
Linux GPU Driver Developer’s Guide
Release 4.13.0-rc4+

The kernel development community

Sep 05, 2017

CONTENTS

1 Introduction 1
1.1 Style Guidelines . 1
1.2 Getting Started . 1
1.3 Contribution Process . 2

2 DRM Internals 3
2.1 Driver Initialization . 3
2.2 Open/Close, File Operations and IOCTLs . 14
2.3 Misc Utilities . 21
2.4 Legacy Support Code . 22

3 DRM Memory Management 23
3.1 The Translation Table Manager (TTM) . 23
3.2 The Graphics Execution Manager (GEM) . 24
3.3 VMA Offset Manager . 38
3.4 PRIME Buffer Sharing . 44
3.5 DRM MM Range Allocator . 47
3.6 DRM Cache Handling . 56
3.7 DRM Sync Objects . 56

4 Kernel Mode Setting (KMS) 59
4.1 Overview . 59
4.2 KMS Core Structures and Functions . 62
4.3 Modeset Base Object Abstraction . 70
4.4 Atomic Mode Setting . 73
4.5 CRTC Abstraction . 91
4.6 Frame Buffer Abstraction . 102
4.7 DRM Format Handling . 107
4.8 Dumb Buffer Objects . 109
4.9 Plane Abstraction . 110
4.10 Display Modes Function Reference . 118
4.11 Connector Abstraction . 130
4.12 Encoder Abstraction . 146
4.13 KMS Initialization and Cleanup . 149
4.14 KMS Locking . 151
4.15 KMS Properties . 154
4.16 Vertical Blanking . 174

5 Mode Setting Helper Functions 183
5.1 Modeset Helper Reference for Common Vtables . 183
5.2 Atomic Modeset Helper Functions Reference . 196
5.3 Legacy CRTC/Modeset Helper Functions Reference . 214
5.4 Simple KMS Helper Reference . 217
5.5 fbdev Helper Functions Reference . 219
5.6 Framebuffer CMA Helper Functions Reference . 229

i

5.7 Bridges . 232
5.8 Panel Helper Reference . 238
5.9 Display Port Helper Functions Reference . 242
5.10 Display Port Dual Mode Adaptor Helper Functions Reference . 247
5.11 Display Port MST Helper Functions Reference . 250
5.12 MIPI DSI Helper Functions Reference . 258
5.13 Output Probing Helper Functions Reference . 267
5.14 EDID Helper Functions Reference . 270
5.15 SCDC Helper Functions Reference . 277
5.16 Rectangle Utilities Reference . 279
5.17 HDMI Infoframes Helper Reference . 284
5.18 Flip-work Helper Reference . 287
5.19 Plane Helper Reference . 289
5.20 Auxiliary Modeset Helpers . 292

6 Userland interfaces 295
6.1 libdrm Device Lookup . 295
6.2 Primary Nodes, DRM Master and Authentication . 296
6.3 Open-Source Userspace Requirements . 297
6.4 Render nodes . 298
6.5 IOCTL Support on Device Nodes . 299
6.6 Testing and validation . 302
6.7 Sysfs Support . 305
6.8 VBlank event handling . 305

7 drm/i915 Intel GFX Driver 307
7.1 Core Driver Infrastructure . 307
7.2 Display Hardware Handling . 316
7.3 Memory Management and Command Submission . 343
7.4 GuC . 355
7.5 Tracing . 358
7.6 Perf . 359

8 drm/meson AmLogic Meson Video Processing Unit 379
8.1 Video Processing Unit . 379
8.2 Video Input Unit . 379
8.3 Video Post Processing . 380
8.4 Video Encoder . 380
8.5 Video Canvas Management . 381
8.6 Video Clocks . 381
8.7 HDMI Video Output . 381

9 drm/pl111 ARM PrimeCell PL111 CLCD Driver 383

10drm/tegra NVIDIA Tegra GPU and display driver 385
10.1 Driver Infrastructure . 385
10.2 KMS driver . 389
10.3 Userspace Interface . 391

11drm/tinydrm Driver library 393
11.1 Core functionality . 393
11.2 Additional helpers . 396
11.3 MIPI DBI Compatible Controllers . 399

12drm/vc4 Broadcom VC4 Graphics Driver 405
12.1 Display Hardware Handling . 405
12.2 Memory Management and 3D Command Submission . 406

13VGA Switcheroo 409

ii

13.1 Modes of Use . 409
13.2 API . 410
13.3 Handlers . 417

14VGA Arbiter 421
14.1 vgaarb kernel/userspace ABI . 421
14.2 In-kernel interface . 422
14.3 libpciaccess . 424
14.4 xf86VGAArbiter (X server implementation) . 425
14.5 References . 425

15drm/bridge/dw-hdmi Synopsys DesignWare HDMI Controller 427
15.1 Synopsys DesignWare HDMI Controller . 427

16TODO list 429
16.1 Subsystem-wide refactorings . 429
16.2 Core refactorings . 431
16.3 Better Testing . 433
16.4 Driver Specific . 434
16.5 Outside DRM . 434

Index 435

iii

iv

CHAPTER

ONE

INTRODUCTION

The Linux DRM layer contains code intended to support the needs of complex graphics devices, usually
containing programmable pipelines well suited to 3D graphics acceleration. Graphics drivers in the kernel
may make use of DRM functions to make tasks like memory management, interrupt handling and DMA
easier, and provide a uniform interface to applications.
A note on versions: this guide covers features found in the DRM tree, including the TTMmemory manager,
output configuration and mode setting, and the new vblank internals, in addition to all the regular features
found in current kernels.
[Insert diagram of typical DRM stack here]

1.1 Style Guidelines

For consistency this documentation uses American English. Abbreviations are written as all-uppercase,
for example: DRM, KMS, IOCTL, CRTC, and so on. To aid in reading, documentations make full use of
the markup characters kerneldoc provides: @parameter for function parameters, @member for structure
members (within the same structure), &struct structure to reference structures and function() for func-
tions. These all get automatically hyperlinked if kerneldoc for the referenced objects exists. When ref-
erencing entries in function vtables (and structure members in general) please use &vtable_name.vfunc.
Unfortunately this does not yet yield a direct link to the member, only the structure.
Except in special situations (to separate locked from unlocked variants) locking requirements for func-
tions aren’t documented in the kerneldoc. Instead locking should be check at runtime using e.g.
WARN_ON(!mutex_is_locked(...));. Since it’s much easier to ignore documentation than runtime noise
this provides more value. And on top of that runtime checks do need to be updated when the locking rules
change, increasing the chances that they’re correct. Within the documentation the locking rules should
be explained in the relevant structures: Either in the comment for the lock explaining what it protects, or
data fields need a note about which lock protects them, or both.
Functions which have a non-void return value should have a section called “Returns” explaining the ex-
pected return values in different cases and their meanings. Currently there’s no consensus whether that
section name should be all upper-case or not, and whether it should end in a colon or not. Go with the
file-local style. Other common section names are “Notes” with information for dangerous or tricky corner
cases, and “FIXME” where the interface could be cleaned up.
Also read the guidelines for the kernel documentation at large .

1.2 Getting Started

Developers interested in helping out with the DRM subsystem are very welcome. Often people will resort to
sending in patches for various issues reported by checkpatch or sparse. We welcome such contributions.
Anyone looking to kick it up a notch can find a list of janitorial tasks on the TODO list .

1

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

1.3 Contribution Process

Mostly the DRM subsystem works like any other kernel subsystem, see the main process guidelines
and documentation for how things work. Here we just document some of the specialities of the GPU
subsystem.

1.3.1 Feature Merge Deadlines

All feature work must be in the linux-next tree by the -rc6 release of the current release cycle, otherwise
they must be postponed and can’t reach the next merge window. All patches must have landed in the
drm-next tree by latest -rc7, but if your branch is not in linux-next then this must have happened by -rc6
already.
After that point only bugfixes (like after the upstream merge window has closed with the -rc1 release) are
allowed. No new platform enabling or new drivers are allowed.
This means that there’s a blackout-period of about one month where feature work can’t be merged. The
recommended way to deal with that is having a -next tree that’s always open, but making sure to not feed
it into linux-next during the blackout period. As an example, drm-misc works like that.

1.3.2 Code of Conduct

As a freedesktop.org project, dri-devel, and the DRM community, follows the Contributor Covenant, found
at: https://www.freedesktop.org/wiki/CodeOfConduct
Please conduct yourself in a respectful and civilised manner when interacting with community members
on mailing lists, IRC, or bug trackers. The community represents the project as a whole, and abusive or
bullying behaviour is not tolerated by the project.

2 Chapter 1. Introduction

https://www.freedesktop.org/wiki/CodeOfConduct

CHAPTER

TWO

DRM INTERNALS

This chapter documents DRM internals relevant to driver authors and developers working to add support
for the latest features to existing drivers.
First, we go over some typical driver initialization requirements, like setting up command buffers, creating
an initial output configuration, and initializing core services. Subsequent sections cover core internals in
more detail, providing implementation notes and examples.
The DRM layer provides several services to graphics drivers, many of them driven by the application inter-
faces it provides through libdrm, the library that wraps most of the DRM ioctls. These include vblank event
handling, memory management, output management, framebuffer management, command submission
& fencing, suspend/resume support, and DMA services.

2.1 Driver Initialization

At the core of every DRM driver is a struct drm_driver structure. Drivers typically statically initialize
a drm_driver structure, and then pass it to drm_dev_alloc() to allocate a device instance. After the
device instance is fully initialized it can be registered (which makes it accessible from userspace) using
drm_dev_register().
The struct drm_driver structure contains static information that describes the driver and features it
supports, and pointers to methods that the DRM core will call to implement the DRM API. We will first go
through the struct drm_driver static information fields, and will then describe individual operations in
details as they get used in later sections.

2.1.1 Driver Information

Driver Features

Drivers inform the DRM core about their requirements and supported features by setting appropriate flags
in the driver_features field. Since those flags influence the DRM core behaviour since registration time,
most of them must be set to registering the struct drm_driver instance.
u32 driver_features;
DRIVER_USE_AGP Driver uses AGP interface, the DRM core will manage AGP resources.
DRIVER_LEGACY Denote a legacy driver using shadow attach. Don’t use.
DRIVER_KMS_LEGACY_CONTEXT Used only by nouveau for backwards compatibility with existing

userspace. Don’t use.
DRIVER_PCI_DMA Driver is capable of PCI DMA,mapping of PCI DMA buffers to userspace will be enabled.

Deprecated.
DRIVER_SG Driver can perform scatter/gather DMA, allocation and mapping of scatter/gather buffers will

be enabled. Deprecated.

3

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

DRIVER_HAVE_DMA Driver supports DMA, the userspace DMA API will be supported. Deprecated.
DRIVER_HAVE_IRQ; DRIVER_IRQ_SHARED DRIVER_HAVE_IRQ indicates whether the driver has an IRQ

handler managed by the DRM Core. The core will support simple IRQ handler installation when the
flag is set. The installation process is described in ?.
DRIVER_IRQ_SHARED indicates whether the device & handler support shared IRQs (note that this is
required of PCI drivers).

DRIVER_GEM Driver use the GEM memory manager.
DRIVER_MODESET Driver supports mode setting interfaces (KMS).
DRIVER_PRIME Driver implements DRM PRIME buffer sharing.
DRIVER_RENDER Driver supports dedicated render nodes.
DRIVER_ATOMIC Driver supports atomic properties. In this case the driver must implement appropriate

obj->atomic_get_property() vfuncs for any modeset objects with driver specific properties.
DRIVER_SYNCOBJ Driver support drm sync objects.

Major, Minor and Patchlevel

int major; int minor; int patchlevel; The DRM core identifies driver versions by a major, minor and patch
level triplet. The information is printed to the kernel log at initialization time and passed to userspace
through the DRM_IOCTL_VERSION ioctl.
The major and minor numbers are also used to verify the requested driver API version passed to
DRM_IOCTL_SET_VERSION. When the driver API changes between minor versions, applications can call
DRM_IOCTL_SET_VERSION to select a specific version of the API. If the requested major isn’t equal to the
driver major, or the requested minor is larger than the driver minor, the DRM_IOCTL_SET_VERSION call
will return an error. Otherwise the driver’s set_version() method will be called with the requested version.

Name, Description and Date

char *name; char *desc; char *date; The driver name is printed to the kernel log at initialization time,
used for IRQ registration and passed to userspace through DRM_IOCTL_VERSION.
The driver description is a purely informative string passed to userspace through the DRM_IOCTL_VERSION
ioctl and otherwise unused by the kernel.
The driver date, formatted as YYYYMMDD, is meant to identify the date of the latest modification to the
driver. However, as most drivers fail to update it, its value is mostly useless. The DRM core prints it to
the kernel log at initialization time and passes it to userspace through the DRM_IOCTL_VERSION ioctl.

2.1.2 Device Instance and Driver Handling

A device instance for a drm driver is represented by struct drm_device. This is allocated with
drm_dev_alloc(), usually from bus-specific ->:c:func:probe() callbacks implemented by the driver. The
driver then needs to initialize all the various subsystems for the drm device like memory management,
vblank handling, modesetting support and intial output configuration plus obviously initialize all the cor-
responding hardware bits. An important part of this is also calling drm_dev_set_unique() to set the
userspace-visible unique name of this device instance. Finally when everything is up and running and
ready for userspace the device instance can be published using drm_dev_register().
There is also deprecated support for initalizing device instances using bus-specific helpers and the
drm_driver.load callback. But due to backwards-compatibility needs the device instance have to be
published too early, which requires unpretty global locking to make safe and is therefore only support for
existing drivers not yet converted to the new scheme.

4 Chapter 2. DRM Internals

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

When cleaning up a device instance everything needs to be done in reverse: First unpublish the device
instance with drm_dev_unregister(). Then clean up any other resources allocated at device initialization
and drop the driver’s reference to drm_device using drm_dev_unref().
Note that the lifetime rules for drm_device instance has still a lot of historical baggage. Hence use the
reference counting provided by drm_dev_ref() and drm_dev_unref() only carefully.
It is recommended that drivers embed struct drm_device into their own device structure, which is sup-
ported through drm_dev_init().
struct drm_driver

DRM driver structure
Definition

struct drm_driver {
int (* load) (struct drm_device *, unsigned long flags);
int (* open) (struct drm_device *, struct drm_file *);
void (* postclose) (struct drm_device *, struct drm_file *);
void (* lastclose) (struct drm_device *);
void (* unload) (struct drm_device *);
void (* release) (struct drm_device *);
u32 (* get_vblank_counter) (struct drm_device *dev, unsigned int pipe);
int (* enable_vblank) (struct drm_device *dev, unsigned int pipe);
void (* disable_vblank) (struct drm_device *dev, unsigned int pipe);
bool (* get_scanout_position) (struct drm_device *dev, unsigned int pipe,bool in_vblank_irq,␣

↪→int *vpos, int *hpos,ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode);
bool (* get_vblank_timestamp) (struct drm_device *dev, unsigned int pipe,int *max_error,

↪→struct timeval *vblank_time, bool in_vblank_irq);
irqreturn_t(* irq_handler) (int irq, void *arg);
void (* irq_preinstall) (struct drm_device *dev);
int (* irq_postinstall) (struct drm_device *dev);
void (* irq_uninstall) (struct drm_device *dev);
int (* master_create) (struct drm_device *dev, struct drm_master *master);
void (* master_destroy) (struct drm_device *dev, struct drm_master *master);
int (* master_set) (struct drm_device *dev, struct drm_file *file_priv, bool from_open);
void (* master_drop) (struct drm_device *dev, struct drm_file *file_priv);
void (* gem_free_object) (struct drm_gem_object *obj);
void (* gem_free_object_unlocked) (struct drm_gem_object *obj);
struct drm_gem_object *(* gem_create_object) (struct drm_device *dev, size_t size);
int (* dumb_create) (struct drm_file *file_priv,struct drm_device *dev, struct drm_mode_

↪→create_dumb *args);
int (* dumb_map_offset) (struct drm_file *file_priv,struct drm_device *dev, uint32_t handle,␣

↪→uint64_t *offset);
int (* dumb_destroy) (struct drm_file *file_priv,struct drm_device *dev, uint32_t handle);

};

Members
load Backward-compatible driver callback to complete initialization steps after the driver is registered.

For this reason, may suffer from race conditions and its use is deprecated for new drivers. It is there-
fore only supported for existing drivers not yet converted to the new scheme. See drm_dev_init()
and drm_dev_register() for proper and race-free way to set up a struct drm_device.
This is deprecated, do not use!
Returns:
Zero on success, non-zero value on failure.

open Driver callback when a new struct drm_file is opened. Useful for setting up driver-private data
structures like buffer allocators, execution contexts or similar things. Such driver-private resources
must be released again in postclose.
Since the display/modeset side of DRM can only be owned by exactly one struct drm_file (see
drm_file.is_master and drm_device.master) there should never be a need to set up any modeset

2.1. Driver Initialization 5

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

related resources in this callback. Doing so would be a driver design bug.
Returns:
0 on success, a negative error code on failure, which will be promoted to userspace as the result of
the open() system call.

postclose One of the driver callbacks when a new struct drm_file is closed. Useful for tearing down
driver-private data structures allocated in open like buffer allocators, execution contexts or similar
things.
Since the display/modeset side of DRM can only be owned by exactly one struct drm_file (see
drm_file.is_master and drm_device.master) there should never be a need to tear down any mod-
eset related resources in this callback. Doing so would be a driver design bug.

lastclose Called when the last struct drm_file has been closed and there’s currently no userspace
client for the struct drm_device.
Modern drivers should only use this to force-restore the fbdev framebuffer using
drm_fb_helper_restore_fbdev_mode_unlocked(). Anything else would indicate there’s some-
thing seriously wrong. Modern drivers can also use this to execute delayed power switching state
changes, e.g. in conjunction with the VGA Switcheroo infrastructure.
This is called after postclose hook has been called.
NOTE:
All legacy drivers use this callback to de-initialize the hardware. This is purely because of the shadow-
attach model, where the DRM kernel driver does not really own the hardware. Instead ownershipe is
handled with the help of userspace through an inheritedly racy dance to set/unset the VT into raw
mode.
Legacy drivers initialize the hardware in the firstopen callback, which isn’t even called for modern
drivers.

unload Reverse the effects of the driver load callback. Ideally, the clean up performed by the driver should
happen in the reverse order of the initialization. Similarly to the load hook, this handler is deprecated
and its usage should be dropped in favor of an open-coded teardown function at the driver layer. See
drm_dev_unregister() and drm_dev_unref() for the proper way to remove a struct drm_device.
The unload() hook is called right after unregistering the device.

release Optional callback for destroying device data after the final reference is released, i.e. the device
is being destroyed. Drivers using this callback are responsible for calling drm_dev_fini() to finalize
the device and then freeing the struct themselves.

get_vblank_counter Driver callback for fetching a raw hardware vblank counter for the CRTC specified
with the pipe argument. If a device doesn’t have a hardware counter, the driver can simply leave the
hook as NULL. The DRM core will account for missed vblank events while interrupts where disabled
based on system timestamps.
Wraparound handling and loss of events due to modesetting is dealt with in the DRM core code, as
long as drivers call drm_crtc_vblank_off() and drm_crtc_vblank_on()when disabling or enabling
a CRTC.
This is deprecated and should not be used by new drivers. Use
drm_crtc_funcs.get_vblank_counter instead.
Returns:
Raw vblank counter value.

enable_vblank Enable vblank interrupts for the CRTC specified with the pipe argument.
This is deprecated and should not be used by new drivers. Use drm_crtc_funcs.enable_vblank
instead.
Returns:

6 Chapter 2. DRM Internals

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Zero on success, appropriate errno if the given crtc‘s vblank interrupt cannot be enabled.
disable_vblank Disable vblank interrupts for the CRTC specified with the pipe argument.

This is deprecated and should not be used by new drivers. Use drm_crtc_funcs.disable_vblank
instead.

get_scanout_position Called by vblank timestamping code.
Returns the current display scanout position from a crtc, and an optional accurate ktime_get()
timestamp of when position was measured. Note that this is a helper callback which is only used
if a driver uses drm_calc_vbltimestamp_from_scanoutpos() for the get_vblank_timestamp call-
back.
Parameters:
dev: DRM device.
pipe: Id of the crtc to query.
in_vblank_irq: True when called from drm_crtc_handle_vblank(). Some drivers need to apply

some workarounds for gpu-specific vblank irq quirks if flag is set.
vpos: Target location for current vertical scanout position.
hpos: Target location for current horizontal scanout position.
stime: Target location for timestamp taken immediately before scanout position query. Can be NULL

to skip timestamp.
etime: Target location for timestamp taken immediately after scanout position query. Can be NULL

to skip timestamp.
mode: Current display timings.
Returns vpos as a positive number while in active scanout area. Returns vpos as a negative number
inside vblank, counting the number of scanlines to go until end of vblank, e.g., -1 means “one scanline
until start of active scanout / end of vblank.”
Returns:
True on success, false if a reliable scanout position counter could not be read out.
FIXME:
Since this is a helper to implement get_vblank_timestamp, we should move it to struct
drm_crtc_helper_funcs, like all the other helper-internal hooks.

get_vblank_timestamp Called by drm_get_last_vbltimestamp(). Should return a precise timestamp
when the most recent VBLANK interval ended or will end.
Specifically, the timestamp in vblank_time should correspond as closely as possible to the time
when the first video scanline of the video frame after the end of VBLANK will start scanning out, the
time immediately after end of the VBLANK interval. If the crtc is currently inside VBLANK, this will be
a time in the future. If the crtc is currently scanning out a frame, this will be the past start time of the
current scanout. This is meant to adhere to the OpenML OML_sync_control extension specification.
Paramters:
dev: dev DRM device handle.
pipe: crtc for which timestamp should be returned.
max_error: Maximum allowable timestamp error in nanoseconds. Implementation should strive to

provide timestamp with an error of at most max_error nanoseconds. Returns true upper bound
on error for timestamp.

vblank_time: Target location for returned vblank timestamp.
in_vblank_irq: True when called from drm_crtc_handle_vblank(). Some drivers need to apply

some workarounds for gpu-specific vblank irq quirks if flag is set.

2.1. Driver Initialization 7

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Returns:
True on success, false on failure, which means the core should fallback to a simple timestamp taken
in drm_crtc_handle_vblank().
FIXME:
We should move this hook to struct drm_crtc_funcs like all the other vblank hooks.

irq_handler Interrupt handler called when using drm_irq_install(). Not used by drivers which imple-
ment their own interrupt handling.

irq_preinstall Optional callback used by drm_irq_install() which is called before the interrupt han-
dler is registered. This should be used to clear out any pending interrupts (from e.g. firmware based
drives) and reset the interrupt handling registers.

irq_postinstall Optional callback used by drm_irq_install() which is called after the interrupt han-
dler is registered. This should be used to enable interrupt generation in the hardware.

irq_uninstall Optional callback used by drm_irq_uninstall()which is called before the interrupt han-
dler is unregistered. This should be used to disable interrupt generation in the hardware.

master_create Called whenever a new master is created. Only used by vmwgfx.
master_destroy Called whenever a master is destroyed. Only used by vmwgfx.
master_set Called whenever the minor master is set. Only used by vmwgfx.
master_drop Called whenever the minor master is dropped. Only used by vmwgfx.
gem_free_object deconstructor for drm_gem_objects

This is deprecated and should not be used by new drivers. Use gem_free_object_unlocked instead.
gem_free_object_unlocked deconstructor for drm_gem_objects

This is for drivers which are not encumbered with drm_device.struct_mutex legacy locking
schemes. Use this hook instead of gem_free_object.

gem_create_object constructor for gem objects
Hook for allocating the GEM object struct, for use by core helpers.

dumb_create This creates a new dumb buffer in the driver’s backing storage manager (GEM, TTM or
something else entirely) and returns the resulting buffer handle. This handle can then be wrapped
up into a framebuffer modeset object.
Note that userspace is not allowed to use such objects for render acceleration - drivers must create
their own private ioctls for such a use case.
Width, height and depth are specified in the drm_mode_create_dumb argument. The callback needs
to fill the handle, pitch and size for the created buffer.
Called by the user via ioctl.
Returns:
Zero on success, negative errno on failure.

dumb_map_offset Allocate an offset in the drm device node’s address space to be able to memory map
a dumb buffer. GEM-based drivers must use drm_gem_create_mmap_offset() to implement this.
Called by the user via ioctl.
Returns:
Zero on success, negative errno on failure.

dumb_destroy This destroys the userspace handle for the given dumb backing storage buffer. Since
buffer objects must be reference counted in the kernel a buffer object won’t be immediately freed if
a framebuffer modeset object still uses it.
Called by the user via ioctl.

8 Chapter 2. DRM Internals

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Returns:
Zero on success, negative errno on failure.

Description
This structure represent the common code for a family of cards. There will one drm_device for each card
present in this family. It contains lots of vfunc entries, and a pile of those probably should be moved to
more appropriate places like drm_mode_config_funcs or into a new operations structure for GEM drivers.

void drm_put_dev(struct drm_device * dev)
Unregister and release a DRM device

Parameters
struct drm_device * dev DRM device
Description
Called at module unload time or when a PCI device is unplugged.
Cleans up all DRM device, calling drm_lastclose().
Note
Use of this function is deprecated. It will eventually go away completely. Please use
drm_dev_unregister() and drm_dev_unref() explicitly instead to make sure that the device isn’t
userspace accessible any more while teardown is in progress, ensuring that userspace can’t access an
inconsistent state.
int drm_dev_init(struct drm_device * dev, struct drm_driver * driver, struct device * parent)

Initialise new DRM device
Parameters
struct drm_device * dev DRM device
struct drm_driver * driver DRM driver
struct device * parent Parent device object
Description
Initialize a new DRM device. No device registration is done. Call drm_dev_register() to advertice the
device to user space and register it with other core subsystems. This should be done last in the device
initialization sequence to make sure userspace can’t access an inconsistent state.
The initial ref-count of the object is 1. Use drm_dev_ref() and drm_dev_unref() to take and drop further
ref-counts.
Note that for purely virtual devices parent can be NULL.
Drivers that do not want to allocate their own device struct embedding struct drm_device can call
drm_dev_alloc() instead. For drivers that do embed struct drm_device it must be placed first in the
overall structure, and the overall structure must be allocated using kmalloc(): The drm core’s release
function unconditionally calls kfree() on the dev pointer when the final reference is released. To override
this behaviour, and so allow embedding of the drm_device inside the driver’s device struct at an arbitrary
offset, you must supply a drm_driver.release callback and control the finalization explicitly.
Return
0 on success, or error code on failure.
void drm_dev_fini(struct drm_device * dev)

Finalize a dead DRM device
Parameters
struct drm_device * dev DRM device

2.1. Driver Initialization 9

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Finalize a dead DRM device. This is the converse to drm_dev_init() and frees up all data allocated by it.
All driver private data should be finalized first. Note that this function does not free the dev, that is left
to the caller.
The ref-count of dev must be zero, and drm_dev_fini() should only be called from a
drm_driver.release callback.
struct drm_device * drm_dev_alloc(struct drm_driver * driver, struct device * parent)

Allocate new DRM device
Parameters
struct drm_driver * driver DRM driver to allocate device for
struct device * parent Parent device object
Description
Allocate and initialize a new DRM device. No device registration is done. Call drm_dev_register() to
advertice the device to user space and register it with other core subsystems. This should be done last in
the device initialization sequence to make sure userspace can’t access an inconsistent state.
The initial ref-count of the object is 1. Use drm_dev_ref() and drm_dev_unref() to take and drop further
ref-counts.
Note that for purely virtual devices parent can be NULL.
Drivers that wish to subclass or embed struct drm_device into their own struct should look at using
drm_dev_init() instead.
Return
Pointer to new DRM device, or ERR_PTR on failure.
void drm_dev_ref(struct drm_device * dev)

Take reference of a DRM device
Parameters
struct drm_device * dev device to take reference of or NULL
Description
This increases the ref-count of dev by one. You must already own a reference when calling this. Use
drm_dev_unref() to drop this reference again.
This function never fails. However, this function does not provide any guarantee whether the device is
alive or running. It only provides a reference to the object and the memory associated with it.
void drm_dev_unref(struct drm_device * dev)

Drop reference of a DRM device
Parameters
struct drm_device * dev device to drop reference of or NULL
Description
This decreases the ref-count of dev by one. The device is destroyed if the ref-count drops to zero.
int drm_dev_register(struct drm_device * dev, unsigned long flags)

Register DRM device
Parameters
struct drm_device * dev Device to register
unsigned long flags Flags passed to the driver’s .:c:func:load() function

10 Chapter 2. DRM Internals

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Register the DRM device dev with the system, advertise device to user-space and start normal device
operation. dev must be allocated via drm_dev_alloc() previously.
Never call this twice on any device!
NOTE
To ensure backward compatibility with existing drivers method this function calls the drm_driver.load
method after registering the device nodes, creating race conditions. Usage of the drm_driver.loadmeth-
ods is therefore deprecated, drivers must perform all initialization before calling drm_dev_register().
Return
0 on success, negative error code on failure.
void drm_dev_unregister(struct drm_device * dev)

Unregister DRM device
Parameters
struct drm_device * dev Device to unregister
Description
Unregister the DRM device from the system. This does the reverse of drm_dev_register() but does not
deallocate the device. The caller must call drm_dev_unref() to drop their final reference.
This should be called first in the device teardown code to make sure userspace can’t access the device
instance any more.
int drm_dev_set_unique(struct drm_device * dev, const char * name)

Set the unique name of a DRM device
Parameters
struct drm_device * dev device of which to set the unique name
const char * name unique name
Description
Sets the unique name of a DRM device using the specified string. Drivers can use this at driver probe time
if the unique name of the devices they drive is static.
Return
0 on success or a negative error code on failure.

2.1.3 Driver Load

IRQ Helper Library

The DRM core provides very simple support helpers to enable IRQ handling on a device through the
drm_irq_install() and drm_irq_uninstall() functions. This only supports devices with a single inter-
rupt on the main device stored in drm_device.dev and set as the device paramter in drm_dev_alloc().
These IRQ helpers are strictly optional. Drivers which roll their own only need to set
drm_device.irq_enabled to signal the DRM core that vblank interrupts are working. Since these helpers
don’t automatically clean up the requested interrupt like e.g. devm_request_irq() they’re not really
recommended.
int drm_irq_install(struct drm_device * dev, int irq)

install IRQ handler
Parameters
struct drm_device * dev DRM device

2.1. Driver Initialization 11

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int irq IRQ number to install the handler for
Description
Initializes the IRQ related data. Installs the handler, calling the driver drm_driver.irq_preinstall and
drm_driver.irq_postinstall functions before and after the installation.
This is the simplified helper interface provided for drivers with no special needs. Drivers which need to
install interrupt handlers for multiple interrupts must instead set drm_device.irq_enabled to signal the
DRM core that vblank interrupts are available.
irq must match the interrupt number that would be passed to request_irq(), if called directly instead
of using this helper function.
drm_driver.irq_handler is called to handle the registered interrupt.
Return
Zero on success or a negative error code on failure.
int drm_irq_uninstall(struct drm_device * dev)

uninstall the IRQ handler
Parameters
struct drm_device * dev DRM device
Description
Calls the driver’s drm_driver.irq_uninstall function and unregisters the IRQ handler. This should only
be called by drivers which used drm_irq_install() to set up their interrupt handler. Other drivers must
only reset drm_device.irq_enabled to false.
Note that for kernel modesetting drivers it is a bug if this function fails. The sanity checks are only to
catch buggy user modesetting drivers which call the same function through an ioctl.
Return
Zero on success or a negative error code on failure.

Memory Manager Initialization

Every DRM driver requires a memory manager which must be initialized at load time. DRM currently
contains twomemorymanagers, the Translation Table Manager (TTM) and the Graphics Execution Manager
(GEM). This document describes the use of the GEM memory manager only. See ? for details.

Miscellaneous Device Configuration

Another task that may be necessary for PCI devices during configuration is mapping the video BIOS.
On many devices, the VBIOS describes device configuration, LCD panel timings (if any), and contains
flags indicating device state. Mapping the BIOS can be done using the pci_map_rom() call, a convenience
function that takes care of mapping the actual ROM, whether it has been shadowed into memory (typically
at address 0xc0000) or exists on the PCI device in the ROM BAR. Note that after the ROM has been mapped
and any necessary information has been extracted, it should be unmapped; on many devices, the ROM
address decoder is shared with other BARs, so leaving it mapped could cause undesired behaviour like
hangs or memory corruption.

2.1.4 Bus-specific Device Registration and PCI Support

A number of functions are provided to help with device registration. The functions deal with PCI and
platform devices respectively and are only provided for historical reasons. These are all deprecated and
shouldn’t be used in new drivers. Besides that there’s a few helpers for pci drivers.

12 Chapter 2. DRM Internals

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

drm_dma_handle_t * drm_pci_alloc(struct drm_device * dev, size_t size, size_t align)
Allocate a PCI consistent memory block, for DMA.

Parameters
struct drm_device * dev DRM device
size_t size size of block to allocate
size_t align alignment of block
Description
FIXME: This is a needless abstraction of the Linux dma-api and should be removed.
Return
A handle to the allocated memory block on success or NULL on failure.
void drm_pci_free(struct drm_device * dev, drm_dma_handle_t * dmah)

Free a PCI consistent memory block
Parameters
struct drm_device * dev DRM device
drm_dma_handle_t * dmah handle to memory block
Description
FIXME: This is a needless abstraction of the Linux dma-api and should be removed.
int drm_get_pci_dev(struct pci_dev * pdev, const struct pci_device_id * ent, struct drm_driver

* driver)
Register a PCI device with the DRM subsystem

Parameters
struct pci_dev * pdev PCI device
const struct pci_device_id * ent entry from the PCI ID table that matches pdev
struct drm_driver * driver DRM device driver
Description
Attempt to gets inter module “drm” information. If we are first then register the character device and
inter module information. Try and register, if we fail to register, backout previous work.
NOTE
This function is deprecated, please use drm_dev_alloc() and drm_dev_register() instead and remove
your drm_driver.load callback.
Return
0 on success or a negative error code on failure.
int drm_pci_init(struct drm_driver * driver, struct pci_driver * pdriver)

Register matching PCI devices with the DRM subsystem
Parameters
struct drm_driver * driver DRM device driver
struct pci_driver * pdriver PCI device driver
Description
Initializes a drm_device structures, registering the stubs and initializing the AGP device.
NOTE

2.1. Driver Initialization 13

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

This function is deprecated. Modern modesetting drm drivers should use pci_register_driver() di-
rectly, this function only provides shadow-binding support for old legacy drivers on top of that core pci
function.
Return
0 on success or a negative error code on failure.
void drm_pci_exit(struct drm_driver * driver, struct pci_driver * pdriver)

Unregister matching PCI devices from the DRM subsystem
Parameters
struct drm_driver * driver DRM device driver
struct pci_driver * pdriver PCI device driver
Description
Unregisters one or more devices matched by a PCI driver from the DRM subsystem.
NOTE
This function is deprecated. Modern modesetting drm drivers should use pci_unregister_driver()
directly, this function only provides shadow-binding support for old legacy drivers on top of that core pci
function.

2.2 Open/Close, File Operations and IOCTLs

2.2.1 File Operations

Drivers must define the file operations structure that forms the DRM userspace API entry point,
even though most of those operations are implemented in the DRM core. The resulting struct
file_operations must be stored in the drm_driver.fops field. The mandatory functions are
drm_open(), drm_read(), drm_ioctl() and drm_compat_ioctl() if CONFIG_COMPAT is enabled Note that
drm_compat_ioctl will be NULL if CONFIG_COMPAT=n, so there’s no need to sprinkle #ifdef into the code.
Drivers which implement private ioctls that require 32/64 bit compatibility support must provide their own
file_operations.compat_ioctl handler that processes private ioctls and calls drm_compat_ioctl() for
core ioctls.
In addition drm_read() and drm_poll() provide support for DRM events. DRM events are a generic and
extensible means to send asynchronous events to userspace through the file descriptor. They are used
to send vblank event and page flip completions by the KMS API. But drivers can also use it for their own
needs, e.g. to signal completion of rendering.
For the driver-side event interface see drm_event_reserve_init() and drm_send_event() as the main
starting points.
The memory mapping implementation will vary depending on how the driver manages memory. Legacy
drivers will use the deprecated drm_legacy_mmap() function, modern drivers should use one of the pro-
vided memory-manager specific implementations. For GEM-based drivers this is drm_gem_mmap(), and
for drivers which use the CMA GEM helpers it’s drm_gem_cma_mmap().
No other file operations are supported by the DRM userspace API. Overall the following is an example
#file_operations structure:

static const example_drm_fops = {
.owner = THIS_MODULE,
.open = drm_open,
.release = drm_release,
.unlocked_ioctl = drm_ioctl,
.compat_ioctl = drm_compat_ioctl, // NULL if CONFIG_COMPAT=n
.poll = drm_poll,
.read = drm_read,

14 Chapter 2. DRM Internals

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

.llseek = no_llseek,

.mmap = drm_gem_mmap,
};

For plain GEM based drivers there is the DEFINE_DRM_GEM_FOPS()macro, and for CMA based drivers there
is the DEFINE_DRM_GEM_CMA_FOPS() macro to make this simpler.
struct drm_minor

DRM device minor structure
Definition

struct drm_minor {
};

Members
Description
This structure represents a DRM minor number for device nodes in /dev. Entirely opaque to drivers and
should never be inspected directly by drivers. Drivers instead should only interact with struct drm_file
and of course struct drm_device, which is also where driver-private data and resources can be attached
to.
struct drm_pending_event

Event queued up for userspace to read
Definition

struct drm_pending_event {
struct completion * completion;
void (* completion_release) (struct completion *completion);
struct drm_event * event;
struct dma_fence * fence;
struct drm_file * file_priv;
struct list_head link;
struct list_head pending_link;

};

Members
completion Optional pointer to a kernel internal completion signalled when drm_send_event() is called,

useful to internally synchronize with nonblocking operations.
completion_release Optional callback currently only used by the atomic modeset helpers to clean up

the reference count for the structure completion is stored in.
event Pointer to the actual event that should be sent to userspace to be read using drm_read(). Can be

optional, since nowadays events are also used to signal kernel internal threads with completion or
DMA transactions using fence.

fence Optional DMA fence to unblock other hardware transactions which depend upon the nonblocking
DRM operation this event represents.

file_priv struct drm_file where event should be delivered to. Only set when event is set.
link Double-linked list to keep track of this event. Can be used by the driver up to the point when it calls

drm_send_event(), after that this list entry is owned by the core for its own book-keeping.
pending_link Entry on drm_file.pending_event_list, to keep track of all pending events for file_priv,

to allow correct unwinding of them when userspace closes the file before the event is delivered.
Description
This represents a DRM event. Drivers can use this as a generic completion mechanism, which supports
kernel-internal struct completion, struct dma_fence and also the DRM-specific struct drm_event de-
livery mechanism.

2.2. Open/Close, File Operations and IOCTLs 15

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_file
DRM file private data

Definition

struct drm_file {
unsigned authenticated:1;
unsigned stereo_allowed:1;
unsigned universal_planes:1;
unsigned atomic:1;
unsigned is_master:1;
struct drm_master * master;
struct pid * pid;
drm_magic_t magic;
struct list_head lhead;
struct drm_minor * minor;
struct idr object_idr;
spinlock_t table_lock;
struct idr syncobj_idr;
spinlock_t syncobj_table_lock;
struct file * filp;
void * driver_priv;
struct list_head fbs;
struct mutex fbs_lock;
struct list_head blobs;
wait_queue_head_t event_wait;
struct list_head pending_event_list;
struct list_head event_list;
int event_space;
struct mutex event_read_lock;
struct drm_prime_file_private prime;

};

Members
authenticated Whether the client is allowed to submit rendering, which for legacy nodes means it must

be authenticated.
See also the section on primary nodes and authentication .

stereo_allowed True when the client has asked us to expose stereo 3D mode flags.
universal_planes True if client understands CRTC primary planes and cursor planes in the plane list.

Automatically set when atomic is set.
atomic True if client understands atomic properties.
is_master This client is the creator of master. Protected by struct drm_device.master_mutex.

See also the section on primary nodes and authentication .
master Master this node is currently associated with. Only relevant if drm_is_primary_client() returns

true. Note that this only matches drm_device.master if the master is the currently active one.
See also authentication and is_master and the section on primary nodes and authentication .

pid Process that opened this file.
magic Authentication magic, see authenticated.
lhead List of all open files of a DRM device, linked into drm_device.filelist. Protected by

drm_device.filelist_mutex.
minor struct drm_minor for this file.
object_idr Mapping of mm object handles to object pointers. Used by the GEM subsystem. Protected

by table_lock.
table_lock Protects object_idr.

16 Chapter 2. DRM Internals

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

syncobj_idr Mapping of sync object handles to object pointers.
syncobj_table_lock Protects syncobj_idr.
filp Pointer to the core file structure.
driver_priv Optional pointer for driver private data. Can be allocated in drm_driver.open and should

be freed in drm_driver.postclose.
fbs List of struct drm_framebuffer associated with this file, using the drm_framebuffer.filp_head

entry.
Protected by fbs_lock. Note that the fbs list holds a reference on the framebuffer object to prevent
it from untimely disappearing.

fbs_lock Protects fbs.
blobs User-created blob properties; this retains a reference on the property.

Protected by drm_mode_config.blob_lock;
event_wait Waitqueue for new events added to event_list.
pending_event_list List of pending struct drm_pending_event, used to clean up pending events in

case this file gets closed before the event is signalled. Uses the drm_pending_event.pending_link
entry.
Protect by drm_device.event_lock.

event_list List of struct drm_pending_event, ready for delivery to userspace through drm_read().
Uses the drm_pending_event.link entry.
Protect by drm_device.event_lock.

event_space Available event space to prevent userspace from exhausting kernel memory. Currently
limited to the fairly arbitrary value of 4KB.

event_read_lock Serializes drm_read().
prime Per-file buffer caches used by the PRIME buffer sharing code.
Description
This structure tracks DRM state per open file descriptor.
bool drm_is_primary_client(const struct drm_file * file_priv)

is this an open file of the primary node
Parameters
const struct drm_file * file_priv DRM file
Description
Returns true if this is an open file of the primary node, i.e. drm_file.minor of file_priv is a primary minor.
See also the section on primary nodes and authentication .
bool drm_is_render_client(const struct drm_file * file_priv)

is this an open file of the render node
Parameters
const struct drm_file * file_priv DRM file
Description
Returns true if this is an open file of the render node, i.e. drm_file.minor of file_priv is a render minor.
See also the section on render nodes .
bool drm_is_control_client(const struct drm_file * file_priv)

is this an open file of the control node

2.2. Open/Close, File Operations and IOCTLs 17

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
const struct drm_file * file_priv DRM file
Description
Control nodes are deprecated and in the process of getting removed from the DRM userspace API. Do not
ever use!
int drm_open(struct inode * inode, struct file * filp)

open method for DRM file
Parameters
struct inode * inode device inode
struct file * filp file pointer.
Description
This function must be used by drivers as their file_operations.open method. It looks up the correct
DRM device and instantiates all the per-file resources for it. It also calls the drm_driver.open driver
callback.
Return
0 on success or negative errno value on falure.
int drm_release(struct inode * inode, struct file * filp)

release method for DRM file
Parameters
struct inode * inode device inode
struct file * filp file pointer.
Description
This function must be used by drivers as their file_operations.releasemethod. It frees any resources
associated with the open file, and calls the drm_driver.postclose driver callback. If this is the last open
file for the DRM device also proceeds to call the drm_driver.lastclose driver callback.
Return
Always succeeds and returns 0.
ssize_t drm_read(struct file * filp, char __user * buffer, size_t count, loff_t * offset)

read method for DRM file
Parameters
struct file * filp file pointer
char __user * buffer userspace destination pointer for the read
size_t count count in bytes to read
loff_t * offset offset to read
Description
This function must be used by drivers as their file_operations.read method iff they use DRM events
for asynchronous signalling to userspace. Since events are used by the KMS API for vblank and page flip
completion this means all modern display drivers must use it.
offset is ignored, DRM events are read like a pipe. Therefore drivers also must set the
file_operation.llseek to no_llseek(). Polling support is provided by drm_poll().
This function will only ever read a full event. Therefore userspace must supply a big enough buffer to fit
any event to ensure forward progress. Since the maximum event space is currently 4K it’s recommended
to just use that for safety.

18 Chapter 2. DRM Internals

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Return
Number of bytes read (always aligned to full events, and can be 0) or a negative error code on failure.
unsigned int drm_poll(struct file * filp, struct poll_table_struct * wait)

poll method for DRM file
Parameters
struct file * filp file pointer
struct poll_table_struct * wait poll waiter table
Description
This function must be used by drivers as their file_operations.read method iff they use DRM events
for asynchronous signalling to userspace. Since events are used by the KMS API for vblank and page flip
completion this means all modern display drivers must use it.
See also drm_read().
Return
Mask of POLL flags indicating the current status of the file.
int drm_event_reserve_init_locked(struct drm_device * dev, struct drm_file * file_priv, struct

drm_pending_event * p, struct drm_event * e)
init a DRM event and reserve space for it

Parameters
struct drm_device * dev DRM device
struct drm_file * file_priv DRM file private data
struct drm_pending_event * p tracking structure for the pending event
struct drm_event * e actual event data to deliver to userspace
Description
This function prepares the passed in event for eventual delivery. If the event doesn’t get deliv-
ered (because the IOCTL fails later on, before queuing up anything) then the even must be cancelled
and freed using drm_event_cancel_free(). Successfully initialized events should be sent out using
drm_send_event() or drm_send_event_locked() to signal completion of the asynchronous event to
userspace.
If callers embedded p into a larger structure it must be allocated with kmalloc and p must be the first
member element.
This is the locked version of drm_event_reserve_init() for callers which already hold
drm_device.event_lock.
Return
0 on success or a negative error code on failure.
int drm_event_reserve_init(struct drm_device * dev, struct drm_file * file_priv, struct

drm_pending_event * p, struct drm_event * e)
init a DRM event and reserve space for it

Parameters
struct drm_device * dev DRM device
struct drm_file * file_priv DRM file private data
struct drm_pending_event * p tracking structure for the pending event
struct drm_event * e actual event data to deliver to userspace

2.2. Open/Close, File Operations and IOCTLs 19

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This function prepares the passed in event for eventual delivery. If the event doesn’t get deliv-
ered (because the IOCTL fails later on, before queuing up anything) then the even must be cancelled
and freed using drm_event_cancel_free(). Successfully initialized events should be sent out using
drm_send_event() or drm_send_event_locked() to signal completion of the asynchronous event to
userspace.
If callers embedded p into a larger structure it must be allocated with kmalloc and p must be the first
member element.
Callers which already hold drm_device.event_lock should use drm_event_reserve_init_locked() in-
stead.
Return
0 on success or a negative error code on failure.
void drm_event_cancel_free(struct drm_device * dev, struct drm_pending_event * p)

free a DRM event and release it’s space
Parameters
struct drm_device * dev DRM device
struct drm_pending_event * p tracking structure for the pending event
Description
This function frees the event p initialized with drm_event_reserve_init() and releases any allocated
space. It is used to cancel an event when the nonblocking operation could not be submitted and needed
to be aborted.
void drm_send_event_locked(struct drm_device * dev, struct drm_pending_event * e)

send DRM event to file descriptor
Parameters
struct drm_device * dev DRM device
struct drm_pending_event * e DRM event to deliver
Description
This function sends the event e, initialized with drm_event_reserve_init(), to its associated userspace
DRM file. Callers must already hold drm_device.event_lock, see drm_send_event() for the unlocked
version.
Note that the core will take care of unlinking and disarming events when the corresponding DRM file is
closed. Drivers need not worry about whether the DRM file for this event still exists and can call this
function upon completion of the asynchronous work unconditionally.
void drm_send_event(struct drm_device * dev, struct drm_pending_event * e)

send DRM event to file descriptor
Parameters
struct drm_device * dev DRM device
struct drm_pending_event * e DRM event to deliver
Description
This function sends the event e, initialized with drm_event_reserve_init(), to its associated userspace
DRM file. This function acquires drm_device.event_lock, see drm_send_event_locked() for callers
which already hold this lock.
Note that the core will take care of unlinking and disarming events when the corresponding DRM file is
closed. Drivers need not worry about whether the DRM file for this event still exists and can call this
function upon completion of the asynchronous work unconditionally.

20 Chapter 2. DRM Internals

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

2.3 Misc Utilities

2.3.1 Printer

A simple wrapper for dev_printk(), seq_printf(), etc. Allows same debug code to be used for both
debugfs and printk logging.
For example:

void log_some_info(struct drm_printer *p)
{

drm_printf(p, "foo=``d``\n", foo);
drm_printf(p, "bar=``d``\n", bar);

}

#ifdef CONFIG_DEBUG_FS
void debugfs_show(struct seq_file *f)
{

struct drm_printer p = drm_seq_file_printer(f);
log_some_info(:c:type:`p`);

}
#endif

void some_other_function(...)
{

struct drm_printer p = drm_info_printer(drm->dev);
log_some_info(:c:type:`p`);

}

struct drm_printer
drm output “stream”

Definition

struct drm_printer {
};

Members
Description
Do not use structmembers directly. Use drm_printer_seq_file(), drm_printer_info(), etc to initialize.
And drm_printf() for output.
struct drm_printer drm_seq_file_printer(struct seq_file * f)

construct a drm_printer that outputs to seq_file
Parameters
struct seq_file * f the struct seq_file to output to
Return
The drm_printer object
struct drm_printer drm_info_printer(struct device * dev)

construct a drm_printer that outputs to dev_printk()
Parameters
struct device * dev the struct device pointer
Return
The drm_printer object

2.3. Misc Utilities 21

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_printer drm_debug_printer(const char * prefix)
construct a drm_printer that outputs to pr_debug()

Parameters
const char * prefix debug output prefix
Return
The drm_printer object
void drm_printf(struct drm_printer * p, const char * f, ...)

print to a drm_printer stream
Parameters
struct drm_printer * p the drm_printer
const char * f format string
... variable arguments

2.4 Legacy Support Code

The section very briefly covers some of the old legacy support code which is only used by old DRM drivers
which have done a so-called shadow-attach to the underlying device instead of registering as a real driver.
This also includes some of the old generic buffer management and command submission code. Do not
use any of this in new and modern drivers.

2.4.1 Legacy Suspend/Resume

The DRM core provides some suspend/resume code, but drivers wanting full suspend/resume support
should provide save() and restore() functions. These are called at suspend, hibernate, or resume time,
and should perform any state save or restore required by your device across suspend or hibernate states.
int (*suspend) (struct drm_device *, pm_message_t state); int (*resume) (struct drm_device *); Those are
legacy suspend and resume methods which only work with the legacy shadow-attach driver registration
functions. New driver should use the power management interface provided by their bus type (usually
through the struct device_driver dev_pm_ops) and set these methods to NULL.

2.4.2 Legacy DMA Services

This should cover how DMA mapping etc. is supported by the core. These functions are deprecated and
should not be used.

22 Chapter 2. DRM Internals

CHAPTER

THREE

DRM MEMORY MANAGEMENT

Modern Linux systems require large amount of graphics memory to store frame buffers, textures, vertices
and other graphics-related data. Given the very dynamic nature of many of that data, managing graphics
memory efficiently is thus crucial for the graphics stack and plays a central role in the DRM infrastructure.
The DRM core includes two memory managers, namely Translation Table Maps (TTM) and Graphics Ex-
ecution Manager (GEM). TTM was the first DRM memory manager to be developed and tried to be a
one-size-fits-them all solution. It provides a single userspace API to accommodate the need of all hard-
ware, supporting both Unified Memory Architecture (UMA) devices and devices with dedicated video RAM
(i.e. most discrete video cards). This resulted in a large, complex piece of code that turned out to be hard
to use for driver development.
GEM started as an Intel-sponsored project in reaction to TTM’s complexity. Its design philosophy is com-
pletely different: instead of providing a solution to every graphics memory-related problems, GEM identi-
fied common code between drivers and created a support library to share it. GEM has simpler initialization
and execution requirements than TTM, but has no video RAM management capabilities and is thus limited
to UMA devices.

3.1 The Translation Table Manager (TTM)

TTM design background and information belongs here.

3.1.1 TTM initialization

Warning This section is outdated.
Drivers wishing to support TTMmust pass a filled ttm_bo_driver structure to ttm_bo_device_init, together
with an initialized global reference to the memory manager. The ttm_bo_driver structure contains several
fields with function pointers for initializing the TTM, allocating and freeing memory, waiting for command
completion and fence synchronization, and memory migration.
The struct drm_global_reference is made up of several fields:

struct drm_global_reference {
enum ttm_global_types global_type;
size_t size;
void *object;
int (*init) (struct drm_global_reference *);
void (*release) (struct drm_global_reference *);

};

There should be one global reference structure for your memory manager as a whole, and there will be
others for each object created by the memory manager at runtime. Your global TTM should have a type of
TTM_GLOBAL_TTM_MEM. The size field for the global object should be sizeof(struct ttm_mem_global), and
the init and release hooks should point at your driver-specific init and release routines, which probably
eventually call ttm_mem_global_init and ttm_mem_global_release, respectively.

23

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Once your global TTM accounting structure is set up and initialized by calling ttm_global_item_ref()
on it, you need to create a buffer object TTM to provide a pool for buffer object allocation by clients
and the kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO, and its size should be
sizeof(struct ttm_bo_global). Again, driver-specific init and release functions may be provided, likely even-
tually calling ttm_bo_global_init() and ttm_bo_global_release(), respectively. Also, like the previous object,
ttm_global_item_ref() is used to create an initial reference count for the TTM, which will call your initial-
ization function.
See the radeon_ttm.c file for an example of usage.
int drm_global_item_ref(struct drm_global_reference * ref)

Initialize and acquire reference to memory object
Parameters
struct drm_global_reference * ref Object for initialization
Description
This initializes a memory object, allocating memory and calling the .:c:func:init() hook. Further calls will
increase the reference count for that item.
Return
Zero on success, non-zero otherwise.
void drm_global_item_unref(struct drm_global_reference * ref)

Drop reference to memory object
Parameters
struct drm_global_reference * ref Object being removed
Description
Drop a reference to the memory object and eventually call the release() hook. The allocated object
should be dropped in the release() hook or before calling this function

3.2 The Graphics Execution Manager (GEM)

The GEM design approach has resulted in a memory manager that doesn’t provide full coverage of all (or
even all common) use cases in its userspace or kernel API. GEM exposes a set of standard memory-related
operations to userspace and a set of helper functions to drivers, and let drivers implement hardware-
specific operations with their own private API.
The GEM userspace API is described in the GEM - the Graphics Execution Manager article on LWN. While
slightly outdated, the document provides a good overview of the GEM API principles. Buffer allocation and
read and write operations, described as part of the common GEM API, are currently implemented using
driver-specific ioctls.
GEM is data-agnostic. It manages abstract buffer objects without knowing what individual buffers contain.
APIs that require knowledge of buffer contents or purpose, such as buffer allocation or synchronization
primitives, are thus outside of the scope of GEM and must be implemented using driver-specific ioctls.
On a fundamental level, GEM involves several operations:
• Memory allocation and freeing
• Command execution
• Aperture management at command execution time

Buffer object allocation is relatively straightforward and largely provided by Linux’s shmem layer, which
provides memory to back each object.
Device-specific operations, such as command execution, pinning, buffer read & write, mapping, and do-
main ownership transfers are left to driver-specific ioctls.

24 Chapter 3. DRM Memory Management

http://lwn.net/Articles/283798/

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

3.2.1 GEM Initialization

Drivers that use GEMmust set the DRIVER_GEM bit in the struct struct drm_driver driver_features field.
The DRM core will then automatically initialize the GEM core before calling the load operation. Behind the
scene, this will create a DRM Memory Manager object which provides an address space pool for object
allocation.
In a KMS configuration, drivers need to allocate and initialize a command ring buffer following core GEM
initialization if required by the hardware. UMA devices usually have what is called a “stolen” memory
region, which provides space for the initial framebuffer and large, contiguous memory regions required
by the device. This space is typically not managed by GEM, and must be initialized separately into its own
DRM MM object.

3.2.2 GEM Objects Creation

GEM splits creation of GEM objects and allocation of the memory that backs them in two distinct opera-
tions.
GEM objects are represented by an instance of struct struct drm_gem_object. Drivers usually need to
extend GEM objects with private information and thus create a driver-specific GEM object structure type
that embeds an instance of struct struct drm_gem_object.
To create a GEM object, a driver allocates memory for an instance of its specific GEM object type and
initializes the embedded struct struct drm_gem_object with a call to drm_gem_object_init(). The
function takes a pointer to the DRM device, a pointer to the GEM object and the buffer object size in
bytes.
GEM uses shmem to allocate anonymous pageablememory. drm_gem_object_init()will create an shmfs
file of the requested size and store it into the struct struct drm_gem_object filp field. The memory is
used as either main storage for the object when the graphics hardware uses system memory directly or
as a backing store otherwise.
Drivers are responsible for the actual physical pages allocation by calling
shmem_read_mapping_page_gfp() for each page. Note that they can decide to allocate pages when
initializing the GEM object, or to delay allocation until the memory is needed (for instance when a page
fault occurs as a result of a userspace memory access or when the driver needs to start a DMA transfer
involving the memory).
Anonymous pageable memory allocation is not always desired, for instance when the hardware requires
physically contiguous system memory as is often the case in embedded devices. Drivers can cre-
ate GEM objects with no shmfs backing (called private GEM objects) by initializing them with a call to
drm_gem_private_object_init() instead of drm_gem_object_init(). Storage for private GEM objects
must be managed by drivers.

3.2.3 GEM Objects Lifetime

All GEM objects are reference-counted by the GEM core. References can be acquired and release by call-
ing drm_gem_object_get() and drm_gem_object_put() respectively. The caller must hold the struct
drm_device struct_mutex lock when calling drm_gem_object_get(). As a convenience, GEM provides
drm_gem_object_put_unlocked() functions that can be called without holding the lock.
When the last reference to a GEM object is released the GEM core calls the struct drm_driver
gem_free_object operation. That operation is mandatory for GEM-enabled drivers and must free the GEM
object and all associated resources.
void (*gem_free_object) (struct drm_gem_object *obj); Drivers are responsible for freeing all GEM ob-
ject resources. This includes the resources created by the GEM core, which need to be released with
drm_gem_object_release().

3.2. The Graphics Execution Manager (GEM) 25

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

3.2.4 GEM Objects Naming

Communication between userspace and the kernel refers to GEM objects using local handles, global names
or, more recently, file descriptors. All of those are 32-bit integer values; the usual Linux kernel limits apply
to the file descriptors.
GEM handles are local to a DRM file. Applications get a handle to a GEM object through a driver-specific
ioctl, and can use that handle to refer to the GEM object in other standard or driver-specific ioctls. Closing
a DRM file handle frees all its GEM handles and dereferences the associated GEM objects.
To create a handle for a GEM object drivers call drm_gem_handle_create(). The function takes a pointer
to the DRM file and the GEM object and returns a locally unique handle. When the handle is no longer
needed drivers delete it with a call to drm_gem_handle_delete(). Finally the GEM object associated with
a handle can be retrieved by a call to drm_gem_object_lookup().
Handles don’t take ownership of GEM objects, they only take a reference to the object that will be dropped
when the handle is destroyed. To avoid leaking GEM objects, drivers must make sure they drop the
reference(s) they own (such as the initial reference taken at object creation time) as appropriate, without
any special consideration for the handle. For example, in the particular case of combined GEM object
and handle creation in the implementation of the dumb_create operation, drivers must drop the initial
reference to the GEM object before returning the handle.
GEM names are similar in purpose to handles but are not local to DRM files. They can be passed between
processes to reference a GEM object globally. Names can’t be used directly to refer to objects in the DRM
API, applications must convert handles to names and names to handles using the DRM_IOCTL_GEM_FLINK
and DRM_IOCTL_GEM_OPEN ioctls respectively. The conversion is handled by the DRM core without any
driver-specific support.
GEM also supports buffer sharing with dma-buf file descriptors through PRIME. GEM-based drivers must
use the provided helpers functions to implement the exporting and importing correctly. See ?. Since
sharing file descriptors is inherently more secure than the easily guessable and global GEM names it is
the preferred buffer sharing mechanism. Sharing buffers through GEM names is only supported for legacy
userspace. Furthermore PRIME also allows cross-device buffer sharing since it is based on dma-bufs.

3.2.5 GEM Objects Mapping

Because mapping operations are fairly heavyweight GEM favours read/write-like access to buffers, imple-
mented through driver-specific ioctls, over mapping buffers to userspace. However, when random access
to the buffer is needed (to perform software rendering for instance), direct access to the object can be
more efficient.
The mmap system call can’t be used directly to map GEM objects, as they don’t have their own file
handle. Two alternative methods currently co-exist to map GEM objects to userspace. The first method
uses a driver-specific ioctl to perform the mapping operation, calling do_mmap() under the hood. This is
often considered dubious, seems to be discouraged for new GEM-enabled drivers, and will thus not be
described here.
The second method uses the mmap system call on the DRM file handle. void *mmap(void *addr, size_t
length, int prot, int flags, int fd, off_t offset); DRM identifies the GEM object to be mapped by a fake offset
passed through the mmap offset argument. Prior to being mapped, a GEM object must thus be associated
with a fake offset. To do so, drivers must call drm_gem_create_mmap_offset() on the object.
Once allocated, the fake offset value must be passed to the application in a driver-specific way and can
then be used as the mmap offset argument.
The GEM core provides a helper method drm_gem_mmap() to handle object mapping. The method can be
set directly as the mmap file operation handler. It will look up the GEM object based on the offset value and
set the VMA operations to the struct drm_driver gem_vm_ops field. Note that drm_gem_mmap() doesn’t
map memory to userspace, but relies on the driver-provided fault handler to map pages individually.
To use drm_gem_mmap(), drivers must fill the struct struct drm_driver gem_vm_ops field with a pointer
to VM operations.

26 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

The VM operations is a struct vm_operations_struct made up of several fields, the more interesting
ones being:

struct vm_operations_struct {
void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
int (*fault)(struct vm_fault *vmf);

};

The open and close operations must update the GEM object reference count. Drivers can use the
drm_gem_vm_open() and drm_gem_vm_close() helper functions directly as open and close handlers.
The fault operation handler is responsible for mapping individual pages to userspace when a page fault
occurs. Depending on the memory allocation scheme, drivers can allocate pages at fault time, or can
decide to allocate memory for the GEM object at the time the object is created.
Drivers that want to map the GEM object upfront instead of handling page faults can implement their own
mmap file operation handler.
For platforms without MMU the GEM core provides a helper method drm_gem_cma_get_unmapped_area().
The mmap() routines will call this to get a proposed address for the mapping.
To use drm_gem_cma_get_unmapped_area(), drivers must fill the struct struct file_operations
get_unmapped_area field with a pointer on drm_gem_cma_get_unmapped_area().
More detailed information about get_unmapped_area can be found in Documentation/nommu-mmap.txt

3.2.6 Memory Coherency

When mapped to the device or used in a command buffer, backing pages for an object are flushed to
memory and marked write combined so as to be coherent with the GPU. Likewise, if the CPU accesses
an object after the GPU has finished rendering to the object, then the object must be made coherent
with the CPU’s view of memory, usually involving GPU cache flushing of various kinds. This core CPU<-
>GPU coherency management is provided by a device-specific ioctl, which evaluates an object’s current
domain and performs any necessary flushing or synchronization to put the object into the desired co-
herency domain (note that the object may be busy, i.e. an active render target; in that case, setting the
domain blocks the client and waits for rendering to complete before performing any necessary flushing
operations).

3.2.7 Command Execution

Perhaps the most important GEM function for GPU devices is providing a command execution interface to
clients. Client programs construct command buffers containing references to previously allocatedmemory
objects, and then submit them to GEM. At that point, GEM takes care to bind all the objects into the GTT,
execute the buffer, and provide necessary synchronization between clients accessing the same buffers.
This often involves evicting some objects from the GTT and re-binding others (a fairly expensive operation),
and providing relocation support which hides fixed GTT offsets from clients. Clients must take care not to
submit command buffers that reference more objects than can fit in the GTT; otherwise, GEM will reject
them and no rendering will occur. Similarly, if several objects in the buffer require fence registers to be
allocated for correct rendering (e.g. 2D blits on pre-965 chips), care must be taken not to require more
fence registers than are available to the client. Such resource management should be abstracted from
the client in libdrm.

3.2.8 GEM Function Reference

struct drm_gem_object
GEM buffer object

Definition

3.2. The Graphics Execution Manager (GEM) 27

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_gem_object {
struct kref refcount;
unsigned handle_count;
struct drm_device * dev;
struct file * filp;
struct drm_vma_offset_node vma_node;
size_t size;
int name;
uint32_t read_domains;
uint32_t write_domain;
uint32_t pending_read_domains;
uint32_t pending_write_domain;
struct dma_buf * dma_buf;
struct dma_buf_attachment * import_attach;

};

Members
refcount Reference count of this object

Please use drm_gem_object_get() to acquire and drm_gem_object_put() or
drm_gem_object_put_unlocked() to release a reference to a GEM buffer object.

handle_count This is the GEM file_priv handle count of this object.
Each handle also holds a reference. Note that when the handle_count drops to 0 any global names
(e.g. the id in the flink namespace) will be cleared.
Protected by drm_device.object_name_lock.

dev DRM dev this object belongs to.
filp SHMEM file node used as backing storage for swappable buffer objects. GEM also supports driver pri-

vate objects with driver-specific backing storage (contiguous CMA memory, special reserved blocks).
In this case filp is NULL.

vma_node Mapping info for this object to support mmap. Drivers are supposed to allocate the
mmap offset using drm_gem_create_mmap_offset(). The offset itself can be retrieved using
drm_vma_node_offset_addr().
Memory mapping itself is handled by drm_gem_mmap(), which also checks that userspace is allowed
to access the object.

size Size of the object, in bytes. Immutable over the object’s lifetime.
name Global name for this object, starts at 1. 0 means unnamed. Access is covered by

drm_device.object_name_lock. This is used by the GEM_FLINK and GEM_OPEN ioctls.
read_domains Read memory domains. These monitor which caches contain read/write data related to

the object. When transitioning from one set of domains to another, the driver is called to ensure that
caches are suitably flushed and invalidated.

write_domain Corresponding unique write memory domain.
pending_read_domains While validating an exec operation, the new read/write domain values are com-

puted here. They will be transferred to the above values at the point that any cache flushing occurs
pending_write_domain Write domain similar to pending_read_domains.
dma_buf dma-buf associated with this GEM object.

Pointer to the dma-buf associated with this gem object (either through importing or exporting). We
break the resulting reference loop when the last gem handle for this object is released.
Protected by drm_device.object_name_lock.

import_attach dma-buf attachment backing this object.

28 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Any foreign dma_buf imported as a gem object has this set to the attachment point for the device.
This is invariant over the lifetime of a gem object.
The drm_driver.gem_free_object callback is responsible for cleaning up the dma_buf attachment
and references acquired at import time.
Note that the drm gem/prime core does not depend upon drivers setting this field any more. So for
drivers where this doesn’t make sense (e.g. virtual devices or a displaylink behind an usb bus) they
can simply leave it as NULL.

Description
This structure defines the generic parts for GEM buffer objects, which are mostly around handling mmap
and userspace handles.
Buffer objects are often abbreviated to BO.
DEFINE_DRM_GEM_FOPS(name)

macro to generate file operations for GEM drivers
Parameters
name name for the generated structure
Description
This macro autogenerates a suitable struct file_operations for GEM based drivers, which can be as-
signed to drm_driver.fops. Note that this structure cannot be shared between drivers, because it con-
tains a reference to the current module using THIS_MODULE.
Note that the declaration is already marked as static - if you need a non-static version of this you’re
probably doing it wrong and will break the THIS_MODULE reference by accident.
void drm_gem_object_get(struct drm_gem_object * obj)

acquire a GEM buffer object reference
Parameters
struct drm_gem_object * obj GEM buffer object
Description
This function acquires an additional reference to obj. It is illegal to call this without already holding a
reference. No locks required.
void __drm_gem_object_put(struct drm_gem_object * obj)

raw function to release a GEM buffer object reference
Parameters
struct drm_gem_object * obj GEM buffer object
Description
This function is meant to be used by drivers which are not encumbered with drm_device.struct_mutex
legacy locking and which are using the gem_free_object_unlocked callback. It avoids all the locking checks
and locking overhead of drm_gem_object_put() and drm_gem_object_put_unlocked().
Drivers should never call this directly in their code. Instead they should wrap it up into a
driver_gem_object_put(struct driver_gem_object *obj) wrapper function, and use that. Shared
code should never call this, to avoid breaking drivers by accident which still depend upon
drm_device.struct_mutex locking.
void drm_gem_object_reference(struct drm_gem_object * obj)

acquire a GEM buffer object reference
Parameters
struct drm_gem_object * obj GEM buffer object

3.2. The Graphics Execution Manager (GEM) 29

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This is a compatibility alias for drm_gem_object_get() and should not be used by new code.
void __drm_gem_object_unreference(struct drm_gem_object * obj)

raw function to release a GEM buffer object reference
Parameters
struct drm_gem_object * obj GEM buffer object
Description
This is a compatibility alias for __drm_gem_object_put() and should not be used by new code.
void drm_gem_object_unreference_unlocked(struct drm_gem_object * obj)

release a GEM buffer object reference
Parameters
struct drm_gem_object * obj GEM buffer object
Description
This is a compatibility alias for drm_gem_object_put_unlocked() and should not be used by new code.
void drm_gem_object_unreference(struct drm_gem_object * obj)

release a GEM buffer object reference
Parameters
struct drm_gem_object * obj GEM buffer object
Description
This is a compatibility alias for drm_gem_object_put() and should not be used by new code.
int drm_gem_object_init(struct drm_device * dev, struct drm_gem_object * obj, size_t size)

initialize an allocated shmem-backed GEM object
Parameters
struct drm_device * dev drm_device the object should be initialized for
struct drm_gem_object * obj drm_gem_object to initialize
size_t size object size
Description
Initialize an already allocated GEM object of the specified size with shmfs backing store.
void drm_gem_private_object_init(struct drm_device * dev, struct drm_gem_object * obj,

size_t size)
initialize an allocated private GEM object

Parameters
struct drm_device * dev drm_device the object should be initialized for
struct drm_gem_object * obj drm_gem_object to initialize
size_t size object size
Description
Initialize an already allocated GEM object of the specified size with no GEM provided backing store. Instead
the caller is responsible for backing the object and handling it.
int drm_gem_handle_delete(struct drm_file * filp, u32 handle)

deletes the given file-private handle
Parameters
struct drm_file * filp drm file-private structure to use for the handle look up

30 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

u32 handle userspace handle to delete
Description
Removes the GEM handle from the filp lookup table which has been added with
drm_gem_handle_create(). If this is the last handle also cleans up linked resources like GEM names.
int drm_gem_dumb_destroy(struct drm_file * file, struct drm_device * dev, uint32_t handle)

dumb fb callback helper for gem based drivers
Parameters
struct drm_file * file drm file-private structure to remove the dumb handle from
struct drm_device * dev corresponding drm_device
uint32_t handle the dumb handle to remove
Description
This implements the drm_driver.dumb_destroy kms driver callback for drivers which use gem to manage
their backing storage.
int drm_gem_handle_create(struct drm_file * file_priv, struct drm_gem_object * obj, u32 * handlep)

create a gem handle for an object
Parameters
struct drm_file * file_priv drm file-private structure to register the handle for
struct drm_gem_object * obj object to register
u32 * handlep pionter to return the created handle to the caller
Description
Create a handle for this object. This adds a handle reference to the object, which includes a regular
reference count. Callers will likely want to dereference the object afterwards.
void drm_gem_free_mmap_offset(struct drm_gem_object * obj)

release a fake mmap offset for an object
Parameters
struct drm_gem_object * obj obj in question
Description
This routine frees fake offsets allocated by drm_gem_create_mmap_offset().
Note that drm_gem_object_release() already calls this function, so drivers don’t have to take care of
releasing the mmap offset themselves when freeing the GEM object.
int drm_gem_create_mmap_offset_size(struct drm_gem_object * obj, size_t size)

create a fake mmap offset for an object
Parameters
struct drm_gem_object * obj obj in question
size_t size the virtual size
Description
GEMmemory mapping works by handing back to userspace a fake mmap offset it can use in a subsequent
mmap(2) call. The DRM core code then looks up the object based on the offset and sets up the various
memory mapping structures.
This routine allocates and attaches a fake offset for obj, in cases where the virtual size differs from the
physical size (ie. drm_gem_object.size). Otherwise just use drm_gem_create_mmap_offset().
This function is idempotent and handles an already allocated mmap offset transparently. Drivers do not
need to check for this case.

3.2. The Graphics Execution Manager (GEM) 31

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int drm_gem_create_mmap_offset(struct drm_gem_object * obj)
create a fake mmap offset for an object

Parameters
struct drm_gem_object * obj obj in question
Description
GEMmemory mapping works by handing back to userspace a fake mmap offset it can use in a subsequent
mmap(2) call. The DRM core code then looks up the object based on the offset and sets up the various
memory mapping structures.
This routine allocates and attaches a fake offset for obj.
Drivers can call drm_gem_free_mmap_offset() before freeing obj to release the fake offset again.
struct page ** drm_gem_get_pages(struct drm_gem_object * obj)

helper to allocate backing pages for a GEM object from shmem
Parameters
struct drm_gem_object * obj obj in question
Description
This reads the page-array of the shmem-backing storage of the given gem object. An array of pages is
returned. If a page is not allocated or swapped-out, this will allocate/swap-in the required pages. Note
that the whole object is covered by the page-array and pinned in memory.
Use drm_gem_put_pages() to release the array and unpin all pages.
This uses the GFP-mask set on the shmem-mapping (see mapping_set_gfp_mask()). If you require other
GFP-masks, you have to do those allocations yourself.
Note that you are not allowed to change gfp-zones during runtime. That is,
shmem_read_mapping_page_gfp() must be called with the same gfp_zone(gfp) as set during ini-
tialization. If you have special zone constraints, set them after drm_gem_init_object() via map-
ping_set_gfp_mask(). shmem-core takes care to keep pages in the required zone during swap-in.

void drm_gem_put_pages(struct drm_gem_object * obj, struct page ** pages, bool dirty,
bool accessed)

helper to free backing pages for a GEM object
Parameters
struct drm_gem_object * obj obj in question
struct page ** pages pages to free
bool dirty if true, pages will be marked as dirty
bool accessed if true, the pages will be marked as accessed
struct drm_gem_object * drm_gem_object_lookup(struct drm_file * filp, u32 handle)

look up a GEM object from it’s handle
Parameters
struct drm_file * filp DRM file private date
u32 handle userspace handle
Return
A reference to the object named by the handle if such exists on filp, NULL otherwise.
void drm_gem_object_release(struct drm_gem_object * obj)

release GEM buffer object resources
Parameters

32 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_gem_object * obj GEM buffer object
Description
This releases any structures and resources used by obj and is the invers of drm_gem_object_init().
void drm_gem_object_free(struct kref * kref)

free a GEM object
Parameters
struct kref * kref kref of the object to free
Description
Called after the last reference to the object has been lost. Must be called holding
drm_device.struct_mutex.
Frees the object
void drm_gem_object_put_unlocked(struct drm_gem_object * obj)

drop a GEM buffer object reference
Parameters
struct drm_gem_object * obj GEM buffer object
Description
This releases a reference to obj. Callers must not hold the drm_device.struct_mutex lock when calling
this function.
See also __drm_gem_object_put().
void drm_gem_object_put(struct drm_gem_object * obj)

release a GEM buffer object reference
Parameters
struct drm_gem_object * obj GEM buffer object
Description
This releases a reference to obj. Callers must hold the drm_device.struct_mutex lock when calling this
function, even when the driver doesn’t use drm_device.struct_mutex for anything.
For drivers not encumbered with legacy locking use drm_gem_object_put_unlocked() instead.
void drm_gem_vm_open(struct vm_area_struct * vma)

vma->ops->open implementation for GEM
Parameters
struct vm_area_struct * vma VM area structure
Description
This function implements the #vm_operations_struct open() callback for GEM drivers. This must be used
together with drm_gem_vm_close().
void drm_gem_vm_close(struct vm_area_struct * vma)

vma->ops->close implementation for GEM
Parameters
struct vm_area_struct * vma VM area structure
Description
This function implements the #vm_operations_struct close() callback for GEM drivers. This must be used
together with drm_gem_vm_open().

3.2. The Graphics Execution Manager (GEM) 33

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int drm_gem_mmap_obj(struct drm_gem_object * obj, unsigned long obj_size, struct vm_area_struct
* vma)

memory map a GEM object
Parameters
struct drm_gem_object * obj the GEM object to map
unsigned long obj_size the object size to be mapped, in bytes
struct vm_area_struct * vma VMA for the area to be mapped
Description
Set up the VMA to prepare mapping of the GEM object using the gem_vm_ops provided by the driver.
Depending on their requirements, drivers can either provide a fault handler in their gem_vm_ops (in
which case any accesses to the object will be trapped, to perform migration, GTT binding, surface reg-
ister allocation, or performance monitoring), or mmap the buffer memory synchronously after calling
drm_gem_mmap_obj.
This function is mainly intended to implement the DMABUF mmap operation, when the GEM object is
not looked up based on its fake offset. To implement the DRM mmap operation, drivers should use the
drm_gem_mmap() function.
drm_gem_mmap_obj() assumes the user is granted access to the buffer while drm_gem_mmap() prevents
unprivileged users from mapping random objects. So callers must verify access restrictions before calling
this helper.
Return 0 or success or -EINVAL if the object size is smaller than the VMA size, or if no gem_vm_ops are
provided.
int drm_gem_mmap(struct file * filp, struct vm_area_struct * vma)

memory map routine for GEM objects
Parameters
struct file * filp DRM file pointer
struct vm_area_struct * vma VMA for the area to be mapped
Description
If a driver supports GEM object mapping, mmap calls on the DRM file descriptor will end up here.
Look up the GEM object based on the offset passed in (vma->vm_pgoff will contain the fake offset we
created when the GTT map ioctl was called on the object) and map it with a call to drm_gem_mmap_obj().
If the caller is not granted access to the buffer object, the mmap will fail with EACCES. Please see the vma
manager for more information.

3.2.9 GEM CMA Helper Functions Reference

The Contiguous Memory Allocator reserves a pool of memory at early boot that is used to service requests
for large blocks of contiguous memory.
The DRM GEM/CMA helpers use this allocator as a means to provide buffer objects that are physically
contiguous in memory. This is useful for display drivers that are unable to map scattered buffers via an
IOMMU.
struct drm_gem_cma_object

GEM object backed by CMA memory allocations
Definition

struct drm_gem_cma_object {
struct drm_gem_object base;
dma_addr_t paddr;
struct sg_table * sgt;

34 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void * vaddr;
};

Members
base base GEM object
paddr physical address of the backing memory
sgt scatter/gather table for imported PRIME buffers
vaddr kernel virtual address of the backing memory
DEFINE_DRM_GEM_CMA_FOPS(name)

macro to generate file operations for CMA drivers
Parameters
name name for the generated structure
Description
This macro autogenerates a suitable struct file_operations for CMA based drivers, which can be as-
signed to drm_driver.fops. Note that this structure cannot be shared between drivers, because it con-
tains a reference to the current module using THIS_MODULE.
Note that the declaration is already marked as static - if you need a non-static version of this you’re
probably doing it wrong and will break the THIS_MODULE reference by accident.
struct drm_gem_cma_object * drm_gem_cma_create(struct drm_device * drm, size_t size)

allocate an object with the given size
Parameters
struct drm_device * drm DRM device
size_t size size of the object to allocate
Description
This function creates a CMA GEM object and allocates a contiguous chunk of memory as backing store.
The backing memory has the writecombine attribute set.
Return
A struct drm_gem_cma_object * on success or an ERR_PTR()-encoded negative error code on failure.
void drm_gem_cma_free_object(struct drm_gem_object * gem_obj)

free resources associated with a CMA GEM object
Parameters
struct drm_gem_object * gem_obj GEM object to free
Description
This function frees the backing memory of the CMA GEM object, cleans up the GEM object state and
frees the memory used to store the object itself. Drivers using the CMA helpers should set this as their
drm_driver.gem_free_object callback.
int drm_gem_cma_dumb_create_internal(struct drm_file * file_priv, struct drm_device * drm, struct

drm_mode_create_dumb * args)
create a dumb buffer object

Parameters
struct drm_file * file_priv DRM file-private structure to create the dumb buffer for
struct drm_device * drm DRM device
struct drm_mode_create_dumb * args IOCTL data

3.2. The Graphics Execution Manager (GEM) 35

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This aligns the pitch and size arguments to the minimum required. This is an internal helper that can be
wrapped by a driver to account for hardware with more specific alignment requirements. It should not be
used directly as their drm_driver.dumb_create callback.
Return
0 on success or a negative error code on failure.
int drm_gem_cma_dumb_create(struct drm_file * file_priv, struct drm_device * drm, struct

drm_mode_create_dumb * args)
create a dumb buffer object

Parameters
struct drm_file * file_priv DRM file-private structure to create the dumb buffer for
struct drm_device * drm DRM device
struct drm_mode_create_dumb * args IOCTL data
Description
This function computes the pitch of the dumb buffer and rounds it up to an integer number of bytes per
pixel. Drivers for hardware that doesn’t have any additional restrictions on the pitch can directly use this
function as their drm_driver.dumb_create callback.
For hardware with additional restrictions, drivers can adjust the fields set up by userspace and pass the
IOCTL data along to the drm_gem_cma_dumb_create_internal() function.
Return
0 on success or a negative error code on failure.
int drm_gem_cma_dumb_map_offset(struct drm_file * file_priv, struct drm_device * drm, u32 handle,

u64 * offset)
return the fake mmap offset for a CMA GEM object

Parameters
struct drm_file * file_priv DRM file-private structure containing the GEM object
struct drm_device * drm DRM device
u32 handle GEM object handle
u64 * offset return location for the fake mmap offset
Description
This function look up an object by its handle and returns the fake mmap offset associated with it. Drivers
using the CMA helpers should set this as their drm_driver.dumb_map_offset callback.
Return
0 on success or a negative error code on failure.
int drm_gem_cma_mmap(struct file * filp, struct vm_area_struct * vma)

memory-map a CMA GEM object
Parameters
struct file * filp file object
struct vm_area_struct * vma VMA for the area to be mapped
Description
This function implements an augmented version of the GEM DRM file mmap operation for CMA objects: In
addition to the usual GEM VMA setup it immediately faults in the entire object instead of using on-demaind
faulting. Drivers which employ the CMA helpers should use this function as their ->:c:func:mmap() handler
in the DRM device file’s file_operations structure.

36 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Instead of directly referencing this function, drivers should use the DEFINE_DRM_GEM_CMA_FOPS().macro.
Return
0 on success or a negative error code on failure.
unsigned long drm_gem_cma_get_unmapped_area(struct file * filp, unsigned long addr, un-

signed long len, unsigned long pgoff, unsigned
long flags)

propose address for mapping in noMMU cases
Parameters
struct file * filp file object
unsigned long addr memory address
unsigned long len buffer size
unsigned long pgoff page offset
unsigned long flags memory flags
Description
This function is used in noMMU platforms to propose address mapping for a given buffer. It’s intended to
be used as a direct handler for the struct file_operations.get_unmapped_area operation.
Return
mapping address on success or a negative error code on failure.
void drm_gem_cma_describe(struct drm_gem_cma_object * cma_obj, struct seq_file * m)

describe a CMA GEM object for debugfs
Parameters
struct drm_gem_cma_object * cma_obj CMA GEM object
struct seq_file * m debugfs file handle
Description
This function can be used to dump a human-readable representation of the CMA GEM object into a syn-
thetic file.
struct sg_table * drm_gem_cma_prime_get_sg_table(struct drm_gem_object * obj)

provide a scatter/gather table of pinned pages for a CMA GEM object
Parameters
struct drm_gem_object * obj GEM object
Description
This function exports a scatter/gather table suitable for PRIME usage by calling the standard DMA map-
ping API. Drivers using the CMA helpers should set this as their drm_driver.gem_prime_get_sg_table
callback.
Return
A pointer to the scatter/gather table of pinned pages or NULL on failure.
struct drm_gem_object * drm_gem_cma_prime_import_sg_table(struct drm_device * dev, struct

dma_buf_attachment * attach,
struct sg_table * sgt)

produce a CMA GEM object from another driver’s scatter/gather table of pinned pages
Parameters
struct drm_device * dev device to import into
struct dma_buf_attachment * attach DMA-BUF attachment

3.2. The Graphics Execution Manager (GEM) 37

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct sg_table * sgt scatter/gather table of pinned pages
Description
This function imports a scatter/gather table exported via DMA-BUF by another driver. Imported buffers
must be physically contiguous in memory (i.e. the scatter/gather table must contain a single entry).
Drivers that use the CMA helpers should set this as their drm_driver.gem_prime_import_sg_table call-
back.
Return
A pointer to a newly created GEM object or an ERR_PTR-encoded negative error code on failure.
int drm_gem_cma_prime_mmap(struct drm_gem_object * obj, struct vm_area_struct * vma)

memory-map an exported CMA GEM object
Parameters
struct drm_gem_object * obj GEM object
struct vm_area_struct * vma VMA for the area to be mapped
Description
This function maps a buffer imported via DRM PRIME into a userspace process’s address space. Drivers
that use the CMA helpers should set this as their drm_driver.gem_prime_mmap callback.
Return
0 on success or a negative error code on failure.
void * drm_gem_cma_prime_vmap(struct drm_gem_object * obj)

map a CMA GEM object into the kernel’s virtual address space
Parameters
struct drm_gem_object * obj GEM object
Description
This function maps a buffer exported via DRM PRIME into the kernel’s virtual address space. Since the CMA
buffers are already mapped into the kernel virtual address space this simply returns the cached virtual
address. Drivers using the CMA helpers should set this as their DRM driver’s drm_driver.gem_prime_vmap
callback.
Return
The kernel virtual address of the CMA GEM object’s backing store.
void drm_gem_cma_prime_vunmap(struct drm_gem_object * obj, void * vaddr)

unmap a CMA GEM object from the kernel’s virtual address space
Parameters
struct drm_gem_object * obj GEM object
void * vaddr kernel virtual address where the CMA GEM object was mapped
Description
This function removes a buffer exported via DRM PRIME from the kernel’s virtual address space. This is
a no-op because CMA buffers cannot be unmapped from kernel space. Drivers using the CMA helpers
should set this as their drm_driver.gem_prime_vunmap callback.

3.3 VMA Offset Manager

The vma-manager is responsible to map arbitrary driver-dependent memory regions into the linear user
address-space. It provides offsets to the caller which can then be used on the address_space of the drm-
device. It takes care to not overlap regions, size them appropriately and to not confuse mm-core by

38 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

inconsistent fake vm_pgoff fields. Drivers shouldn’t use this for object placement in VMEM. This manager
should only be used to manage mappings into linear user-space VMs.
We use drm_mm as backend to manage object allocations. But it is highly optimized for alloc/free calls,
not lookups. Hence, we use an rb-tree to speed up offset lookups.
You must not use multiple offset managers on a single address_space. Otherwise, mm-core will be unable
to tear down memory mappings as the VM will no longer be linear.
This offset manager works on page-based addresses. That is, every argument and return code (with the
exception of drm_vma_node_offset_addr()) is given in number of pages, not number of bytes. That
means, object sizes and offsets must always be page-aligned (as usual). If you want to get a valid byte-
based user-space address for a given offset, please see drm_vma_node_offset_addr().
Additionally to offset management, the vma offset manager also handles access management. For every
open-file context that is allowed to access a given node, youmust call drm_vma_node_allow(). Otherwise,
an mmap() call on this open-file with the offset of the node will fail with -EACCES. To revoke access again,
use drm_vma_node_revoke(). However, the caller is responsible for destroying already existingmappings,
if required.
struct drm_vma_offset_node * drm_vma_offset_exact_lookup_locked(struct

drm_vma_offset_manager
* mgr, unsigned long start,
unsigned long pages)

Look up node by exact address
Parameters
struct drm_vma_offset_manager * mgr Manager object
unsigned long start Start address (page-based, not byte-based)
unsigned long pages Size of object (page-based)
Description
Same as drm_vma_offset_lookup_locked() but does not allow any offset into the node. It only returns
the exact object with the given start address.
Return
Node at exact start address start.
void drm_vma_offset_lock_lookup(struct drm_vma_offset_manager * mgr)

Lock lookup for extended private use
Parameters
struct drm_vma_offset_manager * mgr Manager object
Description
Lock VMA manager for extended lookups. Only locked VMA function calls are allowed while
holding this lock. All other contexts are blocked from VMA until the lock is released via
drm_vma_offset_unlock_lookup().
Use this if you need to take a reference to the objects returned by drm_vma_offset_lookup_locked()
before releasing this lock again.
This lock must not be used for anything else than extended lookups. You must not call any other VMA
helpers while holding this lock.
Note
You’re in atomic-context while holding this lock!
void drm_vma_offset_unlock_lookup(struct drm_vma_offset_manager * mgr)

Unlock lookup for extended private use
Parameters

3.3. VMA Offset Manager 39

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_vma_offset_manager * mgr Manager object
Description
Release lookup-lock. See drm_vma_offset_lock_lookup() for more information.
void drm_vma_node_reset(struct drm_vma_offset_node * node)

Initialize or reset node object
Parameters
struct drm_vma_offset_node * node Node to initialize or reset
Description
Reset a node to its initial state. This must be called before using it with any VMA offset manager.
This must not be called on an already allocated node, or you will leak memory.
unsigned long drm_vma_node_start(struct drm_vma_offset_node * node)

Return start address for page-based addressing
Parameters
struct drm_vma_offset_node * node Node to inspect
Description
Return the start address of the given node. This can be used as offset into the linear VM space that
is provided by the VMA offset manager. Note that this can only be used for page-based addressing.
If you need a proper offset for user-space mappings, you must apply “<< PAGE_SHIFT” or use the
drm_vma_node_offset_addr() helper instead.
Return
Start address of node for page-based addressing. 0 if the node does not have an offset allocated.
unsigned long drm_vma_node_size(struct drm_vma_offset_node * node)

Return size (page-based)
Parameters
struct drm_vma_offset_node * node Node to inspect
Description
Return the size as number of pages for the given node. This is the same size that was passed to
drm_vma_offset_add(). If no offset is allocated for the node, this is 0.
Return
Size of node as number of pages. 0 if the node does not have an offset allocated.
__u64 drm_vma_node_offset_addr(struct drm_vma_offset_node * node)

Return sanitized offset for user-space mmaps
Parameters
struct drm_vma_offset_node * node Linked offset node
Description
Same as drm_vma_node_start() but returns the address as a valid offset that can be used for user-space
mappings during mmap(). This must not be called on unlinked nodes.
Return
Offset of node for byte-based addressing. 0 if the node does not have an object allocated.
void drm_vma_node_unmap(struct drm_vma_offset_node * node, struct address_space

* file_mapping)
Unmap offset node

Parameters

40 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_vma_offset_node * node Offset node
struct address_space * file_mapping Address space to unmap node from
Description
Unmap all userspace mappings for a given offset node. The mappings must be associated with the
file_mapping address-space. If no offset exists nothing is done.
This call is unlocked. The caller must guarantee that drm_vma_offset_remove() is not called on this node
concurrently.
int drm_vma_node_verify_access(struct drm_vma_offset_node * node, struct drm_file * tag)

Access verification helper for TTM
Parameters
struct drm_vma_offset_node * node Offset node
struct drm_file * tag Tag of file to check
Description
This checks whether tag is granted access to node. It is the same as drm_vma_node_is_allowed() but
suitable as drop-in helper for TTM verify_access() callbacks.
Return
0 if access is granted, -EACCES otherwise.
void drm_vma_offset_manager_init(struct drm_vma_offset_manager * mgr, unsigned

long page_offset, unsigned long size)
Initialize new offset-manager

Parameters
struct drm_vma_offset_manager * mgr Manager object
unsigned long page_offset Offset of available memory area (page-based)
unsigned long size Size of available address space range (page-based)
Description
Initialize a new offset-manager. The offset and area size available for the manager are given as
page_offset and size. Both are interpreted as page-numbers, not bytes.
Adding/removing nodes from the manager is locked internally and protected against concurrent access.
However, node allocation and destruction is left for the caller. While calling into the vma-manager, a given
node must always be guaranteed to be referenced.
void drm_vma_offset_manager_destroy(struct drm_vma_offset_manager * mgr)

Destroy offset manager
Parameters
struct drm_vma_offset_manager * mgr Manager object
Description
Destroy an object manager which was previously created via drm_vma_offset_manager_init(). The
caller must remove all allocated nodes before destroying the manager. Otherwise, drm_mm will refuse to
free the requested resources.
The manager must not be accessed after this function is called.
struct drm_vma_offset_node * drm_vma_offset_lookup_locked(struct drm_vma_offset_manager

* mgr, unsigned long start, un-
signed long pages)

Find node in offset space
Parameters

3.3. VMA Offset Manager 41

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_vma_offset_manager * mgr Manager object
unsigned long start Start address for object (page-based)
unsigned long pages Size of object (page-based)
Description
Find a node given a start address and object size. This returns the _best_ match for the given node. That
is, startmay point somewhere into a valid region and the given node will be returned, as long as the node
spans the whole requested area (given the size in number of pages as pages).
Note that before lookup the vma offset manager lookup lock must be acquired with
drm_vma_offset_lock_lookup(). See there for an example. This can then be used to implement
weakly referenced lookups using kref_get_unless_zero().
Example

drm_vma_offset_lock_lookup(mgr);
node = drm_vma_offset_lookup_locked(mgr);
if (node)

kref_get_unless_zero(container_of(node, sth, entr));
drm_vma_offset_unlock_lookup(mgr);

Return
Returns NULL if no suitable node can be found. Otherwise, the best match is returned. It’s the caller’s
responsibility to make sure the node doesn’t get destroyed before the caller can access it.
int drm_vma_offset_add(struct drm_vma_offset_manager * mgr, struct drm_vma_offset_node

* node, unsigned long pages)
Add offset node to manager

Parameters
struct drm_vma_offset_manager * mgr Manager object
struct drm_vma_offset_node * node Node to be added
unsigned long pages Allocation size visible to user-space (in number of pages)
Description
Add a node to the offset-manager. If the node was already added, this does nothing and return 0. pages
is the size of the object given in number of pages. After this call succeeds, you can access the offset of
the node until it is removed again.
If this call fails, it is safe to retry the operation or call drm_vma_offset_remove(), anyway. However, no
cleanup is required in that case.
pages is not required to be the same size as the underlying memory object that you want to map. It only
limits the size that user-space can map into their address space.
Return
0 on success, negative error code on failure.
void drm_vma_offset_remove(struct drm_vma_offset_manager * mgr, struct drm_vma_offset_node

* node)
Remove offset node from manager

Parameters
struct drm_vma_offset_manager * mgr Manager object
struct drm_vma_offset_node * node Node to be removed
Description
Remove a node from the offset manager. If the node wasn’t added before, this does nothing. After this
call returns, the offset and size will be 0 until a new offset is allocated via drm_vma_offset_add() again.

42 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Helper functions like drm_vma_node_start() and drm_vma_node_offset_addr() will return 0 if no offset
is allocated.
int drm_vma_node_allow(struct drm_vma_offset_node * node, struct drm_file * tag)

Add open-file to list of allowed users
Parameters
struct drm_vma_offset_node * node Node to modify
struct drm_file * tag Tag of file to remove
Description
Add tag to the list of allowed open-files for this node. If tag is already on this list, the ref-count is incre-
mented.
The list of allowed-users is preserved across drm_vma_offset_add() and drm_vma_offset_remove()
calls. You may even call it if the node is currently not added to any offset-manager.
You must remove all open-files the same number of times as you added them before destroying the node.
Otherwise, you will leak memory.
This is locked against concurrent access internally.
Return
0 on success, negative error code on internal failure (out-of-mem)
void drm_vma_node_revoke(struct drm_vma_offset_node * node, struct drm_file * tag)

Remove open-file from list of allowed users
Parameters
struct drm_vma_offset_node * node Node to modify
struct drm_file * tag Tag of file to remove
Description
Decrement the ref-count of tag in the list of allowed open-files on node. If the ref-count drops to zero,
remove tag from the list. You must call this once for every drm_vma_node_allow() on tag.
This is locked against concurrent access internally.
If tag is not on the list, nothing is done.
bool drm_vma_node_is_allowed(struct drm_vma_offset_node * node, struct drm_file * tag)

Check whether an open-file is granted access
Parameters
struct drm_vma_offset_node * node Node to check
struct drm_file * tag Tag of file to remove
Description
Search the list in node whether tag is currently on the list of allowed open-files (see
drm_vma_node_allow()).
This is locked against concurrent access internally.
Return
true iff filp is on the list

3.3. VMA Offset Manager 43

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

3.4 PRIME Buffer Sharing

PRIME is the cross device buffer sharing framework in drm, originally created for the OPTIMUS range of
multi-gpu platforms. To userspace PRIME buffers are dma-buf based file descriptors.

3.4.1 Overview and Driver Interface

Similar to GEM global names, PRIME file descriptors are also used to share buffer objects across processes.
They offer additional security: as file descriptors must be explicitly sent over UNIX domain sockets to be
shared between applications, they can’t be guessed like the globally unique GEM names.
Drivers that support the PRIME API must set the DRIVER_PRIME bit in the struct struct drm_driver
driver_features field, and implement the prime_handle_to_fd and prime_fd_to_handle operations.
int (*prime_handle_to_fd)(struct drm_device *dev, struct drm_file *file_priv, uint32_t handle, uint32_t
flags, int *prime_fd); int (*prime_fd_to_handle)(struct drm_device *dev, struct drm_file *file_priv, int
prime_fd, uint32_t *handle); Those two operations convert a handle to a PRIME file descriptor and vice
versa. Drivers must use the kernel dma-buf buffer sharing framework to manage the PRIME file descrip-
tors. Similar to the mode setting API PRIME is agnostic to the underlying buffer object manager, as long
as handles are 32bit unsigned integers.
While non-GEM drivers must implement the operations themselves, GEM drivers must use the
drm_gem_prime_handle_to_fd() and drm_gem_prime_fd_to_handle() helper functions. Those helpers
rely on the driver gem_prime_export and gem_prime_import operations to create a dma-buf instance
from a GEM object (dma-buf exporter role) and to create a GEM object from a dma-buf instance (dma-buf
importer role).
struct dma_buf * (*gem_prime_export)(struct drm_device *dev, struct drm_gem_object *obj, int flags);
struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev, struct dma_buf *dma_buf); These
two operations are mandatory for GEM drivers that support PRIME.

3.4.2 PRIME Helper Functions

Drivers can implement gem_prime_export and gem_prime_import in terms of simpler APIs by using the
helper functions drm_gem_prime_export and drm_gem_prime_import. These functions implement
dma-buf support in terms of six lower-level driver callbacks:
Export callbacks:
• gem_prime_pin (optional): prepare a GEM object for exporting
• gem_prime_get_sg_table: provide a scatter/gather table of pinned pages
• gem_prime_vmap: vmap a buffer exported by your driver
• gem_prime_vunmap: vunmap a buffer exported by your driver
• gem_prime_mmap (optional): mmap a buffer exported by your driver

Import callback:
• gem_prime_import_sg_table (import): produce a GEM object from another driver’s scatter/gather
table

3.4.3 PRIME Function References

struct drm_prime_file_private
per-file tracking for PRIME

Definition

44 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_prime_file_private {
};

Members
Description
This just contains the internal struct dma_buf and handle caches for each struct drm_file used by the
PRIME core code.
struct dma_buf * drm_gem_dmabuf_export(struct drm_device * dev, struct dma_buf_export_info

* exp_info)
dma_buf export implementation for GEM

Parameters
struct drm_device * dev parent device for the exported dmabuf
struct dma_buf_export_info * exp_info the export information used by dma_buf_export()
Description
This wraps dma_buf_export() for use by generic GEM drivers that are using drm_gem_dmabuf_release().
In addition to calling dma_buf_export(), we take a reference to the drm_device and
the exported drm_gem_object (stored in dma_buf_export_info.priv) which is released by
drm_gem_dmabuf_release().
Returns the new dmabuf.
void drm_gem_dmabuf_release(struct dma_buf * dma_buf)

dma_buf release implementation for GEM
Parameters
struct dma_buf * dma_buf buffer to be released
Description
Generic release function for dma_bufs exported as PRIME buffers. GEM drivers must use this in their
dma_buf ops structure as the release callback. drm_gem_dmabuf_release() should be used in conjunction
with drm_gem_dmabuf_export().
struct dma_buf * drm_gem_prime_export(struct drm_device * dev, struct drm_gem_object * obj,

int flags)
helper library implementation of the export callback

Parameters
struct drm_device * dev drm_device to export from
struct drm_gem_object * obj GEM object to export
int flags flags like DRM_CLOEXEC and DRM_RDWR
Description
This is the implementation of the gem_prime_export functions for GEM drivers using the PRIME helpers.
int drm_gem_prime_handle_to_fd(struct drm_device * dev, struct drm_file * file_priv,

uint32_t handle, uint32_t flags, int * prime_fd)
PRIME export function for GEM drivers

Parameters
struct drm_device * dev dev to export the buffer from
struct drm_file * file_priv drm file-private structure
uint32_t handle buffer handle to export
uint32_t flags flags like DRM_CLOEXEC

3.4. PRIME Buffer Sharing 45

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int * prime_fd pointer to storage for the fd id of the create dma-buf
Description
This is the PRIME export function whichmust be usedmandatorily by GEM drivers to ensure correct lifetime
management of the underlying GEM object. The actual exporting from GEM object to a dma-buf is done
through the gem_prime_export driver callback.
struct drm_gem_object * drm_gem_prime_import_dev(struct drm_device * dev, struct dma_buf

* dma_buf, struct device * attach_dev)
core implementation of the import callback

Parameters
struct drm_device * dev drm_device to import into
struct dma_buf * dma_buf dma-buf object to import
struct device * attach_dev struct device to dma_buf attach
Description
This is the core of drm_gem_prime_import. It’s designed to be called by drivers who want to use a different
device structure than dev->dev for attaching via dma_buf.
struct drm_gem_object * drm_gem_prime_import(struct drm_device * dev, struct dma_buf

* dma_buf)
helper library implementation of the import callback

Parameters
struct drm_device * dev drm_device to import into
struct dma_buf * dma_buf dma-buf object to import
Description
This is the implementation of the gem_prime_import functions for GEM drivers using the PRIME helpers.
int drm_gem_prime_fd_to_handle(struct drm_device * dev, struct drm_file * file_priv, int prime_fd,

uint32_t * handle)
PRIME import function for GEM drivers

Parameters
struct drm_device * dev dev to export the buffer from
struct drm_file * file_priv drm file-private structure
int prime_fd fd id of the dma-buf which should be imported
uint32_t * handle pointer to storage for the handle of the imported buffer object
Description
This is the PRIME import function whichmust be usedmandatorily by GEM drivers to ensure correct lifetime
management of the underlying GEM object. The actual importing of GEM object from the dma-buf is done
through the gem_import_export driver callback.
struct sg_table * drm_prime_pages_to_sg(struct page ** pages, unsigned int nr_pages)

converts a page array into an sg list
Parameters
struct page ** pages pointer to the array of page pointers to convert
unsigned int nr_pages length of the page vector
Description
This helper creates an sg table object from a set of pages the driver is responsible for mapping the pages
into the importers address space for use with dma_buf itself.

46 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int drm_prime_sg_to_page_addr_arrays(struct sg_table * sgt, struct page ** pages, dma_addr_t
* addrs, int max_pages)

convert an sg table into a page array
Parameters
struct sg_table * sgt scatter-gather table to convert
struct page ** pages array of page pointers to store the page array in
dma_addr_t * addrs optional array to store the dma bus address of each page
int max_pages size of both the passed-in arrays
Description
Exports an sg table into an array of pages and addresses. This is currently required by the TTM driver in
order to do correct fault handling.
void drm_prime_gem_destroy(struct drm_gem_object * obj, struct sg_table * sg)

helper to clean up a PRIME-imported GEM object
Parameters
struct drm_gem_object * obj GEM object which was created from a dma-buf
struct sg_table * sg the sg-table which was pinned at import time
Description
This is the cleanup functions which GEM drivers need to call when they use drm_gem_prime_import to
import dma-bufs.

