. memset()-ing the mutex to 0 is not allowed.
(The CONFIG_DEBUG_MUTEXES .config option turns on debugging checks that will enforce the restrictions
and will also do deadlock debugging)
This function is similar to (but not equivalent to) down().
void __sched mutex_unlock(struct mutex * lock)

release the mutex
Parameters
struct mutex * lock the mutex to be released
Description
Unlock a mutex that has been locked by this task previously.
This function must not be used in interrupt context. Unlocking of a not locked mutex is not allowed.
This function is similar to (but not equivalent to) up().
void __sched ww_mutex_unlock(struct ww_mutex * lock)

release the w/w mutex
Parameters
struct ww_mutex * lock the mutex to be released
Description
Unlock a mutex that has been locked by this task previously with any of the ww_mutex_lock* functions
(with or without an acquire context). It is forbidden to release the locks after releasing the acquire context.
This function must not be used in interrupt context. Unlocking of a unlocked mutex is not allowed.
int __sched mutex_lock_interruptible(struct mutex * lock)

acquire the mutex, interruptible
Parameters
struct mutex * lock the mutex to be acquired
Description
Lock the mutex like mutex_lock(), and return 0 if the mutex has been acquired or sleep until the mutex
becomes available. If a signal arrives while waiting for the lock then this function returns -EINTR.
This function is similar to (but not equivalent to) down_interruptible().
int __sched mutex_trylock(struct mutex * lock)

try to acquire the mutex, without waiting
Parameters

32 Chapter 2. Unreliable Guide To Locking



Unreliable Guide To Hacking The Linux Kernel, Release 4.13.0-rc4+

struct mutex * lock the mutex to be acquired
Description
Try to acquire the mutex atomically. Returns 1 if the mutex has been acquired successfully, and 0 on
contention.
NOTE
this function follows the spin_trylock() convention, so it is negated from the down_trylock() return
values! Be careful about this when converting semaphore users to mutexes.
This function must not be used in interrupt context. The mutex must be released by the same task that
acquired it.
int atomic_dec_and_mutex_lock(atomic_t * cnt, struct mutex * lock)

return holding mutex if we dec to 0
Parameters
atomic_t * cnt the atomic which we are to dec
struct mutex * lock the mutex to return holding if we dec to 0
Description
return true and hold lock if we dec to 0, return false otherwise

2.12 Futex API reference

struct futex_q
The hashed futex queue entry, one per waiting task

Definition

struct futex_q {
struct plist_node list;
struct task_struct * task;
spinlock_t * lock_ptr;
union futex_key key;
struct futex_pi_state * pi_state;
struct rt_mutex_waiter * rt_waiter;
union futex_key * requeue_pi_key;
u32 bitset;

};

Members
list priority-sorted list of tasks waiting on this futex
task the task waiting on the futex
lock_ptr the hash bucket lock
key the key the futex is hashed on
pi_state optional priority inheritance state
rt_waiter rt_waiter storage for use with requeue_pi
requeue_pi_key the requeue_pi target futex key
bitset bitset for the optional bitmasked wakeup
Description
We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so we can wake only the relevant
ones (hashed queues may be shared).
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A futex_q has a woken state, just like tasks have TASK_RUNNING. It is considered woken when
plist_node_empty(q->list) || q->lock_ptr == 0. The order of wakeup is always to make the first con-
dition true, then the second.
PI futexes are typically woken before they are removed from the hash list via the rt_mutex code. See
unqueue_me_pi().
struct futex_hash_bucket * hash_futex(union futex_key * key)

Return the hash bucket in the global hash
Parameters
union futex_key * key Pointer to the futex key for which the hash is calculated
Description
We hash on the keys returned from get_futex_key (see below) and return the corresponding hash bucket
in the global hash.
int match_futex(union futex_key * key1, union futex_key * key2)

Check whether two futex keys are equal
Parameters
union futex_key * key1 Pointer to key1
union futex_key * key2 Pointer to key2
Description
Return 1 if two futex_keys are equal, 0 otherwise.
int get_futex_key(u32 __user * uaddr, int fshared, union futex_key * key, int rw)

Get parameters which are the keys for a futex
Parameters
u32 __user * uaddr virtual address of the futex
int fshared 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
union futex_key * key address where result is stored.
int rw mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
Return
a negative error code or 0
The key words are stored in key on success.
For shared mappings, it’s (page->index, file_inode(vma->vm_file), offset_within_page). For private map-
pings, it’s (uaddr, current->mm). We can usually work out the index without swapping in the page.
lock_page() might sleep, the caller should not hold a spinlock.
int fault_in_user_writeable(u32 __user * uaddr)