3.5 DRM MM Range Allocator

3.5.1 Overview

drm_mm provides a simple range allocator. The drivers are free to use the resource allocator from the
linux core if it suits them, the upside of drm_mm is that it’s in the DRM core. Which means that it’s easier
to extend for some of the crazier special purpose needs of gpus.
The main data struct is drm_mm, allocations are tracked in drm_mm_node. Drivers are free to embed either
of them into their own suitable datastructures. drm_mm itself will not do any memory allocations of its
own, so if drivers choose not to embed nodes they need to still allocate them themselves.
The range allocator also supports reservation of preallocated blocks. This is useful for taking over ini-
tial mode setting configurations from the firmware, where an object needs to be created which exactly
matches the firmware’s scanout target. As long as the range is still free it can be inserted anytime after
the allocator is initialized, which helps with avoiding looped dependencies in the driver load sequence.
drm_mmmaintains a stack of most recently freed holes, which of all simplistic datastructures seems to be
a fairly decent approach to clustering allocations and avoiding too much fragmentation. This means free
space searches are O(num_holes). Given that all the fancy features drm_mm supports something better
would be fairly complex and since gfx thrashing is a fairly steep cliff not a real concern. Removing a node
again is O(1).
drm_mm supports a few features: Alignment and range restrictions can be supplied. Furthermore every
drm_mm_node has a color value (which is just an opaque unsigned long) which in conjunction with a driver
callback can be used to implement sophisticated placement restrictions. The i915 DRM driver uses this
to implement guard pages between incompatible caching domains in the graphics TT.
Two behaviors are supported for searching and allocating: bottom-up and top-down. The default is bottom-
up. Top-down allocation can be used if the memory area has different restrictions, or just to reduce
fragmentation.

3.5. DRM MM Range Allocator 47

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Finally iteration helpers to walk all nodes and all holes are provided as are some basic allocator dumpers
for debugging.
Note that this range allocator is not thread-safe, drivers need to protect modifications with their on locking.
The idea behind this is that for a full memory manager additional data needs to be protected anyway,
hence internal locking would be fully redundant.

3.5.2 LRU Scan/Eviction Support

Very often GPUs need to have continuous allocations for a given object. When evicting objects to make
space for a new one it is therefore not most efficient when we simply start to select all objects from the
tail of an LRU until there’s a suitable hole: Especially for big objects or nodes that otherwise have special
allocation constraints there’s a good chance we evict lots of (smaller) objects unnecessarily.
The DRM range allocator supports this use-case through the scanning interfaces. First a scan operation
needs to be initialized with drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
objects to the roster, probably by walking an LRU list, but this can be freely implemented. Eviction can-
diates are added using drm_mm_scan_add_block() until a suitable hole is found or there are no further
evictable objects. Eviction roster metadata is tracked in struct drm_mm_scan.
The driver must walk through all objects again in exactly the reverse order to restore the allocator state.
Note that while the allocator is used in the scan mode no other operation is allowed.
Finally the driver evicts all objects selected (drm_mm_scan_remove_block() reported true) in the scan,
and any overlapping nodes after color adjustment (drm_mm_scan_color_evict()). Adding and removing
an object is O(1), and since freeing a node is also O(1) the overall complexity is O(scanned_objects). So
like the free stack which needs to be walked before a scan operation even begins this is linear in the
number of objects. It doesn’t seem to hurt too badly.

3.5.3 DRM MM Range Allocator Function References

enum drm_mm_insert_mode
control search and allocation behaviour

Constants
DRM_MM_INSERT_BEST Search for the smallest hole (within the search range) that fits the desired node.

Allocates the node from the bottom of the found hole.
DRM_MM_INSERT_LOW Search for the lowest hole (address closest to 0, within the search range) that fits

the desired node.
Allocates the node from the bottom of the found hole.

DRM_MM_INSERT_HIGH Search for the highest hole (address closest to U64_MAX, within the search range)
that fits the desired node.
Allocates the node from the top of the found hole. The specified alignment for the node is applied to
the base of the node (drm_mm_node.start).

DRM_MM_INSERT_EVICT Search for the most recently evicted hole (within the search range) that fits
the desired node. This is appropriate for use immediately after performing an eviction scan (see
drm_mm_scan_init()) and removing the selected nodes to form a hole.
Allocates the node from the bottom of the found hole.

Description
The struct drm_mm range manager supports finding a suitable modes using a number of search trees.
These trees are oranised by size, by address and in most recent eviction order. This allows the user to find
either the smallest hole to reuse, the lowest or highest address to reuse, or simply reuse the most recent
eviction that fits. When allocating the drm_mm_node from within the hole, the drm_mm_insert_mode also
dictate whether to allocate the lowest matching address or the highest.

48 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_mm_node
allocated block in the DRM allocator

Definition

struct drm_mm_node {
unsigned long color;
u64 start;
u64 size;

};

Members
color Opaque driver-private tag.
start Start address of the allocated block.
size Size of the allocated block.
Description
This represents an allocated block in a drm_mm allocator. Except for pre-reserved nodes inserted using
drm_mm_reserve_node() the structure is entirely opaque and should only be accessed through the pro-
vided funcions. Since allocation of these nodes is entirely handled by the driver they can be embedded.

struct drm_mm
DRM allocator

Definition

struct drm_mm {
void (* color_adjust) (const struct drm_mm_node *node,unsigned long color, u64 *start, u64␣

↪→*end);
};

Members
color_adjust Optional driver callback to further apply restrictions on a hole. The node argu-

ment points at the node containing the hole from which the block would be allocated (see
drm_mm_hole_follows() and friends). The other arguments are the size of the block to be allocated.
The driver can adjust the start and end as needed to e.g. insert guard pages.

Description
DRM range allocator with a few special functions and features geared towards managing GPU memory.
Except for the color_adjust callback the structure is entirely opaque and should only be accessed through
the provided functions and macros. This structure can be embedded into larger driver structures.
struct drm_mm_scan

DRM allocator eviction roaster data
Definition

struct drm_mm_scan {
};

Members
Description
This structure tracks data needed for the eviction roaster set up using drm_mm_scan_init(), and used
with drm_mm_scan_add_block() and drm_mm_scan_remove_block(). The structure is entirely opaque
and should only be accessed through the provided functions and macros. It is meant to be allocated
temporarily by the driver on the stack.
bool drm_mm_node_allocated(const struct drm_mm_node * node)

checks whether a node is allocated

3.5. DRM MM Range Allocator 49

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
const struct drm_mm_node * node drm_mm_node to check
Description
Drivers are required to clear a node prior to using it with the drm_mm range manager.
Drivers should use this helper for proper encapsulation of drm_mm internals.
Return
True if the node is allocated.
bool drm_mm_initialized(const struct drm_mm * mm)

checks whether an allocator is initialized
Parameters
const struct drm_mm * mm drm_mm to check
Description
Drivers should clear the struct drm_mm prior to initialisation if they want to use this function.
Drivers should use this helper for proper encapsulation of drm_mm internals.
Return
True if the mm is initialized.
bool drm_mm_hole_follows(const struct drm_mm_node * node)

checks whether a hole follows this node
Parameters
const struct drm_mm_node * node drm_mm_node to check
Description
Holes are embedded into the drm_mm using the tail of a drm_mm_node. If you wish to know whether
a hole follows this particular node, query this function. See also drm_mm_hole_node_start() and
drm_mm_hole_node_end().
Return
True if a hole follows the node.
u64 drm_mm_hole_node_start(const struct drm_mm_node * hole_node)

computes the start of the hole following node
Parameters
const struct drm_mm_node * hole_node drm_mm_node which implicitly tracks the following hole
Description
This is useful for driver-specific debug dumpers. Otherwise drivers should not inspect holes themselves.
Drivers must check first whether a hole indeed follows by looking at drm_mm_hole_follows()
Return
Start of the subsequent hole.
u64 drm_mm_hole_node_end(const struct drm_mm_node * hole_node)

computes the end of the hole following node
Parameters
const struct drm_mm_node * hole_node drm_mm_node which implicitly tracks the following hole

50 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This is useful for driver-specific debug dumpers. Otherwise drivers should not inspect holes themselves.
Drivers must check first whether a hole indeed follows by looking at drm_mm_hole_follows().
Return
End of the subsequent hole.
drm_mm_nodes(mm)

list of nodes under the drm_mm range manager
Parameters
mm the struct drm_mm range manger
Description
As the drm_mm range manager hides its node_list deep with its structure, extracting it looks painful and
repetitive. This is not expected to be used outside of the drm_mm_for_each_node() macros and similar
internal functions.
Return
The node list, may be empty.
drm_mm_for_each_node(entry, mm)

iterator to walk over all allocated nodes
Parameters
entry struct drm_mm_node to assign to in each iteration step
mm drm_mm allocator to walk
Description
This iterator walks over all nodes in the range allocator. It is implemented with list_for_each(), so not
save against removal of elements.
drm_mm_for_each_node_safe(entry, next, mm)

iterator to walk over all allocated nodes
Parameters
entry struct drm_mm_node to assign to in each iteration step
next struct drm_mm_node to store the next step
mm drm_mm allocator to walk
Description
This iterator walks over all nodes in the range allocator. It is implemented with list_for_each_safe(),
so save against removal of elements.
drm_mm_for_each_hole(pos, mm, hole_start, hole_end)

iterator to walk over all holes
Parameters
pos drm_mm_node used internally to track progress
mm drm_mm allocator to walk
hole_start ulong variable to assign the hole start to on each iteration
hole_end ulong variable to assign the hole end to on each iteration
Description
This iterator walks over all holes in the range allocator. It is implemented with list_for_each(), so not
save against removal of elements. entry is used internally and will not reflect a real drm_mm_node for
the very first hole. Hence users of this iterator may not access it.

3.5. DRM MM Range Allocator 51

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Implementation Note: We need to inline list_for_each_entry in order to be able to set hole_start and
hole_end on each iteration while keeping the macro sane.
int drm_mm_insert_node_generic(struct drm_mm * mm, struct drm_mm_node * node,

u64 size, u64 alignment, unsigned long color, enum
drm_mm_insert_mode mode)

search for space and insert node
Parameters
struct drm_mm * mm drm_mm to allocate from
struct drm_mm_node * node preallocate node to insert
u64 size size of the allocation
u64 alignment alignment of the allocation
unsigned long color opaque tag value to use for this node
enum drm_mm_insert_mode mode fine-tune the allocation search and placement
Description
This is a simplified version of drm_mm_insert_node_in_range_generic() with no range restrictions ap-
plied.
The preallocated node must be cleared to 0.
Return
0 on success, -ENOSPC if there’s no suitable hole.
int drm_mm_insert_node(struct drm_mm * mm, struct drm_mm_node * node, u64 size)

search for space and insert node
Parameters
struct drm_mm * mm drm_mm to allocate from
struct drm_mm_node * node preallocate node to insert
u64 size size of the allocation
Description
This is a simplified version of drm_mm_insert_node_generic() with color set to 0.
The preallocated node must be cleared to 0.
Return
0 on success, -ENOSPC if there’s no suitable hole.
bool drm_mm_clean(const struct drm_mm * mm)

checks whether an allocator is clean
Parameters
const struct drm_mm * mm drm_mm allocator to check
Return
True if the allocator is completely free, false if there’s still a node allocated in it.
drm_mm_for_each_node_in_range(node__, mm__, start__, end__)

iterator to walk over a range of allocated nodes
Parameters
node__ drm_mm_node structure to assign to in each iteration step
mm__ drm_mm allocator to walk
start__ starting offset, the first node will overlap this

52 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

end__ ending offset, the last node will start before this (but may overlap)
Description
This iterator walks over all nodes in the range allocator that lie between start and end. It is implemented
similarly to list_for_each(), but using the internal interval tree to accelerate the search for the starting
node, and so not safe against removal of elements. It assumes that end is within (or is the upper limit of)
the drm_mm allocator. If [start, end] are beyond the range of the drm_mm, the iterator may walk over
the special _unallocated_ drm_mm.head_node, and may even continue indefinitely.
void drm_mm_scan_init(struct drm_mm_scan * scan, struct drm_mm * mm, u64 size,

u64 alignment, unsigned long color, enum drm_mm_insert_mode mode)
initialize lru scanning

Parameters
struct drm_mm_scan * scan scan state
struct drm_mm * mm drm_mm to scan
u64 size size of the allocation
u64 alignment alignment of the allocation
unsigned long color opaque tag value to use for the allocation
enum drm_mm_insert_mode mode fine-tune the allocation search and placement
Description
This is a simplified version of drm_mm_scan_init_with_range() with no range restrictions applied.
This simply sets up the scanning routines with the parameters for the desired hole.
Warning: As long as the scan list is non-empty, no other operations than adding/removing nodes to/from
the scan list are allowed.
int drm_mm_reserve_node(struct drm_mm * mm, struct drm_mm_node * node)

insert an pre-initialized node
Parameters
struct drm_mm * mm drm_mm allocator to insert node into
struct drm_mm_node * node drm_mm_node to insert
Description
This functions inserts an already set-up drm_mm_node into the allocator, meaning that start, size and color
must be set by the caller. All other fields must be cleared to 0. This is useful to initialize the allocator
with preallocated objects which must be set-up before the range allocator can be set-up, e.g. when taking
over a firmware framebuffer.
Return
0 on success, -ENOSPC if there’s no hole where node is.
int drm_mm_insert_node_in_range(struct drm_mm *const mm, struct drm_mm_node *const node,

u64 size, u64 alignment, unsigned long color, u64 range_start,
u64 range_end, enum drm_mm_insert_mode mode)

ranged search for space and insert node
Parameters
struct drm_mm *const mm drm_mm to allocate from
struct drm_mm_node *const node preallocate node to insert
u64 size size of the allocation
u64 alignment alignment of the allocation
unsigned long color opaque tag value to use for this node

3.5. DRM MM Range Allocator 53

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

u64 range_start start of the allowed range for this node
u64 range_end end of the allowed range for this node
enum drm_mm_insert_mode mode fine-tune the allocation search and placement
Description
The preallocated node must be cleared to 0.
Return
0 on success, -ENOSPC if there’s no suitable hole.
void drm_mm_remove_node(struct drm_mm_node * node)

Remove a memory node from the allocator.
Parameters
struct drm_mm_node * node drm_mm_node to remove
Description
This just removes a node from its drm_mm allocator. The node does not need to be cleared again before it
can be re-inserted into this or any other drm_mm allocator. It is a bug to call this function on a unallocated
node.
void drm_mm_replace_node(struct drm_mm_node * old, struct drm_mm_node * new)

move an allocation from old to new
Parameters
struct drm_mm_node * old drm_mm_node to remove from the allocator
struct drm_mm_node * new drm_mm_node which should inherit old‘s allocation
Description
This is useful for when drivers embed the drm_mm_node structure and hence can’t move allocations by
reassigning pointers. It’s a combination of remove and insert with the guarantee that the allocation start
will match.
void drm_mm_scan_init_with_range(struct drm_mm_scan * scan, struct drm_mm * mm, u64 size,

u64 alignment, unsigned long color, u64 start, u64 end,
enum drm_mm_insert_mode mode)

initialize range-restricted lru scanning
Parameters
struct drm_mm_scan * scan scan state
struct drm_mm * mm drm_mm to scan
u64 size size of the allocation
u64 alignment alignment of the allocation
unsigned long color opaque tag value to use for the allocation
u64 start start of the allowed range for the allocation
u64 end end of the allowed range for the allocation
enum drm_mm_insert_mode mode fine-tune the allocation search and placement
Description
This simply sets up the scanning routines with the parameters for the desired hole.
Warning: As long as the scan list is non-empty, no other operations than adding/removing nodes to/from
the scan list are allowed.
bool drm_mm_scan_add_block(struct drm_mm_scan * scan, struct drm_mm_node * node)

add a node to the scan list

54 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct drm_mm_scan * scan the active drm_mm scanner
struct drm_mm_node * node drm_mm_node to add
Description
Add a node to the scan list that might be freed to make space for the desired hole.
Return
True if a hole has been found, false otherwise.
bool drm_mm_scan_remove_block(struct drm_mm_scan * scan, struct drm_mm_node * node)

remove a node from the scan list
Parameters
struct drm_mm_scan * scan the active drm_mm scanner
struct drm_mm_node * node drm_mm_node to remove
Description
Nodesmust be removed in exactly the reverse order from the scan list as they have been added (e.g. us-
ing list_add() as they are added and then list_for_each() over that eviction list to remove), otherwise
the internal state of the memory manager will be corrupted.
When the scan list is empty, the selected memory nodes can be freed. An immediately follow-
ing drm_mm_insert_node_in_range_generic() or one of the simpler versions of that function with
!DRM_MM_SEARCH_BEST will then return the just freed block (because its at the top of the free_stack
list).
Return
True if this block should be evicted, false otherwise. Will always return false when no hole has been found.

struct drm_mm_node * drm_mm_scan_color_evict(struct drm_mm_scan * scan)
evict overlapping nodes on either side of hole

Parameters
struct drm_mm_scan * scan drm_mm scan with target hole
Description
After completing an eviction scan and removing the selected nodes, we may need to remove a few more
nodes from either side of the target hole if mm.color_adjust is being used.
Return
A node to evict, or NULL if there are no overlapping nodes.
void drm_mm_init(struct drm_mm * mm, u64 start, u64 size)

initialize a drm-mm allocator
Parameters
struct drm_mm * mm the drm_mm structure to initialize
u64 start start of the range managed by mm
u64 size end of the range managed by mm
Description
Note that mm must be cleared to 0 before calling this function.
void drm_mm_takedown(struct drm_mm * mm)

clean up a drm_mm allocator
Parameters

3.5. DRM MM Range Allocator 55

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_mm * mm drm_mm allocator to clean up
Description
Note that it is a bug to call this function on an allocator which is not clean.
void drm_mm_print(const struct drm_mm * mm, struct drm_printer * p)

print allocator state
Parameters
const struct drm_mm * mm drm_mm allocator to print
struct drm_printer * p DRM printer to use

3.6 DRM Cache Handling

void drm_clflush_pages(struct page * pages, unsigned long num_pages)
Flush dcache lines of a set of pages.

Parameters
struct page * pages List of pages to be flushed.
unsigned long num_pages Number of pages in the array.
Description
Flush every data cache line entry that points to an address belonging to a page in the array.
void drm_clflush_sg(struct sg_table * st)

Flush dcache lines pointing to a scather-gather.
Parameters
struct sg_table * st struct sg_table.
Description
Flush every data cache line entry that points to an address in the sg.
void drm_clflush_virt_range(void * addr, unsigned long length)

Flush dcache lines of a region
Parameters
void * addr Initial kernel memory address.
unsigned long length Region size.
Description
Flush every data cache line entry that points to an address in the region requested.

3.7 DRM Sync Objects

DRM synchronisation objects (syncobj) are a persistent objects, that contain an optional fence. The fence
can be updated with a new fence, or be NULL.
syncobj’s can be export to fd’s and back, these fd’s are opaque and have no other use case, except passing
the syncobj between processes.
Their primary use-case is to implement Vulkan fences and semaphores.
syncobj have a kref reference count, but also have an optional file. The file is only created once the
syncobj is exported. The file takes a reference on the kref.

56 Chapter 3. DRM Memory Management

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_syncobj
sync object.

Definition

struct drm_syncobj {
struct kref refcount;
struct dma_fence * fence;
struct file * file;

};

Members
refcount Reference count of this object.
fence NULL or a pointer to the fence bound to this object.
file a file backing for this syncobj.
Description
This structure defines a generic sync object which wraps a dma fence.
void drm_syncobj_get(struct drm_syncobj * obj)

acquire a syncobj reference
Parameters
struct drm_syncobj * obj sync object
Description
This acquires additional reference to obj. It is illegal to call this without already holding a reference. No
locks required.
void drm_syncobj_put(struct drm_syncobj * obj)

release a reference to a sync object.
Parameters
struct drm_syncobj * obj sync object.
struct drm_syncobj * drm_syncobj_find(struct drm_file * file_private, u32 handle)

lookup and reference a sync object.
Parameters
struct drm_file * file_private drm file private pointer
u32 handle sync object handle to lookup.
Description
Returns a reference to the syncobj pointed to by handle or NULL.
void drm_syncobj_replace_fence(struct drm_syncobj * syncobj, struct dma_fence * fence)

replace fence in a sync object.
Parameters
struct drm_syncobj * syncobj Sync object to replace fence in
struct dma_fence * fence fence to install in sync file.
Description
This replaces the fence on a sync object.
void drm_syncobj_free(struct kref * kref)

free a sync object.
Parameters

3.7. DRM Sync Objects 57

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct kref * kref kref to free.
Description
Only to be called from kref_put in drm_syncobj_put.

58 Chapter 3. DRM Memory Management

CHAPTER

FOUR

KERNEL MODE SETTING (KMS)

Drivers must initialize the mode setting core by calling drm_mode_config_init() on the DRM device.
The function initializes the struct drm_device mode_config field and never fails. Once done, mode
configuration must be setup by initializing the following fields.
• int min_width, min_height; int max_width, max_height; Minimum and maximum width and height of
the frame buffers in pixel units.

• struct drm_mode_config_funcs *funcs; Mode setting functions.

4.1 Overview

The basic object structure KMS presents to userspace is fairly simple. Framebuffers (represented by
struct drm_framebuffer, see Frame Buffer Abstraction) feed into planes. One or more (or even no)
planes feed their pixel data into a CRTC (represented by struct drm_crtc, see CRTC Abstraction) for
blending. The precise blending step is explained in more detail in Plane Composition Properties and
related chapters.
For the output routing the first step is encoders (represented by struct drm_encoder, see Encoder Ab-
straction). Those are really just internal artifacts of the helper libraries used to implement KMS drivers.
Besides that theymake it unecessarily more complicated for userspace to figure out which connections be-
tween a CRTC and a connector are possible, and what kind of cloning is supported, they serve no purpose
in the userspace API. Unfortunately encoders have been exposed to userspace, hence can’t remove them
at this point. Futhermore the exposed restrictions are often wrongly set by drivers, and in many cases not
powerful enough to express the real restrictions. A CRTC can be connected to multiple encoders, and for
an active CRTC there must be at least one encoder.
The final, and real, endpoint in the display chain is the connector (represented by struct drm_connector,
see Connector Abstraction). Connectors can have different possible encoders, but the kernel driver selects
which encoder to use for each connector. The use case is DVI, which could switch between an analog and
a digital encoder. Encoders can also drive multiple different connectors. There is exactly one active
connector for every active encoder.
Internally the output pipeline is a bit more complex and matches today’s hardware more closely:
Internally two additional helper objects come into play. First, to be able to share code for encoders (some-
times on the same SoC, sometimes off-chip) one or more Bridges (represented by struct drm_bridge)
can be linked to an encoder. This link is static and cannot be changed, which means the cross-bar (if there
is any) needs to be mapped between the CRTC and any encoders. Often for drivers with bridges there’s
no code left at the encoder level. Atomic drivers can leave out all the encoder callbacks to essentially
only leave a dummy routing object behind, which is needed for backwards compatibility since encoders
are exposed to userspace.
The second object is for panels, represented by struct drm_panel, see Panel Helper Reference . Panels
do not have a fixed binding point, but are generally linked to the driver private structure that embeds
struct drm_connector.

59

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Static Objects

Userspace-Created

Hotpluggable

drm_plane A

drm_crtc

drm_encoder A drm_encoder B

drm_plane B

drm_connector A drm_connector B

drm_framebuffer 1drm_framebuffer 2

Fig. 4.1: KMS Display Pipeline Overview

60 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Internal Pipeline

Outputs

drm_crtc

drm_encoder Adrm_encoder Bdrm_encoder C

drm_connector A

drm_bridge Bdrm_bridge C1

drm_connector B

drm_bridge C2

drm_connector Cdrm_panel

Fig. 4.2: KMS Output Pipeline

4.1. Overview 61

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Note that currently the bridge chaining and interactions with connectors and panels are still in-flux and
not really fully sorted out yet.

4.2 KMS Core Structures and Functions

struct drm_mode_config_funcs
basic driver provided mode setting functions

Definition

struct drm_mode_config_funcs {
struct drm_framebuffer *(* fb_create) (struct drm_device *dev,struct drm_file *file_priv,␣

↪→const struct drm_mode_fb_cmd2 *mode_cmd);
const struct drm_format_info *(* get_format_info) (const struct drm_mode_fb_cmd2 *mode_cmd);
void (* output_poll_changed) (struct drm_device *dev);
int (* atomic_check) (struct drm_device *dev, struct drm_atomic_state *state);
int (* atomic_commit) (struct drm_device *dev,struct drm_atomic_state *state, bool nonblock);
struct drm_atomic_state *(* atomic_state_alloc) (struct drm_device *dev);
void (* atomic_state_clear) (struct drm_atomic_state *state);
void (* atomic_state_free) (struct drm_atomic_state *state);

};

Members
fb_create Create a new framebuffer object. The core does basic checks on the requested metadata, but

most of that is left to the driver. See struct drm_mode_fb_cmd2 for details.
If the parameters are deemed valid and the backing storage objects in the underlying memory man-
ager all exist, then the driver allocates a new drm_framebuffer structure, subclassed to contain
driver-specific information (like the internal native buffer object references). It also needs to fill out
all relevant metadata, which should be done by calling drm_helper_mode_fill_fb_struct().
The initialization is finalized by calling drm_framebuffer_init(), which registers the framebuffer
and makes it accessible to other threads.
RETURNS:
A new framebuffer with an initial reference count of 1 or a negative error code encoded with
ERR_PTR().

get_format_info Allows a driver to return custom format information for special fb layouts (eg. ones
with auxiliary compression control planes).
RETURNS:
The format information specific to the given fb metadata, or NULL if none is found.

output_poll_changed Callback used by helpers to inform the driver of output configuration changes.
Drivers implementing fbdev emulation with the helpers can call drm_fb_helper_hotplug_changed
from this hook to inform the fbdev helper of output changes.
FIXME:
Except that there’s no vtable for device-level helper callbacks there’s no reason this is a core function.

atomic_check This is the only hook to validate an atomic modeset update. This function must reject any
modeset and state changes which the hardware or driver doesn’t support. This includes but is of
course not limited to:
• Checking that the modes, framebuffers, scaling and placement requirements and so on are
within the limits of the hardware.

62 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

• Checking that any hidden shared resources are not oversubscribed. This can be shared PLLs,
shared lanes, overall memory bandwidth, display fifo space (where shared between planes or
maybe even CRTCs).

• Checking that virtualized resources exported to userspace are not oversubscribed. For various
reasons it can make sense to expose more planes, crtcs or encoders than which are physically
there. One example is dual-pipe operations (which generally should be hidden from userspace if
when lockstepped in hardware, exposed otherwise), where a plane might need 1 hardware plane
(if it’s just on one pipe), 2 hardware planes (when it spans both pipes) or maybe even shared a
hardware plane with a 2nd plane (if there’s a compatible plane requested on the area handled
by the other pipe).

• Check that any transitional state is possible and that if requested, the update can indeed be
done in the vblank period without temporarily disabling some functions.

• Check any other constraints the driver or hardware might have.
• This callback also needs to correctly fill out the drm_crtc_state in this update to make sure
that drm_atomic_crtc_needs_modeset() reflects the nature of the possible update and returns
true if and only if the update cannot be applied without tearing within one vblank on that CRTC.
The core uses that information to reject updates which require a full modeset (i.e. blanking the
screen, or at least pausing updates for a substantial amount of time) if userspace has disallowed
that in its request.

• The driver also does not need to repeat basic input validation like done for the corresponding
legacy entry points. The core does that before calling this hook.

See the documentation of atomic_commit for an exhaustive list of error conditions which don’t have
to be checked at the in this callback.
See the documentation for struct drm_atomic_state for how exactly an atomic modeset update
is described.
Drivers using the atomic helpers can implement this hook using drm_atomic_helper_check(), or
one of the exported sub-functions of it.
RETURNS:
0 on success or one of the below negative error codes:
• -EINVAL, if any of the above constraints are violated.
• -EDEADLK, when returned from an attempt to acquire an additional drm_modeset_lock through
drm_modeset_lock().

• -ENOMEM, if allocating additional state sub-structures failed due to lack of memory.
• -EINTR, -EAGAIN or -ERESTARTSYS, if the IOCTL should be restarted. This can either be due to a
pending signal, or because the driver needs to completely bail out to recover from an exceptional
situation like a GPU hang. From a userspace point all errors are treated equally.

atomic_commit This is the only hook to commit an atomic modeset update. The core guarantees that
atomic_check has been called successfully before calling this function, and that nothing has been
changed in the interim.
See the documentation for struct drm_atomic_state for how exactly an atomic modeset update
is described.
Drivers using the atomic helpers can implement this hook using drm_atomic_helper_commit(), or
one of the exported sub-functions of it.
Nonblocking commits (as indicated with the nonblock parameter) must do any preparatory work
which might result in an unsuccessful commit in the context of this callback. The only exceptions
are hardware errors resulting in -EIO. But even in that case the driver must ensure that the display
pipe is at least running, to avoid compositors crashing when pageflips don’t work. Anything else,
specifically committing the update to the hardware, should be done without blocking the caller. For
updates which do not require a modeset this must be guaranteed.

4.2. KMS Core Structures and Functions 63

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

The driver must wait for any pending rendering to the new framebuffers to complete before executing
the flip. It should also wait for any pending rendering from other drivers if the underlying buffer is a
shared dma-buf. Nonblocking commits must not wait for rendering in the context of this callback.
An application can request to be notified when the atomic commit has completed. These events are
per-CRTC and can be distinguished by the CRTC index supplied in drm_event to userspace.
The drm core will supply a struct drm_event in each CRTC’s drm_crtc_state.event. See the doc-
umentation for drm_crtc_state.event for more details about the precise semantics of this event.
NOTE:
Drivers are not allowed to shut down any display pipe successfully enabled through an atomic commit
on their own. Doing so can result in compositors crashing if a page flip is suddenly rejected because
the pipe is off.
RETURNS:
0 on success or one of the below negative error codes:
• -EBUSY, if a nonblocking updated is requested and there is an earlier updated pending. Drivers
are allowed to support a queue of outstanding updates, but currently no driver supports that.
Note that drivers must wait for preceding updates to complete if a synchronous update is re-
quested, they are not allowed to fail the commit in that case.

• -ENOMEM, if the driver failed to allocate memory. Specifically this can happen when trying to
pin framebuffers, which must only be done when committing the state.

• -ENOSPC, as a refinement of the more generic -ENOMEM to indicate that the driver has run out
of vram, iommu space or similar GPU address space needed for framebuffer.

• -EIO, if the hardware completely died.
• -EINTR, -EAGAIN or -ERESTARTSYS, if the IOCTL should be restarted. This can either be due to a
pending signal, or because the driver needs to completely bail out to recover from an exceptional
situation like a GPU hang. From a userspace point of view all errors are treated equally.

This list is exhaustive. Specifically this hook is not allowed to return -EINVAL (any invalid requests
should be caught in atomic_check) or -EDEADLK (this function must not acquire additional modeset
locks).

atomic_state_alloc This optional hook can be used by drivers that want to subclass struct
drm_atomic_state to be able to track their own driver-private global state easily. If this hook is
implemented, drivers must also implement atomic_state_clear and atomic_state_free.
RETURNS:
A new drm_atomic_state on success or NULL on failure.

atomic_state_clear This hook must clear any driver private state duplicated into the passed-in
drm_atomic_state. This hook is called when the caller encountered a drm_modeset_lock deadlock
and needs to drop all already acquired locks as part of the deadlock avoidance dance implemented
in drm_modeset_backoff().
Any duplicated state must be invalidated since a concurrent atomic update might change it, and the
drm atomic interfaces always apply updates as relative changes to the current state.
Drivers that implement this must call drm_atomic_state_default_clear() to clear common state.

atomic_state_free This hook needs driver private resources and the drm_atomic_state itself. Note
that the core first calls drm_atomic_state_clear() to avoid code duplicate between the clear and
free hooks.
Drivers that implement this must call drm_atomic_state_default_release() to release common
resources.

Description
Some global (i.e. not per-CRTC, connector, etc) mode setting functions that involve drivers.

64 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_mode_config
Mode configuration control structure

Definition

struct drm_mode_config {
struct mutex mutex;
struct drm_modeset_lock connection_mutex;
struct drm_modeset_acquire_ctx * acquire_ctx;
struct mutex idr_mutex;
struct idr crtc_idr;
struct idr tile_idr;
struct mutex fb_lock;
int num_fb;
struct list_head fb_list;
spinlock_t connector_list_lock;
int num_connector;
struct ida connector_ida;
struct list_head connector_list;
int num_encoder;
struct list_head encoder_list;
int num_overlay_plane;
int num_total_plane;
struct list_head plane_list;
int num_crtc;
struct list_head crtc_list;
struct list_head property_list;
int min_width;
int min_height;
int max_width;
int max_height;
const struct drm_mode_config_funcs * funcs;
resource_size_t fb_base;
bool poll_enabled;
bool poll_running;
bool delayed_event;
struct delayed_work output_poll_work;
struct mutex blob_lock;
struct list_head property_blob_list;
struct drm_property * edid_property;
struct drm_property * dpms_property;
struct drm_property * path_property;
struct drm_property * tile_property;
struct drm_property * link_status_property;
struct drm_property * plane_type_property;
struct drm_property * prop_src_x;
struct drm_property * prop_src_y;
struct drm_property * prop_src_w;
struct drm_property * prop_src_h;
struct drm_property * prop_crtc_x;
struct drm_property * prop_crtc_y;
struct drm_property * prop_crtc_w;
struct drm_property * prop_crtc_h;
struct drm_property * prop_fb_id;
struct drm_property * prop_in_fence_fd;
struct drm_property * prop_out_fence_ptr;
struct drm_property * prop_crtc_id;
struct drm_property * prop_active;
struct drm_property * prop_mode_id;
struct drm_property * dvi_i_subconnector_property;
struct drm_property * dvi_i_select_subconnector_property;
struct drm_property * tv_subconnector_property;
struct drm_property * tv_select_subconnector_property;

4.2. KMS Core Structures and Functions 65

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_property * tv_mode_property;
struct drm_property * tv_left_margin_property;
struct drm_property * tv_right_margin_property;
struct drm_property * tv_top_margin_property;
struct drm_property * tv_bottom_margin_property;
struct drm_property * tv_brightness_property;
struct drm_property * tv_contrast_property;
struct drm_property * tv_flicker_reduction_property;
struct drm_property * tv_overscan_property;
struct drm_property * tv_saturation_property;
struct drm_property * tv_hue_property;
struct drm_property * scaling_mode_property;
struct drm_property * aspect_ratio_property;
struct drm_property * degamma_lut_property;
struct drm_property * degamma_lut_size_property;
struct drm_property * ctm_property;
struct drm_property * gamma_lut_property;
struct drm_property * gamma_lut_size_property;
struct drm_property * suggested_x_property;
struct drm_property * suggested_y_property;
uint32_t preferred_depth;
uint32_t prefer_shadow;
bool async_page_flip;
bool allow_fb_modifiers;
uint32_t cursor_width;
uint32_t cursor_height;
const struct drm_mode_config_helper_funcs * helper_private;

};

Members
mutex This is the big scary modeset BKL which protects everything that isn’t protect otherwise. Scope

is unclear and fuzzy, try to remove anything from under it’s protection and move it into more well-
scoped locks.
The one important thing this protects is the use of acquire_ctx.

connection_mutex This protects connector state and the connector to encoder to CRTC routing chain.
For atomic drivers specifically this protects drm_connector.state.

acquire_ctx Global implicit acquire context used by atomic drivers for legacy IOCTLs. Deprecated, since
implicit locking contexts make it impossible to use driver-private struct drm_modeset_lock. Users
of this must hold mutex.

idr_mutex Mutex for KMS ID allocation and management. Protects both crtc_idr and tile_idr.
crtc_idr Main KMS ID tracking object. Use this idr for all IDs, fb, crtc, connector, modes - just makes life

easier to have only one.
tile_idr Use this idr for allocating new IDs for tiled sinks like use in some high-res DP MST screens.
fb_lock Mutex to protect fb the global fb_list and num_fb.
num_fb Number of entries on fb_list.
fb_list List of all struct drm_framebuffer.
connector_list_lock Protects num_connector and connector_list.
num_connector Number of connectors on this device. Protected by connector_list_lock.
connector_ida ID allocator for connector indices.
connector_list List of connector objects linked with drm_connector.head. Protected by connec-

tor_list_lock. Only use drm_for_each_connector_iter() and struct drm_connector_list_iter
to walk this list.

66 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

num_encoder Number of encoders on this device. This is invariant over the lifetime of a device and hence
doesn’t need any locks.

encoder_list List of encoder objects linked with drm_encoder.head. This is invariant over the lifetime
of a device and hence doesn’t need any locks.

num_overlay_plane Number of overlay planes on this device, excluding primary and cursor planes.
Track number of overlay planes separately from number of total planes. By default we only advertise
overlay planes to userspace; if userspace sets the “universal plane” capability bit, we’ll go ahead
and expose all planes. This is invariant over the lifetime of a device and hence doesn’t need any
locks.

num_total_plane Number of universal (i.e. with primary/curso) planes on this device. This is invariant
over the lifetime of a device and hence doesn’t need any locks.

plane_list List of plane objects linked with drm_plane.head. This is invariant over the lifetime of a
device and hence doesn’t need any locks.

num_crtc Number of CRTCs on this device linked with drm_crtc.head. This is invariant over the lifetime
of a device and hence doesn’t need any locks.

crtc_list List of CRTC objects linked with drm_crtc.head. This is invariant over the lifetime of a device
and hence doesn’t need any locks.

property_list List of property type objects linked with drm_property.head. This is invariant over the
lifetime of a device and hence doesn’t need any locks.

min_width minimum pixel width on this device
min_height minimum pixel height on this device
max_width maximum pixel width on this device
max_height maximum pixel height on this device
funcs core driver provided mode setting functions
fb_base base address of the framebuffer
poll_enabled track polling support for this device
poll_running track polling status for this device
delayed_event track delayed poll uevent deliver for this device
output_poll_work delayed work for polling in process context
blob_lock Mutex for blob property allocation and management, protects property_blob_list and

drm_file.blobs.
property_blob_list List of all the blob property objects linked with drm_property_blob.head. Pro-

tected by blob_lock.
edid_property Default connector property to hold the EDID of the currently connected sink, if any.
dpms_property Default connector property to control the connector’s DPMS state.
path_property Default connector property to hold the DP MST path for the port.
tile_property Default connector property to store the tile position of a tiled screen, for sinks which need

to be driven with multiple CRTCs.
link_status_property Default connector property for link status of a connector
plane_type_property Default plane property to differentiate CURSOR, PRIMARY and OVERLAY legacy

uses of planes.
prop_src_x Default atomic plane property for the plane source position in the connected

drm_framebuffer.

4.2. KMS Core Structures and Functions 67

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

prop_src_y Default atomic plane property for the plane source position in the connected
drm_framebuffer.

prop_src_w Default atomic plane property for the plane source position in the connected
drm_framebuffer.

prop_src_h Default atomic plane property for the plane source position in the connected
drm_framebuffer.

prop_crtc_x Default atomic plane property for the plane destination position in the drm_crtc is is being
shown on.

prop_crtc_y Default atomic plane property for the plane destination position in the drm_crtc is is being
shown on.

prop_crtc_w Default atomic plane property for the plane destination position in the drm_crtc is is being
shown on.

prop_crtc_h Default atomic plane property for the plane destination position in the drm_crtc is is being
shown on.

prop_fb_id Default atomic plane property to specify the drm_framebuffer.
prop_in_fence_fd Sync File fd representing the incoming fences for a Plane.
prop_out_fence_ptr Sync File fd pointer representing the outgoing fences for a CRTC. Userspace should

provide a pointer to a value of type s32, and then cast that pointer to u64.
prop_crtc_id Default atomic plane property to specify the drm_crtc.
prop_active Default atomic CRTC property to control the active state, which is the simplified implemen-

tation for DPMS in atomic drivers.
prop_mode_id Default atomic CRTC property to set the mode for a CRTC. A 0 mode implies that the CRTC

is entirely disabled - all connectors must be of and active must be set to disabled, too.
dvi_i_subconnector_property Optional DVI-I property to differentiate between analog or digital mode.
dvi_i_select_subconnector_property Optional DVI-I property to select between analog or digital

mode.
tv_subconnector_property Optional TV property to differentiate between different TV connector types.
tv_select_subconnector_property Optional TV property to select between different TV connector

types.
tv_mode_property Optional TV property to select the output TV mode.
tv_left_margin_property Optional TV property to set the left margin.
tv_right_margin_property Optional TV property to set the right margin.
tv_top_margin_property Optional TV property to set the right margin.
tv_bottom_margin_property Optional TV property to set the right margin.
tv_brightness_property Optional TV property to set the brightness.
tv_contrast_property Optional TV property to set the contrast.
tv_flicker_reduction_property Optional TV property to control the flicker reduction mode.
tv_overscan_property Optional TV property to control the overscan setting.
tv_saturation_property Optional TV property to set the saturation.
tv_hue_property Optional TV property to set the hue.
scaling_mode_property Optional connector property to control the upscaling, mostly used for built-in

panels.
aspect_ratio_property Optional connector property to control the HDMI infoframe aspect ratio setting.

68 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

degamma_lut_property Optional CRTC property to set the LUT used to convert the framebuffer’s colors
to linear gamma.

degamma_lut_size_property Optional CRTC property for the size of the degamma LUT as supported by
the driver (read-only).

ctm_property Optional CRTC property to set the matrix used to convert colors after the lookup in the
degamma LUT.

gamma_lut_property Optional CRTC property to set the LUT used to convert the colors, after the CTM
matrix, to the gamma space of the connected screen.

gamma_lut_size_property Optional CRTC property for the size of the gamma LUT as supported by the
driver (read-only).

suggested_x_property Optional connector property with a hint for the position of the output on the
host’s screen.

suggested_y_property Optional connector property with a hint for the position of the output on the
host’s screen.

preferred_depth preferred RBG pixel depth, used by fb helpers
prefer_shadow hint to userspace to prefer shadow-fb rendering
async_page_flip Does this device support async flips on the primary plane?
allow_fb_modifiers Whether the driver supports fb modifiers in the ADDFB2.1 ioctl call.
cursor_width hint to userspace for max cursor width
cursor_height hint to userspace for max cursor height
helper_private mid-layer private data
Description
Core mode resource tracking structure. All CRTC, encoders, and connectors enumerated by the driver are
added here, as are global properties. Some global restrictions are also here, e.g. dimension restrictions.
void drm_mode_config_reset(struct drm_device * dev)

call ->reset callbacks
Parameters
struct drm_device * dev drm device
Description
This functions calls all the crtc’s, encoder’s and connector’s ->reset callback. Drivers can use this in e.g.
their driver load or resume code to reset hardware and software state.
void drm_mode_config_init(struct drm_device * dev)

initialize DRM mode_configuration structure
Parameters
struct drm_device * dev DRM device
Description
Initialize dev‘s mode_config structure, used for tracking the graphics configuration of dev.
Since this initializes the modeset locks, no locking is possible. Which is no problem, since this should
happen single threaded at init time. It is the driver’s problem to ensure this guarantee.
void drm_mode_config_cleanup(struct drm_device * dev)

free up DRM mode_config info
Parameters
struct drm_device * dev DRM device

4.2. KMS Core Structures and Functions 69

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Free up all the connectors and CRTCs associated with this DRM device, then free up the framebuffers and
associated buffer objects.
Note that since this /should/ happen single-threaded at driver/device teardown time, no locking is required.
It’s the driver’s job to ensure that this guarantee actually holds true.
FIXME: cleanup any dangling user buffer objects too

4.3 Modeset Base Object Abstraction

drm_property A

drm_mode_object A drm_mode_object B

drm_property B

Fig. 4.3: Mode Objects and Properties

The base structure for all KMS objects is struct drm_mode_object. One of the base services it provides
is tracking properties, which are especially important for the atomic IOCTL (see Atomic Mode Setting).
The somewhat surprising part here is that properties are not directly instantiated on each object, but free-
standing mode objects themselves, represented by struct drm_property, which only specify the type
and value range of a property. Any given property can be attached multiple times to different objects
using drm_object_attach_property().
struct drm_mode_object

base structure for modeset objects
Definition

struct drm_mode_object {
uint32_t id;
uint32_t type;
struct drm_object_properties * properties;
struct kref refcount;
void (* free_cb) (struct kref *kref);

};

Members
id userspace visible identifier
type type of the object, one of DRM_MODE_OBJECT_*
properties properties attached to this object, including values
refcount reference count for objects which with dynamic lifetime
free_cb free function callback, only set for objects with dynamic lifetime

70 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Base structure for modeset objects visible to userspace. Objects can be looked up using
drm_mode_object_find(). Besides basic uapi interface properties like id and type it provides two ser-
vices:
• It tracks attached properties and their values. This is used by drm_crtc, drm_plane and
drm_connector. Properties are attached by calling drm_object_attach_property() before the ob-
ject is visible to userspace.

• For objects with dynamic lifetimes (as indicated by a non-NULL free_cb) it provides refer-
ence counting through drm_mode_object_get() and drm_mode_object_put(). This is used by
drm_framebuffer, drm_connector and drm_property_blob. These objects provide specialized ref-
erence counting wrappers.

struct drm_object_properties
property tracking for drm_mode_object

Definition

struct drm_object_properties {
int count;
struct drm_property * properties;
uint64_t values;

};

Members
count number of valid properties, must be less than or equal to DRM_OBJECT_MAX_PROPERTY.
properties Array of pointers to drm_property.

NOTE: if we ever start dynamically destroying properties (ie. not at drm_mode_config_cleanup()
time), then we’d have to do a better job of detaching property from mode objects to avoid dangling
property pointers:

values Array to store the property values, matching properties. Do not read/write values directly, but
use drm_object_property_get_value() and drm_object_property_set_value().
Note that atomic drivers do not store mutable properties in this array, but only the decoded values in
the corresponding state structure. The decoding is done using the drm_crtc.atomic_get_property
and drm_crtc.atomic_set_property hooks for struct drm_crtc. For struct drm_plane the
hooks are drm_plane_funcs.atomic_get_property and drm_plane_funcs.atomic_set_property.
And for struct drm_connector the hooks are drm_connector_funcs.atomic_get_property and
drm_connector_funcs.atomic_set_property .
Hence atomic drivers should not use drm_object_property_set_value() and
drm_object_property_get_value() on mutable objects, i.e. those without the
DRM_MODE_PROP_IMMUTABLE flag set.

void drm_mode_object_reference(struct drm_mode_object * obj)
acquire a mode object reference

Parameters
struct drm_mode_object * obj DRM mode object
Description
This is a compatibility alias for drm_mode_object_get() and should not be used by new code.
void drm_mode_object_unreference(struct drm_mode_object * obj)

release a mode object reference
Parameters
struct drm_mode_object * obj DRM mode object

4.3. Modeset Base Object Abstraction 71

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This is a compatibility alias for drm_mode_object_put() and should not be used by new code.
struct drm_mode_object * drm_mode_object_find(struct drm_device * dev, uint32_t id,

uint32_t type)
look up a drm object with static lifetime

Parameters
struct drm_device * dev drm device
uint32_t id id of the mode object
uint32_t type type of the mode object
Description
This function is used to look up a modeset object. It will acquire a reference for reference counted objects.
This reference must be dropped again by callind drm_mode_object_put().
void drm_mode_object_put(struct drm_mode_object * obj)

release a mode object reference
Parameters
struct drm_mode_object * obj DRM mode object
Description
This function decrements the object’s refcount if it is a refcounted modeset object. It is a no-op on any
other object. This is used to drop references acquired with drm_mode_object_get().
void drm_mode_object_get(struct drm_mode_object * obj)

acquire a mode object reference
Parameters
struct drm_mode_object * obj DRM mode object
Description
This function increments the object’s refcount if it is a refcounted modeset object. It is a no-op on any
other object. References should be dropped again by calling drm_mode_object_put().
void drm_object_attach_property(struct drm_mode_object * obj, struct drm_property * property,

uint64_t init_val)
attach a property to a modeset object

Parameters
struct drm_mode_object * obj drm modeset object
struct drm_property * property property to attach
uint64_t init_val initial value of the property
Description
This attaches the given property to the modeset object with the given initial value. Currently this function
cannot fail since the properties are stored in a statically sized array.
int drm_object_property_set_value(struct drm_mode_object * obj, struct drm_property * prop-

erty, uint64_t val)
set the value of a property

Parameters
struct drm_mode_object * obj drm mode object to set property value for
struct drm_property * property property to set
uint64_t val value the property should be set to

72 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This function sets a given property on a given object. This function only changes the software state of the
property, it does not call into the driver’s ->set_property callback.
Note that atomic drivers should not have any need to call this, the core will ensure consistency of values
reported back to userspace through the appropriate ->atomic_get_property callback. Only legacy drivers
should call this function to update the tracked value (after clamping and other restrictions have been
applied).
Return
Zero on success, error code on failure.
int drm_object_property_get_value(struct drm_mode_object * obj, struct drm_property * prop-

erty, uint64_t * val)
retrieve the value of a property

Parameters
struct drm_mode_object * obj drm mode object to get property value from
struct drm_property * property property to retrieve
uint64_t * val storage for the property value
Description
This function retrieves the softare state of the given property for the given property. Since there is no driver
callback to retrieve the current property value this might be out of sync with the hardware, depending
upon the driver and property.
Atomic drivers should never call this function directly, the core will read out property values through the
various ->atomic_get_property callbacks.
Return
Zero on success, error code on failure.

4.4 Atomic Mode Setting

Atomic provides transactional modeset (including planes) updates, but a bit differently from the usual
transactional approach of try-commit and rollback:
• Firstly, no hardware changes are allowed when the commit would fail. This allows us to implement
the DRM_MODE_ATOMIC_TEST_ONLY mode, which allows userspace to explore whether certain con-
figurations would work or not.

• This would still allow setting and rollback of just the software state, simplifying conversion of existing
drivers. But auditing drivers for correctness of the atomic_check code becomes really hard with that:
Rolling back changes in data structures all over the place is hard to get right.

• Lastly, for backwards compatibility and to support all use-cases, atomic updates need to be incre-
mental and be able to execute in parallel. Hardware doesn’t always allow it, but where possible plane
updates on different CRTCs should not interfere, and not get stalled due to output routing changing
on different CRTCs.

Taken all together there’s two consequences for the atomic design:
• The overall state is split up into per-object state structures: struct drm_plane_state for planes,
struct drm_crtc_state for CRTCs and struct drm_connector_state for connectors. These are
the only objects with userspace-visible and settable state. For internal state drivers can subclass
these structures through embeddeding, or add entirely new state structures for their globally shared
hardware functions.

4.4. Atomic Mode Setting 73

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Free-standing state

Current state

drm_atomic_state

duplicated drm_plane_state A duplicated drm_plane_state B duplicated drm_crtc_state duplicated drm_connector_state duplicated driver private state

drm_device

atomic_commit

drm_plane A drm_plane B drm_crtc drm_connector driver private object

drm_plane_state A drm_plane_state B drm_crtc_state drm_connector_state driver private state

Fig. 4.4: Mode Objects and Properties

• An atomic update is assembled and validated as an entirely free-standing pile of structures within the
drm_atomic_state container. Again drivers can subclass that container for their own state structure
tracking needs. Only when a state is committed is it applied to the driver and modeset objects. This
way rolling back an update boils down to releasing memory and unreferencing objects like frame-
buffers.

Read on in this chapter, and also in Atomic Modeset Helper Functions Reference for more detailed
coverage of specific topics.

4.4.1 Atomic Mode Setting Function Reference

struct drm_crtc_commit
track modeset commits on a CRTC

Definition

struct drm_crtc_commit {
struct drm_crtc * crtc;
struct kref ref;
struct completion flip_done;
struct completion hw_done;
struct completion cleanup_done;
struct list_head commit_entry;
struct drm_pending_vblank_event * event;

};

Members
crtc DRM CRTC for this commit.
ref Reference count for this structure. Needed to allow blocking on completions without the risk of the

completion disappearing meanwhile.

74 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

flip_done Will be signaled when the hardware has flipped to the new set of buffers. Signals at the same
time as when the drm event for this commit is sent to userspace, or when an out-fence is singalled.
Note that for most hardware, in most cases this happens after hw_done is signalled.

hw_done Will be signalled when all hw register changes for this commit have been written out. Especially
when disabling a pipe this can be much later than than flip_done, since that can signal already when
the screen goes black, whereas to fully shut down a pipe more register I/O is required.
Note that this does not need to include separately reference-counted resources like backing storage
buffer pinning, or runtime pm management.

cleanup_done Will be signalled after old buffers have been cleaned up by calling
drm_atomic_helper_cleanup_planes(). Since this can only happen after a vblank wait com-
pleted it might be a bit later. This completion is useful to throttle updates and avoid hardware
updates getting ahead of the buffer cleanup too much.

commit_entry Entry on the per-CRTC drm_crtc.commit_list. Protected by $drm_crtc.commit_lock.
event drm_pending_vblank_event pointer to clean up private events.
Description
This structure is used to track pending modeset changes and atomic commit on a per-CRTC basis. Since
updating the list should never block this structure is reference counted to allow waiters to safely wait on
an event to complete, without holding any locks.
It has 3 different events in total to allow a fine-grained synchronization between outstanding updates:

atomic commit thread hardware

write new state into hardware ----> ...
signal hw_done

switch to new state on next
... v/hblank

wait for buffers to show up ...

... send completion irq
irq handler signals flip_done

cleanup old buffers

signal cleanup_done

wait for flip_done <----
clean up atomic state

The important bit to know is that cleanup_done is the terminal event, but the ordering between flip_done
and hw_done is entirely up to the specific driver and modeset state change.
For an implementation of how to use this look at drm_atomic_helper_setup_commit() from the atomic
helper library.
struct drm_private_state_funcs

atomic state functions for private objects
Definition

struct drm_private_state_funcs {
void *(* duplicate_state) (struct drm_atomic_state *state, void *obj);
void (* swap_state) (void *obj, void **obj_state_ptr);
void (* destroy_state) (void *obj_state);

};

Members

4.4. Atomic Mode Setting 75

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

duplicate_state Duplicate the current state of the private object and return it. It is an error to call this
before obj->state has been initialized.
RETURNS:
Duplicated atomic state or NULL when obj->state is not initialized or allocation failed.

swap_state This function swaps the existing state of a private object obj with it’s newly created state,
the pointer to which is passed as obj_state_ptr.

destroy_state Frees the private object state created with duplicate_state.
Description
These hooks are used by atomic helpers to create, swap and destroy states of private objects. The struc-
ture itself is used as a vtable to identify the associated private object type. Each private object type that
needs to be added to the atomic states is expected to have an implementation of these hooks and pass
a pointer to it’s drm_private_state_funcs struct to drm_atomic_get_private_obj_state().
struct drm_atomic_state

the global state object for atomic updates
Definition

struct drm_atomic_state {
struct kref ref;
struct drm_device * dev;
bool allow_modeset:1;
bool legacy_cursor_update:1;
struct __drm_planes_state * planes;
struct __drm_crtcs_state * crtcs;
int num_connector;
struct __drm_connnectors_state * connectors;
int num_private_objs;
struct __drm_private_objs_state * private_objs;
struct drm_modeset_acquire_ctx * acquire_ctx;
struct work_struct commit_work;

};

Members
ref count of all references to this state (will not be freed until zero)
dev parent DRM device
allow_modeset allow full modeset
legacy_cursor_update hint to enforce legacy cursor IOCTL semantics
planes pointer to array of structures with per-plane data
crtcs pointer to array of CRTC pointers
num_connector size of the connectors and connector_states arrays
connectors pointer to array of structures with per-connector data
num_private_objs size of the private_objs array
private_objs pointer to array of private object pointers
acquire_ctx acquire context for this atomic modeset state update
commit_work Work item which can be used by the driver or helpers to execute the commit without block-

ing.
void drm_crtc_commit_get(struct drm_crtc_commit * commit)

acquire a reference to the CRTC commit
Parameters

76 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_crtc_commit * commit CRTC commit
Description
Increases the reference of commit.
void drm_crtc_commit_put(struct drm_crtc_commit * commit)

release a reference to the CRTC commmit
Parameters
struct drm_crtc_commit * commit CRTC commit
Description
This releases a reference to commit which is freed after removing the final reference. No locking required
and callable from any context.
struct drm_atomic_state * drm_atomic_state_get(struct drm_atomic_state * state)

acquire a reference to the atomic state
Parameters
struct drm_atomic_state * state The atomic state
Description
Returns a new reference to the state
void drm_atomic_state_put(struct drm_atomic_state * state)

release a reference to the atomic state
Parameters
struct drm_atomic_state * state The atomic state
Description
This releases a reference to state which is freed after removing the final reference. No locking required
and callable from any context.
struct drm_crtc_state * drm_atomic_get_existing_crtc_state(struct drm_atomic_state * state,

struct drm_crtc * crtc)
get crtc state, if it exists

Parameters
struct drm_atomic_state * state global atomic state object
struct drm_crtc * crtc crtc to grab
Description
This function returns the crtc state for the given crtc, or NULL if the crtc is not part of the global atomic
state.
This function is deprecated, drm_atomic_get_old_crtc_state or drm_atomic_get_new_crtc_state
should be used instead.
struct drm_crtc_state * drm_atomic_get_old_crtc_state(struct drm_atomic_state * state, struct

drm_crtc * crtc)
get old crtc state, if it exists

Parameters
struct drm_atomic_state * state global atomic state object
struct drm_crtc * crtc crtc to grab
Description
This function returns the old crtc state for the given crtc, or NULL if the crtc is not part of the global atomic
state.

4.4. Atomic Mode Setting 77

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_crtc_state * drm_atomic_get_new_crtc_state(struct drm_atomic_state * state, struct
drm_crtc * crtc)

get new crtc state, if it exists
Parameters
struct drm_atomic_state * state global atomic state object
struct drm_crtc * crtc crtc to grab
Description
This function returns the new crtc state for the given crtc, or NULL if the crtc is not part of the global
atomic state.
struct drm_plane_state * drm_atomic_get_existing_plane_state(struct drm_atomic_state

* state, struct drm_plane
* plane)

get plane state, if it exists
Parameters
struct drm_atomic_state * state global atomic state object
struct drm_plane * plane plane to grab
Description
This function returns the plane state for the given plane, or NULL if the plane is not part of the global
atomic state.
This function is deprecated, drm_atomic_get_old_plane_state or drm_atomic_get_new_plane_state
should be used instead.
struct drm_plane_state * drm_atomic_get_old_plane_state(struct drm_atomic_state * state,

struct drm_plane * plane)
get plane state, if it exists

Parameters
struct drm_atomic_state * state global atomic state object
struct drm_plane * plane plane to grab
Description
This function returns the old plane state for the given plane, or NULL if the plane is not part of the global
atomic state.
struct drm_plane_state * drm_atomic_get_new_plane_state(struct drm_atomic_state * state,

struct drm_plane * plane)
get plane state, if it exists

Parameters
struct drm_atomic_state * state global atomic state object
struct drm_plane * plane plane to grab
Description
This function returns the new plane state for the given plane, or NULL if the plane is not part of the global
atomic state.
struct drm_connector_state * drm_atomic_get_existing_connector_state(struct

drm_atomic_state
* state, struct
drm_connector * con-
nector)

get connector state, if it exists
Parameters

78 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_atomic_state * state global atomic state object
struct drm_connector * connector connector to grab
Description
This function returns the connector state for the given connector, or NULL if the connector is not part of
the global atomic state.
This function is deprecated, drm_atomic_get_old_connector_state or
drm_atomic_get_new_connector_state should be used instead.
struct drm_connector_state * drm_atomic_get_old_connector_state(struct drm_atomic_state

* state, struct
drm_connector * connec-
tor)

get connector state, if it exists
Parameters
struct drm_atomic_state * state global atomic state object
struct drm_connector * connector connector to grab
Description
This function returns the old connector state for the given connector, or NULL if the connector is not part
of the global atomic state.
struct drm_connector_state * drm_atomic_get_new_connector_state(struct drm_atomic_state

* state, struct
drm_connector * connec-
tor)

get connector state, if it exists
Parameters
struct drm_atomic_state * state global atomic state object
struct drm_connector * connector connector to grab
Description
This function returns the new connector state for the given connector, or NULL if the connector is not part
of the global atomic state.
const struct drm_plane_state * __drm_atomic_get_current_plane_state(struct

drm_atomic_state
* state, struct
drm_plane * plane)

get current plane state
Parameters
struct drm_atomic_state * state global atomic state object
struct drm_plane * plane plane to grab
Description
This function returns the plane state for the given plane, either from state, or if the plane isn’t part of the
atomic state update, from plane. This is useful in atomic check callbacks, when drivers need to peek at,
but not change, state of other planes, since it avoids threading an error code back up the call chain.
WARNING:
Note that this function is in general unsafe since it doesn’t check for the required locking for access
state structures. Drivers must ensure that it is safe to access the returned state structure through other
means. One common example is when planes are fixed to a single CRTC, and the driver knows that

4.4. Atomic Mode Setting 79

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

the CRTC lock is held already. In that case holding the CRTC lock gives a read-lock on all planes con-
nected to that CRTC. But if planes can be reassigned things get more tricky. In that case it’s better to use
drm_atomic_get_plane_state and wire up full error handling.
Return
Read-only pointer to the current plane state.
for_each_connector_in_state(__state, connector, connector_state, __i)

iterate over all connectors in an atomic update
Parameters
__state struct drm_atomic_state pointer
connector struct drm_connector iteration cursor
connector_state struct drm_connector_state iteration cursor
__i int iteration cursor, for macro-internal use
Description
This iterates over all connectors in an atomic update. Note that before the software state is committed
(by calling drm_atomic_helper_swap_state(), this points to the new state, while afterwards it points to
the old state. Due to this tricky confusion this macro is deprecated.
FIXME:
Replace all usage of this with one of the explicit iterators below and then remove this macro.
for_each_oldnew_connector_in_state(__state, connector, old_connector_state,

new_connector_state, __i)
iterate over all connectors in an atomic update

Parameters
__state struct drm_atomic_state pointer
connector struct drm_connector iteration cursor
old_connector_state struct drm_connector_state iteration cursor for the old state
new_connector_state struct drm_connector_state iteration cursor for the new state
__i int iteration cursor, for macro-internal use
Description
This iterates over all connectors in an atomic update, tracking both old and new state. This is useful in
places where the state delta needs to be considered, for example in atomic check functions.
for_each_old_connector_in_state(__state, connector, old_connector_state, __i)

iterate over all connectors in an atomic update
Parameters
__state struct drm_atomic_state pointer
connector struct drm_connector iteration cursor
old_connector_state struct drm_connector_state iteration cursor for the old state
__i int iteration cursor, for macro-internal use
Description
This iterates over all connectors in an atomic update, tracking only the old state. This is useful in disable
functions, where we need the old state the hardware is still in.
for_each_new_connector_in_state(__state, connector, new_connector_state, __i)

iterate over all connectors in an atomic update
Parameters

80 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

__state struct drm_atomic_state pointer
connector struct drm_connector iteration cursor
new_connector_state struct drm_connector_state iteration cursor for the new state
__i int iteration cursor, for macro-internal use
Description
This iterates over all connectors in an atomic update, tracking only the new state. This is useful in enable
functions, where we need the new state the hardware should be in when the atomic commit operation
has completed.
for_each_crtc_in_state(__state, crtc, crtc_state, __i)

iterate over all connectors in an atomic update
Parameters
__state struct drm_atomic_state pointer
crtc struct drm_crtc iteration cursor
crtc_state struct drm_crtc_state iteration cursor
__i int iteration cursor, for macro-internal use
Description
This iterates over all CRTCs in an atomic update. Note that before the software state is committed (by
calling drm_atomic_helper_swap_state(), this points to the new state, while afterwards it points to the
old state. Due to this tricky confusion this macro is deprecated.
FIXME:
Replace all usage of this with one of the explicit iterators below and then remove this macro.
for_each_oldnew_crtc_in_state(__state, crtc, old_crtc_state, new_crtc_state, __i)

iterate over all CRTCs in an atomic update
Parameters
__state struct drm_atomic_state pointer
crtc struct drm_crtc iteration cursor
old_crtc_state struct drm_crtc_state iteration cursor for the old state
new_crtc_state struct drm_crtc_state iteration cursor for the new state
__i int iteration cursor, for macro-internal use
Description
This iterates over all CRTCs in an atomic update, tracking both old and new state. This is useful in places
where the state delta needs to be considered, for example in atomic check functions.
for_each_old_crtc_in_state(__state, crtc, old_crtc_state, __i)

iterate over all CRTCs in an atomic update
Parameters
__state struct drm_atomic_state pointer
crtc struct drm_crtc iteration cursor
old_crtc_state struct drm_crtc_state iteration cursor for the old state
__i int iteration cursor, for macro-internal use
Description
This iterates over all CRTCs in an atomic update, tracking only the old state. This is useful in disable
functions, where we need the old state the hardware is still in.

4.4. Atomic Mode Setting 81

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

for_each_new_crtc_in_state(__state, crtc, new_crtc_state, __i)
iterate over all CRTCs in an atomic update

Parameters
__state struct drm_atomic_state pointer
crtc struct drm_crtc iteration cursor
new_crtc_state struct drm_crtc_state iteration cursor for the new state
__i int iteration cursor, for macro-internal use
Description
This iterates over all CRTCs in an atomic update, tracking only the new state. This is useful in enable
functions, where we need the new state the hardware should be in when the atomic commit operation
has completed.
for_each_plane_in_state(__state, plane, plane_state, __i)

iterate over all planes in an atomic update
Parameters
__state struct drm_atomic_state pointer
plane struct drm_plane iteration cursor
plane_state struct drm_plane_state iteration cursor
__i int iteration cursor, for macro-internal use
Description
This iterates over all planes in an atomic update. Note that before the software state is committed (by
calling drm_atomic_helper_swap_state(), this points to the new state, while afterwards it points to the
old state. Due to this tricky confusion this macro is deprecated.
FIXME:
Replace all usage of this with one of the explicit iterators below and then remove this macro.
for_each_oldnew_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i)

iterate over all planes in an atomic update
Parameters
__state struct drm_atomic_state pointer
plane struct drm_plane iteration cursor
old_plane_state struct drm_plane_state iteration cursor for the old state
new_plane_state struct drm_plane_state iteration cursor for the new state
__i int iteration cursor, for macro-internal use
Description
This iterates over all planes in an atomic update, tracking both old and new state. This is useful in places
where the state delta needs to be considered, for example in atomic check functions.
for_each_old_plane_in_state(__state, plane, old_plane_state, __i)

iterate over all planes in an atomic update
Parameters
__state struct drm_atomic_state pointer
plane struct drm_plane iteration cursor
old_plane_state struct drm_plane_state iteration cursor for the old state
__i int iteration cursor, for macro-internal use

82 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This iterates over all planes in an atomic update, tracking only the old state. This is useful in disable
functions, where we need the old state the hardware is still in.
for_each_new_plane_in_state(__state, plane, new_plane_state, __i)

iterate over all planes in an atomic update
Parameters
__state struct drm_atomic_state pointer
plane struct drm_plane iteration cursor
new_plane_state struct drm_plane_state iteration cursor for the new state
__i int iteration cursor, for macro-internal use
Description
This iterates over all planes in an atomic update, tracking only the new state. This is useful in enable
functions, where we need the new state the hardware should be in when the atomic commit operation
has completed.
__for_each_private_obj(__state, obj, obj_state, __i, __funcs)

iterate over all private objects
Parameters
__state struct drm_atomic_state pointer
obj private object iteration cursor
obj_state private object state iteration cursor
__i int iteration cursor, for macro-internal use
__funcs struct drm_private_state_funcs iteration cursor
Description
This macro iterates over the array containing private object data in atomic state
for_each_private_obj(__state, obj_funcs, obj, obj_state, __i, __funcs)

iterate over a specify type of private object
Parameters
__state struct drm_atomic_state pointer
obj_funcs struct drm_private_state_funcs function table to filter private objects
obj private object iteration cursor
obj_state private object state iteration cursor
__i int iteration cursor, for macro-internal use
__funcs struct drm_private_state_funcs iteration cursor
Description
This macro iterates over the private objects state array while filtering the objects based on the vfunc table
that is passed as obj_funcs. New macros can be created by passing in the vfunc table associated with a
specific private object.
bool drm_atomic_crtc_needs_modeset(const struct drm_crtc_state * state)

compute combined modeset need
Parameters
const struct drm_crtc_state * state drm_crtc_state for the CRTC

4.4. Atomic Mode Setting 83

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
To give drivers flexibility struct drm_crtc_state has 3 booleans to track whether the state CRTC changed
enough to need a full modeset cycle: planes_changed, mode_changed and active_changed. This helper
simply combines these three to compute the overall need for a modeset for state.
The atomic helper code sets these booleans, but drivers can and should change them appropriately to
accurately represent whether a modeset is really needed. In general, drivers should avoid full modesets
whenever possible.
For example if the CRTC mode has changed, and the hardware is able to enact the requested
mode change without going through a full modeset, the driver should clear mode_changed in its
drm_mode_config_funcs.atomic_check implementation.
void drm_atomic_state_default_release(struct drm_atomic_state * state)

release memory initialized by drm_atomic_state_init
Parameters
struct drm_atomic_state * state atomic state
Description
Free all the memory allocated by drm_atomic_state_init. This is useful for drivers that subclass the atomic
state.
int drm_atomic_state_init(struct drm_device * dev, struct drm_atomic_state * state)

init new atomic state
Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * state atomic state
Description
Default implementation for filling in a new atomic state. This is useful for drivers that subclass the atomic
state.
struct drm_atomic_state * drm_atomic_state_alloc(struct drm_device * dev)

allocate atomic state
Parameters
struct drm_device * dev DRM device
Description
This allocates an empty atomic state to track updates.
void drm_atomic_state_default_clear(struct drm_atomic_state * state)

clear base atomic state
Parameters
struct drm_atomic_state * state atomic state
Description
Default implementation for clearing atomic state. This is useful for drivers that subclass the atomic state.

void drm_atomic_state_clear(struct drm_atomic_state * state)
clear state object

Parameters
struct drm_atomic_state * state atomic state

84 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
When the w/wmutex algorithm detects a deadlock we need to back off and drop all locks. So someone else
could sneak in and change the current modeset configuration. Which means that all the state assembled
in state is no longer an atomic update to the current state, but to some arbitrary earlier state. Which
could break assumptions the driver’s drm_mode_config_funcs.atomic_check likely relies on.
Hence we must clear all cached state and completely start over, using this function.
void __drm_atomic_state_free(struct kref * ref)

free all memory for an atomic state
Parameters
struct kref * ref This atomic state to deallocate
Description
This frees all memory associated with an atomic state, including all the per-object state for planes, crtcs
and connectors.
struct drm_crtc_state * drm_atomic_get_crtc_state(struct drm_atomic_state * state, struct

drm_crtc * crtc)
get crtc state

Parameters
struct drm_atomic_state * state global atomic state object
struct drm_crtc * crtc crtc to get state object for
Description
This function returns the crtc state for the given crtc, allocating it if needed. It will also grab the relevant
crtc lock to make sure that the state is consistent.
Return
Either the allocated state or the error code encoded into the pointer. When the error is EDEADLK then the
w/w mutex code has detected a deadlock and the entire atomic sequence must be restarted. All other
errors are fatal.
int drm_atomic_set_mode_for_crtc(struct drm_crtc_state * state, const struct drm_display_mode

* mode)
set mode for CRTC

Parameters
struct drm_crtc_state * state the CRTC whose incoming state to update
const struct drm_display_mode * mode kernel-internal mode to use for the CRTC, or NULL to disable
Description
Set a mode (originating from the kernel) on the desired CRTC state and update the enable property.
Return
Zero on success, error code on failure. Cannot return -EDEADLK.
int drm_atomic_set_mode_prop_for_crtc(struct drm_crtc_state * state, struct drm_property_blob

* blob)
set mode for CRTC

Parameters
struct drm_crtc_state * state the CRTC whose incoming state to update
struct drm_property_blob * blob pointer to blob property to use for mode

4.4. Atomic Mode Setting 85

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Set a mode (originating from a blob property) on the desired CRTC state. This function will take a reference
on the blob property for the CRTC state, and release the reference held on the state’s existing mode
property, if any was set.
Return
Zero on success, error code on failure. Cannot return -EDEADLK.
int drm_atomic_crtc_set_property(struct drm_crtc * crtc, struct drm_crtc_state * state, struct

drm_property * property, uint64_t val)
set property on CRTC

Parameters
struct drm_crtc * crtc the drm CRTC to set a property on
struct drm_crtc_state * state the state object to update with the new property value
struct drm_property * property the property to set
uint64_t val the new property value
Description
This function handles generic/core properties and calls out to driver’s
drm_crtc_funcs.atomic_set_property for driver properties. To ensure consistent behavior you
must call this function rather than the driver hook directly.
Return
Zero on success, error code on failure
struct drm_plane_state * drm_atomic_get_plane_state(struct drm_atomic_state * state, struct

drm_plane * plane)
get plane state

Parameters
struct drm_atomic_state * state global atomic state object
struct drm_plane * plane plane to get state object for
Description
This function returns the plane state for the given plane, allocating it if needed. It will also grab the
relevant plane lock to make sure that the state is consistent.
Return
Either the allocated state or the error code encoded into the pointer. When the error is EDEADLK then the
w/w mutex code has detected a deadlock and the entire atomic sequence must be restarted. All other
errors are fatal.
int drm_atomic_plane_set_property(struct drm_plane * plane, struct drm_plane_state * state,

struct drm_property * property, uint64_t val)
set property on plane

Parameters
struct drm_plane * plane the drm plane to set a property on
struct drm_plane_state * state the state object to update with the new property value
struct drm_property * property the property to set
uint64_t val the new property value
Description

86 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

This function handles generic/core properties and calls out to driver’s
drm_plane_funcs.atomic_set_property for driver properties. To ensure consistent behavior you
must call this function rather than the driver hook directly.
Return
Zero on success, error code on failure
void * drm_atomic_get_private_obj_state(struct drm_atomic_state * state, void * obj, const

struct drm_private_state_funcs * funcs)
get private object state

Parameters
struct drm_atomic_state * state global atomic state
void * obj private object to get the state for
const struct drm_private_state_funcs * funcs pointer to the struct of function pointers that iden-

tify the object type
Description
This function returns the private object state for the given private object, allocating the state if needed.
It does not grab any locks as the caller is expected to care of any required locking.
Return
Either the allocated state or the error code encoded into a pointer.
struct drm_connector_state * drm_atomic_get_connector_state(struct drm_atomic_state * state,

struct drm_connector * connec-
tor)

get connector state
Parameters
struct drm_atomic_state * state global atomic state object
struct drm_connector * connector connector to get state object for
Description
This function returns the connector state for the given connector, allocating it if needed. It will also grab
the relevant connector lock to make sure that the state is consistent.
Return
Either the allocated state or the error code encoded into the pointer. When the error is EDEADLK then the
w/w mutex code has detected a deadlock and the entire atomic sequence must be restarted. All other
errors are fatal.
int drm_atomic_connector_set_property(struct drm_connector * connector, struct

drm_connector_state * state, struct drm_property
* property, uint64_t val)

set property on connector.
Parameters
struct drm_connector * connector the drm connector to set a property on
struct drm_connector_state * state the state object to update with the new property value
struct drm_property * property the property to set
uint64_t val the new property value
Description
This function handles generic/core properties and calls out to driver’s
drm_connector_funcs.atomic_set_property for driver properties. To ensure consistent behavior
you must call this function rather than the driver hook directly.

4.4. Atomic Mode Setting 87

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Return
Zero on success, error code on failure
int drm_atomic_set_crtc_for_plane(struct drm_plane_state * plane_state, struct drm_crtc * crtc)

set crtc for plane
Parameters
struct drm_plane_state * plane_state the plane whose incoming state to update
struct drm_crtc * crtc crtc to use for the plane
Description
Changing the assigned crtc for a plane requires us to grab the lock and state for the new crtc, as needed.
This function takes care of all these details besides updating the pointer in the state object itself.
Return
0 on success or can fail with -EDEADLK or -ENOMEM. When the error is EDEADLK then the w/w mutex code
has detected a deadlock and the entire atomic sequence must be restarted. All other errors are fatal.
void drm_atomic_set_fb_for_plane(struct drm_plane_state * plane_state, struct drm_framebuffer

* fb)
set framebuffer for plane

Parameters
struct drm_plane_state * plane_state atomic state object for the plane
struct drm_framebuffer * fb fb to use for the plane
Description
Changing the assigned framebuffer for a plane requires us to grab a reference to the new fb and drop the
reference to the old fb, if there is one. This function takes care of all these details besides updating the
pointer in the state object itself.
void drm_atomic_set_fence_for_plane(struct drm_plane_state * plane_state, struct dma_fence

* fence)
set fence for plane

Parameters
struct drm_plane_state * plane_state atomic state object for the plane
struct dma_fence * fence dma_fence to use for the plane
Description
Helper to setup the plane_state fence in case it is not set yet. By using this drivers doesn’t need to worry
if the user choose implicit or explicit fencing.
This function will not set the fence to the state if it was set via explicit fencing interfaces on the atomic
ioctl. In that case it will drop the reference to the fence as we are not storing it anywhere. Otherwise,
if drm_plane_state.fence is not set this function we just set it with the received implicit fence. In both
cases this function consumes a reference for fence.
int drm_atomic_set_crtc_for_connector(struct drm_connector_state * conn_state, struct

drm_crtc * crtc)
set crtc for connector

Parameters
struct drm_connector_state * conn_state atomic state object for the connector
struct drm_crtc * crtc crtc to use for the connector
Description

88 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Changing the assigned crtc for a connector requires us to grab the lock and state for the new crtc, as
needed. This function takes care of all these details besides updating the pointer in the state object itself.
Return
0 on success or can fail with -EDEADLK or -ENOMEM. When the error is EDEADLK then the w/w mutex code
has detected a deadlock and the entire atomic sequence must be restarted. All other errors are fatal.
int drm_atomic_add_affected_connectors(struct drm_atomic_state * state, struct drm_crtc * crtc)

add connectors for crtc
Parameters
struct drm_atomic_state * state atomic state
struct drm_crtc * crtc DRM crtc
Description
This function walks the current configuration and adds all connectors currently using crtc to the atomic
configuration state. Note that this function must acquire the connection mutex. This can potentially
cause unneeded seralization if the update is just for the planes on one crtc. Hence drivers and helpers
should only call this when really needed (e.g. when a full modeset needs to happen due to some change).
Return
0 on success or can fail with -EDEADLK or -ENOMEM. When the error is EDEADLK then the w/w mutex code
has detected a deadlock and the entire atomic sequence must be restarted. All other errors are fatal.
int drm_atomic_add_affected_planes(struct drm_atomic_state * state, struct drm_crtc * crtc)

add planes for crtc
Parameters
struct drm_atomic_state * state atomic state
struct drm_crtc * crtc DRM crtc
Description
This function walks the current configuration and adds all planes currently used by crtc to the atomic
configuration state. This is useful when an atomic commit also needs to check all currently enabled
plane on crtc, e.g. when changing the mode. It’s also useful when re-enabling a CRTC to avoid special
code to force-enable all planes.
Since acquiring a plane state will always also acquire the w/w mutex of the current CRTC for that plane (if
there is any) adding all the plane states for a CRTC will not reduce parallism of atomic updates.
Return
0 on success or can fail with -EDEADLK or -ENOMEM. When the error is EDEADLK then the w/w mutex code
has detected a deadlock and the entire atomic sequence must be restarted. All other errors are fatal.
void drm_atomic_legacy_backoff(struct drm_atomic_state * state)

locking backoff for legacy ioctls
Parameters
struct drm_atomic_state * state atomic state
Description
This function should be used by legacy entry points which don’t understand -EDEADLK semantics. For
simplicity this one will grab all modeset locks after the slowpath completed.
int drm_atomic_check_only(struct drm_atomic_state * state)

check whether a given config would work
Parameters
struct drm_atomic_state * state atomic configuration to check

4.4. Atomic Mode Setting 89

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Note that this function can return -EDEADLK if the driver needed to acquire more locks but encountered
a deadlock. The caller must then do the usual w/w backoff dance and restart. All other errors are fatal.
Return
0 on success, negative error code on failure.
int drm_atomic_commit(struct drm_atomic_state * state)

commit configuration atomically
Parameters
struct drm_atomic_state * state atomic configuration to check
Description
Note that this function can return -EDEADLK if the driver needed to acquire more locks but encountered
a deadlock. The caller must then do the usual w/w backoff dance and restart. All other errors are fatal.
This function will take its own reference on state. Callers should always release their reference with
drm_atomic_state_put().
Return
0 on success, negative error code on failure.
int drm_atomic_nonblocking_commit(struct drm_atomic_state * state)

atomic nonblocking commit
Parameters
struct drm_atomic_state * state atomic configuration to check
Description
Note that this function can return -EDEADLK if the driver needed to acquire more locks but encountered
a deadlock. The caller must then do the usual w/w backoff dance and restart. All other errors are fatal.
This function will take its own reference on state. Callers should always release their reference with
drm_atomic_state_put().
Return
0 on success, negative error code on failure.
void drm_state_dump(struct drm_device * dev, struct drm_printer * p)

dump entire device atomic state
Parameters
struct drm_device * dev the drm device
struct drm_printer * p where to print the state to
Description
Just for debugging. Drivers might want an option to dump state to dmesg in case of error irq’s. (Hint, you
probably want to ratelimit this!)
The caller must drm_modeset_lock_all(), or if this is called from error irq handler, it should not be
enabled by default. (Ie. if you are debugging errors you might not care that this is racey. But calling this
without all modeset locks held is not inherently safe.)
void drm_atomic_clean_old_fb(struct drm_device * dev, unsigned plane_mask, int ret)

•Unset old_fb pointers and set plane->fb pointers.
Parameters
struct drm_device * dev drm device to check.
unsigned plane_mask plane mask for planes that were updated.

90 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int ret return value, can be -EDEADLK for a retry.
Description
Before doing an update drm_plane.old_fb is set to drm_plane.fb, but before dropping the locks old_fb
needs to be set to NULL and plane->fb updated. This is a common operation for each atomic update, so
this call is split off as a helper.

4.5 CRTC Abstraction

A CRTC represents the overall display pipeline. It receives pixel data from drm_plane and blends them
together. The drm_display_mode is also attached to the CRTC, specifying display timings. On the output
side the data is fed to one or more drm_encoder, which are then each connected to one drm_connector.
To create a CRTC, a KMS drivers allocates and zeroes an instances of struct drm_crtc (possibly as part
of a larger structure) and registers it with a call to drm_crtc_init_with_planes().
The CRTC is also the entry point for legacy modeset operations, see drm_crtc_funcs.set_config,
legacy plane operations, see drm_crtc_funcs.page_flip and drm_crtc_funcs.cursor_set2,
and other legacy operations like drm_crtc_funcs.gamma_set. For atomic drivers all these fea-
tures are controlled through drm_property and drm_mode_config_funcs.atomic_check and
drm_mode_config_funcs.atomic_check.

4.5.1 CRTC Functions Reference

struct drm_crtc_state
mutable CRTC state

Definition

struct drm_crtc_state {
struct drm_crtc * crtc;
bool enable;
bool active;
bool planes_changed:1;
bool mode_changed:1;
bool active_changed:1;
bool connectors_changed:1;
bool zpos_changed:1;
bool color_mgmt_changed:1;
u32 plane_mask;
u32 connector_mask;
u32 encoder_mask;
struct drm_display_mode adjusted_mode;
struct drm_display_mode mode;
struct drm_property_blob * mode_blob;
struct drm_property_blob * degamma_lut;
struct drm_property_blob * ctm;
struct drm_property_blob * gamma_lut;
u32 target_vblank;
u32 pageflip_flags;
struct drm_pending_vblank_event * event;
struct drm_atomic_state * state;

};

Members
crtc backpointer to the CRTC
enable whether the CRTC should be enabled, gates all other state
active whether the CRTC is actively displaying (used for DPMS)

4.5. CRTC Abstraction 91

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

planes_changed planes on this crtc are updated
mode_changed mode or enable has been changed
active_changed active has been toggled.
connectors_changed connectors to this crtc have been updated
zpos_changed zpos values of planes on this crtc have been updated
color_mgmt_changed color management properties have changed (degamma or gamma LUT or CSC ma-

trix)
plane_mask bitmask of (1 << drm_plane_index(plane)) of attached planes
connector_mask bitmask of (1 << drm_connector_index(connector)) of attached connectors
encoder_mask bitmask of (1 << drm_encoder_index(encoder)) of attached encoders
adjusted_mode Internal display timings which can be used by the driver to handle differences between

the mode requested by userspace in mode and what is actually programmed into the hardware. It
is purely driver implementation defined what exactly this adjusted mode means. Usually it is used
to store the hardware display timings used between the CRTC and encoder blocks.

mode Display timings requested by userspace. The driver should try to match the refresh rate as close as
possible (but note that it’s undefined what exactly is close enough, e.g. some of the HDMI modes
only differ in less than 1% of the refresh rate). The active width and height as observed by userspace
for positioning planes must match exactly.
For external connectors where the sink isn’t fixed (like with a built-in panel), this mode here should
match the physical mode on the wire to the last details (i.e. including sync polarities and everything).

mode_blob drm_property_blob for mode
degamma_lut Lookup table for converting framebuffer pixel data before apply the color conversion ma-

trix ctm. See drm_crtc_enable_color_mgmt(). The blob (if not NULL) is an array of struct
drm_color_lut.

ctm Color transformation matrix. See drm_crtc_enable_color_mgmt(). The blob (if not NULL) is a
struct drm_color_ctm.

gamma_lut Lookup table for converting pixel data after the color conversion matrix ctm. See
drm_crtc_enable_color_mgmt(). The blob (if not NULL) is an array of struct drm_color_lut.

target_vblank Target vertical blank period when a page flip should take effect.
pageflip_flags DRM_MODE_PAGE_FLIP_* flags, as passed to the page flip ioctl. Zero in any other case.
event Optional pointer to a DRM event to signal upon completion of the state update. The driver must

send out the event when the atomic commit operation completes. There are two cases:
• The event is for a CRTCwhich is being disabled through this atomic commit. In that case the event
can be send out any time after the hardware has stopped scanning out the current framebuffers.
It should contain the timestamp and counter for the last vblank before the display pipeline was
shut off. The simplest way to achieve that is calling drm_crtc_send_vblank_event() somewhen
after drm_crtc_vblank_off() has been called.

• For a CRTC which is enabled at the end of the commit (even when it undergoes an full modeset)
the vblank timestamp and counter must be for the vblank right before the first frame that scans
out the new set of buffers. Again the event can only be sent out after the hardware has stopped
scanning out the old buffers.

• Events for disabled CRTCs are not allowed, and drivers can ignore that case.
This can be handled by the drm_crtc_send_vblank_event() function, which the driver should call
on the provided event upon completion of the atomic commit. Note that if the driver supports vblank
signalling and timestamping the vblank counters and timestamps must agree with the ones returned
from page flip events. With the current vblank helper infrastructure this can be achieved by holding
a vblank reference while the page flip is pending, acquired through drm_crtc_vblank_get() and

92 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

released with drm_crtc_vblank_put(). Drivers are free to implement their own vblank counter and
timestamp tracking though, e.g. if they have accurate timestamp registers in hardware.
For hardware which supports some means to synchronize vblank interrupt delivery with committing
display state there’s also drm_crtc_arm_vblank_event(). See the documentation of that function
for a detailed discussion of the constraints it needs to be used safely.
If the device can’t notify of flip completion in a race-free way at all, then the event should be armed
just after the page flip is committed. In the worst case the driver will send the event to userspace
one frame too late. This doesn’t allow for a real atomic update, but it should avoid tearing.

state backpointer to global drm_atomic_state
Description
Note that the distinction between enable and active is rather subtile: Flipping active
while enable is set without changing anything else may never return in a failure from the
drm_mode_config_funcs.atomic_check callback. Userspace assumes that a DPMS On will always
succeed. In other words: enable controls resource assignment, active controls the actual hardware
state.
The three booleans active_changed, connectors_changed and mode_changed are intended to indicate
whether a full modeset is needed, rather than strictly describing what has changed in a commit. See also:
drm_atomic_crtc_needs_modeset()

struct drm_crtc_funcs
control CRTCs for a given device

Definition

struct drm_crtc_funcs {
void (* reset) (struct drm_crtc *crtc);
int (* cursor_set) (struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t handle,␣

↪→uint32_t width, uint32_t height);
int (* cursor_set2) (struct drm_crtc *crtc, struct drm_file *file_priv,uint32_t handle,␣

↪→uint32_t width, uint32_t height, int32_t hot_x, int32_t hot_y);
int (* cursor_move) (struct drm_crtc *crtc, int x, int y);
int (* gamma_set) (struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,uint32_t size, struct drm_

↪→modeset_acquire_ctx *ctx);
void (* destroy) (struct drm_crtc *crtc);
int (* set_config) (struct drm_mode_set *set, struct drm_modeset_acquire_ctx *ctx);
int (* page_flip) (struct drm_crtc *crtc,struct drm_framebuffer *fb,struct drm_pending_vblank_

↪→event *event,uint32_t flags, struct drm_modeset_acquire_ctx *ctx);
int (* page_flip_target) (struct drm_crtc *crtc,struct drm_framebuffer *fb,struct drm_pending_

↪→vblank_event *event,uint32_t flags, uint32_t target, struct drm_modeset_acquire_ctx *ctx);
int (* set_property) (struct drm_crtc *crtc, struct drm_property *property, uint64_t val);
struct drm_crtc_state *(* atomic_duplicate_state) (struct drm_crtc *crtc);
void (* atomic_destroy_state) (struct drm_crtc *crtc, struct drm_crtc_state *state);
int (* atomic_set_property) (struct drm_crtc *crtc,struct drm_crtc_state *state,struct drm_

↪→property *property, uint64_t val);
int (* atomic_get_property) (struct drm_crtc *crtc,const struct drm_crtc_state *state,struct␣

↪→drm_property *property, uint64_t *val);
int (* late_register) (struct drm_crtc *crtc);
void (* early_unregister) (struct drm_crtc *crtc);
int (* set_crc_source) (struct drm_crtc *crtc, const char *source, size_t *values_cnt);
void (* atomic_print_state) (struct drm_printer *p, const struct drm_crtc_state *state);
u32 (* get_vblank_counter) (struct drm_crtc *crtc);
int (* enable_vblank) (struct drm_crtc *crtc);
void (* disable_vblank) (struct drm_crtc *crtc);

};

Members
reset Reset CRTC hardware and software state to off. This function isn’t called by the core directly, only

through drm_mode_config_reset(). It’s not a helper hook only for historical reasons.

4.5. CRTC Abstraction 93

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Atomic drivers can use drm_atomic_helper_crtc_reset() to reset atomic state using this hook.
cursor_set Update the cursor image. The cursor position is relative to the CRTC and can be partially or

fully outside of the visible area.
Note that contrary to all other KMS functions the legacy cursor entry points don’t take a framebuffer
object, but instead take directly a raw buffer object id from the driver’s buffer manager (which is
either GEM or TTM for current drivers).
This entry point is deprecated, drivers should instead implement universal plane support and register
a proper cursor plane using drm_crtc_init_with_planes().
This callback is optional
RETURNS:
0 on success or a negative error code on failure.

cursor_set2 Update the cursor image, including hotspot information. The hotspot must not affect the
cursor position in CRTC coordinates, but is only meant as a hint for virtualized display hardware to
coordinate the guests and hosts cursor position. The cursor hotspot is relative to the cursor image.
Otherwise this works exactly like cursor_set.
This entry point is deprecated, drivers should instead implement universal plane support and register
a proper cursor plane using drm_crtc_init_with_planes().
This callback is optional.
RETURNS:
0 on success or a negative error code on failure.

cursor_move Update the cursor position. The cursor does not need to be visible when this hook is called.
This entry point is deprecated, drivers should instead implement universal plane support and register
a proper cursor plane using drm_crtc_init_with_planes().
This callback is optional.
RETURNS:
0 on success or a negative error code on failure.

gamma_set Set gamma on the CRTC.
This callback is optional.
Atomic drivers who want to support gamma tables should implement the atomic color manage-
ment support, enabled by calling drm_crtc_enable_color_mgmt(), which then supports the legacy
gamma interface through the drm_atomic_helper_legacy_gamma_set() compatibility implementa-
tion.
NOTE:
Drivers that support gamma tables and also fbdev emulation through the provided helper library need
to take care to fill out the gamma hooks for both. Currently there’s a bit an unfortunate duplication
going on, which should eventually be unified to just one set of hooks.

destroy Clean up plane resources. This is only called at driver unload time through
drm_mode_config_cleanup() since a CRTC cannot be hotplugged in DRM.

set_config This is the main legacy entry point to change the modeset state on a CRTC. All the details of
the desired configuration are passed in a struct drm_mode_set - see there for details.
Drivers implementing atomic modeset should use drm_atomic_helper_set_config() to implement
this hook.
RETURNS:
0 on success or a negative error code on failure.

94 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

page_flip Legacy entry point to schedule a flip to the given framebuffer.
Page flipping is a synchronization mechanism that replaces the frame buffer being scanned out by
the CRTC with a new frame buffer during vertical blanking, avoiding tearing (except when requested
otherwise through the DRM_MODE_PAGE_FLIP_ASYNC flag). When an application requests a page flip
the DRM core verifies that the new frame buffer is large enough to be scanned out by the CRTC in
the currently configured mode and then calls this hook with a pointer to the new frame buffer.
The driver must wait for any pending rendering to the new framebuffer to complete before executing
the flip. It should also wait for any pending rendering from other drivers if the underlying buffer is a
shared dma-buf.
An application can request to be notified when the page flip has completed. The drm core will
supply a struct drm_event in the event parameter in this case. This can be handled by the
drm_crtc_send_vblank_event() function, which the driver should call on the provided event upon
completion of the flip. Note that if the driver supports vblank signalling and timestamping the vblank
counters and timestamps must agree with the ones returned from page flip events. With the current
vblank helper infrastructure this can be achieved by holding a vblank reference while the page flip
is pending, acquired through drm_crtc_vblank_get() and released with drm_crtc_vblank_put().
Drivers are free to implement their own vblank counter and timestamp tracking though, e.g. if they
have accurate timestamp registers in hardware.
This callback is optional.
NOTE:
Very early versions of the KMS ABI mandated that the driver must block (but not reject) any rendering
to the old framebuffer until the flip operation has completed and the old framebuffer is no longer
visible. This requirement has been lifted, and userspace is instead expected to request delivery of
an event and wait with recycling old buffers until such has been received.
RETURNS:
0 on success or a negative error code on failure. Note that if a page flip operation is already pending
the callback should return -EBUSY. Pageflips on a disabled CRTC (either by setting a NULL mode or
just runtime disabled through DPMS respectively the new atomic “ACTIVE” state) should result in
an -EINVAL error code. Note that drm_atomic_helper_page_flip() checks this already for atomic
drivers.

page_flip_target Same as page_flip but with an additional parameter specifying the absolute target
vertical blank period (as reported by drm_crtc_vblank_count()) when the flip should take effect.
Note that the core code calls drm_crtc_vblank_get before this entry point, and will call
drm_crtc_vblank_put if this entry point returns any non-0 error code. It’s the driver’s responsibil-
ity to call drm_crtc_vblank_put after this entry point returns 0, typically when the flip completes.

set_property This is the legacy entry point to update a property attached to the CRTC.
Drivers implementing atomic modeset should use drm_atomic_helper_crtc_set_property() to
implement this hook.
This callback is optional if the driver does not support any legacy driver-private properties.
RETURNS:
0 on success or a negative error code on failure.

atomic_duplicate_state Duplicate the current atomic state for this CRTC and return it. The core and
helpers guarantee that any atomic state duplicated with this hook and still owned by the caller (i.e.
not transferred to the driver by calling drm_mode_config_funcs.atomic_commit) will be cleaned up
by calling the atomic_destroy_state hook in this structure.
Atomic drivers which don’t subclass struct drm_crtc_state should use
drm_atomic_helper_crtc_duplicate_state(). Drivers that subclass the state structure to
extend it with driver-private state should use __drm_atomic_helper_crtc_duplicate_state() to
make sure shared state is duplicated in a consistent fashion across drivers.

4.5. CRTC Abstraction 95

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

It is an error to call this hook before drm_crtc.state has been initialized correctly.
NOTE:
If the duplicate state references refcounted resources this hook must acquire a reference for each of
them. The driver must release these references again in atomic_destroy_state.
RETURNS:
Duplicated atomic state or NULL when the allocation failed.

atomic_destroy_state Destroy a state duplicated with atomic_duplicate_state and release or unref-
erence all resources it references

atomic_set_property Decode a driver-private property value and store the decoded value into the
passed-in state structure. Since the atomic core decodes all standardized properties (even for exten-
sions beyond the core set of properties which might not be implemented by all drivers) this requires
drivers to subclass the state structure.
Such driver-private properties should really only be implemented for truly hardware/vendor specific
state. Instead it is preferred to standardize atomic extension and decode the properties used to
expose such an extension in the core.
Do not call this function directly, use drm_atomic_crtc_set_property() instead.
This callback is optional if the driver does not support any driver-private atomic properties.
NOTE:
This function is called in the state assembly phase of atomic modesets, which can be aborted for any
reason (including on userspace’s request to just check whether a configuration would be possible).
Drivers MUST NOT touch any persistent state (hardware or software) or data structures except the
passed in state parameter.
Also since userspace controls in which order properties are set this function must not do any input
validation (since the state update is incomplete and hence likely inconsistent). Instead any such
input validation must be done in the various atomic_check callbacks.
RETURNS:
0 if the property has been found, -EINVAL if the property isn’t implemented by the driver (which
should never happen, the core only asks for properties attached to this CRTC). No other validation is
allowed by the driver. The core already checks that the property value is within the range (integer,
valid enum value, ...) the driver set when registering the property.

atomic_get_property Reads out the decoded driver-private property. This is used to implement the
GETCRTC IOCTL.
Do not call this function directly, use drm_atomic_crtc_get_property() instead.
This callback is optional if the driver does not support any driver-private atomic properties.
RETURNS:
0 on success, -EINVAL if the property isn’t implemented by the driver (which should never happen,
the core only asks for properties attached to this CRTC).

late_register This optional hook can be used to register additional userspace interfaces attached to the
crtc like debugfs interfaces. It is called late in the driver load sequence from drm_dev_register().
Everything added from this callback should be unregistered in the early_unregister callback.
Returns:
0 on success, or a negative error code on failure.

early_unregister This optional hook should be used to unregister the additional userspace interfaces
attached to the crtc from late_register. It is called from drm_dev_unregister(), early in the driver
unload sequence to disable userspace access before data structures are torndown.

96 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

set_crc_source Changes the source of CRC checksums of frames at the request of userspace, typically
for testing purposes. The sources available are specific of each driver and a NULL value indicates
that CRC generation is to be switched off.
When CRC generation is enabled, the driver should call drm_crtc_add_crc_entry() at each frame,
providing any information that characterizes the frame contents in the crcN arguments, as provided
from the configured source. Drivers must accept an “auto” source name that will select a default
source for this CRTC.
Note that “auto” can depend upon the current modeset configuration, e.g. it could pick an encoder
or output specific CRC sampling point.
This callback is optional if the driver does not support any CRC generation functionality.
RETURNS:
0 on success or a negative error code on failure.

atomic_print_state If driver subclasses struct drm_crtc_state, it should implement this optional
hook for printing additional driver specific state.
Do not call this directly, use drm_atomic_crtc_print_state() instead.

get_vblank_counter Driver callback for fetching a raw hardware vblank counter for the CRTC. It’s meant
to be used by new drivers as the replacement of drm_driver.get_vblank_counter hook.
This callback is optional. If a device doesn’t have a hardware counter, the driver can simply leave the
hook as NULL. The DRM core will account for missed vblank events while interrupts where disabled
based on system timestamps.
Wraparound handling and loss of events due to modesetting is dealt with in the DRM core code, as
long as drivers call drm_crtc_vblank_off() and drm_crtc_vblank_on()when disabling or enabling
a CRTC.
Returns:
Raw vblank counter value.

enable_vblank Enable vblank interrupts for the CRTC. It’s meant to be used by new drivers as the re-
placement of drm_driver.enable_vblank hook.
Returns:
Zero on success, appropriate errno if the vblank interrupt cannot be enabled.

disable_vblank Disable vblank interrupts for the CRTC. It’s meant to be used by new drivers as the
replacement of drm_driver.disable_vblank hook.

Description
The drm_crtc_funcs structure is the central CRTC management structure in the DRM. Each CRTC controls
one or more connectors (note that the name CRTC is simply historical, a CRTC may control LVDS, VGA,
DVI, TV out, etc. connectors, not just CRTs).
Each driver is responsible for filling out this structure at startup time, in addition to providing other mod-
esetting features, like i2c and DDC bus accessors.
struct drm_crtc

central CRTC control structure
Definition

struct drm_crtc {
struct drm_device * dev;
struct device_node * port;
struct list_head head;
char * name;
struct drm_modeset_lock mutex;
struct drm_mode_object base;

4.5. CRTC Abstraction 97

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_plane * primary;
struct drm_plane * cursor;
unsigned index;
int cursor_x;
int cursor_y;
bool enabled;
struct drm_display_mode mode;
struct drm_display_mode hwmode;
int x;
int y;
const struct drm_crtc_funcs * funcs;
uint32_t gamma_size;
uint16_t * gamma_store;
const struct drm_crtc_helper_funcs * helper_private;
struct drm_object_properties properties;
struct drm_crtc_state * state;
struct list_head commit_list;
spinlock_t commit_lock;

#ifdef CONFIG_DEBUG_FS
struct dentry * debugfs_entry;

#endif
struct drm_crtc_crc crc;
unsigned int fence_context;
spinlock_t fence_lock;
unsigned long fence_seqno;
char timeline_name;

};

Members
dev parent DRM device
port OF node used by drm_of_find_possible_crtcs()
head list management
name human readable name, can be overwritten by the driver
mutex This provides a read lock for the overall CRTC state (mode, dpms state, ...) and a write lock for

everything which can be update without a full modeset (fb, cursor data, CRTC properties ...). A full
modeset also need to grab drm_mode_config.connection_mutex.
For atomic drivers specifically this protects state.

base base KMS object for ID tracking etc.
primary primary plane for this CRTC
cursor cursor plane for this CRTC
index Position inside the mode_config.list, can be used as an array index. It is invariant over the lifetime

of the CRTC.
cursor_x current x position of the cursor, used for universal cursor planes
cursor_y current y position of the cursor, used for universal cursor planes
enabled is this CRTC enabled?
mode current mode timings
hwmode mode timings as programmed to hw regs
x x position on screen
y y position on screen
funcs CRTC control functions

98 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

gamma_size size of gamma ramp
gamma_store gamma ramp values
helper_private mid-layer private data
properties property tracking for this CRTC
state Current atomic state for this CRTC.