Fault in user address and verify RW access
Parameters
u32 __user * uaddr pointer to faulting user space address
Description
Slow path to fixup the fault we just took in the atomic write access to uaddr.
We have no generic implementation of a non-destructive write to the user address. We know that we
faulted in the atomic pagefault disabled section so we can as well avoid the #PF overhead by calling
get_user_pages() right away.
struct futex_q * futex_top_waiter(struct futex_hash_bucket * hb, union futex_key * key)

Return the highest priority waiter on a futex
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Parameters
struct futex_hash_bucket * hb the hash bucket the futex_q’s reside in
union futex_key * key the futex key (to distinguish it from other futex futex_q’s)
Description
Must be called with the hb lock held.
int futex_lock_pi_atomic(u32 __user * uaddr, struct futex_hash_bucket * hb, union fu-

tex_key * key, struct futex_pi_state ** ps, struct task_struct * task,
int set_waiters)

Atomic work required to acquire a pi aware futex
Parameters
u32 __user * uaddr the pi futex user address
struct futex_hash_bucket * hb the pi futex hash bucket
union futex_key * key the futex key associated with uaddr and hb
struct futex_pi_state ** ps the pi_state pointer where we store the result of the lookup
struct task_struct * task the task to perform the atomic lock work for. This will be “current” except

in the case of requeue pi.
int set_waiters force setting the FUTEX_WAITERS bit (1) or not (0)
Return
• 0 - ready to wait;
• 1 - acquired the lock;
• <0 - error

The hb->lock and futex_key refs shall be held by the caller.
void __unqueue_futex(struct futex_q * q)

Remove the futex_q from its futex_hash_bucket
Parameters
struct futex_q * q The futex_q to unqueue
Description
The q->lock_ptr must not be NULL and must be held by the caller.
void requeue_futex(struct futex_q * q, struct futex_hash_bucket * hb1, struct futex_hash_bucket

* hb2, union futex_key * key2)
Requeue a futex_q from one hb to another

Parameters
struct futex_q * q the futex_q to requeue
struct futex_hash_bucket * hb1 the source hash_bucket
struct futex_hash_bucket * hb2 the target hash_bucket
union futex_key * key2 the new key for the requeued futex_q
void requeue_pi_wake_futex(struct futex_q * q, union futex_key * key, struct futex_hash_bucket

* hb)
Wake a task that acquired the lock during requeue

Parameters
struct futex_q * q the futex_q
union futex_key * key the key of the requeue target futex
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struct futex_hash_bucket * hb the hash_bucket of the requeue target futex
Description
During futex_requeue, with requeue_pi=1, it is possible to acquire the target futex if it is uncontended or
via a lock steal. Set the futex_q key to the requeue target futex so the waiter can detect the wakeup on
the right futex, but remove it from the hb and NULL the rt_waiter so it can detect atomic lock acquisition.
Set the q->lock_ptr to the requeue target hb->lock to protect access to the pi_state to fixup the owner
later. Must be called with both q->lock_ptr and hb->lock held.
int futex_proxy_trylock_atomic(u32 __user * pifutex, struct futex_hash_bucket * hb1, struct fu-

tex_hash_bucket * hb2, union futex_key * key1, union futex_key
* key2, struct futex_pi_state ** ps, int set_waiters)

Attempt an atomic lock for the top waiter
Parameters
u32 __user * pifutex the user address of the to futex
struct futex_hash_bucket * hb1 the from futex hash bucket, must be locked by the caller
struct futex_hash_bucket * hb2 the to futex hash bucket, must be locked by the caller
union futex_key * key1 the from futex key
union futex_key * key2 the to futex key
struct futex_pi_state ** ps address to store the pi_state pointer
int set_waiters force setting the FUTEX_WAITERS bit (1) or not (0)
Description
Try and get the lock on behalf of the top waiter if we can do it atomically. Wake the top waiter if we
succeed. If the caller specified set_waiters, then direct futex_lock_pi_atomic() to force setting the
FUTEX_WAITERS bit. hb1 and hb2 must be held by the caller.
Return
• 0 - failed to acquire the lock atomically;
• >0 - acquired the lock, return value is vpid of the top_waiter
• <0 - error

int futex_requeue(u32 __user * uaddr1, unsigned int flags, u32 __user * uaddr2, int nr_wake,
int nr_requeue, u32 * cmpval, int requeue_pi)