This is protected by mutex. Note that nonblocking atomic commits access the current
CRTC state without taking locks. Either by going through the struct drm_atomic_state
pointers, see for_each_crtc_in_state(), for_each_oldnew_crtc_in_state(),
for_each_old_crtc_in_state() and for_each_new_crtc_in_state(). Or through care-
ful ordering of atomic commit operations as implemented in the atomic helpers, see struct
drm_crtc_commit.

commit_list List of drm_crtc_commit structures tracking pending commits. Protected by commit_lock.
This list doesn’t hold its own full reference, but burrows it from the ongoing commit. Commit entries
must be removed from this list once the commit is fully completed, but before it’s correspoding
drm_atomic_state gets destroyed.

commit_lock Spinlock to protect commit_list.
debugfs_entry Debugfs directory for this CRTC.
crc Configuration settings of CRC capture.
fence_context timeline context used for fence operations.
fence_lock spinlock to protect the fences in the fence_context.
fence_seqno Seqno variable used as monotonic counter for the fences created on the CRTC’s timeline.
timeline_name The name of the CRTC’s fence timeline.
Description
Each CRTC may have one or more connectors associated with it. This structure allows the CRTC to be
controlled.
struct drm_mode_set

new values for a CRTC config change
Definition

struct drm_mode_set {
struct drm_framebuffer * fb;
struct drm_crtc * crtc;
struct drm_display_mode * mode;
uint32_t x;
uint32_t y;
struct drm_connector ** connectors;
size_t num_connectors;

};

Members
fb framebuffer to use for new config
crtc CRTC whose configuration we’re about to change
mode mode timings to use
x position of this CRTC relative to fb
y position of this CRTC relative to fb
connectors array of connectors to drive with this CRTC if possible
num_connectors size of connectors array

4.5. CRTC Abstraction 99

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This represents a modeset configuration for the legacy SETCRTC ioctl and is also used internally. Atomic
drivers instead use drm_atomic_state.
unsigned int drm_crtc_index(const struct drm_crtc * crtc)

find the index of a registered CRTC
Parameters
const struct drm_crtc * crtc CRTC to find index for
Description
Given a registered CRTC, return the index of that CRTC within a DRM device’s list of CRTCs.
uint32_t drm_crtc_mask(const struct drm_crtc * crtc)

find the mask of a registered CRTC
Parameters
const struct drm_crtc * crtc CRTC to find mask for
Description
Given a registered CRTC, return the mask bit of that CRTC for an encoder’s possible_crtcs field.
struct drm_crtc * drm_crtc_find(struct drm_device * dev, uint32_t id)

look up a CRTC object from its ID
Parameters
struct drm_device * dev DRM device
uint32_t id drm_mode_object ID
Description
This can be used to look up a CRTC from its userspace ID. Only used by drivers for legacy IOCTLs and
interface, nowadays extensions to the KMS userspace interface should be done using drm_property.
drm_for_each_crtc(crtc, dev)

iterate over all CRTCs
Parameters
crtc a struct drm_crtc as the loop cursor
dev the struct drm_device

Description
Iterate over all CRTCs of dev.
struct drm_crtc * drm_crtc_from_index(struct drm_device * dev, int idx)

find the registered CRTC at an index
Parameters
struct drm_device * dev DRM device
int idx index of registered CRTC to find for
Description
Given a CRTC index, return the registered CRTC from DRM device’s list of CRTCs with matching index. This
is the inverse of drm_crtc_index(). It’s useful in the vblank callbacks (like drm_driver.enable_vblank
or drm_driver.disable_vblank), since that still deals with indices instead of pointers to struct
drm_crtc.”
int drm_crtc_force_disable(struct drm_crtc * crtc)

Forcibly turn off a CRTC
Parameters

100 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_crtc * crtc CRTC to turn off
Note
This should only be used by non-atomic legacy drivers.
Return
Zero on success, error code on failure.
int drm_crtc_force_disable_all(struct drm_device * dev)

Forcibly turn off all enabled CRTCs
Parameters
struct drm_device * dev DRM device whose CRTCs to turn off
Description
Drivers may want to call this on unload to ensure that all displays are unlit and the GPU is in a consistent,
low power state. Takes modeset locks.
Note
This should only be used by non-atomic legacy drivers. For an atomic version look at
drm_atomic_helper_shutdown().
Return
Zero on success, error code on failure.
int drm_crtc_init_with_planes(struct drm_device * dev, struct drm_crtc * crtc, struct drm_plane

* primary, struct drm_plane * cursor, const struct drm_crtc_funcs
* funcs, const char * name, ...)

Initialise a new CRTC object with specified primary and cursor planes.
Parameters
struct drm_device * dev DRM device
struct drm_crtc * crtc CRTC object to init
struct drm_plane * primary Primary plane for CRTC
struct drm_plane * cursor Cursor plane for CRTC
const struct drm_crtc_funcs * funcs callbacks for the new CRTC
const char * name printf style format string for the CRTC name, or NULL for default name
... variable arguments
Description
Inits a new object created as base part of a driver crtc object. Drivers should use this function
instead of drm_crtc_init(), which is only provided for backwards compatibility with drivers which
do not yet support universal planes). For really simple hardware which has only 1 plane look at
drm_simple_display_pipe_init() instead.
Return
Zero on success, error code on failure.
void drm_crtc_cleanup(struct drm_crtc * crtc)

Clean up the core crtc usage
Parameters
struct drm_crtc * crtc CRTC to cleanup
Description
This function cleans up crtc and removes it from the DRM mode setting core. Note that the function does
not free the crtc structure itself, this is the responsibility of the caller.

4.5. CRTC Abstraction 101

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int drm_mode_set_config_internal(struct drm_mode_set * set)
helper to call drm_mode_config_funcs.set_config

Parameters
struct drm_mode_set * set modeset config to set
Description
This is a little helper to wrap internal calls to the drm_mode_config_funcs.set_config driver interface.
The only thing it adds is correct refcounting dance.
This should only be used by non-atomic legacy drivers.
Return
Zero on success, negative errno on failure.
int drm_crtc_check_viewport(const struct drm_crtc * crtc, int x, int y, const struct

drm_display_mode * mode, const struct drm_framebuffer * fb)
Checks that a framebuffer is big enough for the CRTC viewport

Parameters
const struct drm_crtc * crtc CRTC that framebuffer will be displayed on
int x x panning
int y y panning
const struct drm_display_mode * mode mode that framebuffer will be displayed under
const struct drm_framebuffer * fb framebuffer to check size of

4.6 Frame Buffer Abstraction

Frame buffers are abstract memory objects that provide a source of pixels to scanout to a CRTC. Applica-
tions explicitly request the creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and
receive an opaque handle that can be passed to the KMS CRTC control, plane configuration and page flip
functions.
Frame buffers rely on the underlying memory manager for allocating backing storage. When creating a
frame buffer applications pass a memory handle (or a list of memory handles for multi-planar formats)
through the struct drm_mode_fb_cmd2 argument. For drivers using GEM as their userspace buffer man-
agement interface this would be a GEM handle. Drivers are however free to use their own backing storage
object handles, e.g. vmwgfx directly exposes special TTM handles to userspace and so expects TTM han-
dles in the create ioctl and not GEM handles.
Framebuffers are tracked with struct drm_framebuffer. They are published using
drm_framebuffer_init() - after calling that function userspace can use and access the frame-
buffer object. The helper function drm_helper_mode_fill_fb_struct() can be used to pre-fill the
required metadata fields.
The lifetime of a drm framebuffer is controlled with a reference count, drivers can grab additional ref-
erences with drm_framebuffer_get() and drop them again with drm_framebuffer_put(). For driver-
private framebuffers for which the last reference is never dropped (e.g. for the fbdev framebuffer when
the struct struct drm_framebuffer is embedded into the fbdev helper struct) drivers can manually clean
up a framebuffer at module unload time with drm_framebuffer_unregister_private(). But doing this
is not recommended, and it’s better to have a normal free-standing struct drm_framebuffer.

4.6.1 Frame Buffer Functions Reference

struct drm_framebuffer_funcs
framebuffer hooks

102 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Definition

struct drm_framebuffer_funcs {
void (* destroy) (struct drm_framebuffer *framebuffer);
int (* create_handle) (struct drm_framebuffer *fb,struct drm_file *file_priv, unsigned int␣

↪→*handle);
int (* dirty) (struct drm_framebuffer *framebuffer,struct drm_file *file_priv, unsigned flags,

↪→unsigned color, struct drm_clip_rect *clips, unsigned num_clips);
};

Members
destroy Clean up framebuffer resources, specifically also unreference the backing storage. The

core guarantees to call this function for every framebuffer successfully created by calling
drm_mode_config_funcs.fb_create. Drivers must also call drm_framebuffer_cleanup() to re-
lease DRM core resources for this framebuffer.

create_handle Create a buffer handle in the driver-specific buffer manager (either GEM or TTM) valid
for the passed-in struct drm_file. This is used by the core to implement the GETFB IOCTL, which
returns (for sufficiently priviledged user) also a native buffer handle. This can be used for seamless
transitions between modesetting clients by copying the current screen contents to a private buffer
and blending between that and the new contents.
GEM based drivers should call drm_gem_handle_create() to create the handle.
RETURNS:
0 on success or a negative error code on failure.

dirty Optional callback for the dirty fb IOCTL.
Userspace can notify the driver via this callback that an area of the framebuffer has changed and
should be flushed to the display hardware. This can also be used internally, e.g. by the fbdev
emulation, though that’s not the case currently.
See documentation in drm_mode.h for the struct drm_mode_fb_dirty_cmd for more information as
all the semantics and arguments have a one to one mapping on this function.
RETURNS:
0 on success or a negative error code on failure.

struct drm_framebuffer
frame buffer object

Definition

struct drm_framebuffer {
struct drm_device * dev;
struct list_head head;
struct drm_mode_object base;
const struct drm_format_info * format;
const struct drm_framebuffer_funcs * funcs;
unsigned int pitches;
unsigned int offsets;
uint64_t modifier;
unsigned int width;
unsigned int height;
int flags;
int hot_x;
int hot_y;
struct list_head filp_head;

};

Members
dev DRM device this framebuffer belongs to

4.6. Frame Buffer Abstraction 103

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

head Place on the drm_mode_config.fb_list, access protected by drm_mode_config.fb_lock.
base base modeset object structure, contains the reference count.
format framebuffer format information
funcs framebuffer vfunc table
pitches Line stride per buffer. For userspace created object this is copied from drm_mode_fb_cmd2.
offsets Offset from buffer start to the actual pixel data in bytes, per buffer. For userspace created object

this is copied from drm_mode_fb_cmd2.
Note that this is a linear offset and does not take into account tiling or buffer laytou per modifier.
It meant to be used when the actual pixel data for this framebuffer plane starts at an offset, e.g.
when multiple planes are allocated within the same backing storage buffer object. For tiled layouts
this generally means it offsets must at least be tile-size aligned, but hardware often has stricter
requirements.
This should not be used to specifiy x/y pixel offsets into the buffer data (even for linear buffers). Spec-
ifying an x/y pixel offset is instead done through the source rectangle in struct drm_plane_state.

modifier Data layout modifier. This is used to describe tiling, or also special layouts (like compression)
of auxiliary buffers. For userspace created object this is copied from drm_mode_fb_cmd2.

width Logical width of the visible area of the framebuffer, in pixels.
height Logical height of the visible area of the framebuffer, in pixels.
flags Framebuffer flags like DRM_MODE_FB_INTERLACED or DRM_MODE_FB_MODIFIERS.
hot_x X coordinate of the cursor hotspot. Used by the legacy cursor IOCTL when the driver supports

cursor through a DRM_PLANE_TYPE_CURSOR universal plane.
hot_y Y coordinate of the cursor hotspot. Used by the legacy cursor IOCTL when the driver supports

cursor through a DRM_PLANE_TYPE_CURSOR universal plane.
filp_head Placed on drm_file.fbs, protected by drm_file.fbs_lock.
Description
Note that the fb is refcounted for the benefit of driver internals, for example some hw, disabling a
CRTC/plane is asynchronous, and scanout does not actually complete until the next vblank. So some
cleanup (like releasing the reference(s) on the backing GEM bo(s)) should be deferred. In cases like this,
the driver would like to hold a ref to the fb even though it has already been removed from userspace
perspective. See drm_framebuffer_get() and drm_framebuffer_put().
The refcount is stored inside the mode object base.
void drm_framebuffer_get(struct drm_framebuffer * fb)

acquire a framebuffer reference
Parameters
struct drm_framebuffer * fb DRM framebuffer
Description
This function increments the framebuffer’s reference count.
void drm_framebuffer_put(struct drm_framebuffer * fb)

release a framebuffer reference
Parameters
struct drm_framebuffer * fb DRM framebuffer
Description
This function decrements the framebuffer’s reference count and frees the framebuffer if the reference
count drops to zero.

104 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void drm_framebuffer_reference(struct drm_framebuffer * fb)
acquire a framebuffer reference

Parameters
struct drm_framebuffer * fb DRM framebuffer
Description
This is a compatibility alias for drm_framebuffer_get() and should not be used by new code.
void drm_framebuffer_unreference(struct drm_framebuffer * fb)

release a framebuffer reference
Parameters
struct drm_framebuffer * fb DRM framebuffer
Description
This is a compatibility alias for drm_framebuffer_put() and should not be used by new code.
uint32_t drm_framebuffer_read_refcount(struct drm_framebuffer * fb)

read the framebuffer reference count.
Parameters
struct drm_framebuffer * fb framebuffer
Description
This functions returns the framebuffer’s reference count.
void drm_framebuffer_assign(struct drm_framebuffer ** p, struct drm_framebuffer * fb)

store a reference to the fb
Parameters
struct drm_framebuffer ** p location to store framebuffer
struct drm_framebuffer * fb new framebuffer (maybe NULL)
Description
This functions sets the location to store a reference to the framebuffer, unreferencing the framebuffer
that was previously stored in that location.
int drm_framebuffer_init(struct drm_device * dev, struct drm_framebuffer * fb, const struct

drm_framebuffer_funcs * funcs)
initialize a framebuffer

Parameters
struct drm_device * dev DRM device
struct drm_framebuffer * fb framebuffer to be initialized
const struct drm_framebuffer_funcs * funcs ... with these functions
Description
Allocates an ID for the framebuffer’s parent mode object, sets its mode functions & device file and adds
it to the master fd list.
IMPORTANT: This functions publishes the fb and makes it available for concurrent access by other users.
Which means by this point the fb _must_ be fully set up - since all the fb attributes are invariant over its
lifetime, no further locking but only correct reference counting is required.
Return
Zero on success, error code on failure.
struct drm_framebuffer * drm_framebuffer_lookup(struct drm_device * dev, uint32_t id)

look up a drm framebuffer and grab a reference

4.6. Frame Buffer Abstraction 105

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct drm_device * dev drm device
uint32_t id id of the fb object
Description
If successful, this grabs an additional reference to the framebuffer - callers need tomake sure to eventually
unreference the returned framebuffer again, using drm_framebuffer_put().
void drm_framebuffer_unregister_private(struct drm_framebuffer * fb)

unregister a private fb from the lookup idr
Parameters
struct drm_framebuffer * fb fb to unregister
Description
Drivers need to call this when cleaning up driver-private framebuffers, e.g. those used for fbdev. Note
that the caller must hold a reference of it’s own, i.e. the object may not be destroyed through this call
(since it’ll lead to a locking inversion).
NOTE
This function is deprecated. For driver-private framebuffers it is not recommended to embed a framebuffer
struct info fbdev struct, instead, a framebuffer pointer is preferred and drm_framebuffer_put() should
be called when the framebuffer is to be cleaned up.
void drm_framebuffer_cleanup(struct drm_framebuffer * fb)

remove a framebuffer object
Parameters
struct drm_framebuffer * fb framebuffer to remove
Description
Cleanup framebuffer. This function is intended to be used from the drivers
drm_framebuffer_funcs.destroy callback. It can also be used to clean up driver private frame-
buffers embedded into a larger structure.
Note that this function does not remove the fb from active usage - if it is still used anywhere, hilarity can
ensue since userspace could call getfb on the id and get back -EINVAL. Obviously no concern at driver
unload time.
Also, the framebuffer will not be removed from the lookup idr - for user-created framebuffers this will
happen in in the rmfb ioctl. For driver-private objects (e.g. for fbdev) drivers need to explicitly call
drm_framebuffer_unregister_private.
void drm_framebuffer_remove(struct drm_framebuffer * fb)

remove and unreference a framebuffer object
Parameters
struct drm_framebuffer * fb framebuffer to remove
Description
Scans all the CRTCs and planes in dev‘s mode_config. If they’re using fb, removes it, setting it to NULL.
Then drops the reference to the passed-in framebuffer. Might take the modeset locks.
Note that this function optimizes the cleanup away if the caller holds the last reference to the framebuffer.
It is also guaranteed to not take the modeset locks in this case.
int drm_framebuffer_plane_width(int width, const struct drm_framebuffer * fb, int plane)

width of the plane given the first plane
Parameters
int width width of the first plane

106 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

const struct drm_framebuffer * fb the framebuffer
int plane plane index
Return
The width of plane, given that the width of the first plane is width.
int drm_framebuffer_plane_height(int height, const struct drm_framebuffer * fb, int plane)

height of the plane given the first plane
Parameters
int height height of the first plane
const struct drm_framebuffer * fb the framebuffer
int plane plane index
Return
The height of plane, given that the height of the first plane is height.

4.7 DRM Format Handling

struct drm_format_info
information about a DRM format

Definition

struct drm_format_info {
u32 format;
u8 depth;
u8 num_planes;
u8 cpp;
u8 hsub;
u8 vsub;

};

Members
format 4CC format identifier (DRM_FORMAT_*)
depth Color depth (number of bits per pixel excluding padding bits), valid for a subset of RGB formats

only. This is a legacy field, do not use in new code and set to 0 for new formats.
num_planes Number of color planes (1 to 3)
cpp Number of bytes per pixel (per plane)
hsub Horizontal chroma subsampling factor
vsub Vertical chroma subsampling factor
struct drm_format_name_buf

name of a DRM format
Definition

struct drm_format_name_buf {
char str;

};

Members
str string buffer containing the format name

4.7. DRM Format Handling 107

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

uint32_t drm_mode_legacy_fb_format(uint32_t bpp, uint32_t depth)
compute drm fourcc code from legacy description

Parameters
uint32_t bpp bits per pixels
uint32_t depth bit depth per pixel
Description
Computes a drm fourcc pixel format code for the given bpp/depth values. Useful in fbdev emulation
code, since that deals in those values.
const char * drm_get_format_name(uint32_t format, struct drm_format_name_buf * buf)

fill a string with a drm fourcc format’s name
Parameters
uint32_t format format to compute name of
struct drm_format_name_buf * buf caller-supplied buffer
const struct drm_format_info * drm_format_info(u32 format)

query information for a given format
Parameters
u32 format pixel format (DRM_FORMAT_*)
Description
The caller should only pass a supported pixel format to this function. Unsupported pixel formats will
generate a warning in the kernel log.
Return
The instance of struct drm_format_info that describes the pixel format, or NULL if the format is unsup-
ported.
const struct drm_format_info * drm_get_format_info(struct drm_device * dev, const struct

drm_mode_fb_cmd2 * mode_cmd)
query information for a given framebuffer configuration

Parameters
struct drm_device * dev DRM device
const struct drm_mode_fb_cmd2 * mode_cmd metadata from the userspace fb creation request
Return
The instance of struct drm_format_info that describes the pixel format, or NULL if the format is unsup-
ported.
int drm_format_num_planes(uint32_t format)

get the number of planes for format
Parameters
uint32_t format pixel format (DRM_FORMAT_*)
Return
The number of planes used by the specified pixel format.
int drm_format_plane_cpp(uint32_t format, int plane)

determine the bytes per pixel value
Parameters
uint32_t format pixel format (DRM_FORMAT_*)
int plane plane index

108 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Return
The bytes per pixel value for the specified plane.
int drm_format_horz_chroma_subsampling(uint32_t format)

get the horizontal chroma subsampling factor
Parameters
uint32_t format pixel format (DRM_FORMAT_*)
Return
The horizontal chroma subsampling factor for the specified pixel format.
int drm_format_vert_chroma_subsampling(uint32_t format)

get the vertical chroma subsampling factor
Parameters
uint32_t format pixel format (DRM_FORMAT_*)
Return
The vertical chroma subsampling factor for the specified pixel format.
int drm_format_plane_width(int width, uint32_t format, int plane)

width of the plane given the first plane
Parameters
int width width of the first plane
uint32_t format pixel format
int plane plane index
Return
The width of plane, given that the width of the first plane is width.
int drm_format_plane_height(int height, uint32_t format, int plane)

height of the plane given the first plane
Parameters
int height height of the first plane
uint32_t format pixel format
int plane plane index
Return
The height of plane, given that the height of the first plane is height.

4.8 Dumb Buffer Objects

The KMS API doesn’t standardize backing storage object creation and leaves it to driver-specific ioctls.
Furthermore actually creating a buffer object even for GEM-based drivers is done through a driver-specific
ioctl - GEM only has a common userspace interface for sharing and destroying objects. While not an issue
for full-fledged graphics stacks that include device-specific userspace components (in libdrm for instance),
this limit makes DRM-based early boot graphics unnecessarily complex.
Dumb objects partly alleviate the problem by providing a standard API to create dumb buffers suitable for
scanout, which can then be used to create KMS frame buffers.
To support dumb objects drivers must implement the drm_driver.dumb_create,
drm_driver.dumb_destroy and drm_driver.dumb_map_offset operations. See there for further
details.

4.8. Dumb Buffer Objects 109

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Note that dumb objects may not be used for gpu acceleration, as has been attempted on some ARM
embedded platforms. Such drivers really must have a hardware-specific ioctl to allocate suitable buffer
objects.

4.9 Plane Abstraction

A plane represents an image source that can be blended with or overlayed on top of a CRTC during the
scanout process. Planes take their input data from a drm_framebuffer object. The plane itself specifies
the cropping and scaling of that image, and where it is placed on the visible are of a display pipeline,
represented by drm_crtc. A plane can also have additional properties that specify how the pixels are
positioned and blended, like rotation or Z-position. All these properties are stored in drm_plane_state.
To create a plane, a KMS drivers allocates and zeroes an instances of struct drm_plane (possibly as part
of a larger structure) and registers it with a call to drm_universal_plane_init().
Cursor and overlay planes are optional. All drivers should provide one primary plane per CRTC to
avoid surprising userspace too much. See enum drm_plane_type for a more in-depth discussion of
these special uapi-relevant plane types. Special planes are associated with their CRTC by calling
drm_crtc_init_with_planes().
The type of a plane is exposed in the immutable “type” enumeration property, which has one of the
following values: “Overlay”, “Primary”, “Cursor”.

4.9.1 Plane Functions Reference

struct drm_plane_state
mutable plane state

Definition

struct drm_plane_state {
struct drm_plane * plane;
struct drm_crtc * crtc;
struct drm_framebuffer * fb;
struct dma_fence * fence;
int32_t crtc_x;
int32_t crtc_y;
uint32_t crtc_w;
uint32_t crtc_h;
uint32_t src_x;
uint32_t src_y;
uint32_t src_h;
uint32_t src_w;
unsigned int rotation;
unsigned int zpos;
unsigned int normalized_zpos;
struct drm_rect src;
struct drm_rect dst;
bool visible;
struct drm_atomic_state * state;

};

Members
plane backpointer to the plane
crtc Currently bound CRTC, NULL if disabled. Do not this write directly, use

drm_atomic_set_crtc_for_plane()

fb Currently bound framebuffer. Do not write this directly, use drm_atomic_set_fb_for_plane()

110 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

fence Optional fence to wait for before scanning out fb. Do not write this directly, use
drm_atomic_set_fence_for_plane()

crtc_x Left position of visible portion of plane on crtc, signed dest location allows it to be partially off
screen.

crtc_y Upper position of visible portion of plane on crtc, signed dest location allows it to be partially off
screen.

crtc_w width of visible portion of plane on crtc
crtc_h height of visible portion of plane on crtc
src_x left position of visible portion of plane within plane (in 16.16)
src_y upper position of visible portion of plane within plane (in 16.16)
src_h height of visible portion of plane (in 16.16)
src_w width of visible portion of plane (in 16.16)
rotation rotation of the plane
zpos priority of the given plane on crtc (optional) Note that multiple active planes on the same crtc can

have an identical zpos value. The rule to solving the conflict is to compare the plane object IDs; the
plane with a higher ID must be stacked on top of a plane with a lower ID.

normalized_zpos normalized value of zpos: unique, range from 0 to N-1 where N is the number of active
planes for given crtc. Note that the driver must call drm_atomic_normalize_zpos() to update this
before it can be trusted.

src clipped source coordinates of the plane (in 16.16)
dst clipped destination coordinates of the plane
visible Visibility of the plane. This can be false even if fb!=NULL and crtc!=NULL, due to clipping.
state backpointer to global drm_atomic_state
struct drm_plane_funcs

driver plane control functions
Definition

struct drm_plane_funcs {
int (* update_plane) (struct drm_plane *plane,struct drm_crtc *crtc, struct drm_framebuffer␣

↪→*fb,int crtc_x, int crtc_y,unsigned int crtc_w, unsigned int crtc_h,uint32_t src_x, uint32_t␣
↪→src_y,uint32_t src_w, uint32_t src_h, struct drm_modeset_acquire_ctx *ctx);
int (* disable_plane) (struct drm_plane *plane, struct drm_modeset_acquire_ctx *ctx);
void (* destroy) (struct drm_plane *plane);
void (* reset) (struct drm_plane *plane);
int (* set_property) (struct drm_plane *plane, struct drm_property *property, uint64_t val);
struct drm_plane_state *(* atomic_duplicate_state) (struct drm_plane *plane);
void (* atomic_destroy_state) (struct drm_plane *plane, struct drm_plane_state *state);
int (* atomic_set_property) (struct drm_plane *plane,struct drm_plane_state *state,struct drm_

↪→property *property, uint64_t val);
int (* atomic_get_property) (struct drm_plane *plane,const struct drm_plane_state *state,

↪→struct drm_property *property, uint64_t *val);
int (* late_register) (struct drm_plane *plane);
void (* early_unregister) (struct drm_plane *plane);
void (* atomic_print_state) (struct drm_printer *p, const struct drm_plane_state *state);

};

Members
update_plane This is the legacy entry point to enable and configure the plane for the given CRTC and

framebuffer. It is never called to disable the plane, i.e. the passed-in crtc and fb paramters are never
NULL.

4.9. Plane Abstraction 111

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

The source rectangle in frame buffer memory coordinates is given by the src_x, src_y, src_w and src_h
parameters (as 16.16 fixed point values). Devices that don’t support subpixel plane coordinates can
ignore the fractional part.
The destination rectangle in CRTC coordinates is given by the crtc_x, crtc_y, crtc_w and crtc_h pa-
rameters (as integer values). Devices scale the source rectangle to the destination rectangle. If
scaling is not supported, and the source rectangle size doesn’t match the destination rectangle size,
the driver must return a -<errorname>EINVAL</errorname> error.
Drivers implementing atomic modeset should use drm_atomic_helper_update_plane() to imple-
ment this hook.
RETURNS:
0 on success or a negative error code on failure.

disable_plane This is the legacy entry point to disable the plane. The DRM core calls this method in
response to a DRM_IOCTL_MODE_SETPLANE IOCTL call with the frame buffer ID set to 0. Disabled
planes must not be processed by the CRTC.
Drivers implementing atomic modeset should use drm_atomic_helper_disable_plane() to imple-
ment this hook.
RETURNS:
0 on success or a negative error code on failure.

destroy Clean up plane resources. This is only called at driver unload time through
drm_mode_config_cleanup() since a plane cannot be hotplugged in DRM.

reset Reset plane hardware and software state to off. This function isn’t called by the core directly, only
through drm_mode_config_reset(). It’s not a helper hook only for historical reasons.
Atomic drivers can use drm_atomic_helper_plane_reset() to reset atomic state using this hook.

set_property This is the legacy entry point to update a property attached to the plane.
Drivers implementing atomic modeset should use drm_atomic_helper_plane_set_property() to
implement this hook.
This callback is optional if the driver does not support any legacy driver-private properties.
RETURNS:
0 on success or a negative error code on failure.

atomic_duplicate_state Duplicate the current atomic state for this plane and return it. The core and
helpers guarantee that any atomic state duplicated with this hook and still owned by the caller (i.e.
not transferred to the driver by calling drm_mode_config_funcs.atomic_commit) will be cleaned up
by calling the atomic_destroy_state hook in this structure.
Atomic drivers which don’t subclass struct drm_plane_state should use
drm_atomic_helper_plane_duplicate_state(). Drivers that subclass the state structure to
extend it with driver-private state should use __drm_atomic_helper_plane_duplicate_state() to
make sure shared state is duplicated in a consistent fashion across drivers.
It is an error to call this hook before drm_plane.state has been initialized correctly.
NOTE:
If the duplicate state references refcounted resources this hook must acquire a reference for each of
them. The driver must release these references again in atomic_destroy_state.
RETURNS:
Duplicated atomic state or NULL when the allocation failed.

atomic_destroy_state Destroy a state duplicated with atomic_duplicate_state and release or unref-
erence all resources it references

112 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

atomic_set_property Decode a driver-private property value and store the decoded value into the
passed-in state structure. Since the atomic core decodes all standardized properties (even for exten-
sions beyond the core set of properties which might not be implemented by all drivers) this requires
drivers to subclass the state structure.
Such driver-private properties should really only be implemented for truly hardware/vendor specific
state. Instead it is preferred to standardize atomic extension and decode the properties used to
expose such an extension in the core.
Do not call this function directly, use drm_atomic_plane_set_property() instead.
This callback is optional if the driver does not support any driver-private atomic properties.
NOTE:
This function is called in the state assembly phase of atomic modesets, which can be aborted for any
reason (including on userspace’s request to just check whether a configuration would be possible).
Drivers MUST NOT touch any persistent state (hardware or software) or data structures except the
passed in state parameter.
Also since userspace controls in which order properties are set this function must not do any input
validation (since the state update is incomplete and hence likely inconsistent). Instead any such
input validation must be done in the various atomic_check callbacks.
RETURNS:
0 if the property has been found, -EINVAL if the property isn’t implemented by the driver (which
shouldn’t ever happen, the core only asks for properties attached to this plane). No other validation
is allowed by the driver. The core already checks that the property value is within the range (integer,
valid enum value, ...) the driver set when registering the property.

atomic_get_property Reads out the decoded driver-private property. This is used to implement the
GETPLANE IOCTL.
Do not call this function directly, use drm_atomic_plane_get_property() instead.
This callback is optional if the driver does not support any driver-private atomic properties.
RETURNS:
0 on success, -EINVAL if the property isn’t implemented by the driver (which should never happen,
the core only asks for properties attached to this plane).

late_register This optional hook can be used to register additional userspace interfaces attached to the
plane like debugfs interfaces. It is called late in the driver load sequence from drm_dev_register().
Everything added from this callback should be unregistered in the early_unregister callback.
Returns:
0 on success, or a negative error code on failure.

early_unregister This optional hook should be used to unregister the additional userspace interfaces
attached to the plane from late_register. It is called from drm_dev_unregister(), early in the
driver unload sequence to disable userspace access before data structures are torndown.

atomic_print_state If driver subclasses struct drm_plane_state, it should implement this optional
hook for printing additional driver specific state.
Do not call this directly, use drm_atomic_plane_print_state() instead.

enum drm_plane_type
uapi plane type enumeration

Constants
DRM_PLANE_TYPE_OVERLAY Overlay planes represent all non-primary, non-cursor planes. Some drivers

refer to these types of planes as “sprites” internally.

4.9. Plane Abstraction 113

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

DRM_PLANE_TYPE_PRIMARY Primary planes represent a “main” plane for a CRTC. Primary planes
are the planes operated upon by CRTC modesetting and flipping operations described in the
drm_crtc_funcs.page_flip and drm_crtc_funcs.set_config hooks.

DRM_PLANE_TYPE_CURSOR Cursor planes represent a “cursor” plane for a CRTC. Cursor planes are the
planes operated upon by the DRM_IOCTL_MODE_CURSOR and DRM_IOCTL_MODE_CURSOR2 IOCTLs.

Description
For historical reasons not all planes are made the same. This enumeration is used to tell the different types
of planes apart to implement the different uapi semantics for them. For userspace which is universal plane
aware and which is using that atomic IOCTL there’s no difference between these planes (beyong what the
driver and hardware can support of course).
For compatibility with legacy userspace, only overlay planes are made available to userspace by
default. Userspace clients may set the DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit
to indicate that they wish to receive a universal plane list containing all plane types. See also
drm_for_each_legacy_plane().
WARNING: The values of this enum is UABI since they’re exposed in the “type” property.
struct drm_plane

central DRM plane control structure
Definition

struct drm_plane {
struct drm_device * dev;
struct list_head head;
char * name;
struct drm_modeset_lock mutex;
struct drm_mode_object base;
uint32_t possible_crtcs;
uint32_t * format_types;
unsigned int format_count;
bool format_default;
struct drm_crtc * crtc;
struct drm_framebuffer * fb;
struct drm_framebuffer * old_fb;
const struct drm_plane_funcs * funcs;
struct drm_object_properties properties;
enum drm_plane_type type;
unsigned index;
const struct drm_plane_helper_funcs * helper_private;
struct drm_plane_state * state;
struct drm_property * zpos_property;
struct drm_property * rotation_property;

};

Members
dev DRM device this plane belongs to
head for list management
name human readable name, can be overwritten by the driver
mutex Protects modeset plane state, together with the drm_crtc.mutex of CRTC this plane is linked to

(when active, getting activated or getting disabled).
For atomic drivers specifically this protects state.

base base mode object
possible_crtcs pipes this plane can be bound to
format_types array of formats supported by this plane

114 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

format_count number of formats supported
format_default driver hasn’t supplied supported formats for the plane
crtc currently bound CRTC
fb currently bound fb
old_fb Temporary tracking of the old fb while a modeset is ongoing. Used by

drm_mode_set_config_internal() to implement correct refcounting.
funcs helper functions
properties property tracking for this plane
type type of plane (overlay, primary, cursor)
index Position inside the mode_config.list, can be used as an array index. It is invariant over the lifetime

of the plane.
helper_private mid-layer private data
state Current atomic state for this plane.

This is protected by mutex. Note that nonblocking atomic commits access the current
plane state without taking locks. Either by going through the struct drm_atomic_state
pointers, see for_each_plane_in_state(), for_each_oldnew_plane_in_state(),
for_each_old_plane_in_state() and for_each_new_plane_in_state(). Or through care-
ful ordering of atomic commit operations as implemented in the atomic helpers, see struct
drm_crtc_commit.

zpos_property zpos property for this plane
rotation_property rotation property for this plane
unsigned int drm_plane_index(struct drm_plane * plane)

find the index of a registered plane
Parameters
struct drm_plane * plane plane to find index for
Description
Given a registered plane, return the index of that plane within a DRM device’s list of planes.
struct drm_plane * drm_plane_find(struct drm_device * dev, uint32_t id)

find a drm_plane
Parameters
struct drm_device * dev DRM device
uint32_t id plane id
Description
Returns the plane with id, NULL if it doesn’t exist. Simple wrapper around drm_mode_object_find().
drm_for_each_plane_mask(plane, dev, plane_mask)

iterate over planes specified by bitmask
Parameters
plane the loop cursor
dev the DRM device
plane_mask bitmask of plane indices
Description
Iterate over all planes specified by bitmask.

4.9. Plane Abstraction 115

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

drm_for_each_legacy_plane(plane, dev)
iterate over all planes for legacy userspace

Parameters
plane the loop cursor
dev the DRM device
Description
Iterate over all legacy planes of dev, excluding primary and cursor planes. This is useful for implementing
userspace apis when userspace is not universal plane aware. See also enum drm_plane_type.
drm_for_each_plane(plane, dev)

iterate over all planes
Parameters
plane the loop cursor
dev the DRM device
Description
Iterate over all planes of dev, include primary and cursor planes.
int drm_universal_plane_init(struct drm_device * dev, struct drm_plane * plane,

uint32_t possible_crtcs, const struct drm_plane_funcs * funcs,
const uint32_t * formats, unsigned int format_count, enum
drm_plane_type type, const char * name, ...)

Initialize a new universal plane object
Parameters
struct drm_device * dev DRM device
struct drm_plane * plane plane object to init
uint32_t possible_crtcs bitmask of possible CRTCs
const struct drm_plane_funcs * funcs callbacks for the new plane
const uint32_t * formats array of supported formats (DRM_FORMAT_*)
unsigned int format_count number of elements in formats
enum drm_plane_type type type of plane (overlay, primary, cursor)
const char * name printf style format string for the plane name, or NULL for default name
... variable arguments
Description
Initializes a plane object of type type.
Return
Zero on success, error code on failure.
int drm_plane_init(struct drm_device * dev, struct drm_plane * plane, uint32_t possible_crtcs,

const struct drm_plane_funcs * funcs, const uint32_t * formats, unsigned
int format_count, bool is_primary)

Initialize a legacy plane
Parameters
struct drm_device * dev DRM device
struct drm_plane * plane plane object to init
uint32_t possible_crtcs bitmask of possible CRTCs

116 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

const struct drm_plane_funcs * funcs callbacks for the new plane
const uint32_t * formats array of supported formats (DRM_FORMAT_*)
unsigned int format_count number of elements in formats
bool is_primary plane type (primary vs overlay)
Description
Legacy API to initialize a DRM plane.
New drivers should call drm_universal_plane_init() instead.
Return
Zero on success, error code on failure.
void drm_plane_cleanup(struct drm_plane * plane)

Clean up the core plane usage
Parameters
struct drm_plane * plane plane to cleanup
Description
This function cleans up plane and removes it from the DRM mode setting core. Note that the function
does not free the plane structure itself, this is the responsibility of the caller.
struct drm_plane * drm_plane_from_index(struct drm_device * dev, int idx)

find the registered plane at an index
Parameters
struct drm_device * dev DRM device
int idx index of registered plane to find for
Description
Given a plane index, return the registered plane from DRM device’s list of planes with matching index.
This is the inverse of drm_plane_index().
void drm_plane_force_disable(struct drm_plane * plane)

Forcibly disable a plane
Parameters
struct drm_plane * plane plane to disable
Description
Forces the plane to be disabled.
Used when the plane’s current framebuffer is destroyed, and when restoring fbdev mode.
Note that this function is not suitable for atomic drivers, since it doesn’t wire through the lock acquisi-
tion context properly and hence can’t handle retries or driver private locks. You probably want to use
drm_atomic_helper_disable_plane() or drm_atomic_helper_disable_planes_on_crtc() instead.
int drm_mode_plane_set_obj_prop(struct drm_plane * plane, struct drm_property * property,

uint64_t value)
set the value of a property

Parameters
struct drm_plane * plane drm plane object to set property value for
struct drm_property * property property to set
uint64_t value value the property should be set to

4.9. Plane Abstraction 117

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This functions sets a given property on a given plane object. This function calls the driver’s ->set_property
callback and changes the software state of the property if the callback succeeds.
Return
Zero on success, error code on failure.

4.10 Display Modes Function Reference

enum drm_mode_status
hardware support status of a mode

Constants
MODE_OK Mode OK
MODE_HSYNC hsync out of range
MODE_VSYNC vsync out of range
MODE_H_ILLEGAL mode has illegal horizontal timings
MODE_V_ILLEGAL mode has illegal horizontal timings
MODE_BAD_WIDTH requires an unsupported linepitch
MODE_NOMODE no mode with a matching name
MODE_NO_INTERLACE interlaced mode not supported
MODE_NO_DBLESCAN doublescan mode not supported
MODE_NO_VSCAN multiscan mode not supported
MODE_MEM insufficient video memory
MODE_VIRTUAL_X mode width too large for specified virtual size
MODE_VIRTUAL_Y mode height too large for specified virtual size
MODE_MEM_VIRT insufficient video memory given virtual size
MODE_NOCLOCK no fixed clock available
MODE_CLOCK_HIGH clock required is too high
MODE_CLOCK_LOW clock required is too low
MODE_CLOCK_RANGE clock/mode isn’t in a ClockRange
MODE_BAD_HVALUE horizontal timing was out of range
MODE_BAD_VVALUE vertical timing was out of range
MODE_BAD_VSCAN VScan value out of range
MODE_HSYNC_NARROW horizontal sync too narrow
MODE_HSYNC_WIDE horizontal sync too wide
MODE_HBLANK_NARROW horizontal blanking too narrow
MODE_HBLANK_WIDE horizontal blanking too wide
MODE_VSYNC_NARROW vertical sync too narrow
MODE_VSYNC_WIDE vertical sync too wide
MODE_VBLANK_NARROW vertical blanking too narrow
MODE_VBLANK_WIDE vertical blanking too wide

118 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

MODE_PANEL exceeds panel dimensions
MODE_INTERLACE_WIDTH width too large for interlaced mode
MODE_ONE_WIDTH only one width is supported
MODE_ONE_HEIGHT only one height is supported
MODE_ONE_SIZE only one resolution is supported
MODE_NO_REDUCED monitor doesn’t accept reduced blanking
MODE_NO_STEREO stereo modes not supported
MODE_STALE mode has become stale
MODE_BAD unspecified reason
MODE_ERROR error condition
Description
This enum is used to filter out modes not supported by the driver/hardware combination.
struct drm_display_mode

DRM kernel-internal display mode structure
Definition

struct drm_display_mode {
struct list_head head;
struct drm_mode_object base;
char name;
enum drm_mode_status status;
unsigned int type;
int clock;
int hdisplay;
int hsync_start;
int hsync_end;
int htotal;
int hskew;
int vdisplay;
int vsync_start;
int vsync_end;
int vtotal;
int vscan;
unsigned int flags;
int width_mm;
int height_mm;
int crtc_clock;
int crtc_hdisplay;
int crtc_hblank_start;
int crtc_hblank_end;
int crtc_hsync_start;
int crtc_hsync_end;
int crtc_htotal;
int crtc_hskew;
int crtc_vdisplay;
int crtc_vblank_start;
int crtc_vblank_end;
int crtc_vsync_start;
int crtc_vsync_end;
int crtc_vtotal;
int * private;
int private_flags;
int vrefresh;
int hsync;

4.10. Display Modes Function Reference 119

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

enum hdmi_picture_aspect picture_aspect_ratio;
};

Members
head struct list_head for mode lists.
base A display mode is a normal modeset object, possibly including public userspace id.

FIXME:
This can probably be removed since the entire concept of userspace managing modes explicitly has
never landed in upstream kernel mode setting support.

name Human-readable name of the mode, filled out with drm_mode_set_name().
status Status of the mode, used to filter out modes not supported by the hardware. See enum

drm_mode_status.
type A bitmask of flags, mostly about the source of a mode. Possible flags are:

• DRM_MODE_TYPE_BUILTIN: Meant for hard-coded modes, effectively unused.
• DRM_MODE_TYPE_PREFERRED: Preferred mode, usually the native resolution of an LCD panel.
There should only be one preferred mode per connector at any given time.

• DRM_MODE_TYPE_DRIVER: Mode created by the driver, which is all of them really. Drivers must
set this bit for all modes they create and expose to userspace.

Plus a big list of flags which shouldn’t be used at all, but are still around since these flags are also
used in the userspace ABI:
• DRM_MODE_TYPE_DEFAULT: Again a leftover, use DRM_MODE_TYPE_PREFERRED instead.
• DRM_MODE_TYPE_CLOCK_C and DRM_MODE_TYPE_CRTC_C: Define leftovers which are stuck
around for hysterical raisins only. No one has an idea what they were meant for. Don’t use.

• DRM_MODE_TYPE_USERDEF: Mode defined by userspace, again a vestige from older kms designs
where userspace had to first add a custom mode to the kernel’s mode list before it could use it.
Don’t use.

clock Pixel clock in kHz.
hdisplay horizontal display size
hsync_start horizontal sync start
hsync_end horizontal sync end
htotal horizontal total size
hskew horizontal skew?!
vdisplay vertical display size
vsync_start vertical sync start
vsync_end vertical sync end
vtotal vertical total size
vscan vertical scan?!
flags Sync and timing flags:

• DRM_MODE_FLAG_PHSYNC: horizontal sync is active high.
• DRM_MODE_FLAG_NHSYNC: horizontal sync is active low.
• DRM_MODE_FLAG_PVSYNC: vertical sync is active high.
• DRM_MODE_FLAG_NVSYNC: vertical sync is active low.

120 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

• DRM_MODE_FLAG_INTERLACE: mode is interlaced.
• DRM_MODE_FLAG_DBLSCAN: mode uses doublescan.
• DRM_MODE_FLAG_CSYNC: mode uses composite sync.
• DRM_MODE_FLAG_PCSYNC: composite sync is active high.
• DRM_MODE_FLAG_NCSYNC: composite sync is active low.
• DRM_MODE_FLAG_HSKEW: hskew provided (not used?).
• DRM_MODE_FLAG_BCAST: not used?
• DRM_MODE_FLAG_PIXMUX: not used?
• DRM_MODE_FLAG_DBLCLK: double-clocked mode.
• DRM_MODE_FLAG_CLKDIV2: half-clocked mode.

Additionally there’s flags to specify how 3D modes are packed:
• DRM_MODE_FLAG_3D_NONE: normal, non-3D mode.
• DRM_MODE_FLAG_3D_FRAME_PACKING: 2 full frames for left and right.
• DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE: interleaved like fields.
• DRM_MODE_FLAG_3D_LINE_ALTERNATIVE: interleaved lines.
• DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL: side-by-side full frames.
• DRM_MODE_FLAG_3D_L_DEPTH: ?
• DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH: ?
• DRM_MODE_FLAG_3D_TOP_AND_BOTTOM: frame split into top and bottom parts.
• DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF: frame split into left and right parts.

width_mm Addressable size of the output in mm, projectors should set this to 0.
height_mm Addressable size of the output in mm, projectors should set this to 0.
crtc_clock Actual pixel or dot clock in the hardware. This differs from the logical clock when e.g. using

interlacing, double-clocking, stereo modes or other fancy stuff that changes the timings and signals
actually sent over the wire.
This is again in kHz.
Note that with digital outputs like HDMI or DP there’s usually a massive confusion between the dot
clock and the signal clock at the bit encoding level. Especially when a 8b/10b encoding is used and
the difference is exactly a factor of 10.

crtc_hdisplay hardware mode horizontal display size
crtc_hblank_start hardware mode horizontal blank start
crtc_hblank_end hardware mode horizontal blank end
crtc_hsync_start hardware mode horizontal sync start
crtc_hsync_end hardware mode horizontal sync end
crtc_htotal hardware mode horizontal total size
crtc_hskew hardware mode horizontal skew?!
crtc_vdisplay hardware mode vertical display size
crtc_vblank_start hardware mode vertical blank start
crtc_vblank_end hardware mode vertical blank end
crtc_vsync_start hardware mode vertical sync start

4.10. Display Modes Function Reference 121

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

crtc_vsync_end hardware mode vertical sync end
crtc_vtotal hardware mode vertical total size
private Pointer for driver private data. This can only be used for mode objects passed to drivers in

modeset operations. It shouldn’t be used by atomic drivers since they can store any additional data
by subclassing state structures.

private_flags Similar to private, but just an integer.
vrefresh Vertical refresh rate, for debug output in human readable form. Not used in a functional way.

This value is in Hz.
hsync Horizontal refresh rate, for debug output in human readable form. Not used in a functional way.

This value is in kHz.
picture_aspect_ratio Field for setting the HDMI picture aspect ratio of a mode.
Description
The horizontal and vertical timings are defined per the following diagram.

Active Front Sync Back
Region Porch Porch

<-----------------------><----------------><-------------><-------------->
//////////////////////|
////////////////////// |
////////////////////// |..................

<----- [hv]display ----->
<------------- [hv]sync_start ------------>
<--------------------- [hv]sync_end --------------------->
<-------------------------------- [hv]total ----------------------------->*

This structure contains two copies of timings. First are the plain timings, which specify the logical mode,
as it would be for a progressive 1:1 scanout at the refresh rate userspace can observe through vblank
timestamps. Then there’s the hardware timings, which are corrected for interlacing, double-clocking
and similar things. They are provided as a convenience, and can be appropriately computed using
drm_mode_set_crtcinfo().
For printing you can use DRM_MODE_FMT and DRM_MODE_ARG().
DRM_MODE_FMT()

printf string for struct drm_display_mode

Parameters
DRM_MODE_ARG(m)

printf arguments for struct drm_display_mode

Parameters
m display mode
bool drm_mode_is_stereo(const struct drm_display_mode * mode)

check for stereo mode flags
Parameters
const struct drm_display_mode * mode drm_display_mode to check
Return
True if the mode is one of the stereo modes (like side-by-side), false if not.
void drm_mode_debug_printmodeline(const struct drm_display_mode * mode)

print a mode to dmesg
Parameters

122 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

const struct drm_display_mode * mode mode to print
Description
Describe mode using DRM_DEBUG.
struct drm_display_mode * drm_mode_create(struct drm_device * dev)

create a new display mode
Parameters
struct drm_device * dev DRM device
Description
Create a new, cleared drm_display_mode with kzalloc, allocate an ID for it and return it.
Return
Pointer to new mode on success, NULL on error.
void drm_mode_destroy(struct drm_device * dev, struct drm_display_mode * mode)

remove a mode
Parameters
struct drm_device * dev DRM device
struct drm_display_mode * mode mode to remove
Description
Release mode‘s unique ID, then free it mode structure itself using kfree.
void drm_mode_probed_add(struct drm_connector * connector, struct drm_display_mode * mode)

add a mode to a connector’s probed_mode list
Parameters
struct drm_connector * connector connector the new mode
struct drm_display_mode * mode mode data
Description
Add mode to connector‘s probed_mode list for later use. This list should then in a second step get
filtered and all the modes actually supported by the hardware moved to the connector‘s modes list.
struct drm_display_mode * drm_cvt_mode(struct drm_device * dev, int hdisplay, int vdisplay,

int vrefresh, bool reduced, bool interlaced,
bool margins)

create a modeline based on the CVT algorithm
Parameters
struct drm_device * dev drm device
int hdisplay hdisplay size
int vdisplay vdisplay size
int vrefresh vrefresh rate
bool reduced whether to use reduced blanking
bool interlaced whether to compute an interlaced mode
bool margins whether to add margins (borders)
Description
This function is called to generate the modeline based on CVT algorithm according to the hdisplay, vdis-
play, vrefresh. It is based from the VESA(TM) Coordinated Video Timing Generator by Graham Loveridge
April 9, 2003 available at http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls

4.10. Display Modes Function Reference 123

http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c. What I have done is to trans-
late it by using integer calculation.
Return
The modeline based on the CVT algorithm stored in a drm_display_mode object. The display mode object
is allocated with drm_mode_create(). Returns NULL when no mode could be allocated.
struct drm_display_mode * drm_gtf_mode_complex(struct drm_device * dev, int hdisplay,

int vdisplay, int vrefresh, bool interlaced,
int margins, int GTF_M, int GTF_2C, int GTF_K,
int GTF_2J)

create the modeline based on the full GTF algorithm
Parameters
struct drm_device * dev drm device
int hdisplay hdisplay size
int vdisplay vdisplay size
int vrefresh vrefresh rate.
bool interlaced whether to compute an interlaced mode
int margins desired margin (borders) size
int GTF_M extended GTF formula parameters
int GTF_2C extended GTF formula parameters
int GTF_K extended GTF formula parameters
int GTF_2J extended GTF formula parameters
Description
GTF feature blocks specify C and J in multiples of 0.5, so we pass them in here multiplied by two. For a C
of 40, pass in 80.
Return
The modeline based on the full GTF algorithm stored in a drm_display_mode object. The display mode
object is allocated with drm_mode_create(). Returns NULL when no mode could be allocated.
struct drm_display_mode * drm_gtf_mode(struct drm_device * dev, int hdisplay, int vdisplay,

int vrefresh, bool interlaced, int margins)
create the modeline based on the GTF algorithm

Parameters
struct drm_device * dev drm device
int hdisplay hdisplay size
int vdisplay vdisplay size
int vrefresh vrefresh rate.
bool interlaced whether to compute an interlaced mode
int margins desired margin (borders) size
Description
return the modeline based on GTF algorithm
This function is to create the modeline based on the GTF algorithm. Generalized Timing Formula is derived
from:

GTF Spreadsheet by Andy Morrish (1/5/97) available at http://www.vesa.org

124 Chapter 4. Kernel Mode Setting (KMS)

http://www.vesa.org

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c. What I have done is to translate it by
using integer calculation. I also refer to the function of fb_get_mode in the file of drivers/video/fbmon.c
Standard GTF parameters:

M = 600
C = 40
K = 128
J = 20

Return
The modeline based on the GTF algorithm stored in a drm_display_mode object. The display mode object
is allocated with drm_mode_create(). Returns NULL when no mode could be allocated.
void drm_display_mode_from_videomode(const struct videomode * vm, struct drm_display_mode

* dmode)
fill in dmode using vm,

Parameters
const struct videomode * vm videomode structure to use as source
struct drm_display_mode * dmode drm_display_mode structure to use as destination
Description
Fills out dmode using the display mode specified in vm.
void drm_display_mode_to_videomode(const struct drm_display_mode * dmode, struct videomode

* vm)
fill in vm using dmode,

Parameters
const struct drm_display_mode * dmode drm_display_mode structure to use as source
struct videomode * vm videomode structure to use as destination
Description
Fills out vm using the display mode specified in dmode.
void drm_bus_flags_from_videomode(const struct videomode * vm, u32 * bus_flags)

extract information about pixelclk and DE polarity from videomode and store it in a separate variable
Parameters
const struct videomode * vm videomode structure to use
u32 * bus_flags information about pixelclk and DE polarity will be stored here
Description
Sets DRM_BUS_FLAG_DE_(LOW|HIGH) and DRM_BUS_FLAG_PIXDATA_(POS|NEG)EDGE in bus_flags ac-
cording to DISPLAY_FLAGS found in vm
int of_get_drm_display_mode(struct device_node * np, struct drm_display_mode * dmode, u32

* bus_flags, int index)
get a drm_display_mode from devicetree

Parameters
struct device_node * np device_node with the timing specification
struct drm_display_mode * dmode will be set to the return value
u32 * bus_flags information about pixelclk and DE polarity
int index index into the list of display timings in devicetree

4.10. Display Modes Function Reference 125

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This function is expensive and should only be used, if only one mode is to be read from DT. To get multiple
modes start with of_get_display_timings and work with that instead.
Return
0 on success, a negative errno code when no of videomode node was found.
void drm_mode_set_name(struct drm_display_mode * mode)

set the name on a mode
Parameters
struct drm_display_mode * mode name will be set in this mode
Description
Set the name of mode to a standard format which is <hdisplay>x<vdisplay> with an optional ‘i’ suffix
for interlaced modes.
int drm_mode_hsync(const struct drm_display_mode * mode)

get the hsync of a mode
Parameters
const struct drm_display_mode * mode mode
Return
modes‘s hsync rate in kHz, rounded to the nearest integer. Calculates the value first if it is not yet set.
int drm_mode_vrefresh(const struct drm_display_mode * mode)

get the vrefresh of a mode
Parameters
const struct drm_display_mode * mode mode
Return
modes‘s vrefresh rate in Hz, rounded to the nearest integer. Calculates the value first if it is not yet set.
void drm_mode_get_hv_timing(const struct drm_display_mode * mode, int * hdisplay, int * vdis-

play)
Fetches hdisplay/vdisplay for given mode

Parameters
const struct drm_display_mode * mode mode to query
int * hdisplay hdisplay value to fill in
int * vdisplay vdisplay value to fill in
Description
The vdisplay value will be doubled if the specified mode is a stereo mode of the appropriate layout.
void drm_mode_set_crtcinfo(struct drm_display_mode * p, int adjust_flags)

set CRTC modesetting timing parameters
Parameters
struct drm_display_mode * p mode
int adjust_flags a combination of adjustment flags
Description
Setup the CRTC modesetting timing parameters for p, adjusting if necessary.
• The CRTC_INTERLACE_HALVE_V flag can be used to halve vertical timings of interlaced modes.

126 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

• The CRTC_STEREO_DOUBLE flag can be used to compute the timings for buffers containing two eyes
(only adjust the timings when needed, eg. for “frame packing” or “side by side full”).

• The CRTC_NO_DBLSCAN and CRTC_NO_VSCAN flags request that adjustment not be performed for
doublescan and vscan > 1 modes respectively.

void drm_mode_copy(struct drm_display_mode * dst, const struct drm_display_mode * src)
copy the mode

Parameters
struct drm_display_mode * dst mode to overwrite
const struct drm_display_mode * src mode to copy
Description
Copy an existing mode into another mode, preserving the object id and list head of the destination mode.

struct drm_display_mode * drm_mode_duplicate(struct drm_device * dev, const struct
drm_display_mode * mode)

allocate and duplicate an existing mode
Parameters
struct drm_device * dev drm_device to allocate the duplicated mode for
const struct drm_display_mode * mode mode to duplicate
Description
Just allocate a new mode, copy the existing mode into it, and return a pointer to it. Used to create new
instances of established modes.
Return
Pointer to duplicated mode on success, NULL on error.
bool drm_mode_equal(const struct drm_display_mode * mode1, const struct drm_display_mode

* mode2)
test modes for equality

Parameters
const struct drm_display_mode * mode1 first mode
const struct drm_display_mode * mode2 second mode
Description
Check to see if mode1 and mode2 are equivalent.
Return
True if the modes are equal, false otherwise.
bool drm_mode_equal_no_clocks(const struct drm_display_mode * mode1, const struct

drm_display_mode * mode2)
test modes for equality

Parameters
const struct drm_display_mode * mode1 first mode
const struct drm_display_mode * mode2 second mode
Description
Check to see if mode1 and mode2 are equivalent, but don’t check the pixel clocks.
Return
True if the modes are equal, false otherwise.

4.10. Display Modes Function Reference 127

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

bool drm_mode_equal_no_clocks_no_stereo(const struct drm_display_mode * mode1, const struct
drm_display_mode * mode2)

test modes for equality
Parameters
const struct drm_display_mode * mode1 first mode
const struct drm_display_mode * mode2 second mode
Description
Check to see ifmode1 andmode2 are equivalent, but don’t check the pixel clocks nor the stereo layout.
Return
True if the modes are equal, false otherwise.
enum drm_mode_status drm_mode_validate_basic(const struct drm_display_mode * mode)

make sure the mode is somewhat sane
Parameters
const struct drm_display_mode * mode mode to check
Description
Check that the mode timings are at least somewhat reasonable. Any hardware specific limits are left up
for each driver to check.
Return
The mode status
enum drm_mode_status drm_mode_validate_size(const struct drm_display_mode * mode,

int maxX, int maxY)
make sure modes adhere to size constraints

Parameters
const struct drm_display_mode * mode mode to check
int maxX maximum width
int maxY maximum height
Description
This function is a helper which can be used to validate modes against size limitations of the DRM de-
vice/connector. If a mode is too big its status member is updated with the appropriate validation failure
code. The list itself is not changed.
Return
The mode status
void drm_mode_prune_invalid(struct drm_device * dev, struct list_head * mode_list, bool verbose)

remove invalid modes from mode list
Parameters
struct drm_device * dev DRM device
struct list_head * mode_list list of modes to check
bool verbose be verbose about it
Description
This helper function can be used to prune a display mode list after validation has been completed. All
modes who’s status is not MODE_OK will be removed from the list, and if verbose the status code and
mode name is also printed to dmesg.

128 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void drm_mode_sort(struct list_head * mode_list)
sort mode list

Parameters
struct list_head * mode_list list of drm_display_mode structures to sort
Description
Sort mode_list by favorability, moving good modes to the head of the list.
void drm_mode_connector_list_update(struct drm_connector * connector)

update the mode list for the connector
Parameters
struct drm_connector * connector the connector to update
Description
This moves the modes from the connector probed_modes list to the actual mode list. It compares the
probed mode against the current list and only adds different/new modes.
This is just a helper functions doesn’t validate any modes itself and also doesn’t prune any invalid modes.
Callers need to do that themselves.
bool drm_mode_parse_command_line_for_connector(const char * mode_option, struct

drm_connector * connector, struct
drm_cmdline_mode * mode)

parse command line modeline for connector
Parameters
const char * mode_option optional per connector mode option
struct drm_connector * connector connector to parse modeline for
struct drm_cmdline_mode * mode preallocated drm_cmdline_mode structure to fill out
Description
This parses mode_option command line modeline for modes and options to configure the connector. If
mode_option is NULL the default command line modeline in fb_mode_option will be parsed instead.
This uses the same parameters as the fb modedb.c, except for an extra force-enable, force-enable-digital
and force-disable bit at the end:
<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m][eDd]
The intermediate drm_cmdline_mode structure is required to store additional options from the command
line modline like the force-enable/disable flag.
Return
True if a valid modeline has been parsed, false otherwise.
struct drm_display_mode * drm_mode_create_from_cmdline_mode(struct drm_device * dev, struct

drm_cmdline_mode * cmd)
convert a command line modeline into a DRM display mode

Parameters
struct drm_device * dev DRM device to create the new mode for
struct drm_cmdline_mode * cmd input command line modeline
Return
Pointer to converted mode on success, NULL on error.

4.10. Display Modes Function Reference 129

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

4.11 Connector Abstraction

In DRM connectors are the general abstraction for display sinks, and include als fixed panels or anything
else that can display pixels in some form. As opposed to all other KMS objects representing hardware (like
CRTC, encoder or plane abstractions) connectors can be hotplugged and unplugged at runtime. Hence
they are reference-counted using drm_connector_get() and drm_connector_put().
KMS driver must create, initialize, register and attach at a struct drm_connector for each such sink. The
instance is created as other KMS objects and initialized by setting the following fields. The connector is
initialized with a call to drm_connector_init() with a pointer to the struct drm_connector_funcs and
a connector type, and then exposed to userspace with a call to drm_connector_register().
Connectors must be attached to an encoder to be used. For devices that map connec-
tors to encoders 1:1, the connector should be attached at initialization time with a call to
drm_mode_connector_attach_encoder(). The driver must also set the drm_connector.encoder field
to point to the attached encoder.
For connectors which are not fixed (like built-in panels) the driver needs to support hotplug notifications.
The simplest way to do that is by using the probe helpers, see drm_kms_helper_poll_init() for connec-
tors which don’t have hardware support for hotplug interrupts. Connectors with hardware hotplug support
can instead use e.g. drm_helper_hpd_irq_event().

4.11.1 Connector Functions Reference

enum drm_connector_status
status for a drm_connector

Constants
connector_status_connected The connector is definitely connected to a sink device, and can be en-

abled.
connector_status_disconnected The connector isn’t connected to a sink device which can be autode-

tect. For digital outputs like DP or HDMI (which can be realiable probed) this means there’s really
nothing there. It is driver-dependent whether a connector with this status can be lit up or not.

connector_status_unknown The connector’s status could not be reliably detected. This happens when
probing would either cause flicker (like load-detection when the connector is in use), or when a hard-
ware resource isn’t available (like when load-detection needs a free CRTC). It should be possible to
light up the connector with one of the listed fallback modes. For default configuration userspace
should only try to light up connectors with unknown status when there’s not connector with connec-
tor_status_connected.

Description
This enum is used to track the connector status. There are no separate #defines for the uapi!
struct drm_scrambling
Definition

struct drm_scrambling {
bool supported;
bool low_rates;

};

Members
supported scrambling supported for rates > 340 Mhz.
low_rates scrambling supported for rates <= 340 Mhz.
struct drm_hdmi_info

runtime information about the connected HDMI sink

130 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Definition

struct drm_hdmi_info {
struct drm_scdc scdc;

};

Members
scdc sink’s scdc support and capabilities
Description
Describes if a given display supports advanced HDMI 2.0 features. This information is available in CEA-
861-F extension blocks (like HF-VSDB).
enum drm_link_status

connector’s link_status property value
Constants
DRM_LINK_STATUS_GOOD DP Link is Good as a result of successful link training
DRM_LINK_STATUS_BAD DP Link is BAD as a result of link training failure
Description
This enum is used as the connector’s link status property value. It is set to the values defined in uapi.
struct drm_display_info

runtime data about the connected sink
Definition

struct drm_display_info {
char name;
unsigned int width_mm;
unsigned int height_mm;
unsigned int pixel_clock;
unsigned int bpc;
enum subpixel_order subpixel_order;

#define DRM_COLOR_FORMAT_RGB444 (1\\\lt;\\\lt;0
#define DRM_COLOR_FORMAT_YCRCB444 (1\\\lt;\\\lt;1
#define DRM_COLOR_FORMAT_YCRCB422 (1\\\lt;\\\lt;2

u32 color_formats;
const u32 * bus_formats;
unsigned int num_bus_formats;

#define DRM_BUS_FLAG_DE_LOW (1\\\lt;\\\lt;0
#define DRM_BUS_FLAG_DE_HIGH (1\\\lt;\\\lt;1
#define DRM_BUS_FLAG_PIXDATA_POSEDGE (1\\\lt;\\\lt;2
#define DRM_BUS_FLAG_PIXDATA_NEGEDGE (1\\\lt;\\\lt;3
#define DRM_BUS_FLAG_DATA_MSB_TO_LSB (1\\\lt;\\\lt;4
#define DRM_BUS_FLAG_DATA_LSB_TO_MSB (1\\\lt;\\\lt;5
u32 bus_flags;
int max_tmds_clock;
bool dvi_dual;
u8 edid_hdmi_dc_modes;
u8 cea_rev;
struct drm_hdmi_info hdmi;

};

Members
name Name of the display.
width_mm Physical width in mm.
height_mm Physical height in mm.

4.11. Connector Abstraction 131

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

pixel_clock Maximum pixel clock supported by the sink, in units of 100Hz. This mismatches the clock
in drm_display_mode (which is in kHZ), because that’s what the EDID uses as base unit.

bpc Maximum bits per color channel. Used by HDMI and DP outputs.
subpixel_order Subpixel order of LCD panels.
color_formats HDMI Color formats, selects between RGB and YCrCb modes. Used

DRM_COLOR_FORMAT_ defines, which are _not_ the same ones as used to describe the pixel
format in framebuffers, and also don’t match the formats in bus_formats which are shared with
v4l.

bus_formats Pixel data format on the wire, somewhat redundant with color_formats. Array of size
num_bus_formats encoded using MEDIA_BUS_FMT_ defines shared with v4l and media drivers.

num_bus_formats Size of bus_formats array.
bus_flags Additional information (like pixel signal polarity) for the pixel data on the bus, using

DRM_BUS_FLAGS_ defines.
max_tmds_clock Maximum TMDS clock rate supported by the sink in kHz. 0 means undefined.
dvi_dual Dual-link DVI sink?
edid_hdmi_dc_modes Mask of supported hdmi deep color modes. Even more stuff redundant with

bus_formats.
cea_rev CEA revision of the HDMI sink.
hdmi advance features of a HDMI sink.
Description
Describes a given display (e.g. CRT or flat panel) and its limitations. For fixed display sinks like built-in
panels there’s not much difference between this and struct drm_connector. But for sinks with a real
cable this structure is meant to describe all the things at the other end of the cable.
For sinks which provide an EDID this can be filled out by calling drm_add_edid_modes().
struct drm_tv_connector_state

TV connector related states
Definition

struct drm_tv_connector_state {
enum drm_mode_subconnector subconnector;
struct margins;
unsigned int mode;
unsigned int brightness;
unsigned int contrast;
unsigned int flicker_reduction;
unsigned int overscan;
unsigned int saturation;
unsigned int hue;

};

Members
subconnector selected subconnector
margins left/right/top/bottom margins
mode TV mode
brightness brightness in percent
contrast contrast in percent
flicker_reduction flicker reduction in percent
overscan overscan in percent

132 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

saturation saturation in percent
hue hue in percent
struct drm_connector_state

mutable connector state
Definition

struct drm_connector_state {
struct drm_connector * connector;
struct drm_crtc * crtc;
struct drm_encoder * best_encoder;
enum drm_link_status link_status;
struct drm_atomic_state * state;
struct drm_tv_connector_state tv;
enum hdmi_picture_aspect picture_aspect_ratio;
unsigned int scaling_mode;

};

Members
connector backpointer to the connector
crtc CRTC to connect connector to, NULL if disabled.

Do not change this directly, use drm_atomic_set_crtc_for_connector() instead.
best_encoder can be used by helpers and drivers to select the encoder
link_status Connector link_status to keep track of whether link is GOOD or BAD to notify userspace if

retraining is necessary.
state backpointer to global drm_atomic_state
tv TV connector state
picture_aspect_ratio Connector property to control the HDMI infoframe aspect ratio setting.

The DRM_MODE_PICTURE_ASPECT_* values much match the values for enum hdmi_picture_aspect

scaling_mode Connector property to control the upscaling, mostly used for built-in panels.
struct drm_connector_funcs

control connectors on a given device
Definition

struct drm_connector_funcs {
int (* dpms) (struct drm_connector *connector, int mode);
void (* reset) (struct drm_connector *connector);
enum drm_connector_status (* detect) (struct drm_connector *connector, bool force);
void (* force) (struct drm_connector *connector);
int (* fill_modes) (struct drm_connector *connector, uint32_t max_width, uint32_t max_height);
int (* set_property) (struct drm_connector *connector, struct drm_property *property, uint64_

↪→t val);
int (* late_register) (struct drm_connector *connector);
void (* early_unregister) (struct drm_connector *connector);
void (* destroy) (struct drm_connector *connector);
struct drm_connector_state *(* atomic_duplicate_state) (struct drm_connector *connector);
void (* atomic_destroy_state) (struct drm_connector *connector, struct drm_connector_state␣

↪→*state);
int (* atomic_set_property) (struct drm_connector *connector,struct drm_connector_state␣

↪→*state,struct drm_property *property, uint64_t val);
int (* atomic_get_property) (struct drm_connector *connector,const struct drm_connector_state␣

↪→*state,struct drm_property *property, uint64_t *val);
void (* atomic_print_state) (struct drm_printer *p, const struct drm_connector_state *state);

};

4.11. Connector Abstraction 133

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Members
dpms Legacy entry point to set the per-connector DPMS state. Legacy DPMS is exposed as a standard

property on the connector, but diverted to this callback in the drm core. Note that atomic drivers
don’t implement the 4 level DPMS support on the connector any more, but instead only have an
on/off “ACTIVE” property on the CRTC object.
Drivers implementing atomic modeset should use drm_atomic_helper_connector_dpms() to imple-
ment this hook.
RETURNS:
0 on success or a negative error code on failure.

reset Reset connector hardware and software state to off. This function isn’t called by the core directly,
only through drm_mode_config_reset(). It’s not a helper hook only for historical reasons.
Atomic drivers can use drm_atomic_helper_connector_reset() to reset atomic state using this
hook.

detect Check to see if anything is attached to the connector. The parameter force is set to false whilst
polling, true when checking the connector due to a user request. force can be used by the driver to
avoid expensive, destructive operations during automated probing.
This callback is optional, if not implemented the connector will be considered as always being at-
tached.
FIXME:
Note that this hook is only called by the probe helper. It’s not in the helper library vtable purely for
historical reasons. The only DRM core entry point to probe connector state is fill_modes.
Note that the helper library will already hold drm_mode_config.connection_mutex. Drivers which
need to grab additional locks to avoid races with concurrent modeset changes need to use
drm_connector_helper_funcs.detect_ctx instead.
RETURNS:
drm_connector_status indicating the connector’s status.

force This function is called to update internal encoder state when the connector is forced to a certain
state by userspace, either through the sysfs interfaces or on the kernel cmdline. In that case the
detect callback isn’t called.
FIXME:
Note that this hook is only called by the probe helper. It’s not in the helper library vtable purely for
historical reasons. The only DRM core entry point to probe connector state is fill_modes.

fill_modes Entry point for output detection and basic mode validation. The driver should reprobe
the output if needed (e.g. when hotplug handling is unreliable), add all detected modes to
drm_connector.modes and filter out any the device can’t support in any configuration. It also needs
to filter out any modes wider or higher than the parameters max_width and max_height indicate.
The drivers must also prune any modes no longer valid from drm_connector.modes. Furthermore
it must update drm_connector.status and drm_connector.edid. If no EDID has been received for
this output connector->edid must be NULL.
Drivers using the probe helpers should use drm_helper_probe_single_connector_modes() or
drm_helper_probe_single_connector_modes_nomerge() to implement this function.
RETURNS:
The number of modes detected and filled into drm_connector.modes.

set_property This is the legacy entry point to update a property attached to the connector.
Drivers implementing atomicmodeset should use drm_atomic_helper_connector_set_property()
to implement this hook.

134 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

This callback is optional if the driver does not support any legacy driver-private properties.
RETURNS:
0 on success or a negative error code on failure.

late_register This optional hook can be used to register additional userspace interfaces attached to the
connector, light backlight control, i2c, DP aux or similar interfaces. It is called late in the driver load
sequence from drm_connector_register() when registering all the core drm connector interfaces.
Everything added from this callback should be unregistered in the early_unregister callback.
This is called while holding drm_connector.mutex.
Returns:
0 on success, or a negative error code on failure.

early_unregister This optional hook should be used to unregister the additional userspace interfaces
attached to the connector from late_register(). It is called from drm_connector_unregister(),
early in the driver unload sequence to disable userspace access before data structures are torndown.
This is called while holding drm_connector.mutex.

destroy Clean up connector resources. This is called at driver unload time through
drm_mode_config_cleanup(). It can also be called at runtime when a connector is being hot-
unplugged for drivers that support connector hotplugging (e.g. DisplayPort MST).

atomic_duplicate_state Duplicate the current atomic state for this connector and return it. The core
and helpers guarantee that any atomic state duplicated with this hook and still owned by the caller
(i.e. not transferred to the driver by calling drm_mode_config_funcs.atomic_commit) will be cleaned
up by calling the atomic_destroy_state hook in this structure.
Atomic drivers which don’t subclass struct drm_connector_state should
use drm_atomic_helper_connector_duplicate_state(). Drivers that sub-
class the state structure to extend it with driver-private state should use
__drm_atomic_helper_connector_duplicate_state() to make sure shared state is duplicated in
a consistent fashion across drivers.
It is an error to call this hook before drm_connector.state has been initialized correctly.
NOTE:
If the duplicate state references refcounted resources this hook must acquire a reference for each of
them. The driver must release these references again in atomic_destroy_state.
RETURNS:
Duplicated atomic state or NULL when the allocation failed.

atomic_destroy_state Destroy a state duplicated with atomic_duplicate_state and release or unref-
erence all resources it references

atomic_set_property Decode a driver-private property value and store the decoded value into the
passed-in state structure. Since the atomic core decodes all standardized properties (even for exten-
sions beyond the core set of properties which might not be implemented by all drivers) this requires
drivers to subclass the state structure.
Such driver-private properties should really only be implemented for truly hardware/vendor specific
state. Instead it is preferred to standardize atomic extension and decode the properties used to
expose such an extension in the core.
Do not call this function directly, use drm_atomic_connector_set_property() instead.
This callback is optional if the driver does not support any driver-private atomic properties.
NOTE:
This function is called in the state assembly phase of atomic modesets, which can be aborted for any
reason (including on userspace’s request to just check whether a configuration would be possible).

4.11. Connector Abstraction 135

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Drivers MUST NOT touch any persistent state (hardware or software) or data structures except the
passed in state parameter.
Also since userspace controls in which order properties are set this function must not do any input
validation (since the state update is incomplete and hence likely inconsistent). Instead any such
input validation must be done in the various atomic_check callbacks.
RETURNS:
0 if the property has been found, -EINVAL if the property isn’t implemented by the driver (which
shouldn’t ever happen, the core only asks for properties attached to this connector). No other vali-
dation is allowed by the driver. The core already checks that the property value is within the range
(integer, valid enum value, ...) the driver set when registering the property.

atomic_get_property Reads out the decoded driver-private property. This is used to implement the
GETCONNECTOR IOCTL.
Do not call this function directly, use drm_atomic_connector_get_property() instead.
This callback is optional if the driver does not support any driver-private atomic properties.
RETURNS:
0 on success, -EINVAL if the property isn’t implemented by the driver (which shouldn’t ever happen,
the core only asks for properties attached to this connector).

atomic_print_state If driver subclasses struct drm_connector_state, it should implement this op-
tional hook for printing additional driver specific state.
Do not call this directly, use drm_atomic_connector_print_state() instead.

Description
Each CRTC may have one or more connectors attached to it. The functions below allow the core DRM code
to control connectors, enumerate available modes, etc.
struct drm_connector

central DRM connector control structure
Definition

struct drm_connector {
struct drm_device * dev;
struct device * kdev;
struct device_attribute * attr;
struct list_head head;
struct drm_mode_object base;
char * name;
struct mutex mutex;
unsigned index;
int connector_type;
int connector_type_id;
bool interlace_allowed;
bool doublescan_allowed;
bool stereo_allowed;
bool registered;
struct list_head modes;
enum drm_connector_status status;
struct list_head probed_modes;
struct drm_display_info display_info;
const struct drm_connector_funcs * funcs;
struct drm_property_blob * edid_blob_ptr;
struct drm_object_properties properties;
struct drm_property * scaling_mode_property;
struct drm_property_blob * path_blob_ptr;
struct drm_property_blob * tile_blob_ptr;

#define DRM_CONNECTOR_POLL_HPD (1 \\\lt;\\\lt; 0

136 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

#define DRM_CONNECTOR_POLL_CONNECT (1 \\\lt;\\\lt; 1
#define DRM_CONNECTOR_POLL_DISCONNECT (1 \\\lt;\\\lt; 2
uint8_t polled;
int dpms;
const struct drm_connector_helper_funcs * helper_private;
struct drm_cmdline_mode cmdline_mode;
enum drm_connector_force force;
bool override_edid;

#define DRM_CONNECTOR_MAX_ENCODER 3
uint32_t encoder_ids;
struct drm_encoder * encoder;

#define MAX_ELD_BYTES 128
uint8_t eld;
bool latency_present;
int video_latency;
int audio_latency;
int null_edid_counter;
unsigned bad_edid_counter;
bool edid_corrupt;
struct dentry * debugfs_entry;
struct drm_connector_state * state;
bool has_tile;
struct drm_tile_group * tile_group;
bool tile_is_single_monitor;
uint8_t num_h_tile;
uint8_t num_v_tile;
uint8_t tile_h_loc;
uint8_t tile_v_loc;
uint16_t tile_h_size;
uint16_t tile_v_size;

};

Members
dev parent DRM device
kdev kernel device for sysfs attributes
attr sysfs attributes
head list management
base base KMS object
name human readable name, can be overwritten by the driver
mutex Lock for general connector state, but currently only protects registered. Most of the connector

state is still protected by drm_mode_config.mutex.
index Compacted connector index, which matches the position inside the mode_config.list for drivers not

supporting hot-add/removing. Can be used as an array index. It is invariant over the lifetime of the
connector.

connector_type one of the DRM_MODE_CONNECTOR_<foo> types from drm_mode.h
connector_type_id index into connector type enum
interlace_allowed can this connector handle interlaced modes?
doublescan_allowed can this connector handle doublescan?
stereo_allowed can this connector handle stereo modes?
registered Is this connector exposed (registered) with userspace? Protected by mutex.
modes Modes available on this connector (from fill_modes() + user). Protected by

drm_mode_config.mutex.

4.11. Connector Abstraction 137

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

status One of the drm_connector_status enums (connected, not, or unknown). Protected by
drm_mode_config.mutex.

probed_modes These are modes added by probing with DDC or the BIOS, before filtering is applied. Used
by the probe helpers. Protected by drm_mode_config.mutex.

display_info Display information is filled from EDID information when a display is detected. For non
hot-pluggable displays such as flat panels in embedded systems, the driver should initialize the
drm_display_info.width_mm and drm_display_info.height_mm fields with the physical size of the
display.
Protected by drm_mode_config.mutex.

funcs connector control functions
edid_blob_ptr DRM property containing EDID if present
properties property tracking for this connector
scaling_mode_property Optional atomic property to control the upscaling.
path_blob_ptr DRM blob property data for the DP MST path property.
tile_blob_ptr DRM blob property data for the tile property (used mostly by DP MST). This is meant

for screens which are driven through separate display pipelines represented by drm_crtc, which
might not be running with genlocked clocks. For tiled panels which are genlocked, like dual-link
LVDS or dual-link DSI, the driver should try to not expose the tiling and virtualize both drm_crtc and
drm_plane if needed.

polled Connector polling mode, a combination of
DRM_CONNECTOR_POLL_HPD The connector generates hotplug events and doesn’t need to be

periodically polled. The CONNECT and DISCONNECT flags must not be set together with the HPD
flag.

DRM_CONNECTOR_POLL_CONNECT Periodically poll the connector for connection.
DRM_CONNECTOR_POLL_DISCONNECT Periodically poll the connector for disconnection.
Set to 0 for connectors that don’t support connection status discovery.

dpms current dpms state
helper_private mid-layer private data
cmdline_mode mode line parsed from the kernel cmdline for this connector
force a DRM_FORCE_<foo> state for forced mode sets
override_edid has the EDID been overwritten through debugfs for testing?
encoder_ids valid encoders for this connector
encoder encoder driving this connector, if any
eld EDID-like data, if present
latency_present AV delay info from ELD, if found
video_latency video latency info from ELD, if found
audio_latency audio latency info from ELD, if found
null_edid_counter track sinks that give us all zeros for the EDID
bad_edid_counter track sinks that give us an EDID with invalid checksum
edid_corrupt indicates whether the last read EDID was corrupt
debugfs_entry debugfs directory for this connector

138 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

state Current atomic state for this connector.
This is protected by drm_mode_config.connection_mutex. Note that nonblocking atomic
commits access the current connector state without taking locks. Either by going
through the struct drm_atomic_state pointers, see for_each_connector_in_state(),
for_each_oldnew_connector_in_state(), for_each_old_connector_in_state() and
for_each_new_connector_in_state(). Or through careful ordering of atomic commit opera-
tions as implemented in the atomic helpers, see struct drm_crtc_commit.

has_tile is this connector connected to a tiled monitor
tile_group tile group for the connected monitor
tile_is_single_monitor whether the tile is one monitor housing
num_h_tile number of horizontal tiles in the tile group
num_v_tile number of vertical tiles in the tile group
tile_h_loc horizontal location of this tile
tile_v_loc vertical location of this tile
tile_h_size horizontal size of this tile.
tile_v_size vertical size of this tile.
Description
Each connector may be connected to one or more CRTCs, or may be clonable by another connector if
they can share a CRTC. Each connector also has a specific position in the broader display (referred to as
a ‘screen’ though it could span multiple monitors).
struct drm_connector * drm_connector_lookup(struct drm_device * dev, uint32_t id)

lookup connector object
Parameters
struct drm_device * dev DRM device
uint32_t id connector object id
Description
This function looks up the connector object specified by id add takes a reference to it.
void drm_connector_get(struct drm_connector * connector)

acquire a connector reference
Parameters
struct drm_connector * connector DRM connector
Description
This function increments the connector’s refcount.
void drm_connector_put(struct drm_connector * connector)

release a connector reference
Parameters
struct drm_connector * connector DRM connector
Description
This function decrements the connector’s reference count and frees the object if the reference count drops
to zero.
void drm_connector_reference(struct drm_connector * connector)

acquire a connector reference
Parameters

4.11. Connector Abstraction 139

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_connector * connector DRM connector
Description
This is a compatibility alias for drm_connector_get() and should not be used by new code.
void drm_connector_unreference(struct drm_connector * connector)

release a connector reference
Parameters
struct drm_connector * connector DRM connector
Description
This is a compatibility alias for drm_connector_put() and should not be used by new code.
struct drm_tile_group

Tile group metadata
Definition

struct drm_tile_group {
struct kref refcount;
struct drm_device * dev;
int id;
u8 group_data;

};

Members
refcount reference count
dev DRM device
id tile group id exposed to userspace
group_data Sink-private data identifying this group
Description
group_data corresponds to displayid vend/prod/serial for external screens with an EDID.
struct drm_connector_list_iter

connector_list iterator
Definition

struct drm_connector_list_iter {
};

Members
Description
This iterator tracks state needed to be able to walk the connector_list within
struct drm_mode_config. Only use together with drm_connector_list_iter_begin(),
drm_connector_list_iter_end() and drm_connector_list_iter_next() respectively the conve-
nience macro drm_for_each_connector_iter().
drm_for_each_connector_iter(connector, iter)

connector_list iterator macro
Parameters
connector struct drm_connector pointer used as cursor
iter struct drm_connector_list_iter

140 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Note that connector is only valid within the list body, if you want to use connector after
calling drm_connector_list_iter_end() then you need to grab your own reference first using
drm_connector_get().
int drm_connector_init(struct drm_device * dev, struct drm_connector * connector, const struct

drm_connector_funcs * funcs, int connector_type)
Init a preallocated connector

Parameters
struct drm_device * dev DRM device
struct drm_connector * connector the connector to init
const struct drm_connector_funcs * funcs callbacks for this connector
int connector_type user visible type of the connector
Description
Initialises a preallocated connector. Connectors should be subclassed as part of driver connector objects.
Return
Zero on success, error code on failure.
int drm_mode_connector_attach_encoder(struct drm_connector * connector, struct drm_encoder

* encoder)
attach a connector to an encoder

Parameters
struct drm_connector * connector connector to attach
struct drm_encoder * encoder encoder to attach connector to
Description
This function links up a connector to an encoder. Note that the routing restrictions between encoders and
crtcs are exposed to userspace through the possible_clones and possible_crtcs bitmasks.
Return
Zero on success, negative errno on failure.
void drm_connector_cleanup(struct drm_connector * connector)

cleans up an initialised connector
Parameters
struct drm_connector * connector connector to cleanup
Description
Cleans up the connector but doesn’t free the object.
int drm_connector_register(struct drm_connector * connector)

register a connector
Parameters
struct drm_connector * connector the connector to register
Description
Register userspace interfaces for a connector
Return
Zero on success, error code on failure.

4.11. Connector Abstraction 141

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void drm_connector_unregister(struct drm_connector * connector)
unregister a connector

Parameters
struct drm_connector * connector the connector to unregister
Description
Unregister userspace interfaces for a connector
const char * drm_get_connector_status_name(enum drm_connector_status status)

return a string for connector status
Parameters
enum drm_connector_status status connector status to compute name of
Description
In contrast to the other drm_get_*_name functions this one here returns a const pointer and hence is
threadsafe.
void drm_connector_list_iter_begin(struct drm_device * dev, struct drm_connector_list_iter

* iter)
initialize a connector_list iterator

Parameters
struct drm_device * dev DRM device
struct drm_connector_list_iter * iter connector_list iterator
Description
Sets iter up to walk the drm_mode_config.connector_list of dev. iter must always be
cleaned up again by calling drm_connector_list_iter_end(). Iteration itself happens using
drm_connector_list_iter_next() or drm_for_each_connector_iter().
struct drm_connector * drm_connector_list_iter_next(struct drm_connector_list_iter * iter)

return next connector
Parameters
struct drm_connector_list_iter * iter connectr_list iterator
Description
Returns the next connector for iter, or NULL when the list walk has completed.
void drm_connector_list_iter_end(struct drm_connector_list_iter * iter)

tear down a connector_list iterator
Parameters
struct drm_connector_list_iter * iter connector_list iterator
Description
Tears down iter and releases any resources (like drm_connector references) acquired while walking the
list. This must always be called, both when the iteration completes fully or when it was aborted without
walking the entire list.
const char * drm_get_subpixel_order_name(enum subpixel_order order)

return a string for a given subpixel enum
Parameters
enum subpixel_order order enum of subpixel_order

142 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Note you could abuse this and return something out of bounds, but that would be a caller error. No
unscrubbed user data should make it here.
int drm_display_info_set_bus_formats(struct drm_display_info * info, const u32 * formats, un-

signed int num_formats)
set the supported bus formats

Parameters
struct drm_display_info * info display info to store bus formats in
const u32 * formats array containing the supported bus formats
unsigned int num_formats the number of entries in the fmts array
Description
Store the supported bus formats in display info structure. See MEDIA_BUS_FMT_* definitions in
include/uapi/linux/media-bus-format.h for a full list of available formats.
int drm_mode_create_dvi_i_properties(struct drm_device * dev)

create DVI-I specific connector properties
Parameters
struct drm_device * dev DRM device
Description
Called by a driver the first time a DVI-I connector is made.
int drm_mode_create_tv_properties(struct drm_device * dev, unsigned int num_modes, const

char *const modes)
create TV specific connector properties

Parameters
struct drm_device * dev DRM device
unsigned int num_modes number of different TV formats (modes) supported
const char *const modes array of pointers to strings containing name of each format
Description
Called by a driver’s TV initialization routine, this function creates the TV specific connector properties for
a given device. Caller is responsible for allocating a list of format names and passing them to this routine.

int drm_mode_create_scaling_mode_property(struct drm_device * dev)
create scaling mode property

Parameters
struct drm_device * dev DRM device
Description
Called by a driver the first time it’s needed, must be attached to desired connectors.
Atomic drivers should use drm_connector_attach_scaling_mode_property() instead to correctly assign
drm_connector_state.picture_aspect_ratio in the atomic state.
int drm_connector_attach_scaling_mode_property(struct drm_connector * connector,

u32 scaling_mode_mask)
attach atomic scaling mode property

Parameters
struct drm_connector * connector connector to attach scaling mode property on.

4.11. Connector Abstraction 143

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

u32 scaling_mode_mask or’ed mask of BIT(DRM_MODE_SCALE_*).
Description
This is used to add support for scaling mode to atomic drivers. The scaling mode will be set to
drm_connector_state.picture_aspect_ratio and can be used from drm_connector_helper_funcs-
>atomic_check for validation.
This is the atomic version of drm_mode_create_scaling_mode_property().
Return
Zero on success, negative errno on failure.
int drm_mode_create_aspect_ratio_property(struct drm_device * dev)

create aspect ratio property
Parameters
struct drm_device * dev DRM device
Description
Called by a driver the first time it’s needed, must be attached to desired connectors.
Return
Zero on success, negative errno on failure.
int drm_mode_create_suggested_offset_properties(struct drm_device * dev)

create suggests offset properties
Parameters
struct drm_device * dev DRM device
Description
Create the the suggested x/y offset property for connectors.
int drm_mode_connector_set_path_property(struct drm_connector * connector, const char

* path)
set tile property on connector

Parameters
struct drm_connector * connector connector to set property on.
const char * path path to use for property; must not be NULL.
Description
This creates a property to expose to userspace to specify a connector path. This is mainly used for
DisplayPort MST where connectors have a topology and we want to allow userspace to give them more
meaningful names.
Return
Zero on success, negative errno on failure.
int drm_mode_connector_set_tile_property(struct drm_connector * connector)

set tile property on connector
Parameters
struct drm_connector * connector connector to set property on.
Description
This looks up the tile information for a connector, and creates a property for userspace to parse if it exists.
The property is of the form of 8 integers using ‘:’ as a separator.
Return

144 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Zero on success, errno on failure.
int drm_mode_connector_update_edid_property(struct drm_connector * connector, const struct

edid * edid)
update the edid property of a connector

Parameters
struct drm_connector * connector drm connector
const struct edid * edid new value of the edid property
Description
This function creates a new blob modeset object and assigns its id to the connector’s edid property.
Return
Zero on success, negative errno on failure.
void drm_mode_connector_set_link_status_property(struct drm_connector * connector,

uint64_t link_status)
Set link status property of a connector

Parameters
struct drm_connector * connector drm connector
uint64_t link_status new value of link status property (0: Good, 1: Bad)
Description
In usual working scenario, this link status property will always be set to “GOOD”. If something fails during
or after a mode set, the kernel driver may set this link status property to “BAD”. The caller then needs to
send a hotplug uevent for userspace to re-check the valid modes through GET_CONNECTOR_IOCTL and
retry modeset.
Note
Drivers cannot rely on userspace to support this property and issue a modeset. As such, they may choose
to handle issues (like re-training a link) without userspace’s intervention.
The reason for adding this property is to handle link training failures, but it is not limited to DP or link
training. For example, if we implement asynchronous setcrtc, this property can be used to report any
failures in that.
void drm_mode_put_tile_group(struct drm_device * dev, struct drm_tile_group * tg)

drop a reference to a tile group.
Parameters
struct drm_device * dev DRM device
struct drm_tile_group * tg tile group to drop reference to.
Description
drop reference to tile group and free if 0.
struct drm_tile_group * drm_mode_get_tile_group(struct drm_device * dev, char topology)

get a reference to an existing tile group
Parameters
struct drm_device * dev DRM device
char topology 8-bytes unique per monitor.
Description
Use the unique bytes to get a reference to an existing tile group.
Return

4.11. Connector Abstraction 145

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

tile group or NULL if not found.
struct drm_tile_group * drm_mode_create_tile_group(struct drm_device * dev, char topology)

create a tile group from a displayid description
Parameters
struct drm_device * dev DRM device
char topology 8-bytes unique per monitor.
Description
Create a tile group for the unique monitor, and get a unique identifier for the tile group.
Return
new tile group or error.

4.12 Encoder Abstraction

Encoders represent the connecting element between the CRTC (as the overall pixel pipeline, repre-
sented by struct drm_crtc) and the connectors (as the generic sink entity, represented by struct
drm_connector). An encoder takes pixel data from a CRTC and converts it to a format suitable for any
attached connector. Encoders are objects exposed to userspace, originally to allow userspace to infer
cloning and connector/CRTC restrictions. Unfortunately almost all drivers get this wrong, making the uabi
pretty much useless. On top of that the exposed restrictions are too simple for today’s hardware, and the
recommended way to infer restrictions is by using the DRM_MODE_ATOMIC_TEST_ONLY flag for the atomic
IOCTL.
Otherwise encoders aren’t used in the uapi at all (any modeset request from userspace directly connects a
connector with a CRTC), drivers are therefore free to use them however they wish. Modeset helper libraries
make strong use of encoders to facilitate code sharing. But for more complex settings it is usually better
to move shared code into a separate drm_bridge. Compared to encoders, bridges also have the benefit
of being purely an internal abstraction since they are not exposed to userspace at all.
Encoders are initialized with drm_encoder_init() and cleaned up using drm_encoder_cleanup().

4.12.1 Encoder Functions Reference

struct drm_encoder_funcs
encoder controls

Definition

struct drm_encoder_funcs {
void (* reset) (struct drm_encoder *encoder);
void (* destroy) (struct drm_encoder *encoder);
int (* late_register) (struct drm_encoder *encoder);
void (* early_unregister) (struct drm_encoder *encoder);

};

Members
reset Reset encoder hardware and software state to off. This function isn’t called by the core directly,

only through drm_mode_config_reset(). It’s not a helper hook only for historical reasons.
destroy Clean up encoder resources. This is only called at driver unload time through

drm_mode_config_cleanup() since an encoder cannot be hotplugged in DRM.
late_register This optional hook can be used to register additional userspace interfaces attached

to the encoder like debugfs interfaces. It is called late in the driver load sequence from

146 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

drm_dev_register(). Everything added from this callback should be unregistered in the
early_unregister callback.
Returns:
0 on success, or a negative error code on failure.

early_unregister This optional hook should be used to unregister the additional userspace interfaces
attached to the encoder from late_register. It is called from drm_dev_unregister(), early in the
driver unload sequence to disable userspace access before data structures are torndown.

Description
Encoders sit between CRTCs and connectors.
struct drm_encoder

central DRM encoder structure
Definition

struct drm_encoder {
struct drm_device * dev;
struct list_head head;
struct drm_mode_object base;
char * name;
int encoder_type;
unsigned index;
uint32_t possible_crtcs;
uint32_t possible_clones;
struct drm_crtc * crtc;
struct drm_bridge * bridge;
const struct drm_encoder_funcs * funcs;
const struct drm_encoder_helper_funcs * helper_private;

};

Members
dev parent DRM device
head list management
base base KMS object
name human readable name, can be overwritten by the driver
encoder_type One of the DRM_MODE_ENCODER_<foo> types in drm_mode.h. The following encoder

types are defined thus far:
• DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A.
• DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort.
• DRM_MODE_ENCODER_LVDS for display panels, or in general any panel with a proprietary par-
allel connector.

• DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component, SCART).
• DRM_MODE_ENCODER_VIRTUAL for virtual machine displays
• DRM_MODE_ENCODER_DSI for panels connected using the DSI serial bus.
• DRM_MODE_ENCODER_DPI for panels connected using the DPI parallel bus.
• DRM_MODE_ENCODER_DPMST for special fake encoders used to allow mutliple DP MST streams
to share one physical encoder.

index Position inside the mode_config.list, can be used as an array index. It is invariant over the lifetime
of the encoder.

4.12. Encoder Abstraction 147

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

possible_crtcs Bitmask of potential CRTC bindings, using drm_crtc_index() as the index into the bit-
field. The driver must set the bits for all drm_crtc objects this encoder can be connected to before
calling drm_encoder_init().
In reality almost every driver gets this wrong.
Note that since CRTC objects can’t be hotplugged the assigned indices are stable and hence known
before registering all objects.

possible_clones Bitmask of potential sibling encoders for cloning, using drm_encoder_index() as the
index into the bitfield. The driver must set the bits for all drm_encoder objects which can clone a
drm_crtc together with this encoder before calling drm_encoder_init(). Drivers should set the bit
representing the encoder itself, too. Cloning bits should be set such that when two encoders can be
used in a cloned configuration, they both should have each another bits set.
In reality almost every driver gets this wrong.
Note that since encoder objects can’t be hotplugged the assigned indices are stable and hence known
before registering all objects.

crtc currently bound CRTC
bridge bridge associated to the encoder
funcs control functions
helper_private mid-layer private data
Description
CRTCs drive pixels to encoders, which convert them into signals appropriate for a given connector or set
of connectors.
unsigned int drm_encoder_index(struct drm_encoder * encoder)

find the index of a registered encoder
Parameters
struct drm_encoder * encoder encoder to find index for
Description
Given a registered encoder, return the index of that encoder within a DRM device’s list of encoders.
bool drm_encoder_crtc_ok(struct drm_encoder * encoder, struct drm_crtc * crtc)

can a given crtc drive a given encoder?
Parameters
struct drm_encoder * encoder encoder to test
struct drm_crtc * crtc crtc to test
Description
Returns false if encoder can’t be driven by crtc, true otherwise.
struct drm_encoder * drm_encoder_find(struct drm_device * dev, uint32_t id)

find a drm_encoder
Parameters
struct drm_device * dev DRM device
uint32_t id encoder id
Description
Returns the encoder with id, NULL if it doesn’t exist. Simple wrapper around drm_mode_object_find().
drm_for_each_encoder_mask(encoder, dev, encoder_mask)

iterate over encoders specified by bitmask

148 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
encoder the loop cursor
dev the DRM device
encoder_mask bitmask of encoder indices
Description
Iterate over all encoders specified by bitmask.
drm_for_each_encoder(encoder, dev)

iterate over all encoders
Parameters
encoder the loop cursor
dev the DRM device
Description
Iterate over all encoders of dev.
int drm_encoder_init(struct drm_device * dev, struct drm_encoder * encoder, const struct

drm_encoder_funcs * funcs, int encoder_type, const char * name, ...)
Init a preallocated encoder

Parameters
struct drm_device * dev drm device
struct drm_encoder * encoder the encoder to init
const struct drm_encoder_funcs * funcs callbacks for this encoder
int encoder_type user visible type of the encoder
const char * name printf style format string for the encoder name, or NULL for default name
... variable arguments
Description
Initialises a preallocated encoder. Encoder should be subclassed as part of driver encoder
objects. At driver unload time drm_encoder_cleanup() should be called from the driver’s
drm_encoder_funcs.destroy hook.
Return
Zero on success, error code on failure.
void drm_encoder_cleanup(struct drm_encoder * encoder)

cleans up an initialised encoder
Parameters
struct drm_encoder * encoder encoder to cleanup
Description
Cleans up the encoder but doesn’t free the object.

4.13 KMS Initialization and Cleanup

A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders and connectors. KMS drivers
must thus create and initialize all those objects at load time after initializing mode setting.

4.13. KMS Initialization and Cleanup 149

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

4.13.1 CRTCs (struct drm_crtc)

A CRTC is an abstraction representing a part of the chip that contains a pointer to a scanout buffer. There-
fore, the number of CRTCs available determines how many independent scanout buffers can be active
at any given time. The CRTC structure contains several fields to support this: a pointer to some video
memory (abstracted as a frame buffer object), a display mode, and an (x, y) offset into the video memory
to support panning or configurations where one piece of video memory spans multiple CRTCs.

CRTC Initialization

A KMS device must create and register at least one struct struct drm_crtc instance. The instance is
allocated and zeroed by the driver, possibly as part of a larger structure, and registered with a call to
drm_crtc_init() with a pointer to CRTC functions.

4.13.2 Cleanup

The DRM core manages its objects’ lifetime. When an object is not needed anymore the core calls
its destroy function, which must clean up and free every resource allocated for the object. Every
drm_*_init() call must be matched with a corresponding drm_*_cleanup() call to cleanup CRTCs
(drm_crtc_cleanup()), planes (drm_plane_cleanup()), encoders (drm_encoder_cleanup()) and con-
nectors (drm_connector_cleanup()). Furthermore, connectors that have been added to sysfs must be
removed by a call to drm_connector_unregister() before calling drm_connector_cleanup().
Connectors state change detection must be cleanup up with a call to drm_kms_helper_poll_fini().

4.13.3 Output discovery and initialization example

void intel_crt_init(struct drm_device *dev)
{

struct drm_connector *connector;
struct intel_output *intel_output;

intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
if (!intel_output)

return;

connector = &intel_output->base;
drm_connector_init(dev, &intel_output->base,

&intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);

drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
DRM_MODE_ENCODER_DAC);

drm_mode_connector_attach_encoder(&intel_output->base,
&intel_output->enc);

/* Set up the DDC bus. */
intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
if (!intel_output->ddc_bus) {

dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
"failed.\n");

return;
}

intel_output->type = INTEL_OUTPUT_ANALOG;
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;

150 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);

drm_connector_register(connector);
}

In the example above (taken from the i915 driver), a CRTC, connector and encoder combination is created.
A device-specific i2c bus is also created for fetching EDID data and performing monitor detection. Once
the process is complete, the new connector is registered with sysfs to make its properties available to
applications.

4.14 KMS Locking

As KMS moves toward more fine grained locking, and atomic ioctl where userspace can indirectly control
locking order, it becomes necessary to use ww_mutex and acquire-contexts to avoid deadlocks. But be-
cause the locking is more distributed around the driver code, we want a bit of extra utility/tracking out of
our acquire-ctx. This is provided by struct drm_modeset_lock and struct drm_modeset_acquire_ctx.
For basic principles of ww_mutex, see: Documentation/locking/ww-mutex-design.txt
The basic usage pattern is to:

drm_modeset_acquire_init(:c:type:`ctx`)
retry:
foreach (lock in random_ordered_set_of_locks) {

ret = drm_modeset_lock(lock, :c:type:`ctx`)
if (ret == -EDEADLK) {

drm_modeset_backoff(:c:type:`ctx`);
goto retry;

}
}
... do stuff ...
drm_modeset_drop_locks(:c:type:`ctx`);
drm_modeset_acquire_fini(:c:type:`ctx`);

On top of of these per-object locks using ww_mutex there’s also an overall drm_mode_config.mutex,
for protecting everything else. Mostly this means probe state of connectors, and preventing hotplug
add/removal of connectors.
Finally there’s a bunch of dedicated locks to protect drm core internal lists and lookup data structures.
struct drm_modeset_acquire_ctx

locking context (see ww_acquire_ctx)
Definition

struct drm_modeset_acquire_ctx {
struct ww_acquire_ctx ww_ctx;
struct drm_modeset_lock * contended;
struct list_head locked;
bool trylock_only;

};

Members
ww_ctx base acquire ctx
contended used internally for -EDEADLK handling
locked list of held locks
trylock_only trylock mode used in atomic contexts/panic notifiers

4.14. KMS Locking 151

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Each thread competing for a set of locks must use one acquire ctx. And if any lock fxn returns -EDEADLK,
it must backoff and retry.
struct drm_modeset_lock

used for locking modeset resources.
Definition

struct drm_modeset_lock {
struct ww_mutex mutex;
struct list_head head;

};

Members
mutex resource locking
head used to hold it’s place on drm_atomi_state.locked list when part of an atomic update
Description
Used for locking CRTCs and other modeset resources.
void drm_modeset_lock_fini(struct drm_modeset_lock * lock)

cleanup lock
Parameters
struct drm_modeset_lock * lock lock to cleanup
bool drm_modeset_is_locked(struct drm_modeset_lock * lock)

equivalent to mutex_is_locked()
Parameters
struct drm_modeset_lock * lock lock to check
void drm_modeset_lock_all(struct drm_device * dev)

take all modeset locks
Parameters
struct drm_device * dev DRM device
Description
This function takes all modeset locks, suitable where a more fine-grained scheme isn’t (yet) implemented.
Locks must be dropped by calling the drm_modeset_unlock_all() function.
This function is deprecated. It allocates a lock acquisition context and stores it in
drm_device.mode_config. This facilitate conversion of existing code because it removes the need
to manually deal with the acquisition context, but it is also brittle because the context is global and care
must be taken not to nest calls. New code should use the drm_modeset_lock_all_ctx() function and
pass in the context explicitly.
void drm_modeset_unlock_all(struct drm_device * dev)

drop all modeset locks
Parameters
struct drm_device * dev DRM device
Description
This function drops all modeset locks taken by a previous call to the drm_modeset_lock_all() function.
This function is deprecated. It uses the lock acquisition context stored in drm_device.mode_config. This
facilitates conversion of existing code because it removes the need to manually deal with the acquisition

152 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

context, but it is also brittle because the context is global and care must be taken not to nest calls. New
code should pass the acquisition context directly to the drm_modeset_drop_locks() function.
void drm_warn_on_modeset_not_all_locked(struct drm_device * dev)

check that all modeset locks are locked
Parameters
struct drm_device * dev device
Description
Useful as a debug assert.
void drm_modeset_acquire_init(struct drm_modeset_acquire_ctx * ctx, uint32_t flags)

initialize acquire context
Parameters
struct drm_modeset_acquire_ctx * ctx the acquire context
uint32_t flags for future
void drm_modeset_acquire_fini(struct drm_modeset_acquire_ctx * ctx)

cleanup acquire context
Parameters
struct drm_modeset_acquire_ctx * ctx the acquire context
void drm_modeset_drop_locks(struct drm_modeset_acquire_ctx * ctx)

drop all locks
Parameters
struct drm_modeset_acquire_ctx * ctx the acquire context
Description
Drop all locks currently held against this acquire context.
void drm_modeset_backoff(struct drm_modeset_acquire_ctx * ctx)

deadlock avoidance backoff
Parameters
struct drm_modeset_acquire_ctx * ctx the acquire context
Description
If deadlock is detected (ie. drm_modeset_lock() returns -EDEADLK), you must call this function to drop
all currently held locks and block until the contended lock becomes available.
int drm_modeset_backoff_interruptible(struct drm_modeset_acquire_ctx * ctx)

deadlock avoidance backoff
Parameters
struct drm_modeset_acquire_ctx * ctx the acquire context
Description
Interruptible version of drm_modeset_backoff()
void drm_modeset_lock_init(struct drm_modeset_lock * lock)

initialize lock
Parameters
struct drm_modeset_lock * lock lock to init
int drm_modeset_lock(struct drm_modeset_lock * lock, struct drm_modeset_acquire_ctx * ctx)

take modeset lock

4.14. KMS Locking 153

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct drm_modeset_lock * lock lock to take
struct drm_modeset_acquire_ctx * ctx acquire ctx
Description
If ctx is not NULL, then its ww acquire context is used and the lock will be tracked by the context and
can be released by calling drm_modeset_drop_locks(). If -EDEADLK is returned, this means a deadlock
scenario has been detected and it is an error to attempt to take any more locks without first calling
drm_modeset_backoff().
int drm_modeset_lock_interruptible(struct drm_modeset_lock * lock, struct

drm_modeset_acquire_ctx * ctx)
take modeset lock

Parameters
struct drm_modeset_lock * lock lock to take
struct drm_modeset_acquire_ctx * ctx acquire ctx
Description
Interruptible version of drm_modeset_lock()
void drm_modeset_unlock(struct drm_modeset_lock * lock)

drop modeset lock
Parameters
struct drm_modeset_lock * lock lock to release
int drm_modeset_lock_all_ctx(struct drm_device * dev, struct drm_modeset_acquire_ctx * ctx)

take all modeset locks
Parameters
struct drm_device * dev DRM device
struct drm_modeset_acquire_ctx * ctx lock acquisition context
Description
This function takes all modeset locks, suitable where a more fine-grained scheme isn’t (yet) implemented.
Unlike drm_modeset_lock_all(), it doesn’t take the drm_mode_config.mutex since that lock isn’t re-
quired for modeset state changes. Callers which need to grab that lock too need to do so outside of the
acquire context ctx.
Locks acquired with this function should be released by calling the drm_modeset_drop_locks() function
on ctx.
Return
0 on success or a negative error-code on failure.

4.15 KMS Properties

4.15.1 Property Types and Blob Property Support

Properties as represented by drm_property are used to extend the modeset interface exposed to
userspace. For the atomic modeset IOCTL properties are even the only way to transport metadata about
the desired new modeset configuration from userspace to the kernel. Properties have a well-defined
value range, which is enforced by the drm core. See the documentation of the flags member of struct
drm_property for an overview of the different property types and ranges.

154 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Properties don’t store the current value directly, but need to be instatiated by attaching them to a
drm_mode_object with drm_object_attach_property().
Property values are only 64bit. To support bigger piles of data (like gamma tables, color correctionmatrices
or large structures) a property can instead point at a drm_property_blob with that additional data.
Properties are defined by their symbolic name, userspace must keep a per-object mapping from those
names to the property ID used in the atomic IOCTL and in the get/set property IOCTL.
struct drm_property_enum

symbolic values for enumerations
Definition

struct drm_property_enum {
uint64_t value;
struct list_head head;
char name;

};

Members
value numeric property value for this enum entry
head list of enum values, linked to drm_property.enum_list
name symbolic name for the enum
Description
For enumeration and bitmask properties this structure stores the symbolic decoding for each value. This
is used for example for the rotation property.
struct drm_property

modeset object property
Definition

struct drm_property {
struct list_head head;
struct drm_mode_object base;
uint32_t flags;
char name;
uint32_t num_values;
uint64_t * values;
struct drm_device * dev;
struct list_head enum_list;

};

Members
head per-device list of properties, for cleanup.
base base KMS object
flags Property flags and type. A property needs to be one of the following types:

DRM_MODE_PROP_RANGE Range properties report their minimum and maximum admissible un-
signed values. The KMS core verifies that values set by application fit in that range. The range
is unsigned. Range properties are created using drm_property_create_range().

DRM_MODE_PROP_SIGNED_RANGE Range properties report their minimum andmaximum admis-
sible unsigned values. The KMS core verifies that values set by application fit in that range. The
range is signed. Range properties are created using drm_property_create_signed_range().

DRM_MODE_PROP_ENUM Enumerated properties take a numerical value that ranges from 0 to the
number of enumerated values defined by the property minus one, and associate a free-formed
string name to each value. Applications can retrieve the list of defined value-name pairs and

4.15. KMS Properties 155

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

use the numerical value to get and set property instance values. Enum properties are created
using drm_property_create_enum().

DRM_MODE_PROP_BITMASK Bitmask properties are enumeration properties that additionally re-
strict all enumerated values to the 0..63 range. Bitmask property instance values combine one
or more of the enumerated bits defined by the property. Bitmask properties are created using
drm_property_create_bitmask().

DRM_MODE_PROB_OBJECT Object properties are used to link modeset objects. This is used ex-
tensively in the atomic support to create the display pipeline, by linking drm_framebuffer to
drm_plane, drm_plane to drm_crtc and drm_connector to drm_crtc. An object property can
only link to a specific type of drm_mode_object, this limit is enforced by the core. Object prop-
erties are created using drm_property_create_object().
Object properties work like blob properties, but in a more general fashion. They are limited to
atomic drivers and must have the DRM_MODE_PROP_ATOMIC flag set.

DRM_MODE_PROP_BLOB Blob properties store a binary blob without any format restriction. The bi-
nary blobs are created as KMS standalone objects, and blob property instance values store the ID
of their associated blob object. Blob properties are created by calling drm_property_create()
with DRM_MODE_PROP_BLOB as the type.
Actual blob objects to contain blob data are created using drm_property_create_blob(), or
through the corresponding IOCTL.
Besides the built-in limit to only accept blob objects blob properties work exactly like object prop-
erties. The only reasons blob properties exist is backwards compatibility with existing userspace.

In addition a property can have any combination of the below flags:
DRM_MODE_PROP_ATOMIC Set for properties which encode atomic modeset state. Such proper-

ties are not exposed to legacy userspace.
DRM_MODE_PROP_IMMUTABLE Set for properties where userspace cannot be changed by

userspace. The kernel is allowed to update the value of these properties. This is generally
used to expose probe state to usersapce, e.g. the EDID, or the connector path property on DP
MST sinks.

name symbolic name of the properties
num_values size of the values array.
values Array with limits and values for the property. The interpretation of these limits is dependent upon

the type per flags.
dev DRM device
enum_list List of drm_prop_enum_list structures with the symbolic names for enum and bitmask values.
Description
This structure represent a modeset object property. It combines both the name of the property with the
set of permissible values. This means that when a driver wants to use a property with the same name on
different objects, but with different value ranges, then it must create property for each one. An example
would be rotation of drm_plane, when e.g. the primary plane cannot be rotated. But if both the name and
the value range match, then the same property structure can be instantiated multiple times for the same
object. Userspace must be able to cope with this and cannot assume that the same symbolic property
will have the same modeset object ID on all modeset objects.
Properties are created by one of the special functions, as explained in detail in the flags structure member.
To actually expose a property it must be attached to each object using drm_object_attach_property().
Currently properties can only be attached to drm_connector, drm_crtc and drm_plane.
Properties are also used as the generic metadatatransport for the atomic IOCTL. Everything that was set
directly in structures in the legacy modeset IOCTLs (like the plane source or destination windows, or e.g.
the links to the CRTC) is exposed as a property with the DRM_MODE_PROP_ATOMIC flag set.

156 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_property_blob
Blob data for drm_property

Definition

struct drm_property_blob {
struct drm_mode_object base;
struct drm_device * dev;
struct list_head head_global;
struct list_head head_file;
size_t length;
unsigned char data;

};

Members
base base KMS object
dev DRM device
head_global entry on the global blob list in drm_mode_config.property_blob_list.
head_file entry on the per-file blob list in drm_file.blobs list.
length size of the blob in bytes, invariant over the lifetime of the object
data actual data, embedded at the end of this structure
Description
Blobs are used to store bigger values than what fits directly into the 64 bits available for a drm_property.
Blobs are reference counted using drm_property_blob_get() and drm_property_blob_put(). They are
created using drm_property_create_blob().
bool drm_property_type_is(struct drm_property * property, uint32_t type)

check the type of a property
Parameters
struct drm_property * property property to check
uint32_t type property type to compare with
Description
This is a helper function becauase the uapi encoding of property types is a bit special for historical reasons.

struct drm_property_blob * drm_property_reference_blob(struct drm_property_blob * blob)
acquire a blob property reference

Parameters
struct drm_property_blob * blob DRM blob property
Description
This is a compatibility alias for drm_property_blob_get() and should not be used by new code.
void drm_property_unreference_blob(struct drm_property_blob * blob)

release a blob property reference
Parameters
struct drm_property_blob * blob DRM blob property
Description
This is a compatibility alias for drm_property_blob_put() and should not be used by new code.

4.15. KMS Properties 157

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_property * drm_property_find(struct drm_device * dev, uint32_t id)
find property object

Parameters
struct drm_device * dev DRM device
uint32_t id property object id
Description
This function looks up the property object specified by id and returns it.
struct drm_property * drm_property_create(struct drm_device * dev, int flags, const char * name,

int num_values)
create a new property type

Parameters
struct drm_device * dev drm device
int flags flags specifying the property type
const char * name name of the property
int num_values number of pre-defined values
Description
This creates a new generic drm property which can then be attached to a drm object
with drm_object_attach_property(). The returned property object must be freed with
drm_property_destroy(), which is done automatically when calling drm_mode_config_cleanup().
Return
A pointer to the newly created property on success, NULL on failure.
struct drm_property * drm_property_create_enum(struct drm_device * dev, int flags, const char

* name, const struct drm_prop_enum_list
* props, int num_values)

create a new enumeration property type
Parameters
struct drm_device * dev drm device
int flags flags specifying the property type
const char * name name of the property
const struct drm_prop_enum_list * props enumeration lists with property values
int num_values number of pre-defined values
Description
This creates a new generic drm property which can then be attached to a drm object
with drm_object_attach_property(). The returned property object must be freed with
drm_property_destroy(), which is done automatically when calling drm_mode_config_cleanup().
Userspace is only allowed to set one of the predefined values for enumeration properties.
Return
A pointer to the newly created property on success, NULL on failure.
struct drm_property * drm_property_create_bitmask(struct drm_device * dev, int flags,

const char * name, const struct
drm_prop_enum_list * props,
int num_props, uint64_t supported_bits)

create a new bitmask property type
Parameters

158 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_device * dev drm device
int flags flags specifying the property type
const char * name name of the property
const struct drm_prop_enum_list * props enumeration lists with property bitflags
int num_props size of the props array
uint64_t supported_bits bitmask of all supported enumeration values
Description
This creates a new bitmask drm property which can then be attached to a drm object
with drm_object_attach_property(). The returned property object must be freed with
drm_property_destroy(), which is done automatically when calling drm_mode_config_cleanup().
Compared to plain enumeration properties userspace is allowed to set any or’ed together combination of
the predefined property bitflag values
Return
A pointer to the newly created property on success, NULL on failure.
struct drm_property * drm_property_create_range(struct drm_device * dev, int flags, const char

* name, uint64_t min, uint64_t max)
create a new unsigned ranged property type

Parameters
struct drm_device * dev drm device
int flags flags specifying the property type
const char * name name of the property
uint64_t min minimum value of the property
uint64_t max maximum value of the property
Description
This creates a new generic drm property which can then be attached to a drm object
with drm_object_attach_property(). The returned property object must be freed with
drm_property_destroy(), which is done automatically when calling drm_mode_config_cleanup().
Userspace is allowed to set any unsigned integer value in the (min, max) range inclusive.
Return
A pointer to the newly created property on success, NULL on failure.
struct drm_property * drm_property_create_signed_range(struct drm_device * dev, int flags,

const char * name, int64_t min,
int64_t max)

create a new signed ranged property type
Parameters
struct drm_device * dev drm device
int flags flags specifying the property type
const char * name name of the property
int64_t min minimum value of the property
int64_t max maximum value of the property

4.15. KMS Properties 159

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This creates a new generic drm property which can then be attached to a drm object
with drm_object_attach_property(). The returned property object must be freed with
drm_property_destroy(), which is done automatically when calling drm_mode_config_cleanup().
Userspace is allowed to set any signed integer value in the (min, max) range inclusive.
Return
A pointer to the newly created property on success, NULL on failure.
struct drm_property * drm_property_create_object(struct drm_device * dev, int flags, const char

* name, uint32_t type)
create a new object property type

Parameters
struct drm_device * dev drm device
int flags flags specifying the property type
const char * name name of the property
uint32_t type object type from DRM_MODE_OBJECT_* defines
Description
This creates a new generic drm property which can then be attached to a drm object
with drm_object_attach_property(). The returned property object must be freed with
drm_property_destroy(), which is done automatically when calling drm_mode_config_cleanup().
Userspace is only allowed to set this to any property value of the given type. Only useful for atomic
properties, which is enforced.
Return
A pointer to the newly created property on success, NULL on failure.
struct drm_property * drm_property_create_bool(struct drm_device * dev, int flags, const char

* name)
create a new boolean property type

Parameters
struct drm_device * dev drm device
int flags flags specifying the property type
const char * name name of the property
Description
This creates a new generic drm property which can then be attached to a drm object
with drm_object_attach_property(). The returned property object must be freed with
drm_property_destroy(), which is done automatically when calling drm_mode_config_cleanup().
This is implemented as a ranged property with only {0, 1} as valid values.
Return
A pointer to the newly created property on success, NULL on failure.
int drm_property_add_enum(struct drm_property * property, int index, uint64_t value, const char

* name)
add a possible value to an enumeration property

Parameters
struct drm_property * property enumeration property to change
int index index of the new enumeration

160 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

uint64_t value value of the new enumeration
const char * name symbolic name of the new enumeration
Description
This functions adds enumerations to a property.
It’s use is deprecated, drivers should use one of the more specific helpers to directly create the property
with all enumerations already attached.
Return
Zero on success, error code on failure.
void drm_property_destroy(struct drm_device * dev, struct drm_property * property)

destroy a drm property
Parameters
struct drm_device * dev drm device
struct drm_property * property property to destry
Description
This function frees a property including any attached resources like enumeration values.
struct drm_property_blob * drm_property_create_blob(struct drm_device * dev, size_t length,

const void * data)
Create new blob property

Parameters
struct drm_device * dev DRM device to create property for
size_t length Length to allocate for blob data
const void * data If specified, copies data into blob
Description
Creates a new blob property for a specified DRM device, optionally copying data. Note that blob properties
are meant to be invariant, hence the data must be filled out before the blob is used as the value of any
property.
Return
New blob property with a single reference on success, or an ERR_PTR value on failure.
void drm_property_blob_put(struct drm_property_blob * blob)

release a blob property reference
Parameters
struct drm_property_blob * blob DRM blob property
Description
Releases a reference to a blob property. May free the object.
struct drm_property_blob * drm_property_blob_get(struct drm_property_blob * blob)

acquire blob property reference
Parameters
struct drm_property_blob * blob DRM blob property
Description
Acquires a reference to an existing blob property. Returnsblob, which allows this to be used as a shorthand
in assignments.

4.15. KMS Properties 161

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_property_blob * drm_property_lookup_blob(struct drm_device * dev, uint32_t id)
look up a blob property and take a reference

Parameters
struct drm_device * dev drm device
uint32_t id id of the blob property
Description
If successful, this takes an additional reference to the blob property. callers need to make sure to even-
tually unreference the returned property again, using drm_property_blob_put().
Return
NULL on failure, pointer to the blob on success.
int drm_property_replace_global_blob(struct drm_device * dev, struct drm_property_blob

** replace, size_t length, const void * data, struct
drm_mode_object * obj_holds_id, struct drm_property
* prop_holds_id)

replace existing blob property
Parameters
struct drm_device * dev drm device
struct drm_property_blob ** replace location of blob property pointer to be replaced
size_t length length of data for new blob, or 0 for no data
const void * data content for new blob, or NULL for no data
struct drm_mode_object * obj_holds_id optional object for property holding blob ID
struct drm_property * prop_holds_id optional property holding blob ID return 0 on success or error

on failure
Description
This function will replace a global property in the blob list, optionally updating a property which holds the
ID of that property.
If length is 0 or data is NULL, no new blob will be created, and the holding property, if specified, will be
set to 0.
Access to the replace pointer is assumed to be protected by the caller, e.g. by holding the relevant
modesetting object lock for its parent.
For example, a drm_connector has a ‘PATH’ property, which contains the ID of a blob property with
the value of the MST path information. Calling this function with replace pointing to the connector’s
path_blob_ptr, length and data set for the new path information, obj_holds_id set to the connector’s base
object, and prop_holds_id set to the path property name, will perform a completely atomic update. The
access to path_blob_ptr is protected by the caller holding a lock on the connector.

4.15.2 Standard Connector Properties

DRM connectors have a few standardized properties:
EDID: Blob property which contains the current EDID read from the sink. This is useful to parse sink

identification information like vendor, model and serial. Drivers should update this property by
calling drm_mode_connector_update_edid_property(), usually after having parsed the EDID us-
ing drm_add_edid_modes(). Userspace cannot change this property.

DPMS: Legacy property for setting the power state of the connector. For atomic drivers this is only
provided for backwards compatibility with existing drivers, it remaps to controlling the “ACTIVE”
property on the CRTC the connector is linked to. Drivers should never set this property directly,

162 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

it is handled by the DRM core by calling the drm_connector_funcs.dpms callback. Atomic drivers
should implement this hook using drm_atomic_helper_connector_dpms(). This is the only property
standard connector property that userspace can change.

PATH: Connector path property to identify how this sink is physically connected. Used by DP MST. This
should be set by calling drm_mode_connector_set_path_property(), in the case of DP MST with
the path property the MST manager created. Userspace cannot change this property.

TILE: Connector tile group property to indicate how a set of DRM connector compose together into one
logical screen. This is used by both high-res external screens (often only using a single cable, but
exposing multiple DP MST sinks), or high-res integrated panels (like dual-link DSI) which are not
gen-locked. Note that for tiled panels which are genlocked, like dual-link LVDS or dual-link DSI, the
driver should try to not expose the tiling and virtualize both drm_crtc and drm_plane if needed.
Drivers should update this value using drm_mode_connector_set_tile_property(). Userspace
cannot change this property.

link-status: Connector link-status property to indicate the status of link. The default value of
link-status is “GOOD”. If something fails during or after modeset, the kernel driver may
set this to “BAD” and issue a hotplug uevent. Drivers should update this value using
drm_mode_connector_set_link_status_property().

Connectors also have one standardized atomic property:
CRTC_ID: Mode object ID of the drm_crtc this connector should be connected to.

4.15.3 Plane Composition Properties

The basic plane composition model supported by standard plane properties only has a source rectangle
(in logical pixels within the drm_framebuffer), with sub-pixel accuracy, which is scaled up to a pixel-
aligned destination rectangle in the visible area of a drm_crtc. The visible area of a CRTC is defined by
the horizontal and vertical visible pixels (stored in hdisplay and vdisplay) of the requested mode (stored
in drm_crtc_state.mode). These two rectangles are both stored in the drm_plane_state.
For the atomic ioctl the following standard (atomic) properties on the plane object encode the basic plane
composition model:
SRC_X: X coordinate offset for the source rectangle within the drm_framebuffer, in 16.16 fixed point.

Must be positive.
SRC_Y: Y coordinate offset for the source rectangle within the drm_framebuffer, in 16.16 fixed point.

Must be positive.
SRC_W: Width for the source rectangle within the drm_framebuffer, in 16.16 fixed point. SRC_X plus

SRC_W must be within the width of the source framebuffer. Must be positive.
SRC_H: Height for the source rectangle within the drm_framebuffer, in 16.16 fixed point. SRC_Y plus

SRC_H must be within the height of the source framebuffer. Must be positive.
CRTC_X: X coordinate offset for the destination rectangle. Can be negative.
CRTC_Y: Y coordinate offset for the destination rectangle. Can be negative.
CRTC_W: Width for the destination rectangle. CRTC_X plus CRTC_W can extend past the currently visible

horizontal area of the drm_crtc.
CRTC_H: Height for the destination rectangle. CRTC_Y plus CRTC_H can extend past the currently visible

vertical area of the drm_crtc.
FB_ID: Mode object ID of the drm_framebuffer this plane should scan out.
CRTC_ID: Mode object ID of the drm_crtc this plane should be connected to.
Note that the source rectangle must fully lie within the bounds of the drm_framebuffer. The destination
rectangle can lie outside of the visible area of the current mode of the CRTC. It must be apprpriately clipped
by the driver, which can be done by calling drm_plane_helper_check_update(). Drivers are also allowed
to round the subpixel sampling positions appropriately, but only to the next full pixel. No pixel outside of

4.15. KMS Properties 163

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

the source rectangle may ever be sampled, which is important when applying more sophisticated filtering
than just a bilinear one when scaling. The filtering mode when scaling is unspecified.
On top of this basic transformation additional properties can be exposed by the driver:
• Rotation is set up with drm_plane_create_rotation_property(). It adds a rotation and reflection
step between the source and destination rectangles. Without this property the rectangle is only
scaled, but not rotated or reflected.

• Z position is set up with drm_plane_create_zpos_immutable_property() and
drm_plane_create_zpos_property(). It controls the visibility of overlapping planes. Without
this property the primary plane is always below the cursor plane, and ordering between all other
planes is undefined.

Note that all the property extensions described here apply either to the plane or the CRTC (e.g. for the
background color, which currently is not exposed and assumed to be black).
int drm_plane_create_rotation_property(struct drm_plane * plane, unsigned int rotation, un-

signed int supported_rotations)
create a new rotation property

Parameters
struct drm_plane * plane drm plane
unsigned int rotation initial value of the rotation property
unsigned int supported_rotations bitmask of supported rotations and reflections
Description
This creates a new property with the selected support for transformations.
Since a rotation by 180° degress is the same as reflecting both along the x and the y axis the rotation
property is somewhat redundant. Drivers can use drm_rotation_simplify() to normalize values of this
property.
The property exposed to userspace is a bitmask property (see drm_property_create_bitmask()) called
“rotation” and has the following bitmask enumaration values:
DRM_MODE_ROTATE_0: “rotate-0”
DRM_MODE_ROTATE_90: “rotate-90”
DRM_MODE_ROTATE_180: “rotate-180”
DRM_MODE_ROTATE_270: “rotate-270”
DRM_MODE_REFLECT_X: “reflect-x”
DRM_MODE_REFLECT_Y: “reflect-y”
Rotation is the specified amount in degrees in counter clockwise direction, the X and Y axis are within the
source rectangle, i.e. the X/Y axis before rotation. After reflection, the rotation is applied to the image
sampled from the source rectangle, before scaling it to fit the destination rectangle.
unsigned int drm_rotation_simplify(unsigned int rotation, unsigned int supported_rotations)

Try to simplify the rotation
Parameters
unsigned int rotation Rotation to be simplified
unsigned int supported_rotations Supported rotations
Description
Attempt to simplify the rotation to a form that is supported. Eg. if the hardware supports everything
except DRM_MODE_REFLECT_X one could call this function like this:
drm_rotation_simplify(rotation, DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 |

DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270 | DRM_MODE_REFLECT_Y);

164 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

to eliminate the DRM_MODE_ROTATE_X flag. Depending on what kind of transforms the hardware sup-
ports, this function may not be able to produce a supported transform, so the caller should check the
result afterwards.
int drm_plane_create_zpos_property(struct drm_plane * plane, unsigned int zpos, unsigned

int min, unsigned int max)
create mutable zpos property

Parameters
struct drm_plane * plane drm plane
unsigned int zpos initial value of zpos property
unsigned int min minimal possible value of zpos property
unsigned int max maximal possible value of zpos property
Description
This function initializes generic mutable zpos property and enables support for it in drm core. Drivers can
then attach this property to planes to enable support for configurable planes arrangement during blending
operation. Once mutable zpos property has been enabled, the DRM core will automatically calculate
drm_plane_state.normalized_zpos values. Usually min should be set to 0 and max to maximal number
of planes for given crtc - 1.
If zpos of some planes cannot be changed (like fixed background or cursor/topmost planes), driver should
adjust min/max values and assign those planes immutable zpos property with lower or higher values (for
more information, see drm_plane_create_zpos_immutable_property() function). In such case driver
should also assign proper initial zpos values for all planes in its plane_reset() callback, so the planes
will be always sorted properly.
See also drm_atomic_normalize_zpos().
The property exposed to userspace is called “zpos”.
Return
Zero on success, negative errno on failure.
int drm_plane_create_zpos_immutable_property(struct drm_plane * plane, unsigned int zpos)

create immuttable zpos property
Parameters
struct drm_plane * plane drm plane
unsigned int zpos value of zpos property
Description
This function initializes generic immutable zpos property and enables support for it in drm core. Using this
property driver lets userspace to get the arrangement of the planes for blending operation and notifies
it that the hardware (or driver) doesn’t support changing of the planes’ order. For mutable zpos see
drm_plane_create_zpos_property().
The property exposed to userspace is called “zpos”.
Return
Zero on success, negative errno on failure.
int drm_atomic_normalize_zpos(struct drm_device * dev, struct drm_atomic_state * state)

calculate normalized zpos values for all crtcs
Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * state atomic state of DRM device

4.15. KMS Properties 165

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This function calculates normalized zpos value for all modified planes in the provided atomic state of DRM
device.
For every CRTC this function checks new states of all planes assigned to it and calculates normalized zpos
value for these planes. Planes are compared first by their zpos values, then by plane id (if zpos is equal).
The plane with lowest zpos value is at the bottom. The drm_plane_state.normalized_zpos is then filled
with unique values from 0 to number of active planes in crtc minus one.
RETURNS Zero for success or -errno

4.15.4 Color Management Properties

Color management or color space adjustments is supported through a set of 5 properties on the drm_crtc
object. They are set up by calling drm_crtc_enable_color_mgmt().
“DEGAMMA_LUT”: Blob property to set the degamma lookup table (LUT) mapping pixel data from the

framebuffer before it is given to the transformation matrix. The data is interpreted as an array of
struct drm_color_lut elements. Hardware might choose not to use the full precision of the LUT
elements nor use all the elements of the LUT (for example the hardware might choose to interpolate
between LUT[0] and LUT[4]).
Setting this to NULL (blob property value set to 0) means a linear/pass-thru gamma table should
be used. This is generally the driver boot-up state too. Drivers can access this blob through
drm_crtc_state.degamma_lut.

“DEGAMMA_LUT_SIZE”: Unsinged range property to give the size of the lookup table to be set on the
DEGAMMA_LUT property (the size depends on the underlying hardware). If drivers support multiple
LUT sizes then they should publish the largest size, and sub-sample smaller sized LUTs (e.g. for
split-gamma modes) appropriately.

“CTM”: Blob property to set the current transformation matrix (CTM) apply to pixel data after the lookup
through the degamma LUT and before the lookup through the gamma LUT. The data is interpreted
as a struct drm_color_ctm.
Setting this to NULL (blob property value set to 0) means a unit/pass-thru matrix should be used.
This is generally the driver boot-up state too. Drivers can access the blob for the color conversion
matrix through drm_crtc_state.ctm.

“GAMMA_LUT”: Blob property to set the gamma lookup table (LUT) mapping pixel data after the trans-
formation matrix to data sent to the connector. The data is interpreted as an array of struct
drm_color_lut elements. Hardware might choose not to use the full precision of the LUT elements
nor use all the elements of the LUT (for example the hardware might choose to interpolate between
LUT[0] and LUT[4]).
Setting this to NULL (blob property value set to 0) means a linear/pass-thru gamma table should
be used. This is generally the driver boot-up state too. Drivers can access this blob through
drm_crtc_state.gamma_lut.

“GAMMA_LUT_SIZE”: Unsigned range property to give the size of the lookup table to be set on the
GAMMA_LUT property (the size depends on the underlying hardware). If drivers support multiple
LUT sizes then they should publish the largest size, and sub-sample smaller sized LUTs (e.g. for
split-gamma modes) appropriately.

There is also support for a legacy gamma table, which is set up by call-
ing drm_mode_crtc_set_gamma_size(). Drivers which support both should use
drm_atomic_helper_legacy_gamma_set() to alias the legacy gamma ramp with the “GAMMA_LUT”
property above.
uint32_t drm_color_lut_extract(uint32_t user_input, uint32_t bit_precision)

clamp and round LUT entries
Parameters

166 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

uint32_t user_input input value
uint32_t bit_precision number of bits the hw LUT supports
Description
Extract a degamma/gamma LUT value provided by user (in the form of drm_color_lut entries) and round
it to the precision supported by the hardware.
void drm_crtc_enable_color_mgmt(struct drm_crtc * crtc, uint degamma_lut_size, bool has_ctm,

uint gamma_lut_size)
enable color management properties

Parameters
struct drm_crtc * crtc DRM CRTC
uint degamma_lut_size the size of the degamma lut (before CSC)
bool has_ctm whether to attach ctm_property for CSC matrix
uint gamma_lut_size the size of the gamma lut (after CSC)
Description
This function lets the driver enable the color correction properties on a CRTC. This includes 3 degamma,
csc and gamma properties that userspace can set and 2 size properties to inform the userspace of the lut
sizes. Each of the properties are optional. The gamma and degamma properties are only attached if their
size is not 0 and ctm_property is only attached if has_ctm is true.
int drm_mode_crtc_set_gamma_size(struct drm_crtc * crtc, int gamma_size)

set the gamma table size
Parameters
struct drm_crtc * crtc CRTC to set the gamma table size for
int gamma_size size of the gamma table
Description
Drivers which support gamma tables should set this to the supported gamma table size when initializing
the CRTC. Currently the drm core only supports a fixed gamma table size.
Return
Zero on success, negative errno on failure.

4.15.5 Tile Group Property

Tile groups are used to represent tiled monitors with a unique integer identifier. Tiled monitors using
DisplayID v1.3 have a unique 8-byte handle, we store this in a tile group, so we have a common identi-
fier for all tiles in a monitor group. The property is called “TILE”. Drivers can manage tile groups using
drm_mode_create_tile_group(), drm_mode_put_tile_group() and drm_mode_get_tile_group(). But
this is only needed for internal panels where the tile group information is exposed through a non-standard
way.

4.15.6 Explicit Fencing Properties

Explicit fencing allows userspace to control the buffer synchronization between devices. A Fence or a
group of fences are transfered to/from userspace using Sync File fds and there are two DRM properties for
that. IN_FENCE_FD on each DRM Plane to send fences to the kernel and OUT_FENCE_PTR on each DRM
CRTC to receive fences from the kernel.

4.15. KMS Properties 167

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

As a contrast, with implicit fencing the kernel keeps track of any ongoing rendering, and automatically
ensures that the atomic update waits for any pending rendering to complete. For shared buffers repre-
sented with a struct dma_buf this is tracked in struct reservation_object. Implicit syncing is how
Linux traditionally worked (e.g. DRI2/3 on X.org), whereas explicit fencing is what Android wants.
“IN_FENCE_FD”: Use this property to pass a fence that DRM should wait on before proceeding with the

Atomic Commit request and show the framebuffer for the plane on the screen. The fence can be
either a normal fence or a merged one, the sync_file framework will handle both cases and use a
fence_array if a merged fence is received. Passing -1 here means no fences to wait on.
If the Atomic Commit request has the DRM_MODE_ATOMIC_TEST_ONLY flag it will only check if the
Sync File is a valid one.
On the driver side the fence is stored on the fence parameter of struct drm_plane_state.
Drivers which also support implicit fencing should set the implicit fence using
drm_atomic_set_fence_for_plane(), to make sure there’s consistent behaviour between drivers
in precedence of implicit vs. explicit fencing.

“OUT_FENCE_PTR”: Use this property to pass a file descriptor pointer to DRM. Once the Atomic Commit
request call returns OUT_FENCE_PTR will be filled with the file descriptor number of a Sync File. This
Sync File contains the CRTC fence that will be signaled when all framebuffers present on the Atomic
Commit * request for that given CRTC are scanned out on the screen.
The Atomic Commit request fails if a invalid pointer is passed. If the Atomic Commit request
fails for any other reason the out fence fd returned will be -1. On a Atomic Commit with the
DRM_MODE_ATOMIC_TEST_ONLY flag the out fence will also be set to -1.
Note that out-fences don’t have a special interface to drivers and are internally represented by a
struct drm_pending_vblank_event in struct drm_crtc_state, which is also used by the nonblock-
ing atomic commit helpers and for the DRM event handling for existing userspace.

4.15.7 Existing KMS Properties

The following table gives description of drm properties exposed by various modules/drivers.

Owner Mod-
ule/Drivers

Group Property
Name

Type Property Val-
ues

Object at-
tached

Description/Restrictions

“scaling
mode”

ENUM { “None”,
“Full”, “Cen-
ter”, “Full
aspect” }

Connector Supported
by: amdgpu,
gma500,
i915, nouveau
and radeon.

DVI-I “subconnector” ENUM { “Unknown”,
“DVI-D”, “DVI-
A” }

Connector TBD

“select sub-
connector”

ENUM { “Auto-
matic”, “DVI-
D”, “DVI-A”
}

Connector TBD

TV “subconnector” ENUM { “Unknown”,
“Composite”,
“SVIDEO”,
“Com-
ponent”,
“SCART” }

Connector TBD

Continued on next page

168 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Table 4.1 – continued from previous page
Owner Mod-
ule/Drivers

Group Property
Name

Type Property Val-
ues

Object at-
tached

Description/Restrictions

“select sub-
connector”

ENUM { “Auto-
matic”,
“Composite”,
“SVIDEO”,
“Com-
ponent”,
“SCART” }

Connector TBD

“mode” ENUM { “NTSC_M”,
“NTSC_J”,
“NTSC_443”,
“PAL_B” } etc.

Connector TBD

“left margin” RANGE Min=0,
Max=100

Connector TBD

“right margin” RANGE Min=0,
Max=100

Connector TBD

“top margin” RANGE Min=0,
Max=100

Connector TBD

“bottom mar-
gin”

RANGE Min=0,
Max=100

Connector TBD

“brightness” RANGE Min=0,
Max=100

Connector TBD

“contrast” RANGE Min=0,
Max=100

Connector TBD

“flicker reduc-
tion”

RANGE Min=0,
Max=100

Connector TBD

“overscan” RANGE Min=0,
Max=100

Connector TBD

“saturation” RANGE Min=0,
Max=100

Connector TBD

“hue” RANGE Min=0,
Max=100

Connector TBD

Virtual GPU “suggested X” RANGE Min=0,
Max=0xffffffff

Connector property to
suggest an
X offset for a
connector

“suggested Y” RANGE Min=0,
Max=0xffffffff

Connector property to
suggest an
Y offset for a
connector

Optional “aspect ratio” ENUM { “None”,
“4:3”, “16:9”
}

Connector TDB

Continued on next page

4.15. KMS Properties 169

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Table 4.1 – continued from previous page
Owner Mod-
ule/Drivers

Group Property
Name

Type Property Val-
ues

Object at-
tached

Description/Restrictions

i915 Generic “Broadcast
RGB”

ENUM { “Auto-
matic”, “Full”,
“Limited
16:235” }

Connector When this
property is
set to Lim-
ited 16:235
and CTM is
set, the hard-
ware will be
programmed
with the re-
sult of the
multiplication
of CTM by
the limited
range matrix
to ensure the
pixels nor-
maly in the
range 0..1.0
are remapped
to the range
16/255..235/255.

“audio” ENUM { “force-dvi”,
“off”, “auto”,
“on” }

Connector TBD

SDVO-TV “mode” ENUM { “NTSC_M”,
“NTSC_J”,
“NTSC_443”,
“PAL_B” } etc.

Connector TBD

“left_margin” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“right_margin” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“top_margin” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“bottom_margin”RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“hpos” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“vpos” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“contrast” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“saturation” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

Continued on next page

170 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Table 4.1 – continued from previous page
Owner Mod-
ule/Drivers

Group Property
Name

Type Property Val-
ues

Object at-
tached

Description/Restrictions

“hue” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“sharpness” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“flicker_filter” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“flicker_filter_adaptive”RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“flicker_filter_2d”RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“tv_chroma_filter”RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“tv_luma_filter” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“dot_crawl” RANGE Min=0,
Max=1

Connector TBD

SDVO-
TV/LVDS

“brightness” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

CDV gma-500 Generic “Broadcast
RGB”

ENUM { “Full”, “Lim-
ited 16:235” }

Connector TBD

“Broadcast
RGB”

ENUM { “off”,
“auto”, “on” }

Connector TBD

Poulsbo Generic “backlight” RANGE Min=0,
Max=100

Connector TBD

SDVO-TV “mode” ENUM { “NTSC_M”,
“NTSC_J”,
“NTSC_443”,
“PAL_B” } etc.

Connector TBD

“left_margin” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“right_margin” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“top_margin” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“bottom_margin”RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“hpos” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

Continued on next page

4.15. KMS Properties 171

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Table 4.1 – continued from previous page
Owner Mod-
ule/Drivers

Group Property
Name

Type Property Val-
ues

Object at-
tached

Description/Restrictions

“vpos” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“contrast” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“saturation” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“hue” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“sharpness” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“flicker_filter” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“flicker_filter_adaptive”RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“flicker_filter_2d”RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“tv_chroma_filter”RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“tv_luma_filter” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

“dot_crawl” RANGE Min=0,
Max=1

Connector TBD

SDVO-
TV/LVDS

“brightness” RANGE Min=0, Max=
SDVO depen-
dent

Connector TBD

armada CRTC “CSC_YUV” ENUM { “Auto” ,
“CCIR601”,
“CCIR709” }

CRTC TBD

“CSC_RGB” ENUM { “Auto”,
“Computer
system”,
“Studio” }

CRTC TBD

Overlay “colorkey” RANGE Min=0,
Max=0xffffff

Plane TBD

“colorkey_min” RANGE Min=0,
Max=0xffffff

Plane TBD

“colorkey_max” RANGE Min=0,
Max=0xffffff

Plane TBD

“colorkey_val” RANGE Min=0,
Max=0xffffff

Plane TBD

“colorkey_alpha”RANGE Min=0,
Max=0xffffff

Plane TBD

Continued on next page

172 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Table 4.1 – continued from previous page
Owner Mod-
ule/Drivers

Group Property
Name

Type Property Val-
ues

Object at-
tached

Description/Restrictions

“colorkey_mode”ENUM { “disabled”,
“Y compo-
nent”, “U
component”
, “V compo-
nent”, “RGB”,
“R compo-
nent”, “G
component”,
“B compo-
nent” }

Plane TBD

“brightness” RANGE Min=0,
Max=256
+ 255

Plane TBD

“contrast” RANGE Min=0,
Max=0x7fff

Plane TBD

“saturation” RANGE Min=0,
Max=0x7fff

Plane TBD

exynos CRTC “mode” ENUM { “normal”,
“blank” }

CRTC TBD

i2c/ch7006_drv Generic “scale” RANGE Min=0,
Max=2

Connector TBD

TV “mode” ENUM { “PAL”, “PAL-
M”,”PAL-N”},
”PAL-Nc” ,
“PAL-60”,
“NTSC-M”,
“NTSC-J” }

Connector TBD

nouveau NV10 Overlay “colorkey” RANGE Min=0,
Max=0x01ffffff

Plane TBD

“contrast” RANGE Min=0,
Max=8192-1

Plane TBD

“brightness” RANGE Min=0,
Max=1024

Plane TBD

“hue” RANGE Min=0,
Max=359

Plane TBD

“saturation” RANGE Min=0,
Max=8192-1

Plane TBD

“iturbt_709” RANGE Min=0,
Max=1

Plane TBD

Nv04 Overlay “colorkey” RANGE Min=0,
Max=0x01ffffff

Plane TBD

“brightness” RANGE Min=0,
Max=1024

Plane TBD

Display “dithering
mode”

ENUM { “auto”,
“off”, “on” }

Connector TBD

“dithering
depth”

ENUM { “auto”,
“off”, “on”,
“static 2x2”,
“dynamic
2x2”, “tempo-
ral” }

Connector TBD

Continued on next page

4.15. KMS Properties 173

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Table 4.1 – continued from previous page
Owner Mod-
ule/Drivers

Group Property
Name

Type Property Val-
ues

Object at-
tached

Description/Restrictions

“underscan” ENUM { “auto”, “6
bpc”, “8 bpc”
}

Connector TBD

“underscan
hborder”

RANGE Min=0,
Max=128

Connector TBD

“underscan
vborder”

RANGE Min=0,
Max=128

Connector TBD

“vibrant hue” RANGE Min=0,
Max=180

Connector TBD

“color vi-
brance”

RANGE Min=0,
Max=200

Connector TBD

omap Generic “zorder” RANGE Min=0,
Max=3

CRTC, Plane TBD

qxl Generic “hotplug_mode_update”RANGE Min=0,
Max=1

Connector TBD

radeon DVI-I “coherent” RANGE Min=0,
Max=1

Connector TBD

DAC enable
load detect

“load detec-
tion”

RANGE Min=0,
Max=1

Connector TBD

TV Standard “tv standard” ENUM { “ntsc”,
“pal”, “pal-
m”, “pal-60”,
“ntsc-j” ,
“scart-pal”,
“pal-cn”, “se-
cam” }

Connector TBD

legacy TMDS
PLL detect

“tmds_pll” ENUM { “driver”,
“bios” } •

TBD

Underscan “underscan” ENUM { “off”, “on”,
“auto” }

Connector TBD

“underscan
hborder”

RANGE Min=0,
Max=128

Connector TBD

“underscan
vborder”

RANGE Min=0,
Max=128

Connector TBD

Audio “audio” ENUM { “off”, “on”,
“auto” }

Connector TBD

FMT Dithering “dither” ENUM { “off”, “on” } Connector TBD
rcar-du Generic “alpha” RANGE Min=0,

Max=255
Plane TBD

“colorkey” RANGE Min=0,
Max=0x01ffffff

Plane TBD

4.16 Vertical Blanking

Vertical blanking plays a major role in graphics rendering. To achieve tear-free display, users must syn-
chronize page flips and/or rendering to vertical blanking. The DRM API offers ioctls to perform page flips
synchronized to vertical blanking and wait for vertical blanking.
The DRM core handles most of the vertical blanking management logic, which involves filtering out spu-
rious interrupts, keeping race-free blanking counters, coping with counter wrap-around and resets and
keeping use counts. It relies on the driver to generate vertical blanking interrupts and optionally provide
a hardware vertical blanking counter. Drivers must implement the following operations.

174 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

• int (*enable_vblank) (struct drm_device *dev, int crtc); void (*disable_vblank) (struct drm_device
*dev, int crtc); Enable or disable vertical blanking interrupts for the given CRTC.

• u32 (*get_vblank_counter) (struct drm_device *dev, int crtc); Retrieve the value of the vertical blank-
ing counter for the given CRTC. If the hardware maintains a vertical blanking counter its value should
be returned. Otherwise drivers can use the drm_vblank_count() helper function to handle this op-
eration.

Drivers must initialize the vertical blanking handling core with a call to drm_vblank_init() in their load
operation.
Vertical blanking interrupts can be enabled by the DRM core or by drivers themselves (for instance to
handle page flipping operations). The DRM core maintains a vertical blanking use count to ensure that
the interrupts are not disabled while a user still needs them. To increment the use count, drivers call
drm_vblank_get(). Upon return vertical blanking interrupts are guaranteed to be enabled.
To decrement the use count drivers call drm_vblank_put(). Only when the use count drops to zero will
the DRM core disable the vertical blanking interrupts after a delay by scheduling a timer. The delay is
accessible through the vblankoffdelay module parameter or the drm_vblank_offdelay global variable
and expressed in milliseconds. Its default value is 5000 ms. Zero means never disable, and a negative
value means disable immediately. Drivers may override the behaviour by setting the struct drm_device
vblank_disable_immediate flag, which when set causes vblank interrupts to be disabled immediately re-
gardless of the drm_vblank_offdelay value. The flag should only be set if there’s a properly working
hardware vblank counter present.
When a vertical blanking interrupt occurs drivers only need to call the drm_handle_vblank() function to
account for the interrupt.
Resources allocated by drm_vblank_init() must be freed with a call to drm_vblank_cleanup() in the
driver unload operation handler.

4.16.1 Vertical Blanking and Interrupt Handling Functions Reference

struct drm_pending_vblank_event
pending vblank event tracking

Definition

struct drm_pending_vblank_event {
struct drm_pending_event base;
unsigned int pipe;
struct drm_event_vblank event;

};

Members
base Base structure for tracking pending DRM events.
pipe drm_crtc_index() of the drm_crtc this event is for.
event Actual event which will be sent to userspace.
struct drm_vblank_crtc

vblank tracking for a CRTC
Definition

struct drm_vblank_crtc {
struct drm_device * dev;
wait_queue_head_t queue;
struct timer_list disable_timer;
seqlock_t seqlock;
u32 count;
struct timeval time;

4.16. Vertical Blanking 175

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

atomic_t refcount;
u32 last;
unsigned int inmodeset;
unsigned int pipe;
int framedur_ns;
int linedur_ns;
struct drm_display_mode hwmode;
bool enabled;

};

Members
dev Pointer to the drm_device.
queue Wait queue for vblank waiters.
disable_timer Disable timer for the delayed vblank disabling hysteresis logic. Vblank dis-

abling is controlled through the drm_vblank_offdelay module option and the setting of the
drm_device.max_vblank_count value.

seqlock Protect vblank count and time.
count Current software vblank counter.
time Vblank timestamp corresponding to count.
refcount Number of users/waiters of the vblank interrupt. Only when this refcount reaches 0 can the

hardware interrupt be disabled using disable_timer.
last Protected by drm_device.vbl_lock, used for wraparound handling.
inmodeset Tracks whether the vblank is disabled due to a modeset. For legacy driver bit 2 additionally

tracks whether an additional temporary vblank reference has been acquired to paper over the hard-
ware counter resetting/jumping. KMS drivers should instead just call drm_crtc_vblank_off() and
drm_crtc_vblank_on(), which explicitly save and restore the vblank count.

pipe drm_crtc_index() of the drm_crtc corresponding to this structure.
framedur_ns Frame/Field duration in ns, used by drm_calc_vbltimestamp_from_scanoutpos() and

computed by drm_calc_timestamping_constants().
linedur_ns Line duration in ns, used by drm_calc_vbltimestamp_from_scanoutpos() and computed

by drm_calc_timestamping_constants().
hwmode Cache of the current hardware display mode. Only valid when enabled is set. This is used

by helpers like drm_calc_vbltimestamp_from_scanoutpos(). We can’t just access the hardware
mode by e.g. looking at drm_crtc_state.adjusted_mode, because that one is really hard to get
from interrupt context.

enabled Tracks the enabling state of the corresponding drm_crtc to avoid double-disabling and hence
corrupting saved state. Needed by drivers not using atomic KMS, since those might go through their
CRTC disabling functions multiple times.

Description
This structure tracks the vblank state for one CRTC.
Note that for historical reasons - the vblank handling code is still shared with legacy/non-kms drivers - this
is a free-standing structure not directly connected to struct drm_crtc. But all public interface functions
are taking a struct drm_crtc to hide this implementation detail.
u32 drm_accurate_vblank_count(struct drm_crtc * crtc)

retrieve the master vblank counter
Parameters
struct drm_crtc * crtc which counter to retrieve

176 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This function is similar to drm_crtc_vblank_count but this function interpolates to handle a race with
vblank irq’s.
This is mostly useful for hardware that can obtain the scanout position, but doesn’t have a frame counter.

void drm_vblank_cleanup(struct drm_device * dev)
cleanup vblank support

Parameters
struct drm_device * dev DRM device
Description
This function cleans up any resources allocated in drm_vblank_init.
Drivers which don’t use drm_irq_install() need to set drm_device.irq_enabled themselves, to signal
to the DRM core that vblank interrupts are enabled.
int drm_vblank_init(struct drm_device * dev, unsigned int num_crtcs)

initialize vblank support
Parameters
struct drm_device * dev DRM device
unsigned int num_crtcs number of CRTCs supported by dev
Description
This function initializes vblank support for num_crtcs display pipelines.
Return
Zero on success or a negative error code on failure.
wait_queue_head_t * drm_crtc_vblank_waitqueue(struct drm_crtc * crtc)

get vblank waitqueue for the CRTC
Parameters
struct drm_crtc * crtc which CRTC’s vblank waitqueue to retrieve
Description
This function returns a pointer to the vblank waitqueue for the CRTC. Drivers can use this to implement
vblank waits using wait_event() and related functions.
void drm_calc_timestamping_constants(struct drm_crtc * crtc, const struct drm_display_mode

* mode)
calculate vblank timestamp constants

Parameters
struct drm_crtc * crtc drm_crtc whose timestamp constants should be updated.
const struct drm_display_mode * mode display mode containing the scanout timings
Description
Calculate and store various constants which are later needed by vblank and swap-completion timestamp-
ing, e.g, by drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC’s true scanout
timing, so they take things like panel scaling or other adjustments into account.
bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device * dev, unsigned int pipe,

int * max_error, struct timeval * vblank_time,
bool in_vblank_irq)

precise vblank timestamp helper
Parameters

4.16. Vertical Blanking 177

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_device * dev DRM device
unsigned int pipe index of CRTC whose vblank timestamp to retrieve
int * max_error Desired maximum allowable error in timestamps (nanosecs) On return contains true

maximum error of timestamp
struct timeval * vblank_time Pointer to struct timeval which should receive the timestamp
bool in_vblank_irq True when called from drm_crtc_handle_vblank(). Some drivers need to apply

some workarounds for gpu-specific vblank irq quirks if flag is set.
Description
Implements calculation of exact vblank timestamps from given drm_display_mode timings and current
video scanout position of a CRTC. This can be called fromwithin get_vblank_timestamp() implementation
of a kms driver to implement the actual timestamping.
Should return timestamps conforming to the OML_sync_control OpenML extension specification. The
timestamp corresponds to the end of the vblank interval, aka start of scanout of topmost-leftmost dis-
play pixel in the following video frame.
Requires support for optional dev->driver->:c:func:get_scanout_position() in kms driver, plus a bit of setup
code to provide a drm_display_mode that corresponds to the true scanout timing.
The current implementation only handles standard video modes. It returns as no operation if a doublescan
or interlaced video mode is active. Higher level code is expected to handle this.
This function can be used to implement the drm_driver.get_vblank_timestamp directly, if the driver
implements the drm_driver.get_scanout_position hook.
Note that atomic drivers must call drm_calc_timestamping_constants() before enabling a CRTC. The
atomic helpers already take care of that in drm_atomic_helper_update_legacy_modeset_state().
Return
Returns true on success, and false on failure, i.e. when no accurate timestamp could be acquired.
u32 drm_crtc_vblank_count(struct drm_crtc * crtc)

retrieve “cooked” vblank counter value
Parameters
struct drm_crtc * crtc which counter to retrieve
Description
Fetches the “cooked” vblank count value that represents the number of vblank events since the system
was booted, including lost events due to modesetting activity.
Return
The software vblank counter.
u32 drm_crtc_vblank_count_and_time(struct drm_crtc * crtc, struct timeval * vblanktime)

retrieve “cooked” vblank counter value and the system timestamp corresponding to that vblank
counter value

Parameters
struct drm_crtc * crtc which counter to retrieve
struct timeval * vblanktime Pointer to struct timeval to receive the vblank timestamp.
Description
Fetches the “cooked” vblank count value that represents the number of vblank events since the system
was booted, including lost events due to modesetting activity. Returns corresponding system timestamp
of the time of the vblank interval that corresponds to the current vblank counter value.
void drm_crtc_arm_vblank_event(struct drm_crtc * crtc, struct drm_pending_vblank_event * e)

arm vblank event after pageflip

178 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct drm_crtc * crtc the source CRTC of the vblank event
struct drm_pending_vblank_event * e the event to send
Description
A lot of drivers need to generate vblank events for the very next vblank interrupt. For example when the
page flip interrupt happens when the page flip gets armed, but not when it actually executes within the
next vblank period. This helper function implements exactly the required vblank arming behaviour.
NOTE
Drivers using this to send out the drm_crtc_state.event as part of an atomic commit must ensure that
the next vblank happens at exactly the same time as the atomic commit is committed to the hardware.
This function itself does not protect again the next vblank interrupt racing with either this function call or
the atomic commit operation. A possible sequence could be:
1. Driver commits new hardware state into vblank-synchronized registers.
2. A vblank happens, committing the hardware state. Also the corresponding vblank interrupt is fired
off and fully processed by the interrupt handler.

3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
4. The event is only send out for the next vblank, which is wrong.

An equivalent race can happen when the driver calls drm_crtc_arm_vblank_event() before writing out
the new hardware state.
The only way to make this work safely is to prevent the vblank from firing (and the hardware from commit-
ting anything else) until the entire atomic commit sequence has run to completion. If the hardware does
not have such a feature (e.g. using a “go” bit), then it is unsafe to use this functions. Instead drivers need
to manually send out the event from their interrupt handler by calling drm_crtc_send_vblank_event()
and make sure that there’s no possible race with the hardware committing the atomic update.
Caller must hold event lock. Caller must also hold a vblank reference for the event e, which will be dropped
when the next vblank arrives.
void drm_crtc_send_vblank_event(struct drm_crtc * crtc, struct drm_pending_vblank_event * e)

helper to send vblank event after pageflip
Parameters
struct drm_crtc * crtc the source CRTC of the vblank event
struct drm_pending_vblank_event * e the event to send
Description
Updates sequence # and timestamp on event for the most recently processed vblank, and sends it to
userspace. Caller must hold event lock.
See drm_crtc_arm_vblank_event() for a helper which can be used in certain situation, especially to send
out events for atomic commit operations.
int drm_crtc_vblank_get(struct drm_crtc * crtc)

get a reference count on vblank events
Parameters
struct drm_crtc * crtc which CRTC to own
Description
Acquire a reference count on vblank events to avoid having them disabled while in use.
Return
Zero on success or a negative error code on failure.

4.16. Vertical Blanking 179

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void drm_crtc_vblank_put(struct drm_crtc * crtc)
give up ownership of vblank events

Parameters
struct drm_crtc * crtc which counter to give up
Description
Release ownership of a given vblank counter, turning off interrupts if possible. Disable interrupts after
drm_vblank_offdelay milliseconds.
void drm_wait_one_vblank(struct drm_device * dev, unsigned int pipe)

wait for one vblank
Parameters
struct drm_device * dev DRM device
unsigned int pipe CRTC index
Description
This waits for one vblank to pass on pipe, using the irq driver interfaces. It is a failure to call this when
the vblank irq for pipe is disabled, e.g. due to lack of driver support or because the crtc is off.
void drm_crtc_wait_one_vblank(struct drm_crtc * crtc)

wait for one vblank
Parameters
struct drm_crtc * crtc DRM crtc
Description
This waits for one vblank to pass on crtc, using the irq driver interfaces. It is a failure to call this when
the vblank irq for crtc is disabled, e.g. due to lack of driver support or because the crtc is off.
void drm_crtc_vblank_off(struct drm_crtc * crtc)

disable vblank events on a CRTC
Parameters
struct drm_crtc * crtc CRTC in question
Description
Drivers can use this function to shut down the vblank interrupt handling when disabling a crtc. This
function ensures that the latest vblank frame count is stored so that drm_vblank_on can restore it again.
Drivers must use this function when the hardware vblank counter can get reset, e.g. when suspending.
void drm_crtc_vblank_reset(struct drm_crtc * crtc)

reset vblank state to off on a CRTC
Parameters
struct drm_crtc * crtc CRTC in question
Description
Drivers can use this function to reset the vblank state to off at load time. Drivers should use this together
with the drm_crtc_vblank_off() and drm_crtc_vblank_on() functions. The difference compared to
drm_crtc_vblank_off() is that this function doesn’t save the vblank counter and hence doesn’t need to
call any driver hooks.
void drm_crtc_vblank_on(struct drm_crtc * crtc)

enable vblank events on a CRTC
Parameters
struct drm_crtc * crtc CRTC in question

180 Chapter 4. Kernel Mode Setting (KMS)

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This functions restores the vblank interrupt state captured with drm_crtc_vblank_off() again. Note
that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be unbalanced and so can also be
unconditionally called in driver load code to reflect the current hardware state of the crtc.
bool drm_handle_vblank(struct drm_device * dev, unsigned int pipe)

handle a vblank event
Parameters
struct drm_device * dev DRM device
unsigned int pipe index of CRTC where this event occurred
Description
Drivers should call this routine in their vblank interrupt handlers to update the vblank counter and send
any signals that may be pending.
This is the legacy version of drm_crtc_handle_vblank().
bool drm_crtc_handle_vblank(struct drm_crtc * crtc)

handle a vblank event
Parameters
struct drm_crtc * crtc where this event occurred
Description
Drivers should call this routine in their vblank interrupt handlers to update the vblank counter and send
any signals that may be pending.
This is the native KMS version of drm_handle_vblank().
Return
True if the event was successfully handled, false on failure.

4.16. Vertical Blanking 181

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

182 Chapter 4. Kernel Mode Setting (KMS)

CHAPTER

FIVE

MODE SETTING HELPER FUNCTIONS

The DRM subsystem aims for a strong separation between core code and helper libraries. Core code
takes care of general setup and teardown and decoding userspace requests to kernel internal objects.
Everything else is handled by a large set of helper libraries, which can be combined freely to pick and
choose for each driver what fits, and avoid shared code where special behaviour is needed.
This distinction between core code and helpers is especially strong in the modesetting code, where there’s
a shared userspace ABI for all drivers. This is in contrast to the render side, where pretty much everything
(with very few exceptions) can be considered optional helper code.
There are a few areas these helpers can grouped into:
• Helpers to implement modesetting. The important ones here are the atomic helpers. Old drivers still
often use the legacy CRTC helpers. They both share the same set of common helper vtables. For
really simple drivers (anything that would have been a great fit in the deprecated fbdev subsystem)
there’s also the simple display pipe helpers.

• There’s a big pile of helpers for handling outputs. First the generic bridge helpers for handling encoder
and transcoder IP blocks. Second the panel helpers for handling panel-related information and logic.
Plus then a big set of helpers for the various sink standards (DisplayPort, HDMI, MIPI DSI). Finally
there’s also generic helpers for handling output probing, and for dealing with EDIDs.

• The last group of helpers concerns itself with the frontend side of a display pipeline: Planes, handling
rectangles for visibility checking and scissoring, flip queues and assorted bits.

5.1 Modeset Helper Reference for Common Vtables

The DRM mode setting helper functions are common code for drivers to use if they wish. Drivers are not
forced to use this code in their implementations but it would be useful if the code they do use at least
provides a consistent interface and operation to userspace. Therefore it is highly recommended to use
the provided helpers as much as possible.
Because there is only one pointer per modeset object to hold a vfunc table for helper libraries they are by
necessity shared among the different helpers.
To make this clear all the helper vtables are pulled together in this location here.
struct drm_crtc_helper_funcs

helper operations for CRTCs
Definition

struct drm_crtc_helper_funcs {
void (* dpms) (struct drm_crtc *crtc, int mode);
void (* prepare) (struct drm_crtc *crtc);
void (* commit) (struct drm_crtc *crtc);
enum drm_mode_status (* mode_valid) (struct drm_crtc *crtc, const struct drm_display_mode␣

↪→*mode);
bool (* mode_fixup) (struct drm_crtc *crtc,const struct drm_display_mode *mode, struct drm_

↪→display_mode *adjusted_mode);

183

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int (* mode_set) (struct drm_crtc *crtc, struct drm_display_mode *mode,struct drm_display_
↪→mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb);
void (* mode_set_nofb) (struct drm_crtc *crtc);
int (* mode_set_base) (struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb);
int (* mode_set_base_atomic) (struct drm_crtc *crtc,struct drm_framebuffer *fb, int x, int y,␣

↪→enum mode_set_atomic);
void (* load_lut) (struct drm_crtc *crtc);
void (* disable) (struct drm_crtc *crtc);
void (* enable) (struct drm_crtc *crtc);
int (* atomic_check) (struct drm_crtc *crtc, struct drm_crtc_state *state);
void (* atomic_begin) (struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state);
void (* atomic_flush) (struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state);
void (* atomic_disable) (struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state);

};

Members
dpms Callback to control power levels on the CRTC. If the mode passed in is unsupported, the provider

must use the next lowest power level. This is used by the legacy CRTC helpers to implement DPMS
functionality in drm_helper_connector_dpms().
This callback is also used to disable a CRTC by calling it with DRM_MODE_DPMS_OFF if the disable
hook isn’t used.
This callback is used by the legacy CRTC helpers. Atomic helpers also support using this hook for
enabling and disabling a CRTC to facilitate transitions to atomic, but it is deprecated. Instead enable
and disable should be used.

prepare This callback should prepare the CRTC for a subsequent modeset, which in practice means the
driver should disable the CRTC if it is running. Most drivers ended up implementing this by calling
their dpms hook with DRM_MODE_DPMS_OFF.
This callback is used by the legacy CRTC helpers. Atomic helpers also support using this hook for
disabling a CRTC to facilitate transitions to atomic, but it is deprecated. Instead disable should be
used.

commit This callback should commit the new mode on the CRTC after a modeset, which in practice means
the driver should enable the CRTC. Most drivers ended up implementing this by calling their dpms
hook with DRM_MODE_DPMS_ON.
This callback is used by the legacy CRTC helpers. Atomic helpers also support using this hook for
enabling a CRTC to facilitate transitions to atomic, but it is deprecated. Instead enable should be
used.

mode_valid This callback is used to check if a specific mode is valid in this crtc. This should be imple-
mented if the crtc has some sort of restriction in the modes it can display. For example, a given crtc
may be responsible to set a clock value. If the clock can not produce all the values for the available
modes then this callback can be used to restrict the number of modes to only the ones that can be
displayed.
This hook is used by the probe helpers to filter the mode list in
drm_helper_probe_single_connector_modes(), and it is used by the atomic helpers to vali-
date modes supplied by userspace in drm_atomic_helper_check_modeset().
This function is optional.
NOTE:
Since this function is both called from the check phase of an atomic commit, and the mode validation
in the probe paths it is not allowed to look at anything else but the passed-in mode, and validate
it against configuration-invariant hardward constraints. Any further limits which depend upon the
configuration can only be checked in mode_fixup or atomic_check.
RETURNS:
drm_mode_status Enum

184 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

mode_fixup This callback is used to validate a mode. The parameter mode is the display mode that
userspace requested, adjusted_mode is the mode the encoders need to be fed with. Note that this
is the inverse semantics of the meaning for the drm_encoder and drm_bridge_funcs.mode_fixup
vfunc. If the CRTC cannot support the requested conversion from mode to adjusted_mode it should
reject the modeset. See also drm_crtc_state.adjusted_mode for more details.
This function is used by both legacy CRTC helpers and atomic helpers. With atomic helpers it is
optional.
NOTE:
This function is called in the check phase of atomic modesets, which can be aborted for any reason
(including on userspace’s request to just check whether a configuration would be possible). Atomic
drivers MUST NOT touch any persistent state (hardware or software) or data structures except the
passed in adjusted_mode parameter.
This is in contrast to the legacy CRTC helpers where this was allowed.
Atomic drivers which need to inspect and adjust more state should instead use the
atomic_check callback, but note that they’re not perfectly equivalent: mode_valid
is called from drm_atomic_helper_check_modeset(), but atomic_check is called from
drm_atomic_helper_check_planes(), because originally it was meant for plane update checks
only.
Also beware that userspace can request its own custom modes, neither core nor helpers fil-
ter modes to the list of probe modes reported by the GETCONNECTOR IOCTL and stored in
drm_connector.modes. To ensure that modes are filtered consistently put any CRTC constraints
and limits checks into mode_valid.
RETURNS:
True if an acceptable configuration is possible, false if the modeset operation should be rejected.

mode_set This callback is used by the legacy CRTC helpers to set a new mode, position and framebuffer.
Since it ties the primary plane to every mode change it is incompatible with universal plane support.
And since it can’t update other planes it’s incompatible with atomic modeset support.
This callback is only used by CRTC helpers and deprecated.
RETURNS:
0 on success or a negative error code on failure.

mode_set_nofb This callback is used to update the display mode of a CRTC without changing anything
of the primary plane configuration. This fits the requirement of atomic and hence is used by the
atomic helpers. It is also used by the transitional plane helpers to implement a mode_set hook in
drm_helper_crtc_mode_set().
Note that the display pipe is completely off when this function is called. Atomic drivers which need
hardware to be running before they program the new display mode (e.g. because they implement
runtime PM) should not use this hook. This is because the helper library calls this hook only once per
mode change and not every time the display pipeline is suspended using either DPMS or the new
“ACTIVE” property. Which means register values set in this callback might get reset when the CRTC is
suspended, but not restored. Such drivers should instead move all their CRTC setup into the enable
callback.
This callback is optional.

mode_set_base This callback is used by the legacy CRTC helpers to set a new framebuffer and scanout
position. It is optional and used as an optimized fast-path instead of a full mode set operation with
all the resulting flickering. If it is not present drm_crtc_helper_set_config() will fall back to a full
modeset, using the mode_set callback. Since it can’t update other planes it’s incompatible with
atomic modeset support.
This callback is only used by the CRTC helpers and deprecated.
RETURNS:

5.1. Modeset Helper Reference for Common Vtables 185

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

0 on success or a negative error code on failure.
mode_set_base_atomic This callback is used by the fbdev helpers to set a new framebuffer and scanout

without sleeping, i.e. from an atomic calling context. It is only used to implement kgdb support.
This callback is optional and only needed for kgdb support in the fbdev helpers.
RETURNS:
0 on success or a negative error code on failure.

load_lut Load a LUT prepared with the drm_fb_helper_funcs.gamma_set vfunc.
This callback is optional and is only used by the fbdev emulation helpers.
FIXME:
This callback is functionally redundant with the core gamma table support and simply exists because
the fbdev hasn’t yet been refactored to use the core gamma table interfaces.

disable This callback should be used to disable the CRTC. With the atomic drivers it is called
after all encoders connected to this CRTC have been shut off already using their own
drm_encoder_helper_funcs.disable hook. If that sequence is too simple drivers can just add their
own hooks and call it from this CRTC callback here by looping over all encoders connected to it using
for_each_encoder_on_crtc().
This hook is used both by legacy CRTC helpers and atomic helpers. Atomic drivers don’t need to
implement it if there’s no need to disable anything at the CRTC level. To ensure that runtime PM
handling (using either DPMS or the new “ACTIVE” property) works disable must be the inverse of
enable for atomic drivers. Atomic drivers should consider to use atomic_disable instead of this
one.
NOTE:
With legacy CRTC helpers there’s a big semantic difference between disable and other hooks (like
prepare or dpms) used to shut down a CRTC: disable is only called when also logically disabling
the display pipeline and needs to release any resources acquired in mode_set (like shared PLLs, or
again release pinned framebuffers).
Therefore disablemust be the inverse ofmode_set plus commit for drivers still using legacy CRTC
helpers, which is different from the rules under atomic.

enable This callback should be used to enable the CRTC. With the atomic drivers it is
called before all encoders connected to this CRTC are enabled through the encoder’s own
drm_encoder_helper_funcs.enable hook. If that sequence is too simple drivers can just add their
own hooks and call it from this CRTC callback here by looping over all encoders connected to it using
for_each_encoder_on_crtc().
This hook is used only by atomic helpers, for symmetry with disable. Atomic drivers don’t need
to implement it if there’s no need to enable anything at the CRTC level. To ensure that runtime PM
handling (using either DPMS or the new “ACTIVE” property) works enable must be the inverse of
disable for atomic drivers.

atomic_check Drivers should check plane-update related CRTC constraints in this hook. They can also
check mode related limitations but need to be aware of the calling order, since this hook is used
by drm_atomic_helper_check_planes() whereas the preparations needed to check output rout-
ing and the display mode is done in drm_atomic_helper_check_modeset(). Therefore drivers
that want to check output routing and display mode constraints in this callback must ensure that
drm_atomic_helper_check_modeset() has been called beforehand. This is calling order used by
the default helper implementation in drm_atomic_helper_check().
When using drm_atomic_helper_check_planes() this hook is called after the
drm_plane_helper_funcs.atomc_check hook for planes, which allows drivers to assign shared
resources requested by planes in this callback here. For more complicated dependencies the driver
can call the provided check helpers multiple times until the computed state has a final configuration
and everything has been checked.

186 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

This function is also allowed to inspect any other object’s state and can add more state objects to
the atomic commit if needed. Care must be taken though to ensure that state check and compute
functions for these added states are all called, and derived state in other objects all updated. Again
the recommendation is to just call check helpers until a maximal configuration is reached.
This callback is used by the atomic modeset helpers and by the transitional plane helpers, but it is
optional.
NOTE:
This function is called in the check phase of an atomic update. The driver is not allowed to
change anything outside of the free-standing state objects passed-in or assembled in the overall
drm_atomic_state update tracking structure.
Also beware that userspace can request its own custom modes, neither core nor helpers fil-
ter modes to the list of probe modes reported by the GETCONNECTOR IOCTL and stored in
drm_connector.modes. To ensure that modes are filtered consistently put any CRTC constraints
and limits checks into mode_valid.
RETURNS:
0 on success, -EINVAL if the state or the transition can’t be supported, -ENOMEM onmemory allocation
failure and -EDEADLK if an attempt to obtain another state object ran into a drm_modeset_lock
deadlock.

atomic_begin Drivers should prepare for an atomic update of multiple planes on a CRTC in this hook.
Depending upon hardware this might be vblank evasion, blocking updates by setting bits or doing
preparatory work for e.g. manual update display.
This hook is called before any plane commit functions are called.
Note that the power state of the display pipe when this function is called depends upon the exact
helpers and calling sequence the driver has picked. See drm_atomic_helper_commit_planes() for
a discussion of the tradeoffs and variants of plane commit helpers.
This callback is used by the atomic modeset helpers and by the transitional plane helpers, but it is
optional.

atomic_flush Drivers should finalize an atomic update of multiple planes on a CRTC in this hook. De-
pending upon hardware this might include checking that vblank evasion was successful, unblocking
updates by setting bits or setting the GO bit to flush out all updates.
Simple hardware or hardware with special requirements can commit and flush out all updates for all
planes from this hook and forgo all the other commit hooks for plane updates.
This hook is called after any plane commit functions are called.
Note that the power state of the display pipe when this function is called depends upon the exact
helpers and calling sequence the driver has picked. See drm_atomic_helper_commit_planes() for
a discussion of the tradeoffs and variants of plane commit helpers.
This callback is used by the atomic modeset helpers and by the transitional plane helpers, but it is
optional.

atomic_disable This callback should be used to disable the CRTC. With the atomic drivers it is
called after all encoders connected to this CRTC have been shut off already using their own
drm_encoder_helper_funcs.disable hook. If that sequence is too simple drivers can just add their
own hooks and call it from this CRTC callback here by looping over all encoders connected to it using
for_each_encoder_on_crtc().
This hook is used only by atomic helpers. Atomic drivers don’t need to implement it if there’s no
need to disable anything at the CRTC level.
Comparing to disable, this one provides the additional input parameter old_crtc_state which could
be used to access the old state. Atomic drivers should consider to use this one instead of disable.

Description

5.1. Modeset Helper Reference for Common Vtables 187

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

These hooks are used by the legacy CRTC helpers, the transitional plane helpers and the new atomic
modesetting helpers.
void drm_crtc_helper_add(struct drm_crtc * crtc, const struct drm_crtc_helper_funcs * funcs)

sets the helper vtable for a crtc
Parameters
struct drm_crtc * crtc DRM CRTC
const struct drm_crtc_helper_funcs * funcs helper vtable to set for crtc
struct drm_encoder_helper_funcs

helper operations for encoders
Definition

struct drm_encoder_helper_funcs {
void (* dpms) (struct drm_encoder *encoder, int mode);
enum drm_mode_status (* mode_valid) (struct drm_encoder *crtc, const struct drm_display_mode␣

↪→*mode);
bool (* mode_fixup) (struct drm_encoder *encoder,const struct drm_display_mode *mode, struct␣

↪→drm_display_mode *adjusted_mode);
void (* prepare) (struct drm_encoder *encoder);
void (* commit) (struct drm_encoder *encoder);
void (* mode_set) (struct drm_encoder *encoder,struct drm_display_mode *mode, struct drm_

↪→display_mode *adjusted_mode);
void (* atomic_mode_set) (struct drm_encoder *encoder,struct drm_crtc_state *crtc_state,␣

↪→struct drm_connector_state *conn_state);
struct drm_crtc *(* get_crtc) (struct drm_encoder *encoder);
enum drm_connector_status (* detect) (struct drm_encoder *encoder, struct drm_connector␣

↪→*connector);
void (* disable) (struct drm_encoder *encoder);
void (* enable) (struct drm_encoder *encoder);
int (* atomic_check) (struct drm_encoder *encoder,struct drm_crtc_state *crtc_state, struct␣

↪→drm_connector_state *conn_state);
};

Members
dpms Callback to control power levels on the encoder. If the mode passed in is unsupported, the provider

must use the next lowest power level. This is used by the legacy encoder helpers to implement DPMS
functionality in drm_helper_connector_dpms().
This callback is also used to disable an encoder by calling it with DRM_MODE_DPMS_OFF if thedisable
hook isn’t used.
This callback is used by the legacy CRTC helpers. Atomic helpers also support using this hook for
enabling and disabling an encoder to facilitate transitions to atomic, but it is deprecated. Instead
enable and disable should be used.

mode_valid This callback is used to check if a specific mode is valid in this encoder. This should be
implemented if the encoder has some sort of restriction in the modes it can display. For example, a
given encoder may be responsible to set a clock value. If the clock can not produce all the values
for the available modes then this callback can be used to restrict the number of modes to only the
ones that can be displayed.
This hook is used by the probe helpers to filter the mode list in
drm_helper_probe_single_connector_modes(), and it is used by the atomic helpers to vali-
date modes supplied by userspace in drm_atomic_helper_check_modeset().
This function is optional.
NOTE:
Since this function is both called from the check phase of an atomic commit, and the mode validation
in the probe paths it is not allowed to look at anything else but the passed-in mode, and validate

188 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

it against configuration-invariant hardward constraints. Any further limits which depend upon the
configuration can only be checked in mode_fixup or atomic_check.
RETURNS:
drm_mode_status Enum

mode_fixup This callback is used to validate and adjust a mode. The parameter mode is the display
mode that should be fed to the next element in the display chain, either the final drm_connector or
a drm_bridge. The parameter adjusted_mode is the input mode the encoder requires. It can be mod-
ified by this callback and does not need to match mode. See also drm_crtc_state.adjusted_mode
for more details.
This function is used by both legacy CRTC helpers and atomic helpers. This hook is optional.
NOTE:
This function is called in the check phase of atomic modesets, which can be aborted for any reason
(including on userspace’s request to just check whether a configuration would be possible). Atomic
drivers MUST NOT touch any persistent state (hardware or software) or data structures except the
passed in adjusted_mode parameter.
This is in contrast to the legacy CRTC helpers where this was allowed.
Atomic drivers which need to inspect and adjust more state should instead use the atomic_check
callback. If atomic_check is used, this hook isn’t called since atomic_check allows a strict superset
of the functionality of mode_fixup.
Also beware that userspace can request its own custom modes, neither core nor helpers fil-
ter modes to the list of probe modes reported by the GETCONNECTOR IOCTL and stored in
drm_connector.modes. To ensure that modes are filtered consistently put any encoder constraints
and limits checks into mode_valid.
RETURNS:
True if an acceptable configuration is possible, false if the modeset operation should be rejected.

prepare This callback should prepare the encoder for a subsequent modeset, which in practice means
the driver should disable the encoder if it is running. Most drivers ended up implementing this by
calling their dpms hook with DRM_MODE_DPMS_OFF.
This callback is used by the legacy CRTC helpers. Atomic helpers also support using this hook for
disabling an encoder to facilitate transitions to atomic, but it is deprecated. Instead disable should
be used.

commit This callback should commit the new mode on the encoder after a modeset, which in practice
means the driver should enable the encoder. Most drivers ended up implementing this by calling
their dpms hook with DRM_MODE_DPMS_ON.
This callback is used by the legacy CRTC helpers. Atomic helpers also support using this hook for
enabling an encoder to facilitate transitions to atomic, but it is deprecated. Instead enable should
be used.

mode_set This callback is used to update the display mode of an encoder.
Note that the display pipe is completely off when this function is called. Drivers which need hardware
to be running before they program the new display mode (because they implement runtime PM)
should not use this hook, because the helper library calls it only once and not every time the display
pipeline is suspend using either DPMS or the new “ACTIVE” property. Such drivers should instead
move all their encoder setup into the enable callback.
This callback is used both by the legacy CRTC helpers and the atomic modeset helpers. It is optional
in the atomic helpers.
NOTE:
If the driver uses the atomic modeset helpers and needs to inspect the connector state or connector
display info during mode setting, atomic_mode_set can be used instead.

5.1. Modeset Helper Reference for Common Vtables 189

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

atomic_mode_set This callback is used to update the display mode of an encoder.
Note that the display pipe is completely off when this function is called. Drivers which need hardware
to be running before they program the new display mode (because they implement runtime PM)
should not use this hook, because the helper library calls it only once and not every time the display
pipeline is suspended using either DPMS or the new “ACTIVE” property. Such drivers should instead
move all their encoder setup into the enable callback.
This callback is used by the atomic modeset helpers in place of the mode_set callback, if set by
the driver. It is optional and should be used instead of mode_set if the driver needs to inspect the
connector state or display info, since there is no direct way to go from the encoder to the current
connector.

get_crtc This callback is used by the legacy CRTC helpers to work around deficiencies in its own book-
keeping.
Do not use, use atomic helpers instead, which get the book keeping right.
FIXME:
Currently only nouveau is using this, and as soon as nouveau is atomic we can ditch this hook.

detect This callback can be used by drivers who want to do detection on the encoder object instead of
in connector functions.
It is not used by any helper and therefore has purely driver-specific semantics. New drivers shouldn’t
use this and instead just implement their own private callbacks.
FIXME:
This should just be converted into a pile of driver vfuncs. Currently radeon, amdgpu and nouveau
are using it.

disable This callback should be used to disable the encoder. With the atomic drivers it is called before this
encoder’s CRTC has been shut off using their own drm_crtc_helper_funcs.disable hook. If that
sequence is too simple drivers can just add their own driver private encoder hooks and call them from
CRTC’s callback by looping over all encoders connected to it using for_each_encoder_on_crtc().
This hook is used both by legacy CRTC helpers and atomic helpers. Atomic drivers don’t need to
implement it if there’s no need to disable anything at the encoder level. To ensure that runtime PM
handling (using either DPMS or the new “ACTIVE” property) works disable must be the inverse of
enable for atomic drivers.
NOTE:
With legacy CRTC helpers there’s a big semantic difference between disable and other hooks (like
prepare or dpms) used to shut down a encoder: disable is only called when also logically disabling
the display pipeline and needs to release any resources acquired in mode_set (like shared PLLs, or
again release pinned framebuffers).
Therefore disablemust be the inverse ofmode_set plus commit for drivers still using legacy CRTC
helpers, which is different from the rules under atomic.

enable This callback should be used to enable the encoder. With the atomic drivers it is called after this
encoder’s CRTC has been enabled using their own drm_crtc_helper_funcs.enable hook. If that
sequence is too simple drivers can just add their own driver private encoder hooks and call them from
CRTC’s callback by looping over all encoders connected to it using for_each_encoder_on_crtc().
This hook is used only by atomic helpers, for symmetry with disable. Atomic drivers don’t need to
implement it if there’s no need to enable anything at the encoder level. To ensure that runtime PM
handling (using either DPMS or the new “ACTIVE” property) works enable must be the inverse of
disable for atomic drivers.

atomic_check This callback is used to validate encoder state for atomic drivers. Since the encoder is
the object connecting the CRTC and connector it gets passed both states, to be able to validate
interactions and update the CRTC to match what the encoder needs for the requested connector.

190 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Since this provides a strict superset of the functionality of mode_fixup (the requested and adjusted
modes are both available through the passed in struct drm_crtc_state)mode_fixup is not called
when atomic_check is implemented.
This function is used by the atomic helpers, but it is optional.
NOTE:
This function is called in the check phase of an atomic update. The driver is not allowed to
change anything outside of the free-standing state objects passed-in or assembled in the overall
drm_atomic_state update tracking structure.
Also beware that userspace can request its own custom modes, neither core nor helpers fil-
ter modes to the list of probe modes reported by the GETCONNECTOR IOCTL and stored in
drm_connector.modes. To ensure that modes are filtered consistently put any encoder constraints
and limits checks into mode_valid.
RETURNS:
0 on success, -EINVAL if the state or the transition can’t be supported, -ENOMEM onmemory allocation
failure and -EDEADLK if an attempt to obtain another state object ran into a drm_modeset_lock
deadlock.

Description
These hooks are used by the legacy CRTC helpers, the transitional plane helpers and the new atomic
modesetting helpers.
void drm_encoder_helper_add(struct drm_encoder * encoder, const struct

drm_encoder_helper_funcs * funcs)
sets the helper vtable for an encoder

Parameters
struct drm_encoder * encoder DRM encoder
const struct drm_encoder_helper_funcs * funcs helper vtable to set for encoder
struct drm_connector_helper_funcs

helper operations for connectors
Definition

struct drm_connector_helper_funcs {
int (* get_modes) (struct drm_connector *connector);
int (* detect_ctx) (struct drm_connector *connector,struct drm_modeset_acquire_ctx *ctx, bool␣

↪→force);
enum drm_mode_status (* mode_valid) (struct drm_connector *connector, struct drm_display_mode␣

↪→*mode);
struct drm_encoder *(* best_encoder) (struct drm_connector *connector);
struct drm_encoder *(* atomic_best_encoder) (struct drm_connector *connector, struct drm_

↪→connector_state *connector_state);
int (* atomic_check) (struct drm_connector *connector, struct drm_connector_state *state);

};

Members
get_modes This function should fill in all modes currently valid for the sink into the

drm_connector.probed_modes list. It should also update the EDID property by calling
drm_mode_connector_update_edid_property().
The usual way to implement this is to cache the EDID retrieved in the probe callback somewhere
in the driver-private connector structure. In this function drivers then parse the modes in the
EDID and add them by calling drm_add_edid_modes(). But connectors that driver a fixed panel
can also manually add specific modes using drm_mode_probed_add(). Drivers which manually add
modes should also make sure that the drm_connector.display_info, drm_connector.width_mm
and drm_connector.height_mm fields are filled in.

5.1. Modeset Helper Reference for Common Vtables 191

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Virtual drivers that just want some standard VESA mode with a given resolution can call
drm_add_modes_noedid(), and mark the preferred one using drm_set_preferred_mode().
Finally drivers that support audio probably want to update the ELD data, too, using
drm_edid_to_eld().
This function is only called after the detect hook has indicated that a sink is connected and when
the EDID isn’t overridden through sysfs or the kernel commandline.
This callback is used by the probe helpers in e.g. drm_helper_probe_single_connector_modes().
To avoid races with concurrent connector state updates, the helper libraries always call this with
the drm_mode_config.connection_mutex held. Because of this it’s safe to inspect drm_connector-
>state.
RETURNS:
The number of modes added by calling drm_mode_probed_add().

detect_ctx Check to see if anything is attached to the connector. The parameter force is set to false
whilst polling, true when checking the connector due to a user request. force can be used by the
driver to avoid expensive, destructive operations during automated probing.
This callback is optional, if not implemented the connector will be considered as always being at-
tached.
This is the atomic version of drm_connector_funcs.detect.
To avoid races against concurrent connector state updates, the helper libraries always call this with
ctx set to a valid context, and drm_mode_config.connection_mutex will always be locked with the
ctx parameter set to this ctx. This allows taking additional locks as required.
RETURNS:
drm_connector_status indicating the connector’s status, or the error code returned by
drm_modeset_lock(), -EDEADLK.

mode_valid Callback to validate a mode for a connector, irrespective of the specific display configuration.
This callback is used by the probe helpers to filter the mode list (which is usually derived from the
EDID data block from the sink). See e.g. drm_helper_probe_single_connector_modes().
This function is optional.
NOTE:
This only filters the mode list supplied to userspace in the GETCONNECTOR IOCTL. Com-
pared to drm_encoder_helper_funcs.mode_valid, drm_crtc_helper_funcs.mode_valid
and drm_bridge_funcs.mode_valid, which are also called by the atomic helpers from
drm_atomic_helper_check_modeset(). This allows userspace to force and ignore sink con-
straint (like the pixel clock limits in the screen’s EDID), which is useful for e.g. testing, or working
around a broken EDID. Any source hardware constraint (which always need to be enforced) therefore
should be checked in one of the above callbacks, and not this one here.
To avoid races with concurrent connector state updates, the helper libraries always call this with
the drm_mode_config.connection_mutex held. Because of this it’s safe to inspect drm_connector-
>state.
RETURNS:
Either drm_mode_status.MODE_OK or one of the failure reasons in enum drm_mode_status.

best_encoder This function should select the best encoder for the given connector.
This function is used by both the atomic helpers (in the drm_atomic_helper_check_modeset() func-
tion) and in the legacy CRTC helpers.
NOTE:

192 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

In atomic drivers this function is called in the check phase of an atomic update. The driver is not
allowed to change or inspect anything outside of arguments passed-in. Atomic drivers which need
to inspect dynamic configuration state should instead use atomic_best_encoder.
You can leave this function to NULL if the connector is only attached to a single encoder and you are
using the atomic helpers. In this case, the core will call drm_atomic_helper_best_encoder() for
you.
RETURNS:
Encoder that should be used for the given connector and connector state, or NULL if no suitable
encoder exists. Note that the helpers will ensure that encoders aren’t used twice, drivers should not
check for this.

atomic_best_encoder This is the atomic version of best_encoder for atomic drivers which need to select
the best encoder depending upon the desired configuration and can’t select it statically.
This function is used by drm_atomic_helper_check_modeset(). If it is not implemented, the core
will fallback to best_encoder (or drm_atomic_helper_best_encoder() if best_encoder is NULL).
NOTE:
This function is called in the check phase of an atomic update. The driver is not allowed to
change anything outside of the free-standing state objects passed-in or assembled in the overall
drm_atomic_state update tracking structure.
RETURNS:
Encoder that should be used for the given connector and connector state, or NULL if no suitable
encoder exists. Note that the helpers will ensure that encoders aren’t used twice, drivers should not
check for this.

atomic_check This hook is used to validate connector state. This function is called from
drm_atomic_helper_check_modeset, and is called when a connector property is set, or a modeset
on the crtc is forced.
Because drm_atomic_helper_check_modeset may be called multiple times, this function should
handle being called multiple times as well.
This function is also allowed to inspect any other object’s state and can add more state objects to
the atomic commit if needed. Care must be taken though to ensure that state check and compute
functions for these added states are all called, and derived state in other objects all updated. Again
the recommendation is to just call check helpers until a maximal configuration is reached.
NOTE:
This function is called in the check phase of an atomic update. The driver is not allowed to
change anything outside of the free-standing state objects passed-in or assembled in the overall
drm_atomic_state update tracking structure.
RETURNS:
0 on success, -EINVAL if the state or the transition can’t be supported, -ENOMEM onmemory allocation
failure and -EDEADLK if an attempt to obtain another state object ran into a drm_modeset_lock
deadlock.

Description
These functions are used by the atomic and legacy modeset helpers and by the probe helpers.
void drm_connector_helper_add(struct drm_connector * connector, const struct

drm_connector_helper_funcs * funcs)
sets the helper vtable for a connector

Parameters
struct drm_connector * connector DRM connector
const struct drm_connector_helper_funcs * funcs helper vtable to set for connector

5.1. Modeset Helper Reference for Common Vtables 193

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_plane_helper_funcs
helper operations for planes

Definition

struct drm_plane_helper_funcs {
int (* prepare_fb) (struct drm_plane *plane, struct drm_plane_state *new_state);
void (* cleanup_fb) (struct drm_plane *plane, struct drm_plane_state *old_state);
int (* atomic_check) (struct drm_plane *plane, struct drm_plane_state *state);
void (* atomic_update) (struct drm_plane *plane, struct drm_plane_state *old_state);
void (* atomic_disable) (struct drm_plane *plane, struct drm_plane_state *old_state);

};

Members
prepare_fb This hook is to prepare a framebuffer for scanout by e.g. pinning it’s backing storage or

relocating it into a contiguous block of VRAM. Other possible preparatory work includes flushing
caches.
This function must not block for outstanding rendering, since it is called in the context of the atomic
IOCTL even for async commits to be able to return any errors to userspace. Instead the recommended
way is to fill out the fence member of the passed-in drm_plane_state. If the driver doesn’t support
native fences then equivalent functionality should be implemented through private members in the
plane structure.
The helpers will call cleanup_fb with matching arguments for every successful call to this hook.
This callback is used by the atomic modeset helpers and by the transitional plane helpers, but it is
optional.
RETURNS:
0 on success or one of the following negative error codes allowed by the
drm_mode_config_funcs.atomic_commit vfunc. When using helpers this callback is the only
one which can fail an atomic commit, everything else must complete successfully.

cleanup_fb This hook is called to clean up any resources allocated for the given framebuffer and plane
configuration in prepare_fb.
This callback is used by the atomic modeset helpers and by the transitional plane helpers, but it is
optional.

atomic_check Drivers should check plane specific constraints in this hook.
When using drm_atomic_helper_check_planes() plane’s atomic_check hooks are called before
the ones for CRTCs, which allows drivers to request shared resources that the CRTC controls here.
For more complicated dependencies the driver can call the provided check helpers multiple times
until the computed state has a final configuration and everything has been checked.
This function is also allowed to inspect any other object’s state and can add more state objects to
the atomic commit if needed. Care must be taken though to ensure that state check and compute
functions for these added states are all called, and derived state in other objects all updated. Again
the recommendation is to just call check helpers until a maximal configuration is reached.
This callback is used by the atomic modeset helpers and by the transitional plane helpers, but it is
optional.
NOTE:
This function is called in the check phase of an atomic update. The driver is not allowed to
change anything outside of the free-standing state objects passed-in or assembled in the overall
drm_atomic_state update tracking structure.
RETURNS:

194 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

0 on success, -EINVAL if the state or the transition can’t be supported, -ENOMEM onmemory allocation
failure and -EDEADLK if an attempt to obtain another state object ran into a drm_modeset_lock
deadlock.

atomic_update Drivers should use this function to update the plane state. This hook is called in-between
the drm_crtc_helper_funcs.atomic_begin and drm_crtc_helper_funcs.atomic_flush callbacks.
Note that the power state of the display pipe when this function is called depends upon the exact
helpers and calling sequence the driver has picked. See drm_atomic_helper_commit_planes() for
a discussion of the tradeoffs and variants of plane commit helpers.
This callback is used by the atomic modeset helpers and by the transitional plane helpers, but it is
optional.

atomic_disable Drivers should use this function to unconditionally disable a plane. This hook is called in-
between the drm_crtc_helper_funcs.atomic_begin and drm_crtc_helper_funcs.atomic_flush call-
backs. It is an alternative to atomic_update, which will be called for disabling planes, too, if the
atomic_disable hook isn’t implemented.
This hook is also useful to disable planes in preparation of a modeset, by calling
drm_atomic_helper_disable_planes_on_crtc() from the drm_crtc_helper_funcs.disable
hook.
Note that the power state of the display pipe when this function is called depends upon the exact
helpers and calling sequence the driver has picked. See drm_atomic_helper_commit_planes() for
a discussion of the tradeoffs and variants of plane commit helpers.
This callback is used by the atomic modeset helpers and by the transitional plane helpers, but it is
optional.

Description
These functions are used by the atomic helpers and by the transitional plane helpers.
void drm_plane_helper_add(struct drm_plane * plane, const struct drm_plane_helper_funcs

* funcs)
sets the helper vtable for a plane

Parameters
struct drm_plane * plane DRM plane
const struct drm_plane_helper_funcs * funcs helper vtable to set for plane
struct drm_mode_config_helper_funcs

global modeset helper operations
Definition

struct drm_mode_config_helper_funcs {
void (* atomic_commit_tail) (struct drm_atomic_state *state);

};

Members
atomic_commit_tail This hook is used by the default atomic_commit() hook implemented

in drm_atomic_helper_commit() together with the nonblocking commit helpers (see
drm_atomic_helper_setup_commit() for a starting point) to implement blocking and nonblocking
commits easily. It is not used by the atomic helpers
This function is called when the new atomic state has already been swapped into the various state
pointers. The passed in state therefore contains copies of the old/previous state. This hook should
commit the new state into hardware. Note that the helpers have alreadywaited for preceeding atomic
commits and fences, but drivers can add more waiting calls at the start of their implementation, e.g.
to wait for driver-internal request for implicit syncing, before starting to commit the update to the
hardware.

5.1. Modeset Helper Reference for Common Vtables 195

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

After the atomic update is committed to the hardware this hook needs to call
drm_atomic_helper_commit_hw_done(). Then wait for the upate to be executed by the hard-
ware, for example using drm_atomic_helper_wait_for_vblanks(), and then clean up the old
framebuffers using drm_atomic_helper_cleanup_planes().
When disabling a CRTC this hook _must_ stall for the commit to complete. Vblank waits don’t work
on disabled CRTC, hence the core can’t take care of this. And it also can’t rely on the vblank event,
since that can be signalled already when the screen shows black, which can happen much earlier
than the last hardware access needed to shut off the display pipeline completely.
This hook is optional, the default implementation is drm_atomic_helper_commit_tail().

Description
These helper functions are used by the atomic helpers.

5.2 Atomic Modeset Helper Functions Reference

5.2.1 Overview

This helper library provides implementations of check and commit functions on top of the CRTC modeset
helper callbacks and the plane helper callbacks. It also provides convenience implementations for the
atomic state handling callbacks for drivers which don’t need to subclass the drm core structures to add
their own additional internal state.
This library also provides default implementations for the check callback in drm_atomic_helper_check()
and for the commit callback with drm_atomic_helper_commit(). But the individual stages and callbacks
are exposed to allow drivers to mix and match and e.g. use the plane helpers only together with a driver
private modeset implementation.
This library also provides implementations for all the legacy driver interfaces on top of the
atomic interface. See drm_atomic_helper_set_config(), drm_atomic_helper_disable_plane(),
drm_atomic_helper_disable_plane() and the various functions to implement set_property callbacks.
New drivers must not implement these functions themselves but must use the provided helpers.
The atomic helper uses the same function table structures as all other modesetting helpers. See
the documentation for struct drm_crtc_helper_funcs, struct drm_encoder_helper_funcs and struct
drm_connector_helper_funcs. It also shares the struct drm_plane_helper_funcs function table with
the plane helpers.

5.2.2 Implementing Asynchronous Atomic Commit

Nonblocking atomic commits have to be implemented in the following sequence:
1. Run drm_atomic_helper_prepare_planes() first. This is the only function which commit needs to call
which can fail, so we want to run it first and synchronously.
2. Synchronize with any outstanding nonblocking commit worker threads which might be affected the new
state update. This can be done by either cancelling or flushing the work items, depending upon whether
the driver can deal with cancelled updates. Note that it is important to ensure that the framebuffer cleanup
is still done when cancelling.
Asynchronous workers need to have sufficient parallelism to be able to run different atomic commits on
different CRTCs in parallel. The simplest way to achive this is by running them on the system_unbound_wq
work queue. Note that drivers are not required to split up atomic commits and run an individual commit
in parallel - userspace is supposed to do that if it cares. But it might be beneficial to do that for modesets,
since those necessarily must be done as one global operation, and enabling or disabling a CRTC can take
a long time. But even that is not required.
3. The software state is updated synchronously with drm_atomic_helper_swap_state(). Doing this
under the protection of all modeset locksmeans concurrent callers never see inconsistent state. And doing

196 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

this while it’s guaranteed that no relevant nonblocking worker runs means that nonblocking workers do
not need grab any locks. Actually they must not grab locks, for otherwise the work flushing will deadlock.
4. Schedule a work item to do all subsequent steps, using the split-out commit helpers: a) pre-plane com-
mit b) plane commit c) post-plane commit and then cleaning up the framebuffers after the old framebuffer
is no longer being displayed.
The above scheme is implemented in the atomic helper libraries in drm_atomic_helper_commit() using
a bunch of helper functions. See drm_atomic_helper_setup_commit() for a starting point.

5.2.3 Atomic State Reset and Initialization

Both the drm core and the atomic helpers assume that there is always the full and correct atomic software
state for all connectors, CRTCs and planes available. Which is a bit a problem on driver load and also
after system suspend. One way to solve this is to have a hardware state read-out infrastructure which
reconstructs the full software state (e.g. the i915 driver).
The simpler solution is to just reset the software state to everything off, which is easiest to do by calling
drm_mode_config_reset(). To facilitate this the atomic helpers provide default reset implementations
for all hooks.
On the upside the precise state tracking of atomic simplifies system suspend and resume a lot. For drivers
using drm_mode_config_reset() a complete recipe is implemented in drm_atomic_helper_suspend()
and drm_atomic_helper_resume(). For other drivers the building blocks are split out, see the documen-
tation for these functions.

5.2.4 Helper Functions Reference

drm_atomic_crtc_for_each_plane(plane, crtc)
iterate over planes currently attached to CRTC

Parameters
plane the loop cursor
crtc the crtc whose planes are iterated
Description
This iterates over the current state, useful (for example) when applying atomic state after it has been
checked and swapped. To iterate over the planes which will be attached (more useful in code called from
drm_mode_config_funcs.atomic_check) see drm_atomic_crtc_state_for_each_plane().
drm_atomic_crtc_state_for_each_plane(plane, crtc_state)

iterate over attached planes in new state
Parameters
plane the loop cursor
crtc_state the incoming crtc-state
Description
Similar to drm_crtc_for_each_plane(), but iterates the planes that will be attached if the specified
state is applied. Useful during for example in code called from drm_mode_config_funcs.atomic_check
operations, to validate the incoming state.
drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)

iterate over attached planes in new state
Parameters
plane the loop cursor
plane_state loop cursor for the plane’s state, must be const

5.2. Atomic Modeset Helper Functions Reference 197

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

crtc_state the incoming crtc-state
Description
Similar to drm_crtc_for_each_plane(), but iterates the planes that will be attached if the specified
state is applied. Useful during for example in code called from drm_mode_config_funcs.atomic_check
operations, to validate the incoming state.
Compared to just drm_atomic_crtc_state_for_each_plane() this also fills in a const plane_state. This
is useful when a driver just wants to peek at other active planes on this crtc, but does not need to change
it.
bool drm_atomic_plane_disabling(struct drm_plane_state * old_plane_state, struct

drm_plane_state * new_plane_state)
check whether a plane is being disabled

Parameters
struct drm_plane_state * old_plane_state old atomic plane state
struct drm_plane_state * new_plane_state new atomic plane state
Description
Checks the atomic state of a plane to determine whether it’s being disabled or not. This also WARNs if it
detects an invalid state (both CRTC and FB need to either both be NULL or both be non-NULL).
Return
True if the plane is being disabled, false otherwise.
int drm_atomic_helper_check_modeset(struct drm_device * dev, struct drm_atomic_state * state)

validate state object for modeset changes
Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * state the driver state object
Description
Check the state object to see if the requested state is physically possible. This does all the crtc and
connector related computations for an atomic update and adds any additional connectors needed for full
modesets. It calls the various per-object callbacks in the follow order:
1. drm_connector_helper_funcs.atomic_best_encoder for determining the new encoder.
2. drm_connector_helper_funcs.atomic_check to validate the connector state.
3. If it’s determined a modeset is needed then all connectors on the affected crtc crtc are added and

drm_connector_helper_funcs.atomic_check is run on them.
4. drm_encoder_helper_funcs.mode_valid, drm_bridge_funcs.mode_valid and

drm_crtc_helper_funcs.mode_valid are called on the affected components.
5. drm_bridge_funcs.mode_fixup is called on all encoder bridges.
6. drm_encoder_helper_funcs.atomic_check is called to validate any encoder state. This
function is only called when the encoder will be part of a configured crtc, it must
not be used for implementing connector property validation. If this function is NULL,
drm_atomic_encoder_helper_funcs.mode_fixup is called instead.