Requeue waiters from uaddr1 to uaddr2
Parameters
u32 __user * uaddr1 source futex user address
unsigned int flags futex flags (FLAGS_SHARED, etc.)
u32 __user * uaddr2 target futex user address
int nr_wake number of waiters to wake (must be 1 for requeue_pi)
int nr_requeue number of waiters to requeue (0-INT_MAX)
u32 * cmpval uaddr1 expected value (or NULL)
int requeue_pi if we are attempting to requeue from a non-pi futex to a pi futex (pi to pi requeue is not

supported)
Description
Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire uaddr2 atomically on behalf
of the top waiter.
Return
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• >=0 - on success, the number of tasks requeued or woken;
• <0 - on error

void queue_me(struct futex_q * q, struct futex_hash_bucket * hb)
Enqueue the futex_q on the futex_hash_bucket

Parameters
struct futex_q * q The futex_q to enqueue
struct futex_hash_bucket * hb The destination hash bucket
Description
The hb->lock must be held by the caller, and is released here. A call to queue_me() is typically paired
with exactly one call to unqueue_me(). The exceptions involve the PI related operations, which may use
unqueue_me_pi() or nothing if the unqueue is done as part of the wake process and the unqueue state
is implicit in the state of woken task (see futex_wait_requeue_pi() for an example).
int unqueue_me(struct futex_q * q)

Remove the futex_q from its futex_hash_bucket
Parameters
struct futex_q * q The futex_q to unqueue
Description
The q->lock_ptr must not be held by the caller. A call to unqueue_me() must be paired with exactly one
earlier call to queue_me().
Return
• 1 - if the futex_q was still queued (and we removed unqueued it);
• 0 - if the futex_q was already removed by the waking thread

int fixup_owner(u32 __user * uaddr, struct futex_q * q, int locked)
Post lock pi_state and corner case management

Parameters
u32 __user * uaddr user address of the futex
struct futex_q * q futex_q (contains pi_state and access to the rt_mutex)
int locked if the attempt to take the rt_mutex succeeded (1) or not (0)
Description
After attempting to lock an rt_mutex, this function is called to cleanup the pi_state owner as well as handle
race conditions that may allow us to acquire the lock. Must be called with the hb lock held.
Return
• 1 - success, lock taken;
• 0 - success, lock not taken;
• <0 - on error (-EFAULT)

void futex_wait_queue_me(struct futex_hash_bucket * hb, struct futex_q * q, struct hrtimer_sleeper
* timeout)

queue_me() and wait for wakeup, timeout, or signal
Parameters
struct futex_hash_bucket * hb the futex hash bucket, must be locked by the caller
struct futex_q * q the futex_q to queue up on
struct hrtimer_sleeper * timeout the prepared hrtimer_sleeper, or null for no timeout
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int futex_wait_setup(u32 __user * uaddr, u32 val, unsigned int flags, struct futex_q * q, struct fu-
tex_hash_bucket ** hb)

Prepare to wait on a futex
Parameters
u32 __user * uaddr the futex userspace address
u32 val the expected value
unsigned int flags futex flags (FLAGS_SHARED, etc.)
struct futex_q * q the associated futex_q
struct futex_hash_bucket ** hb storage for hash_bucket pointer to be returned to caller
Description
Setup the futex_q and locate the hash_bucket. Get the futex value and compare it with the expected
value. Handle atomic faults internally. Return with the hb lock held and a q.key reference on success, and
unlocked with no q.key reference on failure.
Return
• 0 - uaddr contains val and hb has been locked;
• <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked

int handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb, struct futex_q * q, union fu-
tex_key * key2, struct hrtimer_sleeper * timeout)

Detect early wakeup on the initial futex
Parameters
struct futex_hash_bucket * hb the hash_bucket futex_q was original enqueued on
struct futex_q * q the futex_q woken while waiting to be requeued
union futex_key * key2 the futex_key of the requeue target futex
struct hrtimer_sleeper * timeout the timeout associated with the wait (NULL if none)
Description
Detect if the task was woken on the initial futex as opposed to the requeue target futex. If so, determine
if it was a timeout or a signal that caused the wakeup and return the appropriate error code to the caller.
Must be called with the hb lock held.
Return
• 0 = no early wakeup detected;
• <0 = -ETIMEDOUT or -ERESTARTNOINTR

int futex_wait_requeue_pi(u32 __user * uaddr, unsigned int flags, u32 val, ktime_t * abs_time,
u32 bitset, u32 __user * uaddr2)