7. drm_crtc_helper_funcs.mode_fixup is called last, to fix up the mode with crtc constraints.
drm_crtc_state.mode_changed is set when the input mode is changed.
drm_crtc_state.connectors_changed is set when a connector is added or removed from the crtc.
drm_crtc_state.active_changed is set when drm_crtc_state.active changes, which is used for
DPMS. See also: drm_atomic_crtc_needs_modeset()
IMPORTANT:

198 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Drivers which set drm_crtc_state.mode_changed (e.g. in their drm_plane_helper_funcs.atomic_check
hooks if a plane update can’t be done without a full modeset) _must_ call this function afterwards after
that change. It is permitted to call this function multiple times for the same update, e.g. when the
drm_crtc_helper_funcs.atomic_check functions depend upon the adjusted dotclock for fifo space
allocation and watermark computation.
Return
Zero for success or -errno
int drm_atomic_helper_check_planes(struct drm_device * dev, struct drm_atomic_state * state)

validate state object for planes changes
Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * state the driver state object
Description
Check the state object to see if the requested state is physically possible. This does all the
plane update related checks using by calling into the drm_crtc_helper_funcs.atomic_check and
drm_plane_helper_funcs.atomic_check hooks provided by the driver.
It also sets drm_crtc_state.planes_changed to indicate that a crtc has updated planes.
Return
Zero for success or -errno
int drm_atomic_helper_check(struct drm_device * dev, struct drm_atomic_state * state)

validate state object
Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * state the driver state object
Description
Check the state object to see if the requested state is physically possible. Only crtcs and planes
have check callbacks, so for any additional (global) checking that a driver needs it can sim-
ply wrap that around this function. Drivers without such needs can directly use this as their
drm_mode_config_funcs.atomic_check callback.
This just wraps the two parts of the state checking for planes and mode-
set state in the default order: First it calls drm_atomic_helper_check_modeset()
and then drm_atomic_helper_check_planes(). The assumption is that the
drm_plane_helper_funcs.atomic_check and drm_crtc_helper_funcs.atomic_check functions depend
upon an updated adjusted_mode.clock to e.g. properly compute watermarks.
Return
Zero for success or -errno
void drm_atomic_helper_update_legacy_modeset_state(struct drm_device * dev, struct

drm_atomic_state * old_state)
update legacy modeset state

Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * old_state atomic state object with old state structures
Description

5.2. Atomic Modeset Helper Functions Reference 199

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

This function updates all the various legacy modeset state pointers in connectors, encoders and
crtcs. It also updates the timestamping constants used for precise vblank timestamps by calling
drm_calc_timestamping_constants().
Drivers can use this for building their own atomic commit if they don’t have a pure helper-based modeset
implementation.
void drm_atomic_helper_commit_modeset_disables(struct drm_device * dev, struct

drm_atomic_state * old_state)
modeset commit to disable outputs

Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * old_state atomic state object with old state structures
Description
This function shuts down all the outputs that need to be shut down and prepares them (if required) with
the new mode.
For compatibility with legacy crtc helpers this should be called before
drm_atomic_helper_commit_planes(), which is what the default commit function does. But drivers
with different needs can group the modeset commits together and do the plane commits at the end. This
is useful for drivers doing runtime PM since planes updates then only happen when the CRTC is actually
enabled.
void drm_atomic_helper_commit_modeset_enables(struct drm_device * dev, struct

drm_atomic_state * old_state)
modeset commit to enable outputs

Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * old_state atomic state object with old state structures
Description
This function enables all the outputs with the new configuration which had to be turned off for the update.
For compatibility with legacy crtc helpers this should be called after
drm_atomic_helper_commit_planes(), which is what the default commit function does. But drivers
with different needs can group the modeset commits together and do the plane commits at the end. This
is useful for drivers doing runtime PM since planes updates then only happen when the CRTC is actually
enabled.
int drm_atomic_helper_wait_for_fences(struct drm_device * dev, struct drm_atomic_state

* state, bool pre_swap)
wait for fences stashed in plane state

Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * state atomic state object with old state structures
bool pre_swap If true, do an interruptible wait, and state is the new state. Otherwise state is the old

state.
Description
For implicit sync, driver should fish the exclusive fence out from the incoming fb’s and stash it in the
drm_plane_state. This is called after drm_atomic_helper_swap_state() so it uses the current plane
state (and just uses the atomic state to find the changed planes)
Note that pre_swap is needed since the point where we block for fences moves around depending upon
whether an atomic commit is blocking or non-blocking. For non-blocking commit all waiting needs to hap-

200 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

pen after drm_atomic_helper_swap_state() is called, but for blocking commits we want to wait before
we do anything that can’t be easily rolled back. That is before we call drm_atomic_helper_swap_state().
Returns zero if success or < 0 if dma_fence_wait() fails.
void drm_atomic_helper_wait_for_vblanks(struct drm_device * dev, struct drm_atomic_state

* old_state)
wait for vblank on crtcs

Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * old_state atomic state object with old state structures
Description
Helper to, after atomic commit, wait for vblanks on all effected crtcs (ie. before cleaning up old frame-
buffers using drm_atomic_helper_cleanup_planes()). It will only wait on crtcs where the framebuffers
have actually changed to optimize for the legacy cursor and plane update use-case.
void drm_atomic_helper_commit_tail(struct drm_atomic_state * old_state)

commit atomic update to hardware
Parameters
struct drm_atomic_state * old_state atomic state object with old state structures
Description
This is the default implementation for the drm_mode_config_helper_funcs.atomic_commit_tail hook.
Note that the default ordering of how the various stages are called is to match the legacy modeset helper
library closest. One peculiarity of that is that it doesn’t mesh well with runtime PM at all.
For drivers supporting runtime PM the recommended sequence is instead

drm_atomic_helper_commit_modeset_disables(dev, old_state);

drm_atomic_helper_commit_modeset_enables(dev, old_state);

drm_atomic_helper_commit_planes(dev, old_state,
DRM_PLANE_COMMIT_ACTIVE_ONLY);

for committing the atomic update to hardware. See the kerneldoc entries for these three functions for
more details.
int drm_atomic_helper_commit(struct drm_device * dev, struct drm_atomic_state * state,

bool nonblock)
commit validated state object

Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * state the driver state object
bool nonblock whether nonblocking behavior is requested.
Description
This function commits a with drm_atomic_helper_check() pre-validated state object. This can still
fail when e.g. the framebuffer reservation fails. This function implements nonblocking commits, using
drm_atomic_helper_setup_commit() and related functions.
Committing the actual hardware state is done through the drm_mode_config_helper_funcs.atomic_commit_tail
callback, or it’s default implementation drm_atomic_helper_commit_tail().
Return
Zero for success or -errno.

5.2. Atomic Modeset Helper Functions Reference 201

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int drm_atomic_helper_setup_commit(struct drm_atomic_state * state, bool nonblock)
setup possibly nonblocking commit

Parameters
struct drm_atomic_state * state new modeset state to be committed
bool nonblock whether nonblocking behavior is requested.
Description
This function prepares state to be used by the atomic helper’s support for nonblocking com-
mits. Drivers using the nonblocking commit infrastructure should always call this function from their
drm_mode_config_funcs.atomic_commit hook.
To be able to use this support drivers need to use a few more helper functions.
drm_atomic_helper_wait_for_dependencies() must be called before actually committing the hard-
ware state, and for nonblocking commits this call must be placed in the async worker. See also
drm_atomic_helper_swap_state() and it’s stall parameter, for when a driver’s commit hooks look at
the drm_crtc.state, drm_plane.state or drm_connector.state pointer directly.
Completion of the hardware commit stepmust be signalled using drm_atomic_helper_commit_hw_done().
After this step the driver is not allowed to read or change any permanent software or hardware modeset
state. The only exception is state protected by other means than drm_modeset_lock locks. Only the free
standing state with pointers to the old state structures can be inspected, e.g. to clean up old buffers
using drm_atomic_helper_cleanup_planes().
At the very end, before cleaning up state driversmust call drm_atomic_helper_commit_cleanup_done().
This is all implemented by in drm_atomic_helper_commit(), giving drivers a complete and esay-to-use
default implementation of the atomic_commit() hook.
The tracking of asynchronously executed and still pending commits is done using the core structure
drm_crtc_commit.
By default there’s no need to clean up resources allocated by this function explicitly:
drm_atomic_state_default_clear() will take care of that automatically.
Return
0 on success. -EBUSY when userspace schedules nonblocking commits too fast, -ENOMEM on allocation
failures and -EINTR when a signal is pending.
void drm_atomic_helper_wait_for_dependencies(struct drm_atomic_state * old_state)

wait for required preceeding commits
Parameters
struct drm_atomic_state * old_state atomic state object with old state structures
Description
This function waits for all preceeding commits that touch the same CRTC as old_state to both be commit-
ted to the hardware (as signalled by drm_atomic_helper_commit_hw_done) and executed by the hardware
(as signalled by calling drm_crtc_vblank_send_event() on the drm_crtc_state.event).
This is part of the atomic helper support for nonblocking commits, see
drm_atomic_helper_setup_commit() for an overview.
void drm_atomic_helper_commit_hw_done(struct drm_atomic_state * old_state)

setup possible nonblocking commit
Parameters
struct drm_atomic_state * old_state atomic state object with old state structures
Description

202 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

This function is used to signal completion of the hardware commit step. After this step the driver is not
allowed to read or change any permanent software or hardware modeset state. The only exception is
state protected by other means than drm_modeset_lock locks.
Drivers should try to postpone any expensive or delayed cleanup work after this function is called.
This is part of the atomic helper support for nonblocking commits, see
drm_atomic_helper_setup_commit() for an overview.
void drm_atomic_helper_commit_cleanup_done(struct drm_atomic_state * old_state)

signal completion of commit
Parameters
struct drm_atomic_state * old_state atomic state object with old state structures
Description
This signals completion of the atomic update old_state, including any cleanup work. If used, it must be
called right before calling drm_atomic_state_put().
This is part of the atomic helper support for nonblocking commits, see
drm_atomic_helper_setup_commit() for an overview.
int drm_atomic_helper_prepare_planes(struct drm_device * dev, struct drm_atomic_state

* state)
prepare plane resources before commit

Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * state atomic state object with new state structures
Description
This function prepares plane state, specifically framebuffers, for the new configuration, by call-
ing drm_plane_helper_funcs.prepare_fb. If any failure is encountered this function will call
drm_plane_helper_funcs.cleanup_fb on any already successfully prepared framebuffer.
Return
0 on success, negative error code on failure.
void drm_atomic_helper_commit_planes(struct drm_device * dev, struct drm_atomic_state

* old_state, uint32_t flags)
commit plane state

Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * old_state atomic state object with old state structures
uint32_t flags flags for committing plane state
Description
This function commits the new plane state using the plane and atomic helper functions for planes and
crtcs. It assumes that the atomic state has already been pushed into the relevant object state pointers,
since this step can no longer fail.
It still requires the global state object old_state to know which planes and crtcs need to be updated
though.
Note that this function does all plane updates across all CRTCs in one step. If the hardware can’t support
this approach look at drm_atomic_helper_commit_planes_on_crtc() instead.
Plane parameters can be updated by applications while the associated CRTC is disabled. The DRM/KMS
core will store the parameters in the plane state, which will be available to the driver when the CRTC is

5.2. Atomic Modeset Helper Functions Reference 203

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

turned on. As a result most drivers don’t need to be immediately notified of plane updates for a disabled
CRTC.
Unless otherwise needed, drivers are advised to set the ACTIVE_ONLY flag in flags in order not to receive
plane update notifications related to a disabled CRTC. This avoids the need to manually ignore plane
updates in driver code when the driver and/or hardware can’t or just don’t need to deal with updates on
disabled CRTCs, for example when supporting runtime PM.
Drivers may set the NO_DISABLE_AFTER_MODESET flag in flags if the relevant display controllers
require to disable a CRTC’s planes when the CRTC is disabled. This function would skip the
drm_plane_helper_funcs.atomic_disable call for a plane if the CRTC of the old plane state needs a
modesetting operation. Of course, the drivers need to disable the planes in their CRTC disable callbacks
since no one else would do that.
The drm_atomic_helper_commit() default implementation doesn’t set the ACTIVE_ONLY flag to most
closely match the behaviour of the legacy helpers. This should not be copied blindly by drivers.
void drm_atomic_helper_commit_planes_on_crtc(struct drm_crtc_state * old_crtc_state)

commit plane state for a crtc
Parameters
struct drm_crtc_state * old_crtc_state atomic state object with the old crtc state
Description
This function commits the new plane state using the plane and atomic helper functions for planes on the
specific crtc. It assumes that the atomic state has already been pushed into the relevant object state
pointers, since this step can no longer fail.
This function is useful when plane updates should be done crtc-by-crtc instead of one global step like
drm_atomic_helper_commit_planes() does.
This function can only be savely used when planes are not allowed to move between different CRTCs
because this function doesn’t handle inter-CRTC depencies. Callers need to ensure that either no such
depencies exist, resolve them through ordering of commit calls or through some other means.
void drm_atomic_helper_disable_planes_on_crtc(struct drm_crtc_state * old_crtc_state,

bool atomic)
helper to disable CRTC’s planes

Parameters
struct drm_crtc_state * old_crtc_state atomic state object with the old CRTC state
bool atomic if set, synchronize with CRTC’s atomic_begin/flush hooks
Description
Disables all planes associated with the given CRTC. This can be used for instance in the CRTC helper
atomic_disable callback to disable all planes.
If the atomic-parameter is set the function calls the CRTC’s atomic_begin hook before and atomic_flush
hook after disabling the planes.
It is a bug to call this function without having implemented the drm_plane_helper_funcs.atomic_disable
plane hook.
void drm_atomic_helper_cleanup_planes(struct drm_device * dev, struct drm_atomic_state

* old_state)
cleanup plane resources after commit

Parameters
struct drm_device * dev DRM device
struct drm_atomic_state * old_state atomic state object with old state structures

204 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This function cleans up plane state, specifically framebuffers, from the old configuration. Hence the old
configuration must be perserved in old_state to be able to call this function.
This function must also be called on the new state when the atomic update fails at any point after calling
drm_atomic_helper_prepare_planes().
void drm_atomic_helper_swap_state(struct drm_atomic_state * state, bool stall)

store atomic state into current sw state
Parameters
struct drm_atomic_state * state atomic state
bool stall stall for proceeding commits
Description
This function stores the atomic state into the current state pointers in all driver objects. It should be called
after all failing steps have been done and succeeded, but before the actual hardware state is committed.
For cleanup and error recovery the current state for all changed objects will be swaped into state.
With that sequence it fits perfectly into the plane prepare/cleanup sequence:
1. Call drm_atomic_helper_prepare_planes() with the staged atomic state.
2. Do any other steps that might fail.
3. Put the staged state into the current state pointers with this function.
4. Actually commit the hardware state.

5. Call drm_atomic_helper_cleanup_planes() with state, which since step 3 contains the old state.
Also do any other cleanup required with that state.
stall must be set when nonblocking commits for this driver directly access the drm_plane.state,
drm_crtc.state or drm_connector.state pointer. With the current atomic helpers this is almost always
the case, since the helpers don’t pass the right state structures to the callbacks.
int drm_atomic_helper_update_plane(struct drm_plane * plane, struct drm_crtc * crtc,

struct drm_framebuffer * fb, int crtc_x, int crtc_y, un-
signed int crtc_w, unsigned int crtc_h, uint32_t src_x,
uint32_t src_y, uint32_t src_w, uint32_t src_h, struct
drm_modeset_acquire_ctx * ctx)

Helper for primary plane update using atomic
Parameters
struct drm_plane * plane plane object to update
struct drm_crtc * crtc owning CRTC of owning plane
struct drm_framebuffer * fb framebuffer to flip onto plane
int crtc_x x offset of primary plane on crtc
int crtc_y y offset of primary plane on crtc
unsigned int crtc_w width of primary plane rectangle on crtc
unsigned int crtc_h height of primary plane rectangle on crtc
uint32_t src_x x offset of fb for panning
uint32_t src_y y offset of fb for panning
uint32_t src_w width of source rectangle in fb
uint32_t src_h height of source rectangle in fb
struct drm_modeset_acquire_ctx * ctx lock acquire context

5.2. Atomic Modeset Helper Functions Reference 205

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Provides a default plane update handler using the atomic driver interface.
Return
Zero on success, error code on failure
int drm_atomic_helper_disable_plane(struct drm_plane * plane, struct drm_modeset_acquire_ctx

* ctx)
Helper for primary plane disable using * atomic

Parameters
struct drm_plane * plane plane to disable
struct drm_modeset_acquire_ctx * ctx lock acquire context
Description
Provides a default plane disable handler using the atomic driver interface.
Return
Zero on success, error code on failure
int drm_atomic_helper_set_config(struct drm_mode_set * set, struct drm_modeset_acquire_ctx

* ctx)
set a new config from userspace

Parameters
struct drm_mode_set * set mode set configuration
struct drm_modeset_acquire_ctx * ctx lock acquisition context
Description
Provides a default crtc set_config handler using the atomic driver interface.
NOTE
For backwards compatibility with old userspace this automatically resets the “link-status” property
to GOOD, to force any link re-training. The SETCRTC ioctl does not define whether an update
does need a full modeset or just a plane update, hence we’re allowed to do that. See also
drm_mode_connector_set_link_status_property().
Return
Returns 0 on success, negative errno numbers on failure.
int drm_atomic_helper_disable_all(struct drm_device * dev, struct drm_modeset_acquire_ctx

* ctx)
disable all currently active outputs

Parameters
struct drm_device * dev DRM device
struct drm_modeset_acquire_ctx * ctx lock acquisition context
Description
Loops through all connectors, finding those that aren’t turned off and then turns them off by setting their
DPMS mode to OFF and deactivating the CRTC that they are connected to.
This is used for example in suspend/resume to disable all currently active functions when suspending. If
you just want to shut down everything at e.g. driver unload, look at drm_atomic_helper_shutdown().
Note that if callers haven’t already acquired all modeset locks this might return -EDEADLK, which must
be handled by calling drm_modeset_backoff().
Return

206 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

0 on success or a negative error code on failure.
See also: drm_atomic_helper_suspend(), drm_atomic_helper_resume() and
drm_atomic_helper_shutdown().
void drm_atomic_helper_shutdown(struct drm_device * dev)

shutdown all CRTC
Parameters
struct drm_device * dev DRM device
Description
This shuts down all CRTC, which is useful for driver unloading. Shutdown on suspend should instead be
handled with drm_atomic_helper_suspend(), since that also takes a snapshot of the modeset state to
be restored on resume.
This is just a convenience wrapper around drm_atomic_helper_disable_all(), and it is the atomic ver-
sion of drm_crtc_force_disable_all().
struct drm_atomic_state * drm_atomic_helper_suspend(struct drm_device * dev)

subsystem-level suspend helper
Parameters
struct drm_device * dev DRM device
Description
Duplicates the current atomic state, disables all active outputs and then returns a pointer to the original
atomic state to the caller. Drivers can pass this pointer to the drm_atomic_helper_resume() helper upon
resume to restore the output configuration that was active at the time the system entered suspend.
Note that it is potentially unsafe to use this. The atomic state object returned by this function is assumed
to be persistent. Drivers must ensure that this holds true. Before calling this function, drivers must make
sure to suspend fbdev emulation so that nothing can be using the device.
Return
A pointer to a copy of the state before suspend on success or an ERR_PTR()- encoded error code on failure.
Drivers should store the returned atomic state object and pass it to the drm_atomic_helper_resume()
helper upon resume.
See also: drm_atomic_helper_duplicate_state(), drm_atomic_helper_disable_all(),
drm_atomic_helper_resume(), drm_atomic_helper_commit_duplicated_state()
int drm_atomic_helper_commit_duplicated_state(struct drm_atomic_state * state, struct

drm_modeset_acquire_ctx * ctx)
commit duplicated state

Parameters
struct drm_atomic_state * state duplicated atomic state to commit
struct drm_modeset_acquire_ctx * ctx pointer to acquire_ctx to use for commit.
Description
The state returned by drm_atomic_helper_duplicate_state() and drm_atomic_helper_suspend() is
partially invalid, and needs to be fixed up before commit.
Return
0 on success or a negative error code on failure.
See also: drm_atomic_helper_suspend()
int drm_atomic_helper_resume(struct drm_device * dev, struct drm_atomic_state * state)

subsystem-level resume helper
Parameters

5.2. Atomic Modeset Helper Functions Reference 207

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_device * dev DRM device
struct drm_atomic_state * state atomic state to resume to
Description
Calls drm_mode_config_reset() to synchronize hardware and software states, grabs all mode-
set locks and commits the atomic state object. This can be used in conjunction with the
drm_atomic_helper_suspend() helper to implement suspend/resume for drivers that support atomic
mode-setting.
Return
0 on success or a negative error code on failure.
See also: drm_atomic_helper_suspend()
int drm_atomic_helper_crtc_set_property(struct drm_crtc * crtc, struct drm_property * property,

uint64_t val)
helper for crtc properties

Parameters
struct drm_crtc * crtc DRM crtc
struct drm_property * property DRM property
uint64_t val value of property
Description
Provides a default crtc set_property handler using the atomic driver interface.
Return
Zero on success, error code on failure
int drm_atomic_helper_plane_set_property(struct drm_plane * plane, struct drm_property

* property, uint64_t val)
helper for plane properties

Parameters
struct drm_plane * plane DRM plane
struct drm_property * property DRM property
uint64_t val value of property
Description
Provides a default plane set_property handler using the atomic driver interface.
Return
Zero on success, error code on failure
int drm_atomic_helper_connector_set_property(struct drm_connector * connector, struct

drm_property * property, uint64_t val)
helper for connector properties

Parameters
struct drm_connector * connector DRM connector
struct drm_property * property DRM property
uint64_t val value of property
Description
Provides a default connector set_property handler using the atomic driver interface.
Return

208 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Zero on success, error code on failure
int drm_atomic_helper_page_flip(struct drm_crtc * crtc, struct drm_framebuffer * fb, struct

drm_pending_vblank_event * event, uint32_t flags, struct
drm_modeset_acquire_ctx * ctx)

execute a legacy page flip
Parameters
struct drm_crtc * crtc DRM crtc
struct drm_framebuffer * fb DRM framebuffer
struct drm_pending_vblank_event * event optional DRM event to signal upon completion
uint32_t flags flip flags for non-vblank sync’ed updates
struct drm_modeset_acquire_ctx * ctx lock acquisition context
Description
Provides a default drm_crtc_funcs.page_flip implementation using the atomic driver interface.
Return
Returns 0 on success, negative errno numbers on failure.
See also: drm_atomic_helper_page_flip_target()
int drm_atomic_helper_page_flip_target(struct drm_crtc * crtc, struct drm_framebuffer

* fb, struct drm_pending_vblank_event
* event, uint32_t flags, uint32_t target, struct
drm_modeset_acquire_ctx * ctx)

do page flip on target vblank period.
Parameters
struct drm_crtc * crtc DRM crtc
struct drm_framebuffer * fb DRM framebuffer
struct drm_pending_vblank_event * event optional DRM event to signal upon completion
uint32_t flags flip flags for non-vblank sync’ed updates
uint32_t target specifying the target vblank period when the flip to take effect
struct drm_modeset_acquire_ctx * ctx lock acquisition context
Description
Provides a default drm_crtc_funcs.page_flip_target implementation. Similar to
drm_atomic_helper_page_flip() with extra parameter to specify target vblank period to flip.
Return
Returns 0 on success, negative errno numbers on failure.
int drm_atomic_helper_connector_dpms(struct drm_connector * connector, int mode)

connector dpms helper implementation
Parameters
struct drm_connector * connector affected connector
int mode DPMS mode
Description
This is the main helper function provided by the atomic helper framework for implementing the legacy
DPMS connector interface. It computes the new desired drm_crtc_state.active state for the corre-
sponding CRTC (if the connector is enabled) and updates it.
Return

5.2. Atomic Modeset Helper Functions Reference 209

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Returns 0 on success, negative errno numbers on failure.
struct drm_encoder * drm_atomic_helper_best_encoder(struct drm_connector * connector)

Helper for drm_connector_helper_funcs.best_encoder callback
Parameters
struct drm_connector * connector Connector control structure
Description
This is a drm_connector_helper_funcs.best_encoder callback helper for connectors that support ex-
actly 1 encoder, statically determined at driver init time.
void drm_atomic_helper_crtc_reset(struct drm_crtc * crtc)

default drm_crtc_funcs.reset hook for CRTCs
Parameters
struct drm_crtc * crtc drm CRTC
Description
Resets the atomic state for crtc by freeing the state pointer (which might be NULL, e.g. at driver load
time) and allocating a new empty state object.
void __drm_atomic_helper_crtc_duplicate_state(struct drm_crtc * crtc, struct drm_crtc_state

* state)
copy atomic CRTC state

Parameters
struct drm_crtc * crtc CRTC object
struct drm_crtc_state * state atomic CRTC state
Description
Copies atomic state from a CRTC’s current state and resets inferred values. This is useful for drivers that
subclass the CRTC state.
struct drm_crtc_state * drm_atomic_helper_crtc_duplicate_state(struct drm_crtc * crtc)

default state duplicate hook
Parameters
struct drm_crtc * crtc drm CRTC
Description
Default CRTC state duplicate hook for drivers which don’t have their own subclassed CRTC state structure.

void __drm_atomic_helper_crtc_destroy_state(struct drm_crtc_state * state)
release CRTC state

Parameters
struct drm_crtc_state * state CRTC state object to release
Description
Releases all resources stored in the CRTC state without actually freeing the memory of the CRTC state.
This is useful for drivers that subclass the CRTC state.
void drm_atomic_helper_crtc_destroy_state(struct drm_crtc * crtc, struct drm_crtc_state

* state)
default state destroy hook

Parameters
struct drm_crtc * crtc drm CRTC

210 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_crtc_state * state CRTC state object to release
Description
Default CRTC state destroy hook for drivers which don’t have their own subclassed CRTC state structure.
void drm_atomic_helper_plane_reset(struct drm_plane * plane)

default drm_plane_funcs.reset hook for planes
Parameters
struct drm_plane * plane drm plane
Description
Resets the atomic state for plane by freeing the state pointer (which might be NULL, e.g. at driver load
time) and allocating a new empty state object.
void __drm_atomic_helper_plane_duplicate_state(struct drm_plane * plane, struct

drm_plane_state * state)
copy atomic plane state

Parameters
struct drm_plane * plane plane object
struct drm_plane_state * state atomic plane state
Description
Copies atomic state from a plane’s current state. This is useful for drivers that subclass the plane state.
struct drm_plane_state * drm_atomic_helper_plane_duplicate_state(struct drm_plane * plane)

default state duplicate hook
Parameters
struct drm_plane * plane drm plane
Description
Default plane state duplicate hook for drivers which don’t have their own subclassed plane state structure.

void __drm_atomic_helper_plane_destroy_state(struct drm_plane_state * state)
release plane state

Parameters
struct drm_plane_state * state plane state object to release
Description
Releases all resources stored in the plane state without actually freeing the memory of the plane state.
This is useful for drivers that subclass the plane state.
void drm_atomic_helper_plane_destroy_state(struct drm_plane * plane, struct drm_plane_state

* state)
default state destroy hook

Parameters
struct drm_plane * plane drm plane
struct drm_plane_state * state plane state object to release
Description
Default plane state destroy hook for drivers which don’t have their own subclassed plane state structure.

5.2. Atomic Modeset Helper Functions Reference 211

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void __drm_atomic_helper_connector_reset(struct drm_connector * connector, struct
drm_connector_state * conn_state)

reset state on connector
Parameters
struct drm_connector * connector drm connector
struct drm_connector_state * conn_state connector state to assign
Description
Initializes the newly allocated conn_state and assigns it to the drm_conector->state pointer of connec-
tor, usually required when initializing the drivers or when called from the drm_connector_funcs.reset
hook.
This is useful for drivers that subclass the connector state.
void drm_atomic_helper_connector_reset(struct drm_connector * connector)

default drm_connector_funcs.reset hook for connectors
Parameters
struct drm_connector * connector drm connector
Description
Resets the atomic state for connector by freeing the state pointer (which might be NULL, e.g. at driver
load time) and allocating a new empty state object.
void __drm_atomic_helper_connector_duplicate_state(struct drm_connector * connector,

struct drm_connector_state * state)
copy atomic connector state

Parameters
struct drm_connector * connector connector object
struct drm_connector_state * state atomic connector state
Description
Copies atomic state from a connector’s current state. This is useful for drivers that subclass the connector
state.
struct drm_connector_state * drm_atomic_helper_connector_duplicate_state(struct

drm_connector
* connector)

default state duplicate hook
Parameters
struct drm_connector * connector drm connector
Description
Default connector state duplicate hook for drivers which don’t have their own subclassed connector state
structure.
struct drm_atomic_state * drm_atomic_helper_duplicate_state(struct drm_device * dev, struct

drm_modeset_acquire_ctx
* ctx)

duplicate an atomic state object
Parameters
struct drm_device * dev DRM device
struct drm_modeset_acquire_ctx * ctx lock acquisition context

212 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Makes a copy of the current atomic state by looping over all objects and duplicating their respective states.
This is used for example by suspend/ resume support code to save the state prior to suspend such that it
can be restored upon resume.
Note that this treats atomic state as persistent between save and restore. Drivers must make sure that
this is possible and won’t result in confusion or erroneous behaviour.
Note that if callers haven’t already acquired all modeset locks this might return -EDEADLK, which must
be handled by calling drm_modeset_backoff().
Return
A pointer to the copy of the atomic state object on success or an ERR_PTR()-encoded error code on failure.
See also: drm_atomic_helper_suspend(), drm_atomic_helper_resume()
void __drm_atomic_helper_connector_destroy_state(struct drm_connector_state * state)

release connector state
Parameters
struct drm_connector_state * state connector state object to release
Description
Releases all resources stored in the connector state without actually freeing the memory of the connector
state. This is useful for drivers that subclass the connector state.
void drm_atomic_helper_connector_destroy_state(struct drm_connector * connector, struct

drm_connector_state * state)
default state destroy hook

Parameters
struct drm_connector * connector drm connector
struct drm_connector_state * state connector state object to release
Description
Default connector state destroy hook for drivers which don’t have their own subclassed connector state
structure.
int drm_atomic_helper_legacy_gamma_set(struct drm_crtc * crtc, u16 * red, u16 * green, u16

* blue, uint32_t size, struct drm_modeset_acquire_ctx
* ctx)

set the legacy gamma correction table
Parameters
struct drm_crtc * crtc CRTC object
u16 * red red correction table
u16 * green green correction table
u16 * blue green correction table
uint32_t size size of the tables
struct drm_modeset_acquire_ctx * ctx lock acquire context
Description
Implements support for legacy gamma correction table for drivers that support color management through
the DEGAMMA_LUT/GAMMA_LUT properties. See drm_crtc_enable_color_mgmt() and the containing
chapter for how the atomic color management and gamma tables work.

5.2. Atomic Modeset Helper Functions Reference 213

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

5.3 Legacy CRTC/Modeset Helper Functions Reference

The CRTC modeset helper library provides a default set_config implementation in
drm_crtc_helper_set_config(). Plus a few other convenience functions using the same
callbacks which drivers can use to e.g. restore the modeset configuration on resume with
drm_helper_resume_force_mode().
Note that this helper library doesn’t track the current power state of CRTCs and encoders. It can call
callbacks like drm_encoder_helper_funcs.dpms even though the hardware is already in the desired state.
This deficiency has been fixed in the atomic helpers.
The driver callbacks aremostly compatible with the atomicmodeset helpers, except for the handling of the
primary plane: Atomic helpers require that the primary plane is implemented as a real standalone plane
and not directly tied to the CRTC state. For easier transition this library provides functions to implement
the old semantics required by the CRTC helpers using the new plane and atomic helper callbacks.
Drivers are strongly urged to convert to the atomic helpers (by way of first converting to the plane helpers).
New drivers must not use these functions but need to implement the atomic interface instead, potentially
using the atomic helpers for that.
These legacy modeset helpers use the same function table structures as all other modesetting helpers.
See the documentation for struct drm_crtc_helper_funcs, struct drm_encoder_helper_funcs and
struct drm_connector_helper_funcs.
bool drm_helper_encoder_in_use(struct drm_encoder * encoder)

check if a given encoder is in use
Parameters
struct drm_encoder * encoder encoder to check
Description
Checks whether encoder is with the current mode setting output configuration in use by any connector.
This doesn’t mean that it is actually enabled since the DPMS state is tracked separately.
Return
True if encoder is used, false otherwise.
bool drm_helper_crtc_in_use(struct drm_crtc * crtc)

check if a given CRTC is in a mode_config
Parameters
struct drm_crtc * crtc CRTC to check
Description
Checks whether crtc is with the current mode setting output configuration in use by any connector. This
doesn’t mean that it is actually enabled since the DPMS state is tracked separately.
Return
True if crtc is used, false otherwise.
void drm_helper_disable_unused_functions(struct drm_device * dev)

disable unused objects
Parameters
struct drm_device * dev DRM device
Description
This function walks through the entire mode setting configuration of dev. It will remove any CRTC links
of unused encoders and encoder links of disconnected connectors. Then it will disable all unused en-
coders and CRTCs either by calling their disable callback if available or by calling their dpms callback with
DRM_MODE_DPMS_OFF.

214 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

NOTE
This function is part of the legacy modeset helper library and will cause major con-
fusion with atomic drivers. This is because atomic helpers guarantee to never call -
>:c:func:disable() hooks on a disabled function, or ->:c:func:enable() hooks on an enabled functions.
drm_helper_disable_unused_functions() on the other hand throws such guarantees into the wind
and calls disable hooks unconditionally on unused functions.
bool drm_crtc_helper_set_mode(struct drm_crtc * crtc, struct drm_display_mode * mode, int x,

int y, struct drm_framebuffer * old_fb)
internal helper to set a mode

Parameters
struct drm_crtc * crtc CRTC to program
struct drm_display_mode * mode mode to use
int x horizontal offset into the surface
int y vertical offset into the surface
struct drm_framebuffer * old_fb old framebuffer, for cleanup
Description
Try to setmode on crtc. Give crtc and its associated connectors a chance to fixup or reject the mode prior
to trying to set it. This is an internal helper that drivers could e.g. use to update properties that require
the entire output pipe to be disabled and re-enabled in a new configuration. For example for changing
whether audio is enabled on a hdmi link or for changing panel fitter or dither attributes. It is also called
by the drm_crtc_helper_set_config() helper function to drive the mode setting sequence.
Return
True if the mode was set successfully, false otherwise.
int drm_crtc_helper_set_config(struct drm_mode_set * set, struct drm_modeset_acquire_ctx

* ctx)
set a new config from userspace

Parameters
struct drm_mode_set * set mode set configuration
struct drm_modeset_acquire_ctx * ctx lock acquire context, not used here
Description
The drm_crtc_helper_set_config() helper function implements the of drm_crtc_funcs.set_config
callback for drivers using the legacy CRTC helpers.
It first tries to locate the best encoder for each connector by calling the connector
drm_connector_helper_funcs.best_encoder helper operation.
After locating the appropriate encoders, the helper function will call the mode_fixup encoder and CRTC
helper operations to adjust the requested mode, or reject it completely in which case an error will be
returned to the application. If the new configuration after mode adjustment is identical to the current
configuration the helper function will return without performing any other operation.
If the adjusted mode is identical to the current mode but changes to the frame buffer
need to be applied, the drm_crtc_helper_set_config() function will call the CRTC
drm_crtc_helper_funcs.mode_set_base helper operation.
If the adjusted mode differs from the current mode, or if the ->:c:func:mode_set_base() helper op-
eration is not provided, the helper function performs a full mode set sequence by calling the -
>:c:func:prepare(), ->:c:func:mode_set() and ->:c:func:commit() CRTC and encoder helper operations,
in that order. Alternatively it can also use the dpms and disable helper operations. For details see struct
drm_crtc_helper_funcs and struct drm_encoder_helper_funcs.

5.3. Legacy CRTC/Modeset Helper Functions Reference 215

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

This function is deprecated. New drivers must implement atomic modeset support, for which this function
is unsuitable. Instead drivers should use drm_atomic_helper_set_config().
Return
Returns 0 on success, negative errno numbers on failure.
int drm_helper_connector_dpms(struct drm_connector * connector, int mode)

connector dpms helper implementation
Parameters
struct drm_connector * connector affected connector
int mode DPMS mode
Description
The drm_helper_connector_dpms() helper function implements the drm_connector_funcs.dpms call-
back for drivers using the legacy CRTC helpers.
This is the main helper function provided by the CRTC helper framework for implementing the DPMS con-
nector attribute. It computes the new desired DPMS state for all encoders and CRTCs in the output mesh
and calls the drm_crtc_helper_funcs.dpms and drm_encoder_helper_funcs.dpms callbacks provided
by the driver.
This function is deprecated. New drivers must implement atomic modeset support, for which this function
is unsuitable. Instead drivers should use drm_atomic_helper_connector_dpms().
Return
Always returns 0.
void drm_helper_resume_force_mode(struct drm_device * dev)

force-restore mode setting configuration
Parameters
struct drm_device * dev drm_device which should be restored
Description
Drivers which use the mode setting helpers can use this function to force-restore the mode setting con-
figuration e.g. on resume or when something else might have trampled over the hw state (like some
overzealous old BIOSen tended to do).
This helper doesn’t provide a error return value since restoring the old config should never fail due to
resource allocation issues since the driver has successfully set the restored configuration already. Hence
this should boil down to the equivalent of a few dpms on calls, which also don’t provide an error code.
Drivers where simply restoring an old configuration again might fail (e.g. due to slight differences in
allocating shared resources when the configuration is restored in a different order than when userspace
set it up) need to use their own restore logic.
This function is deprecated. New drivers should implement atomic mode- setting and use the atomic
suspend/resume helpers.
See also: drm_atomic_helper_suspend(), drm_atomic_helper_resume()
int drm_helper_crtc_mode_set(struct drm_crtc * crtc, struct drm_display_mode * mode,

struct drm_display_mode * adjusted_mode, int x, int y, struct
drm_framebuffer * old_fb)

mode_set implementation for atomic plane helpers
Parameters
struct drm_crtc * crtc DRM CRTC
struct drm_display_mode * mode DRM display mode which userspace requested
struct drm_display_mode * adjusted_mode DRM display mode adjusted by ->mode_fixup callbacks

216 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int x x offset of the CRTC scanout area on the underlying framebuffer
int y y offset of the CRTC scanout area on the underlying framebuffer
struct drm_framebuffer * old_fb previous framebuffer
Description
This function implements a callback useable as the ->mode_set callback required by the CRTC helpers.
Besides the atomic plane helper functions for the primary plane the driver must also provide the -
>mode_set_nofb callback to set up the CRTC.
This is a transitional helper useful for converting drivers to the atomic interfaces.
int drm_helper_crtc_mode_set_base(struct drm_crtc * crtc, int x, int y, struct drm_framebuffer

* old_fb)
mode_set_base implementation for atomic plane helpers

Parameters
struct drm_crtc * crtc DRM CRTC
int x x offset of the CRTC scanout area on the underlying framebuffer
int y y offset of the CRTC scanout area on the underlying framebuffer
struct drm_framebuffer * old_fb previous framebuffer
Description
This function implements a callback useable as the ->mode_set_base used required by the CRTC helpers.
The driver must provide the atomic plane helper functions for the primary plane.
This is a transitional helper useful for converting drivers to the atomic interfaces.

5.4 Simple KMS Helper Reference

This helper library provides helpers for drivers for simple display hardware.
drm_simple_display_pipe_init() initializes a simple display pipeline which has only one full-screen
scanout buffer feeding one output. The pipeline is represented by struct drm_simple_display_pipe
and binds together drm_plane, drm_crtc and drm_encoder structures into one fixed entity. Some flex-
ibility for code reuse is provided through a separately allocated drm_connector object and supporting
optional drm_bridge encoder drivers.
struct drm_simple_display_pipe_funcs

helper operations for a simple display pipeline
Definition

struct drm_simple_display_pipe_funcs {
void (* enable) (struct drm_simple_display_pipe *pipe, struct drm_crtc_state *crtc_state);
void (* disable) (struct drm_simple_display_pipe *pipe);
int (* check) (struct drm_simple_display_pipe *pipe,struct drm_plane_state *plane_state,␣

↪→struct drm_crtc_state *crtc_state);
void (* update) (struct drm_simple_display_pipe *pipe, struct drm_plane_state *old_plane_

↪→state);
int (* prepare_fb) (struct drm_simple_display_pipe *pipe, struct drm_plane_state *plane_

↪→state);
void (* cleanup_fb) (struct drm_simple_display_pipe *pipe, struct drm_plane_state *plane_

↪→state);
};

Members
enable This function should be used to enable the pipeline. It is called when the underlying crtc is enabled.

This hook is optional.

5.4. Simple KMS Helper Reference 217

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

disable This function should be used to disable the pipeline. It is called when the underlying crtc is
disabled. This hook is optional.

check This function is called in the check phase of an atomic update, specifically when the underlying
plane is checked. The simple display pipeline helpers already check that the plane is not scaled, fills
the entire visible area and is always enabled when the crtc is also enabled. This hook is optional.
RETURNS:
0 on success, -EINVAL if the state or the transition can’t be supported, -ENOMEM onmemory allocation
failure and -EDEADLK if an attempt to obtain another state object ran into a drm_modeset_lock
deadlock.

update This function is called when the underlying plane state is updated. This hook is optional.
This is the function drivers should submit the drm_pending_vblank_event from. Using ei-
ther drm_crtc_arm_vblank_event(), when the driver supports vblank interrupt handling, or
drm_crtc_send_vblank_event() directly in case the hardware lacks vblank support entirely.

prepare_fb Optional, called by drm_plane_helper_funcs.prepare_fb. Please read the documentation
for the drm_plane_helper_funcs.prepare_fb hook for more details.

cleanup_fb Optional, called by drm_plane_helper_funcs.cleanup_fb. Please read the documentation
for the drm_plane_helper_funcs.cleanup_fb hook for more details.

struct drm_simple_display_pipe
simple display pipeline

Definition

struct drm_simple_display_pipe {
struct drm_crtc crtc;
struct drm_plane plane;
struct drm_encoder encoder;
struct drm_connector * connector;
const struct drm_simple_display_pipe_funcs * funcs;

};

Members
crtc CRTC control structure
plane Plane control structure
encoder Encoder control structure
connector Connector control structure
funcs Pipeline control functions (optional)
Description
Simple display pipeline with plane, crtc and encoder collapsed into one entity. It should be initialized by
calling drm_simple_display_pipe_init().
int drm_simple_display_pipe_attach_bridge(struct drm_simple_display_pipe * pipe, struct

drm_bridge * bridge)
Attach a bridge to the display pipe

Parameters
struct drm_simple_display_pipe * pipe simple display pipe object
struct drm_bridge * bridge bridge to attach
Description
Makes it possible to still use the drm_simple_display_pipe helpers when a DRM bridge has to be used.

218 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Note that you probably want to initialize the pipe by passing a NULL connector to
drm_simple_display_pipe_init().
Return
Zero on success, negative error code on failure.
int drm_simple_display_pipe_init(struct drm_device * dev, struct drm_simple_display_pipe

* pipe, const struct drm_simple_display_pipe_funcs * funcs,
const uint32_t * formats, unsigned int format_count, struct
drm_connector * connector)

Initialize a simple display pipeline
Parameters
struct drm_device * dev DRM device
struct drm_simple_display_pipe * pipe simple display pipe object to initialize
const struct drm_simple_display_pipe_funcs * funcs callbacks for the display pipe (optional)
const uint32_t * formats array of supported formats (DRM_FORMAT_*)
unsigned int format_count number of elements in formats
struct drm_connector * connector connector to attach and register (optional)
Description
Sets up a display pipeline which consist of a really simple plane-crtc-encoder pipe.
If a connector is supplied, the pipe will be coupled with the provided connector. You may
supply a NULL connector when using drm bridges, that handle connectors themselves (see
drm_simple_display_pipe_attach_bridge()).
Teardown of a simple display pipe is all handled automatically by the drm core through calling
drm_mode_config_cleanup(). Drivers afterwards need to release the memory for the structure them-
selves.
Return
Zero on success, negative error code on failure.

5.5 fbdev Helper Functions Reference

The fb helper functions are useful to provide an fbdev on top of a drm kernel mode setting driver. They
can be used mostly independently from the crtc helper functions used by many drivers to implement the
kernel mode setting interfaces.
Initialization is done as a four-step process with drm_fb_helper_prepare(), drm_fb_helper_init(),
drm_fb_helper_single_add_all_connectors() and drm_fb_helper_initial_config(). Drivers with
fancier requirements than the default behaviour can override the third step with their own
code. Teardown is done with drm_fb_helper_fini() after the fbdev device is unregisters using
drm_fb_helper_unregister_fbi().
At runtime drivers should restore the fbdev console by calling drm_fb_helper_restore_fbdev_mode_unlocked()
from their drm_driver.lastclose callback. They should also notify the fb helper code from
updates to the output configuration by calling drm_fb_helper_hotplug_event(). For eas-
ier integration with the output polling code in drm_crtc_helper.c the modeset code provides a
drm_mode_config_funcs.output_poll_changed callback.
All other functions exported by the fb helper library can be used to implement the fbdev driver interface
by the driver.
It is possible, though perhaps somewhat tricky, to implement race-free hotplug detection using the
fbdev helpers. The drm_fb_helper_prepare() helper must be called first to initialize the minimum

5.5. fbdev Helper Functions Reference 219

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

required to make hotplug detection work. Drivers also need to make sure to properly set up the
drm_mode_config.funcs member. After calling drm_kms_helper_poll_init() it is safe to enable in-
terrupts and start processing hotplug events. At the same time, drivers should initialize all mode-
set objects such as CRTCs, encoders and connectors. To finish up the fbdev helper initialization, the
drm_fb_helper_init() function is called. To probe for all attached displays and set up an initial configu-
ration using the detected hardware, drivers should call drm_fb_helper_single_add_all_connectors()
followed by drm_fb_helper_initial_config().
If drm_framebuffer_funcs.dirty is set, the drm_fb_helper_{cfb,sys}_{write,fillrect,copyarea,imageblit}
functions will accumulate changes and schedule drm_fb_helper.dirty_work to run right away. This
worker then calls the dirty() function ensuring that it will always run in process context since the fb_*()
function could be running in atomic context. If drm_fb_helper_deferred_io() is used as the deferred_io
callback it will also schedule dirty_work with the damage collected from the mmap page writes.
struct drm_fb_helper_surface_size

describes fbdev size and scanout surface size
Definition

struct drm_fb_helper_surface_size {
u32 fb_width;
u32 fb_height;
u32 surface_width;
u32 surface_height;
u32 surface_bpp;
u32 surface_depth;

};

Members
fb_width fbdev width
fb_height fbdev height
surface_width scanout buffer width
surface_height scanout buffer height
surface_bpp scanout buffer bpp
surface_depth scanout buffer depth
Description
Note that the scanout surface width/height may be larger than the fbdev width/height. In case of multiple
displays, the scanout surface is sized according to the largest width/height (so it is large enough for all
CRTCs to scanout). But the fbdev width/height is sized to the minimum width/ height of all the displays.
This ensures that fbcon fits on the smallest of the attached displays.
So what is passed to drm_fb_helper_fill_var() should be fb_width/fb_height, rather than the surface
size.
struct drm_fb_helper_funcs

driver callbacks for the fbdev emulation library
Definition

struct drm_fb_helper_funcs {
void (* gamma_set) (struct drm_crtc *crtc, u16 red, u16 green, u16 blue, int regno);
void (* gamma_get) (struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, int regno);
int (* fb_probe) (struct drm_fb_helper *helper, struct drm_fb_helper_surface_size *sizes);
bool (* initial_config) (struct drm_fb_helper *fb_helper,struct drm_fb_helper_crtc **crtcs,

↪→struct drm_display_mode **modes,struct drm_fb_offset *offsets, bool *enabled, int width, int␣
↪→height);

};

Members

220 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

gamma_set Set the given gamma LUT register on the given CRTC.
This callback is optional.
FIXME:
This callback is functionally redundant with the core gamma table support and simply exists because
the fbdev hasn’t yet been refactored to use the core gamma table interfaces.

gamma_get Read the given gamma LUT register on the given CRTC, used to save the current LUT when
force-restoring the fbdev for e.g. kdbg.
This callback is optional.
FIXME:
This callback is functionally redundant with the core gamma table support and simply exists because
the fbdev hasn’t yet been refactored to use the core gamma table interfaces.

fb_probe Driver callback to allocate and initialize the fbdev info structure. Furthermore it also needs to
allocate the DRM framebuffer used to back the fbdev.
This callback is mandatory.
RETURNS:
The driver should return 0 on success and a negative error code on failure.

initial_config Driver callback to setup an initial fbdev display configuration. Drivers can use this call-
back to tell the fbdev emulation what the preferred initial configuration is. This is useful to implement
smooth booting where the fbdev (and subsequently all userspace) never changes the mode, but al-
ways inherits the existing configuration.
This callback is optional.
RETURNS:
The driver should return true if a suitable initial configuration has been filled out and false when the
fbdev helper should fall back to the default probing logic.

Description
Driver callbacks used by the fbdev emulation helper library.
struct drm_fb_helper

main structure to emulate fbdev on top of KMS
Definition

struct drm_fb_helper {
struct drm_framebuffer * fb;
struct drm_device * dev;
int crtc_count;
struct drm_fb_helper_crtc * crtc_info;
int connector_count;
int connector_info_alloc_count;
struct drm_fb_helper_connector ** connector_info;
const struct drm_fb_helper_funcs * funcs;
struct fb_info * fbdev;
u32 pseudo_palette;
struct drm_clip_rect dirty_clip;
spinlock_t dirty_lock;
struct work_struct dirty_work;
struct work_struct resume_work;
struct list_head kernel_fb_list;
bool delayed_hotplug;

};

Members

5.5. fbdev Helper Functions Reference 221

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

fb Scanout framebuffer object
dev DRM device
crtc_count number of possible CRTCs
crtc_info per-CRTC helper state (mode, x/y offset, etc)
connector_count number of connected connectors
connector_info_alloc_count size of connector_info
connector_info array of per-connector information
funcs driver callbacks for fb helper
fbdev emulated fbdev device info struct
pseudo_palette fake palette of 16 colors
dirty_clip clip rectangle used with deferred_io to accumulate damage to the screen buffer
dirty_lock spinlock protecting dirty_clip
dirty_work worker used to flush the framebuffer
resume_work worker used during resume if the console lock is already taken
kernel_fb_list Entry on the global kernel_fb_helper_list, used for kgdb entry/exit.
delayed_hotplug A hotplug was received while fbdev wasn’t in control of the DRM device, i.e. another

KMS master was active. The output configuration needs to be reprobe when fbdev is in control again.
Description
This is themain structure used by the fbdev helpers. Drivers supporting fbdev emulation should embedded
this into their overall driver structure. Drivers must also fill out a struct drm_fb_helper_funcs with a
few operations.
DRM_FB_HELPER_DEFAULT_OPS()

helper define for drm drivers
Parameters
Description
Helper define to register default implementations of drm_fb_helper functions. To be used in struct fb_ops
of drm drivers.
int drm_fb_helper_single_add_all_connectors(struct drm_fb_helper * fb_helper)

add all connectors to fbdev emulation helper
Parameters
struct drm_fb_helper * fb_helper fbdev initialized with drm_fb_helper_init
Description
This functions adds all the available connectors for use with the given fb_helper. This is a separate step
to allow drivers to freely assign connectors to the fbdev, e.g. if some are reserved for special purposes or
not adequate to be used for the fbcon.
This function is protected against concurrent connector hotadds/removals using
drm_fb_helper_add_one_connector() and drm_fb_helper_remove_one_connector().
int drm_fb_helper_debug_enter(struct fb_info * info)

implementation for fb_ops.fb_debug_enter
Parameters
struct fb_info * info fbdev registered by the helper
int drm_fb_helper_debug_leave(struct fb_info * info)

implementation for fb_ops.fb_debug_leave

222 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct fb_info * info fbdev registered by the helper
int drm_fb_helper_restore_fbdev_mode_unlocked(struct drm_fb_helper * fb_helper)

restore fbdev configuration
Parameters
struct drm_fb_helper * fb_helper fbcon to restore
Description
This should be called from driver’s drm drm_driver.lastclose callback when implementing an fbcon on
top of kms using this helper. This ensures that the user isn’t greeted with a black screen when e.g. X dies.
Return
Zero if everything went ok, negative error code otherwise.
int drm_fb_helper_blank(int blank, struct fb_info * info)

implementation for fb_ops.fb_blank
Parameters
int blank desired blanking state
struct fb_info * info fbdev registered by the helper
void drm_fb_helper_prepare(struct drm_device * dev, struct drm_fb_helper * helper, const struct

drm_fb_helper_funcs * funcs)
setup a drm_fb_helper structure

Parameters
struct drm_device * dev DRM device
struct drm_fb_helper * helper driver-allocated fbdev helper structure to set up
const struct drm_fb_helper_funcs * funcs pointer to structure of functions associate with this

helper
Description
Sets up the bare minimum to make the framebuffer helper usable. This is useful to implement race-free
initialization of the polling helpers.
int drm_fb_helper_init(struct drm_device * dev, struct drm_fb_helper * fb_helper,

int max_conn_count)
initialize a struct drm_fb_helper

Parameters
struct drm_device * dev drm device
struct drm_fb_helper * fb_helper driver-allocated fbdev helper structure to initialize
int max_conn_count max connector count
Description
This allocates the structures for the fbdev helper with the given limits. Note that this won’t yet
touch the hardware (through the driver interfaces) nor register the fbdev. This is only done in
drm_fb_helper_initial_config() to allow driver writes more control over the exact init sequence.
Drivers must call drm_fb_helper_prepare() before calling this function.
Return
Zero if everything went ok, nonzero otherwise.
struct fb_info * drm_fb_helper_alloc_fbi(struct drm_fb_helper * fb_helper)

allocate fb_info and some of its members

5.5. fbdev Helper Functions Reference 223

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct drm_fb_helper * fb_helper driver-allocated fbdev helper
Description
A helper to alloc fb_info and the members cmap and apertures. Called by the driver within the fb_probe
fb_helper callback function. Drivers do not need to release the allocated fb_info structure themselves,
this is automatically done when calling drm_fb_helper_fini().
Return
fb_info pointer if things went okay, pointer containing error code otherwise
void drm_fb_helper_unregister_fbi(struct drm_fb_helper * fb_helper)

unregister fb_info framebuffer device
Parameters
struct drm_fb_helper * fb_helper driver-allocated fbdev helper
Description
A wrapper around unregister_framebuffer, to release the fb_info framebuffer device. This must be called
before releasing all resources for fb_helper by calling drm_fb_helper_fini().
void drm_fb_helper_fini(struct drm_fb_helper * fb_helper)

finialize a struct drm_fb_helper

Parameters
struct drm_fb_helper * fb_helper driver-allocated fbdev helper
Description
This cleans up all remaining resources associated with fb_helper. Must be called after
drm_fb_helper_unlink_fbi() was called.
void drm_fb_helper_unlink_fbi(struct drm_fb_helper * fb_helper)

wrapper around unlink_framebuffer
Parameters
struct drm_fb_helper * fb_helper driver-allocated fbdev helper
Description
A wrapper around unlink_framebuffer implemented by fbdev core
void drm_fb_helper_deferred_io(struct fb_info * info, struct list_head * pagelist)

fbdev deferred_io callback function
Parameters
struct fb_info * info fb_info struct pointer
struct list_head * pagelist list of dirty mmap framebuffer pages
Description
This function is used as the fb_deferred_io.deferred_io callback function for flushing the fbdev mmap
writes.
ssize_t drm_fb_helper_sys_read(struct fb_info * info, char __user * buf, size_t count, loff_t * ppos)

wrapper around fb_sys_read
Parameters
struct fb_info * info fb_info struct pointer
char __user * buf userspace buffer to read from framebuffer memory
size_t count number of bytes to read from framebuffer memory

224 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

loff_t * ppos read offset within framebuffer memory
Description
A wrapper around fb_sys_read implemented by fbdev core
ssize_t drm_fb_helper_sys_write(struct fb_info * info, const char __user * buf, size_t count, loff_t

* ppos)
wrapper around fb_sys_write

Parameters
struct fb_info * info fb_info struct pointer
const char __user * buf userspace buffer to write to framebuffer memory
size_t count number of bytes to write to framebuffer memory
loff_t * ppos write offset within framebuffer memory
Description
A wrapper around fb_sys_write implemented by fbdev core
void drm_fb_helper_sys_fillrect(struct fb_info * info, const struct fb_fillrect * rect)

wrapper around sys_fillrect
Parameters
struct fb_info * info fbdev registered by the helper
const struct fb_fillrect * rect info about rectangle to fill
Description
A wrapper around sys_fillrect implemented by fbdev core
void drm_fb_helper_sys_copyarea(struct fb_info * info, const struct fb_copyarea * area)

wrapper around sys_copyarea
Parameters
struct fb_info * info fbdev registered by the helper
const struct fb_copyarea * area info about area to copy
Description
A wrapper around sys_copyarea implemented by fbdev core
void drm_fb_helper_sys_imageblit(struct fb_info * info, const struct fb_image * image)

wrapper around sys_imageblit
Parameters
struct fb_info * info fbdev registered by the helper
const struct fb_image * image info about image to blit
Description
A wrapper around sys_imageblit implemented by fbdev core
void drm_fb_helper_cfb_fillrect(struct fb_info * info, const struct fb_fillrect * rect)

wrapper around cfb_fillrect
Parameters
struct fb_info * info fbdev registered by the helper
const struct fb_fillrect * rect info about rectangle to fill
Description
A wrapper around cfb_imageblit implemented by fbdev core

5.5. fbdev Helper Functions Reference 225

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void drm_fb_helper_cfb_copyarea(struct fb_info * info, const struct fb_copyarea * area)
wrapper around cfb_copyarea

Parameters
struct fb_info * info fbdev registered by the helper
const struct fb_copyarea * area info about area to copy
Description
A wrapper around cfb_copyarea implemented by fbdev core
void drm_fb_helper_cfb_imageblit(struct fb_info * info, const struct fb_image * image)

wrapper around cfb_imageblit
Parameters
struct fb_info * info fbdev registered by the helper
const struct fb_image * image info about image to blit
Description
A wrapper around cfb_imageblit implemented by fbdev core
void drm_fb_helper_set_suspend(struct drm_fb_helper * fb_helper, bool suspend)

wrapper around fb_set_suspend
Parameters
struct drm_fb_helper * fb_helper driver-allocated fbdev helper
bool suspend whether to suspend or resume
Description
A wrapper around fb_set_suspend implemented by fbdev core. Use
drm_fb_helper_set_suspend_unlocked() if you don’t need to take the lock yourself
void drm_fb_helper_set_suspend_unlocked(struct drm_fb_helper * fb_helper, bool suspend)

wrapper around fb_set_suspend that also takes the console lock
Parameters
struct drm_fb_helper * fb_helper driver-allocated fbdev helper
bool suspend whether to suspend or resume
Description
A wrapper around fb_set_suspend() that takes the console lock. If the lock isn’t available on resume, a
worker is tasked with waiting for the lock to become available. The console lock can be pretty contented
on resume due to all the printk activity.
This function can be called multiple times with the same state since fb_info.state is checked to see if
fbdev is running or not before locking.
Use drm_fb_helper_set_suspend() if you need to take the lock yourself.
int drm_fb_helper_setcmap(struct fb_cmap * cmap, struct fb_info * info)

implementation for fb_ops.fb_setcmap
Parameters
struct fb_cmap * cmap cmap to set
struct fb_info * info fbdev registered by the helper
int drm_fb_helper_ioctl(struct fb_info * info, unsigned int cmd, unsigned long arg)

legacy ioctl implementation
Parameters

226 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct fb_info * info fbdev registered by the helper
unsigned int cmd ioctl command
unsigned long arg ioctl argument
Description
A helper to implement the standard fbdev ioctl. Only FBIO_WAITFORVSYNC is implemented for now.
int drm_fb_helper_check_var(struct fb_var_screeninfo * var, struct fb_info * info)

implementation for fb_ops.fb_check_var
Parameters
struct fb_var_screeninfo * var screeninfo to check
struct fb_info * info fbdev registered by the helper
int drm_fb_helper_set_par(struct fb_info * info)

implementation for fb_ops.fb_set_par
Parameters
struct fb_info * info fbdev registered by the helper
Description
This will let fbcon do the mode init and is called at initialization time by the fbdev core when registering
the driver, and later on through the hotplug callback.
int drm_fb_helper_pan_display(struct fb_var_screeninfo * var, struct fb_info * info)

implementation for fb_ops.fb_pan_display
Parameters
struct fb_var_screeninfo * var updated screen information
struct fb_info * info fbdev registered by the helper
void drm_fb_helper_fill_fix(struct fb_info * info, uint32_t pitch, uint32_t depth)

initializes fixed fbdev information
Parameters
struct fb_info * info fbdev registered by the helper
uint32_t pitch desired pitch
uint32_t depth desired depth
Description
Helper to fill in the fixed fbdev information useful for a non-accelerated fbdev emulations. Drivers which
support acceleration methods which impose additional constraints need to set up their own limits.
Drivers should call this (or their equivalent setup code) from their drm_fb_helper_funcs.fb_probe call-
back.
void drm_fb_helper_fill_var(struct fb_info * info, struct drm_fb_helper * fb_helper,

uint32_t fb_width, uint32_t fb_height)
initalizes variable fbdev information

Parameters
struct fb_info * info fbdev instance to set up
struct drm_fb_helper * fb_helper fb helper instance to use as template
uint32_t fb_width desired fb width
uint32_t fb_height desired fb height

5.5. fbdev Helper Functions Reference 227

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Sets up the variable fbdev metainformation from the given fb helper instance and the drm framebuffer
allocated in drm_fb_helper.fb.
Drivers should call this (or their equivalent setup code) from their drm_fb_helper_funcs.fb_probe call-
back after having allocated the fbdev backing storage framebuffer.
int drm_fb_helper_initial_config(struct drm_fb_helper * fb_helper, int bpp_sel)

setup a sane initial connector configuration
Parameters
struct drm_fb_helper * fb_helper fb_helper device struct
int bpp_sel bpp value to use for the framebuffer configuration
Description
Scans the CRTCs and connectors and tries to put together an initial setup. At the moment, this is a cloned
configuration across all heads with a new framebuffer object as the backing store.
Note that this also registers the fbdev and so allows userspace to call into the driver through the fbdev
interfaces.
This function will call down into the drm_fb_helper_funcs.fb_probe callback to let the driver al-
locate and initialize the fbdev info structure and the drm framebuffer used to back the fbdev.
drm_fb_helper_fill_var() and drm_fb_helper_fill_fix() are provided as helpers to setup simple
default values for the fbdev info structure.
HANG DEBUGGING:
When you have fbcon support built-in or already loaded, this function will do a full modeset to setup the
fbdev console. Due to locking misdesign in the VT/fbdev subsystem that entire modeset sequence has
to be done while holding console_lock. Until console_unlock is called no dmesg lines will be sent out to
consoles, not even serial console. This means when your driver crashes, you will see absolutely nothing
else but a system stuck in this function, with no further output. Any kind of printk() you place within
your own driver or in the drm core modeset code will also never show up.
Standard debug practice is to run the fbcon setup without taking the console_lock as a hack, to be able to
see backtraces and crashes on the serial line. This can be done by setting the fb.lockless_register_fb=1
kernel cmdline option.
The other option is to just disable fbdev emulation since very likely the first modeset from userspace
will crash in the same way, and is even easier to debug. This can be done by setting the
drm_kms_helper.fbdev_emulation=0 kernel cmdline option.
Return
Zero if everything went ok, nonzero otherwise.
int drm_fb_helper_hotplug_event(struct drm_fb_helper * fb_helper)

respond to a hotplug notification by probing all the outputs attached to the fb
Parameters
struct drm_fb_helper * fb_helper the drm_fb_helper
Description
Scan the connectors attached to the fb_helper and try to put together a setup after notification of a change
in output configuration.
Called at runtime, takes the mode config locks to be able to check/change the modeset configuration.
Must be run from process context (which usually means either the output polling work or a work item
launched from the driver’s hotplug interrupt).
Note that drivers may call this even before calling drm_fb_helper_initial_config but only after
drm_fb_helper_init. This allows for a race-free fbcon setup and will make sure that the fbdev emulation
will not miss any hotplug events.

228 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Return
0 on success and a non-zero error code otherwise.

5.6 Framebuffer CMA Helper Functions Reference

Provides helper functions for creating a cma (contiguous memory allocator) backed framebuffer.
drm_fb_cma_create() is used in the drm_mode_config_funcs.fb_create callback function to create a
cma backed framebuffer.
An fbdev framebuffer backed by cma is also available by calling drm_fbdev_cma_init().
drm_fbdev_cma_fini() tears it down. If the drm_framebuffer_funcs.dirty callback is set,
fb_deferred_io will be set up automatically. drm_framebuffer_funcs.dirty is called by
drm_fb_helper_deferred_io() in process context (struct delayed_work).
Example fbdev deferred io code:

static int driver_fb_dirty(struct drm_framebuffer *fb,
struct drm_file *file_priv,
unsigned flags, unsigned color,
struct drm_clip_rect *clips,
unsigned num_clips)

{
struct drm_gem_cma_object *cma = drm_fb_cma_get_gem_obj(fb, 0);
... push changes ...
return 0;

}

static struct drm_framebuffer_funcs driver_fb_funcs = {
.destroy = drm_fb_cma_destroy,
.create_handle = drm_fb_cma_create_handle,
.dirty = driver_fb_dirty,

};

Initialize:

fbdev = drm_fbdev_cma_init_with_funcs(dev, 16,
dev->mode_config.num_crtc,
dev->mode_config.num_connector,
:c:type:`driver_fb_funcs`);

struct drm_framebuffer * drm_fb_cma_create_with_funcs(struct drm_device * dev, struct
drm_file * file_priv, const struct
drm_mode_fb_cmd2 * mode_cmd,
const struct drm_framebuffer_funcs
* funcs)

helper function for the drm_mode_config_funcs.fb_create callback
Parameters
struct drm_device * dev DRM device
struct drm_file * file_priv drm file for the ioctl call
const struct drm_mode_fb_cmd2 * mode_cmd metadata from the userspace fb creation request
const struct drm_framebuffer_funcs * funcs vtable to be used for the new framebuffer object
Description
This can be used to set drm_framebuffer_funcs for drivers that need the drm_framebuffer_funcs.dirty
callback. Use drm_fb_cma_create() if you don’t need to change drm_framebuffer_funcs.

5.6. Framebuffer CMA Helper Functions Reference 229

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_framebuffer * drm_fb_cma_create(struct drm_device * dev, struct drm_file * file_priv,
const struct drm_mode_fb_cmd2 * mode_cmd)

drm_mode_config_funcs.fb_create callback function
Parameters
struct drm_device * dev DRM device
struct drm_file * file_priv drm file for the ioctl call
const struct drm_mode_fb_cmd2 * mode_cmd metadata from the userspace fb creation request
Description
If your hardware has special alignment or pitch requirements these should be checked before calling this
function. Use drm_fb_cma_create_with_funcs() if you need to set drm_framebuffer_funcs.dirty.
struct drm_gem_cma_object * drm_fb_cma_get_gem_obj(struct drm_framebuffer * fb, unsigned

int plane)
Get CMA GEM object for framebuffer

Parameters
struct drm_framebuffer * fb The framebuffer
unsigned int plane Which plane
Description
Return the CMA GEM object for given framebuffer.
This function will usually be called from the CRTC callback functions.
dma_addr_t drm_fb_cma_get_gem_addr(struct drm_framebuffer * fb, struct drm_plane_state

* state, unsigned int plane)
Get physical address for framebuffer

Parameters
struct drm_framebuffer * fb The framebuffer
struct drm_plane_state * state Which state of drm plane
unsigned int plane Which plane Return the CMA GEM address for given framebuffer.
Description
This function will usually be called from the PLANE callback functions.
int drm_fb_cma_prepare_fb(struct drm_plane * plane, struct drm_plane_state * state)

Prepare CMA framebuffer
Parameters
struct drm_plane * plane Which plane
struct drm_plane_state * state Plane state attach fence to
Description
This should be set as the struct drm_plane_helper_funcs.prepare_fb hook.
This function checks if the plane FB has an dma-buf attached, extracts the exclusive fence and attaches
it to plane state for the atomic helper to wait on.
There is no need for cleanup_fb for CMA based framebuffer drivers.
int drm_fb_cma_debugfs_show(struct seq_file * m, void * arg)

Helper to list CMA framebuffer objects in debugfs.
Parameters
struct seq_file * m output file

230 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void * arg private data for the callback
struct drm_fbdev_cma * drm_fbdev_cma_init_with_funcs(struct drm_device * dev, un-

signed int preferred_bpp, unsigned
int max_conn_count, const struct
drm_framebuffer_funcs * funcs)

Allocate and initializes a drm_fbdev_cma struct
Parameters
struct drm_device * dev DRM device
unsigned int preferred_bpp Preferred bits per pixel for the device
unsigned int max_conn_count Maximum number of connectors
const struct drm_framebuffer_funcs * funcs fb helper functions, in particular a custom dirty()

callback
Description
Returns a newly allocated drm_fbdev_cma struct or a ERR_PTR.
struct drm_fbdev_cma * drm_fbdev_cma_init(struct drm_device * dev, unsigned int preferred_bpp,

unsigned int max_conn_count)
Allocate and initializes a drm_fbdev_cma struct

Parameters
struct drm_device * dev DRM device
unsigned int preferred_bpp Preferred bits per pixel for the device
unsigned int max_conn_count Maximum number of connectors
Description
Returns a newly allocated drm_fbdev_cma struct or a ERR_PTR.
void drm_fbdev_cma_fini(struct drm_fbdev_cma * fbdev_cma)

Free drm_fbdev_cma struct
Parameters
struct drm_fbdev_cma * fbdev_cma The drm_fbdev_cma struct
void drm_fbdev_cma_restore_mode(struct drm_fbdev_cma * fbdev_cma)

Restores initial framebuffer mode
Parameters
struct drm_fbdev_cma * fbdev_cma The drm_fbdev_cma struct, may be NULL
Description
This function is usually called from the drm_driver.lastclose callback.
void drm_fbdev_cma_hotplug_event(struct drm_fbdev_cma * fbdev_cma)

Poll for hotpulug events
Parameters
struct drm_fbdev_cma * fbdev_cma The drm_fbdev_cma struct, may be NULL
Description
This function is usually called from the drm_mode_config.output_poll_changed callback.
void drm_fbdev_cma_set_suspend(struct drm_fbdev_cma * fbdev_cma, int state)

wrapper around drm_fb_helper_set_suspend
Parameters
struct drm_fbdev_cma * fbdev_cma The drm_fbdev_cma struct, may be NULL

5.6. Framebuffer CMA Helper Functions Reference 231

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int state desired state, zero to resume, non-zero to suspend
Description
Calls drm_fb_helper_set_suspend, which is a wrapper around fb_set_suspend implemented by fbdev core.

void drm_fbdev_cma_set_suspend_unlocked(struct drm_fbdev_cma * fbdev_cma, int state)
wrapper around drm_fb_helper_set_suspend_unlocked

Parameters
struct drm_fbdev_cma * fbdev_cma The drm_fbdev_cma struct, may be NULL
int state desired state, zero to resume, non-zero to suspend
Description
Calls drm_fb_helper_set_suspend, which is a wrapper around fb_set_suspend implemented by fbdev core.

5.7 Bridges

5.7.1 Overview

struct drm_bridge represents a device that hangs on to an encoder. These are handy when a regular
drm_encoder entity isn’t enough to represent the entire encoder chain.
A bridge is always attached to a single drm_encoder at a time, but can be either connected to it directly,
or through an intermediate bridge:

encoder ---> bridge B ---> bridge A

Here, the output of the encoder feeds to bridge B, and that furthers feeds to bridge A.
The driver using the bridge is responsible to make the associations between the encoder and bridges.
Once these links are made, the bridges will participate along with encoder functions to perform
mode_set/enable/disable through the ops provided in drm_bridge_funcs.
drm_bridge, like drm_panel, aren’t drm_mode_object entities like planes, CRTCs, encoders or connectors
and hence are not visible to userspace. They just provide additional hooks to get the desired output at
the end of the encoder chain.
Bridges can also be chained up using the drm_bridge.next pointer.
Both legacy CRTC helpers and the new atomic modeset helpers support bridges.

5.7.2 Default bridge callback sequence

The drm_bridge_funcs ops are populated by the bridge driver. The DRM internals (atomic and CRTC
helpers) use the helpers defined in drm_bridge.c These helpers call a specific drm_bridge_funcs op for
all the bridges during encoder configuration.
For detailed specification of the bridge callbacks see drm_bridge_funcs.

5.7.3 Bridge Helper Reference

struct drm_bridge_funcs
drm_bridge control functions

Definition

232 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_bridge_funcs {
int (* attach) (struct drm_bridge *bridge);
void (* detach) (struct drm_bridge *bridge);
enum drm_mode_status (* mode_valid) (struct drm_bridge *crtc, const struct drm_display_mode␣

↪→*mode);
bool (* mode_fixup) (struct drm_bridge *bridge,const struct drm_display_mode *mode, struct␣

↪→drm_display_mode *adjusted_mode);
void (* disable) (struct drm_bridge *bridge);
void (* post_disable) (struct drm_bridge *bridge);
void (* mode_set) (struct drm_bridge *bridge,struct drm_display_mode *mode, struct drm_

↪→display_mode *adjusted_mode);
void (* pre_enable) (struct drm_bridge *bridge);
void (* enable) (struct drm_bridge *bridge);

};

Members
attach This callback is invoked whenever our bridge is being attached to a drm_encoder.

The attach callback is optional.
RETURNS:
Zero on success, error code on failure.

detach This callback is invoked whenever our bridge is being detached from a drm_encoder.
The detach callback is optional.

mode_valid This callback is used to check if a specific mode is valid in this bridge. This should be imple-
mented if the bridge has some sort of restriction in the modes it can display. For example, a given
bridge may be responsible to set a clock value. If the clock can not produce all the values for the
available modes then this callback can be used to restrict the number of modes to only the ones that
can be displayed.
This hook is used by the probe helpers to filter the mode list in
drm_helper_probe_single_connector_modes(), and it is used by the atomic helpers to vali-
date modes supplied by userspace in drm_atomic_helper_check_modeset().
This function is optional.
NOTE:
Since this function is both called from the check phase of an atomic commit, and the mode validation
in the probe paths it is not allowed to look at anything else but the passed-in mode, and validate
it against configuration-invariant hardward constraints. Any further limits which depend upon the
configuration can only be checked in mode_fixup.
RETURNS:
drm_mode_status Enum

mode_fixup This callback is used to validate and adjust a mode. The paramater mode is the display mode
that should be fed to the next element in the display chain, either the final drm_connector or the next
drm_bridge. The parameter adjusted_mode is the input mode the bridge requires. It can be modified
by this callback and does not need to match mode. See also drm_crtc_state.adjusted_mode for
more details.
This is the only hook that allows a bridge to reject amodeset. If this function passes all other callbacks
must succeed for this configuration.
The mode_fixup callback is optional.
NOTE:
This function is called in the check phase of atomic modesets, which can be aborted for any reason
(including on userspace’s request to just check whether a configuration would be possible). Drivers

5.7. Bridges 233

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

MUST NOT touch any persistent state (hardware or software) or data structures except the passed
in state parameter.
Also beware that userspace can request its own custom modes, neither core nor helpers fil-
ter modes to the list of probe modes reported by the GETCONNECTOR IOCTL and stored in
drm_connector.modes. To ensure that modes are filtered consistently put any bridge constraints
and limits checks into mode_valid.
RETURNS:
True if an acceptable configuration is possible, false if the modeset operation should be rejected.

disable This callback should disable the bridge. It is called right before the preceding element
in the display pipe is disabled. If the preceding element is a bridge this means it’s called
before that bridge’s disable vfunc. If the preceding element is a drm_encoder it’s called
right before the drm_encoder_helper_funcs.disable, drm_encoder_helper_funcs.prepare or
drm_encoder_helper_funcs.dpms hook.
The bridge can assume that the display pipe (i.e. clocks and timing signals) feeding it is still running
when this callback is called.
The disable callback is optional.

post_disable This callback should disable the bridge. It is called right after the preceding element in
the display pipe is disabled. If the preceding element is a bridge this means it’s called after that
bridge’s post_disable function. If the preceding element is a drm_encoder it’s called right af-
ter the encoder’s drm_encoder_helper_funcs.disable, drm_encoder_helper_funcs.prepare or
drm_encoder_helper_funcs.dpms hook.
The bridge must assume that the display pipe (i.e. clocks and timing singals) feeding it is no longer
running when this callback is called.
The post_disable callback is optional.

mode_set This callback should set the given mode on the bridge. It is called after themode_set callback
for the preceding element in the display pipeline has been called already. If the bridge is the first
element then this would be drm_encoder_helper_funcs.mode_set. The display pipe (i.e. clocks
and timing signals) is off when this function is called.

pre_enable This callback should enable the bridge. It is called right before the preceding element in
the display pipe is enabled. If the preceding element is a bridge this means it’s called before
that bridge’s pre_enable function. If the preceding element is a drm_encoder it’s called right
before the encoder’s drm_encoder_helper_funcs.enable, drm_encoder_helper_funcs.commit or
drm_encoder_helper_funcs.dpms hook.
The display pipe (i.e. clocks and timing signals) feeding this bridge will not yet be running when this
callback is called. The bridge must not enable the display link feeding the next bridge in the chain
(if there is one) when this callback is called.
The pre_enable callback is optional.

enable This callback should enable the bridge. It is called right after the preceding element in
the display pipe is enabled. If the preceding element is a bridge this means it’s called af-
ter that bridge’s enable function. If the preceding element is a drm_encoder it’s called right
after the encoder’s drm_encoder_helper_funcs.enable, drm_encoder_helper_funcs.commit or
drm_encoder_helper_funcs.dpms hook.
The bridge can assume that the display pipe (i.e. clocks and timing signals) feeding it is running
when this callback is called. This callback must enable the display link feeding the next bridge in the
chain if there is one.
The enable callback is optional.

struct drm_bridge
central DRM bridge control structure

Definition

234 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_bridge {
struct drm_device * dev;
struct drm_encoder * encoder;
struct drm_bridge * next;

#ifdef CONFIG_OF
struct device_node * of_node;

#endif
struct list_head list;
const struct drm_bridge_funcs * funcs;
void * driver_private;

};

Members
dev DRM device this bridge belongs to
encoder encoder to which this bridge is connected
next the next bridge in the encoder chain
of_node device node pointer to the bridge
list to keep track of all added bridges
funcs control functions
driver_private pointer to the bridge driver’s internal context
int drm_bridge_add(struct drm_bridge * bridge)

add the given bridge to the global bridge list
Parameters
struct drm_bridge * bridge bridge control structure
Return
Unconditionally returns Zero.
void drm_bridge_remove(struct drm_bridge * bridge)

remove the given bridge from the global bridge list
Parameters
struct drm_bridge * bridge bridge control structure
int drm_bridge_attach(struct drm_encoder * encoder, struct drm_bridge * bridge, struct

drm_bridge * previous)
attach the bridge to an encoder’s chain

Parameters
struct drm_encoder * encoder DRM encoder
struct drm_bridge * bridge bridge to attach
struct drm_bridge * previous previous bridge in the chain (optional)
Description
Called by a kms driver to link the bridge to an encoder’s chain. The previous argument specifies the
previous bridge in the chain. If NULL, the bridge is linked directly at the encoder’s output. Otherwise it is
linked at the previous bridge’s output.
If non-NULL the previous bridge must be already attached by a call to this function.
Return
Zero on success, error code on failure

5.7. Bridges 235

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

bool drm_bridge_mode_fixup(struct drm_bridge * bridge, const struct drm_display_mode * mode,
struct drm_display_mode * adjusted_mode)

fixup proposed mode for all bridges in the encoder chain
Parameters
struct drm_bridge * bridge bridge control structure
const struct drm_display_mode * mode desired mode to be set for the bridge
struct drm_display_mode * adjusted_mode updated mode that works for this bridge
Description
Calls drm_bridge_funcs.mode_fixup for all the bridges in the encoder chain, starting from the first bridge
to the last.
Note
the bridge passed should be the one closest to the encoder
Return
true on success, false on failure
enum drm_mode_status drm_bridge_mode_valid(struct drm_bridge * bridge, const struct

drm_display_mode * mode)
validate the mode against all bridges in the encoder chain.

Parameters
struct drm_bridge * bridge bridge control structure
const struct drm_display_mode * mode desired mode to be validated
Description
Calls drm_bridge_funcs.mode_valid for all the bridges in the encoder chain, starting from the first bridge
to the last. If at least one bridge does not accept the mode the function returns the error code.
Note
the bridge passed should be the one closest to the encoder.
Return
MODE_OK on success, drm_mode_status Enum error code on failure
void drm_bridge_disable(struct drm_bridge * bridge)

disables all bridges in the encoder chain
Parameters
struct drm_bridge * bridge bridge control structure
Description
Calls drm_bridge_funcs.disable op for all the bridges in the encoder chain, starting from the last bridge
to the first. These are called before calling the encoder’s prepare op.
Note
the bridge passed should be the one closest to the encoder
void drm_bridge_post_disable(struct drm_bridge * bridge)

cleans up after disabling all bridges in the encoder chain
Parameters
struct drm_bridge * bridge bridge control structure

236 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Calls drm_bridge_funcs.post_disable op for all the bridges in the encoder chain, starting from the first
bridge to the last. These are called after completing the encoder’s prepare op.
Note
the bridge passed should be the one closest to the encoder
void drm_bridge_mode_set(struct drm_bridge * bridge, struct drm_display_mode * mode, struct

drm_display_mode * adjusted_mode)
set proposed mode for all bridges in the encoder chain

Parameters
struct drm_bridge * bridge bridge control structure
struct drm_display_mode * mode desired mode to be set for the bridge
struct drm_display_mode * adjusted_mode updated mode that works for this bridge
Description
Calls drm_bridge_funcs.mode_set op for all the bridges in the encoder chain, starting from the first
bridge to the last.
Note
the bridge passed should be the one closest to the encoder
void drm_bridge_pre_enable(struct drm_bridge * bridge)

prepares for enabling all bridges in the encoder chain
Parameters
struct drm_bridge * bridge bridge control structure
Description
Calls drm_bridge_funcs.pre_enable op for all the bridges in the encoder chain, starting from the last
bridge to the first. These are called before calling the encoder’s commit op.
Note
the bridge passed should be the one closest to the encoder
void drm_bridge_enable(struct drm_bridge * bridge)

enables all bridges in the encoder chain
Parameters
struct drm_bridge * bridge bridge control structure
Description
Calls drm_bridge_funcs.enable op for all the bridges in the encoder chain, starting from the first bridge
to the last. These are called after completing the encoder’s commit op.
Note that the bridge passed should be the one closest to the encoder
struct drm_bridge * of_drm_find_bridge(struct device_node * np)

find the bridge corresponding to the device node in the global bridge list
Parameters
struct device_node * np device node
Return
drm_bridge control struct on success, NULL on failure

5.7. Bridges 237

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

5.7.4 Panel-Bridge Helper Reference

struct drm_bridge * drm_panel_bridge_add(struct drm_panel * panel, u32 connector_type)
Creates a drm_bridge and drm_connector that just calls the appropriate functions from drm_panel.

Parameters
struct drm_panel * panel The drm_panel being wrapped. Must be non-NULL.
u32 connector_type The DRM_MODE_CONNECTOR_* for the connector to be created.
Description
For drivers converting from directly using drm_panel: The expected usage pattern is that dur-
ing either encoder module probe or DSI host attach, a drm_panel will be looked up through
drm_of_find_panel_or_bridge(). drm_panel_bridge_add() is used to wrap that panel in the new
bridge, and the result can then be passed to drm_bridge_attach(). The drm_panel_prepare() and re-
lated functions can be dropped from the encoder driver (they’re now called by the KMS helpers before call-
ing into the encoder), along with connector creation. When done with the bridge, drm_bridge_detach()
should be called as normal, then drm_panel_bridge_remove() to free it.
void drm_panel_bridge_remove(struct drm_bridge * bridge)

Unregisters and frees a drm_bridge created by drm_panel_bridge_add().
Parameters
struct drm_bridge * bridge The drm_bridge being freed.

5.8 Panel Helper Reference

The DRM panel helpers allow drivers to register panel objects with a central registry and provide functions
to retrieve those panels in display drivers.
struct drm_panel_funcs

perform operations on a given panel
Definition

struct drm_panel_funcs {
int (* disable) (struct drm_panel *panel);
int (* unprepare) (struct drm_panel *panel);
int (* prepare) (struct drm_panel *panel);
int (* enable) (struct drm_panel *panel);
int (* get_modes) (struct drm_panel *panel);
int (* get_timings) (struct drm_panel *panel, unsigned int num_timings, struct display_timing␣

↪→*timings);
};

Members
disable disable panel (turn off back light, etc.)
unprepare turn off panel
prepare turn on panel and perform set up
enable enable panel (turn on back light, etc.)
get_modes add modes to the connector that the panel is attached to and return the number of modes

added
get_timings copy display timings into the provided array and return the number of display timings avail-

able

238 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
The .:c:func:prepare() function is typically called before the display controller starts to transmit video data.
Panel drivers can use this to turn the panel on and wait for it to become ready. If additional configuration
is required (via a control bus such as I2C, SPI or DSI for example) this is a good time to do that.
After the display controller has started transmitting video data, it’s safe to call the .:c:func:enable() func-
tion. This will typically enable the backlight to make the image on screen visible. Some panels require
a certain amount of time or frames before the image is displayed. This function is responsible for taking
this into account before enabling the backlight to avoid visual glitches.
Before stopping video transmission from the display controller it can be necessary to turn off the panel to
avoid visual glitches. This is done in the .:c:func:disable() function. Analogously to .:c:func:enable() this
typically involves turning off the backlight and waiting for some time to make sure no image is visible on
the panel. It is then safe for the display controller to cease transmission of video data.
To save power when no video data is transmitted, a driver can power down the panel. This is the job of
the .:c:func:unprepare() function.
struct drm_panel

DRM panel object
Definition

struct drm_panel {
struct drm_device * drm;
struct drm_connector * connector;
struct device * dev;
const struct drm_panel_funcs * funcs;
struct list_head list;

};

Members
drm DRM device owning the panel
connector DRM connector that the panel is attached to
dev parent device of the panel
funcs operations that can be performed on the panel
list panel entry in registry
int drm_panel_unprepare(struct drm_panel * panel)

power off a panel
Parameters
struct drm_panel * panel DRM panel
Description
Calling this function will completely power off a panel (assert the panel’s reset, turn off power supplies,
...). After this function has completed, it is usually no longer possible to communicate with the panel until
another call to drm_panel_prepare().
Return
0 on success or a negative error code on failure.
int drm_panel_disable(struct drm_panel * panel)

disable a panel
Parameters
struct drm_panel * panel DRM panel

5.8. Panel Helper Reference 239

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This will typically turn off the panel’s backlight or disable the display drivers. For smart panels it should
still be possible to communicate with the integrated circuitry via any command bus after this call.
Return
0 on success or a negative error code on failure.
int drm_panel_prepare(struct drm_panel * panel)

power on a panel
Parameters
struct drm_panel * panel DRM panel
Description
Calling this function will enable power and deassert any reset signals to the panel. After this has completed
it is possible to communicate with any integrated circuitry via a command bus.
Return
0 on success or a negative error code on failure.
int drm_panel_enable(struct drm_panel * panel)

enable a panel
Parameters
struct drm_panel * panel DRM panel
Description
Calling this function will cause the panel display drivers to be turned on and the backlight to be enabled.
Content will be visible on screen after this call completes.
Return
0 on success or a negative error code on failure.
int drm_panel_get_modes(struct drm_panel * panel)

probe the available display modes of a panel
Parameters
struct drm_panel * panel DRM panel
Description
The modes probed from the panel are automatically added to the connector that the panel is attached to.
Return
The number of modes available from the panel on success or a negative error code on failure.
void drm_panel_init(struct drm_panel * panel)

initialize a panel
Parameters
struct drm_panel * panel DRM panel
Description
Sets up internal fields of the panel so that it can subsequently be added to the registry.
int drm_panel_add(struct drm_panel * panel)

add a panel to the global registry
Parameters
struct drm_panel * panel panel to add

240 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Add a panel to the global registry so that it can be looked up by display drivers.
Return
0 on success or a negative error code on failure.
void drm_panel_remove(struct drm_panel * panel)

remove a panel from the global registry
Parameters
struct drm_panel * panel DRM panel
Description
Removes a panel from the global registry.
int drm_panel_attach(struct drm_panel * panel, struct drm_connector * connector)

attach a panel to a connector
Parameters
struct drm_panel * panel DRM panel
struct drm_connector * connector DRM connector
Description
After obtaining a pointer to a DRM panel a display driver calls this function to attach a panel to a connector.
An error is returned if the panel is already attached to another connector.
Return
0 on success or a negative error code on failure.
int drm_panel_detach(struct drm_panel * panel)

detach a panel from a connector
Parameters
struct drm_panel * panel DRM panel
Description
Detaches a panel from the connector it is attached to. If a panel is not attached to any connector this is
effectively a no-op.
Return
0 on success or a negative error code on failure.
struct drm_panel * of_drm_find_panel(const struct device_node * np)

look up a panel using a device tree node
Parameters
const struct device_node * np device tree node of the panel
Description
Searches the set of registered panels for one that matches the given device tree node. If a matching
panel is found, return a pointer to it.
Return
A pointer to the panel registered for the specified device tree node or NULL if no panel matching the device
tree node can be found.

5.8. Panel Helper Reference 241

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

5.9 Display Port Helper Functions Reference

These functions contain some common logic and helpers at various abstraction levels to deal with Display
Port sink devices and related things like DP aux channel transfers, EDID reading over DP aux channels,
decoding certain DPCD blocks, ...
The DisplayPort AUX channel is an abstraction to allow generic, driver- independent access to AUX func-
tionality. Drivers can take advantage of this by filling in the fields of the drm_dp_aux structure.
Transactions are described using a hardware-independent drm_dp_aux_msg structure, which is passed
into a driver’s .:c:func:transfer() implementation. Both native and I2C-over-AUX transactions are sup-
ported.
struct drm_dp_aux_msg

DisplayPort AUX channel transaction
Definition

struct drm_dp_aux_msg {
unsigned int address;
u8 request;
u8 reply;
void * buffer;
size_t size;

};

Members
address address of the (first) register to access
request contains the type of transaction (see DP_AUX_* macros)
reply upon completion, contains the reply type of the transaction
buffer pointer to a transmission or reception buffer
size size of buffer
struct drm_dp_aux

DisplayPort AUX channel
Definition

struct drm_dp_aux {
const char * name;
struct i2c_adapter ddc;
struct device * dev;
struct drm_crtc * crtc;
struct mutex hw_mutex;
struct work_struct crc_work;
u8 crc_count;
ssize_t (* transfer) (struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg);
unsigned i2c_nack_count;
unsigned i2c_defer_count;

};

Members
name user-visible name of this AUX channel and the I2C-over-AUX adapter
ddc I2C adapter that can be used for I2C-over-AUX communication
dev pointer to struct device that is the parent for this AUX channel
crtc backpointer to the crtc that is currently using this AUX channel
hw_mutex internal mutex used for locking transfers

242 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

crc_work worker that captures CRCs for each frame
crc_count counter of captured frame CRCs
transfer transfers a message representing a single AUX transaction
i2c_nack_count Counts I2C NACKs, used for DP validation.
i2c_defer_count Counts I2C DEFERs, used for DP validation.
Description
The .dev field should be set to a pointer to the device that implements the AUX channel.
The .name field may be used to specify the name of the I2C adapter. If set to NULL, dev_name() of .dev
will be used.
Drivers provide a hardware-specific implementation of how transactions are executed via the
.:c:func:transfer() function. A pointer to a drm_dp_aux_msg structure describing the transaction is passed
into this function. Upon success, the implementation should return the number of payload bytes that
were transferred, or a negative error-code on failure. Helpers propagate errors from the .:c:func:transfer()
function, with the exception of the -EBUSY error, which causes a transaction to be retried. On a short,
helpers will return -EPROTO to make it simpler to check for failure.
An AUX channel can also be used to transport I2C messages to a sink. A typical application of that is
to access an EDID that’s present in the sink device. The .:c:func:transfer() function can also be used to
execute such transactions. The drm_dp_aux_register() function registers an I2C adapter that can be
passed to drm_probe_ddc(). Upon removal, drivers should call drm_dp_aux_unregister() to remove the
I2C adapter. The I2C adapter uses long transfers by default; if a partial response is received, the adapter
will drop down to the size given by the partial response for this transaction only.
Note that the aux helper code assumes that the .:c:func:transfer() function only modifies the reply field
of the drm_dp_aux_msg structure. The retry logic and i2c helpers assume this is the case.
ssize_t drm_dp_dpcd_readb(struct drm_dp_aux * aux, unsigned int offset, u8 * valuep)

read a single byte from the DPCD
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
unsigned int offset address of the register to read
u8 * valuep location where the value of the register will be stored
Description
Returns the number of bytes transferred (1) on success, or a negative error code on failure.
ssize_t drm_dp_dpcd_writeb(struct drm_dp_aux * aux, unsigned int offset, u8 value)

write a single byte to the DPCD
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
unsigned int offset address of the register to write
u8 value value to write to the register
Description
Returns the number of bytes transferred (1) on success, or a negative error code on failure.
struct drm_dp_desc

DP branch/sink device descriptor
Definition

5.9. Display Port Helper Functions Reference 243

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_dp_desc {
struct drm_dp_dpcd_ident ident;
u32 quirks;

};

Members
ident DP device identification from DPCD 0x400 (sink) or 0x500 (branch).
quirks Quirks; use drm_dp_has_quirk() to query for the quirks.
enum drm_dp_quirk

Display Port sink/branch device specific quirks
Constants
DP_DPCD_QUIRK_LIMITED_M_N The device requires main link attributes Mvid and Nvid to be limited to 16

bits.
Description
Display Port sink and branch devices in the wild have a variety of bugs, try to collect them here. The
quirks are shared, but it’s up to the drivers to implement workarounds for them.
bool drm_dp_has_quirk(const struct drm_dp_desc * desc, enum drm_dp_quirk quirk)

does the DP device have a specific quirk
Parameters
const struct drm_dp_desc * desc Device decriptor filled by drm_dp_read_desc()
enum drm_dp_quirk quirk Quirk to query for
Description
Return true if DP device identified by desc has quirk.
ssize_t drm_dp_dpcd_read(struct drm_dp_aux * aux, unsigned int offset, void * buffer, size_t size)

read a series of bytes from the DPCD
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
unsigned int offset address of the (first) register to read
void * buffer buffer to store the register values
size_t size number of bytes in buffer
Description
Returns the number of bytes transferred on success, or a negative error code on failure. -EIO is returned if
the request was NAKed by the sink or if the retry count was exceeded. If not all bytes were transferred, this
function returns -EPROTO. Errors from the underlying AUX channel transfer function, with the exception
of -EBUSY (which causes the transaction to be retried), are propagated to the caller.
ssize_t drm_dp_dpcd_write(struct drm_dp_aux * aux, unsigned int offset, void * buffer, size_t size)

write a series of bytes to the DPCD
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
unsigned int offset address of the (first) register to write
void * buffer buffer containing the values to write
size_t size number of bytes in buffer

244 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Returns the number of bytes transferred on success, or a negative error code on failure. -EIO is returned if
the request was NAKed by the sink or if the retry count was exceeded. If not all bytes were transferred, this
function returns -EPROTO. Errors from the underlying AUX channel transfer function, with the exception
of -EBUSY (which causes the transaction to be retried), are propagated to the caller.
int drm_dp_dpcd_read_link_status(struct drm_dp_aux * aux, u8 status)

read DPCD link status (bytes 0x202-0x207)
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
u8 status buffer to store the link status in (must be at least 6 bytes)
Description
Returns the number of bytes transferred on success or a negative error code on failure.
int drm_dp_link_probe(struct drm_dp_aux * aux, struct drm_dp_link * link)

probe a DisplayPort link for capabilities
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
struct drm_dp_link * link pointer to structure in which to return link capabilities
Description
The structure filled in by this function can usually be passed directly into drm_dp_link_power_up() and
drm_dp_link_configure() to power up and configure the link based on the link’s capabilities.
Returns 0 on success or a negative error code on failure.
int drm_dp_link_power_up(struct drm_dp_aux * aux, struct drm_dp_link * link)

power up a DisplayPort link
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
struct drm_dp_link * link pointer to a structure containing the link configuration
Description
Returns 0 on success or a negative error code on failure.
int drm_dp_link_power_down(struct drm_dp_aux * aux, struct drm_dp_link * link)

power down a DisplayPort link
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
struct drm_dp_link * link pointer to a structure containing the link configuration
Description
Returns 0 on success or a negative error code on failure.
int drm_dp_link_configure(struct drm_dp_aux * aux, struct drm_dp_link * link)

configure a DisplayPort link
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
struct drm_dp_link * link pointer to a structure containing the link configuration
Description
Returns 0 on success or a negative error code on failure.

5.9. Display Port Helper Functions Reference 245

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int drm_dp_downstream_max_clock(const u8 dpcd, const u8 port_cap)
extract branch device max pixel rate for legacy VGA converter or max TMDS clock rate for others

Parameters
const u8 dpcd DisplayPort configuration data
const u8 port_cap port capabilities
Description
Returns max clock in kHz on success or 0 if max clock not defined
int drm_dp_downstream_max_bpc(const u8 dpcd, const u8 port_cap)

extract branch device max bits per component
Parameters
const u8 dpcd DisplayPort configuration data
const u8 port_cap port capabilities
Description
Returns max bpc on success or 0 if max bpc not defined
int drm_dp_downstream_id(struct drm_dp_aux * aux, char id)

identify branch device
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
char id DisplayPort branch device id
Description
Returns branch device id on success or NULL on failure
void drm_dp_downstream_debug(struct seq_file * m, const u8 dpcd, const u8 port_cap, struct

drm_dp_aux * aux)
debug DP branch devices

Parameters
struct seq_file * m pointer for debugfs file
const u8 dpcd DisplayPort configuration data
const u8 port_cap port capabilities
struct drm_dp_aux * aux DisplayPort AUX channel
void drm_dp_aux_init(struct drm_dp_aux * aux)

minimally initialise an aux channel
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
Description
If you need to use the drm_dp_aux’s i2c adapter prior to registering it with the outside world, call
drm_dp_aux_init() first. You must still call drm_dp_aux_register() once the connector has been reg-
istered to allow userspace access to the auxiliary DP channel.
int drm_dp_aux_register(struct drm_dp_aux * aux)

initialise and register aux channel
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel

246 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Automatically calls drm_dp_aux_init() if this hasn’t been done yet.
Returns 0 on success or a negative error code on failure.
void drm_dp_aux_unregister(struct drm_dp_aux * aux)

unregister an AUX adapter
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
int drm_dp_psr_setup_time(const u8 psr_cap)

PSR setup in time usec
Parameters
const u8 psr_cap PSR capabilities from DPCD
Return
PSR setup time for the panel in microseconds, negative error code on failure.
int drm_dp_start_crc(struct drm_dp_aux * aux, struct drm_crtc * crtc)

start capture of frame CRCs
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
struct drm_crtc * crtc CRTC displaying the frames whose CRCs are to be captured
Description
Returns 0 on success or a negative error code on failure.
int drm_dp_stop_crc(struct drm_dp_aux * aux)

stop capture of frame CRCs
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
Description
Returns 0 on success or a negative error code on failure.
int drm_dp_read_desc(struct drm_dp_aux * aux, struct drm_dp_desc * desc, bool is_branch)

read sink/branch descriptor from DPCD
Parameters
struct drm_dp_aux * aux DisplayPort AUX channel
struct drm_dp_desc * desc Device decriptor to fill from DPCD
bool is_branch true for branch devices, false for sink devices
Description
Read DPCD 0x400 (sink) or 0x500 (branch) into desc. Also debug log the identification.
Returns 0 on success or a negative error code on failure.

5.10 Display Port Dual Mode Adaptor Helper Functions Reference

Helper functions to deal with DP dual mode (aka. DP++) adaptors.
Type 1: Adaptor registers (if any) and the sink DDC bus may be accessed via I2C.

5.10. Display Port Dual Mode Adaptor Helper Functions Reference 247

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Type 2: Adaptor registers and sink DDC bus can be accessed either via I2C or I2C-over-AUX. Source devices
may choose to implement either of these access methods.
enum drm_lspcon_mode

Constants
DRM_LSPCON_MODE_INVALID No LSPCON.
DRM_LSPCON_MODE_LS Level shifter mode of LSPCON which drives DP++ to HDMI 1.4 conversion.
DRM_LSPCON_MODE_PCON Protocol converter mode of LSPCON which drives DP++ to HDMI 2.0 active con-

version.
enum drm_dp_dual_mode_type

Type of the DP dual mode adaptor
Constants
DRM_DP_DUAL_MODE_NONE No DP dual mode adaptor
DRM_DP_DUAL_MODE_UNKNOWN Could be either none or type 1 DVI adaptor
DRM_DP_DUAL_MODE_TYPE1_DVI Type 1 DVI adaptor
DRM_DP_DUAL_MODE_TYPE1_HDMI Type 1 HDMI adaptor
DRM_DP_DUAL_MODE_TYPE2_DVI Type 2 DVI adaptor
DRM_DP_DUAL_MODE_TYPE2_HDMI Type 2 HDMI adaptor
DRM_DP_DUAL_MODE_LSPCON Level shifter / protocol converter
ssize_t drm_dp_dual_mode_read(struct i2c_adapter * adapter, u8 offset, void * buffer, size_t size)

Read from the DP dual mode adaptor register(s)
Parameters
struct i2c_adapter * adapter I2C adapter for the DDC bus
u8 offset register offset
void * buffer buffer for return data
size_t size sizo of the buffer
Description
Reads size bytes from the DP dual mode adaptor registers starting at offset.
Return
0 on success, negative error code on failure
ssize_t drm_dp_dual_mode_write(struct i2c_adapter * adapter, u8 offset, const void * buffer,

size_t size)
Write to the DP dual mode adaptor register(s)

Parameters
struct i2c_adapter * adapter I2C adapter for the DDC bus
u8 offset register offset
const void * buffer buffer for write data
size_t size sizo of the buffer
Description
Writes size bytes to the DP dual mode adaptor registers starting at offset.
Return
0 on success, negative error code on failure

248 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

enum drm_dp_dual_mode_type drm_dp_dual_mode_detect(struct i2c_adapter * adapter)
Identify the DP dual mode adaptor

Parameters
struct i2c_adapter * adapter I2C adapter for the DDC bus
Description
Attempt to identify the type of the DP dual mode adaptor used.
Note that when the answer is DRM_DP_DUAL_MODE_UNKNOWN it’s not certain whether we’re dealing
with a native HDMI port or a type 1 DVI dual mode adaptor. The driver will have to use some other
hardware/driver specific mechanism to make that distinction.
Return
The type of the DP dual mode adaptor used
int drm_dp_dual_mode_max_tmds_clock(enum drm_dp_dual_mode_type type, struct i2c_adapter

* adapter)
Max TMDS clock for DP dual mode adaptor

Parameters
enum drm_dp_dual_mode_type type DP dual mode adaptor type
struct i2c_adapter * adapter I2C adapter for the DDC bus
Description
Determine the max TMDS clock the adaptor supports based on the type of the dual mode adaptor and
the DP_DUAL_MODE_MAX_TMDS_CLOCK register (on type2 adaptors). As some type 1 adaptors have
problems with registers (see comments in drm_dp_dual_mode_detect()) we don’t read the register on
those, instead we simply assume a 165 MHz limit based on the specification.
Return
Maximum supported TMDS clock rate for the DP dual mode adaptor in kHz.
int drm_dp_dual_mode_get_tmds_output(enum drm_dp_dual_mode_type type, struct i2c_adapter

* adapter, bool * enabled)
Get the state of the TMDS output buffers in the DP dual mode adaptor

Parameters
enum drm_dp_dual_mode_type type DP dual mode adaptor type
struct i2c_adapter * adapter I2C adapter for the DDC bus
bool * enabled current state of the TMDS output buffers
Description
Get the state of the TMDS output buffers in the adaptor. For type2 adaptors this is queried from the
DP_DUAL_MODE_TMDS_OEN register. As some type 1 adaptors have problems with registers (see com-
ments in drm_dp_dual_mode_detect()) we don’t read the register on those, instead we simply assume
that the buffers are always enabled.
Return
0 on success, negative error code on failure
int drm_dp_dual_mode_set_tmds_output(enum drm_dp_dual_mode_type type, struct i2c_adapter

* adapter, bool enable)
Enable/disable TMDS output buffers in the DP dual mode adaptor

Parameters
enum drm_dp_dual_mode_type type DP dual mode adaptor type
struct i2c_adapter * adapter I2C adapter for the DDC bus

5.10. Display Port Dual Mode Adaptor Helper Functions Reference 249

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

bool enable enable (as opposed to disable) the TMDS output buffers
Description
Set the state of the TMDS output buffers in the adaptor. For type2 this is set via the
DP_DUAL_MODE_TMDS_OEN register. As some type 1 adaptors have problems with registers (see com-
ments in drm_dp_dual_mode_detect()) we avoid touching the register, making this function a no-op on
type 1 adaptors.
Return
0 on success, negative error code on failure
const char * drm_dp_get_dual_mode_type_name(enum drm_dp_dual_mode_type type)

Get the name of the DP dual mode adaptor type as a string
Parameters
enum drm_dp_dual_mode_type type DP dual mode adaptor type
Return
String representation of the DP dual mode adaptor type
int drm_lspcon_get_mode(struct i2c_adapter * adapter, enum drm_lspcon_mode * mode)

Parameters
struct i2c_adapter * adapter I2C-over-aux adapter
enum drm_lspcon_mode * mode current lspcon mode of operation output variable
Description
reading offset (0x80, 0x41)
Return
0 on success, sets the current_mode value to appropriate mode -error on failure
int drm_lspcon_set_mode(struct i2c_adapter * adapter, enum drm_lspcon_mode mode)

Parameters
struct i2c_adapter * adapter I2C-over-aux adapter
enum drm_lspcon_mode mode required mode of operation
Description
writing offset (0x80, 0x40)
Return
0 on success, -error on failure/timeout

5.11 Display Port MST Helper Functions Reference

These functions contain parts of the DisplayPort 1.2a MultiStream Transport protocol. The helpers con-
tain a topology manager and bandwidth manager. The helpers encapsulate the sending and received of
sideband msgs.
struct drm_dp_vcpi

Virtual Channel Payload Identifier
Definition

250 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_dp_vcpi {
int vcpi;
int pbn;
int aligned_pbn;
int num_slots;

};

Members
vcpi Virtual channel ID.
pbn Payload Bandwidth Number for this channel
aligned_pbn PBN aligned with slot size
num_slots number of slots for this PBN
struct drm_dp_mst_port

MST port
Definition

struct drm_dp_mst_port {
struct kref kref;
u8 port_num;
bool input;
bool mcs;
bool ddps;
u8 pdt;
bool ldps;
u8 dpcd_rev;
u8 num_sdp_streams;
u8 num_sdp_stream_sinks;
uint16_t available_pbn;
struct list_head next;
struct drm_dp_mst_branch * mstb;
struct drm_dp_aux aux;
struct drm_dp_mst_branch * parent;
struct drm_dp_vcpi vcpi;
struct drm_connector * connector;
struct drm_dp_mst_topology_mgr * mgr;
struct edid * cached_edid;
bool has_audio;

};

Members
kref reference count for this port.
port_num port number
input if this port is an input port.
mcs message capability status - DP 1.2 spec.
ddps DisplayPort Device Plug Status - DP 1.2
pdt Peer Device Type
ldps Legacy Device Plug Status
dpcd_rev DPCD revision of device on this port
num_sdp_streams Number of simultaneous streams
num_sdp_stream_sinks Number of stream sinks
available_pbn Available bandwidth for this port.

5.11. Display Port MST Helper Functions Reference 251

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

next link to next port on this branch device
mstb branch device attach below this port
aux i2c aux transport to talk to device connected to this port.
parent branch device parent of this port
vcpi Virtual Channel Payload info for this port.
connector DRM connector this port is connected to.
mgr topology manager this port lives under.
cached_edid for DP logical ports - make tiling work by ensuring that the EDID for all connectors is read

immediately.
has_audio Tracks whether the sink connector to this port is audio-capable.
Description
This structure represents an MST port endpoint on a device somewhere in the MST topology.
struct drm_dp_mst_branch

MST branch device.
Definition

struct drm_dp_mst_branch {
struct kref kref;
u8 rad;
u8 lct;
int num_ports;
int msg_slots;
struct list_head ports;
struct drm_dp_mst_port * port_parent;
struct drm_dp_mst_topology_mgr * mgr;
struct drm_dp_sideband_msg_tx * tx_slots;
int last_seqno;
bool link_address_sent;
u8 guid;

};

Members
kref reference count for this port.
rad Relative Address to talk to this branch device.
lct Link count total to talk to this branch device.
num_ports number of ports on the branch.
msg_slots one bit per transmitted msg slot.
ports linked list of ports on this branch.
port_parent pointer to the port parent, NULL if toplevel.
mgr topology manager for this branch device.
tx_slots transmission slots for this device.
last_seqno last sequence number used to talk to this.
link_address_sent if a link address message has been sent to this device yet.
guid guid for DP 1.2 branch device. port under this branch can be identified by port #.
Description

252 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

This structure represents an MST branch device, there is one primary branch device at the root, along
with any other branches connected to downstream port of parent branches.
struct drm_dp_mst_topology_mgr

DisplayPort MST manager
Definition

struct drm_dp_mst_topology_mgr {
struct drm_device * dev;
const struct drm_dp_mst_topology_cbs * cbs;
int max_dpcd_transaction_bytes;
struct drm_dp_aux * aux;
int max_payloads;
int conn_base_id;
struct drm_dp_sideband_msg_rx down_rep_recv;
struct drm_dp_sideband_msg_rx up_req_recv;
struct mutex lock;
bool mst_state;
struct drm_dp_mst_branch * mst_primary;
u8 dpcd;
u8 sink_count;
int pbn_div;
struct drm_dp_mst_topology_state * state;
const struct drm_private_state_funcs * funcs;
struct mutex qlock;
struct list_head tx_msg_downq;
struct mutex payload_lock;
struct drm_dp_vcpi ** proposed_vcpis;
struct drm_dp_payload * payloads;
unsigned long payload_mask;
unsigned long vcpi_mask;
wait_queue_head_t tx_waitq;
struct work_struct work;
struct work_struct tx_work;
struct list_head destroy_connector_list;
struct mutex destroy_connector_lock;
struct work_struct destroy_connector_work;

};

Members
dev device pointer for adding i2c devices etc.
cbs callbacks for connector addition and destruction.
max_dpcd_transaction_bytes maximum number of bytes to read/write in one go.
aux AUX channel for the DP MST connector this topolgy mgr is controlling.
max_payloads maximum number of payloads the GPU can generate.
conn_base_id DRM connector ID this mgr is connected to. Only used to build the MST connector path

value.
down_rep_recv Message receiver state for down replies. This and up_req_recv are only ever access

from the work item, which is serialised.
up_req_recv Message receiver state for up requests. This and down_rep_recv are only ever access

from the work item, which is serialised.
lock protects mst state, primary, dpcd.
mst_state If this manager is enabled for an MST capable port. False if no MST sink/branch devices is

connected.
mst_primary Pointer to the primary/first branch device.

5.11. Display Port MST Helper Functions Reference 253

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

dpcd Cache of DPCD for primary port.
sink_count Sink count from DEVICE_SERVICE_IRQ_VECTOR_ESI0.
pbn_div PBN to slots divisor.
state State information for topology manager
funcs Atomic helper callbacks
qlock protects tx_msg_downq, the drm_dp_mst_branch.txslost and drm_dp_sideband_msg_tx.state

once they are queued
tx_msg_downq List of pending down replies.
payload_lock Protect payload information.
proposed_vcpis Array of pointers for the new VCPI allocation. The VCPI structure itself is

drm_dp_mst_port.vcpi.
payloads Array of payloads.
payload_mask Elements of payloads actually in use. Since reallocation of active outputs isn’t possible

gaps can be created by disabling outputs out of order compared to how they’ve been enabled.
vcpi_mask Similar to payload_mask, but for proposed_vcpis.
tx_waitq Wait to queue stall for the tx worker.
work Probe work.
tx_work Sideband transmit worker. This can nest within the mainwork worker for each transactionwork

launches.
destroy_connector_list List of to be destroyed connectors.
destroy_connector_lock Protects connector_list.
destroy_connector_work Work item to destroy connectors. Needed to avoid locking inversion.
Description
This struct represents the toplevel displayport MST topology manager. There should be one instance of
this for every MST capable DP connector on the GPU.
int drm_dp_update_payload_part1(struct drm_dp_mst_topology_mgr * mgr)

Execute payload update part 1
Parameters
struct drm_dp_mst_topology_mgr * mgr manager to use.
Description
This iterates over all proposed virtual channels, and tries to allocate space in the link for them. For 0-
>slots transitions, this step just writes the VCPI to the MST device. For slots->0 transitions, this writes the
updated VCPIs and removes the remote VC payloads.
after calling this the driver should generate ACT and payload packets.
int drm_dp_update_payload_part2(struct drm_dp_mst_topology_mgr * mgr)

Execute payload update part 2
Parameters
struct drm_dp_mst_topology_mgr * mgr manager to use.
Description
This iterates over all proposed virtual channels, and tries to allocate space in the link for them. For 0-
>slots transitions, this step writes the remote VC payload commands. For slots->0 this just resets some
internal state.

254 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr * mgr, bool mst_state)
Set the MST state for a topology manager

Parameters
struct drm_dp_mst_topology_mgr * mgr manager to set state for
bool mst_state true to enable MST on this connector - false to disable.
Description
This is called by the driver when it detects an MST capable device plugged into a DP MST capable port, or
when a DP MST capable device is unplugged.
void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr * mgr)

suspend the MST manager
Parameters
struct drm_dp_mst_topology_mgr * mgr manager to suspend
Description
This function tells the MST device that we can’t handle UP messages anymore. This should stop it from
sending any since we are suspended.
int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr * mgr)

resume the MST manager
Parameters
struct drm_dp_mst_topology_mgr * mgr manager to resume
Description
This will fetch DPCD and see if the device is still there, if it is, it will rewrite the MSTM control bits, and
return.
if the device fails this returns -1, and the driver should do a full MST reprobe, in case we were undocked.
int drm_dp_mst_hpd_irq(struct drm_dp_mst_topology_mgr * mgr, u8 * esi, bool * handled)

MST hotplug IRQ notify
Parameters
struct drm_dp_mst_topology_mgr * mgr manager to notify irq for.
u8 * esi 4 bytes from SINK_COUNT_ESI
bool * handled whether the hpd interrupt was consumed or not
Description
This should be called from the driver when it detects a short IRQ, along with the value of the DE-
VICE_SERVICE_IRQ_VECTOR_ESI0. The topology manager will process the sideband messages received
as a result of this.
enum drm_connector_status drm_dp_mst_detect_port(struct drm_connector * connector, struct

drm_dp_mst_topology_mgr * mgr, struct
drm_dp_mst_port * port)

get connection status for an MST port
Parameters
struct drm_connector * connector DRM connector for this port
struct drm_dp_mst_topology_mgr * mgr manager for this port
struct drm_dp_mst_port * port unverified pointer to a port

5.11. Display Port MST Helper Functions Reference 255

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This returns the current connection state for a port. It validates the port pointer still exists so the caller
doesn’t require a reference
bool drm_dp_mst_port_has_audio(struct drm_dp_mst_topology_mgr * mgr, struct

drm_dp_mst_port * port)
Check whether port has audio capability or not

Parameters
struct drm_dp_mst_topology_mgr * mgr manager for this port
struct drm_dp_mst_port * port unverified pointer to a port.
Description
This returns whether the port supports audio or not.
struct edid * drm_dp_mst_get_edid(struct drm_connector * connector, struct

drm_dp_mst_topology_mgr * mgr, struct drm_dp_mst_port
* port)

get EDID for an MST port
Parameters
struct drm_connector * connector toplevel connector to get EDID for
struct drm_dp_mst_topology_mgr * mgr manager for this port
struct drm_dp_mst_port * port unverified pointer to a port.
Description
This returns an EDID for the port connected to a connector, It validates the pointer still exists so the caller
doesn’t require a reference.
int drm_dp_find_vcpi_slots(struct drm_dp_mst_topology_mgr * mgr, int pbn)

find slots for this PBN value
Parameters
struct drm_dp_mst_topology_mgr * mgr manager to use
int pbn payload bandwidth to convert into slots.
int drm_dp_atomic_find_vcpi_slots(struct drm_atomic_state * state, struct

drm_dp_mst_topology_mgr * mgr, struct drm_dp_mst_port
* port, int pbn)

Find and add vcpi slots to the state
Parameters
struct drm_atomic_state * state global atomic state
struct drm_dp_mst_topology_mgr * mgr MST topology manager for the port
struct drm_dp_mst_port * port port to find vcpi slots for
int pbn bandwidth required for the mode in PBN
Return
Total slots in the atomic state assigned for this port or error
int drm_dp_atomic_release_vcpi_slots(struct drm_atomic_state * state, struct

drm_dp_mst_topology_mgr * mgr, int slots)
Release allocated vcpi slots

Parameters
struct drm_atomic_state * state global atomic state

256 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_dp_mst_topology_mgr * mgr MST topology manager for the port
int slots number of vcpi slots to release
Return
0 if slots were added back to drm_dp_mst_topology_state->avail_slots or negative error code
bool drm_dp_mst_allocate_vcpi(struct drm_dp_mst_topology_mgr * mgr, struct drm_dp_mst_port

* port, int pbn, int slots)
Allocate a virtual channel

Parameters
struct drm_dp_mst_topology_mgr * mgr manager for this port
struct drm_dp_mst_port * port port to allocate a virtual channel for.
int pbn payload bandwidth number to request
int slots returned number of slots for this PBN.
void drm_dp_mst_reset_vcpi_slots(struct drm_dp_mst_topology_mgr * mgr, struct

drm_dp_mst_port * port)
Reset number of slots to 0 for VCPI

Parameters
struct drm_dp_mst_topology_mgr * mgr manager for this port
struct drm_dp_mst_port * port unverified pointer to a port.
Description
This just resets the number of slots for the ports VCPI for later programming.
void drm_dp_mst_deallocate_vcpi(struct drm_dp_mst_topology_mgr * mgr, struct

drm_dp_mst_port * port)
deallocate a VCPI

Parameters
struct drm_dp_mst_topology_mgr * mgr manager for this port
struct drm_dp_mst_port * port unverified port to deallocate vcpi for
int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr * mgr)

Check ACT handled status.
Parameters
struct drm_dp_mst_topology_mgr * mgr manager to use
Description
Check the payload status bits in the DPCD for ACT handled completion.
int drm_dp_calc_pbn_mode(int clock, int bpp)

Calculate the PBN for a mode.
Parameters
int clock dot clock for the mode
int bpp bpp for the mode.
Description
This uses the formula in the spec to calculate the PBN value for a mode.
void drm_dp_mst_dump_topology(struct seq_file * m, struct drm_dp_mst_topology_mgr * mgr)

Parameters
struct seq_file * m seq_file to dump output to

5.11. Display Port MST Helper Functions Reference 257

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_dp_mst_topology_mgr * mgr manager to dump current topology for.
Description
helper to dump MST topology to a seq file for debugfs.
struct drm_dp_mst_topology_state * drm_atomic_get_mst_topology_state(struct

drm_atomic_state
* state, struct
drm_dp_mst_topology_mgr
* mgr)

Parameters
struct drm_atomic_state * state global atomic state
struct drm_dp_mst_topology_mgr * mgr MST topology manager, also the private object in this case
Description
This function wraps drm_atomic_get_priv_obj_state() passing in the MST atomic state
vtable so that the private object state returned is that of a MST topology object. Also,
drm_atomic_get_private_obj_state() expects the caller to care of the locking, so warn if don’t
hold the connection_mutex.
Return
The MST topology state or error pointer.
int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr * mgr, struct

drm_device * dev, struct drm_dp_aux * aux,
int max_dpcd_transaction_bytes, int max_payloads,
int conn_base_id)

initialise a topology manager
Parameters
struct drm_dp_mst_topology_mgr * mgr manager struct to initialise
struct drm_device * dev device providing this structure - for i2c addition.
struct drm_dp_aux * aux DP helper aux channel to talk to this device
int max_dpcd_transaction_bytes hw specific DPCD transaction limit
int max_payloads maximum number of payloads this GPU can source
int conn_base_id the connector object ID the MST device is connected to.
Description
Return 0 for success, or negative error code on failure
void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr * mgr)

destroy topology manager.
Parameters
struct drm_dp_mst_topology_mgr * mgr manager to destroy

5.12 MIPI DSI Helper Functions Reference

These functions contain some common logic and helpers to deal with MIPI DSI peripherals.
Helpers are provided for a number of standard MIPI DSI command as well as a subset of the MIPI DCS
command set.
struct mipi_dsi_msg

read/write DSI buffer

258 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Definition

struct mipi_dsi_msg {
u8 channel;
u8 type;
u16 flags;
size_t tx_len;
const void * tx_buf;
size_t rx_len;
void * rx_buf;

};

Members
channel virtual channel id
type payload data type
flags flags controlling this message transmission
tx_len length of tx_buf
tx_buf data to be written
rx_len length of rx_buf
rx_buf data to be read, or NULL
struct mipi_dsi_packet

represents a MIPI DSI packet in protocol format
Definition

struct mipi_dsi_packet {
size_t size;
u8 header;
size_t payload_length;
const u8 * payload;

};

Members
size size (in bytes) of the packet
header the four bytes that make up the header (Data ID, Word Count or Packet Data, and ECC)
payload_length number of bytes in the payload
payload a pointer to a buffer containing the payload, if any
struct mipi_dsi_host_ops

DSI bus operations
Definition

struct mipi_dsi_host_ops {
int (* attach) (struct mipi_dsi_host *host, struct mipi_dsi_device *dsi);
int (* detach) (struct mipi_dsi_host *host, struct mipi_dsi_device *dsi);
ssize_t (* transfer) (struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg);

};

Members
attach attach DSI device to DSI host
detach detach DSI device from DSI host
transfer transmit a DSI packet

5.12. MIPI DSI Helper Functions Reference 259

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
DSI packets transmitted by .:c:func:transfer() are passed in as mipi_dsi_msg structures. This structure
contains information about the type of packet being transmitted as well as the transmit and receive
buffers. When an error is encountered during transmission, this function will return a negative error code.
On success it shall return the number of bytes transmitted for write packets or the number of bytes
received for read packets.
Note that typically DSI packet transmission is atomic, so the .:c:func:transfer() function will seldomly return
anything other than the number of bytes contained in the transmit buffer on success.
struct mipi_dsi_host

DSI host device
Definition

struct mipi_dsi_host {
struct device * dev;
const struct mipi_dsi_host_ops * ops;
struct list_head list;

};

Members
dev driver model device node for this DSI host
ops DSI host operations
list list management
struct mipi_dsi_device_info

template for creating a mipi_dsi_device
Definition

struct mipi_dsi_device_info {
char type;
u32 channel;
struct device_node * node;

};

Members
type DSI peripheral chip type
channel DSI virtual channel assigned to peripheral
node pointer to OF device node or NULL
Description
This is populated and passed to mipi_dsi_device_new to create a new DSI device
struct mipi_dsi_device

DSI peripheral device
Definition

struct mipi_dsi_device {
struct mipi_dsi_host * host;
struct device dev;
char name;
unsigned int channel;
unsigned int lanes;
enum mipi_dsi_pixel_format format;
unsigned long mode_flags;

};

260 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Members
host DSI host for this peripheral
dev driver model device node for this peripheral
name DSI peripheral chip type
channel virtual channel assigned to the peripheral
lanes number of active data lanes
format pixel format for video mode
mode_flags DSI operation mode related flags
int mipi_dsi_pixel_format_to_bpp(enum mipi_dsi_pixel_format fmt)

obtain the number of bits per pixel for any given pixel format defined by the MIPI DSI specification
Parameters
enum mipi_dsi_pixel_format fmt MIPI DSI pixel format
Return
The number of bits per pixel of the given pixel format.
enum mipi_dsi_dcs_tear_mode

Tearing Effect Output Line mode
Constants
MIPI_DSI_DCS_TEAR_MODE_VBLANK the TE output line consists of V-Blanking information only
MIPI_DSI_DCS_TEAR_MODE_VHBLANK the TE output line consists of both V-Blanking and H-Blanking infor-

mation
struct mipi_dsi_driver

DSI driver
Definition

struct mipi_dsi_driver {
struct device_driver driver;
int(* probe) (struct mipi_dsi_device *dsi);
int(* remove) (struct mipi_dsi_device *dsi);
void (* shutdown) (struct mipi_dsi_device *dsi);

};

Members
driver device driver model driver
probe callback for device binding
remove callback for device unbinding
shutdown called at shutdown time to quiesce the device
struct mipi_dsi_device * of_find_mipi_dsi_device_by_node(struct device_node * np)

find the MIPI DSI device matching a device tree node
Parameters
struct device_node * np device tree node
Return
A pointer to the MIPI DSI device corresponding to np or NULL if no such device exists (or has not

been registered yet).

5.12. MIPI DSI Helper Functions Reference 261

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct mipi_dsi_device * mipi_dsi_device_register_full(structmipi_dsi_host * host, const struct
mipi_dsi_device_info * info)

create a MIPI DSI device
Parameters
struct mipi_dsi_host * host DSI host to which this device is connected
const struct mipi_dsi_device_info * info pointer to template containing DSI device information
Description
Create a MIPI DSI device by using the device information provided by mipi_dsi_device_info template
Return
A pointer to the newly created MIPI DSI device, or, a pointer encoded with an error
void mipi_dsi_device_unregister(struct mipi_dsi_device * dsi)

unregister MIPI DSI device
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
struct mipi_dsi_host * of_find_mipi_dsi_host_by_node(struct device_node * node)

find the MIPI DSI host matching a device tree node
Parameters
struct device_node * node device tree node
Return
A pointer to the MIPI DSI host corresponding to node or NULL if no such device exists (or has not been
registered yet).
int mipi_dsi_attach(struct mipi_dsi_device * dsi)

attach a DSI device to its DSI host
Parameters
struct mipi_dsi_device * dsi DSI peripheral
int mipi_dsi_detach(struct mipi_dsi_device * dsi)

detach a DSI device from its DSI host
Parameters
struct mipi_dsi_device * dsi DSI peripheral
bool mipi_dsi_packet_format_is_short(u8 type)

check if a packet is of the short format
Parameters
u8 type MIPI DSI data type of the packet
Return
true if the packet for the given data type is a short packet, false otherwise.
bool mipi_dsi_packet_format_is_long(u8 type)

check if a packet is of the long format
Parameters
u8 type MIPI DSI data type of the packet
Return
true if the packet for the given data type is a long packet, false otherwise.

262 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int mipi_dsi_create_packet(struct mipi_dsi_packet * packet, const struct mipi_dsi_msg * msg)
create a packet from a message according to the DSI protocol

Parameters
struct mipi_dsi_packet * packet pointer to a DSI packet structure
const struct mipi_dsi_msg * msg message to translate into a packet
Return
0 on success or a negative error code on failure.
int mipi_dsi_shutdown_peripheral(struct mipi_dsi_device * dsi)

sends a Shutdown Peripheral command
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
Return
0 on success or a negative error code on failure.
int mipi_dsi_turn_on_peripheral(struct mipi_dsi_device * dsi)

sends a Turn On Peripheral command
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
Return
0 on success or a negative error code on failure.
ssize_t mipi_dsi_generic_write(struct mipi_dsi_device * dsi, const void * payload, size_t size)

transmit data using a generic write packet
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
const void * payload buffer containing the payload
size_t size size of payload buffer
Description
This function will automatically choose the right data type depending on the payload length.
Return
The number of bytes transmitted on success or a negative error code on failure.
ssize_t mipi_dsi_generic_read(struct mipi_dsi_device * dsi, const void * params,

size_t num_params, void * data, size_t size)
receive data using a generic read packet

Parameters
struct mipi_dsi_device * dsi DSI peripheral device
const void * params buffer containing the request parameters
size_t num_params number of request parameters
void * data buffer in which to return the received data
size_t size size of receive buffer
Description
This function will automatically choose the right data type depending on the number of parameters passed
in.

5.12. MIPI DSI Helper Functions Reference 263

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Return
The number of bytes successfully read or a negative error code on failure.
ssize_t mipi_dsi_dcs_write_buffer(struct mipi_dsi_device * dsi, const void * data, size_t len)

transmit a DCS command with payload
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
const void * data buffer containing data to be transmitted
size_t len size of transmission buffer
Description
This function will automatically choose the right data type depending on the command payload length.
Return
The number of bytes successfully transmitted or a negative error code on failure.
ssize_t mipi_dsi_dcs_write(struct mipi_dsi_device * dsi, u8 cmd, const void * data, size_t len)

send DCS write command
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
u8 cmd DCS command
const void * data buffer containing the command payload
size_t len command payload length
Description
This function will automatically choose the right data type depending on the command payload length.
Return
The number of bytes successfully transmitted or a negative error code on failure.
ssize_t mipi_dsi_dcs_read(struct mipi_dsi_device * dsi, u8 cmd, void * data, size_t len)

send DCS read request command
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
u8 cmd DCS command
void * data buffer in which to receive data
size_t len size of receive buffer
Return
The number of bytes read or a negative error code on failure.
int mipi_dsi_dcs_nop(struct mipi_dsi_device * dsi)

send DCS nop packet
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
Return
0 on success or a negative error code on failure.
int mipi_dsi_dcs_soft_reset(struct mipi_dsi_device * dsi)

perform a software reset of the display module
Parameters

264 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct mipi_dsi_device * dsi DSI peripheral device
Return
0 on success or a negative error code on failure.
int mipi_dsi_dcs_get_power_mode(struct mipi_dsi_device * dsi, u8 * mode)

query the display module’s current power mode
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
u8 * mode return location for the current power mode
Return
0 on success or a negative error code on failure.
int mipi_dsi_dcs_get_pixel_format(struct mipi_dsi_device * dsi, u8 * format)

gets the pixel format for the RGB image data used by the interface
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
u8 * format return location for the pixel format
Return
0 on success or a negative error code on failure.
int mipi_dsi_dcs_enter_sleep_mode(struct mipi_dsi_device * dsi)

disable all unnecessary blocks inside the display module except interface communication
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
Return
0 on success or a negative error code on failure.
int mipi_dsi_dcs_exit_sleep_mode(struct mipi_dsi_device * dsi)

enable all blocks inside the display module
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
Return
0 on success or a negative error code on failure.
int mipi_dsi_dcs_set_display_off(struct mipi_dsi_device * dsi)

stop displaying the image data on the display device
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
Return
0 on success or a negative error code on failure.
int mipi_dsi_dcs_set_display_on(struct mipi_dsi_device * dsi)

start displaying the image data on the display device
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
Return
0 on success or a negative error code on failure

5.12. MIPI DSI Helper Functions Reference 265

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int mipi_dsi_dcs_set_column_address(struct mipi_dsi_device * dsi, u16 start, u16 end)
define the column extent of the frame memory accessed by the host processor

Parameters
struct mipi_dsi_device * dsi DSI peripheral device
u16 start first column of frame memory
u16 end last column of frame memory
Return
0 on success or a negative error code on failure.
int mipi_dsi_dcs_set_page_address(struct mipi_dsi_device * dsi, u16 start, u16 end)

define the page extent of the frame memory accessed by the host processor
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
u16 start first page of frame memory
u16 end last page of frame memory
Return
0 on success or a negative error code on failure.
int mipi_dsi_dcs_set_tear_off(struct mipi_dsi_device * dsi)

turn off the display module’s Tearing Effect output signal on the TE signal line
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
Return
0 on success or a negative error code on failure
int mipi_dsi_dcs_set_tear_on(struct mipi_dsi_device * dsi, enum mipi_dsi_dcs_tear_mode mode)

turn on the display module’s Tearing Effect output signal on the TE signal line.
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
enum mipi_dsi_dcs_tear_mode mode the Tearing Effect Output Line mode
Return
0 on success or a negative error code on failure
int mipi_dsi_dcs_set_pixel_format(struct mipi_dsi_device * dsi, u8 format)

sets the pixel format for the RGB image data used by the interface
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
u8 format pixel format
Return
0 on success or a negative error code on failure.
int mipi_dsi_dcs_set_tear_scanline(struct mipi_dsi_device * dsi, u16 scanline)

set the scanline to use as trigger for the Tearing Effect output signal of the display module
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
u16 scanline scanline to use as trigger

266 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Return
0 on success or a negative error code on failure
int mipi_dsi_dcs_set_display_brightness(struct mipi_dsi_device * dsi, u16 brightness)

sets the brightness value of the display
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
u16 brightness brightness value
Return
0 on success or a negative error code on failure.
int mipi_dsi_dcs_get_display_brightness(struct mipi_dsi_device * dsi, u16 * brightness)

gets the current brightness value of the display
Parameters
struct mipi_dsi_device * dsi DSI peripheral device
u16 * brightness brightness value
Return
0 on success or a negative error code on failure.
int mipi_dsi_driver_register_full(struct mipi_dsi_driver * drv, struct module * owner)

register a driver for DSI devices
Parameters
struct mipi_dsi_driver * drv DSI driver structure
struct module * owner owner module
Return
0 on success or a negative error code on failure.
void mipi_dsi_driver_unregister(struct mipi_dsi_driver * drv)

unregister a driver for DSI devices
Parameters
struct mipi_dsi_driver * drv DSI driver structure
Return
0 on success or a negative error code on failure.

5.13 Output Probing Helper Functions Reference

This library provides some helper code for output probing. It provides an implementation of the core
drm_connector_funcs.fill_modes interface with drm_helper_probe_single_connector_modes().
It also provides support for polling connectors with a work item and for generic hotplug interrupt handling
where the driver doesn’t or cannot keep track of a per-connector hpd interrupt.
This helper library can be used independently of the modeset helper library. Drivers can also overwrite
different parts e.g. use their own hotplug handling code to avoid probing unrelated outputs.
The probe helpers share the function table structures with other display helper libraries. See struct
drm_connector_helper_funcs for the details.
void drm_kms_helper_poll_enable(struct drm_device * dev)

re-enable output polling.

5.13. Output Probing Helper Functions Reference 267

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct drm_device * dev drm_device
Description
This function re-enables the output polling work, after it has been temporarily disabled using
drm_kms_helper_poll_disable(), for example over suspend/resume.
Drivers can call this helper from their device resume implementation. It is an error to call this when the
output polling support has not yet been set up.
Note that calls to enable and disable polling must be strictly ordered, which is automatically the case
when they’re only call from suspend/resume callbacks.
int drm_helper_probe_detect(struct drm_connector * connector, struct drm_modeset_acquire_ctx

* ctx, bool force)
probe connector status

Parameters
struct drm_connector * connector connector to probe
struct drm_modeset_acquire_ctx * ctx acquire_ctx, or NULL to let this function handle locking.
bool force Whether destructive probe operations should be performed.
Description
This function calls the detect callbacks of the connector. This function returns drm_connector_status, or
if ctx is set, it might also return -EDEADLK.
int drm_helper_probe_single_connector_modes(struct drm_connector * connector,

uint32_t maxX, uint32_t maxY)
get complete set of display modes

Parameters
struct drm_connector * connector connector to probe
uint32_t maxX max width for modes
uint32_t maxY max height for modes
Description
Based on the helper callbacks implemented by connector in struct drm_connector_helper_funcs try to
detect all valid modes. Modes will first be added to the connector’s probed_modes list, then culled (based
on validity and the maxX, maxY parameters) and put into the normal modes list.
Intended to be used as a generic implementation of the drm_connector_funcs.fill_modes() vfunc for
drivers that use the CRTC helpers for output mode filtering and detection.
The basic procedure is as follows
1. All modes currently on the connector’s modes list are marked as stale
2. New modes are added to the connector’s probed_modes list with drm_mode_probed_add(). New
modes start their life with status as OK. Modes are added from a single source using the following
priority order.
• debugfs ‘override_edid’ (used for testing only)
• firmware EDID (drm_load_edid_firmware())
• drm_connector_helper_funcs.get_modes vfunc
• if the connector status is connector_status_connected, standard VESA DMT modes up to
1024x768 are automatically added (drm_add_modes_noedid())

268 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Finally modes specified via the kernel command line (video=...) are added in addition to what the
earlier probes produced (drm_helper_probe_add_cmdline_mode()). These modes are generated
using the VESA GTF/CVT formulas.

3. Modes are moved from the probed_modes list to the modes list. Potential duplicates are merged
together (see drm_mode_connector_list_update()). After this step the probed_modes list will be
empty again.

4. Any non-stale mode on the modes list then undergoes validation
• drm_mode_validate_basic() performs basic sanity checks
• drm_mode_validate_size() filters out modes larger than maxX and maxY (if specified)
• drm_mode_validate_flag() checks the modes against basic connector capabilities (inter-
lace_allowed,doublescan_allowed,stereo_allowed)

• the optional drm_connector_helper_funcs.mode_valid helper can perform driver and/or sink
specific checks

• the optional drm_crtc_helper_funcs.mode_valid, drm_bridge_funcs.mode_valid and
drm_encoder_helper_funcs.mode_valid helpers can perform driver and/or source specific
checks which are also enforced by the modeset/atomic helpers

5. Any mode whose status is not OK is pruned from the connector’s modes list, accompanied by a debug
message indicating the reason for the mode’s rejection (see drm_mode_prune_invalid()).

Return
The number of modes found on connector.
void drm_kms_helper_hotplug_event(struct drm_device * dev)

fire off KMS hotplug events
Parameters
struct drm_device * dev drm_device whose connector state changed
Description
This function fires off the uevent for userspace and also calls the output_poll_changed function, which
is most commonly used to inform the fbdev emulation code and allow it to update the fbcon output
configuration.
Drivers should call this from their hotplug handling code when a change is detected. Note that this function
does not do any output detection of its own, like drm_helper_hpd_irq_event() does - this is assumed to
be done by the driver already.
This function must be called from process context with no mode setting locks held.
void drm_kms_helper_poll_disable(struct drm_device * dev)

disable output polling
Parameters
struct drm_device * dev drm_device
Description
This function disables the output polling work.
Drivers can call this helper from their device suspend implementation. It is not an error to call
this even when output polling isn’t enabled or already disabled. Polling is re-enabled by calling
drm_kms_helper_poll_enable().
Note that calls to enable and disable polling must be strictly ordered, which is automatically the case
when they’re only call from suspend/resume callbacks.
void drm_kms_helper_poll_init(struct drm_device * dev)

initialize and enable output polling

5.13. Output Probing Helper Functions Reference 269

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct drm_device * dev drm_device
Description
This function intializes and then also enables output polling support for dev. Drivers which do not have
reliable hotplug support in hardware can use this helper infrastructure to regularly poll such connectors
for changes in their connection state.
Drivers can control which connectors are polled by setting the DRM_CONNECTOR_POLL_CONNECT and
DRM_CONNECTOR_POLL_DISCONNECT flags. On connectors where probing live outputs can result in visual
distortion drivers should not set the DRM_CONNECTOR_POLL_DISCONNECT flag to avoid this. Connectors
which have no flag or only DRM_CONNECTOR_POLL_HPD set are completely ignored by the polling logic.
Note that a connector can be both polled and probed from the hotplug handler, in case the hotplug
interrupt is known to be unreliable.
void drm_kms_helper_poll_fini(struct drm_device * dev)

disable output polling and clean it up
Parameters
struct drm_device * dev drm_device
bool drm_helper_hpd_irq_event(struct drm_device * dev)

hotplug processing
Parameters
struct drm_device * dev drm_device
Description
Drivers can use this helper function to run a detect cycle on all connectors which have the
DRM_CONNECTOR_POLL_HPD flag set in their polled member. All other connectors are ignored, which is
useful to avoid reprobing fixed panels.
This helper function is useful for drivers which can’t or don’t track hotplug interrupts for each connector.
Drivers which support hotplug interrupts for each connector individually and which have a more fine-
grained detect logic should bypass this code and directly call drm_kms_helper_hotplug_event() in case
the connector state changed.
This function must be called from process context with no mode setting locks held.
Note that a connector can be both polled and probed from the hotplug handler, in case the hotplug
interrupt is known to be unreliable.

5.14 EDID Helper Functions Reference

int drm_eld_mnl(const uint8_t * eld)
Get ELD monitor name length in bytes.

Parameters
const uint8_t * eld pointer to an eld memory structure with mnl set
const uint8_t * drm_eld_sad(const uint8_t * eld)

Get ELD SAD structures.
Parameters
const uint8_t * eld pointer to an eld memory structure with sad_count set
int drm_eld_sad_count(const uint8_t * eld)

Get ELD SAD count.

270 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
const uint8_t * eld pointer to an eld memory structure with sad_count set
int drm_eld_calc_baseline_block_size(const uint8_t * eld)

Calculate baseline block size in bytes
Parameters
const uint8_t * eld pointer to an eld memory structure with mnl and sad_count set
Description
This is a helper for determining the payload size of the baseline block, in bytes, for e.g. setting the
Baseline_ELD_Len field in the ELD header block.
int drm_eld_size(const uint8_t * eld)

Get ELD size in bytes
Parameters
const uint8_t * eld pointer to a complete eld memory structure
Description
The returned value does not include the vendor block. It’s vendor specific, and comprises of the remaining
bytes in the ELD memory buffer after drm_eld_size() bytes of header and baseline block.
The returned value is guaranteed to be a multiple of 4.
u8 drm_eld_get_spk_alloc(const uint8_t * eld)

Get speaker allocation
Parameters
const uint8_t * eld pointer to an ELD memory structure
Description
The returned value is the speakers mask. User has to use DRM_ELD_SPEAKER field definitions to identify
speakers.
u8 drm_eld_get_conn_type(const uint8_t * eld)

Get device type hdmi/dp connected
Parameters
const uint8_t * eld pointer to an ELD memory structure
Description
The caller need to use DRM_ELD_CONN_TYPE_HDMI or DRM_ELD_CONN_TYPE_DP to identify the display type
connected.
int drm_edid_header_is_valid(const u8 * raw_edid)

sanity check the header of the base EDID block
Parameters
const u8 * raw_edid pointer to raw base EDID block
Description
Sanity check the header of the base EDID block.
Return
8 if the header is perfect, down to 0 if it’s totally wrong.
bool drm_edid_block_valid(u8 * raw_edid, int block, bool print_bad_edid, bool * edid_corrupt)

Sanity check the EDID block (base or extension)
Parameters

5.14. EDID Helper Functions Reference 271

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

u8 * raw_edid pointer to raw EDID block
int block type of block to validate (0 for base, extension otherwise)
bool print_bad_edid if true, dump bad EDID blocks to the console
bool * edid_corrupt if true, the header or checksum is invalid
Description
Validate a base or extension EDID block and optionally dump bad blocks to the console.
Return
True if the block is valid, false otherwise.
bool drm_edid_is_valid(struct edid * edid)

sanity check EDID data
Parameters
struct edid * edid EDID data
Description
Sanity-check an entire EDID record (including extensions)
Return
True if the EDID data is valid, false otherwise.
struct edid * drm_do_get_edid(struct drm_connector * connector, int (*get_edid_block) (void *data,

u8 *buf, unsigned int block, size_t len, void * data)
get EDID data using a custom EDID block read function

Parameters
struct drm_connector * connector connector we’re probing
int (*)(void *data,u8 *buf,unsigned int block,size_t len) get_edid_block EDID block read

function
void * data private data passed to the block read function
Description
When the I2C adapter connected to the DDC bus is hidden behind a device that exposes a different
interface to read EDID blocks this function can be used to get EDID data using a custom block read
function.
As in the general case the DDC bus is accessible by the kernel at the I2C level, drivers must make all
reasonable efforts to expose it as an I2C adapter and use drm_get_edid() instead of abusing this function.
Return
Pointer to valid EDID or NULL if we couldn’t find any.
bool drm_probe_ddc(struct i2c_adapter * adapter)

probe DDC presence
Parameters
struct i2c_adapter * adapter I2C adapter to probe
Return
True on success, false on failure.
struct edid * drm_get_edid(struct drm_connector * connector, struct i2c_adapter * adapter)

get EDID data, if available
Parameters
struct drm_connector * connector connector we’re probing

272 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct i2c_adapter * adapter I2C adapter to use for DDC
Description
Poke the given I2C channel to grab EDID data if possible. If found, attach it to the connector.
Return
Pointer to valid EDID or NULL if we couldn’t find any.
struct edid * drm_get_edid_switcheroo(struct drm_connector * connector, struct i2c_adapter

* adapter)
get EDID data for a vga_switcheroo output

Parameters
struct drm_connector * connector connector we’re probing
struct i2c_adapter * adapter I2C adapter to use for DDC
Description
Wrapper around drm_get_edid() for laptops with dual GPUs using one set of outputs. The wrapper adds
the requisite vga_switcheroo calls to temporarily switch DDC to the GPU which is retrieving EDID.
Return
Pointer to valid EDID or NULL if we couldn’t find any.
struct edid * drm_edid_duplicate(const struct edid * edid)

duplicate an EDID and the extensions
Parameters
const struct edid * edid EDID to duplicate
Return
Pointer to duplicated EDID or NULL on allocation failure.
u8 drm_match_cea_mode(const struct drm_display_mode * to_match)

look for a CEA mode matching given mode
Parameters
const struct drm_display_mode * to_match display mode
Return
The CEA Video ID (VIC) of the mode or 0 if it isn’t a CEA-861 mode.
enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)

get the picture aspect ratio corresponding to the input VIC from the CEA mode list
Parameters
const u8 video_code ID given to each of the CEA modes
Description
Returns picture aspect ratio
void drm_edid_get_monitor_name(struct edid * edid, char * name, int bufsize)

fetch the monitor name from the edid
Parameters
struct edid * edid monitor EDID information
char * name pointer to a character array to hold the name of the monitor
int bufsize The size of the name buffer (should be at least 14 chars.)
void drm_edid_to_eld(struct drm_connector * connector, struct edid * edid)

build ELD from EDID

5.14. EDID Helper Functions Reference 273

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct drm_connector * connector connector corresponding to the HDMI/DP sink
struct edid * edid EDID to parse
Description
Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The Conn_Type, HDCP and Port_ID ELD
fields are left for the graphics driver to fill in.
int drm_edid_to_sad(struct edid * edid, struct cea_sad ** sads)

extracts SADs from EDID
Parameters
struct edid * edid EDID to parse
struct cea_sad ** sads pointer that will be set to the extracted SADs
Description
Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
Note
The returned pointer needs to be freed using kfree().
Return
The number of found SADs or negative number on error.
int drm_edid_to_speaker_allocation(struct edid * edid, u8 ** sadb)

extracts Speaker Allocation Data Blocks from EDID
Parameters
struct edid * edid EDID to parse
u8 ** sadb pointer to the speaker block
Description
Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
Note
The returned pointer needs to be freed using kfree().
Return
The number of found Speaker Allocation Blocks or negative number on error.
int drm_av_sync_delay(struct drm_connector * connector, const struct drm_display_mode * mode)

compute the HDMI/DP sink audio-video sync delay
Parameters
struct drm_connector * connector connector associated with the HDMI/DP sink
const struct drm_display_mode * mode the display mode
Return
The HDMI/DP sink’s audio-video sync delay in milliseconds or 0 if the sink doesn’t support audio or video.

bool drm_detect_hdmi_monitor(struct edid * edid)
detect whether monitor is HDMI

Parameters
struct edid * edid monitor EDID information

274 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Parse the CEA extension according to CEA-861-B.
Return
True if the monitor is HDMI, false if not or unknown.
bool drm_detect_monitor_audio(struct edid * edid)

check monitor audio capability
Parameters
struct edid * edid EDID block to scan
Description
Monitor should have CEA extension block. If monitor has ‘basic audio’, but no CEA audio blocks, it’s ‘basic
audio’ only. If there is any audio extension block and supported audio format, assume at least ‘basic
audio’ support, even if ‘basic audio’ is not defined in EDID.
Return
True if the monitor supports audio, false otherwise.
bool drm_rgb_quant_range_selectable(struct edid * edid)

is RGB quantization range selectable?
Parameters
struct edid * edid EDID block to scan
Description
Check whether the monitor reports the RGB quantization range selection as supported. The AVI infoframe
can then be used to inform the monitor which quantization range (full or limited) is used.
Return
True if the RGB quantization range is selectable, false otherwise.
enum hdmi_quantization_range drm_default_rgb_quant_range(const struct drm_display_mode

* mode)
default RGB quantization range

Parameters
const struct drm_display_mode * mode display mode
Description
Determine the default RGB quantization range for the mode, as specified in CEA-861.
Return
The default RGB quantization range for the mode
int drm_add_edid_modes(struct drm_connector * connector, struct edid * edid)

add modes from EDID data, if available
Parameters
struct drm_connector * connector connector we’re probing
struct edid * edid EDID data
Description
Add the specified modes to the connector’s mode list. Also fills out the drm_display_info structure in
connector with any information which can be derived from the edid.
Return
The number of modes added or 0 if we couldn’t find any.

5.14. EDID Helper Functions Reference 275

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int drm_add_modes_noedid(struct drm_connector * connector, int hdisplay, int vdisplay)
add modes for the connectors without EDID

Parameters
struct drm_connector * connector connector we’re probing
int hdisplay the horizontal display limit
int vdisplay the vertical display limit
Description
Add the specified modes to the connector’s mode list. Only when the hdisplay/vdisplay is not beyond the
given limit, it will be added.
Return
The number of modes added or 0 if we couldn’t find any.
void drm_set_preferred_mode(struct drm_connector * connector, int hpref, int vpref)

Sets the preferred mode of a connector
Parameters
struct drm_connector * connector connector whose mode list should be processed
int hpref horizontal resolution of preferred mode
int vpref vertical resolution of preferred mode
Description
Marks a mode as preferred if it matches the resolution specified by hpref and vpref.
int drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe * frame, const struct

drm_display_mode * mode)
fill an HDMI AVI infoframe with data from a DRM display mode

Parameters
struct hdmi_avi_infoframe * frame HDMI AVI infoframe
const struct drm_display_mode * mode DRM display mode
Return
0 on success or a negative error code on failure.
void drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe * frame, const

struct drm_display_mode * mode, enum
hdmi_quantization_range rgb_quant_range,
bool rgb_quant_range_selectable)

fill the HDMI AVI infoframe quantization range information
Parameters
struct hdmi_avi_infoframe * frame HDMI AVI infoframe
const struct drm_display_mode * mode DRM display mode
enum hdmi_quantization_range rgb_quant_range RGB quantization range (Q)
bool rgb_quant_range_selectable Sink support selectable RGB quantization range (QS)
int drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe * frame,

const struct drm_display_mode * mode)
fill an HDMI infoframe with data from a DRM display mode

Parameters
struct hdmi_vendor_infoframe * frame HDMI vendor infoframe
const struct drm_display_mode * mode DRM display mode

276 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Note that there’s is a need to send HDMI vendor infoframes only when using a 4k or stereoscopic 3D
mode. So when giving any other mode as input this function will return -EINVAL, error that can be safely
ignored.
Return
0 on success or a negative error code on failure.

5.15 SCDC Helper Functions Reference

Status and Control Data Channel (SCDC) is a mechanism introduced by the HDMI 2.0 specification. It is
a point-to-point protocol that allows the HDMI source and HDMI sink to exchange data. The same I2C
interface that is used to access EDID serves as the transport mechanism for SCDC.
int drm_scdc_readb(struct i2c_adapter * adapter, u8 offset, u8 * value)

read a single byte from SCDC
Parameters
struct i2c_adapter * adapter I2C adapter
u8 offset offset of register to read
u8 * value return location for the register value
Description
Reads a single byte from SCDC. This is a convenience wrapper around the drm_scdc_read() function.
Return
0 on success or a negative error code on failure.
int drm_scdc_writeb(struct i2c_adapter * adapter, u8 offset, u8 value)

write a single byte to SCDC
Parameters
struct i2c_adapter * adapter I2C adapter
u8 offset offset of register to read
u8 value return location for the register value
Description
Writes a single byte to SCDC. This is a convenience wrapper around the drm_scdc_write() function.
Return
0 on success or a negative error code on failure.
bool drm_scdc_set_scrambling(struct i2c_adapter * adapter, bool enable)

enable scrambling
Parameters
struct i2c_adapter * adapter I2C adapter for DDC channel
bool enable bool to indicate if scrambling is to be enabled/disabled
Description
Writes the TMDS config register over SCDC channel, and: enables scrambling when enable = 1 disables
scrambling when enable = 0
Return
True if scrambling is set/reset successfully, false otherwise.

5.15. SCDC Helper Functions Reference 277

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

bool drm_scdc_set_high_tmds_clock_ratio(struct i2c_adapter * adapter, bool set)
set TMDS clock ratio

Parameters
struct i2c_adapter * adapter I2C adapter for DDC channel
bool set ret or reset the high clock ratio
Description
Writes to the TMDS config register over SCDC channel, and: sets TMDS clock ratio to 1/40 when set = 1
sets TMDS clock ratio to 1/10 when set = 0
Return
True if write is successful, false otherwise.
ssize_t drm_scdc_read(struct i2c_adapter * adapter, u8 offset, void * buffer, size_t size)

read a block of data from SCDC
Parameters
struct i2c_adapter * adapter I2C controller
u8 offset start offset of block to read
void * buffer return location for the block to read
size_t size size of the block to read
Description
Reads a block of data from SCDC, starting at a given offset.
Return
0 on success, negative error code on failure.
ssize_t drm_scdc_write(struct i2c_adapter * adapter, u8 offset, const void * buffer, size_t size)

write a block of data to SCDC
Parameters
struct i2c_adapter * adapter I2C controller
u8 offset start offset of block to write
const void * buffer block of data to write
size_t size size of the block to write
Description
Writes a block of data to SCDC, starting at a given offset.
Return
0 on success, negative error code on failure.
bool drm_scdc_get_scrambling_status(struct i2c_adapter * adapter)

what is status of scrambling?
Parameters
struct i2c_adapter * adapter I2C adapter for DDC channel
Description
Reads the scrambler status over SCDC, and checks the scrambling status.
Return
True if the scrambling is enabled, false otherwise.

278 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

bool drm_scdc_set_scrambling(struct i2c_adapter * adapter, bool enable)
enable scrambling

Parameters
struct i2c_adapter * adapter I2C adapter for DDC channel
bool enable bool to indicate if scrambling is to be enabled/disabled
Description
Writes the TMDS config register over SCDC channel, and: enables scrambling when enable = 1 disables
scrambling when enable = 0
Return
True if scrambling is set/reset successfully, false otherwise.
bool drm_scdc_set_high_tmds_clock_ratio(struct i2c_adapter * adapter, bool set)

set TMDS clock ratio
Parameters
struct i2c_adapter * adapter I2C adapter for DDC channel
bool set ret or reset the high clock ratio
Description
TMDS clock ratio calculations go like this: TMDS character = 10 bit TMDS encoded value TMDS character
rate = The rate at which TMDS characters are transmitted(Mcsc) TMDS bit rate = 10x TMDS character
rate As per the spec: TMDS clock rate for pixel clock < 340 MHz = 1x the character rate

= 1/10 pixel clock rate
TMDS clock rate for pixel clock > 340 MHz = 0.25x the character rate = 1/40 pixel clock rate
Writes to the TMDS config register over SCDC channel, and: sets TMDS clock ratio to 1/40 when set = 1
sets TMDS clock ratio to 1/10 when set = 0
Return
True if write is successful, false otherwise.

5.16 Rectangle Utilities Reference

Utility functions to help manage rectangular areas for clipping, scaling, etc. calculations.
struct drm_rect

two dimensional rectangle
Definition

struct drm_rect {
int x1;
int y1;
int x2;
int y2;

};

Members
x1 horizontal starting coordinate (inclusive)
y1 vertical starting coordinate (inclusive)
x2 horizontal ending coordinate (exclusive)
y2 vertical ending coordinate (exclusive)

5.16. Rectangle Utilities Reference 279

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

DRM_RECT_FMT()
printf string for struct drm_rect

Parameters
DRM_RECT_ARG(r)

printf arguments for struct drm_rect

Parameters
r rectangle struct
DRM_RECT_FP_FMT()

printf string for struct drm_rect in 16.16 fixed point
Parameters
DRM_RECT_FP_ARG(r)

printf arguments for struct drm_rect in 16.16 fixed point
Parameters
r rectangle struct
Description
This is useful for e.g. printing plane source rectangles, which are in 16.16 fixed point.
void drm_rect_adjust_size(struct drm_rect * r, int dw, int dh)

adjust the size of the rectangle
Parameters
struct drm_rect * r rectangle to be adjusted
int dw horizontal adjustment
int dh vertical adjustment
Description
Change the size of rectangle r by dw in the horizontal direction, and by dh in the vertical direction, while
keeping the center of r stationary.
Positive dw and dh increase the size, negative values decrease it.
void drm_rect_translate(struct drm_rect * r, int dx, int dy)

translate the rectangle
Parameters
struct drm_rect * r rectangle to be tranlated
int dx horizontal translation
int dy vertical translation
Description
Move rectangle r by dx in the horizontal direction, and by dy in the vertical direction.
void drm_rect_downscale(struct drm_rect * r, int horz, int vert)

downscale a rectangle
Parameters
struct drm_rect * r rectangle to be downscaled
int horz horizontal downscale factor
int vert vertical downscale factor
Description
Divide the coordinates of rectangle r by horz and vert.

280 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int drm_rect_width(const struct drm_rect * r)
determine the rectangle width

Parameters
const struct drm_rect * r rectangle whose width is returned
Return
The width of the rectangle.
int drm_rect_height(const struct drm_rect * r)

determine the rectangle height
Parameters
const struct drm_rect * r rectangle whose height is returned
Return
The height of the rectangle.
bool drm_rect_visible(const struct drm_rect * r)

determine if the the rectangle is visible
Parameters
const struct drm_rect * r rectangle whose visibility is returned
Return
true if the rectangle is visible, false otherwise.
bool drm_rect_equals(const struct drm_rect * r1, const struct drm_rect * r2)

determine if two rectangles are equal
Parameters
const struct drm_rect * r1 first rectangle
const struct drm_rect * r2 second rectangle
Return
true if the rectangles are equal, false otherwise.
bool drm_rect_intersect(struct drm_rect * r1, const struct drm_rect * r2)

intersect two rectangles
Parameters
struct drm_rect * r1 first rectangle
const struct drm_rect * r2 second rectangle
Description
Calculate the intersection of rectangles r1 and r2. r1 will be overwritten with the intersection.
Return
true if rectangle r1 is still visible after the operation, false otherwise.
bool drm_rect_clip_scaled(struct drm_rect * src, struct drm_rect * dst, const struct drm_rect

* clip, int hscale, int vscale)
perform a scaled clip operation

Parameters
struct drm_rect * src source window rectangle
struct drm_rect * dst destination window rectangle
const struct drm_rect * clip clip rectangle

5.16. Rectangle Utilities Reference 281

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int hscale horizontal scaling factor
int vscale vertical scaling factor
Description
Clip rectangle dst by rectangle clip. Clip rectangle src by the same amounts multiplied by hscale and
vscale.
Return
true if rectangle dst is still visible after being clipped, false otherwise
int drm_rect_calc_hscale(const struct drm_rect * src, const struct drm_rect * dst, int min_hscale,

int max_hscale)
calculate the horizontal scaling factor

Parameters
const struct drm_rect * src source window rectangle
const struct drm_rect * dst destination window rectangle
int min_hscale minimum allowed horizontal scaling factor
int max_hscale maximum allowed horizontal scaling factor
Description
Calculate the horizontal scaling factor as (src width) / (dst width).
Return
The horizontal scaling factor, or errno of out of limits.
int drm_rect_calc_vscale(const struct drm_rect * src, const struct drm_rect * dst, int min_vscale,

int max_vscale)
calculate the vertical scaling factor

Parameters
const struct drm_rect * src source window rectangle
const struct drm_rect * dst destination window rectangle
int min_vscale minimum allowed vertical scaling factor
int max_vscale maximum allowed vertical scaling factor
Description
Calculate the vertical scaling factor as (src height) / (dst height).
Return
The vertical scaling factor, or errno of out of limits.
int drm_rect_calc_hscale_relaxed(struct drm_rect * src, struct drm_rect * dst, int min_hscale,

int max_hscale)
calculate the horizontal scaling factor

Parameters
struct drm_rect * src source window rectangle
struct drm_rect * dst destination window rectangle
int min_hscale minimum allowed horizontal scaling factor
int max_hscale maximum allowed horizontal scaling factor
Description
Calculate the horizontal scaling factor as (src width) / (dst width).

282 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

If the calculated scaling factor is belowmin_vscale, decrease the height of rectangle dst to compensate.
If the calculated scaling factor is abovemax_vscale, decrease the height of rectangle src to compensate.
Return
The horizontal scaling factor.
int drm_rect_calc_vscale_relaxed(struct drm_rect * src, struct drm_rect * dst, int min_vscale,

int max_vscale)
calculate the vertical scaling factor

Parameters
struct drm_rect * src source window rectangle
struct drm_rect * dst destination window rectangle
int min_vscale minimum allowed vertical scaling factor
int max_vscale maximum allowed vertical scaling factor
Description
Calculate the vertical scaling factor as (src height) / (dst height).
If the calculated scaling factor is belowmin_vscale, decrease the height of rectangle dst to compensate.
If the calculated scaling factor is abovemax_vscale, decrease the height of rectangle src to compensate.
Return
The vertical scaling factor.
void drm_rect_debug_print(const char * prefix, const struct drm_rect * r, bool fixed_point)

print the rectangle information
Parameters
const char * prefix prefix string
const struct drm_rect * r rectangle to print
bool fixed_point rectangle is in 16.16 fixed point format
void drm_rect_rotate(struct drm_rect * r, int width, int height, unsigned int rotation)

Rotate the rectangle
Parameters
struct drm_rect * r rectangle to be rotated
int width Width of the coordinate space
int height Height of the coordinate space
unsigned int rotation Transformation to be applied
Description
Apply rotation to the coordinates of rectangle r.
width and height combined with rotation define the location of the new origin.
width correcsponds to the horizontal and height to the vertical axis of the untransformed coordinate
space.
void drm_rect_rotate_inv(struct drm_rect * r, int width, int height, unsigned int rotation)

Inverse rotate the rectangle
Parameters
struct drm_rect * r rectangle to be rotated
int width Width of the coordinate space

5.16. Rectangle Utilities Reference 283

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int height Height of the coordinate space
unsigned int rotation Transformation whose inverse is to be applied
Description
Apply the inverse of rotation to the coordinates of rectangle r.
width and height combined with rotation define the location of the new origin.
width correcsponds to the horizontal and height to the vertical axis of the original untransformed coor-
dinate space, so that you never have to flip them when doing a rotatation and its inverse. That is, if you
do

DRM_MODE_PROP_ROTATE(:c:type:`r`, width, height, rotation);
DRM_MODE_ROTATE_inv(:c:type:`r`, width, height, rotation);

you will always get back the original rectangle.

5.17 HDMI Infoframes Helper Reference

Strictly speaking this is not a DRM helper library but generally useable by any driver interfacing with HDMI
outputs like v4l or alsa drivers. But it nicely fits into the overall topic of mode setting helper libraries and
hence is also included here.
union hdmi_infoframe

overall union of all abstract infoframe representations
Definition

union hdmi_infoframe {
struct hdmi_any_infoframe any;
struct hdmi_avi_infoframe avi;
struct hdmi_spd_infoframe spd;
union hdmi_vendor_any_infoframe vendor;
struct hdmi_audio_infoframe audio;

};

Members
any generic infoframe
avi avi infoframe
spd spd infoframe
vendor union of all vendor infoframes
audio audio infoframe
Description
This is used by the generic pack function. This works since all infoframes have the same header which
also indicates which type of infoframe should be packed.
int hdmi_avi_infoframe_init(struct hdmi_avi_infoframe * frame)

initialize an HDMI AVI infoframe
Parameters
struct hdmi_avi_infoframe * frame HDMI AVI infoframe
Description
Returns 0 on success or a negative error code on failure.
ssize_t hdmi_avi_infoframe_pack(struct hdmi_avi_infoframe * frame, void * buffer, size_t size)

write HDMI AVI infoframe to binary buffer

284 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct hdmi_avi_infoframe * frame HDMI AVI infoframe
void * buffer destination buffer
size_t size size of buffer
Description
Packs the information contained in the frame structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of
the HDMI 1.4 specification.
Returns the number of bytes packed into the binary buffer or a negative error code on failure.
int hdmi_spd_infoframe_init(struct hdmi_spd_infoframe * frame, const char * vendor, const char

* product)
initialize an HDMI SPD infoframe

Parameters
struct hdmi_spd_infoframe * frame HDMI SPD infoframe
const char * vendor vendor string
const char * product product string
Description
Returns 0 on success or a negative error code on failure.
ssize_t hdmi_spd_infoframe_pack(struct hdmi_spd_infoframe * frame, void * buffer, size_t size)

write HDMI SPD infoframe to binary buffer
Parameters
struct hdmi_spd_infoframe * frame HDMI SPD infoframe
void * buffer destination buffer
size_t size size of buffer
Description
Packs the information contained in the frame structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of
the HDMI 1.4 specification.
Returns the number of bytes packed into the binary buffer or a negative error code on failure.
int hdmi_audio_infoframe_init(struct hdmi_audio_infoframe * frame)

initialize an HDMI audio infoframe
Parameters
struct hdmi_audio_infoframe * frame HDMI audio infoframe
Description
Returns 0 on success or a negative error code on failure.
ssize_t hdmi_audio_infoframe_pack(struct hdmi_audio_infoframe * frame, void * buffer,

size_t size)
write HDMI audio infoframe to binary buffer

Parameters
struct hdmi_audio_infoframe * frame HDMI audio infoframe
void * buffer destination buffer
size_t size size of buffer

5.17. HDMI Infoframes Helper Reference 285

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Packs the information contained in the frame structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of
the HDMI 1.4 specification.
Returns the number of bytes packed into the binary buffer or a negative error code on failure.
int hdmi_vendor_infoframe_init(struct hdmi_vendor_infoframe * frame)

initialize an HDMI vendor infoframe
Parameters
struct hdmi_vendor_infoframe * frame HDMI vendor infoframe
Description
Returns 0 on success or a negative error code on failure.
ssize_t hdmi_vendor_infoframe_pack(struct hdmi_vendor_infoframe * frame, void * buffer,

size_t size)
write a HDMI vendor infoframe to binary buffer

Parameters
struct hdmi_vendor_infoframe * frame HDMI infoframe
void * buffer destination buffer
size_t size size of buffer
Description
Packs the information contained in the frame structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of
the HDMI 1.4 specification.
Returns the number of bytes packed into the binary buffer or a negative error code on failure.
ssize_t hdmi_infoframe_pack(union hdmi_infoframe * frame, void * buffer, size_t size)

write a HDMI infoframe to binary buffer
Parameters
union hdmi_infoframe * frame HDMI infoframe
void * buffer destination buffer
size_t size size of buffer
Description
Packs the information contained in the frame structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of
the HDMI 1.4 specification.
Returns the number of bytes packed into the binary buffer or a negative error code on failure.
void hdmi_infoframe_log(const char * level, struct device * dev, union hdmi_infoframe * frame)

log info of HDMI infoframe
Parameters
const char * level logging level
struct device * dev device
union hdmi_infoframe * frame HDMI infoframe
int hdmi_infoframe_unpack(union hdmi_infoframe * frame, void * buffer)

unpack binary buffer to a HDMI infoframe
Parameters

286 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

union hdmi_infoframe * frame HDMI infoframe
void * buffer source buffer
Description
Unpacks the information contained in binary buffer buffer into a structured frame of a HDMI infoframe.
Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4 specification.
Returns 0 on success or a negative error code on failure.

5.18 Flip-work Helper Reference

Util to queue up work to run from work-queue context after flip/vblank. Typically this can be used to
defer unref of framebuffer’s, cursor bo’s, etc until after vblank. The APIs are all thread-safe. Moreover,
drm_flip_work_queue_task and drm_flip_work_queue can be called in atomic context.
struct drm_flip_task

flip work task
Definition

struct drm_flip_task {
struct list_head node;
void * data;

};

Members
node list entry element
data data to pass to drm_flip_work.func
struct drm_flip_work

flip work queue
Definition

struct drm_flip_work {
const char * name;
drm_flip_func_t func;
struct work_struct worker;
struct list_head queued;
struct list_head commited;
spinlock_t lock;

};

Members
name debug name
func callback fxn called for each committed item
worker worker which calls func
queued queued tasks
commited commited tasks
lock lock to access queued and commited lists
struct drm_flip_task * drm_flip_work_allocate_task(void * data, gfp_t flags)

allocate a flip-work task
Parameters
void * data data associated to the task

5.18. Flip-work Helper Reference 287

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

gfp_t flags allocator flags
Description
Allocate a drm_flip_task object and attach private data to it.
void drm_flip_work_queue_task(struct drm_flip_work * work, struct drm_flip_task * task)

queue a specific task
Parameters
struct drm_flip_work * work the flip-work
struct drm_flip_task * task the task to handle
Description
Queues task, that will later be run (passed back to drm_flip_func_t func) on a work queue after
drm_flip_work_commit() is called.
void drm_flip_work_queue(struct drm_flip_work * work, void * val)

queue work
Parameters
struct drm_flip_work * work the flip-work
void * val the value to queue
Description
Queues work, that will later be run (passed back to drm_flip_func_t func) on a work queue after
drm_flip_work_commit() is called.
void drm_flip_work_commit(struct drm_flip_work * work, struct workqueue_struct * wq)

commit queued work
Parameters
struct drm_flip_work * work the flip-work
struct workqueue_struct * wq the work-queue to run the queued work on
Description
Trigger work previously queued by drm_flip_work_queue() to run on a workqueue. The typical usage
would be to queue work (via drm_flip_work_queue()) at any point (from vblank irq and/or prior), and
then from vblank irq commit the queued work.
void drm_flip_work_init(struct drm_flip_work * work, const char * name, drm_flip_func_t func)

initialize flip-work
Parameters
struct drm_flip_work * work the flip-work to initialize
const char * name debug name
drm_flip_func_t func the callback work function
Description
Initializes/allocates resources for the flip-work
void drm_flip_work_cleanup(struct drm_flip_work * work)

cleans up flip-work
Parameters
struct drm_flip_work * work the flip-work to cleanup
Description
Destroy resources allocated for the flip-work

288 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

5.19 Plane Helper Reference

This helper library has two parts. The first part has support to implement primary plane support on
top of the normal CRTC configuration interface. Since the legacy drm_mode_config_funcs.set_config
interface ties the primary plane together with the CRTC state this does not allow userspace to disable the
primary plane itself. To avoid too much duplicated code use drm_plane_helper_check_update() which
can be used to enforce the same restrictions as primary planes had thus. The default primary plane only
expose XRBG8888 and ARGB8888 as valid pixel formats for the attached framebuffer.
Drivers are highly recommended to implement proper support for primary planes, and newly merged
drivers must not rely upon these transitional helpers.
The second part also implements transitional helpers which allow drivers to gradually switch to the atomic
helper infrastructure for plane updates. Once that switch is complete drivers shouldn’t use these any
longer, instead using the proper legacy implementations for update and disable plane hooks provided by
the atomic helpers.
Again drivers are strongly urged to switch to the new interfaces.
The plane helpers share the function table structures with other helpers, specifically also the atomic
helpers. See struct drm_plane_helper_funcs for the details.
int drm_plane_helper_check_state(struct drm_plane_state * state, const struct drm_rect

* clip, int min_scale, int max_scale, bool can_position,
bool can_update_disabled)

Check plane state for validity
Parameters
struct drm_plane_state * state plane state to check
const struct drm_rect * clip integer clipping coordinates
int min_scale minimum src:dest scaling factor in 16.16 fixed point
int max_scale maximum src:dest scaling factor in 16.16 fixed point
bool can_position is it legal to position the plane such that it doesn’t cover the entire crtc? This will

generally only be false for primary planes.
bool can_update_disabled can the plane be updated while the crtc is disabled?
Description
Checks that a desired plane update is valid, and updates various bits of derived state (clipped coordinates
etc.). Drivers that provide their own plane handling rather than helper-provided implementations may still
wish to call this function to avoid duplication of error checking code.
Return
Zero if update appears valid, error code on failure
int drm_plane_helper_check_update(struct drm_plane * plane, struct drm_crtc * crtc, struct

drm_framebuffer * fb, struct drm_rect * src, struct
drm_rect * dst, const struct drm_rect * clip, unsigned
int rotation, int min_scale, int max_scale, bool can_position,
bool can_update_disabled, bool * visible)

Check plane update for validity
Parameters
struct drm_plane * plane plane object to update
struct drm_crtc * crtc owning CRTC of owning plane
struct drm_framebuffer * fb framebuffer to flip onto plane
struct drm_rect * src source coordinates in 16.16 fixed point

5.19. Plane Helper Reference 289

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_rect * dst integer destination coordinates
const struct drm_rect * clip integer clipping coordinates
unsigned int rotation plane rotation
int min_scale minimum src:dest scaling factor in 16.16 fixed point
int max_scale maximum src:dest scaling factor in 16.16 fixed point
bool can_position is it legal to position the plane such that it doesn’t cover the entire crtc? This will

generally only be false for primary planes.
bool can_update_disabled can the plane be updated while the crtc is disabled?
bool * visible output parameter indicating whether plane is still visible after clipping
Description
Checks that a desired plane update is valid. Drivers that provide their own plane handling rather than
helper-provided implementations may still wish to call this function to avoid duplication of error checking
code.
Return
Zero if update appears valid, error code on failure
int drm_primary_helper_update(struct drm_plane * plane, struct drm_crtc * crtc, struct

drm_framebuffer * fb, int crtc_x, int crtc_y, unsigned int crtc_w,
unsigned int crtc_h, uint32_t src_x, uint32_t src_y, uint32_t src_w,
uint32_t src_h, struct drm_modeset_acquire_ctx * ctx)

Helper for primary plane update
Parameters
struct drm_plane * plane plane object to update
struct drm_crtc * crtc owning CRTC of owning plane
struct drm_framebuffer * fb framebuffer to flip onto plane
int crtc_x x offset of primary plane on crtc
int crtc_y y offset of primary plane on crtc
unsigned int crtc_w width of primary plane rectangle on crtc
unsigned int crtc_h height of primary plane rectangle on crtc
uint32_t src_x x offset of fb for panning
uint32_t src_y y offset of fb for panning
uint32_t src_w width of source rectangle in fb
uint32_t src_h height of source rectangle in fb
struct drm_modeset_acquire_ctx * ctx lock acquire context, not used here
Description
Provides a default plane update handler for primary planes. This is handler is called in response to a
userspace SetPlane operation on the plane with a non-NULL framebuffer. We call the driver’s modeset
handler to update the framebuffer.
SetPlane() on a primary plane of a disabled CRTC is not supported, and will return an error.
Note that we make some assumptions about hardware limitations that may not be true for all hardware –
1. Primary plane cannot be repositioned.
2. Primary plane cannot be scaled.
3. Primary plane must cover the entire CRTC.

290 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

4. Subpixel positioning is not supported.
Drivers for hardware that don’t have these restrictions can provide their own implementation rather than
using this helper.
Return
Zero on success, error code on failure
int drm_primary_helper_disable(struct drm_plane * plane, struct drm_modeset_acquire_ctx

* ctx)
Helper for primary plane disable

Parameters
struct drm_plane * plane plane to disable
struct drm_modeset_acquire_ctx * ctx lock acquire context, not used here
Description
Provides a default plane disable handler for primary planes. This is handler is called in response to a
userspace SetPlane operation on the plane with a NULL framebuffer parameter. It unconditionally fails
the disable call with -EINVAL the only way to disable the primary plane without driver support is to disable
the entire CRTC. Which does not match the plane drm_plane_funcs.disable_plane hook.
Note that some hardware may be able to disable the primary plane without disabling the whole CRTC.
Drivers for such hardware should provide their own disable handler that disables just the primary plane
(and they’ll likely need to provide their own update handler as well to properly re-enable a disabled primary
plane).
Return
Unconditionally returns -EINVAL.
void drm_primary_helper_destroy(struct drm_plane * plane)

Helper for primary plane destruction
Parameters
struct drm_plane * plane plane to destroy
Description
Provides a default plane destroy handler for primary planes. This handler is called during CRTC destruction.
We disable the primary plane, remove it from the DRM plane list, and deallocate the plane structure.
int drm_plane_helper_update(struct drm_plane * plane, struct drm_crtc * crtc, struct

drm_framebuffer * fb, int crtc_x, int crtc_y, unsigned int crtc_w,
unsigned int crtc_h, uint32_t src_x, uint32_t src_y, uint32_t src_w,
uint32_t src_h)

Transitional helper for plane update
Parameters
struct drm_plane * plane plane object to update
struct drm_crtc * crtc owning CRTC of owning plane
struct drm_framebuffer * fb framebuffer to flip onto plane
int crtc_x x offset of primary plane on crtc
int crtc_y y offset of primary plane on crtc
unsigned int crtc_w width of primary plane rectangle on crtc
unsigned int crtc_h height of primary plane rectangle on crtc
uint32_t src_x x offset of fb for panning
uint32_t src_y y offset of fb for panning

5.19. Plane Helper Reference 291

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

uint32_t src_w width of source rectangle in fb
uint32_t src_h height of source rectangle in fb
Description
Provides a default plane update handler using the atomic plane update functions. It is fully left to the driver
to check plane constraints and handle corner-cases like a fully occluded or otherwise invisible plane.
This is useful for piecewise transitioning of a driver to the atomic helpers.
Return
Zero on success, error code on failure
int drm_plane_helper_disable(struct drm_plane * plane)

Transitional helper for plane disable
Parameters
struct drm_plane * plane plane to disable
Description
Provides a default plane disable handler using the atomic plane update functions. It is fully left to the driver
to check plane constraints and handle corner-cases like a fully occluded or otherwise invisible plane.
This is useful for piecewise transitioning of a driver to the atomic helpers.
Return
Zero on success, error code on failure

5.20 Auxiliary Modeset Helpers

This helper library contains various one-off functions which don’t really fit anywhere else in the DRM
modeset helper library.
void drm_helper_move_panel_connectors_to_head(struct drm_device * dev)

move panels to the front in the connector list
Parameters
struct drm_device * dev drm device to operate on
Description
Some userspace presumes that the first connected connector is the main display, where it’s supposed
to display e.g. the login screen. For laptops, this should be the main panel. Use this function to sort all
(eDP/LVDS/DSI) panels to the front of the connector list, instead of painstakingly trying to initialize them
in the right order.
void drm_helper_mode_fill_fb_struct(struct drm_device * dev, struct drm_framebuffer * fb,

const struct drm_mode_fb_cmd2 * mode_cmd)
fill out framebuffer metadata

Parameters
struct drm_device * dev DRM device
struct drm_framebuffer * fb drm_framebuffer object to fill out
const struct drm_mode_fb_cmd2 * mode_cmd metadata from the userspace fb creation request
Description
This helper can be used in a drivers fb_create callback to pre-fill the fb’s metadata fields.

292 Chapter 5. Mode Setting Helper Functions

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int drm_crtc_init(struct drm_device * dev, struct drm_crtc * crtc, const struct drm_crtc_funcs
* funcs)

Legacy CRTC initialization function
Parameters
struct drm_device * dev DRM device
struct drm_crtc * crtc CRTC object to init
const struct drm_crtc_funcs * funcs callbacks for the new CRTC
Description
Initialize a CRTC object with a default helper-provided primary plane and no cursor plane.
Return
Zero on success, error code on failure.

5.20. Auxiliary Modeset Helpers 293

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

294 Chapter 5. Mode Setting Helper Functions

CHAPTER

SIX

USERLAND INTERFACES

The DRM core exports several interfaces to applications, generally intended to be used through cor-
responding libdrm wrapper functions. In addition, drivers export device-specific interfaces for use by
userspace drivers & device-aware applications through ioctls and sysfs files.
External interfaces include: memory mapping, context management, DMA operations, AGP management,
vblank control, fence management, memory management, and output management.
Cover generic ioctls and sysfs layout here. We only need high-level info, since man pages should cover
the rest.

6.1 libdrm Device Lookup

BEWARE THE DRAGONS! MIND THE TRAPDOORS!
In an attempt to warn anyone else who’s trying to figure out what’s going on here, I’ll try to summarize
the story. First things first, let’s clear up the names, because the kernel internals, libdrm and the ioctls
are all named differently:
• GET_UNIQUE ioctl, implemented by drm_getunique is wrapped up in libdrm through the drmGetBusid
function.

• The libdrm drmSetBusid function is backed by the SET_UNIQUE ioctl. All that code is nerved in the
kernel with drm_invalid_op().

• The internal set_busid kernel functions and driver callbacks are exclusively use by the SET_VERSION
ioctl, because only drm 1.0 (which is nerved) allowed userspace to set the busid through the above
ioctl.

• Other ioctls and functions involved are named consistently.
For anyone wondering what’s the difference between drm 1.1 and 1.4: Correctly handling pci domains in
the busid on ppc. Doing this correctly was only implemented in libdrm in 2010, hence can’t be nerved
yet. No one knows what’s special with drm 1.2 and 1.3.
Now the actual horror story of how device lookup in drm works. At large, there’s 2 different ways, either
by busid, or by device driver name.
Opening by busid is fairly simple:
1. First call SET_VERSION to make sure pci domains are handled properly. As a side-effect this fills out
the unique name in the master structure.

2. Call GET_UNIQUE to read out the unique name from the master structure, which matches the busid
thanks to step 1. If it doesn’t, proceed to try the next device node.

Opening by name is slightly different:
1. Directly call VERSION to get the version and to match against the driver name returned by that ioctl.
Note that SET_VERSION is not called, which means the the unique name for the master node just

295

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

opening is _not_ filled out. This despite that with current drm device nodes are always bound to one
device, and can’t be runtime assigned like with drm 1.0.

2. Match driver name. If it mismatches, proceed to the next device node.
3. Call GET_UNIQUE, and check whether the unique name has length zero (by checking that the first
byte in the string is 0). If that’s not the case libdrm skips and proceeds to the next device node.
Probably this is just copypasta from drm 1.0 times where a set unique name meant that the driver
was in use already, but that’s just conjecture.

Long story short: To keep the open by name logic working, GET_UNIQUE must _not_ return a unique string
when SET_VERSION hasn’t been called yet, otherwise libdrm breaks. Even when that unique string can’t
ever change, and is totally irrelevant for actually opening the device because runtime assignable device
instances were only support in drm 1.0, which is long dead. But the libdrm code in drmOpenByName
somehow survived, hence this can’t be broken.

6.2 Primary Nodes, DRM Master and Authentication

struct drm_master is used to track groups of clients with open primary/legacy device nodes. For every
struct drm_file which has had at least once successfully became the device master (either through
the SET_MASTER IOCTL, or implicitly through opening the primary device node when no one else is the
current master that time) there exists one drm_master. This is noted in drm_file.is_master. All other
clients have just a pointer to the drm_master they are associated with.
In addition only one drm_master can be the current master for a drm_device. It can be switched through
the DROP_MASTER and SET_MASTER IOCTL, or implicitly through closing/openeing the primary device
node. See also drm_is_current_master().
Clients can authenticate against the current master (if it matches their own) using the GETMAGIC and
AUTHMAGIC IOCTLs. Together with exchanging masters, this allows controlled access to the device for an
entire group of mutually trusted clients.
bool drm_is_current_master(struct drm_file * fpriv)

checks whether priv is the current master
Parameters
struct drm_file * fpriv DRM file private
Description
Checks whether fpriv is current master on its device. This decides whether a client is allowed to run
DRM_MASTER IOCTLs.
Most of the modern IOCTL which require DRM_MASTER are for kernel modesetting - the current master is
assumed to own the non-shareable display hardware.
struct drm_master * drm_master_get(struct drm_master * master)

reference a master pointer
Parameters
struct drm_master * master struct drm_master

Description
Increments the reference count of master and returns a pointer to master.
void drm_master_put(struct drm_master ** master)

unreference and clear a master pointer
Parameters
struct drm_master ** master pointer to a pointer of struct drm_master

296 Chapter 6. Userland interfaces

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This decrements the drm_master behind master and sets it to NULL.
struct drm_master

drm master structure
Definition

struct drm_master {
struct kref refcount;
struct drm_device * dev;
char * unique;
int unique_len;
struct idr magic_map;
struct drm_lock_data lock;
void * driver_priv;

};

Members
refcount Refcount for this master object.
dev Link back to the DRM device
unique Unique identifier: e.g. busid. Protected by drm_device.master_mutex.
unique_len Length of unique field. Protected by drm_device.master_mutex.
magic_map Map of used authentication tokens. Protected by drm_device.master_mutex.
lock DRI1 lock information.
driver_priv Pointer to driver-private information.
Description
Note that master structures are only relevant for the legacy/primary device nodes, hence there can only
be one per device, not one per drm_minor.

6.3 Open-Source Userspace Requirements

The DRM subsystem has stricter requirements than most other kernel subsystems on what the userspace
side for new uAPI needs to look like. This section here explains what exactly those requirements are, and
why they exist.
The short summary is that any addition of DRM uAPI requires corresponding open-sourced userspace
patches, and those patches must be reviewed and ready for merging into a suitable and canonical up-
stream project.
GFX devices (both display and render/GPU side) are really complex bits of hardware, with userspace and
kernel by necessity having to work together really closely. The interfaces, for rendering and modesetting,
must be extremely wide and flexible, and therefore it is almost always impossible to precisely define
them for every possible corner case. This in turn makes it really practically infeasible to differentiate
between behaviour that’s required by userspace, and which must not be changed to avoid regressions,
and behaviour which is only an accidental artifact of the current implementation.
Without access to the full source code of all userspace users that means it becomes impossible to change
the implementation details, since userspace could depend upon the accidental behaviour of the current
implementation in minute details. And debugging such regressions without access to source code is pretty
much impossible. As a consequence this means:
• The Linux kernel’s “no regression” policy holds in practice only for open-source userspace of the
DRM subsystem. DRM developers are perfectly fine if closed-source blob drivers in userspace use

6.3. Open-Source Userspace Requirements 297

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

the same uAPI as the open drivers, but they must do so in the exact same way as the open drivers.
Creative (ab)use of the interfaces will, and in the past routinely has, lead to breakage.

• Any new userspace interface must have an open-source implementation as demonstration vehicle.
The other reason for requiring open-source userspace is uAPI review. Since the kernel and userspace
parts of a GFX stack must work together so closely, code review can only assess whether a new interface
achieves its goals by looking at both sides. Making sure that the interface indeed covers the use-case
fully leads to a few additional requirements:
• The open-source userspace must not be a toy/test application, but the real thing. Specifically it needs
to handle all the usual error and corner cases. These are often the places where new uAPI falls apart
and hence essential to assess the fitness of a proposed interface.

• The userspace side must be fully reviewed and tested to the standards of that userspace project. For
e.g. mesa this means piglit testcases and review on the mailing list. This is again to ensure that the
new interface actually gets the job done.

• The userspace patches must be against the canonical upstream, not some vendor fork. This is to
make sure that no one cheats on the review and testing requirements by doing a quick fork.

• The kernel patch can only bemerged after all the above requirements aremet, but itmust bemerged
before the userspace patches land. uAPI always flows from the kernel, doing things the other way
round risks divergence of the uAPI definitions and header files.

These are fairly steep requirements, but have grown out from years of shared pain and experience with
uAPI added hastily, and almost always regretted about just as fast. GFX devices change really fast, re-
quiring a paradigm shift and entire new set of uAPI interfaces every few years at least. Together with the
Linux kernel’s guarantee to keep existing userspace running for 10+ years this is already rather painful
for the DRM subsystem, with multiple different uAPIs for the same thing co-existing. If we add a few more
complete mistakes into the mix every year it would be entirely unmanageable.

6.4 Render nodes

DRM core providesmultiple character-devices for user-space to use. Depending onwhich device is opened,
user-space can perform a different set of operations (mainly ioctls). The primary node is always created
and called card<num>. Additionally, a currently unused control node, called controlD<num> is also
created. The primary node provides all legacy operations and historically was the only interface used by
userspace. With KMS, the control node was introduced. However, the planned KMS control interface has
never been written and so the control node stays unused to date.
With the increased use of offscreen renderers and GPGPU applications, clients no longer require running
compositors or graphics servers to make use of a GPU. But the DRM API required unprivileged clients to
authenticate to a DRM-Master prior to getting GPU access. To avoid this step and to grant clients GPU
access without authenticating, render nodes were introduced. Render nodes solely serve render clients,
that is, no modesetting or privileged ioctls can be issued on render nodes. Only non-global rendering
commands are allowed. If a driver supports render nodes, it must advertise it via the DRIVER_RENDER
DRM driver capability. If not supported, the primary node must be used for render clients together with
the legacy drmAuth authentication procedure.
If a driver advertises render node support, DRM core will create a separate render node called ren-
derD<num>. There will be one render node per device. No ioctls except PRIME-related ioctls will be
allowed on this node. Especially GEM_OPEN will be explicitly prohibited. Render nodes are designed to
avoid the buffer-leaks, which occur if clients guess the flink names or mmap offsets on the legacy inter-
face. Additionally to this basic interface, drivers must mark their driver-dependent render-only ioctls as
DRM_RENDER_ALLOW so render clients can use them. Driver authors must be careful not to allow any
privileged ioctls on render nodes.
With render nodes, user-space can now control access to the render node via basic file-system access-
modes. A running graphics server which authenticates clients on the privileged primary/legacy node is
no longer required. Instead, a client can open the render node and is immediately granted GPU access.

298 Chapter 6. Userland interfaces

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Communication between clients (or servers) is done via PRIME. FLINK from render node to legacy node is
not supported. New clients must not use the insecure FLINK interface.
Besides dropping all modeset/global ioctls, render nodes also drop the DRM-Master concept. There is no
reason to associate render clients with a DRM-Master as they are independent of any graphics server.
Besides, they must work without any running master, anyway. Drivers must be able to run without a
master object if they support render nodes. If, on the other hand, a driver requires shared state between
clients which is visible to user-space and accessible beyond open-file boundaries, they cannot support
render nodes.

6.5 IOCTL Support on Device Nodes

First things first, driver private IOCTLs should only be needed for drivers supporting rendering. Kernel
modesetting is all standardized, and extended through properties. There are a few exceptions in some
existing drivers, which define IOCTL for use by the display DRM master, but they all predate properties.
Now if you do have a render driver you always have to support it through driver private properties. There’s
a few steps needed to wire all the things up.
First you need to define the structure for your IOCTL in your driver private UAPI header in in-
clude/uapi/drm/my_driver_drm.h:

struct my_driver_operation {
u32 some_thing;
u32 another_thing;

};

Please make sure that you follow all the best practices from Documentation/ioctl/botching-up-
ioctls.txt. Note that drm_ioctl() automatically zero-extends structures, hence make sure you can
add more stuff at the end, i.e. don’t put a variable sized array there.
Then you need to define your IOCTL number, using one of DRM_IO(), DRM_IOR(), DRM_IOW() or
DRM_IOWR(). It must start with the DRM_IOCTL_ prefix:

##define DRM_IOCTL_MY_DRIVER_OPERATION * DRM_IOW(DRM_COMMAND_BASE, struct my_driver_
↪→operation)

DRM driver private IOCTL must be in the range from DRM_COMMAND_BASE to DRM_COMMAND_END.
Finally you need an array of struct drm_ioctl_desc to wire up the handlers and set the access rights:

static const struct drm_ioctl_desc my_driver_ioctls[] = {
DRM_IOCTL_DEF_DRV(MY_DRIVER_OPERATION, my_driver_operation,

DRM_AUTH|DRM_RENDER_ALLOW),
};

And then assign this to the drm_driver.ioctls field in your driver structure.
typedef int drm_ioctl_t(struct drm_device * dev, void * data, struct drm_file * file_priv)

DRM ioctl function type.
Parameters
struct drm_device * dev DRM device inode
void * data private pointer of the ioctl call
struct drm_file * file_priv DRM file this ioctl was made on
Description
This is the DRM ioctl typedef. Note that drm_ioctl() has alrady copied data into kernel-space, and will
also copy it back, depending upon the read/write settings in the ioctl command code.

6.5. IOCTL Support on Device Nodes 299

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

typedef int drm_ioctl_compat_t(struct file * filp, unsigned int cmd, unsigned long arg)
compatibility DRM ioctl function type.

Parameters
struct file * filp file pointer
unsigned int cmd ioctl command code
unsigned long arg DRM file this ioctl was made on
Description
Just a typedef to make declaring an array of compatibility handlers easier. New drivers shouldn’t screw
up the structure layout for their ioctl structures and hence never need this.
enum drm_ioctl_flags

DRM ioctl flags
Constants
DRM_AUTH This is for ioctl which are used for rendering, and require that the file descriptor is either for a

render node, or if it’s a legacy/primary node, then it must be authenticated.
DRM_MASTER This must be set for any ioctl which can change the modeset or display state. Userspace

must call the ioctl through a primary node, while it is the active master.
Note that read-only modeset ioctl can also be called by unauthenticated clients, or when a master is
not the currently active one.

DRM_ROOT_ONLY Anything that could potentially wreak a master file descriptor needs to have this flag set.
Current that’s only for the SETMASTER and DROPMASTER ioctl, which e.g. logind can call to force a
non-behaving master (display compositor) into compliance.
This is equivalent to callers with the SYSADMIN capability.

DRM_CONTROL_ALLOW Deprecated, do not use. Control nodes are in the process of getting removed.
DRM_UNLOCKED Whether drm_ioctl_desc.func should be called with the DRM BKL held or not. Enforced

as the default for all modern drivers, hence there should never be a need to set this flag.
DRM_RENDER_ALLOW This is used for all ioctl needed for rendering only, for drivers which support ren-

der nodes. This should be all new render drivers, and hence it should be always set for any ioctl
with DRM_AUTH set. Note though that read-only query ioctl might have this set, but have not set
DRM_AUTH because they do not require authentication.

Description
Various flags that can be set in drm_ioctl_desc.flags to control how userspace can use a given ioctl.
struct drm_ioctl_desc

DRM driver ioctl entry
Definition

struct drm_ioctl_desc {
unsigned int cmd;
enum drm_ioctl_flags flags;
drm_ioctl_t * func;
const char * name;

};

Members
cmd ioctl command number, without flags
flags a bitmask of enum drm_ioctl_flags

func handler for this ioctl
name user-readable name for debug output

300 Chapter 6. Userland interfaces

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
For convenience it’s easier to create these using the DRM_IOCTL_DEF_DRV() macro.
DRM_IOCTL_DEF_DRV(ioctl, _func, _flags)

helper macro to fill out a struct drm_ioctl_desc

Parameters
ioctl ioctl command suffix
_func handler for the ioctl
_flags a bitmask of enum drm_ioctl_flags

Description
Small helper macro to create a struct drm_ioctl_desc entry. The ioctl command number is constructed
by prepending DRM_IOCTL_ and passing that to DRM_IOCTL_NR().
int drm_noop(struct drm_device * dev, void * data, struct drm_file * file_priv)

DRM no-op ioctl implemntation
Parameters
struct drm_device * dev DRM device for the ioctl
void * data data pointer for the ioctl
struct drm_file * file_priv DRM file for the ioctl call
Description
This no-op implementation for drm ioctls is useful for deprecated functionality where we can’t return a
failure code because existing userspace checks the result of the ioctl, but doesn’t care about the action.
Always returns successfully with 0.
int drm_invalid_op(struct drm_device * dev, void * data, struct drm_file * file_priv)

DRM invalid ioctl implemntation
Parameters
struct drm_device * dev DRM device for the ioctl
void * data data pointer for the ioctl
struct drm_file * file_priv DRM file for the ioctl call
Description
This no-op implementation for drm ioctls is useful for deprecated functionality where we really don’t want
to allow userspace to call the ioctl any more. This is the case for old ums interfaces for drivers that
transitioned to kms gradually and so kept the old legacy tables around. This only applies to radeon and
i915 kms drivers, other drivers shouldn’t need to use this function.
Always fails with a return value of -EINVAL.
int drm_ioctl_permit(u32 flags, struct drm_file * file_priv)

Check ioctl permissions against caller
Parameters
u32 flags ioctl permission flags.
struct drm_file * file_priv Pointer to struct drm_file identifying the caller.
Description
Checks whether the caller is allowed to run an ioctl with the indicated permissions.
Return
Zero if allowed, -EACCES otherwise.

6.5. IOCTL Support on Device Nodes 301

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

long drm_ioctl(struct file * filp, unsigned int cmd, unsigned long arg)
ioctl callback implementation for DRM drivers

Parameters
struct file * filp file this ioctl is called on
unsigned int cmd ioctl cmd number
unsigned long arg user argument
Description
Looks up the ioctl function in the DRM core and the driver dispatch table, stored in drm_driver.ioctls.
It checks for necessary permission by calling drm_ioctl_permit(), and dispatches to the respective
function.
Return
Zero on success, negative error code on failure.
bool drm_ioctl_flags(unsigned int nr, unsigned int * flags)

Check for core ioctl and return ioctl permission flags
Parameters
unsigned int nr ioctl number
unsigned int * flags where to return the ioctl permission flags
Description
This ioctl is only used by the vmwgfx driver to augment the access checks done by the drm core and
insofar a pretty decent layering violation. This shouldn’t be used by any drivers.
Return
True if the nr corresponds to a DRM core ioctl number, false otherwise.
long drm_compat_ioctl(struct file * filp, unsigned int cmd, unsigned long arg)

32bit IOCTL compatibility handler for DRM drivers
Parameters
struct file * filp file this ioctl is called on
unsigned int cmd ioctl cmd number
unsigned long arg user argument
Description
Compatibility handler for 32 bit userspace running on 64 kernels. All actual IOCTL handling is forwarded to
drm_ioctl(), while marshalling structures as appropriate. Note that this only handles DRM core IOCTLs,
if the driver has botched IOCTL itself, it must handle those by wrapping this function.
Return
Zero on success, negative error code on failure.

6.6 Testing and validation

6.6.1 Validating changes with IGT

There’s a collection of tests that aims to cover the whole functionality of DRM drivers and that can be
used to check that changes to DRM drivers or the core don’t regress existing functionality. This test suite
is called IGT and its code can be found in https://cgit.freedesktop.org/drm/igt-gpu-tools/.
To build IGT, start by installing its build dependencies. In Debian-based systems:

302 Chapter 6. Userland interfaces

https://cgit.freedesktop.org/drm/igt-gpu-tools/

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

apt-get build-dep intel-gpu-tools

And in Fedora-based systems:

dnf builddep intel-gpu-tools

Then clone the repository:

$ git clone git://anongit.freedesktop.org/drm/igt-gpu-tools

Configure the build system and start the build:

$ cd igt-gpu-tools && ./autogen.sh && make -j6

Download the piglit dependency:

$./scripts/run-tests.sh -d

And run the tests:

$./scripts/run-tests.sh -t kms -t core -s

run-tests.sh is a wrapper around piglit that will execute the tests matching the -t options. A report in HTML
format will be available in ./results/html/index.html. Results can be compared with piglit.

6.6.2 Display CRC Support

DRM device drivers can provide to userspace CRC information of each frame as it reached a given hardware
component (a CRC sampling “source”).
Userspace can control generation of CRCs in a given CRTC by writing to the file dri/0/crtc-N/crc/control in
debugfs, with N being the index of the CRTC. Accepted values are source names (which are driver-specific)
and the “auto” keyword, which will let the driver select a default source of frame CRCs for this CRTC.
Once frame CRC generation is enabled, userspace can capture them by reading the dri/0/crtc-N/crc/data
file. Each line in that file contains the frame number in the first field and then a number of unsigned
integer fields containing the CRC data. Fields are separated by a single space and the number of CRC
fields is source-specific.
Note that though in some cases the CRC is computed in a specified way and on the frame contents as
supplied by userspace (eDP 1.3), in general the CRC computation is performed in an unspecified way
and on frame contents that have been already processed in also an unspecified way and thus userspace
cannot rely on being able to generate matching CRC values for the frame contents that it submits. In
this general case, the maximum userspace can do is to compare the reported CRCs of frames that should
have the same contents.
On the driver side the implementation effort is minimal, drivers only need to implement
drm_crtc_funcs.set_crc_source. The debugfs files are automatically set up if that vfunc is set. CRC
samples need to be captured in the driver by calling drm_crtc_add_crc_entry().
int drm_crtc_add_crc_entry(struct drm_crtc * crtc, bool has_frame, uint32_t frame, uint32_t

* crcs)
Add entry with CRC information for a frame

Parameters
struct drm_crtc * crtc CRTC to which the frame belongs
bool has_frame whether this entry has a frame number to go with
uint32_t frame number of the frame these CRCs are about
uint32_t * crcs array of CRC values, with length matching #drm_crtc_crc.values_cnt

6.6. Testing and validation 303

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
For each frame, the driver polls the source of CRCs for new data and calls this function to add them to the
buffer from where userspace reads.

6.6.3 Debugfs Support

struct drm_info_list
debugfs info list entry

Definition

struct drm_info_list {
const char * name;
int (* show) (struct seq_file*, void*);
u32 driver_features;
void * data;

};

Members
name file name
show Show callback. seq_file->private will be set to the struct drm_info_node corresponding to the

instance of this info on a given struct drm_minor.
driver_features Required driver features for this entry
data Driver-private data, should not be device-specific.
Description
This structure represents a debugfs file to be created by the drm core.
struct drm_info_node

Per-minor debugfs node structure
Definition

struct drm_info_node {
struct drm_minor * minor;
const struct drm_info_list * info_ent;

};

Members
minor struct drm_minor for this node.
info_ent template for this node.
Description
This structure represents a debugfs file, as an instantiation of a struct drm_info_list on a struct
drm_minor.
FIXME:
No it doesn’t make a hole lot of sense that we duplicate debugfs entries for both the render and the
primary nodes, but that’s how this has organically grown. It should probably be fixed, with a compatibility
link, if needed.
int drm_debugfs_create_files(const struct drm_info_list * files, int count, struct dentry * root,

struct drm_minor * minor)
Initialize a given set of debugfs files for DRM minor

Parameters
const struct drm_info_list * files The array of files to create

304 Chapter 6. Userland interfaces

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int count The number of files given
struct dentry * root DRI debugfs dir entry.
struct drm_minor * minor device minor number
Description
Create a given set of debugfs files represented by an array of struct drm_info_list in the given root
directory. These files will be removed automatically on drm_debugfs_cleanup().

6.7 Sysfs Support

DRM provides very little additional support to drivers for sysfs interactions, beyond just all the standard
stuff. Drivers who want to expose additional sysfs properties and property groups can attach them at
either drm_device.dev or drm_connector.kdev.
Registration is automatically handled when calling drm_dev_register(), or drm_connector_register()
in case of hot-plugged connectors. Unregistration is also automatically handled by
drm_dev_unregister() and drm_connector_unregister().
void drm_sysfs_hotplug_event(struct drm_device * dev)

generate a DRM uevent
Parameters
struct drm_device * dev DRM device
Description
Send a uevent for the DRM device specified by dev. Currently we only set HOTPLUG=1 in the uevent
environment, but this could be expanded to deal with other types of events.
int drm_class_device_register(struct device * dev)

register new device with the DRM sysfs class
Parameters
struct device * dev device to register
Description
Registers a new struct device within the DRM sysfs class. Essentially only used by ttm to have a place
for its global settings. Drivers should never use this.
void drm_class_device_unregister(struct device * dev)

unregister device with the DRM sysfs class
Parameters
struct device * dev device to unregister
Description
Unregisters a struct device from the DRM sysfs class. Essentially only used by ttm to have a place for
its global settings. Drivers should never use this.

6.8 VBlank event handling

The DRM core exposes two vertical blank related ioctls:
DRM_IOCTL_WAIT_VBLANK This takes a struct drm_wait_vblank structure as its argument, and it is used

to block or request a signal when a specified vblank event occurs.

6.7. Sysfs Support 305

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

DRM_IOCTL_MODESET_CTL This was only used for user-mode-settind drivers around modesetting
changes to allow the kernel to update the vblank interrupt after mode setting, since on many devices
the vertical blank counter is reset to 0 at some point during modeset. Modern drivers should not call
this any more since with kernel mode setting it is a no-op.

306 Chapter 6. Userland interfaces

CHAPTER

SEVEN

DRM/I915 INTEL GFX DRIVER

The drm/i915 driver supports all (with the exception of some very early models) integrated GFX chipsets
with both Intel display and rendering blocks. This excludes a set of SoC platforms with an SGX rendering
unit, those have basic support through the gma500 drm driver.

7.1 Core Driver Infrastructure

This section covers core driver infrastructure used by both the display and the GEM parts of the driver.

7.1.1 Runtime Power Management

The i915 driver supports dynamic enabling and disabling of entire hardware blocks at runtime. This is
especially important on the display side where software is supposed to control many power gatesmanually
on recent hardware, since on the GT side a lot of the power management is done by the hardware. But
even there some manual control at the device level is required.
Since i915 supports a diverse set of platforms with a unified codebase and hardware engineers just love
to shuffle functionality around between power domains there’s a sizeable amount of indirection required.
This file provides generic functions to the driver for grabbing and releasing references for abstract power
domains. It then maps those to the actual power wells present for a given platform.
bool __intel_display_power_is_enabled(struct drm_i915_private * dev_priv, enum in-

tel_display_power_domain domain)
unlocked check for a power domain

Parameters
struct drm_i915_private * dev_priv i915 device instance
enum intel_display_power_domain domain power domain to check
Description
This is the unlocked version of intel_display_power_is_enabled() and should only be used from error
capture and recovery code where deadlocks are possible.
Return
True when the power domain is enabled, false otherwise.
bool intel_display_power_is_enabled(struct drm_i915_private * dev_priv, enum in-

tel_display_power_domain domain)
check for a power domain

Parameters
struct drm_i915_private * dev_priv i915 device instance
enum intel_display_power_domain domain power domain to check

307

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This function can be used to check the hw power domain state. It is mostly used in hardware state readout
functions. Everywhere else code should rely upon explicit power domain reference counting to ensure that
the hardware block is powered up before accessing it.
Callers must hold the relevant modesetting locks to ensure that concurrent threads can’t disable the power
well while the caller tries to read a few registers.
Return
True when the power domain is enabled, false otherwise.
void intel_display_set_init_power(struct drm_i915_private * dev_priv, bool enable)

set the initial power domain state
Parameters
struct drm_i915_private * dev_priv i915 device instance
bool enable whether to enable or disable the initial power domain state
Description
For simplicity our driver load/unload and system suspend/resume code assumes that all power domains
are always enabled. This functions controls the state of this little hack. While the initial power domain
state is enabled runtime pm is effectively disabled.
void intel_display_power_get(struct drm_i915_private * dev_priv, enum in-

tel_display_power_domain domain)
grab a power domain reference

Parameters
struct drm_i915_private * dev_priv i915 device instance
enum intel_display_power_domain domain power domain to reference
Description
This function grabs a power domain reference for domain and ensures that the power domain and all its
parents are powered up. Therefore users should only grab a reference to the innermost power domain
they need.
Any power domain reference obtained by this function must have a symmetric call to in-
tel_display_power_put() to release the reference again.
bool intel_display_power_get_if_enabled(struct drm_i915_private * dev_priv, enum in-

tel_display_power_domain domain)
grab a reference for an enabled display power domain

Parameters
struct drm_i915_private * dev_priv i915 device instance
enum intel_display_power_domain domain power domain to reference
Description
This function grabs a power domain reference for domain and ensures that the power domain and all its
parents are powered up. Therefore users should only grab a reference to the innermost power domain
they need.
Any power domain reference obtained by this function must have a symmetric call to in-
tel_display_power_put() to release the reference again.
void intel_display_power_put(struct drm_i915_private * dev_priv, enum in-

tel_display_power_domain domain)
release a power domain reference

Parameters

308 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_i915_private * dev_priv i915 device instance
enum intel_display_power_domain domain power domain to reference
Description
This function drops the power domain reference obtained by intel_display_power_get() and might
power down the corresponding hardware block right away if this is the last reference.
int intel_power_domains_init(struct drm_i915_private * dev_priv)

initializes the power domain structures
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
Initializes the power domain structures for dev_priv depending upon the supported platform.
void intel_power_domains_fini(struct drm_i915_private * dev_priv)

finalizes the power domain structures
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
Finalizes the power domain structures for dev_priv depending upon the supported platform. This function
also disables runtime pm and ensures that the device stays powered up so that the driver can be reloaded.

void intel_power_domains_init_hw(struct drm_i915_private * dev_priv, bool resume)
initialize hardware power domain state

Parameters
struct drm_i915_private * dev_priv i915 device instance
bool resume Called from resume code paths or not
Description
This function initializes the hardware power domain state and enables all power wells belonging to the
INIT power domain. Power wells in other domains (and not in the INIT domain) are referenced or disabled
during the modeset state HW readout. After that the reference count of each power well must match its
HW enabled state, see intel_power_domains_verify_state().
void intel_power_domains_suspend(struct drm_i915_private * dev_priv)

suspend power domain state
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This function prepares the hardware power domain state before entering system suspend. It must be
paired with intel_power_domains_init_hw().
void intel_power_domains_verify_state(struct drm_i915_private * dev_priv)

verify the HW/SW state for all power wells
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
Verify if the reference count of each power well matches its HW enabled state and the total refcount of
the domains it belongs to. This must be called after modeset HW state sanitization, which is responsible

7.1. Core Driver Infrastructure 309

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

for acquiring reference counts for any power wells in use and disabling the ones left on by BIOS but not
required by any active output.
void intel_runtime_pm_get(struct drm_i915_private * dev_priv)

grab a runtime pm reference
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This function grabs a device-level runtime pm reference (mostly used for GEM code to ensure the GTT or
GT is on) and ensures that it is powered up.
Any runtime pm reference obtained by this function must have a symmetric call to in-
tel_runtime_pm_put() to release the reference again.
bool intel_runtime_pm_get_if_in_use(struct drm_i915_private * dev_priv)

grab a runtime pm reference if device in use
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This function grabs a device-level runtime pm reference if the device is already in use and ensures that it
is powered up.
Any runtime pm reference obtained by this function must have a symmetric call to in-
tel_runtime_pm_put() to release the reference again.
void intel_runtime_pm_get_noresume(struct drm_i915_private * dev_priv)

grab a runtime pm reference
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This function grabs a device-level runtime pm reference (mostly used for GEM code to ensure the GTT or
GT is on).
It will _not_ power up the device but instead only check that it’s powered on. Therefore it is only valid to
call this functions from contexts where the device is known to be powered up and where trying to power
it up would result in hilarity and deadlocks. That pretty much means only the system suspend/resume
code where this is used to grab runtime pm references for delayed setup down in work items.
Any runtime pm reference obtained by this function must have a symmetric call to in-
tel_runtime_pm_put() to release the reference again.
void intel_runtime_pm_put(struct drm_i915_private * dev_priv)

release a runtime pm reference
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This function drops the device-level runtime pm reference obtained by intel_runtime_pm_get() and
might power down the corresponding hardware block right away if this is the last reference.
void intel_runtime_pm_enable(struct drm_i915_private * dev_priv)

enable runtime pm
Parameters
struct drm_i915_private * dev_priv i915 device instance

310 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This function enables runtime pm at the end of the driver load sequence.
Note that this function does currently not enable runtime pm for the subordinate display power domains.
That is only done on the first modeset using intel_display_set_init_power().
void intel_uncore_forcewake_get(struct drm_i915_private * dev_priv, enum force-

wake_domains fw_domains)
grab forcewake domain references

Parameters
struct drm_i915_private * dev_priv i915 device instance
enum forcewake_domains fw_domains forcewake domains to get reference on
Description
This function can be used get GT’s forcewake domain references. Normal register access will handle
the forcewake domains automatically. However if some sequence requires the GT to not power down
a particular forcewake domains this function should be called at the beginning of the sequence. And
subsequently the reference should be dropped by symmetric call to intel_unforce_forcewake_put().
Usually caller wants all the domains to be kept awake so the fw_domainswould be then FORCEWAKE_ALL.

void intel_uncore_forcewake_get__locked(struct drm_i915_private * dev_priv, enum force-
wake_domains fw_domains)

grab forcewake domain references
Parameters
struct drm_i915_private * dev_priv i915 device instance
enum forcewake_domains fw_domains forcewake domains to get reference on
Description
See intel_uncore_forcewake_get(). This variant places the onus on the caller to explicitly handle the
dev_priv->uncore.lock spinlock.
void intel_uncore_forcewake_put(struct drm_i915_private * dev_priv, enum force-

wake_domains fw_domains)
release a forcewake domain reference

Parameters
struct drm_i915_private * dev_priv i915 device instance
enum forcewake_domains fw_domains forcewake domains to put references
Description
This function drops the device-level forcewakes for specified domains obtained by in-
tel_uncore_forcewake_get().
void intel_uncore_forcewake_put__locked(struct drm_i915_private * dev_priv, enum force-

wake_domains fw_domains)
grab forcewake domain references

Parameters
struct drm_i915_private * dev_priv i915 device instance
enum forcewake_domains fw_domains forcewake domains to get reference on
Description
See intel_uncore_forcewake_put(). This variant places the onus on the caller to explicitly handle the
dev_priv->uncore.lock spinlock.