Wait on uaddr and take uaddr2
Parameters
u32 __user * uaddr the futex we initially wait on (non-pi)
unsigned int flags futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be the same type,

no requeueing from private to shared, etc.
u32 val the expected value of uaddr
ktime_t * abs_time absolute timeout
u32 bitset 32 bit wakeup bitset set by userspace, defaults to all
u32 __user * uaddr2 the pi futex we will take prior to returning to user-space
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Description
The caller will wait on uaddr and will be requeued by futex_requeue() to uaddr2 which must be PI aware
and unique from uaddr. Normal wakeup will wake on uaddr2 and complete the acquisition of the rt_mutex
prior to returning to userspace. This ensures the rt_mutexmaintains an owner when it has waiters; without
one, the pi logic would not know which task to boost/deboost, if there was a need to.
We call schedule in futex_wait_queue_me() when we enqueue and return there via the following– 1)
wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() 2) wakeup on uaddr2 after a
requeue 3) signal 4) timeout
If 3, cleanup and return -ERESTARTNOINTR.
If 2, we may then block on trying to take the rt_mutex and return via: 5) successful lock 6) signal 7)
timeout 8) other lock acquisition failure
If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
If 4 or 7, we cleanup and return with -ETIMEDOUT.
Return
• 0 - On success;
• <0 - On error

long sys_set_robust_list(struct robust_list_head __user * head, size_t len)
Set the robust-futex list head of a task

Parameters
struct robust_list_head __user * head pointer to the list-head
size_t len length of the list-head, as userspace expects
long sys_get_robust_list(int pid, struct robust_list_head __user *__user * head_ptr, size_t __user

* len_ptr)
Get the robust-futex list head of a task

Parameters
int pid pid of the process [zero for current task]
struct robust_list_head __user *__user * head_ptr pointer to a list-head pointer, the kernel fills

it in
size_t __user * len_ptr pointer to a length field, the kernel fills in the header size

2.13 Further reading

• Documentation/locking/spinlocks.txt: Linus Torvalds’ spinlocking tutorial in the kernel sources.
• Unix Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Program-
mers:
Curt Schimmel’s very good introduction to kernel level locking (not written for Linux, but nearly
everything applies). The book is expensive, but really worth every penny to understand SMP locking.
[ISBN: 0201633388]
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2.15 Glossary

preemption Prior to 2.5, or when CONFIG_PREEMPT is unset, processes in user context inside the kernel
would not preempt each other (ie. you had that CPU until you gave it up, except for interrupts). With
the addition of CONFIG_PREEMPT in 2.5.4, this changed: when in user context, higher priority tasks
can “cut in”: spinlocks were changed to disable preemption, even on UP.

bh Bottom Half: for historical reasons, functions with ‘_bh’ in them often now refer to any software in-
terrupt, e.g. spin_lock_bh() blocks any software interrupt on the current CPU. Bottom halves are
deprecated, and will eventually be replaced by tasklets. Only one bottom half will be running at any
time.

Hardware Interrupt / Hardware IRQ Hardware interrupt request. in_irq() returns true in a hardware
interrupt handler.

Interrupt Context Not user context: processing a hardware irq or software irq. Indicated by the
in_interrupt() macro returning true.

SMP Symmetric Multi-Processor: kernels compiled for multiple-CPU machines. (CONFIG_SMP=y).
Software Interrupt / softirq Software interrupt handler. in_irq() returns false; in_softirq() returns

true. Tasklets and softirqs both fall into the category of ‘software interrupts’.
Strictly speaking a softirq is one of up to 32 enumerated software interrupts which can run onmultiple
CPUs at once. Sometimes used to refer to tasklets as well (ie. all software interrupts).

tasklet A dynamically-registrable software interrupt, which is guaranteed to only run on one CPU at a
time.

timer A dynamically-registrable software interrupt, which is run at (or close to) a given time. When
running, it is just like a tasklet (in fact, they are called from the TIMER_SOFTIRQ).

UP Uni-Processor: Non-SMP. (CONFIG_SMP=n).
User Context The kernel executing on behalf of a particular process (ie. a system call or trap) or kernel

thread. You can tell which process with the currentmacro.) Not to be confused with userspace. Can
be interrupted by software or hardware interrupts.

Userspace A process executing its own code outside the kernel.
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