7.1. Core Driver Infrastructure 311

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int gen6_reset_engines(struct drm_i915_private * dev_priv, unsigned engine_mask)
reset individual engines

Parameters
struct drm_i915_private * dev_priv i915 device
unsigned engine_mask mask of intel_ring_flag() engines or ALL_ENGINES for full reset
Description
This function will reset the individual engines that are set in engine_mask. If you provide ALL_ENGINES as
mask, full global domain reset will be issued.
Note
It is responsibility of the caller to handle the difference between asking full domain reset versus reset for
all available individual engines.
Returns 0 on success, nonzero on error.
int __intel_wait_for_register_fw(struct drm_i915_private * dev_priv, i915_reg_t reg,

u32 mask, u32 value, unsigned int fast_timeout_us, unsigned
int slow_timeout_ms, u32 * out_value)

wait until register matches expected state
Parameters
struct drm_i915_private * dev_priv the i915 device
i915_reg_t reg the register to read
u32 mask mask to apply to register value
u32 value expected value
unsigned int fast_timeout_us fast timeout in microsecond for atomic/tight wait
unsigned int slow_timeout_ms slow timeout in millisecond
u32 * out_value optional placeholder to hold registry value
Description
This routine waits until the target register reg contains the expected value after applying themask, i.e.
it waits until

(I915_READ_FW(reg) & mask) == value

Otherwise, the wait will timeout after slow_timeout_ms milliseconds. For atomic context
slow_timeout_ms must be zero and fast_timeout_us must be not larger than 20,0000 microseconds.
Note that this routine assumes the caller holds forcewake asserted, it is not suitable for very long waits.
See intel_wait_for_register() if you wish to wait without holding forcewake for the duration (i.e. you
expect the wait to be slow).
Returns 0 if the register matches the desired condition, or -ETIMEOUT.
int intel_wait_for_register(struct drm_i915_private * dev_priv, i915_reg_t reg, u32 mask,

u32 value, unsigned int timeout_ms)
wait until register matches expected state

Parameters
struct drm_i915_private * dev_priv the i915 device
i915_reg_t reg the register to read
u32 mask mask to apply to register value
u32 value expected value
unsigned int timeout_ms timeout in millisecond

312 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This routine waits until the target register reg contains the expected value after applying themask, i.e.
it waits until

(I915_READ(reg) & mask) == value

Otherwise, the wait will timeout after timeout_ms milliseconds.
Returns 0 if the register matches the desired condition, or -ETIMEOUT.
enum forcewake_domains intel_uncore_forcewake_for_reg(struct drm_i915_private * dev_priv,

i915_reg_t reg, unsigned int op)
which forcewake domains are needed to access a register

Parameters
struct drm_i915_private * dev_priv pointer to struct drm_i915_private
i915_reg_t reg register in question
unsigned int op operation bitmask of FW_REG_READ and/or FW_REG_WRITE
Description
Returns a set of forcewake domains required to be taken with for example intel_uncore_forcewake_get
for the specified register to be accessible in the specified mode (read, write or read/write) with raw mmio
accessors.
NOTE
On Gen6 and Gen7 write forcewake domain (FORCEWAKE_RENDER) requires the callers to do FIFO man-
agement on their own or risk losing writes.

7.1.2 Interrupt Handling

These functions provide the basic support for enabling and disabling the interrupt handling support.
There’s a lot more functionality in i915_irq.c and related files, but that will be described in separate chap-
ters.
void intel_irq_init(struct drm_i915_private * dev_priv)

initializes irq support
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This function initializes all the irq support including work items, timers and all the vtables. It does not
setup the interrupt itself though.
void intel_runtime_pm_disable_interrupts(struct drm_i915_private * dev_priv)

runtime interrupt disabling
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This function is used to disable interrupts at runtime, both in the runtime pm and the system sus-
pend/resume code.
void intel_runtime_pm_enable_interrupts(struct drm_i915_private * dev_priv)

runtime interrupt enabling
Parameters
struct drm_i915_private * dev_priv i915 device instance

7.1. Core Driver Infrastructure 313

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This function is used to enable interrupts at runtime, both in the runtime pm and the system sus-
pend/resume code.

7.1.3 Intel GVT-g Guest Support(vGPU)

Intel GVT-g is a graphics virtualization technology which shares the GPU among multiple virtual machines
on a time-sharing basis. Each virtual machine is presented a virtual GPU (vGPU), which has equivalent
features as the underlying physical GPU (pGPU), so i915 driver can run seamlessly in a virtual machine.
This file provides vGPU specific optimizations when running in a virtual machine, to reduce the complexity
of vGPU emulation and to improve the overall performance.
A primary function introduced here is so-called “address space ballooning” technique. Intel GVT-g par-
titions global graphics memory among multiple VMs, so each VM can directly access a portion of the
memory without hypervisor’s intervention, e.g. filling textures or queuing commands. However with the
partitioning an unmodified i915 driver would assume a smaller graphics memory starting from address
ZERO, then requires vGPU emulation module to translate the graphics address between ‘guest view’ and
‘host view’, for all registers and command opcodes which contain a graphics memory address. To reduce
the complexity, Intel GVT-g introduces “address space ballooning”, by telling the exact partitioning knowl-
edge to each guest i915 driver, which then reserves and prevents non-allocated portions from allocation.
Thus vGPU emulation module only needs to scan and validate graphics addresses without complexity of
address translation.
void i915_check_vgpu(struct drm_i915_private * dev_priv)

detect virtual GPU
Parameters
struct drm_i915_private * dev_priv i915 device private
Description
This function is called at the initialization stage, to detect whether running on a vGPU.
void intel_vgt_deballoon(struct drm_i915_private * dev_priv)

deballoon reserved graphics address trunks
Parameters
struct drm_i915_private * dev_priv i915 device private data
Description
This function is called to deallocate the ballooned-out graphic memory, when driver is unloaded or when
ballooning fails.
int intel_vgt_balloon(struct drm_i915_private * dev_priv)

balloon out reserved graphics address trunks
Parameters
struct drm_i915_private * dev_priv i915 device private data
Description
This function is called at the initialization stage, to balloon out the graphic address space allocated to
other vGPUs, by marking these spaces as reserved. The ballooning related knowledge(starting address
and size of the mappable/unmappable graphic memory) is described in the vgt_if structure in a reserved
mmio range.
To give an example, the drawing below depicts one typical scenario after ballooning. Here the vGPU1
has 2 pieces of graphic address spaces ballooned out each for the mappable and the non-mappable part.
From the vGPU1 point of view, the total size is the same as the physical one, with the start address of its
graphic space being zero. Yet there are some portions ballooned out(the shadow part, which are marked

314 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

as reserved by drm allocator). From the host point of view, the graphic address space is partitioned by
multiple vGPUs in different VMs.

vGPU1 view Host view
0 ------> +-----------+ +-----------+
^ |###########| | vGPU3 |
| |###########| +-----------+
| |###########| | vGPU2 |
| +-----------+ +-----------+

mappable GM | available | ==> | vGPU1 |
| +-----------+ +-----------+
| |###########| | |
v |###########| | Host |
+=======+===========+ +===========+
^ |###########| | vGPU3 |
| |###########| +-----------+
| |###########| | vGPU2 |
| +-----------+ +-----------+

unmappable GM | available | ==> | vGPU1 |
| +-----------+ +-----------+
| |###########| | |
| |###########| | Host |
v |###########| | |

total GM size ------> +-----------+ +-----------+

Return
zero on success, non-zero if configuration invalid or ballooning failed

7.1.4 Intel GVT-g Host Support(vGPU device model)

Intel GVT-g is a graphics virtualization technology which shares the GPU among multiple virtual machines
on a time-sharing basis. Each virtual machine is presented a virtual GPU (vGPU), which has equivalent
features as the underlying physical GPU (pGPU), so i915 driver can run seamlessly in a virtual machine.
To virtualize GPU resources GVT-g driver depends on hypervisor technology e.g KVM/VFIO/mdev, Xen,
etc. to provide resource access trapping capability and be virtualized within GVT-g device module. More
architectural design doc is available on https://01.org/group/2230/documentation-list.
void intel_gvt_sanitize_options(struct drm_i915_private * dev_priv)

sanitize GVT related options
Parameters
struct drm_i915_private * dev_priv drm i915 private data
Description
This function is called at the i915 options sanitize stage.
int intel_gvt_init(struct drm_i915_private * dev_priv)

initialize GVT components
Parameters
struct drm_i915_private * dev_priv drm i915 private data
Description
This function is called at the initialization stage to create a GVT device.
Return
Zero on success, negative error code if failed.
void intel_gvt_cleanup(struct drm_i915_private * dev_priv)

cleanup GVT components when i915 driver is unloading

7.1. Core Driver Infrastructure 315

https://01.org/group/2230/documentation-list

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct drm_i915_private * dev_priv drm i915 private *
Description
This function is called at the i915 driver unloading stage, to shutdown GVT components and release the
related resources.

7.2 Display Hardware Handling

This section covers everything related to the display hardware including the mode setting infrastructure,
plane, sprite and cursor handling and display, output probing and related topics.

7.2.1 Mode Setting Infrastructure

The i915 driver is thus far the only DRM driver which doesn’t use the common DRM helper code to im-
plement mode setting sequences. Thus it has its own tailor-made infrastructure for executing a display
configuration change.

7.2.2 Frontbuffer Tracking

Many features require us to track changes to the currently active frontbuffer, especially rendering targeted
at the frontbuffer.
To be able to do so GEM tracks frontbuffers using a bitmask for all possible frontbuffer slots through
i915_gem_track_fb(). The function in this file are then called when the contents of the frontbuffer are
invalidated, when frontbuffer rendering has stopped again to flush out all the changes and when the
frontbuffer is exchanged with a flip. Subsystems interested in frontbuffer changes (e.g. PSR, FBC, DRRS)
should directly put their callbacks into the relevant places and filter for the frontbuffer slots that they are
interested int.
On a high level there are two types of powersaving features. The first one work like a special cache
(FBC and PSR) and are interested when they should stop caching and when to restart caching. This is
done by placing callbacks into the invalidate and the flush functions: At invalidate the caching must be
stopped and at flush time it can be restarted. And maybe they need to know when the frontbuffer changes
(e.g. when the hw doesn’t initiate an invalidate and flush on its own) which can be achieved with placing
callbacks into the flip functions.
The other type of display power saving feature only cares about busyness (e.g. DRRS). In that case all
three (invalidate, flush and flip) indicate busyness. There is no direct way to detect idleness. Instead an
idle timer work delayed work should be started from the flush and flip functions and cancelled as soon as
busyness is detected.
Note that there’s also an older frontbuffer activity tracking scheme which just tracks general activity. This
is done by the various mark_busy and mark_idle functions. For display power management features using
these functions is deprecated and should be avoided.
bool intel_fb_obj_invalidate(struct drm_i915_gem_object * obj, enum fb_op_origin origin)

invalidate frontbuffer object
Parameters
struct drm_i915_gem_object * obj GEM object to invalidate
enum fb_op_origin origin which operation caused the invalidation
Description

316 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

This function gets called every time rendering on the given object starts and frontbuffer caching (fbc, low
refresh rate for DRRS, panel self refresh) must be invalidated. For ORIGIN_CS any subsequent invalidation
will be delayed until the rendering completes or a flip on this frontbuffer plane is scheduled.
void intel_fb_obj_flush(struct drm_i915_gem_object * obj, enum fb_op_origin origin)

flush frontbuffer object
Parameters
struct drm_i915_gem_object * obj GEM object to flush
enum fb_op_origin origin which operation caused the flush
Description
This function gets called every time rendering on the given object has completed and frontbuffer caching
can be started again.
void intel_frontbuffer_flush(struct drm_i915_private * dev_priv, unsigned frontbuffer_bits,

enum fb_op_origin origin)
flush frontbuffer

Parameters
struct drm_i915_private * dev_priv i915 device
unsigned frontbuffer_bits frontbuffer plane tracking bits
enum fb_op_origin origin which operation caused the flush
Description
This function gets called every time rendering on the given planes has completed and frontbuffer caching
can be started again. Flushes will get delayed if they’re blocked by some outstanding asynchronous
rendering.
Can be called without any locks held.
void intel_frontbuffer_flip_prepare(struct drm_i915_private * dev_priv, un-

signed frontbuffer_bits)
prepare asynchronous frontbuffer flip

Parameters
struct drm_i915_private * dev_priv i915 device
unsigned frontbuffer_bits frontbuffer plane tracking bits
Description
This function gets called after scheduling a flip on obj. The actual frontbuffer flushing will be delayed until
completion is signalled with intel_frontbuffer_flip_complete. If an invalidate happens in between this flush
will be cancelled.
Can be called without any locks held.
void intel_frontbuffer_flip_complete(struct drm_i915_private * dev_priv, un-

signed frontbuffer_bits)
complete asynchronous frontbuffer flip

Parameters
struct drm_i915_private * dev_priv i915 device
unsigned frontbuffer_bits frontbuffer plane tracking bits
Description
This function gets called after the flip has been latched and will complete on the next vblank. It will
execute the flush if it hasn’t been cancelled yet.
Can be called without any locks held.

7.2. Display Hardware Handling 317

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void intel_frontbuffer_flip(struct drm_i915_private * dev_priv, unsigned frontbuffer_bits)
synchronous frontbuffer flip

Parameters
struct drm_i915_private * dev_priv i915 device
unsigned frontbuffer_bits frontbuffer plane tracking bits
Description
This function gets called after scheduling a flip on obj. This is for synchronous plane updates which will
happen on the next vblank and which will not get delayed by pending gpu rendering.
Can be called without any locks held.
void i915_gem_track_fb(struct drm_i915_gem_object * old, struct drm_i915_gem_object * new, un-

signed frontbuffer_bits)
update frontbuffer tracking

Parameters
struct drm_i915_gem_object * old current GEM buffer for the frontbuffer slots
struct drm_i915_gem_object * new new GEM buffer for the frontbuffer slots
unsigned frontbuffer_bits bitmask of frontbuffer slots
Description
This updates the frontbuffer tracking bits frontbuffer_bits by clearing them from old and setting them
in new. Both old and new can be NULL.

7.2.3 Display FIFO Underrun Reporting

The i915 driver checks for display fifo underruns using the interrupt signals provided by the hardware.
This is enabled by default and fairly useful to debug display issues, especially watermark settings.
If an underrun is detected this is logged into dmesg. To avoid flooding logs and occupying the cpu underrun
interrupts are disabled after the first occurrence until the next modeset on a given pipe.
Note that underrun detection on gmch platforms is a bit more ugly since there is no interrupt (despite
that the signalling bit is in the PIPESTAT pipe interrupt register). Also on some other platforms underrun
interrupts are shared, which means that if we detect an underrun we need to disable underrun reporting
on all pipes.
The code also supports underrun detection on the PCH transcoder.
bool intel_set_cpu_fifo_underrun_reporting(struct drm_i915_private * dev_priv, enum

pipe pipe, bool enable)
set cpu fifo underrrun reporting state

Parameters
struct drm_i915_private * dev_priv i915 device instance
enum pipe pipe (CPU) pipe to set state for
bool enable whether underruns should be reported or not
Description
This function sets the fifo underrun state for pipe. It is used in the modeset code to avoid false positives
since on many platforms underruns are expected when disabling or enabling the pipe.
Notice that on some platforms disabling underrun reports for one pipe disables for all due to shared
interrupts. Actual reporting is still per-pipe though.
Returns the previous state of underrun reporting.

318 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

bool intel_set_pch_fifo_underrun_reporting(struct drm_i915_private * dev_priv, enum
transcoder pch_transcoder, bool enable)

set PCH fifo underrun reporting state
Parameters
struct drm_i915_private * dev_priv i915 device instance
enum transcoder pch_transcoder the PCH transcoder (same as pipe on IVB and older)
bool enable whether underruns should be reported or not
Description
This function makes us disable or enable PCH fifo underruns for a specific PCH transcoder. Notice that
on some PCHs (e.g. CPT/PPT), disabling FIFO underrun reporting for one transcoder may also disable all
the other PCH error interruts for the other transcoders, due to the fact that there’s just one interrupt
mask/enable bit for all the transcoders.
Returns the previous state of underrun reporting.
void intel_cpu_fifo_underrun_irq_handler(struct drm_i915_private * dev_priv, enum

pipe pipe)
handle CPU fifo underrun interrupt

Parameters
struct drm_i915_private * dev_priv i915 device instance
enum pipe pipe (CPU) pipe to set state for
Description
This handles a CPU fifo underrun interrupt, generating an underrun warning into dmesg if underrun re-
porting is enabled and then disables the underrun interrupt to avoid an irq storm.
void intel_pch_fifo_underrun_irq_handler(struct drm_i915_private * dev_priv, enum

transcoder pch_transcoder)
handle PCH fifo underrun interrupt

Parameters
struct drm_i915_private * dev_priv i915 device instance
enum transcoder pch_transcoder the PCH transcoder (same as pipe on IVB and older)
Description
This handles a PCH fifo underrun interrupt, generating an underrun warning into dmesg if underrun re-
porting is enabled and then disables the underrun interrupt to avoid an irq storm.
void intel_check_cpu_fifo_underruns(struct drm_i915_private * dev_priv)

check for CPU fifo underruns immediately
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
Check for CPU fifo underruns immediately. Useful on IVB/HSW where the shared error interrupt may have
been disabled, and so CPU fifo underruns won’t necessarily raise an interrupt, and on GMCH platforms
where underruns never raise an interrupt.
void intel_check_pch_fifo_underruns(struct drm_i915_private * dev_priv)

check for PCH fifo underruns immediately
Parameters
struct drm_i915_private * dev_priv i915 device instance

7.2. Display Hardware Handling 319

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Check for PCH fifo underruns immediately. Useful on CPT/PPT where the shared error interrupt may have
been disabled, and so PCH fifo underruns won’t necessarily raise an interrupt.

7.2.4 Plane Configuration

This section covers plane configuration and composition with the primary plane, sprites, cursors and
overlays. This includes the infrastructure to do atomic vsync’ed updates of all this state and also tightly
coupled topics like watermark setup and computation, framebuffer compression and panel self refresh.

7.2.5 Atomic Plane Helpers

The functions here are used by the atomic plane helper functions to implement legacy plane up-
dates (i.e., drm_plane->:c:func:update_plane() and drm_plane->:c:func:disable_plane()). This allows
plane updates to use the atomic state infrastructure and perform plane updates as separate pre-
pare/check/commit/cleanup steps.
struct intel_plane_state * intel_create_plane_state(struct drm_plane * plane)

create plane state object
Parameters
struct drm_plane * plane drm plane
Description
Allocates a fresh plane state for the given plane and sets some of the state values to sensible initial values.
Return
A newly allocated plane state, or NULL on failure
struct drm_plane_state * intel_plane_duplicate_state(struct drm_plane * plane)

duplicate plane state
Parameters
struct drm_plane * plane drm plane
Description
Allocates and returns a copy of the plane state (both common and Intel-specific) for the specified plane.
Return
The newly allocated plane state, or NULL on failure.
void intel_plane_destroy_state(struct drm_plane * plane, struct drm_plane_state * state)

destroy plane state
Parameters
struct drm_plane * plane drm plane
struct drm_plane_state * state state object to destroy
Description
Destroys the plane state (both common and Intel-specific) for the specified plane.
int intel_plane_atomic_get_property(struct drm_plane * plane, const struct drm_plane_state

* state, struct drm_property * property, uint64_t * val)
fetch plane property value

Parameters
struct drm_plane * plane plane to fetch property for

320 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

const struct drm_plane_state * state state containing the property value
struct drm_property * property property to look up
uint64_t * val pointer to write property value into
Description
The DRM core does not store shadow copies of properties for atomic-capable drivers. This entrypoint is
used to fetch the current value of a driver-specific plane property.
int intel_plane_atomic_set_property(struct drm_plane * plane, struct drm_plane_state * state,

struct drm_property * property, uint64_t val)
set plane property value

Parameters
struct drm_plane * plane plane to set property for
struct drm_plane_state * state state to update property value in
struct drm_property * property property to set
uint64_t val value to set property to
Description
Writes the specified property value for a plane into the provided atomic state object.
Returns 0 on success, -EINVAL on unrecognized properties

7.2.6 Output Probing

This section covers output probing and related infrastructure like the hotplug interrupt storm detection
and mitigation code. Note that the i915 driver still uses most of the common DRM helper code for output
probing, so those sections fully apply.

7.2.7 Hotplug

Simply put, hotplug occurs when a display is connected to or disconnected from the system. However,
there may be adapters and docking stations and Display Port short pulses and MST devices involved,
complicating matters.
Hotplug in i915 is handled in many different levels of abstraction.
The platform dependent interrupt handling code in i915_irq.c enables, disables, and does preliminary han-
dling of the interrupts. The interrupt handlers gather the hotplug detect (HPD) information from relevant
registers into a platform independent mask of hotplug pins that have fired.
The platform independent interrupt handler intel_hpd_irq_handler() in intel_hotplug.c does hotplug
irq storm detection and mitigation, and passes further processing to appropriate bottom halves (Display
Port specific and regular hotplug).
The Display Port work function i915_digport_work_func() calls into intel_dp_hpd_pulse() via hooks,
which handles DP short pulses and DP MST long pulses, with failures and non-MST long pulses triggering
regular hotplug processing on the connector.
The regular hotplug work function i915_hotplug_work_func() calls connector detect hooks,
and, if connector status changes, triggers sending of hotplug uevent to userspace via
drm_kms_helper_hotplug_event().
Finally, the userspace is responsible for triggering a modeset upon receiving the hotplug uevent, disabling
or enabling the crtc as needed.
The hotplug interrupt storm detection and mitigation code keeps track of the number of interrupts per
hotplug pin per a period of time, and if the number of interrupts exceeds a certain threshold, the interrupt

7.2. Display Hardware Handling 321

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

is disabled for a while before being re-enabled. The intention is to mitigate issues raising from broken
hardware triggering massive amounts of interrupts and grinding the system to a halt.
Current implementation expects that hotplug interrupt storm will not be seen when display port sink is
connected, hence on platforms whose DP callback is handled by i915_digport_work_func reenabling of
hpd is not performed (it was never expected to be disabled in the first place ;)) this is specific to DP sinks
handled by this routine and any other display such as HDMI or DVI enabled on the same port will have
proper logic since it will use i915_hotplug_work_func where this logic is handled.
bool intel_hpd_irq_storm_detect(struct drm_i915_private * dev_priv, enum hpd_pin pin)

gather stats and detect HPD irq storm on a pin
Parameters
struct drm_i915_private * dev_priv private driver data pointer
enum hpd_pin pin the pin to gather stats on
Description
Gather stats about HPD irqs from the specified pin, and detect irq storms. Only the pin specific stats and
state are changed, the caller is responsible for further action.
The number of irqs that are allowed within HPD_STORM_DETECT_PERIOD is stored in dev_priv-
>hotplug.hpd_storm_threshold which defaults to HPD_STORM_DEFAULT_THRESHOLD. If this threshold
is exceeded, it’s considered an irq storm and the irq state is set to HPD_MARK_DISABLED.
The HPD threshold can be controlled through i915_hpd_storm_ctl in debugfs, and should only be adjusted
for automated hotplug testing.
Return true if an irq storm was detected on pin.
void intel_hpd_irq_handler(struct drm_i915_private * dev_priv, u32 pin_mask, u32 long_mask)

main hotplug irq handler
Parameters
struct drm_i915_private * dev_priv drm_i915_private
u32 pin_mask a mask of hpd pins that have triggered the irq
u32 long_mask a mask of hpd pins that may be long hpd pulses
Description
This is the main hotplug irq handler for all platforms. The platform specific irq handlers call the platform
specific hotplug irq handlers, which read and decode the appropriate registers into bitmasks about hpd
pins that have triggered (pin_mask), and which of those pins may be long pulses (long_mask). The
long_mask is ignored if the port corresponding to the pin is not a digital port.
Here, we do hotplug irq storm detection and mitigation, and pass further processing to appropriate bottom
halves.
void intel_hpd_init(struct drm_i915_private * dev_priv)

initializes and enables hpd support
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This function enables the hotplug support. It requires that interrupts have already been enabled with
intel_irq_init_hw(). From this point on hotplug and poll request can run concurrently to other code,
so locking rules must be obeyed.
This is a separate step from interrupt enabling to simplify the locking rules in the driver load and resume
code.
Also see: intel_hpd_poll_init(), which enables connector polling

322 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void intel_hpd_poll_init(struct drm_i915_private * dev_priv)
enables/disables polling for connectors with hpd

Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This function enables polling for all connectors, regardless of whether or not they support hotplug detec-
tion. Under certain conditions HPD may not be functional. On most Intel GPUs, this happens when we
enter runtime suspend. On Valleyview and Cherryview systems, this also happens when we shut off all of
the powerwells.
Since this function can get called in contexts where we’re already holding dev->mode_config.mutex, we
do the actual hotplug enabling in a seperate worker.
Also see: intel_hpd_init(), which restores hpd handling.

7.2.8 High Definition Audio

The graphics and audio drivers together support High Definition Audio over HDMI and Display Port. The
audio programming sequences are divided into audio codec and controller enable and disable sequences.
The graphics driver handles the audio codec sequences, while the audio driver handles the audio controller
sequences.
The disable sequences must be performed before disabling the transcoder or port. The enable sequences
may only be performed after enabling the transcoder and port, and after completed link training. Therefore
the audio enable/disable sequences are part of the modeset sequence.
The codec and controller sequences could be done either parallel or serial, but generally the ELDV/PD
change in the codec sequence indicates to the audio driver that the controller sequence should start.
Indeed, most of the co-operation between the graphics and audio drivers is handled via audio related
registers. (The notable exception is the power management, not covered here.)
The struct i915_audio_component is used to interact between the graphics and audio drivers. The struct
i915_audio_component_ops ops in it is defined in graphics driver and called in audio driver. The struct
i915_audio_component_audio_ops audio_ops is called from i915 driver.
void intel_audio_codec_enable(struct intel_encoder * intel_encoder, const struct intel_crtc_state

* crtc_state, const struct drm_connector_state * conn_state)
Enable the audio codec for HD audio

Parameters
struct intel_encoder * intel_encoder encoder on which to enable audio
const struct intel_crtc_state * crtc_state pointer to the current crtc state.
const struct drm_connector_state * conn_state pointer to the current connector state.
Description
The enable sequences may only be performed after enabling the transcoder and port, and after completed
link training.
void intel_audio_codec_disable(struct intel_encoder * intel_encoder)

Disable the audio codec for HD audio
Parameters
struct intel_encoder * intel_encoder encoder on which to disable audio
Description
The disable sequences must be performed before disabling the transcoder or port.

7.2. Display Hardware Handling 323

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void intel_init_audio_hooks(struct drm_i915_private * dev_priv)
Set up chip specific audio hooks

Parameters
struct drm_i915_private * dev_priv device private
void i915_audio_component_init(struct drm_i915_private * dev_priv)

initialize and register the audio component
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This will register with the component framework a child component which will bind dynamically to the
snd_hda_intel driver’s corresponding master component when the latter is registered. During binding the
child initializes an instance of struct i915_audio_component which it receives from the master. The master
can then start to use the interface defined by this struct. Each side can break the binding at any point by
deregistering its own component after which each side’s component unbind callback is called.
We ignore any error during registration and continue with reduced functionality (i.e. without HDMI audio).

void i915_audio_component_cleanup(struct drm_i915_private * dev_priv)
deregister the audio component

Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
Deregisters the audio component, breaking any existing binding to the corresponding snd_hda_intel
driver’s master component.
void intel_audio_init(struct drm_i915_private * dev_priv)

Initialize the audio driver either using component framework or using lpe audio bridge
Parameters
struct drm_i915_private * dev_priv the i915 drm device private data
void intel_audio_deinit(struct drm_i915_private * dev_priv)

deinitialize the audio driver
Parameters
struct drm_i915_private * dev_priv the i915 drm device private data
struct i915_audio_component_ops

Ops implemented by i915 driver, called by hda driver
Definition

struct i915_audio_component_ops {
struct module * owner;
void (* get_power) (struct device *);
void (* put_power) (struct device *);
void (* codec_wake_override) (struct device *, bool enable);
int (* get_cdclk_freq) (struct device *);
int (* sync_audio_rate) (struct device *, int port, int pipe, int rate);
int (* get_eld) (struct device *, int port, int pipe, bool *enabled, unsigned char *buf, int␣

↪→max_bytes);
};

Members
owner i915 module

324 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

get_power get the POWER_DOMAIN_AUDIO power well
Request the power well to be turned on.

put_power put the POWER_DOMAIN_AUDIO power well
Allow the power well to be turned off.

codec_wake_override Enable/disable codec wake signal
get_cdclk_freq Get the Core Display Clock in kHz
sync_audio_rate set n/cts based on the sample rate

Called from audio driver. After audio driver sets the sample rate, it will call this function to set n/cts
get_eld fill the audio state and ELD bytes for the given port

Called from audio driver to get the HDMI/DP audio state of the given digital port, and also fetch ELD
bytes to the given pointer.
It returns the byte size of the original ELD (not the actually copied size), zero for an invalid ELD, or a
negative error code.
Note that the returned size may be over max_bytes. Then it implies that only a part of ELD has
been copied to the buffer.

struct i915_audio_component_audio_ops
Ops implemented by hda driver, called by i915 driver

Definition

struct i915_audio_component_audio_ops {
void * audio_ptr;
void (* pin_eld_notify) (void *audio_ptr, int port, int pipe);

};

Members
audio_ptr Pointer to be used in call to pin_eld_notify
pin_eld_notify Notify the HDA driver that pin sense and/or ELD information has changed

Called when the i915 driver has set up audio pipeline or has just begun to tear it down. This allows the
HDA driver to update its status accordingly (even when the HDA controller is in power save mode).

struct i915_audio_component
Used for direct communication between i915 and hda drivers

Definition

struct i915_audio_component {
struct device * dev;
int aud_sample_rate;
const struct i915_audio_component_ops * ops;
const struct i915_audio_component_audio_ops * audio_ops;

};

Members
dev i915 device, used as parameter for ops
aud_sample_rate the array of audio sample rate per port
ops Ops implemented by i915 driver, called by hda driver
audio_ops Ops implemented by hda driver, called by i915 driver

7.2. Display Hardware Handling 325

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

7.2.9 Intel HDMI LPE Audio Support

Motivation: Atom platforms (e.g. valleyview and cherryTrail) integrates a DMA-based interface as an
alternative to the traditional HDaudio path. While this mode is unrelated to the LPE aka SST audio engine,
the documentation refers to this mode as LPE so we keep this notation for the sake of consistency.
The interface is handled by a separate standalone driver maintained in the ALSA subsystem for simplicity.
To minimize the interaction between the two subsystems, a bridge is setup between the hdmi-lpe-audio
and i915: 1. Create a platform device to share MMIO/IRQ resources 2. Make the platform device child of
i915 device for runtime PM. 3. Create IRQ chip to forward the LPE audio irqs. the hdmi-lpe-audio driver
probes the lpe audio device and creates a new sound card
Threats: Due to the restriction in Linux platform device model, user need manually uninstall the hdmi-
lpe-audio driver before uninstalling i915 module, otherwise we might run into use-after-free issues after
i915 removes the platform device: even though hdmi-lpe-audio driver is released, the modules is still in
“installed” status.
Implementation: The MMIO/REG platform resources are created according to the registers specification.
When forwarding LPE audio irqs, the flow control handler selection depends on the platform, for example
on valleyview handle_simple_irq is enough.
void intel_lpe_audio_irq_handler(struct drm_i915_private * dev_priv)

forwards the LPE audio irq
Parameters
struct drm_i915_private * dev_priv the i915 drm device private data
Description
the LPE Audio irq is forwarded to the irq handler registered by LPE audio driver.
int intel_lpe_audio_init(struct drm_i915_private * dev_priv)

detect and setup the bridge between HDMI LPE Audio driver and i915
Parameters
struct drm_i915_private * dev_priv the i915 drm device private data
Return
0 if successful. non-zero if detection or llocation/initialization fails
void intel_lpe_audio_teardown(struct drm_i915_private * dev_priv)

destroy the bridge between HDMI LPE audio driver and i915
Parameters
struct drm_i915_private * dev_priv the i915 drm device private data
Description
release all the resources for LPE audio <-> i915 bridge.
void intel_lpe_audio_notify(struct drm_i915_private * dev_priv, enumpipe pipe, enumport port,

const void * eld, int ls_clock, bool dp_output)
notify lpe audio event audio driver and i915

Parameters
struct drm_i915_private * dev_priv the i915 drm device private data
enum pipe pipe pipe
enum port port port
const void * eld ELD data
int ls_clock Link symbol clock in kHz
bool dp_output Driving a DP output?

326 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Notify lpe audio driver of eld change.

7.2.10 Panel Self Refresh PSR (PSR/SRD)

Since Haswell Display controller supports Panel Self-Refresh on display panels witch have a remote frame
buffer (RFB) implemented according to PSR spec in eDP1.3. PSR feature allows the display to go to lower
standby states when system is idle but display is on as it eliminates display refresh request to DDRmemory
completely as long as the frame buffer for that display is unchanged.
Panel Self Refresh must be supported by both Hardware (source) and Panel (sink).
PSR saves power by caching the framebuffer in the panel RFB, which allows us to power down the link
and memory controller. For DSI panels the same idea is called “manual mode”.
The implementation uses the hardware-based PSR support which automatically enters/exits self-refresh
mode. The hardware takes care of sending the required DP aux message and could even retrain the link
(that part isn’t enabled yet though). The hardware also keeps track of any frontbuffer changes to know
when to exit self-refresh mode again. Unfortunately that part doesn’t work too well, hence why the i915
PSR support uses the software frontbuffer tracking to make sure it doesn’t miss a screen update. For
this integration intel_psr_invalidate() and intel_psr_flush() get called by the frontbuffer tracking
code. Note that because of locking issues the self-refresh re-enable code is done from a work queue,
which must be correctly synchronized/cancelled when shutting down the pipe.”
void intel_psr_enable(struct intel_dp * intel_dp)

Enable PSR
Parameters
struct intel_dp * intel_dp Intel DP
Description
This function can only be called after the pipe is fully trained and enabled.
void intel_psr_disable(struct intel_dp * intel_dp)

Disable PSR
Parameters
struct intel_dp * intel_dp Intel DP
Description
This function needs to be called before disabling pipe.
void intel_psr_single_frame_update(struct drm_i915_private * dev_priv, un-

signed frontbuffer_bits)
Single Frame Update

Parameters
struct drm_i915_private * dev_priv i915 device
unsigned frontbuffer_bits frontbuffer plane tracking bits
Description
Some platforms support a single frame update feature that is used to send and update only one frame
on Remote Frame Buffer. So far it is only implemented for Valleyview and Cherryview because hardware
requires this to be done before a page flip.
void intel_psr_invalidate(struct drm_i915_private * dev_priv, unsigned frontbuffer_bits)

Invalidade PSR
Parameters
struct drm_i915_private * dev_priv i915 device

7.2. Display Hardware Handling 327

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

unsigned frontbuffer_bits frontbuffer plane tracking bits
Description
Since the hardware frontbuffer tracking has gaps we need to integrate with the software frontbuffer track-
ing. This function gets called every time frontbuffer rendering starts and a buffer gets dirtied. PSR must
be disabled if the frontbuffer mask contains a buffer relevant to PSR.
Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.”
void intel_psr_flush(struct drm_i915_private * dev_priv, unsigned frontbuffer_bits, enum

fb_op_origin origin)
Flush PSR

Parameters
struct drm_i915_private * dev_priv i915 device
unsigned frontbuffer_bits frontbuffer plane tracking bits
enum fb_op_origin origin which operation caused the flush
Description
Since the hardware frontbuffer tracking has gaps we need to integrate with the software frontbuffer track-
ing. This function gets called every time frontbuffer rendering has completed and flushed out to memory.
PSR can be enabled again if no other frontbuffer relevant to PSR is dirty.
Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
void intel_psr_init(struct drm_i915_private * dev_priv)

Init basic PSR work and mutex.
Parameters
struct drm_i915_private * dev_priv i915 device private
Description
This function is called only once at driver load to initialize basic PSR stuff.

7.2.11 Frame Buffer Compression (FBC)

FBC tries to save memory bandwidth (and so power consumption) by compressing the amount of memory
used by the display. It is total transparent to user space and completely handled in the kernel.
The benefits of FBC are mostly visible with solid backgrounds and variation-less patterns. It comes from
keeping the memory footprint small and having fewer memory pages opened and accessed for refreshing
the display.
i915 is responsible to reserve stolen memory for FBC and configure its offset on proper registers. The
hardware takes care of all compress/decompress. However there are many known cases where we have
to forcibly disable it to allow proper screen updates.
bool intel_fbc_is_active(struct drm_i915_private * dev_priv)

Is FBC active?
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This function is used to verify the current state of FBC.
FIXME: This should be tracked in the plane config eventually instead of queried at runtime for most callers.

void intel_fbc_choose_crtc(struct drm_i915_private * dev_priv, struct drm_atomic_state * state)
select a CRTC to enable FBC on

328 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct drm_i915_private * dev_priv i915 device instance
struct drm_atomic_state * state the atomic state structure
Description
This function looks at the proposed state for CRTCs and planes, then chooses which pipe is going to have
FBC by setting intel_crtc_state->enable_fbc to true.
Later, intel_fbc_enable is going to look for state->enable_fbc and then maybe enable FBC for the chosen
CRTC. If it does, it will set dev_priv->fbc.crtc.
void intel_fbc_enable(struct intel_crtc * crtc, struct intel_crtc_state * crtc_state, struct in-

tel_plane_state * plane_state)
Parameters
struct intel_crtc * crtc the CRTC
struct intel_crtc_state * crtc_state corresponding drm_crtc_state for crtc
struct intel_plane_state * plane_state corresponding drm_plane_state for the primary plane of

crtc
Description
This function checks if the given CRTC was chosen for FBC, then enables it if possible. Notice that it doesn’t
activate FBC. It is valid to call intel_fbc_enablemultiple times for the same pipe without an intel_fbc_disable
in the middle, as long as it is deactivated.
void __intel_fbc_disable(struct drm_i915_private * dev_priv)

disable FBC
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This is the low level function that actually disables FBC. Callers should grab the FBC lock.
void intel_fbc_disable(struct intel_crtc * crtc)

disable FBC if it’s associated with crtc
Parameters
struct intel_crtc * crtc the CRTC
Description
This function disables FBC if it’s associated with the provided CRTC.
void intel_fbc_global_disable(struct drm_i915_private * dev_priv)

globally disable FBC
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This function disables FBC regardless of which CRTC is associated with it.
void intel_fbc_handle_fifo_underrun_irq(struct drm_i915_private * dev_priv)

disable FBC when we get a FIFO underrun
Parameters
struct drm_i915_private * dev_priv i915 device instance

7.2. Display Hardware Handling 329

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Without FBC, most underruns are harmless and don’t really cause too many problems, except for an
annoying message on dmesg. With FBC, underruns can become black screens or even worse, especially
when paired with bad watermarks. So in order for us to be on the safe side, completely disable FBC in case
we ever detect a FIFO underrun on any pipe. An underrun on any pipe already suggests that watermarks
may be bad, so try to be as safe as possible.
This function is called from the IRQ handler.
void intel_fbc_init_pipe_state(struct drm_i915_private * dev_priv)

initialize FBC’s CRTC visibility tracking
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
The FBC code needs to track CRTC visibility since the older platforms can’t have FBC enabled while multiple
pipes are used. This function does the initial setup at driver load to make sure FBC is matching the real
hardware.
void intel_fbc_init(struct drm_i915_private * dev_priv)

Initialize FBC
Parameters
struct drm_i915_private * dev_priv the i915 device
Description
This function might be called during PM init process.

7.2.12 Display Refresh Rate Switching (DRRS)

Display Refresh Rate Switching (DRRS) is a power conservation feature which enables swtching between
low and high refresh rates, dynamically, based on the usage scenario. This feature is applicable for internal
panels.
Indication that the panel supports DRRS is given by the panel EDID, which would list multiple refresh rates
for one resolution.
DRRS is of 2 types - static and seamless. Static DRRS involves changing refresh rate (RR) by doing a full
modeset (may appear as a blink on screen) and is used in dock-undock scenario. Seamless DRRS involves
changing RR without any visual effect to the user and can be used during normal system usage. This is
done by programming certain registers.
Support for static/seamless DRRS may be indicated in the VBT based on inputs from the panel spec.
DRRS saves power by switching to low RR based on usage scenarios.
The implementation is based on frontbuffer tracking implementation. When there is a disturbance on the
screen triggered by user activity or a periodic system activity, DRRS is disabled (RR is changed to high
RR). When there is no movement on screen, after a timeout of 1 second, a switch to low RR is made.
For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() and in-
tel_edp_drrs_flush() are called.
DRRS can be further extended to support other internal panels and also the scenario of video playback
wherein RR is set based on the rate requested by userspace.
void intel_dp_set_drrs_state(struct drm_i915_private * dev_priv, struct intel_crtc_state

* crtc_state, int refresh_rate)
program registers for RR switch to take effect

Parameters

330 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_i915_private * dev_priv i915 device
struct intel_crtc_state * crtc_state a pointer to the active intel_crtc_state
int refresh_rate RR to be programmed
Description
This function gets called when refresh rate (RR) has to be changed from one frequency to another.
Switches can be between high and low RR supported by the panel or to any other RR based on media
playback (in this case, RR value needs to be passed from user space).
The caller of this function needs to take a lock on dev_priv->drrs.
void intel_edp_drrs_enable(struct intel_dp * intel_dp, struct intel_crtc_state * crtc_state)

init drrs struct if supported
Parameters
struct intel_dp * intel_dp DP struct
struct intel_crtc_state * crtc_state A pointer to the active crtc state.
Description
Initializes frontbuffer_bits and drrs.dp
void intel_edp_drrs_disable(struct intel_dp * intel_dp, struct intel_crtc_state * old_crtc_state)

Disable DRRS
Parameters
struct intel_dp * intel_dp DP struct
struct intel_crtc_state * old_crtc_state Pointer to old crtc_state.
void intel_edp_drrs_invalidate(struct drm_i915_private * dev_priv, unsigned

int frontbuffer_bits)
Disable Idleness DRRS

Parameters
struct drm_i915_private * dev_priv i915 device
unsigned int frontbuffer_bits frontbuffer plane tracking bits
Description
This function gets called everytime rendering on the given planes start. Hence DRRS needs to be Up-
clocked, i.e. (LOW_RR -> HIGH_RR).
Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
void intel_edp_drrs_flush(struct drm_i915_private * dev_priv, unsigned int frontbuffer_bits)

Restart Idleness DRRS
Parameters
struct drm_i915_private * dev_priv i915 device
unsigned int frontbuffer_bits frontbuffer plane tracking bits
Description
This function gets called every time rendering on the given planes has completed or flip on a crtc is
completed. So DRRS should be upclocked (LOW_RR -> HIGH_RR). And also Idleness detection should be
started again, if no other planes are dirty.
Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
struct drm_display_mode * intel_dp_drrs_init(struct intel_connector * intel_connector, struct

drm_display_mode * fixed_mode)
Init basic DRRS work and mutex.

7.2. Display Hardware Handling 331

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct intel_connector * intel_connector eDP connector
struct drm_display_mode * fixed_mode preferred mode of panel
Description
This function is called only once at driver load to initialize basic DRRS stuff.
Return
Downclock mode if panel supports it, else return NULL. DRRS support is determined by the presence of
downclock mode (apart from VBT setting).

7.2.13 DPIO

VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI ports. DPIO is the name given to
such a display PHY. These PHYs don’t follow the standard programming model using direct MMIO registers,
and instead their registers must be accessed trough IOSF sideband. VLV has one such PHY for driving ports
B and C, and CHV adds another PHY for driving port D. Each PHY responds to specific IOSF-SB port.
Each display PHY is made up of one or two channels. Each channel houses a common lane part which
contains the PLL and other common logic. CH0 common lane also contains the IOSF-SB logic for the Com-
mon Register Interface (CRI) ie. the DPIO registers. CRI clock must be running when any DPIO registers
are accessed.
In addition to having their own registers, the PHYs are also controlled through some dedicated signals
from the display controller. These include PLL reference clock enable, PLL enable, and CRI clock selection,
for example.
Eeach channel also has two splines (also called data lanes), and each spline is made up of one Physical
Access Coding Sub-Layer (PCS) block and two TX lanes. So each channel has two PCS blocks and four TX
lanes. The TX lanes are used as DP lanes or TMDS data/clock pairs depending on the output type.
Additionally the PHY also contains an AUX lane with AUX blocks for each channel. This is used for DP AUX
communication, but this fact isn’t really relevant for the driver since AUX is controlled from the display
controller side. No DPIO registers need to be accessed during AUX communication,
Generally on VLV/CHV the common lane corresponds to the pipe and the spline (PCS/TX) corresponds to
the port.
For dual channel PHY (VLV/CHV):

pipe A == CMN/PLL/REF CH0
pipe B == CMN/PLL/REF CH1
port B == PCS/TX CH0
port C == PCS/TX CH1

This is especially important when we cross the streams ie. drive port B with pipe B, or port C with pipe A.
For single channel PHY (CHV):

pipe C == CMN/PLL/REF CH0
port D == PCS/TX CH0

On BXT the entire PHY channel corresponds to the port. That means the PLL is also now associated with
the port rather than the pipe, and so the clock needs to be routed to the appropriate transcoder. Port A
PLL is directly connected to transcoder EDP and port B/C PLLs can be routed to any transcoder A/B/C.
Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is digital port D (CHV) or port A (BXT).

332 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Dual channel PHY (VLV/CHV/BXT)

| CH0 | CH1 |
| CMN/PLL/REF | CMN/PLL/REF |
|---------------|---------------| Display PHY
PCS01	PCS23	PCS01	PCS23				
TX0	TX1	TX2	TX3	TX0	TX1	TX2	TX3

| DDI0 | DDI1 | DP/HDMI ports

Single channel PHY (CHV/BXT)

| CH0 |
| CMN/PLL/REF |
|---------------| Display PHY
PCS01	PCS23		
TX0	TX1	TX2	TX3

| DDI2 | DP/HDMI port

7.2.14 CSR firmware support for DMC

Display Context Save and Restore (CSR) firmware support added from gen9 onwards to drive newly added
DMC (Display microcontroller) in display engine to save and restore the state of display engine when it
enter into low-power state and comes back to normal.
void intel_csr_load_program(struct drm_i915_private * dev_priv)

write the firmware from memory to register.
Parameters
struct drm_i915_private * dev_priv i915 drm device.
Description
CSR firmware is read from a .bin file and kept in internal memory one time. Everytime display comes back
from low power state this function is called to copy the firmware from internal memory to registers.
void intel_csr_ucode_init(struct drm_i915_private * dev_priv)

initialize the firmware loading.
Parameters
struct drm_i915_private * dev_priv i915 drm device.
Description
This function is called at the time of loading the display driver to read firmware from a .bin file and copied
into a internal memory.
void intel_csr_ucode_suspend(struct drm_i915_private * dev_priv)

prepare CSR firmware before system suspend
Parameters
struct drm_i915_private * dev_priv i915 drm device
Description
Prepare the DMC firmware before entering system suspend. This includes flushing pending work items
and releasing any resources acquired during init.

7.2. Display Hardware Handling 333

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void intel_csr_ucode_resume(struct drm_i915_private * dev_priv)
init CSR firmware during system resume

Parameters
struct drm_i915_private * dev_priv i915 drm device
Description
Reinitialize the DMC firmware during system resume, reacquiring any resources released in in-
tel_csr_ucode_suspend().
void intel_csr_ucode_fini(struct drm_i915_private * dev_priv)

unload the CSR firmware.
Parameters
struct drm_i915_private * dev_priv i915 drm device.
Description
Firmmware unloading includes freeing the internal memory and reset the firmware loading status.

7.2.15 Video BIOS Table (VBT)

The Video BIOS Table, or VBT, provides platform and board specific configuration information to the driver
that is not discoverable or available through other means. The configuration is mostly related to display
hardware. The VBT is available via the ACPI OpRegion or, on older systems, in the PCI ROM.
The VBT consists of a VBT Header (defined as struct vbt_header), a BDB Header (struct bdb_header),
and a number of BIOS Data Blocks (BDB) that contain the actual configuration information. The VBT
Header, and thus the VBT, begins with “$VBT” signature. The VBT Header contains the offset of the BDB
Header. The data blocks are concatenated after the BDB Header. The data blocks have a 1-byte Block ID,
2-byte Block Size, and Block Size bytes of data. (Block 53, the MIPI Sequence Block is an exception.)
The driver parses the VBT during load. The relevant information is stored in driver private data for ease
of use, and the actual VBT is not read after that.
bool intel_bios_is_valid_vbt(const void * buf, size_t size)

does the given buffer contain a valid VBT
Parameters
const void * buf pointer to a buffer to validate
size_t size size of the buffer
Description
Returns true on valid VBT.
void intel_bios_init(struct drm_i915_private * dev_priv)

find VBT and initialize settings from the BIOS
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT was not found in ACPI OpRegion,
try to find it in PCI ROM first. Also initialize some defaults if the VBT is not present at all.
bool intel_bios_is_tv_present(struct drm_i915_private * dev_priv)

is integrated TV present in VBT
Parameters
struct drm_i915_private * dev_priv i915 device instance

334 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Return true if TV is present. If no child devices were parsed from VBT, assume TV is present.
bool intel_bios_is_lvds_present(struct drm_i915_private * dev_priv, u8 * i2c_pin)

is LVDS present in VBT
Parameters
struct drm_i915_private * dev_priv i915 device instance
u8 * i2c_pin i2c pin for LVDS if present
Description
Return true if LVDS is present. If no child devices were parsed from VBT, assume LVDS is present.
bool intel_bios_is_port_present(struct drm_i915_private * dev_priv, enum port port)

is the specified digital port present
Parameters
struct drm_i915_private * dev_priv i915 device instance
enum port port port to check
Description
Return true if the device in port is present.
bool intel_bios_is_port_edp(struct drm_i915_private * dev_priv, enum port port)

is the device in given port eDP
Parameters
struct drm_i915_private * dev_priv i915 device instance
enum port port port to check
Description
Return true if the device in port is eDP.
bool intel_bios_is_dsi_present(struct drm_i915_private * dev_priv, enum port * port)

is DSI present in VBT
Parameters
struct drm_i915_private * dev_priv i915 device instance
enum port * port port for DSI if present
Description
Return true if DSI is present, and return the port in port.
bool intel_bios_is_port_hpd_inverted(struct drm_i915_private * dev_priv, enum port port)

is HPD inverted for port
Parameters
struct drm_i915_private * dev_priv i915 device instance
enum port port port to check
Description
Return true if HPD should be inverted for port.
bool intel_bios_is_lspcon_present(struct drm_i915_private * dev_priv, enum port port)

if LSPCON is attached on port
Parameters
struct drm_i915_private * dev_priv i915 device instance

7.2. Display Hardware Handling 335

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

enum port port port to check
Description
Return true if LSPCON is present on this port
struct vbt_header

VBT Header structure
Definition

struct vbt_header {
u8 signature;
u16 version;
u16 header_size;
u16 vbt_size;
u8 vbt_checksum;
u8 reserved0;
u32 bdb_offset;
u32 aim_offset;

};

Members
signature VBT signature, always starts with “$VBT”
version Version of this structure
header_size Size of this structure
vbt_size Size of VBT (VBT Header, BDB Header and data blocks)
vbt_checksum Checksum
reserved0 Reserved
bdb_offset Offset of struct bdb_header from beginning of VBT
aim_offset Offsets of add-in data blocks from beginning of VBT
struct bdb_header

BDB Header structure
Definition

struct bdb_header {
u8 signature;
u16 version;
u16 header_size;
u16 bdb_size;

};

Members
signature BDB signature “BIOS_DATA_BLOCK”
version Version of the data block definitions
header_size Size of this structure
bdb_size Size of BDB (BDB Header and data blocks)

7.2.16 Display clocks

The display engine uses several different clocks to do its work. There are two main clocks involved that
aren’t directly related to the actual pixel clock or any symbol/bit clock of the actual output port. These
are the core display clock (CDCLK) and RAWCLK.

336 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

CDCLK clocks most of the display pipe logic, and thus its frequency must be high enough to support the
rate at which pixels are flowing through the pipes. Downscaling must also be accounted as that increases
the effective pixel rate.
On several platforms the CDCLK frequency can be changed dynamically to minimize power consumption
for a given display configuration. Typically changes to the CDCLK frequency require all the display pipes
to be shut down while the frequency is being changed.
On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit. DMC will not change the active
CDCLK frequency however, so that part will still be performed by the driver directly.
RAWCLK is a fixed frequency clock, often used by various auxiliary blocks such as AUX CH or backlight
PWM. Hence the only thing we really need to know about RAWCLK is its frequency so that various dividers
can be programmed correctly.
void skl_init_cdclk(struct drm_i915_private * dev_priv)

Initialize CDCLK on SKL
Parameters
struct drm_i915_private * dev_priv i915 device
Description
Initialize CDCLK for SKL and derivatives. This is generally done only during the display core initialization
sequence, after which the DMC will take care of turning CDCLK off/on as needed.
void skl_uninit_cdclk(struct drm_i915_private * dev_priv)

Uninitialize CDCLK on SKL
Parameters
struct drm_i915_private * dev_priv i915 device
Description
Uninitialize CDCLK for SKL and derivatives. This is done only during the display core uninitialization se-
quence.
void bxt_init_cdclk(struct drm_i915_private * dev_priv)

Initialize CDCLK on BXT
Parameters
struct drm_i915_private * dev_priv i915 device
Description
Initialize CDCLK for BXT and derivatives. This is generally done only during the display core initialization
sequence, after which the DMC will take care of turning CDCLK off/on as needed.
void bxt_uninit_cdclk(struct drm_i915_private * dev_priv)

Uninitialize CDCLK on BXT
Parameters
struct drm_i915_private * dev_priv i915 device
Description
Uninitialize CDCLK for BXT and derivatives. This is done only during the display core uninitialization se-
quence.
void cnl_init_cdclk(struct drm_i915_private * dev_priv)

Initialize CDCLK on CNL
Parameters
struct drm_i915_private * dev_priv i915 device

7.2. Display Hardware Handling 337

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Initialize CDCLK for CNL. This is generally done only during the display core initialization sequence, after
which the DMC will take care of turning CDCLK off/on as needed.
void cnl_uninit_cdclk(struct drm_i915_private * dev_priv)

Uninitialize CDCLK on CNL
Parameters
struct drm_i915_private * dev_priv i915 device
Description
Uninitialize CDCLK for CNL. This is done only during the display core uninitialization sequence.
bool intel_cdclk_state_compare(const struct intel_cdclk_state * a, const struct intel_cdclk_state

* b)
Determine if two CDCLK states differ

Parameters
const struct intel_cdclk_state * a first CDCLK state
const struct intel_cdclk_state * b second CDCLK state
Return
True if the CDCLK states are identical, false if they differ.
void intel_set_cdclk(struct drm_i915_private * dev_priv, const struct intel_cdclk_state * cd-

clk_state)
Push the CDCLK state to the hardware

Parameters
struct drm_i915_private * dev_priv i915 device
const struct intel_cdclk_state * cdclk_state new CDCLK state
Description
Program the hardware based on the passed in CDCLK state, if necessary.
void intel_update_max_cdclk(struct drm_i915_private * dev_priv)

Determine the maximum support CDCLK frequency
Parameters
struct drm_i915_private * dev_priv i915 device
Description
Determine the maximum CDCLK frequency the platform supports, and also derive the maximum dot clock
frequency the maximum CDCLK frequency allows.
void intel_update_cdclk(struct drm_i915_private * dev_priv)

Determine the current CDCLK frequency
Parameters
struct drm_i915_private * dev_priv i915 device
Description
Determine the current CDCLK frequency.
void intel_update_rawclk(struct drm_i915_private * dev_priv)

Determine the current RAWCLK frequency
Parameters
struct drm_i915_private * dev_priv i915 device

338 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Determine the current RAWCLK frequency. RAWCLK is a fixed frequency clock so this needs to done only
once.
void intel_init_cdclk_hooks(struct drm_i915_private * dev_priv)

Initialize CDCLK related modesetting hooks
Parameters
struct drm_i915_private * dev_priv i915 device

7.2.17 Display PLLs

Display PLLs used for driving outputs vary by platform. While some have per-pipe or per-encoder dedicated
PLLs, others allow the use of any PLL from a pool. In the latter scenario, it is possible that multiple pipes
share a PLL if their configurations match.
This file provides an abstraction over display PLLs. The function intel_shared_dpll_init() initializes
the PLLs for the given platform. The users of a PLL are tracked and that tracking is integrated with the
atomic modest interface. During an atomic operation, a PLL can be requested for a given CRTC and
encoder configuration by calling intel_get_shared_dpll() and a previously used PLL can be released
with intel_release_shared_dpll(). Changes to the users are first staged in the atomic state, and then
made effective by calling intel_shared_dpll_swap_state() during the atomic commit phase.
struct intel_shared_dpll * intel_get_shared_dpll_by_id(struct drm_i915_private * dev_priv,

enum intel_dpll_id id)
get a DPLL given its id

Parameters
struct drm_i915_private * dev_priv i915 device instance
enum intel_dpll_id id pll id
Return
A pointer to the DPLL with id
enum intel_dpll_id intel_get_shared_dpll_id(struct drm_i915_private * dev_priv, struct in-

tel_shared_dpll * pll)
get the id of a DPLL

Parameters
struct drm_i915_private * dev_priv i915 device instance
struct intel_shared_dpll * pll the DPLL
Return
The id of pll
void intel_prepare_shared_dpll(struct intel_crtc * crtc)

call a dpll’s prepare hook
Parameters
struct intel_crtc * crtc CRTC which has a shared dpll
Description
This calls the PLL’s prepare hook if it has one and if the PLL is not already enabled. The prepare hook is
platform specific.
void intel_enable_shared_dpll(struct intel_crtc * crtc)

enable a CRTC’s shared DPLL
Parameters

7.2. Display Hardware Handling 339

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct intel_crtc * crtc CRTC which has a shared DPLL
Description
Enable the shared DPLL used by crtc.
void intel_disable_shared_dpll(struct intel_crtc * crtc)

disable a CRTC’s shared DPLL
Parameters
struct intel_crtc * crtc CRTC which has a shared DPLL
Description
Disable the shared DPLL used by crtc.
void intel_shared_dpll_swap_state(struct drm_atomic_state * state)

make atomic DPLL configuration effective
Parameters
struct drm_atomic_state * state atomic state
Description
This is the dpll version of drm_atomic_helper_swap_state() since the helper does not handle driver-
specific global state.
For consistency with atomic helpers this function does a complete swap, i.e. it also puts the current state
into state, even though there is no need for that at this moment.
void intel_shared_dpll_init(struct drm_device * dev)

Initialize shared DPLLs
Parameters
struct drm_device * dev drm device
Description
Initialize shared DPLLs for dev.
struct intel_shared_dpll * intel_get_shared_dpll(struct intel_crtc * crtc, struct intel_crtc_state

* crtc_state, struct intel_encoder * encoder)
get a shared DPLL for CRTC and encoder combination

Parameters
struct intel_crtc * crtc CRTC
struct intel_crtc_state * crtc_state atomic state for crtc
struct intel_encoder * encoder encoder
Description
Find an appropriate DPLL for the given CRTC and encoder combination. A reference from the
crtc to the returned pll is registered in the atomic state. That configuration is made effective
by calling intel_shared_dpll_swap_state(). The reference should be released by calling in-
tel_release_shared_dpll().
Return
A shared DPLL to be used by crtc and encoder with the given crtc_state.
void intel_release_shared_dpll(struct intel_shared_dpll * dpll, struct intel_crtc * crtc, struct

drm_atomic_state * state)
end use of DPLL by CRTC in atomic state

Parameters
struct intel_shared_dpll * dpll dpll in use by crtc

340 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct intel_crtc * crtc crtc
struct drm_atomic_state * state atomic state
Description
This function releases the reference from crtc to dpll from the atomic state. The new configuration is
made effective by calling intel_shared_dpll_swap_state().
void intel_dpll_dump_hw_state(struct drm_i915_private * dev_priv, struct intel_dpll_hw_state

* hw_state)
write hw_state to dmesg

Parameters
struct drm_i915_private * dev_priv i915 drm device
struct intel_dpll_hw_state * hw_state hw state to be written to the log
Description
Write the relevant values in hw_state to dmesg using DRM_DEBUG_KMS.
enum intel_dpll_id

possible DPLL ids
Constants
DPLL_ID_PRIVATE non-shared dpll in use
DPLL_ID_PCH_PLL_A DPLL A in ILK, SNB and IVB
DPLL_ID_PCH_PLL_B DPLL B in ILK, SNB and IVB
DPLL_ID_WRPLL1 HSW and BDW WRPLL1
DPLL_ID_WRPLL2 HSW and BDW WRPLL2
DPLL_ID_SPLL HSW and BDW SPLL
DPLL_ID_LCPLL_810 HSW and BDW 0.81 GHz LCPLL
DPLL_ID_LCPLL_1350 HSW and BDW 1.35 GHz LCPLL
DPLL_ID_LCPLL_2700 HSW and BDW 2.7 GHz LCPLL
DPLL_ID_SKL_DPLL0 SKL and later DPLL0
DPLL_ID_SKL_DPLL1 SKL and later DPLL1
DPLL_ID_SKL_DPLL2 SKL and later DPLL2
DPLL_ID_SKL_DPLL3 SKL and later DPLL3
Description
Enumeration of possible IDs for a DPLL. Real shared dpll ids must be >= 0.
struct intel_shared_dpll_state

hold the DPLL atomic state
Definition

struct intel_shared_dpll_state {
unsigned crtc_mask;
struct intel_dpll_hw_state hw_state;

};

Members
crtc_mask mask of CRTC using this DPLL, active or not
hw_state hardware configuration for the DPLL stored in struct intel_dpll_hw_state.

7.2. Display Hardware Handling 341

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
This structure holds an atomic state for the DPLL, that can represent either its current state (in struct
intel_shared_dpll) or a desired future state which would be applied by an atomic mode set (stored in
a struct intel_atomic_state).
See also intel_get_shared_dpll() and intel_release_shared_dpll().
struct intel_shared_dpll_funcs

platform specific hooks for managing DPLLs
Definition

struct intel_shared_dpll_funcs {
void (* prepare) (struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll);
void (* enable) (struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll);
void (* disable) (struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll);
bool (* get_hw_state) (struct drm_i915_private *dev_priv,struct intel_shared_dpll *pll,␣

↪→struct intel_dpll_hw_state *hw_state);
};

Members
prepare Optional hook to perform operations prior to enabling the PLL. Called from in-

tel_prepare_shared_dpll() function unless the PLL is already enabled.
enable Hook for enabling the pll, called from intel_enable_shared_dpll() if the pll is not already en-

abled.
disable Hook for disabling the pll, called from intel_disable_shared_dpll() only when it is safe to

disable the pll, i.e., there are no more tracked users for it.
get_hw_state Hook for reading the values currently programmed to the DPLL registers. This is used for

initial hw state readout and state verification after a mode set.
struct intel_shared_dpll

display PLL with tracked state and users
Definition

struct intel_shared_dpll {
struct intel_shared_dpll_state state;
unsigned active_mask;
bool on;
const char * name;
enum intel_dpll_id id;
struct intel_shared_dpll_funcs funcs;

#define INTEL_DPLL_ALWAYS_ON (1 \\\lt;\\\lt; 0
uint32_t flags;

};

Members
state Store the state for the pll, including the its hw state and CRTCs using it.
active_mask mask of active CRTCs (i.e. DPMS on) using this DPLL
on is the PLL actually active? Disabled during modeset
name DPLL name; used for logging
id unique indentifier for this DPLL; should match the index in the dev_priv->shared_dplls array
funcs platform specific hooks
flags

INTEL_DPLL_ALWAYS_ON Inform the state checker that the DPLL is kept enabled even if not in use
by any CRTC.

342 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

7.3 Memory Management and Command Submission

This sections covers all things related to the GEM implementation in the i915 driver.

7.3.1 Batchbuffer Parsing

Motivation: Certain OpenGL features (e.g. transform feedback, performance monitoring) require
userspace code to submit batches containing commands such as MI_LOAD_REGISTER_IMM to access vari-
ous registers. Unfortunately, some generations of the hardware will noop these commands in “unsecure”
batches (which includes all userspace batches submitted via i915) even though the commands may be
safe and represent the intended programming model of the device.
The software command parser is similar in operation to the command parsing done in hardware for unse-
cure batches. However, the software parser allows some operations that would be noop’d by hardware,
if the parser determines the operation is safe, and submits the batch as “secure” to prevent hardware
parsing.
Threats: At a high level, the hardware (and software) checks attempt to prevent granting userspace undue
privileges. There are three categories of privilege.
First, commands which are explicitly defined as privileged or which should only be used by the kernel
driver. The parser generally rejects such commands, though it may allow some from the drm master
process.
Second, commands which access registers. To support correct/enhanced userspace functionality, partic-
ularly certain OpenGL extensions, the parser provides a whitelist of registers which userspace may safely
access (for both normal and drm master processes).
Third, commands which access privileged memory (i.e. GGTT, HWS page, etc). The parser always rejects
such commands.
The majority of the problematic commands fall in the MI_* range, with only a few specific commands on
each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
Implementation: Each engine maintains tables of commands and registers which the parser uses in scan-
ning batch buffers submitted to that engine.
Since the set of commands that the parser must check for is significantly smaller than the number of com-
mands supported, the parser tables contain only those commands required by the parser. This generally
works because command opcode ranges have standard command length encodings. So for commands
that the parser does not need to check, it can easily skip them. This is implemented via a per-engine
length decoding vfunc.
Unfortunately, there are a number of commands that do not follow the standard length encoding for their
opcode range, primarily amongst the MI_* commands. To handle this, the parser provides a way to define
explicit “skip” entries in the per-engine command tables.
Other command table entries map fairly directly to high level categories mentioned above: rejected,
master-only, register whitelist. The parser implements a number of checks, including the privileged mem-
ory checks, via a general bitmasking mechanism.
void intel_engine_init_cmd_parser(struct intel_engine_cs * engine)

set cmd parser related fields for an engine
Parameters
struct intel_engine_cs * engine the engine to initialize
Description
Optionally initializes fields related to batch buffer command parsing in the struct intel_engine_cs based
on whether the platform requires software command parsing.
void intel_engine_cleanup_cmd_parser(struct intel_engine_cs * engine)

clean up cmd parser related fields

7.3. Memory Management and Command Submission 343

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct intel_engine_cs * engine the engine to clean up
Description
Releases any resources related to command parsing that may have been initialized for the specified en-
gine.
int intel_engine_cmd_parser(struct intel_engine_cs * engine, struct drm_i915_gem_object

* batch_obj, struct drm_i915_gem_object * shadow_batch_obj,
u32 batch_start_offset, u32 batch_len, bool is_master)

parse a submitted batch buffer for privilege violations
Parameters
struct intel_engine_cs * engine the engine on which the batch is to execute
struct drm_i915_gem_object * batch_obj the batch buffer in question
struct drm_i915_gem_object * shadow_batch_obj copy of the batch buffer in question
u32 batch_start_offset byte offset in the batch at which execution starts
u32 batch_len length of the commands in batch_obj
bool is_master is the submitting process the drm master?
Description
Parses the specified batch buffer looking for privilege violations as described in the overview.
Return
non-zero if the parser finds violations or otherwise fails; -EACCES if the batch appears legal but should
use hardware parsing
int i915_cmd_parser_get_version(struct drm_i915_private * dev_priv)

get the cmd parser version number
Parameters
struct drm_i915_private * dev_priv i915 device private
Description
The cmd parser maintains a simple increasing integer version number suitable for passing to userspace
clients to determine what operations are permitted.
Return
the current version number of the cmd parser

7.3.2 Batchbuffer Pools

In order to submit batch buffers as ‘secure’, the software command parser must ensure that a batch buffer
cannot be modified after parsing. It does this by copying the user provided batch buffer contents to a
kernel owned buffer from which the hardware will actually execute, and by carefully managing the address
space bindings for such buffers.
The batch pool framework provides a mechanism for the driver to manage a set of scratch buffers to use
for this purpose. The framework can be extended to support other uses cases should they arise.
void i915_gem_batch_pool_init(struct intel_engine_cs * engine, struct i915_gem_batch_pool

* pool)
initialize a batch buffer pool

Parameters
struct intel_engine_cs * engine the associated request submission engine

344 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct i915_gem_batch_pool * pool the batch buffer pool
void i915_gem_batch_pool_fini(struct i915_gem_batch_pool * pool)

clean up a batch buffer pool
Parameters
struct i915_gem_batch_pool * pool the pool to clean up
Note
Callers must hold the struct_mutex.
struct drm_i915_gem_object * i915_gem_batch_pool_get(struct i915_gem_batch_pool * pool,

size_t size)
allocate a buffer from the pool

Parameters
struct i915_gem_batch_pool * pool the batch buffer pool
size_t size the minimum desired size of the returned buffer
Description
Returns an inactive buffer from pool with at least size bytes, with the pages pinned. The caller must
i915_gem_object_unpin_pages() on the returned object.
Note
Callers must hold the struct_mutex
Return
the buffer object or an error pointer

7.3.3 Logical Rings, Logical Ring Contexts and Execlists

Motivation: GEN8 brings an expansion of the HW contexts: “Logical Ring Contexts”. These expanded
contexts enable a number of new abilities, especially “Execlists” (also implemented in this file).
One of the main differences with the legacy HW contexts is that logical ring contexts incorporate many
more things to the context’s state, like PDPs or ringbuffer control registers:
The reason why PDPs are included in the context is straightforward: as PPGTTs (per-process GTTs) are
actually per-context, having the PDPs contained there mean you don’t need to do a ppgtt->switch_mm
yourself, instead, the GPU will do it for you on the context switch.
But, what about the ringbuffer control registers (head, tail, etc..)? shouldn’t we just need a set of those per
engine command streamer? This is where the name “Logical Rings” starts to make sense: by virtualizing
the rings, the engine cs shifts to a new “ring buffer” with every context switch. When you want to submit
a workload to the GPU you: A) choose your context, B) find its appropriate virtualized ring, C) write
commands to it and then, finally, D) tell the GPU to switch to that context.
Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch to a contexts is via a context
execution list, ergo “Execlists”.
LRC implementation: Regarding the creation of contexts, we have:
• One global default context.
• One local default context for each opened fd.
• One local extra context for each context create ioctl call.

Now that ringbuffers belong per-context (and not per-engine, like before) and that contexts are uniquely
tied to a given engine (and not reusable, like before) we need:
• One ringbuffer per-engine inside each context.

7.3. Memory Management and Command Submission 345

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

• One backing object per-engine inside each context.
The global default context starts its life with these new objects fully allocated and populated. The local
default context for each opened fd is more complex, because we don’t know at creation time which engine
is going to use them. To handle this, we have implemented a deferred creation of LR contexts:
The local context starts its life as a hollow or blank holder, that only gets populated for a given engine
once we receive an execbuffer. If later on we receive another execbuffer ioctl for the same context but a
different engine, we allocate/populate a new ringbuffer and context backing object and so on.
Finally, regarding local contexts created using the ioctl call: as they are only allowed with the render ring,
we can allocate & populate them right away (no need to defer anything, at least for now).
Execlists implementation: Execlists are the new method by which, on gen8+ hardware, workloads are
submitted for execution (as opposed to the legacy, ringbuffer-based, method). This method works as
follows:
When a request is committed, its commands (the BB start and any leading or trailing commands, like
the seqno breadcrumbs) are placed in the ringbuffer for the appropriate context. The tail pointer in the
hardware context is not updated at this time, but instead, kept by the driver in the ringbuffer structure. A
structure representing this request is added to a request queue for the appropriate engine: this structure
contains a copy of the context’s tail after the request was written to the ring buffer and a pointer to the
context itself.
If the engine’s request queue was empty before the request was added, the queue is processed imme-
diately. Otherwise the queue will be processed during a context switch interrupt. In any case, elements
on the queue will get sent (in pairs) to the GPU’s ExecLists Submit Port (ELSP, for short) with a globally
unique 20-bits submission ID.
When execution of a request completes, the GPU updates the context status buffer with a context complete
event and generates a context switch interrupt. During the interrupt handling, the driver examines the
events in the buffer: for each context complete event, if the announced ID matches that on the head of
the request queue, then that request is retired and removed from the queue.
After processing, if any requests were retired and the queue is not empty then a new execution list can
be submitted. The two requests at the front of the queue are next to be submitted but since a context
may not occur twice in an execution list, if subsequent requests have the same ID as the first then the
two requests must be combined. This is done simply by discarding requests at the head of the queue until
either only one requests is left (in which case we use a NULL second context) or the first two requests
have unique IDs.
By always executing the first two requests in the queue the driver ensures that the GPU is kept as busy as
possible. In the case where a single context completes but a second context is still executing, the request
for this second context will be at the head of the queue when we remove the first one. This request will
then be resubmitted along with a new request for a different context, which will cause the hardware to
continue executing the second request and queue the new request (the GPU detects the condition of a
context getting preempted with the same context and optimizes the context switch flow by not doing
preemption, but just sampling the new tail pointer).
int intel_sanitize_enable_execlists(struct drm_i915_private * dev_priv, int enable_execlists)

sanitize i915.enable_execlists
Parameters
struct drm_i915_private * dev_priv i915 device private
int enable_execlists value of i915.enable_execlists module parameter.
Description
Only certain platforms support Execlists (the prerequisites being support for Logical Ring Contexts and
Aliasing PPGTT or better).
Return
1 if Execlists is supported and has to be enabled.

346 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void intel_lr_context_descriptor_update(struct i915_gem_context * ctx, struct intel_engine_cs
* engine)

calculate & cache the descriptor descriptor for a pinned context
Parameters
struct i915_gem_context * ctx Context to work on
struct intel_engine_cs * engine Engine the descriptor will be used with
Description
The context descriptor encodes various attributes of a context, including its GTT address and some flags.
Because it’s fairly expensive to calculate, we’ll just do it once and cache the result, which remains valid
until the context is unpinned.
This is what a descriptor looks like, from LSB to MSB:

bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
bits 12-31: LRCA, GTT address of (the HWSP of) this context
bits 32-52: ctx ID, a globally unique tag
bits 53-54: mbz, reserved for use by hardware
bits 55-63: group ID, currently unused and set to 0

void intel_logical_ring_cleanup(struct intel_engine_cs * engine)
deallocate the Engine Command Streamer

Parameters
struct intel_engine_cs * engine Engine Command Streamer.

7.3.4 Global GTT views

Background and previous state
Historically objects could exists (be bound) in global GTT space only as singular instances with a view
representing all of the object’s backing pages in a linear fashion. This view will be called a normal view.
To support multiple views of the same object, where the number of mapped pages is not equal to the
backing store, or where the layout of the pages is not linear, concept of a GGTT view was added.
One example of an alternative view is a stereo display driven by a single image. In this case we would
have a framebuffer looking like this (2x2 pages):

12 34
Above would represent a normal GGTT view as normally mapped for GPU or CPU rendering. In contrast,
fed to the display engine would be an alternative view which could look something like this:

1212 3434
In this example both the size and layout of pages in the alternative view is different from the normal view.
Implementation and usage
GGTT views are implemented using VMAs and are distinguished via enum i915_ggtt_view_type and struct
i915_ggtt_view.
A new flavour of core GEM functions which work with GGTT bound objects were added with the _ggtt_
infix, and sometimes with _view postfix to avoid renaming in large amounts of code. They take the struct
i915_ggtt_view parameter encapsulating all metadata required to implement a view.
As a helper for callers which are only interested in the normal view, globally const i915_ggtt_view_normal
singleton instance exists. All old core GEM API functions, the ones not taking the view parameter, are
operating on, or with the normal GGTT view.
Code wanting to add or use a new GGTT view needs to:

7.3. Memory Management and Command Submission 347

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

1. Add a new enum with a suitable name.
2. Extend the metadata in the i915_ggtt_view structure if required.
3. Add support to i915_get_vma_pages().

New views are required to build a scatter-gather table from within the i915_get_vma_pages function. This
table is stored in the vma.ggtt_view and exists for the lifetime of an VMA.
Core API is designed to have copy semantics which means that passed in struct i915_ggtt_view does not
need to be persistent (left around after calling the core API functions).
void i915_ggtt_cleanup_hw(struct drm_i915_private * dev_priv)

Clean up GGTT hardware initialization
Parameters
struct drm_i915_private * dev_priv i915 device
int i915_ggtt_probe_hw(struct drm_i915_private * dev_priv)

Probe GGTT hardware location
Parameters
struct drm_i915_private * dev_priv i915 device
int i915_ggtt_init_hw(struct drm_i915_private * dev_priv)

Initialize GGTT hardware
Parameters
struct drm_i915_private * dev_priv i915 device
int i915_gem_gtt_reserve(struct i915_address_space * vm, struct drm_mm_node * node, u64 size,

u64 offset, unsigned long color, unsigned int flags)
reserve a node in an address_space (GTT)

Parameters
struct i915_address_space * vm the struct i915_address_space

struct drm_mm_node * node the struct drm_mm_node (typically i915_vma.mode)
u64 size how much space to allocate inside the GTT, must be #I915_GTT_PAGE_SIZE aligned
u64 offset where to insert inside the GTT, must be #I915_GTT_MIN_ALIGNMENT aligned, and the node

(offset + size) must fit within the address space
unsigned long color color to apply to node, if this node is not from a VMA, color must be

#I915_COLOR_UNEVICTABLE
unsigned int flags control search and eviction behaviour
Description
i915_gem_gtt_reserve() tries to insert the node at the exact offset inside the address space (using
size and color). If the node does not fit, it tries to evict any overlapping nodes from the GTT, including
any neighbouring nodes if the colors do not match (to ensure guard pages between differing domains).
See i915_gem_evict_for_node() for the gory details on the eviction algorithm. #PIN_NONBLOCK may
used to prevent waiting on evicting active overlapping objects, and any overlapping node that is pinned
or marked as unevictable will also result in failure.
Return
0 on success, -ENOSPC if no suitable hole is found, -EINTR if asked to wait for eviction and interrupted.
int i915_gem_gtt_insert(struct i915_address_space * vm, struct drm_mm_node * node, u64 size,

u64 alignment, unsigned long color, u64 start, u64 end, unsigned
int flags)

insert a node into an address_space (GTT)
Parameters

348 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct i915_address_space * vm the struct i915_address_space

struct drm_mm_node * node the struct drm_mm_node (typically i915_vma.node)
u64 size how much space to allocate inside the GTT, must be #I915_GTT_PAGE_SIZE aligned
u64 alignment required alignment of starting offset, may be 0 but if specified, this must be a power-of-

two and at least #I915_GTT_MIN_ALIGNMENT
unsigned long color color to apply to node
u64 start start of any range restriction inside GTT (0 for all), must be #I915_GTT_PAGE_SIZE aligned
u64 end end of any range restriction inside GTT (U64_MAX for all), must be #I915_GTT_PAGE_SIZE aligned

if not U64_MAX
unsigned int flags control search and eviction behaviour
Description
i915_gem_gtt_insert() first searches for an available hole into which is can insert the node. The hole
address is aligned to alignment and its size must then fit entirely within the [start, end] bounds. The
nodes on either side of the hole must match color, or else a guard page will be inserted between the
two nodes (or the node evicted). If no suitable hole is found, first a victim is randomly selected and
tested for eviction, otherwise then the LRU list of objects within the GTT is scanned to find the first set
of replacement nodes to create the hole. Those old overlapping nodes are evicted from the GTT (and
so must be rebound before any future use). Any node that is currently pinned cannot be evicted (see
i915_vma_pin()). Similar if the node’s VMA is currently active and #PIN_NONBLOCK is specified, that
node is also skipped when searching for an eviction candidate. See i915_gem_evict_something() for
the gory details on the eviction algorithm.
Return
0 on success, -ENOSPC if no suitable hole is found, -EINTR if asked to wait for eviction and interrupted.

7.3.5 GTT Fences and Swizzling

int i915_vma_put_fence(struct i915_vma * vma)
force-remove fence for a VMA

Parameters
struct i915_vma * vma vma to map linearly (not through a fence reg)
Description
This function force-removes any fence from the given object, which is useful if the kernel wants to do
untiled GTT access.
Return
0 on success, negative error code on failure.
int i915_vma_get_fence(struct i915_vma * vma)

set up fencing for a vma
Parameters
struct i915_vma * vma vma to map through a fence reg
Description
When mapping objects through the GTT, userspace wants to be able to write to them without having to
worry about swizzling if the object is tiled. This function walks the fence regs looking for a free one for
obj, stealing one if it can’t find any.
It then sets up the reg based on the object’s properties: address, pitch and tiling format.
For an untiled surface, this removes any existing fence.

7.3. Memory Management and Command Submission 349

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Return
0 on success, negative error code on failure.
void i915_gem_revoke_fences(struct drm_i915_private * dev_priv)

revoke fence state
Parameters
struct drm_i915_private * dev_priv i915 device private
Description
Removes all GTT mmappings via the fence registers. This forces any user of the fence to reacquire that
fence before continuing with their access. One use is during GPU reset where the fence register is lost
and we need to revoke concurrent userspace access via GTT mmaps until the hardware has been reset
and the fence registers have been restored.
void i915_gem_restore_fences(struct drm_i915_private * dev_priv)

restore fence state
Parameters
struct drm_i915_private * dev_priv i915 device private
Description
Restore the hw fence state to match the software tracking again, to be called after a gpu reset and on
resume. Note that on runtime suspend we only cancel the fences, to be reacquired by the user later.
void i915_gem_detect_bit_6_swizzle(struct drm_i915_private * dev_priv)

detect bit 6 swizzling pattern
Parameters
struct drm_i915_private * dev_priv i915 device private
Description
Detects bit 6 swizzling of address lookup between IGD access and CPU access through main memory.
void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object * obj, struct sg_table

* pages)
fixup bit 17 swizzling

Parameters
struct drm_i915_gem_object * obj i915 GEM buffer object
struct sg_table * pages the scattergather list of physical pages
Description
This function fixes up the swizzling in case any page frame number for this object has changed in bit 17
since that state has been saved with i915_gem_object_save_bit_17_swizzle().
This is called when pinning backing storage again, since the kernel is free to move unpinned backing
storage around (either by directly moving pages or by swapping them out and back in again).
void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object * obj, struct sg_table

* pages)
save bit 17 swizzling

Parameters
struct drm_i915_gem_object * obj i915 GEM buffer object
struct sg_table * pages the scattergather list of physical pages
Description

350 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

This function saves the bit 17 of each page frame number so that swizzling can be fixed up later on
with i915_gem_object_do_bit_17_swizzle(). This must be called before the backing storage can be
unpinned.

Global GTT Fence Handling

Important to avoid confusions: “fences” in the i915 driver are not execution fences used to track command
completion but hardware detiler objects which wrap a given range of the global GTT. Each platform has
only a fairly limited set of these objects.
Fences are used to detile GTT memory mappings. They’re also connected to the hardware frontbuffer
render tracking and hence interact with frontbuffer compression. Furthermore on older platforms fences
are required for tiled objects used by the display engine. They can also be used by the render engine -
they’re required for blitter commands and are optional for render commands. But on gen4+ both display
(with the exception of fbc) and rendering have their own tiling state bits and don’t need fences.
Also note that fences only support X and Y tiling and hence can’t be used for the fancier new tiling formats
like W, Ys and Yf.
Finally note that because fences are such a restricted resource they’re dynamically associated with ob-
jects. Furthermore fence state is committed to the hardware lazily to avoid unnecessary stalls on gen2/3.
Therefore code must explicitly call i915_gem_object_get_fence() to synchronize fencing status for cpu
access. Also note that some code wants an unfenced view, for those cases the fence can be removed
forcefully with i915_gem_object_put_fence().
Internally these functions will synchronize with userspace access by removing CPU ptes into GTT mmaps
(not the GTT ptes themselves) as needed.

Hardware Tiling and Swizzling Details

The idea behind tiling is to increase cache hit rates by rearranging pixel data so that a group of pixel
accesses are in the same cacheline. Performance improvement from doing this on the back/depth buffer
are on the order of 30%.
Intel architectures make this somewhat more complicated, though, by adjustments made to addressing of
data when the memory is in interleaved mode (matched pairs of DIMMS) to improve memory bandwidth.
For interleaved memory, the CPU sends every sequential 64 bytes to an alternate memory channel so it
can get the bandwidth from both.
The GPU also rearranges its accesses for increased bandwidth to interleavedmemory, and it matches what
the CPU does for non-tiled. However, when tiled it does it a little differently, since one walks addresses
not just in the X direction but also Y. So, along with alternating channels when bit 6 of the address flips, it
also alternates when other bits flip – Bits 9 (every 512 bytes, an X tile scanline) and 10 (every two X tile
scanlines) are common to both the 915 and 965-class hardware.
The CPU also sometimes XORs in higher bits as well, to improve bandwidth doing strided access like we
do so frequently in graphics. This is called “Channel XOR Randomization” in the MCH documentation. The
result is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address decode.
All of this bit 6 XORing has an effect on our memory management, as we need to make sure that the 3d
driver can correctly address object contents.
If we don’t have interleaved memory, all tiling is safe and no swizzling is required.
When bit 17 is XORed in, we simply refuse to tile at all. Bit 17 is not just a page offset, so as we page
an object out and back in, individual pages in it will have different bit 17 addresses, resulting in each 64
bytes being swapped with its neighbor!
Otherwise, if interleaved, we have to tell the 3d driver what the address swizzling it needs to do is, since
it’s writing with the CPU to the pages (bit 6 and potentially bit 11 XORed in), and the GPU is reading from
the pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling required by the CPU of XORing
in bit 6, 9, 10, and potentially 11, in order to match what the GPU expects.

7.3. Memory Management and Command Submission 351

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

7.3.6 Object Tiling IOCTLs

u32 i915_gem_fence_size(struct drm_i915_private * i915, u32 size, unsigned int tiling, unsigned
int stride)

required global GTT size for a fence
Parameters
struct drm_i915_private * i915 i915 device
u32 size object size
unsigned int tiling tiling mode
unsigned int stride tiling stride
Description
Return the required global GTT size for a fence (view of a tiled object), taking into account potential fence
register mapping.
u32 i915_gem_fence_alignment(struct drm_i915_private * i915, u32 size, unsigned int tiling, un-

signed int stride)
required global GTT alignment for a fence

Parameters
struct drm_i915_private * i915 i915 device
u32 size object size
unsigned int tiling tiling mode
unsigned int stride tiling stride
Description
Return the required global GTT alignment for a fence (a view of a tiled object), taking into account potential
fence register mapping.
int i915_gem_set_tiling_ioctl(struct drm_device * dev, void * data, struct drm_file * file)

IOCTL handler to set tiling mode
Parameters
struct drm_device * dev DRM device
void * data data pointer for the ioctl
struct drm_file * file DRM file for the ioctl call
Description
Sets the tiling mode of an object, returning the required swizzling of bit 6 of addresses in the object.
Called by the user via ioctl.
Return
Zero on success, negative errno on failure.
int i915_gem_get_tiling_ioctl(struct drm_device * dev, void * data, struct drm_file * file)

IOCTL handler to get tiling mode
Parameters
struct drm_device * dev DRM device
void * data data pointer for the ioctl
struct drm_file * file DRM file for the ioctl call

352 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Returns the current tiling mode and required bit 6 swizzling for the object.
Called by the user via ioctl.
Return
Zero on success, negative errno on failure.
i915_gem_set_tiling_ioctl() and i915_gem_get_tiling_ioctl() is the userspace interface to de-
clare fence register requirements.
In principle GEM doesn’t care at all about the internal data layout of an object, and hence it also doesn’t
care about tiling or swizzling. There’s two exceptions:
• For X and Y tiling the hardware provides detilers for CPU access, so called fences. Since there’s only a
limited amount of them the kernel must manage these, and therefore userspace must tell the kernel
the object tiling if it wants to use fences for detiling.

• On gen3 and gen4 platforms have a swizzling pattern for tiled objects which depends upon the
physical page frame number. When swapping such objects the page frame number might change
and the kernel must be able to fix this up and hence now the tiling. Note that on a subset of platforms
with asymmetric memory channel population the swizzling pattern changes in an unknown way, and
for those the kernel simply forbids swapping completely.

Since neither of this applies for new tiling layouts on modern platforms like W, Ys and Yf tiling GEM only
allows object tiling to be set to X or Y tiled. Anything else can be handled in userspace entirely without
the kernel’s invovlement.

7.3.7 Buffer Object Eviction

This section documents the interface functions for evicting buffer objects to make space available in
the virtual gpu address spaces. Note that this is mostly orthogonal to shrinking buffer objects caches,
which has the goal to make main memory (shared with the gpu through the unified memory architecture)
available.
int i915_gem_evict_something(struct i915_address_space * vm, u64 min_size, u64 alignment, un-

signed cache_level, u64 start, u64 end, unsigned flags)
Evict vmas to make room for binding a new one

Parameters
struct i915_address_space * vm address space to evict from
u64 min_size size of the desired free space
u64 alignment alignment constraint of the desired free space
unsigned cache_level cache_level for the desired space
u64 start start (inclusive) of the range from which to evict objects
u64 end end (exclusive) of the range from which to evict objects
unsigned flags additional flags to control the eviction algorithm
Description
This function will try to evict vmas until a free space satisfying the requirements is found. Callers must
check first whether any such hole exists already before calling this function.
This function is used by the object/vma binding code.
Since this function is only used to free up virtual address space it only ignores pinned vmas, and not
object where the backing storage itself is pinned. Hence obj->pages_pin_count does not protect against
eviction.
To clarify: This is for freeing up virtual address space, not for freeing memory in e.g. the shrinker.

7.3. Memory Management and Command Submission 353

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int i915_gem_evict_for_node(struct i915_address_space * vm, struct drm_mm_node * target, un-
signed int flags)

Evict vmas to make room for binding a new one
Parameters
struct i915_address_space * vm address space to evict from
struct drm_mm_node * target range (and color) to evict for
unsigned int flags additional flags to control the eviction algorithm
Description
This function will try to evict vmas that overlap the target node.
To clarify: This is for freeing up virtual address space, not for freeing memory in e.g. the shrinker.
int i915_gem_evict_vm(struct i915_address_space * vm)

Evict all idle vmas from a vm
Parameters
struct i915_address_space * vm Address space to cleanse
Description
This function evicts all vmas from a vm.
This is used by the execbuf code as a last-ditch effort to defragment the address space.
To clarify: This is for freeing up virtual address space, not for freeing memory in e.g. the shrinker.

7.3.8 Buffer Object Memory Shrinking

This section documents the interface function for shrinking memory usage of buffer object caches. Shrink-
ing is used to make main memory available. Note that this is mostly orthogonal to evicting buffer objects,
which has the goal to make space in gpu virtual address spaces.
unsigned long i915_gem_shrink(struct drm_i915_private * dev_priv, unsigned long target, un-

signed flags)
Shrink buffer object caches

Parameters
struct drm_i915_private * dev_priv i915 device
unsigned long target amount of memory to make available, in pages
unsigned flags control flags for selecting cache types
Description
This function is the main interface to the shrinker. It will try to release up to target pages of main memory
backing storage from buffer objects. Selection of the specific caches can be done with flags. This is e.g.
useful when purgeable objects should be removed from caches preferentially.
Note that it’s not guaranteed that released amount is actually available as free system memory - the
pages might still be in-used to due to other reasons (like cpu mmaps) or the mm core has reused them
before we could grab them. Therefore code that needs to explicitly shrink buffer objects caches (e.g. to
avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all().
Also note that any kind of pinning (both per-vma address space pins and backing storage pins at the buffer
object level) result in the shrinker code having to skip the object.
Return
The number of pages of backing storage actually released.

354 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

unsigned long i915_gem_shrink_all(struct drm_i915_private * dev_priv)
Shrink buffer object caches completely

Parameters
struct drm_i915_private * dev_priv i915 device
Description
This is a simple wraper around i915_gem_shrink() to aggressively shrink all caches completely. It also
first waits for and retires all outstanding requests to also be able to release backing storage for active
objects.
This should only be used in code to intentionally quiescent the gpu or as a last-ditch effort when memory
seems to have run out.
Return
The number of pages of backing storage actually released.
void i915_gem_shrinker_init(struct drm_i915_private * dev_priv)

Initialize i915 shrinker
Parameters
struct drm_i915_private * dev_priv i915 device
Description
This function registers and sets up the i915 shrinker and OOM handler.
void i915_gem_shrinker_cleanup(struct drm_i915_private * dev_priv)

Clean up i915 shrinker
Parameters
struct drm_i915_private * dev_priv i915 device
Description
This function unregisters the i915 shrinker and OOM handler.

7.4 GuC

7.4.1 GuC-specific firmware loader

intel_guc: Top level structure of guc. It handles firmware loading and manages client pool and doorbells.
intel_guc owns a i915_guc_client to replace the legacy ExecList submission.
Firmware versioning: The firmware build process will generate a version header file with major and minor
version defined. The versions are built into CSS header of firmware. i915 kernel driver set the minimal
firmware version required per platform. The firmware installation package will install (symbolic link) proper
version of firmware.
GuC address space: GuC does not allow any gfx GGTT address that falls into range [0, WOPCM_TOP),
which is reserved for Boot ROM, SRAM and WOPCM. Currently this top address is 512K. In order to exclude
0-512K address space from GGTT, all gfx objects used by GuC is pinned with PIN_OFFSET_BIAS along with
size of WOPCM.
int intel_guc_init_hw(struct intel_guc * guc)

finish preparing the GuC for activity
Parameters
struct intel_guc * guc intel_guc structure

7.4. GuC 355

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Called during driver loading and also after a GPU reset.
The main action required here it to load the GuC uCode into the device. The firmware image should have
already been fetched into memory by the earlier call to intel_guc_init(), so here we need only check
that worked, and then transfer the image to the h/w.
Return
non-zero code on error
int intel_guc_select_fw(struct intel_guc * guc)

selects GuC firmware for loading
Parameters
struct intel_guc * guc intel_guc struct
Return
zero when we know firmware, non-zero in other case

7.4.2 GuC-based command submission

GuC client: A i915_guc_client refers to a submission path through GuC. Currently, there is only one of these
(the execbuf_client) and this one is charged with all submissions to the GuC. This struct is the owner of a
doorbell, a process descriptor and a workqueue (all of them inside a single gem object that contains all
required pages for these elements).
GuC stage descriptor: During initialization, the driver allocates a static pool of 1024 such descriptors,
and shares them with the GuC. Currently, there exists a 1:1 mapping between a i915_guc_client and a
guc_stage_desc (via the client’s stage_id), so effectively only one gets used. This stage descriptor lets
the GuC know about the doorbell, workqueue and process descriptor. Theoretically, it also lets the GuC
know about our HW contexts (context ID, etc...), but we actually employ a kind of submission where the
GuC uses the LRCA sent via the work item instead (the single guc_stage_desc associated to execbuf client
contains information about the default kernel context only, but this is essentially unused). This is called
a “proxy” submission.
The Scratch registers: There are 16 MMIO-based registers start from 0xC180. The kernel driver writes a
value to the action register (SOFT_SCRATCH_0) along with any data. It then triggers an interrupt on the
GuC via another register write (0xC4C8). Firmware writes a success/fail code back to the action register
after processes the request. The kernel driver polls waiting for this update and then proceeds. See
intel_guc_send()

Doorbells: Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW) mapped into process
space.
Work Items: There are several types of work items that the host may place into a workqueue, each with
its own requirements and limitations. Currently only WQ_TYPE_INORDER is needed to support legacy
submission via GuC, which represents in-order queue. The kernel driver packs ring tail pointer and an
ELSP context descriptor dword into Work Item. See guc_wq_item_append()
ADS: The Additional Data Struct (ADS) has pointers for different buffers used by the GuC. One single
gem object contains the ADS struct itself (guc_ads), the scheduling policies (guc_policies), a structure
describing a collection of register sets (guc_mmio_reg_state) and some extra pages for the GuC to save
its internal state for sleep.
int i915_guc_wq_reserve(struct drm_i915_gem_request * request)

reserve space in the GuC’s workqueue
Parameters
struct drm_i915_gem_request * request request associated with the commands
Return

356 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

0 if space is available -EAGAIN if space is not currently available
This function must be called (and must return 0) before a request is submitted to the GuC via
i915_guc_submit() below. Once a result of 0 has been returned, it must be balanced by a corresponding
call to submit().
Reservation allows the caller to determine in advance that space will be available for the next submission
before committing resources to it, and helps avoid late failures with complicated recovery paths.
void __i915_guc_submit(struct drm_i915_gem_request * rq)

Submit commands through GuC
Parameters
struct drm_i915_gem_request * rq request associated with the commands
Description
The caller must have already called i915_guc_wq_reserve() above with a result of 0 (success), guaran-
teeing that there is space in the work queue for the new request, so enqueuing the item cannot fail.
Bad Things Will Happen if the caller violates this protocol e.g. calls submit() when _reserve() says
there’s no space, or calls _submit() a different number of times from (successful) calls to _reserve().
The only error here arises if the doorbell hardware isn’t functioning as expected, which really shouln’t
happen.
struct i915_vma * intel_guc_allocate_vma(struct intel_guc * guc, u32 size)

Allocate a GGTT VMA for GuC usage
Parameters
struct intel_guc * guc the guc
u32 size size of area to allocate (both virtual space and memory)
Description
This is a wrapper to create an object for use with the GuC. In order to use it inside the GuC, an object needs
to be pinned lifetime, so we allocate both some backing storage and a range inside the Global GTT. We
must pin it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that range is reserved
inside GuC.
Return
A i915_vma if successful, otherwise an ERR_PTR.
struct i915_guc_client * guc_client_alloc(struct drm_i915_private * dev_priv, uint32_t engines,

uint32_t priority, struct i915_gem_context * ctx)
Allocate an i915_guc_client

Parameters
struct drm_i915_private * dev_priv driver private data structure
uint32_t engines The set of engines to enable for this client
uint32_t priority four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW The kernel client to replace

ExecList submission is created with NORMAL priority. Priority of a client for scheduler can be HIGH,
while a preemption context can use CRITICAL.

struct i915_gem_context * ctx the context that owns the client (we use the default render context)
Return
An i915_guc_client object if success, else NULL.
int intel_guc_suspend(struct drm_i915_private * dev_priv)

notify GuC entering suspend state
Parameters

7.4. GuC 357

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_i915_private * dev_priv i915 device private
int intel_guc_resume(struct drm_i915_private * dev_priv)

notify GuC resuming from suspend state
Parameters
struct drm_i915_private * dev_priv i915 device private

7.4.3 GuC Firmware Layout

The GuC firmware layout looks like this:

uc_css_header
contains major/minor version
uCode
RSA signature
modulus key
exponent val

The firmwaremay or may not havemodulus key and exponent data. The header, uCode and RSA signature
are must-have components that will be used by driver. Length of each components, which is all in dwords,
can be found in header. In the case that modulus and exponent are not present in fw, a.k.a truncated
image, the length value still appears in header.
Driver will do some basic fw size validation based on the following rules:
1. Header, uCode and RSA are must-have components.
2. All firmware components, if they present, are in the sequence illustrated in the layout table above.
3. Length info of each component can be found in header, in dwords.
4. Modulus and exponent key are not required by driver. They may not appear in fw. So driver will load
a truncated firmware in this case.

HuC firmware layout is same as GuC firmware.
HuC firmware css header is different. However, the only difference is where the version informa-
tion is saved. The uc_css_header is unified to support both. Driver should get HuC version from
uc_css_header.huc_sw_version, while uc_css_header.guc_sw_version for GuC.

7.5 Tracing

This sections covers all things related to the tracepoints implemented in the i915 driver.

7.5.1 i915_ppgtt_create and i915_ppgtt_release

With full ppgtt enabled each process using drm will allocate at least one translation table. With these
traces it is possible to keep track of the allocation and of the lifetime of the tables; this can be used during
testing/debug to verify that we are not leaking ppgtts. These traces identify the ppgtt through the vm
pointer, which is also printed by the i915_vma_bind and i915_vma_unbind tracepoints.

7.5.2 i915_context_create and i915_context_free

These tracepoints are used to track creation and deletion of contexts. If full ppgtt is enabled, they also
print the address of the vm assigned to the context.

358 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

7.5.3 switch_mm

This tracepoint allows tracking of the mm switch, which is an important point in the lifetime of the vm in
the legacy submission path. This tracepoint is called only if full ppgtt is enabled.

7.6 Perf

7.6.1 Overview

Gen graphics supports a large number of performance counters that can help driver and application de-
velopers understand and optimize their use of the GPU.
This i915 perf interface enables userspace to configure and open a file descriptor representing a stream
of GPU metrics which can then be read() as a stream of sample records.
The interface is particularly suited to exposing buffered metrics that are captured by DMA from the GPU,
unsynchronized with and unrelated to the CPU.
Streams representing a single context are accessible to applications with a corresponding drm file descrip-
tor, such that OpenGL can use the interface without special privileges. Access to system-wide metrics
requires root privileges by default, unless changed via the dev.i915.perf_event_paranoid sysctl option.

7.6.2 Comparison with Core Perf

The interface was initially inspired by the core Perf infrastructure but some notable differences are:
i915 perf file descriptors represent a “stream” instead of an “event”; where a perf event primarily corre-
sponds to a single 64bit value, while a stream might sample sets of tightly-coupled counters, depending
on the configuration. For example the Gen OA unit isn’t designed to support orthogonal configurations of
individual counters; it’s configured for a set of related counters. Samples for an i915 perf stream capturing
OA metrics will include a set of counter values packed in a compact HW specific format. The OA unit sup-
ports a number of different packing formats which can be selected by the user opening the stream. Perf
has support for grouping events, but each event in the group is configured, validated and authenticated
individually with separate system calls.
i915 perf stream configurations are provided as an array of u64 (key,value) pairs, instead of a fixed struct
with multiple miscellaneous config members, interleaved with event-type specific members.
i915 perf doesn’t support exposingmetrics via anmmap’d circular buffer. The supportedmetrics are being
written tomemory by the GPU unsynchronized with the CPU, using HW specific packing formats for counter
sets. Sometimes the constraints on HW configuration require reports to be filtered before it would be
acceptable to expose them to unprivileged applications - to hide the metrics of other processes/contexts.
For these use cases a read() based interface is a good fit, and provides an opportunity to filter data as it
gets copied from the GPU mapped buffers to userspace buffers.

Issues hit with first prototype based on Core Perf

The first prototype of this driver was based on the core perf infrastructure, and while we did make that
mostly work, with some changes to perf, we found we were breaking or working around too many as-
sumptions baked into perf’s currently cpu centric design.
In the end we didn’t see a clear benefit to making perf’s implementation and interface more complex
by changing design assumptions while we knew we still wouldn’t be able to use any existing perf based
userspace tools.
Also considering the Gen specific nature of the Observability hardware and how userspace will sometimes
need to combine i915 perf OA metrics with side-band OA data captured via MI_REPORT_PERF_COUNT
commands; we’re expecting the interface to be used by a platform specific userspace such as OpenGL or

7.6. Perf 359

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

tools. This is to say; we aren’t inherently missing out on having a standard vendor/architecture agnostic
interface by not using perf.
For posterity, in case we might re-visit trying to adapt core perf to be better suited to exposing i915
metrics these were the main pain points we hit:
• The perf based OA PMU driver broke some significant design assumptions:
Existing perf pmus are used for profiling work on a cpu andwewere introducing the idea of _IS_DEVICE
pmus with different security implications, the need to fake cpu-related data (such as user/kernel
registers) to fit with perf’s current design, and adding _DEVICE records as a way to forward device-
specific status records.
The OA unit writes reports of counters into a circular buffer, without involvement from the CPU,
making our PMU driver the first of a kind.
Given the way we were periodically forward data from the GPU-mapped, OA buffer to perf’s buffer,
those bursts of sample writes looked to perf like we were sampling too fast and so we had to subvert
its throttling checks.
Perf supports groups of counters and allows those to be read via transactions internally but transac-
tions currently seem designed to be explicitly initiated from the cpu (say in response to a userspace
read()) and while we could pull a report out of the OA buffer we can’t trigger a report from the cpu
on demand.
Related to being report based; the OA counters are configured in HW as a set while perf generally
expects counter configurations to be orthogonal. Although counters can be associated with a group
leader as they are opened, there’s no clear precedent for being able to provide group-wide config-
uration attributes (for example we want to let userspace choose the OA unit report format used to
capture all counters in a set, or specify a GPU context to filter metrics on). We avoided using perf’s
grouping feature and forwarded OA reports to userspace via perf’s ‘raw’ sample field. This suited our
userspace well considering how coupled the counters are when dealing with normalizing. It would be
inconvenient to split counters up into separate events, only to require userspace to recombine them.
For Mesa it’s also convenient to be forwarded raw, periodic reports for combining with the side-band
raw reports it captures using MI_REPORT_PERF_COUNT commands.
– As a side note on perf’s grouping feature; there was also some concern that using
PERF_FORMAT_GROUP as a way to pack together counter values would quite drastically inflate
our sample sizes, which would likely lower the effective sampling resolutions we could use when
the available memory bandwidth is limited.
With the OA unit’s report formats, counters are packed together as 32 or 40bit values, with the
largest report size being 256 bytes.
PERF_FORMAT_GROUP values are 64bit, but there doesn’t appear to be a documented ordering
to the values, implying PERF_FORMAT_ID must also be used to add a 64bit ID before each value;
giving 16 bytes per counter.

Related to counter orthogonality; we can’t time share the OA unit, while event scheduling is a central
design idea within perf for allowing userspace to open + enable more events than can be configured
in HW at any one time. The OA unit is not designed to allow re-configuration while in use. We can’t
reconfigure the OA unit without losing internal OA unit state which we can’t access explicitly to save
and restore. Reconfiguring the OA unit is also relatively slow, involving ~100 register writes. From
userspace Mesa also depends on a stable OA configuration when emitting MI_REPORT_PERF_COUNT
commands and importantly the OA unit can’t be disabled while there are outstanding MI_RPC com-
mands lest we hang the command streamer.
The contents of sample records aren’t extensible by device drivers (i.e. the sample_type bits). As
an example; Sourab Gupta had been looking to attach GPU timestamps to our OA samples. We were
shoehorning OA reports into sample records by using the ‘raw’ field, but it’s tricky to pack more than
one thing into this field because events/core.c currently only lets a pmu give a single raw data pointer
plus len which will be copied into the ring buffer. To include more than the OA report we’d have to
copy the report into an intermediate larger buffer. I’d been considering allowing a vector of data+len

360 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

values to be specified for copying the raw data, but it felt like a kludge to being using the raw field
for this purpose.

• It felt like our perf based PMU was making some technical compromises just for the sake of using
perf:
perf_event_open() requires events to either relate to a pid or a specific cpu core, while our device
pmu related to neither. Events opened with a pid will be automatically enabled/disabled according to
the scheduling of that process - so not appropriate for us. When an event is related to a cpu id, perf
ensures pmu methods will be invoked via an inter process interrupt on that core. To avoid invasive
changes our userspace opened OA perf events for a specific cpu. This was workable but it meant
the majority of the OA driver ran in atomic context, including all OA report forwarding, which wasn’t
really necessary in our case and seems to make our locking requirements somewhat complex as we
handled the interaction with the rest of the i915 driver.

7.6.3 i915 Driver Entry Points

This section covers the entrypoints exported outside of i915_perf.c to integrate with drm/i915 and to
handle the DRM_I915_PERF_OPEN ioctl.
void i915_perf_init(struct drm_i915_private * dev_priv)

initialize i915-perf state on module load
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
Initializes i915-perf state without exposing anything to userspace.
Note
i915-perf initialization is split into an ‘init’ and ‘register’ phase with the i915_perf_register() exposing
state to userspace.
void i915_perf_fini(struct drm_i915_private * dev_priv)

Counter part to i915_perf_init()
Parameters
struct drm_i915_private * dev_priv i915 device instance
void i915_perf_register(struct drm_i915_private * dev_priv)

exposes i915-perf to userspace
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
In particular OA metric sets are advertised under a sysfs metrics/ directory allowing userspace to enumer-
ate valid IDs that can be used to open an i915-perf stream.
void i915_perf_unregister(struct drm_i915_private * dev_priv)

hide i915-perf from userspace
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
i915-perf state cleanup is split up into an ‘unregister’ and ‘deinit’ phase where the interface is first hidden
from userspace by i915_perf_unregister() before cleaning up remaining state in i915_perf_fini().
int i915_perf_open_ioctl(struct drm_device * dev, void * data, struct drm_file * file)

DRM ioctl() for userspace to open a stream FD

7.6. Perf 361

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct drm_device * dev drm device
void * data ioctl data copied from userspace (unvalidated)
struct drm_file * file drm file
Description
Validates the stream open parameters given by userspace including flags and an array of u64 key, value
pair properties.
Very little is assumed up front about the nature of the stream being opened (for instance we don’t assume
it’s for periodic OA unit metrics). An i915-perf stream is expected to be a suitable interface for other forms
of buffered data written by the GPU besides periodic OA metrics.
Note we copy the properties from userspace outside of the i915 perf mutex to avoid an awkward lockdep
with mmap_sem.
Most of the implementation details are handled by i915_perf_open_ioctl_locked() after taking the
drm_i915_private->perf.lock mutex for serializing with any non-file-operation driver hooks.
Return
A newly opened i915 Perf stream file descriptor or negative error code on failure.
int i915_perf_release(struct inode * inode, struct file * file)

handles userspace close() of a stream file
Parameters
struct inode * inode anonymous inode associated with file
struct file * file An i915 perf stream file
Description
Cleans up any resources associated with an open i915 perf stream file.
NB: close() can’t really fail from the userspace point of view.
Return
zero on success or a negative error code.

7.6.4 i915 Perf Stream

This section covers the stream-semantics-agnostic structures and functions for representing an i915 perf
stream FD and associated file operations.
struct i915_perf_stream

state for a single open stream FD
Definition

struct i915_perf_stream {
struct drm_i915_private * dev_priv;
struct list_head link;
u32 sample_flags;
int sample_size;
struct i915_gem_context * ctx;
bool enabled;
const struct i915_perf_stream_ops * ops;

};

Members
dev_priv i915 drm device

362 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

link Links the stream into :c:type:`drm_i915_private->streams <drm_i915_private>`

sample_flags Flags representing the DRM_I915_PERF_PROP_SAMPLE_* properties given when opening a
stream, representing the contents of a single sample as read() by userspace.

sample_size Considering the configured contents of a sample combined with the required header size,
this is the total size of a single sample record.

ctx NULL if measuring system-wide across all contexts or a specific context that is being monitored.
enabled Whether the stream is currently enabled, considering whether the stream was opened in a dis-

abled state and based on I915_PERF_IOCTL_ENABLE and I915_PERF_IOCTL_DISABLE calls.
ops The callbacks providing the implementation of this specific type of configured stream.
struct i915_perf_stream_ops

the OPs to support a specific stream type
Definition

struct i915_perf_stream_ops {
void (* enable) (struct i915_perf_stream *stream);
void (* disable) (struct i915_perf_stream *stream);
void (* poll_wait) (struct i915_perf_stream *stream,struct file *file, poll_table *wait);
int (* wait_unlocked) (struct i915_perf_stream *stream);
int (* read) (struct i915_perf_stream *stream,char __user *buf,size_t count, size_t *offset);
void (* destroy) (struct i915_perf_stream *stream);

};

Members
enable Enables the collection of HW samples, either in response to I915_PERF_IOCTL_ENABLE or implicitly

called when stream is opened without I915_PERF_FLAG_DISABLED.
disable Disables the collection of HW samples, either in response to I915_PERF_IOCTL_DISABLE or im-

plicitly called before destroying the stream.
poll_wait Call poll_wait, passing a wait queue that will be woken once there is something ready to read()

for the stream
wait_unlocked For handling a blocking read, wait until there is something to ready to read() for the

stream. E.g. wait on the same wait queue that would be passed to poll_wait().
read Copy buffered metrics as records to userspace buf: the userspace, destination buffer count: the

number of bytes to copy, requested by userspace offset: zero at the start of the read, updated as
the read proceeds, it represents how many bytes have been copied so far and the buffer offset for
copying the next record.
Copy as many buffered i915 perf samples and records for this stream to userspace as will fit in the
given buffer.
Only write complete records; returning -ENOSPC if there isn’t room for a complete record.
Return any error condition that results in a short read such as -ENOSPC or -EFAULT, even though these
may be squashed before returning to userspace.

destroy Cleanup any stream specific resources.
The stream will always be disabled before this is called.

int read_properties_unlocked(struct drm_i915_private * dev_priv, u64 __user * uprops,
u32 n_props, struct perf_open_properties * props)

validate + copy userspace stream open properties
Parameters
struct drm_i915_private * dev_priv i915 device instance
u64 __user * uprops The array of u64 key value pairs given by userspace

7.6. Perf 363

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

u32 n_props The number of key value pairs expected in uprops
struct perf_open_properties * props The stream configuration built up while validating properties
Description
Note this function only validates properties in isolation it doesn’t validate that the combination of proper-
ties makes sense or that all properties necessary for a particular kind of stream have been set.
Note that there currently aren’t any ordering requirements for properties so we shouldn’t validate or
assume anything about ordering here. This doesn’t rule out defining new properties with ordering re-
quirements in the future.
int i915_perf_open_ioctl_locked(struct drm_i915_private * dev_priv, struct

drm_i915_perf_open_param * param, struct
perf_open_properties * props, struct drm_file * file)

DRM ioctl() for userspace to open a stream FD
Parameters
struct drm_i915_private * dev_priv i915 device instance
struct drm_i915_perf_open_param * param The open parameters passed to ‘DRM_I915_PERF_OPEN‘
struct perf_open_properties * props individually validated u64 property value pairs
struct drm_file * file drm file
Description
See i915_perf_ioctl_open() for interface details.
Implements further stream config validation and stream initialization on behalf of
i915_perf_open_ioctl() with the drm_i915_private->perf.lock mutex taken to serialize with
any non-file-operation driver hooks.
Note
at this point the props have only been validated in isolation and it’s still necessary to validate that the
combination of properties makes sense.
In the case where userspace is interested in OA unit metrics then further config validation and stream
initialization details will be handled by i915_oa_stream_init(). The code here should only validate
config state that will be relevant to all stream types / backends.
Return
zero on success or a negative error code.
void i915_perf_destroy_locked(struct i915_perf_stream * stream)

destroy an i915 perf stream
Parameters
struct i915_perf_stream * stream An i915 perf stream
Description
Frees all resources associated with the given i915 perf stream, disabling any associated data capture in
the process.
Note
The drm_i915_private->perf.lock mutex has been taken to serialize with any non-file-operation driver
hooks.
ssize_t i915_perf_read(struct file * file, char __user * buf, size_t count, loff_t * ppos)

handles read() FOP for i915 perf stream FDs
Parameters
struct file * file An i915 perf stream file

364 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

char __user * buf destination buffer given by userspace
size_t count the number of bytes userspace wants to read
loff_t * ppos (inout) file seek position (unused)
Description
The entry point for handling a read() on a stream file descriptor from userspace. Most of the work
is left to the i915_perf_read_locked() and i915_perf_stream_ops->read but to save having stream
implementations (of which we might have multiple later) we handle blocking read here.
We can also consistently treat trying to read from a disabled stream as an IO error so implementations
can assume the stream is enabled while reading.
Return
The number of bytes copied or a negative error code on failure.
long i915_perf_ioctl(struct file * file, unsigned int cmd, unsigned long arg)

support ioctl() usage with i915 perf stream FDs
Parameters
struct file * file An i915 perf stream file
unsigned int cmd the ioctl request
unsigned long arg the ioctl data
Description
Implementation deferred to i915_perf_ioctl_locked().
Return
zero on success or a negative error code. Returns -EINVAL for an unknown ioctl request.
void i915_perf_enable_locked(struct i915_perf_stream * stream)

handle I915_PERF_IOCTL_ENABLE ioctl
Parameters
struct i915_perf_stream * stream A disabled i915 perf stream
Description
[Re]enables the associated capture of data for this stream.
If a stream was previously enabled then there’s currently no intention to provide userspace any guarantee
about the preservation of previously buffered data.
void i915_perf_disable_locked(struct i915_perf_stream * stream)

handle I915_PERF_IOCTL_DISABLE ioctl
Parameters
struct i915_perf_stream * stream An enabled i915 perf stream
Description
Disables the associated capture of data for this stream.
The intention is that disabling an re-enabling a stream will ideally be cheaper than destroying and re-
opening a stream with the same configuration, though there are no formal guarantees about what state
or buffered data must be retained between disabling and re-enabling a stream.
Note
while a stream is disabled it’s considered an error for userspace to attempt to read from the stream (-EIO).

unsigned int i915_perf_poll(struct file * file, poll_table * wait)
call poll_wait() with a suitable wait queue for stream

7.6. Perf 365

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
struct file * file An i915 perf stream file
poll_table * wait poll() state table
Description
For handling userspace polling on an i915 perf stream, this ensures poll_wait() gets called with a wait
queue that will be woken for new stream data.
Note
Implementation deferred to i915_perf_poll_locked()
Return
any poll events that are ready without sleeping
unsigned int i915_perf_poll_locked(struct drm_i915_private * dev_priv, struct i915_perf_stream

* stream, struct file * file, poll_table * wait)
poll_wait() with a suitable wait queue for stream

Parameters
struct drm_i915_private * dev_priv i915 device instance
struct i915_perf_stream * stream An i915 perf stream
struct file * file An i915 perf stream file
poll_table * wait poll() state table
Description
For handling userspace polling on an i915 perf stream, this calls through to i915_perf_stream_ops-
>poll_wait to call poll_wait() with a wait queue that will be woken for new stream data.
Note
The drm_i915_private->perf.lock mutex has been taken to serialize with any non-file-operation driver
hooks.
Return
any poll events that are ready without sleeping

7.6.5 i915 Perf Observation Architecture Stream

struct i915_oa_ops
Gen specific implementation of an OA unit stream

Definition

struct i915_oa_ops {
void (* init_oa_buffer) (struct drm_i915_private *dev_priv);
int (* select_metric_set) (struct drm_i915_private *dev_priv);
int (* enable_metric_set) (struct drm_i915_private *dev_priv);
void (* disable_metric_set) (struct drm_i915_private *dev_priv);
void (* oa_enable) (struct drm_i915_private *dev_priv);
void (* oa_disable) (struct drm_i915_private *dev_priv);
int (* read) (struct i915_perf_stream *stream,char __user *buf,size_t count, size_t *offset);
u32 (* oa_hw_tail_read) (struct drm_i915_private *dev_priv);

};

Members

366 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

init_oa_buffer Resets the head and tail pointers of the circular buffer for periodic OA reports.
Called when first opening a stream for OA metrics, but also may be called in response to an OA buffer
overflow or other error condition.
Note it may be necessary to clear the full OA buffer here as part of maintaining the invariable that new
reports must be written to zeroed memory for us to be able to reliable detect if an expected report
has not yet landed in memory. (At least on Haswell the OA buffer tail pointer is not synchronized with
reports being visible to the CPU)

select_metric_set The auto generated code that checks whether a requested OA config is applicable to
the system and if so sets up the mux, oa and flex eu register config pointers according to the current
dev_priv->perf.oa.metrics_set.

enable_metric_set Selects and applies any MUX configuration to set up the Boolean and Custom (B/C)
counters that are part of the counter reports being sampled. May apply system constraints such as
disabling EU clock gating as required.

disable_metric_set Remove system constraints associated with using the OA unit.
oa_enable Enable periodic sampling
oa_disable Disable periodic sampling
read Copy data from the circular OA buffer into a given userspace buffer.
oa_hw_tail_read read the OA tail pointer register

In particular this enables us to share all the fiddly code for handling the OA unit tail pointer race that
affects multiple generations.

int i915_oa_stream_init(struct i915_perf_stream * stream, struct drm_i915_perf_open_param
* param, struct perf_open_properties * props)

validate combined props for OA stream and init
Parameters
struct i915_perf_stream * stream An i915 perf stream
struct drm_i915_perf_open_param * param The open parameters passed to DRM_I915_PERF_OPEN
struct perf_open_properties * props The property state that configures stream (individually vali-

dated)
Description
While read_properties_unlocked() validates properties in isolation it doesn’t ensure that the combina-
tion necessarily makes sense.
At this point it has been determined that userspace wants a stream of OA metrics, but still we need to
further validate the combined properties are OK.
If the configuration makes sense then we can allocate memory for a circular OA buffer and apply the
requested metric set configuration.
Return
zero on success or a negative error code.
int i915_oa_read(struct i915_perf_stream * stream, char __user * buf, size_t count, size_t * offset)

just calls through to i915_oa_ops->read
Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
char __user * buf destination buffer given by userspace
size_t count the number of bytes userspace wants to read
size_t * offset (inout): the current position for writing into buf

7.6. Perf 367

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Updates offset according to the number of bytes successfully copied into the userspace buffer.
Return
zero on success or a negative error code
void i915_oa_stream_enable(struct i915_perf_stream * stream)

handle I915_PERF_IOCTL_ENABLE for OA stream
Parameters
struct i915_perf_stream * stream An i915 perf stream opened for OA metrics
Description
[Re]enables hardware periodic sampling according to the period configured when opening the stream. This
also starts a hrtimer that will periodically check for data in the circular OA buffer for notifying userspace
(e.g. during a read() or poll()).
void i915_oa_stream_disable(struct i915_perf_stream * stream)

handle I915_PERF_IOCTL_DISABLE for OA stream
Parameters
struct i915_perf_stream * stream An i915 perf stream opened for OA metrics
Description
Stops the OA unit from periodically writing counter reports into the circular OA buffer. This also stops the
hrtimer that periodically checks for data in the circular OA buffer, for notifying userspace.
int i915_oa_wait_unlocked(struct i915_perf_stream * stream)

handles blocking IO until OA data available
Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
Description
Called when userspace tries to read() from a blocking stream FD opened for OA metrics. It waits until
the hrtimer callback finds a non-empty OA buffer and wakes us.
Note
it’s acceptable to have this return with some false positives since any subsequent read handling will return
-EAGAIN if there isn’t really data ready for userspace yet.
Return
zero on success or a negative error code
void i915_oa_poll_wait(struct i915_perf_stream * stream, struct file * file, poll_table * wait)

call poll_wait() for an OA stream poll()

Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
struct file * file An i915 perf stream file
poll_table * wait poll() state table
Description
For handling userspace polling on an i915 perf stream opened for OA metrics, this starts a poll_wait with
the wait queue that our hrtimer callback wakes when it sees data ready to read in the circular OA buffer.

368 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

7.6.6 All i915 Perf Internals

This section simply includes all currently documented i915 perf internals, in no particular order, but may
include some more minor utilities or platform specific details than found in the more high-level sections.
struct perf_open_properties

for validated properties given to open a stream
Definition

struct perf_open_properties {
u32 sample_flags;
u64 single_context:1;
u64 ctx_handle;
int metrics_set;
int oa_format;
bool oa_periodic;
int oa_period_exponent;

};

Members
sample_flags DRM_I915_PERF_PROP_SAMPLE_* properties are tracked as flags
single_context Whether a single or all gpu contexts should be monitored
ctx_handle A gem ctx handle for use with single_context
metrics_set An ID for an OA unit metric set advertised via sysfs
oa_format An OA unit HW report format
oa_periodic Whether to enable periodic OA unit sampling
oa_period_exponent The OA unit sampling period is derived from this
Description
As read_properties_unlocked() enumerates and validates the properties given to open a stream of
metrics the configuration is built up in the structure which starts out zero initialized.
bool oa_buffer_check_unlocked(struct drm_i915_private * dev_priv)

check for data and update tail ptr state
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
This is either called via fops (for blocking reads in user ctx) or the poll check hrtimer (atomic ctx) to check
the OA buffer tail pointer and check if there is data available for userspace to read.
This function is central to providing a workaround for the OA unit tail pointer having a race with re-
spect to what data is visible to the CPU. It is responsible for reading tail pointers from the hardware
and giving the pointers time to ‘age’ before they are made available for reading. (See description of
OA_TAIL_MARGIN_NSEC above for further details.)
Besides returning true when there is data available to read() this function also has the side effect of
updating the oa_buffer.tails[], .aging_timestamp and .aged_tail_idx state used for reading.
Note
It’s safe to read OA config state here unlocked, assuming that this is only called while the stream is
enabled, while the global OA configuration can’t be modified.
Return
true if the OA buffer contains data, else false

7.6. Perf 369

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int append_oa_status(struct i915_perf_stream * stream, char __user * buf, size_t count, size_t * off-
set, enum drm_i915_perf_record_type type)

Appends a status record to a userspace read() buffer.
Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
char __user * buf destination buffer given by userspace
size_t count the number of bytes userspace wants to read
size_t * offset (inout): the current position for writing into buf
enum drm_i915_perf_record_type type The kind of status to report to userspace
Description
Writes a status record (such as DRM_I915_PERF_RECORD_OA_REPORT_LOST) into the userspace read()
buffer.
The buf offset will only be updated on success.
Return
0 on success, negative error code on failure.
int append_oa_sample(struct i915_perf_stream * stream, char __user * buf, size_t count, size_t * off-

set, const u8 * report)
Copies single OA report into userspace read() buffer.

Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
char __user * buf destination buffer given by userspace
size_t count the number of bytes userspace wants to read
size_t * offset (inout): the current position for writing into buf
const u8 * report A single OA report to (optionally) include as part of the sample
Description
The contents of a sample are configured through DRM_I915_PERF_PROP_SAMPLE_* properties when open-
ing a stream, tracked as stream->sample_flags. This function copies the requested components of a single
sample to the given read() buf.
The buf offset will only be updated on success.
Return
0 on success, negative error code on failure.
int gen8_append_oa_reports(struct i915_perf_stream * stream, char __user * buf, size_t count,

size_t * offset)
Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
char __user * buf destination buffer given by userspace
size_t count the number of bytes userspace wants to read
size_t * offset (inout): the current position for writing into buf
Description
Notably any error condition resulting in a short read (-ENOSPC or -EFAULT) will be returned even though
one or more records may have been successfully copied. In this case it’s up to the caller to decide if the
error should be squashed before returning to userspace.

370 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Note
reports are consumed from the head, and appended to the tail, so the tail chases the head?... If you think
that’s mad and back-to-front you’re not alone, but this follows the Gen PRM naming convention.
Return
0 on success, negative error code on failure.
int gen8_oa_read(struct i915_perf_stream * stream, char __user * buf, size_t count, size_t * offset)

copy status records then buffered OA reports
Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
char __user * buf destination buffer given by userspace
size_t count the number of bytes userspace wants to read
size_t * offset (inout): the current position for writing into buf
Description
Checks OA unit status registers and if necessary appends corresponding status records for userspace
(such as for a buffer full condition) and then initiate appending any buffered OA reports.
Updates offset according to the number of bytes successfully copied into the userspace buffer.
NB: some data may be successfully copied to the userspace buffer even if an error is returned, and this is
reflected in the updated offset.
Return
zero on success or a negative error code
int gen7_append_oa_reports(struct i915_perf_stream * stream, char __user * buf, size_t count,

size_t * offset)
Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
char __user * buf destination buffer given by userspace
size_t count the number of bytes userspace wants to read
size_t * offset (inout): the current position for writing into buf
Description
Notably any error condition resulting in a short read (-ENOSPC or -EFAULT) will be returned even though
one or more records may have been successfully copied. In this case it’s up to the caller to decide if the
error should be squashed before returning to userspace.
Note
reports are consumed from the head, and appended to the tail, so the tail chases the head?... If you think
that’s mad and back-to-front you’re not alone, but this follows the Gen PRM naming convention.
Return
0 on success, negative error code on failure.
int gen7_oa_read(struct i915_perf_stream * stream, char __user * buf, size_t count, size_t * offset)

copy status records then buffered OA reports
Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
char __user * buf destination buffer given by userspace
size_t count the number of bytes userspace wants to read

7.6. Perf 371

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

size_t * offset (inout): the current position for writing into buf
Description
Checks Gen 7 specific OA unit status registers and if necessary appends corresponding status records for
userspace (such as for a buffer full condition) and then initiate appending any buffered OA reports.
Updates offset according to the number of bytes successfully copied into the userspace buffer.
Return
zero on success or a negative error code
int i915_oa_wait_unlocked(struct i915_perf_stream * stream)

handles blocking IO until OA data available
Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
Description
Called when userspace tries to read() from a blocking stream FD opened for OA metrics. It waits until
the hrtimer callback finds a non-empty OA buffer and wakes us.
Note
it’s acceptable to have this return with some false positives since any subsequent read handling will return
-EAGAIN if there isn’t really data ready for userspace yet.
Return
zero on success or a negative error code
void i915_oa_poll_wait(struct i915_perf_stream * stream, struct file * file, poll_table * wait)

call poll_wait() for an OA stream poll()

Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
struct file * file An i915 perf stream file
poll_table * wait poll() state table
Description
For handling userspace polling on an i915 perf stream opened for OA metrics, this starts a poll_wait with
the wait queue that our hrtimer callback wakes when it sees data ready to read in the circular OA buffer.
int i915_oa_read(struct i915_perf_stream * stream, char __user * buf, size_t count, size_t * offset)

just calls through to i915_oa_ops->read
Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
char __user * buf destination buffer given by userspace
size_t count the number of bytes userspace wants to read
size_t * offset (inout): the current position for writing into buf
Description
Updates offset according to the number of bytes successfully copied into the userspace buffer.
Return
zero on success or a negative error code
int oa_get_render_ctx_id(struct i915_perf_stream * stream)

determine and hold ctx hw id
Parameters

372 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
Description
Determine the render context hw id, and ensure it remains fixed for the lifetime of the stream. This
ensures that we don’t have to worry about updating the context ID in OACONTROL on the fly.
Return
zero on success or a negative error code
void oa_put_render_ctx_id(struct i915_perf_stream * stream)

counterpart to oa_get_render_ctx_id releases hold
Parameters
struct i915_perf_stream * stream An i915-perf stream opened for OA metrics
Description
In case anything needed doing to ensure the context HW ID would remain valid for the lifetime of the
stream, then that can be undone here.
void i915_oa_stream_enable(struct i915_perf_stream * stream)

handle I915_PERF_IOCTL_ENABLE for OA stream
Parameters
struct i915_perf_stream * stream An i915 perf stream opened for OA metrics
Description
[Re]enables hardware periodic sampling according to the period configured when opening the stream. This
also starts a hrtimer that will periodically check for data in the circular OA buffer for notifying userspace
(e.g. during a read() or poll()).
void i915_oa_stream_disable(struct i915_perf_stream * stream)

handle I915_PERF_IOCTL_DISABLE for OA stream
Parameters
struct i915_perf_stream * stream An i915 perf stream opened for OA metrics
Description
Stops the OA unit from periodically writing counter reports into the circular OA buffer. This also stops the
hrtimer that periodically checks for data in the circular OA buffer, for notifying userspace.
int i915_oa_stream_init(struct i915_perf_stream * stream, struct drm_i915_perf_open_param

* param, struct perf_open_properties * props)
validate combined props for OA stream and init

Parameters
struct i915_perf_stream * stream An i915 perf stream
struct drm_i915_perf_open_param * param The open parameters passed to DRM_I915_PERF_OPEN
struct perf_open_properties * props The property state that configures stream (individually vali-

dated)
Description
While read_properties_unlocked() validates properties in isolation it doesn’t ensure that the combina-
tion necessarily makes sense.
At this point it has been determined that userspace wants a stream of OA metrics, but still we need to
further validate the combined properties are OK.
If the configuration makes sense then we can allocate memory for a circular OA buffer and apply the
requested metric set configuration.
Return

7.6. Perf 373

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

zero on success or a negative error code.
ssize_t i915_perf_read_locked(struct i915_perf_stream * stream, struct file * file, char __user

* buf, size_t count, loff_t * ppos)
i915_perf_stream_ops->read with error normalisation

Parameters
struct i915_perf_stream * stream An i915 perf stream
struct file * file An i915 perf stream file
char __user * buf destination buffer given by userspace
size_t count the number of bytes userspace wants to read
loff_t * ppos (inout) file seek position (unused)
Description
Besides wrapping i915_perf_stream_ops->read this provides a common place to ensure that if we’ve
successfully copied any data then reporting that takes precedence over any internal error status, so the
data isn’t lost.
For example ret will be -ENOSPC whenever there is more buffered data than can be copied to userspace,
but that’s only interesting if we weren’t able to copy some data because it implies the userspace buffer
is too small to receive a single record (and we never split records).
Another case with ret == -EFAULT is more of a grey area since it would seem like bad form for userspace
to ask us to overrun its buffer, but the user knows best:

http://yarchive.net/comp/linux/partial_reads_writes.html
Return
The number of bytes copied or a negative error code on failure.
ssize_t i915_perf_read(struct file * file, char __user * buf, size_t count, loff_t * ppos)

handles read() FOP for i915 perf stream FDs
Parameters
struct file * file An i915 perf stream file
char __user * buf destination buffer given by userspace
size_t count the number of bytes userspace wants to read
loff_t * ppos (inout) file seek position (unused)
Description
The entry point for handling a read() on a stream file descriptor from userspace. Most of the work
is left to the i915_perf_read_locked() and i915_perf_stream_ops->read but to save having stream
implementations (of which we might have multiple later) we handle blocking read here.
We can also consistently treat trying to read from a disabled stream as an IO error so implementations
can assume the stream is enabled while reading.
Return
The number of bytes copied or a negative error code on failure.
unsigned int i915_perf_poll_locked(struct drm_i915_private * dev_priv, struct i915_perf_stream

* stream, struct file * file, poll_table * wait)
poll_wait() with a suitable wait queue for stream

Parameters
struct drm_i915_private * dev_priv i915 device instance
struct i915_perf_stream * stream An i915 perf stream

374 Chapter 7. drm/i915 Intel GFX Driver

http://yarchive.net/comp/linux/partial_reads_writes.html

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct file * file An i915 perf stream file
poll_table * wait poll() state table
Description
For handling userspace polling on an i915 perf stream, this calls through to i915_perf_stream_ops-
>poll_wait to call poll_wait() with a wait queue that will be woken for new stream data.
Note
The drm_i915_private->perf.lock mutex has been taken to serialize with any non-file-operation driver
hooks.
Return
any poll events that are ready without sleeping
unsigned int i915_perf_poll(struct file * file, poll_table * wait)

call poll_wait() with a suitable wait queue for stream
Parameters
struct file * file An i915 perf stream file
poll_table * wait poll() state table
Description
For handling userspace polling on an i915 perf stream, this ensures poll_wait() gets called with a wait
queue that will be woken for new stream data.
Note
Implementation deferred to i915_perf_poll_locked()
Return
any poll events that are ready without sleeping
void i915_perf_enable_locked(struct i915_perf_stream * stream)

handle I915_PERF_IOCTL_ENABLE ioctl
Parameters
struct i915_perf_stream * stream A disabled i915 perf stream
Description
[Re]enables the associated capture of data for this stream.
If a stream was previously enabled then there’s currently no intention to provide userspace any guarantee
about the preservation of previously buffered data.
void i915_perf_disable_locked(struct i915_perf_stream * stream)

handle I915_PERF_IOCTL_DISABLE ioctl
Parameters
struct i915_perf_stream * stream An enabled i915 perf stream
Description
Disables the associated capture of data for this stream.
The intention is that disabling an re-enabling a stream will ideally be cheaper than destroying and re-
opening a stream with the same configuration, though there are no formal guarantees about what state
or buffered data must be retained between disabling and re-enabling a stream.
Note
while a stream is disabled it’s considered an error for userspace to attempt to read from the stream (-EIO).

7.6. Perf 375

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

long i915_perf_ioctl_locked(struct i915_perf_stream * stream, unsigned int cmd, unsigned
long arg)

support ioctl() usage with i915 perf stream FDs
Parameters
struct i915_perf_stream * stream An i915 perf stream
unsigned int cmd the ioctl request
unsigned long arg the ioctl data
Note
The drm_i915_private->perf.lock mutex has been taken to serialize with any non-file-operation driver
hooks.
Return
zero on success or a negative error code. Returns -EINVAL for an unknown ioctl request.
long i915_perf_ioctl(struct file * file, unsigned int cmd, unsigned long arg)

support ioctl() usage with i915 perf stream FDs
Parameters
struct file * file An i915 perf stream file
unsigned int cmd the ioctl request
unsigned long arg the ioctl data
Description
Implementation deferred to i915_perf_ioctl_locked().
Return
zero on success or a negative error code. Returns -EINVAL for an unknown ioctl request.
void i915_perf_destroy_locked(struct i915_perf_stream * stream)

destroy an i915 perf stream
Parameters
struct i915_perf_stream * stream An i915 perf stream
Description
Frees all resources associated with the given i915 perf stream, disabling any associated data capture in
the process.
Note
The drm_i915_private->perf.lock mutex has been taken to serialize with any non-file-operation driver
hooks.
int i915_perf_release(struct inode * inode, struct file * file)

handles userspace close() of a stream file
Parameters
struct inode * inode anonymous inode associated with file
struct file * file An i915 perf stream file
Description
Cleans up any resources associated with an open i915 perf stream file.
NB: close() can’t really fail from the userspace point of view.
Return
zero on success or a negative error code.

376 Chapter 7. drm/i915 Intel GFX Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int i915_perf_open_ioctl_locked(struct drm_i915_private * dev_priv, struct
drm_i915_perf_open_param * param, struct
perf_open_properties * props, struct drm_file * file)

DRM ioctl() for userspace to open a stream FD
Parameters
struct drm_i915_private * dev_priv i915 device instance
struct drm_i915_perf_open_param * param The open parameters passed to ‘DRM_I915_PERF_OPEN‘
struct perf_open_properties * props individually validated u64 property value pairs
struct drm_file * file drm file
Description
See i915_perf_ioctl_open() for interface details.
Implements further stream config validation and stream initialization on behalf of
i915_perf_open_ioctl() with the drm_i915_private->perf.lock mutex taken to serialize with
any non-file-operation driver hooks.
Note
at this point the props have only been validated in isolation and it’s still necessary to validate that the
combination of properties makes sense.
In the case where userspace is interested in OA unit metrics then further config validation and stream
initialization details will be handled by i915_oa_stream_init(). The code here should only validate
config state that will be relevant to all stream types / backends.
Return
zero on success or a negative error code.
int read_properties_unlocked(struct drm_i915_private * dev_priv, u64 __user * uprops,

u32 n_props, struct perf_open_properties * props)
validate + copy userspace stream open properties

Parameters
struct drm_i915_private * dev_priv i915 device instance
u64 __user * uprops The array of u64 key value pairs given by userspace
u32 n_props The number of key value pairs expected in uprops
struct perf_open_properties * props The stream configuration built up while validating properties
Description
Note this function only validates properties in isolation it doesn’t validate that the combination of proper-
ties makes sense or that all properties necessary for a particular kind of stream have been set.
Note that there currently aren’t any ordering requirements for properties so we shouldn’t validate or
assume anything about ordering here. This doesn’t rule out defining new properties with ordering re-
quirements in the future.
int i915_perf_open_ioctl(struct drm_device * dev, void * data, struct drm_file * file)

DRM ioctl() for userspace to open a stream FD
Parameters
struct drm_device * dev drm device
void * data ioctl data copied from userspace (unvalidated)
struct drm_file * file drm file

7.6. Perf 377

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Validates the stream open parameters given by userspace including flags and an array of u64 key, value
pair properties.
Very little is assumed up front about the nature of the stream being opened (for instance we don’t assume
it’s for periodic OA unit metrics). An i915-perf stream is expected to be a suitable interface for other forms
of buffered data written by the GPU besides periodic OA metrics.
Note we copy the properties from userspace outside of the i915 perf mutex to avoid an awkward lockdep
with mmap_sem.
Most of the implementation details are handled by i915_perf_open_ioctl_locked() after taking the
drm_i915_private->perf.lock mutex for serializing with any non-file-operation driver hooks.
Return
A newly opened i915 Perf stream file descriptor or negative error code on failure.
void i915_perf_register(struct drm_i915_private * dev_priv)

exposes i915-perf to userspace
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
In particular OA metric sets are advertised under a sysfs metrics/ directory allowing userspace to enumer-
ate valid IDs that can be used to open an i915-perf stream.
void i915_perf_unregister(struct drm_i915_private * dev_priv)

hide i915-perf from userspace
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
i915-perf state cleanup is split up into an ‘unregister’ and ‘deinit’ phase where the interface is first hidden
from userspace by i915_perf_unregister() before cleaning up remaining state in i915_perf_fini().
void i915_perf_init(struct drm_i915_private * dev_priv)

initialize i915-perf state on module load
Parameters
struct drm_i915_private * dev_priv i915 device instance
Description
Initializes i915-perf state without exposing anything to userspace.
Note
i915-perf initialization is split into an ‘init’ and ‘register’ phase with the i915_perf_register() exposing
state to userspace.
void i915_perf_fini(struct drm_i915_private * dev_priv)

Counter part to i915_perf_init()
Parameters
struct drm_i915_private * dev_priv i915 device instance

378 Chapter 7. drm/i915 Intel GFX Driver

CHAPTER

EIGHT

DRM/MESON AMLOGIC MESON VIDEO PROCESSING UNIT

VPU Handles the Global Video Processing, it includes management of the clocks gates, blocks reset lines
and power domains.
What is missing :
• Full reset of entire video processing HW blocks
• Scaling and setup of the VPU clock
• Bus clock gates
• Powering up video processing HW blocks
• Powering Up HDMI controller and PHY

8.1 Video Processing Unit

The Amlogic Meson Display controller is composed of several components that are going to be documented
below:

DMC|---------------VPU (Video Processing Unit)----------------|------HHI------|
| vd1 _______ _____________ _________________ | |

D |-------| |----| | | | | HDMI PLL |
D | vd2 | VIU | | Video Post | | Video Encoders |<---|-----VCLK |
R |-------| |----| Processing | | | | |

| osd2 | | | |---| Enci ----------|----|-----VDAC------|
R |-------| CSC |----| Scalers | | Encp ----------|----|----HDMI-TX----|
A | osd1 | | | Blenders | | Encl ----------|----|---------------|
M |-------|______|----|____________| |________________| | |
___|__|_______________|

8.2 Video Input Unit

VIU Handles the Pixel scanout and the basic Colorspace conversions We handle the following features :
• OSD1 RGB565/RGB888/xRGB8888 scanout
• RGB conversion to x/cb/cr
• Progressive or Interlace buffer scanout
• OSD1 Commit on Vsync
• HDR OSD matrix for GXL/GXM

What is missing :
• BGR888/xBGR8888/BGRx8888/BGRx8888 modes

379

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

• YUV4:2:2 Y0CbY1Cr scanout
• Conversion to YUV 4:4:4 from 4:2:2 input
• Colorkey Alpha matching
• Big endian scanout
• X/Y reverse scanout
• Global alpha setup
• OSD2 support, would need interlace switching on vsync
• OSD1 full scaling to support TV overscan

8.3 Video Post Processing

VPP Handles all the Post Processing after the Scanout from the VIU We handle the following post process-
ings :
• Postblend, Blends the OSD1 only We exclude OSD2, VS1, VS1 and Preblend output
• Vertical OSD Scaler for OSD1 only, we disable vertical scaler and use it only for interlace

scanout
• Intermediate FIFO with default Amlogic values

What is missing :
• Preblend for video overlay pre-scaling
• OSD2 support for cursor framebuffer
• Video pre-scaling before postblend
• Full Vertical/Horizontal OSD scaling to support TV overscan
• HDR conversion

8.4 Video Encoder

VENC Handle the pixels encoding to the output formats. We handle the following encodings :
• CVBS Encoding via the ENCI encoder and VDAC digital to analog converter
• TMDS/HDMI Encoding via ENCI_DIV and ENCP
• Setup of more clock rates for HDMI modes

What is missing :
• LCD Panel encoding via ENCL
• TV Panel encoding via ENCT

VENC paths :

_____ _____ ____________________
vd1---| |-| | | VENC /---------|----VDAC
vd2---| VIU |-| VPP |-|-----ENCI/-ENCI_DVI-|-|
osd1--| |-| | | \ | X--HDMI-TX
osd2--|_____|-|_____| | |\-ENCP--ENCP_DVI-|-|

| | |
| \--ENCL-----------|----LVDS
|____________________|

380 Chapter 8. drm/meson AmLogic Meson Video Processing Unit

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

The ENCI is designed for PAl or NTSC encoding and can go through the VDAC directly for CVBS encoding
or through the ENCI_DVI encoder for HDMI. The ENCP is designed for Progressive encoding but can also
generate 1080i interlaced pixels, and was initialy desined to encode pixels for VDAC to output RGB ou YUV
analog outputs. It’s output is only used through the ENCP_DVI encoder for HDMI. The ENCL LVDS encoder
is not implemented.
The ENCI and ENCP encoders needs specially defined parameters for each supported mode and thus
cannot be determined from standard video timings.
The ENCI end ENCP DVI encoders are more generic and can generate any timings from the pixel data
generated by ENCI or ENCP, so can use the standard video timings are source for HW parameters.

8.5 Video Canvas Management

CANVAS is a memory zone where physical memory frames information are stored for the VIU to scanout.

8.6 Video Clocks

VCLK is the “Pixel Clock” frequency generator from a dedicated PLL. We handle the following encodings :
• CVBS 27MHz generator via the VCLK2 to the VENCI and VDAC blocks
• HDMI Pixel Clocks generation

What is missing :
• Genenate Pixel clocks for 2K/4K 10bit formats

Clock generator scheme :

__________ _________ _____
| | | | | |--ENCI
| HDMI PLL |-| PLL_DIV |--- VCLK--| |--ENCL
|__________| |_________| \ | MUX |--ENCP

--VCLK2-| |--VDAC
|_____|--HDMI-TX

Final clocks can take input for either VCLK or VCLK2, but VCLK is the preferred path for HDMI clocking and
VCLK2 is the preferred path for CVBS VDAC clocking.
VCLK and VCLK2 have fixed divided clocks paths for /1, /2, /4, /6 or /12.
The PLL_DIV can achieve an additional fractional dividing like 1.5, 3.5, 3.75... to generate special 2K and
4K 10bit clocks.

8.7 HDMI Video Output

HDMI Output is composed of :
• A Synopsys DesignWare HDMI Controller IP
• A TOP control block controlling the Clocks and PHY
• A custom HDMI PHY in order convert video to TMDS signal

| HDMI TOP |<= HPD
|___________________________________|
| | |
| Synopsys HDMI | HDMI PHY |=> TMDS

8.5. Video Canvas Management 381

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

| Controller |________________|
|___________________________________|<=> DDC

The HDMI TOP block only supports HPD sensing. The Synopsys HDMI Controller interrupt is routed through
the TOP Block interrupt. Communication to the TOP Block and the Synopsys HDMI Controller is done a
pair of addr+read/write registers. The HDMI PHY is configured by registers in the HHI register block.
Pixel data arrives in 4:4:4 format from the VENC block and the VPU HDMI mux selects either the ENCI
encoder for the 576i or 480i formats or the ENCP encoder for all the other formats including interlaced HD
formats. The VENC uses a DVI encoder on top of the ENCI or ENCP encoders to generate DVI timings for
the HDMI controller.
GXBB, GXL and GXM embeds the Synopsys DesignWare HDMI TX IP version 2.01a with HDCP and I2C &
S/PDIF audio source interfaces.
We handle the following features :
• HPD Rise & Fall interrupt
• HDMI Controller Interrupt
• HDMI PHY Init for 480i to 1080p60
• VENC & HDMI Clock setup for 480i to 1080p60
• VENC Mode setup for 480i to 1080p60

What is missing :
• PHY, Clock and Mode setup for 2k && 4k modes
• SDDC Scrambling mode for HDMI 2.0a
• HDCP Setup
• CEC Management

382 Chapter 8. drm/meson AmLogic Meson Video Processing Unit

CHAPTER

NINE

DRM/PL111 ARM PRIMECELL PL111 CLCD DRIVER

The PL111 is a simple LCD controller that can support TFT and STN displays. This driver exposes a standard
KMS interface for them.
This driver uses the same Device Tree binding as the fbdev CLCD driver. While the fbdev driver supports
panels that may be connected to the CLCD internally to the CLCD driver, in DRM the panels get split out
to drivers/gpu/drm/panels/. This means that, in converting from using fbdev to using DRM, you also need
to write a panel driver (which may be as simple as an entry in panel-simple.c).
The driver currently doesn’t expose the cursor. The DRM API for cursors requires support for 64x64
ARGB8888 cursor images, while the hardware can only support 64x64 monochrome with masking cur-
sors. While one could imagine trying to hack something together to look at the ARGB8888 and program
reasonable in monochrome, we just don’t expose the cursor at all instead, and leave cursor support to
the X11 software cursor layer.
TODO:
• Fix race between setting plane base address and getting IRQ for vsync firing the pageflip completion.
• Expose the correct set of formats we can support based on the “arm,pl11x,tft-r0g0b0-pads” DT prop-
erty.

• Use the “max-memory-bandwidth” DT property to filter the supported formats.
• Read back hardware state at boot to skip reprogramming the hardware when doing a no-op modeset.
• Use the CLKSEL bit to support switching between the two external clock parents.

383

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

384 Chapter 9. drm/pl111 ARM PrimeCell PL111 CLCD Driver

CHAPTER

TEN

DRM/TEGRA NVIDIA TEGRA GPU AND DISPLAY DRIVER

NVIDIA Tegra SoCs support a set of display, graphics and video functions via the host1x controller. host1x
supplies command streams, gathered from a push buffer provided directly by the CPU, to its clients via
channels. Software, or blocks amongst themselves, can use syncpoints for synchronization.
Up until, but not including, Tegra124 (aka Tegra K1) the drm/tegra driver supports the built-in GPU, com-
prised of the gr2d and gr3d engines. Starting with Tegra124 the GPU is based on the NVIDIA desktop GPU
architecture and supported by the drm/nouveau driver.
The drm/tegra driver supports NVIDIA Tegra SoC generations since Tegra20. It has three parts:
• A host1x driver that provides infrastructure and access to the host1x services.
• A KMS driver that supports the display controllers as well as a number of outputs, such as RGB, HDMI,
DSI, and DisplayPort.

• A set of custom userspace IOCTLs that can be used to submit jobs to the GPU and video engines via
host1x.

10.1 Driver Infrastructure

The various host1x clients need to be bound together into a logical device in order to expose their func-
tionality to users. The infrastructure that supports this is implemented in the host1x driver. When a driver
is registered with the infrastructure it provides a list of compatible strings specifying the devices that it
needs. The infrastructure creates a logical device and scan the device tree for matching device nodes,
adding the required clients to a list. Drivers for individual clients register with the infrastructure as well
and are added to the logical host1x device.
Once all clients are available, the infrastructure will initialize the logical device using a driver-provided
function which will set up the bits specific to the subsystem and in turn initialize each of its clients.
Similarly, when one of the clients is unregistered, the infrastructure will destroy the logical device by
calling back into the driver, which ensures that the subsystem specific bits are torn down and the clients
destroyed in turn.

10.1.1 Host1x Infrastructure Reference

struct host1x_client_ops
host1x client operations

Definition

struct host1x_client_ops {
int (* init) (struct host1x_client *client);
int (* exit) (struct host1x_client *client);

};

Members

385

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

init host1x client initialization code
exit host1x client tear down code
struct host1x_client

host1x client structure
Definition

struct host1x_client {
struct list_head list;
struct device * parent;
struct device * dev;
const struct host1x_client_ops * ops;
enum host1x_class class;
struct host1x_channel * channel;
struct host1x_syncpt ** syncpts;
unsigned int num_syncpts;

};

Members
list list node for the host1x client
parent pointer to struct device representing the host1x controller
dev pointer to struct device backing this host1x client
ops host1x client operations
class host1x class represented by this client
channel host1x channel associated with this client
syncpts array of syncpoints requested for this client
num_syncpts number of syncpoints requested for this client
struct host1x_driver

host1x logical device driver
Definition

struct host1x_driver {
struct device_driver driver;
const struct of_device_id * subdevs;
struct list_head list;
int (* probe) (struct host1x_device *device);
int (* remove) (struct host1x_device *device);
void (* shutdown) (struct host1x_device *device);

};

Members
driver core driver
subdevs table of OF device IDs matching subdevices for this driver
list list node for the driver
probe called when the host1x logical device is probed
remove called when the host1x logical device is removed
shutdown called when the host1x logical device is shut down
int host1x_device_init(struct host1x_device * device)

initialize a host1x logical device
Parameters

386 Chapter 10. drm/tegra NVIDIA Tegra GPU and display driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct host1x_device * device host1x logical device
Description
The driver for the host1x logical device can call this during execution of its host1x_driver.probe im-
plementation to initialize each of its clients. The client drivers access the subsystem specific driver
data using the host1x_client.parent field and driver data associated with it (usually by calling
dev_get_drvdata()).
int host1x_device_exit(struct host1x_device * device)

uninitialize host1x logical device
Parameters
struct host1x_device * device host1x logical device
Description
When the driver for a host1x logical device is unloaded, it can call this function to tear down each of its
clients. Typically this is done after a subsystem-specific data structure is removed and the functionality
can no longer be used.
int host1x_driver_register_full(struct host1x_driver * driver, struct module * owner)

register a host1x driver
Parameters
struct host1x_driver * driver host1x driver
struct module * owner owner module
Description
Drivers for host1x logical devices call this function to register a driver with the infrastructure. Note that
since these drive logical devices, the registration of the driver actually triggers tho logical device creation.
A logical device will be created for each host1x instance.
void host1x_driver_unregister(struct host1x_driver * driver)

unregister a host1x driver
Parameters
struct host1x_driver * driver host1x driver
Description
Unbinds the driver from each of the host1x logical devices that it is bound to, effectively removing the
subsystem devices that they represent.
int host1x_client_register(struct host1x_client * client)

register a host1x client
Parameters
struct host1x_client * client host1x client
Description
Registers a host1x client with each host1x controller instance. Note that each client will only match
their parent host1x controller and will only be associated with that instance. Once all clients have been
registered with their parent host1x controller, the infrastructure will set up the logical device and call
host1x_device_init(), which will in turn call each client’s host1x_client_ops.init implementation.
int host1x_client_unregister(struct host1x_client * client)

unregister a host1x client
Parameters
struct host1x_client * client host1x client

10.1. Driver Infrastructure 387

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Removes a host1x client from its host1x controller instance. If a logical device has already been initialized,
it will be torn down.

10.1.2 Host1x Syncpoint Reference

u32 host1x_syncpt_id(struct host1x_syncpt * sp)
retrieve syncpoint ID

Parameters
struct host1x_syncpt * sp host1x syncpoint
Description
Given a pointer to a struct host1x_syncpt, retrieves its ID. This ID is often used as a value to program into
registers that control how hardware blocks interact with syncpoints.
u32 host1x_syncpt_incr_max(struct host1x_syncpt * sp, u32 incrs)

update the value sent to hardware
Parameters
struct host1x_syncpt * sp host1x syncpoint
u32 incrs number of increments
int host1x_syncpt_incr(struct host1x_syncpt * sp)

increment syncpoint value from CPU, updating cache
Parameters
struct host1x_syncpt * sp host1x syncpoint
int host1x_syncpt_wait(struct host1x_syncpt * sp, u32 thresh, long timeout, u32 * value)

wait for a syncpoint to reach a given value
Parameters
struct host1x_syncpt * sp host1x syncpoint
u32 thresh threshold
long timeout maximum time to wait for the syncpoint to reach the given value
u32 * value return location for the syncpoint value
struct host1x_syncpt * host1x_syncpt_request(struct device * dev, unsigned long flags)

request a syncpoint
Parameters
struct device * dev device requesting the syncpoint
unsigned long flags flags
Description
host1x client drivers can use this function to allocate a syncpoint for subsequent use. A syncpoint returned
by this function will be reserved for use by the client exclusively. When no longer using a syncpoint, a
host1x client driver needs to release it using host1x_syncpt_free().
void host1x_syncpt_free(struct host1x_syncpt * sp)

free a requested syncpoint
Parameters
struct host1x_syncpt * sp host1x syncpoint

388 Chapter 10. drm/tegra NVIDIA Tegra GPU and display driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Release a syncpoint previously allocated using host1x_syncpt_request(). A host1x client driver should
call this when the syncpoint is no longer in use. Note that client drivers must ensure that the syncpoint
doesn’t remain under the control of hardware after calling this function, otherwise two clients may end
up trying to access the same syncpoint concurrently.
u32 host1x_syncpt_read_max(struct host1x_syncpt * sp)

read maximum syncpoint value
Parameters
struct host1x_syncpt * sp host1x syncpoint
Description
The maximum syncpoint value indicates how many operations there are in queue, either in channel or in
a software thread.
u32 host1x_syncpt_read_min(struct host1x_syncpt * sp)

read minimum syncpoint value
Parameters
struct host1x_syncpt * sp host1x syncpoint
Description
The minimum syncpoint value is a shadow of the current sync point value in hardware.
u32 host1x_syncpt_read(struct host1x_syncpt * sp)

read the current syncpoint value
Parameters
struct host1x_syncpt * sp host1x syncpoint
struct host1x_syncpt * host1x_syncpt_get(struct host1x * host, unsigned int id)

obtain a syncpoint by ID
Parameters
struct host1x * host host1x controller
unsigned int id syncpoint ID
struct host1x_syncpt_base * host1x_syncpt_get_base(struct host1x_syncpt * sp)

obtain the wait base associated with a syncpoint
Parameters
struct host1x_syncpt * sp host1x syncpoint
u32 host1x_syncpt_base_id(struct host1x_syncpt_base * base)

retrieve the ID of a syncpoint wait base
Parameters
struct host1x_syncpt_base * base host1x syncpoint wait base

10.2 KMS driver

The display hardware has remained mostly backwards compatible over the various Tegra SoC generations,
up until Tegra186 which introduces several changes that make it difficult to support with a parameterized
driver.

10.2. KMS driver 389

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

10.2.1 Display Controllers

Tegra SoCs have two display controllers, each of which can be associated with zero or more outputs.
Outputs can also share a single display controller, but only if they run with compatible display timings.
Two display controllers can also share a single framebuffer, allowing cloned configurations even if modes
on two outputs don’t match. A display controller is modelled as a CRTC in KMS terms.
On Tegra186, the number of display controllers has been increased to three. A display controller can no
longer drive all of the outputs. While two of these controllers can drive both DSI outputs and both SOR
outputs, the third cannot drive any DSI.

Windows

A display controller controls a set of windows that can be used to composite multiple buffers onto the
screen. While it is possible to assign arbitrary Z ordering to individual windows (by programming the
corresponding blending registers), this is currently not supported by the driver. Instead, it will assume
a fixed Z ordering of the windows (window A is the root window, that is, the lowest, while windows B
and C are overlaid on top of window A). The overlay windows support multiple pixel formats and can
automatically convert from YUV to RGB at scanout time. This makes them useful for displaying video
content. In KMS, each window is modelled as a plane. Each display controller has a hardware cursor that
is exposed as a cursor plane.

10.2.2 Outputs

The type and number of supported outputs varies between Tegra SoC generations. All generations sup-
port at least HDMI. While earlier generations supported the very simple RGB interfaces (one per display
controller), recent generations no longer do and instead provide standard interfaces such as DSI and
eDP/DP.
Outputs are modelled as a composite encoder/connector pair.

RGB/LVDS

This interface is no longer available since Tegra124. It has been replaced by the more standard DSI and
eDP interfaces.

HDMI

HDMI is supported on all Tegra SoCs. Starting with Tegra210, HDMI is provided by the versatile SOR output,
which supports eDP, DP and HDMI. The SOR is able to support HDMI 2.0, though support for this is currently
not merged.

DSI

Although Tegra has supported DSI since Tegra30, the controller has changed in several ways in Tegra114.
Since none of the publicly available development boards prior to Dalmore (Tegra114) have made use of
DSI, only Tegra114 and later are supported by the drm/tegra driver.

eDP/DP

eDP was first introduced in Tegra124 where it was used to drive the display panel for notebook form
factors. Tegra210 added support for full DisplayPort support, though this is currently not implemented in
the drm/tegra driver.

390 Chapter 10. drm/tegra NVIDIA Tegra GPU and display driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

10.3 Userspace Interface

The userspace interface provided by drm/tegra allows applications to create GEM buffers, access and
control syncpoints as well as submit command streams to host1x.

10.3.1 GEM Buffers

The DRM_IOCTL_TEGRA_GEM_CREATE IOCTL is used to create a GEM buffer object with Tegra-specific flags.
This is useful for buffers that should be tiled, or that are to be scanned out upside down (useful for 3D
content).
After a GEM buffer object has been created, its memory can be mapped by an application using the mmap
offset returned by the DRM_IOCTL_TEGRA_GEM_MMAP IOCTL.

10.3.2 Syncpoints

The current value of a syncpoint can be obtained by executing the DRM_IOCTL_TEGRA_SYNCPT_READ IOCTL.
Incrementing the syncpoint is achieved using the DRM_IOCTL_TEGRA_SYNCPT_INCR IOCTL.
Userspace can also request blocking on a syncpoint. To do so, it needs to execute the
DRM_IOCTL_TEGRA_SYNCPT_WAIT IOCTL, specifying the value of the syncpoint to wait for. The kernel will
release the application when the syncpoint reaches that value or after a specified timeout.

10.3.3 Command Stream Submission

Before an application can submit command streams to host1x it needs to open a channel to
an engine using the DRM_IOCTL_TEGRA_OPEN_CHANNEL IOCTL. Client IDs are used to identify the
target of the channel. When a channel is no longer needed, it can be closed using the
DRM_IOCTL_TEGRA_CLOSE_CHANNEL IOCTL. To retrieve the syncpoint associated with a channel, an ap-
plication can use the DRM_IOCTL_TEGRA_GET_SYNCPT.
After opening a channel, submitting command streams is easy. The application writes commands into the
memory backing a GEM buffer object and passes these to the DRM_IOCTL_TEGRA_SUBMIT IOCTL along with
various other parameters, such as the syncpoints or relocations used in the job submission.

10.3. Userspace Interface 391

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

392 Chapter 10. drm/tegra NVIDIA Tegra GPU and display driver

CHAPTER

ELEVEN

DRM/TINYDRM DRIVER LIBRARY

This library provides driver helpers for very simple display hardware.
It is based on drm_simple_display_pipe coupled with a drm_connector which has only one fixed
drm_display_mode. The framebuffers are backed by the cma helper and have support for framebuffer
flushing (dirty). fbdev support is also included.

11.1 Core functionality

The driver allocates tinydrm_device, initializes it using devm_tinydrm_init(), sets up the pipeline using
tinydrm_display_pipe_init() and registers the DRM device using devm_tinydrm_register().
struct tinydrm_device

tinydrm device
Definition

struct tinydrm_device {
struct drm_device * drm;
struct drm_simple_display_pipe pipe;
struct mutex dirty_lock;
struct drm_fbdev_cma * fbdev_cma;
struct drm_atomic_state * suspend_state;
const struct drm_framebuffer_funcs * fb_funcs;

};

Members
drm DRM device
pipe Display pipe structure
dirty_lock Serializes framebuffer flushing
fbdev_cma CMA fbdev structure
suspend_state Atomic state when suspended
fb_funcs Framebuffer functions used when creating framebuffers
TINYDRM_GEM_DRIVER_OPS()

default tinydrm gem operations
Parameters
Description
This macro provides a shortcut for setting the tinydrm GEM operations in the drm_driver structure.
TINYDRM_MODE(hd, vd, hd_mm, vd_mm)

tinydrm display mode
Parameters

393

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

hd Horizontal resolution, width
vd Vertical resolution, height
hd_mm Display width in millimeters
vd_mm Display height in millimeters
Description
This macro creates a drm_display_mode for use with tinydrm.
void tinydrm_lastclose(struct drm_device * drm)

DRM lastclose helper
Parameters
struct drm_device * drm DRM device
Description
This function ensures that fbdev is restored when drm_lastclose() is called on the last drm_release().
Drivers can use this as their drm_driver->lastclose callback.
struct drm_gem_object * tinydrm_gem_cma_prime_import_sg_table(struct drm_device * drm,

struct dma_buf_attachment
* attach, struct sg_table
* sgt)

Produce a CMA GEM object from another driver’s scatter/gather table of pinned pages
Parameters
struct drm_device * drm DRM device to import into
struct dma_buf_attachment * attach DMA-BUF attachment
struct sg_table * sgt Scatter/gather table of pinned pages
Description
This function imports a scatter/gather table exported via DMA-BUF by another driver using
drm_gem_cma_prime_import_sg_table(). It sets the kernel virtual address on the CMA object. Drivers
should use this as their drm_driver->gem_prime_import_sg_table callback if they need the virtual ad-
dress. tinydrm_gem_cma_free_object() should be used in combination with this function.
Return
A pointer to a newly created GEM object or an ERR_PTR-encoded negative error code on failure.
void tinydrm_gem_cma_free_object(struct drm_gem_object * gem_obj)

Free resources associated with a CMA GEM object
Parameters
struct drm_gem_object * gem_obj GEM object to free
Description
This function frees the backing memory of the CMA GEM object, cleans up the GEM object state and
frees the memory used to store the object itself using drm_gem_cma_free_object(). It also handles
PRIME buffers which has the kernel virtual address set by tinydrm_gem_cma_prime_import_sg_table().
Drivers can use this as their drm_driver->gem_free_object callback.
int devm_tinydrm_init(struct device * parent, struct tinydrm_device * tdev, const struct

drm_framebuffer_funcs * fb_funcs, struct drm_driver * driver)
Initialize tinydrm device

Parameters
struct device * parent Parent device object
struct tinydrm_device * tdev tinydrm device

394 Chapter 11. drm/tinydrm Driver library

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

const struct drm_framebuffer_funcs * fb_funcs Framebuffer functions
struct drm_driver * driver DRM driver
Description
This function initializes tdev, the underlying DRM device and it’s mode_config. Resources will be auto-
matically freed on driver detach (devres) using drm_mode_config_cleanup() and drm_dev_unref().
Return
Zero on success, negative error code on failure.
int devm_tinydrm_register(struct tinydrm_device * tdev)

Register tinydrm device
Parameters
struct tinydrm_device * tdev tinydrm device
Description
This function registers the underlying DRM device and fbdev. These resources will be automatically un-
registered on driver detach (devres) and the display pipeline will be disabled.
Return
Zero on success, negative error code on failure.
void tinydrm_shutdown(struct tinydrm_device * tdev)

Shutdown tinydrm
Parameters
struct tinydrm_device * tdev tinydrm device
Description
This function makes sure that the display pipeline is disabled. Used by drivers in their shutdown callback
to turn off the display on machine shutdown and reboot.
int tinydrm_suspend(struct tinydrm_device * tdev)

Suspend tinydrm
Parameters
struct tinydrm_device * tdev tinydrm device
Description
Used in driver PM operations to suspend tinydrm. Suspends fbdev and DRM. Resume with tiny-
drm_resume().
Return
Zero on success, negative error code on failure.
int tinydrm_resume(struct tinydrm_device * tdev)

Resume tinydrm
Parameters
struct tinydrm_device * tdev tinydrm device
Description
Used in driver PM operations to resume tinydrm. Suspend with tinydrm_suspend().
Return
Zero on success, negative error code on failure.

11.1. Core functionality 395

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void tinydrm_display_pipe_update(struct drm_simple_display_pipe * pipe, struct
drm_plane_state * old_state)

Display pipe update helper
Parameters
struct drm_simple_display_pipe * pipe Simple display pipe
struct drm_plane_state * old_state Old plane state
Description
This function does a full framebuffer flush if the plane framebuffer has changed. It also handles vblank
events. Drivers can use this as their drm_simple_display_pipe_funcs->update callback.
int tinydrm_display_pipe_prepare_fb(struct drm_simple_display_pipe * pipe, struct

drm_plane_state * plane_state)
Display pipe prepare_fb helper

Parameters
struct drm_simple_display_pipe * pipe Simple display pipe
struct drm_plane_state * plane_state Plane state
Description
This function uses drm_fb_cma_prepare_fb() to check if the plane FB has an dma-buf attached, extracts
the exclusive fence and attaches it to plane state for the atomic helper to wait on. Drivers can use this as
their drm_simple_display_pipe_funcs->prepare_fb callback.
int tinydrm_display_pipe_init(struct tinydrm_device * tdev, const struct

drm_simple_display_pipe_funcs * funcs, int connector_type,
const uint32_t * formats, unsigned int format_count, const struct
drm_display_mode * mode, unsigned int rotation)

Initialize display pipe
Parameters
struct tinydrm_device * tdev tinydrm device
const struct drm_simple_display_pipe_funcs * funcs Display pipe functions
int connector_type Connector type
const uint32_t * formats Array of supported formats (DRM_FORMAT_*)
unsigned int format_count Number of elements in formats
const struct drm_display_mode * mode Supported mode
unsigned int rotation Initial mode rotation in degrees Counter Clock Wise
Description
This function sets up a drm_simple_display_pipe with a drm_connector that has one fixed
drm_display_mode which is rotated according to rotation.
Return
Zero on success, negative error code on failure.

11.2 Additional helpers

bool tinydrm_machine_little_endian(void)
Machine is little endian

Parameters
void no arguments

396 Chapter 11. drm/tinydrm Driver library

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Return
true if defined(__LITTLE_ENDIAN), false otherwise
void tinydrm_dbg_spi_message(struct spi_device * spi, struct spi_message * m)

Dump SPI message
Parameters
struct spi_device * spi SPI device
struct spi_message * m SPI message
Description
Dumps info about the transfers in a SPI message including buffer content. DEBUG has to be defined for
this function to be enabled alongside setting the DRM_UT_DRIVER bit of drm_debug.
bool tinydrm_merge_clips(struct drm_clip_rect * dst, struct drm_clip_rect * src, unsigned

int num_clips, unsigned int flags, u32 max_width, u32 max_height)
Merge clip rectangles

Parameters
struct drm_clip_rect * dst Destination clip rectangle
struct drm_clip_rect * src Source clip rectangle(s)
unsigned int num_clips Number of src clip rectangles
unsigned int flags Dirty fb ioctl flags
u32 max_width Maximum width of dst
u32 max_height Maximum height of dst
Description
This function merges src clip rectangle(s) into dst. If src is NULL,max_width andmin_width is used to
set a full dst clip rectangle.
Return
true if it’s a full clip, false otherwise
void tinydrm_memcpy(void * dst, void * vaddr, struct drm_framebuffer * fb, struct drm_clip_rect

* clip)
Copy clip buffer

Parameters
void * dst Destination buffer
void * vaddr Source buffer
struct drm_framebuffer * fb DRM framebuffer
struct drm_clip_rect * clip Clip rectangle area to copy
void tinydrm_swab16(u16 * dst, void * vaddr, struct drm_framebuffer * fb, struct drm_clip_rect

* clip)
Swap bytes into clip buffer

Parameters
u16 * dst RGB565 destination buffer
void * vaddr RGB565 source buffer
struct drm_framebuffer * fb DRM framebuffer
struct drm_clip_rect * clip Clip rectangle area to copy

11.2. Additional helpers 397

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void tinydrm_xrgb8888_to_rgb565(u16 * dst, void * vaddr, struct drm_framebuffer * fb, struct
drm_clip_rect * clip, bool swap)

Convert XRGB8888 to RGB565 clip buffer
Parameters
u16 * dst RGB565 destination buffer
void * vaddr XRGB8888 source buffer
struct drm_framebuffer * fb DRM framebuffer
struct drm_clip_rect * clip Clip rectangle area to copy
bool swap Swap bytes
Description
Drivers can use this function for RGB565 devices that don’t natively support XRGB8888.
struct backlight_device * tinydrm_of_find_backlight(struct device * dev)

Find backlight device in device-tree
Parameters
struct device * dev Device
Description
This function looks for a DT node pointed to by a property named ‘backlight’ and uses
of_find_backlight_by_node() to get the backlight device. Additionally if the brightness property is
zero, it is set to max_brightness.
Return
NULL if there’s no backlight property. Error pointer -EPROBE_DEFER if the DT node is found, but no back-
light device is found. If the backlight device is found, a pointer to the structure is returned.
int tinydrm_enable_backlight(struct backlight_device * backlight)

Enable backlight helper
Parameters
struct backlight_device * backlight Backlight device
Return
Zero on success, negative error code on failure.
int tinydrm_disable_backlight(struct backlight_device * backlight)

Disable backlight helper
Parameters
struct backlight_device * backlight Backlight device
Return
Zero on success, negative error code on failure.
size_t tinydrm_spi_max_transfer_size(struct spi_device * spi, size_t max_len)

Determine max SPI transfer size
Parameters
struct spi_device * spi SPI device
size_t max_len Maximum buffer size needed (optional)
Description
This function returns the maximum size to use for SPI transfers. It checks the SPI master, the optional
max_len and the module parameter spi_max and returns the smallest.

398 Chapter 11. drm/tinydrm Driver library

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Return
Maximum size for SPI transfers
bool tinydrm_spi_bpw_supported(struct spi_device * spi, u8 bpw)

Check if bits per word is supported
Parameters
struct spi_device * spi SPI device
u8 bpw Bits per word
Description
This function checks to see if the SPI master driver supports bpw.
Return
True if bpw is supported, false otherwise.
int tinydrm_spi_transfer(struct spi_device * spi, u32 speed_hz, struct spi_transfer * header,

u8 bpw, const void * buf, size_t len)
SPI transfer helper

Parameters
struct spi_device * spi SPI device
u32 speed_hz Override speed (optional)
struct spi_transfer * header Optional header transfer
u8 bpw Bits per word
const void * buf Buffer to transfer
size_t len Buffer length
Description
This SPI transfer helper breaks up the transfer of buf into chunks which the SPI master driver can handle.
If the machine is Little Endian and the SPI master driver doesn’t support 16 bits per word, it swaps the
bytes and does a 8-bit transfer. If header is set, it is prepended to each SPI message.
Return
Zero on success, negative error code on failure.

11.3 MIPI DBI Compatible Controllers

This library provides helpers for MIPI Display Bus Interface (DBI) compatible display controllers.
Many controllers for tiny lcd displays are MIPI compliant and can use this library. If a controller uses
registers 0x2A and 0x2B to set the area to update and uses register 0x2C to write to frame memory, it is
most likely MIPI compliant.
Only MIPI Type 1 displays are supported since a full frame memory is needed.
There are 3 MIPI DBI implementation types:
1. Motorola 6800 type parallel bus
2. Intel 8080 type parallel bus
3. SPI type with 3 options:

(a) 9-bit with the Data/Command signal as the ninth bit
(b) Same as above except it’s sent as 16 bits

11.3. MIPI DBI Compatible Controllers 399

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

(c) 8-bit with the Data/Command signal as a separate D/CX pin
Currently mipi_dbi only supports Type C options 1 and 3 with mipi_dbi_spi_init().
struct mipi_dbi

MIPI DBI controller
Definition

struct mipi_dbi {
struct tinydrm_device tinydrm;
struct spi_device * spi;
bool enabled;
struct mutex cmdlock;
int (* command) (struct mipi_dbi *mipi, u8 cmd, u8 *param, size_t num);
const u8 * read_commands;
struct gpio_desc * dc;
u16 * tx_buf;
void * tx_buf9;
size_t tx_buf9_len;
bool swap_bytes;
struct gpio_desc * reset;
unsigned int rotation;
struct backlight_device * backlight;
struct regulator * regulator;

};

Members
tinydrm tinydrm base
spi SPI device
enabled Pipeline is enabled
cmdlock Command lock
command Bus specific callback executing commands.
read_commands Array of read commands terminated by a zero entry. Reading is disabled if this is NULL.
dc Optional D/C gpio.
tx_buf Buffer used for transfer (copy clip rect area)
tx_buf9 Buffer used for Option 1 9-bit conversion
tx_buf9_len Size of tx_buf9.
swap_bytes Swap bytes in buffer before transfer
reset Optional reset gpio
rotation initial rotation in degrees Counter Clock Wise
backlight backlight device (optional)
regulator power regulator (optional)
mipi_dbi_command(mipi, cmd, seq...)

MIPI DCS command with optional parameter(s)
Parameters
mipi MIPI structure
cmd Command
seq... Optional parameter(s)

400 Chapter 11. drm/tinydrm Driver library

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Send MIPI DCS command to the controller. Use mipi_dbi_command_read() for get/read.
Return
Zero on success, negative error code on failure.
int mipi_dbi_command_read(struct mipi_dbi * mipi, u8 cmd, u8 * val)

MIPI DCS read command
Parameters
struct mipi_dbi * mipi MIPI structure
u8 cmd Command
u8 * val Value read
Description
Send MIPI DCS read command to the controller.
Return
Zero on success, negative error code on failure.
int mipi_dbi_command_buf(struct mipi_dbi * mipi, u8 cmd, u8 * data, size_t len)

MIPI DCS command with parameter(s) in an array
Parameters
struct mipi_dbi * mipi MIPI structure
u8 cmd Command
u8 * data Parameter buffer
size_t len Buffer length
Return
Zero on success, negative error code on failure.
void mipi_dbi_pipe_enable(struct drm_simple_display_pipe * pipe, struct drm_crtc_state

* crtc_state)
MIPI DBI pipe enable helper

Parameters
struct drm_simple_display_pipe * pipe Display pipe
struct drm_crtc_state * crtc_state CRTC state
Description
This function enables backlight. Drivers can use this as their drm_simple_display_pipe_funcs->enable
callback.
void mipi_dbi_pipe_disable(struct drm_simple_display_pipe * pipe)

MIPI DBI pipe disable helper
Parameters
struct drm_simple_display_pipe * pipe Display pipe
Description
This function disables backlight if present or if not the display memory is blanked. Drivers can use this as
their drm_simple_display_pipe_funcs->disable callback.

11.3. MIPI DBI Compatible Controllers 401

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

int mipi_dbi_init(struct device * dev, struct mipi_dbi * mipi, const struct
drm_simple_display_pipe_funcs * pipe_funcs, struct drm_driver * driver, const
struct drm_display_mode * mode, unsigned int rotation)

MIPI DBI initialization
Parameters
struct device * dev Parent device
struct mipi_dbi * mipi mipi_dbi structure to initialize
const struct drm_simple_display_pipe_funcs * pipe_funcs Display pipe functions
struct drm_driver * driver DRM driver
const struct drm_display_mode * mode Display mode
unsigned int rotation Initial rotation in degrees Counter Clock Wise
Description
This function initializes a mipi_dbi structure and it’s underlying tinydrm_device. It also sets up the
display pipeline.
Supported formats: Native RGB565 and emulated XRGB8888.
Objects created by this function will be automatically freed on driver detach (devres).
Return
Zero on success, negative error code on failure.
void mipi_dbi_hw_reset(struct mipi_dbi * mipi)

Hardware reset of controller
Parameters
struct mipi_dbi * mipi MIPI DBI structure
Description
Reset controller if the mipi_dbi->reset gpio is set.
bool mipi_dbi_display_is_on(struct mipi_dbi * mipi)

Check if display is on
Parameters
struct mipi_dbi * mipi MIPI DBI structure
Description
This function checks the Power Mode register (if readable) to see if display output is turned on. This can
be used to see if the bootloader has already turned on the display avoiding flicker when the pipeline is
enabled.
Return
true if the display can be verified to be on, false otherwise.
int mipi_dbi_spi_init(struct spi_device * spi, struct mipi_dbi * mipi, struct gpio_desc * dc,

const struct drm_simple_display_pipe_funcs * pipe_funcs, struct drm_driver
* driver, const struct drm_display_mode * mode, unsigned int rotation)

Initialize MIPI DBI SPI interfaced controller
Parameters
struct spi_device * spi SPI device
struct mipi_dbi * mipi mipi_dbi structure to initialize
struct gpio_desc * dc D/C gpio (optional)
const struct drm_simple_display_pipe_funcs * pipe_funcs Display pipe functions

402 Chapter 11. drm/tinydrm Driver library

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct drm_driver * driver DRM driver
const struct drm_display_mode * mode Display mode
unsigned int rotation Initial rotation in degrees Counter Clock Wise
Description
This function sets mipi_dbi->command, enables mipi->read_commands for the usual read commands and
initializes mipi using mipi_dbi_init().
If dc is set, a Type C Option 3 interface is assumed, if not Type C Option 1.
If the SPI master driver doesn’t support the necessary bits per word, the following transformation is used:
• 9-bit: reorder buffer as 9x 8-bit words, padded with no-op command.
• 16-bit: if big endian send as 8-bit, if little endian swap bytes

Return
Zero on success, negative error code on failure.
int mipi_dbi_debugfs_init(struct drm_minor * minor)

Create debugfs entries
Parameters
struct drm_minor * minor DRM minor
Description
This function creates a ‘command’ debugfs file for sending commands to the controller or getting the read
command values. Drivers can use this as their drm_driver->debugfs_init callback.
Return
Zero on success, negative error code on failure.

11.3. MIPI DBI Compatible Controllers 403

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

404 Chapter 11. drm/tinydrm Driver library

CHAPTER

TWELVE

DRM/VC4 BROADCOM VC4 GRAPHICS DRIVER

The Broadcom VideoCore 4 (present in the Raspberry Pi) contains a OpenGL ES 2.0-compatible 3D engine
called V3D, and a highly configurable display output pipeline that supports HDMI, DSI, DPI, and Composite
TV output.
The 3D engine also has an interface for submitting arbitrary compute shader-style jobs using the same
shader processor as is used for vertex and fragment shaders in GLES 2.0. However, given that the hard-
ware isn’t able to expose any standard interfaces like OpenGL compute shaders or OpenCL, it isn’t sup-
ported by this driver.

12.1 Display Hardware Handling

This section covers everything related to the display hardware including the mode setting infrastructure,
plane, sprite and cursor handling and display, output probing and related topics.

12.1.1 Pixel Valve (DRM CRTC)

In VC4, the Pixel Valve is what most closely corresponds to the DRM’s concept of a CRTC. The PV generates
video timings from the encoder’s clock plus its configuration. It pulls scaled pixels from the HVS at that
timing, and feeds it to the encoder.
However, the DRM CRTC also collects the configuration of all the DRM planes attached to it. As a result,
the CRTC is also responsible for writing the display list for the HVS channel that the CRTC will use.
The 2835 has 3 different pixel valves. pv0 in the audio power domain feeds DSI0 or DPI, while pv1 feeds
DS1 or SMI. pv2 in the image domain can feed either HDMI or the SDTV controller. The pixel valve chooses
from the CPRMAN clocks (HSM for HDMI, VEC for SDTV, etc.) according to which output type is chosen in
the mux.
For power management, the pixel valve’s registers are all clocked by the AXI clock, while the timings
and FIFOs make use of the output-specific clock. Since the encoders also directly consume the CPRMAN
clocks, and know what timings they need, they are the ones that set the clock.

12.1.2 HVS

The Hardware Video Scaler (HVS) is the piece of hardware that does translation, scaling, colorspace con-
version, and compositing of pixels stored in framebuffers into a FIFO of pixels going out to the Pixel Valve
(CRTC). It operates at the system clock rate (the system audio clock gate, specifically), which is much
higher than the pixel clock rate.
There is a single global HVS, with multiple output FIFOs that can be consumed by the PVs. This file just
manages the resources for the HVS, while the vc4_crtc.c code actually drives HVS setup for each CRTC.

405

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

12.1.3 HVS planes

Each DRM plane is a layer of pixels being scanned out by the HVS.
At atomic modeset check time, we compute the HVS display element state that would be necessary for
displaying the plane (giving us a chance to figure out if a plane configuration is invalid), then at atomic
flush time the CRTC will ask us to write our element state into the region of the HVS that it has allocated
for us.

12.1.4 HDMI encoder

The HDMI core has a state machine and a PHY. On BCM2835, most of the unit operates off of the HSM
clock from CPRMAN. It also internally uses the PLLH_PIX clock for the PHY.
HDMI infoframes are kept within a small packet ram, where each packet can be individually enabled for
including in a frame.
HDMI audio is implemented entirely within the HDMI IP block. A register in the HDMI encoder takes SPDIF
frames from the DMA engine and transfers them over an internal MAI (multi-channel audio interconnect)
bus to the encoder side for insertion into the video blank regions.
The driver’s HDMI encoder does not yet support power management. The HDMI encoder’s power domain
and the HSM/pixel clocks are kept continuously running, and only the HDMI logic and packet ram are
powered off/on at disable/enable time.
The driver does not yet support CEC control, though the HDMI encoder block has CEC support.

12.1.5 DSI encoder

BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a single-lane DSI controller, while DSI1 is a
more modern 4-lane DSI controller.
Most Raspberry Pi boards expose DSI1 as their “DISPLAY” connector, while the compute module brings
both DSI0 and DSI1 out.
This driver has been tested for DSI1 video-mode display only currently, with most of the information
necessary for DSI0 hopefully present.

12.1.6 DPI encoder

The VC4 DPI hardware supports MIPI DPI type 4 and Nokia ViSSI signals. On BCM2835, these can be routed
out to GPIO0-27 with the ALT2 function.

12.1.7 VEC (Composite TV out) encoder

The VEC encoder generates PAL or NTSC composite video output.
TV mode selection is done by an atomic property on the encoder, because a drm_mode_modeinfo is
insufficient to distinguish between PAL and PAL-M or NTSC and NTSC-J.

12.2 Memory Management and 3D Command Submission

This section covers the GEM implementation in the vc4 driver.

406 Chapter 12. drm/vc4 Broadcom VC4 Graphics Driver

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

12.2.1 GPU buffer object (BO) management

The VC4 GPU architecture (both scanout and rendering) has direct access to systemmemory with no MMU
in between. To support it, we use the GEM CMA helper functions to allocate contiguous ranges of physical
memory for our BOs.
Since the CMA allocator is very slow, we keep a cache of recently freed BOs around so that the kernel’s
allocation of objects for 3D rendering can return quickly.

12.2.2 V3D binner command list (BCL) validation

Since the VC4 has no IOMMU between it and system memory, a user with access to execute command
lists could escalate privilege by overwriting system memory (drawing to it as a framebuffer) or reading
system memory it shouldn’t (reading it as a vertex buffer or index buffer)
We validate binner command lists to ensure that all accesses are within the bounds of the GEM objects
referenced by the submitted job. It explicitly whitelists packets, and looks at the offsets in any address
fields to make sure they’re contained within the BOs they reference.
Note that because CL validation is already reading the user-submitted CL and writing the validated copy
out to the memory that the GPU will actually read, this is also where GEM relocation processing (turning
BO references into actual addresses for the GPU to use) happens.

12.2.3 V3D render command list (RCL) generation

In the V3D hardware, render command lists are what load and store tiles of a framebuffer and optionally
call out to binner-generated command lists to do the 3D drawing for that tile.
In the VC4 driver, render command list generation is performed by the kernel instead of userspace. We
do this because validating a user-submitted command list is hard to get right and has high CPU overhead,
while the number of valid configurations for render command lists is actually fairly low.

12.2.4 Shader validator for VC4

Since the VC4 has no IOMMU between it and system memory, a user with access to execute shaders could
escalate privilege by overwriting system memory (using the VPM write address register in the general-
purpose DMA mode) or reading system memory it shouldn’t (reading it as a texture, uniform data, or
direct-addressed TMU lookup).
The shader validator walks over a shader’s BO, ensuring that its accesses are appropriately bounded, and
recording where texture accesses are made so that we can do relocations for them in the uniform stream.
Shader BO are immutable for their lifetimes (enforced by not allowing mmaps, GEM prime export, or
rendering to from a CL), so this validation is only performed at BO creation time.

12.2.5 V3D Interrupts

We have an interrupt status register (V3D_INTCTL) which reports interrupts, and where writing 1 bits clears
those interrupts. There are also a pair of interrupt registers (V3D_INTENA/V3D_INTDIS) where writing a
1 to their bits enables or disables that specific interrupt, and 0s written are ignored (reading either one
returns the set of enabled interrupts).
When we take a binning flush done interrupt, we need to submit the next frame for binning and move the
finished frame to the render thread.
When we take a render frame interrupt, we need to wake the processes waiting for some frame to be
done, and get the next frame submitted ASAP (so the hardware doesn’t sit idle when there’s work to do).

12.2. Memory Management and 3D Command Submission 407

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

When we take the binner out of memory interrupt, we need to allocate some new memory and pass it to
the binner so that the current job can make progress.

408 Chapter 12. drm/vc4 Broadcom VC4 Graphics Driver

CHAPTER

THIRTEEN

VGA SWITCHEROO

vga_switcheroo is the Linux subsystem for laptop hybrid graphics. These come in two flavors:
• muxed: Dual GPUs with a multiplexer chip to switch outputs between GPUs.
• muxless: Dual GPUs but only one of them is connected to outputs. The other one is merely used to
offload rendering, its results are copied over PCIe into the framebuffer. On Linux this is supported
with DRI PRIME.

Hybrid graphics started to appear in the late Naughties and were initially all muxed. Newer laptops moved
to a muxless architecture for cost reasons. A notable exception is the MacBook Pro which continues to
use a mux. Muxes come with varying capabilities: Some switch only the panel, others can also switch
external displays. Some switch all display pins at once while others can switch just the DDC lines. (To
allow EDID probing for the inactive GPU.) Also, muxes are often used to cut power to the discrete GPU
while it is not used.
DRM drivers register GPUs with vga_switcheroo, these are henceforth called clients. The mux is called
the handler. Muxless machines also register a handler to control the power state of the discrete GPU,
its ->switchto callback is a no-op for obvious reasons. The discrete GPU is often equipped with an HDA
controller for the HDMI/DP audio signal, this will also register as a client so that vga_switcheroo can take
care of the correct suspend/resume order when changing the discrete GPU’s power state. In total there
can thus be up to three clients: Two vga clients (GPUs) and one audio client (on the discrete GPU). The
code is mostly prepared to support machines with more than two GPUs should they become available.
The GPU to which the outputs are currently switched is called the active client in vga_switcheroo parlance.
The GPU not in use is the inactive client. When the inactive client’s DRM driver is loaded, it will be
unable to probe the panel’s EDID and hence depends on VBIOS to provide its display modes. If the VBIOS
modes are bogus or if there is no VBIOS at all (which is common on the MacBook Pro), a client may
alternatively request that the DDC lines are temporarily switched to it, provided that the handler supports
this. Switching only the DDC lines and not the entire output avoids unnecessary flickering.

13.1 Modes of Use

13.1.1 Manual switching and manual power control

In this mode of use, the file /sys/kernel/debug/vgaswitcheroo/switch can be read to retrieve the current
vga_switcheroo state and commands can be written to it to change the state. The file appears as soon
as two GPU drivers and one handler have registered with vga_switcheroo. The following commands are
understood:
• OFF: Power off the device not in use.
• ON: Power on the device not in use.
• IGD: Switch to the integrated graphics device. Power on the integrated GPU if necessary, power off
the discrete GPU. Prerequisite is that no user space processes (e.g. Xorg, alsactl) have opened device
files of the GPUs or the audio client. If the switch fails, the user may invoke lsof(8) or fuser(1) on
/dev/dri/ and /dev/snd/controlC1 to identify processes blocking the switch.

409

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

• DIS: Switch to the discrete graphics device.
• DIGD: Delayed switch to the integrated graphics device. This will perform the switch once the last
user space process has closed the device files of the GPUs and the audio client.

• DDIS: Delayed switch to the discrete graphics device.
• MIGD: Mux-only switch to the integrated graphics device. Does not remap console or change the
power state of either gpu. If the integrated GPU is currently off, the screen will turn black. If it is on,
the screen will show whatever happens to be in VRAM. Either way, the user has to blindly enter the
command to switch back.

• MDIS: Mux-only switch to the discrete graphics device.
For GPUs whose power state is controlled by the driver’s runtime pm, the ON and OFF commands are a
no-op (see next section).
For muxless machines, the IGD/DIS, DIGD/DDIS and MIGD/MDIS commands should not be used.

13.1.2 Driver power control

In this mode of use, the discrete GPU automatically powers up and down at the discretion of the driver’s
runtime pm. On muxed machines, the user may still influence the muxer state by way of the debugfs
interface, however the ON and OFF commands become a no-op for the discrete GPU.
This mode is the default on Nvidia HybridPower/Optimus and ATI PowerXpress. Specifying nou-
veau.runpm=0, radeon.runpm=0 or amdgpu.runpm=0 on the kernel command line disables it.
When the driver decides to power up or down, it notifies vga_switcheroo thereof so that it can (a) power
the audio device on the GPU up or down, and (b) update its internal power state representation for the
device. This is achieved by vga_switcheroo_set_dynamic_switch().
After the GPU has been suspended, the handler needs to be called to cut power to the
GPU. Likewise it needs to reinstate power before the GPU can resume. This is achieved by
vga_switcheroo_init_domain_pm_ops(), which augments the GPU’s suspend/resume functions by the
requisite calls to the handler.
When the audio device resumes, the GPU needs to be woken. This is achieved by
vga_switcheroo_init_domain_pm_optimus_hdmi_audio(), which augments the audio device’s re-
sume function.
On muxed machines, if the mux is initially switched to the discrete GPU, the user ends up with a black
screen when the GPU powers down after boot. As a workaround, the mux is forced to the integrated GPU
on runtime suspend, cf. https://bugs.freedesktop.org/show_bug.cgi?id=75917

13.2 API

13.2.1 Public functions

int vga_switcheroo_register_handler(const struct vga_switcheroo_handler * handler, enum
vga_switcheroo_handler_flags_t handler_flags)

register handler
Parameters
const struct vga_switcheroo_handler * handler handler callbacks
enum vga_switcheroo_handler_flags_t handler_flags handler flags
Description
Register handler. Enable vga_switcheroo if two vga clients have already registered.
Return

410 Chapter 13. VGA Switcheroo

https://bugs.freedesktop.org/show_bug.cgi?id=75917

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

0 on success, -EINVAL if a handler was already registered.
void vga_switcheroo_unregister_handler(void)

unregister handler
Parameters
void no arguments
Description
Unregister handler. Disable vga_switcheroo.
enum vga_switcheroo_handler_flags_t vga_switcheroo_handler_flags(void)

obtain handler flags
Parameters
void no arguments
Description
Helper for clients to obtain the handler flags bitmask.
Return
Handler flags. A value of 0 means that no handler is registered or that the handler has no special capa-
bilities.
int vga_switcheroo_register_client(struct pci_dev * pdev, const struct

vga_switcheroo_client_ops * ops,
bool driver_power_control)

register vga client
Parameters
struct pci_dev * pdev client pci device
const struct vga_switcheroo_client_ops * ops client callbacks
bool driver_power_control whether power state is controlled by the driver’s runtime pm
Description
Register vga client (GPU). Enable vga_switcheroo if another GPU and a handler have already registered.
The power state of the client is assumed to be ON. Beforehand, vga_switcheroo_client_probe_defer()
shall be called to ensure that all prerequisites are met.
Return
0 on success, -ENOMEM on memory allocation error.
int vga_switcheroo_register_audio_client(struct pci_dev * pdev, const struct

vga_switcheroo_client_ops * ops, enum
vga_switcheroo_client_id id)

register audio client
Parameters
struct pci_dev * pdev client pci device
const struct vga_switcheroo_client_ops * ops client callbacks
enum vga_switcheroo_client_id id client identifier
Description
Register audio client (audio device on a GPU). The power state of the client is assumed to be ON. Be-
forehand, vga_switcheroo_client_probe_defer() shall be called to ensure that all prerequisites are
met.
Return

13.2. API 411

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

0 on success, -ENOMEM on memory allocation error.
bool vga_switcheroo_client_probe_defer(struct pci_dev * pdev)

whether to defer probing a given client
Parameters
struct pci_dev * pdev client pci device
Description
Determine whether any prerequisites are not fulfilled to probe a given client. Drivers shall invoke this early
on in their ->probe callback and return -EPROBE_DEFER if it evaluates to true. Thou shalt not register the
client ere thou hast called this.
Return
true if probing should be deferred, otherwise false.
enum vga_switcheroo_state vga_switcheroo_get_client_state(struct pci_dev * pdev)

obtain power state of a given client
Parameters
struct pci_dev * pdev client pci device
Description
Obtain power state of a given client as seen from vga_switcheroo. The function is only called from
hda_intel.c.
Return
Power state.
void vga_switcheroo_unregister_client(struct pci_dev * pdev)

unregister client
Parameters
struct pci_dev * pdev client pci device
Description
Unregister client. Disable vga_switcheroo if this is a vga client (GPU).
void vga_switcheroo_client_fb_set(struct pci_dev * pdev, struct fb_info * info)

set framebuffer of a given client
Parameters
struct pci_dev * pdev client pci device
struct fb_info * info framebuffer
Description
Set framebuffer of a given client. The console will be remapped to this on switching.
int vga_switcheroo_lock_ddc(struct pci_dev * pdev)

temporarily switch DDC lines to a given client
Parameters
struct pci_dev * pdev client pci device
Description
Temporarily switch DDC lines to the client identified by pdev (but leave the outputs otherwise switched to
where they are). This allows the inactive client to probe EDID. The DDC lines must afterwards be switched
back by calling vga_switcheroo_unlock_ddc(), even if this function returns an error.
Return

412 Chapter 13. VGA Switcheroo

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Previous DDC owner on success or a negative int on error. Specifically, -ENODEV if no handler has registered
or if the handler does not support switching the DDC lines. Also, a negative value returned by the handler
is propagated back to the caller. The return value has merely an informational purpose for any caller
which might be interested in it. It is acceptable to ignore the return value and simply rely on the result of
the subsequent EDID probe, which will be NULL if DDC switching failed.
int vga_switcheroo_unlock_ddc(struct pci_dev * pdev)

switch DDC lines back to previous owner
Parameters
struct pci_dev * pdev client pci device
Description
Switch DDC lines back to the previous owner after calling vga_switcheroo_lock_ddc(). This must be
called even if vga_switcheroo_lock_ddc() returned an error.
Return
Previous DDC owner on success (i.e. the client identifier of pdev) or a negative int on error. Specifically,
-ENODEV if no handler has registered or if the handler does not support switching the DDC lines. Also, a
negative value returned by the handler is propagated back to the caller. Finally, invoking this function
without calling vga_switcheroo_lock_ddc() first is not allowed and will result in -EINVAL.
int vga_switcheroo_process_delayed_switch(void)

helper for delayed switching
Parameters
void no arguments
Description
Process a delayed switch if one is pending. DRM drivers should call this from their ->lastclose callback.
Return
0 on success. -EINVAL if no delayed switch is pending, if the client has unregistered in the meantime or if
there are other clients blocking the switch. If the actual switch fails, an error is reported and 0 is returned.

void vga_switcheroo_set_dynamic_switch(struct pci_dev * pdev, enum
vga_switcheroo_state dynamic)

helper for driver power control
Parameters
struct pci_dev * pdev client pci device
enum vga_switcheroo_state dynamic new power state
Description
Helper for GPUs whose power state is controlled by the driver’s runtime pm. When the driver decides to
power up or down, it notifies vga_switcheroo thereof using this helper so that it can (a) power the audio
device on the GPU up or down, and (b) update its internal power state representation for the device.
int vga_switcheroo_init_domain_pm_ops(struct device * dev, struct dev_pm_domain * domain)

helper for driver power control
Parameters
struct device * dev vga client device
struct dev_pm_domain * domain power domain
Description
Helper for GPUs whose power state is controlled by the driver’s runtime pm. After the GPU has been
suspended, the handler needs to be called to cut power to the GPU. Likewise it needs to reinstate power

13.2. API 413

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

before the GPU can resume. To this end, this helper augments the suspend/resume functions by the
requisite calls to the handler. It needs only be called on platforms where the power switch is separate to
the device being powered down.
int vga_switcheroo_init_domain_pm_optimus_hdmi_audio(struct device * dev, struct

dev_pm_domain * domain)
helper for driver power control

Parameters
struct device * dev audio client device
struct dev_pm_domain * domain power domain
Description
Helper for GPUs whose power state is controlled by the driver’s runtime pm. When the audio device
resumes, the GPU needs to be woken. This helper augments the audio device’s resume function to do
that.
Return
0 on success, -EINVAL if no power management operations are defined for this device.

13.2.2 Public structures

struct vga_switcheroo_handler
handler callbacks

Definition

struct vga_switcheroo_handler {
int (* init) (void);
int (* switchto) (enum vga_switcheroo_client_id id);
int (* switch_ddc) (enum vga_switcheroo_client_id id);
int (* power_state) (enum vga_switcheroo_client_id id, enum vga_switcheroo_state state);
enum vga_switcheroo_client_id (* get_client_id) (struct pci_dev *pdev);

};

Members
init initialize handler. Optional. This gets called when vga_switcheroo is enabled, i.e. when two vga

clients have registered. It allows the handler to perform some delayed initialization that depends on
the existence of the vga clients. Currently only the radeon and amdgpu drivers use this. The return
value is ignored

switchto switch outputs to given client. Mandatory. For muxless machines this should be a no-op. Re-
turning 0 denotes success, anything else failure (in which case the switch is aborted)

switch_ddc switch DDC lines to given client. Optional. Should return the previous DDC owner on success
or a negative int on failure

power_state cut or reinstate power of given client. Optional. The return value is ignored
get_client_id determine if given pci device is integrated or discrete GPU. Mandatory
Description
Handler callbacks. The multiplexer itself. The switchto and get_client_id methods are mandatory, all
others may be set to NULL.
struct vga_switcheroo_client_ops

client callbacks
Definition

414 Chapter 13. VGA Switcheroo

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

struct vga_switcheroo_client_ops {
void (* set_gpu_state) (struct pci_dev *dev, enum vga_switcheroo_state);
void (* reprobe) (struct pci_dev *dev);
bool (* can_switch) (struct pci_dev *dev);

};

Members
set_gpu_state do the equivalent of suspend/resume for the card. Mandatory. This should not cut power

to the discrete GPU, which is the job of the handler
reprobe poll outputs. Optional. This gets called after waking the GPU and switching the outputs to it
can_switch check if the device is in a position to switch now. Mandatory. The client should return false if

a user space process has one of its device files open
Description
Client callbacks. A client can be either a GPU or an audio device on a GPU. The set_gpu_state and
can_switchmethods are mandatory, reprobemay be set to NULL. For audio clients, the reprobemem-
ber is bogus.

13.2.3 Public constants

enum vga_switcheroo_handler_flags_t
handler flags bitmask

Constants
VGA_SWITCHEROO_CAN_SWITCH_DDC whether the handler is able to switch the DDC lines separately. This

signals to clients that they should call drm_get_edid_switcheroo() to probe the EDID
VGA_SWITCHEROO_NEEDS_EDP_CONFIG whether the handler is unable to switch the AUX channel sepa-

rately. This signals to clients that the active GPU needs to train the link and communicate the link
parameters to the inactive GPU (mediated by vga_switcheroo). The inactive GPU may then skip
the AUX handshake and set up its output with these pre-calibrated values (DisplayPort specification
v1.1a, section 2.5.3.3)

Description
Handler flags bitmask. Used by handlers to declare their capabilities upon registering with vga_switcheroo.

enum vga_switcheroo_client_id
client identifier

Constants
VGA_SWITCHEROO_UNKNOWN_ID initial identifier assigned to vga clients. Determining the id requires the

handler, so GPUs are given their true id in a delayed fashion in vga_switcheroo_enable()
VGA_SWITCHEROO_IGD integrated graphics device
VGA_SWITCHEROO_DIS discrete graphics device
VGA_SWITCHEROO_MAX_CLIENTS currently no more than two GPUs are supported
Description
Client identifier. Audio clients use the same identifier & 0x100.
enum vga_switcheroo_state

client power state
Constants
VGA_SWITCHEROO_OFF off

13.2. API 415

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

VGA_SWITCHEROO_ON on
VGA_SWITCHEROO_NOT_FOUND client has not registered with vga_switcheroo. Only used in

vga_switcheroo_get_client_state() which in turn is only called from hda_intel.c
Description
Client power state.

13.2.4 Private structures

struct vgasr_priv
vga_switcheroo private data

Definition

struct vgasr_priv {
bool active;
bool delayed_switch_active;
enum vga_switcheroo_client_id delayed_client_id;
struct dentry * debugfs_root;
struct dentry * switch_file;
int registered_clients;
struct list_head clients;
const struct vga_switcheroo_handler * handler;
enum vga_switcheroo_handler_flags_t handler_flags;
struct mutex mux_hw_lock;
int old_ddc_owner;

};

Members
active whether vga_switcheroo is enabled. Prerequisite is the registration of two GPUs and a handler
delayed_switch_active whether a delayed switch is pending
delayed_client_id client to which a delayed switch is pending
debugfs_root directory for vga_switcheroo debugfs interface
switch_file file for vga_switcheroo debugfs interface
registered_clients number of registered GPUs (counting only vga clients, not audio clients)
clients list of registered clients
handler registered handler
handler_flags flags of registered handler
mux_hw_lock protects mux state (in particular while DDC lines are temporarily switched)
old_ddc_owner client to which DDC lines will be switched back on unlock
Description
vga_switcheroo private data. Currently only one vga_switcheroo instance per system is supported.
struct vga_switcheroo_client

registered client
Definition

struct vga_switcheroo_client {
struct pci_dev * pdev;
struct fb_info * fb_info;
enum vga_switcheroo_state pwr_state;
const struct vga_switcheroo_client_ops * ops;

416 Chapter 13. VGA Switcheroo

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

enum vga_switcheroo_client_id id;
bool active;
bool driver_power_control;
struct list_head list;

};

Members
pdev client pci device
fb_info framebuffer to which console is remapped on switching
pwr_state current power state
ops client callbacks
id client identifier. Determining the id requires the handler, so gpus are initially assigned

VGA_SWITCHEROO_UNKNOWN_ID and later given their true id in vga_switcheroo_enable()
active whether the outputs are currently switched to this client
driver_power_control whether power state is controlled by the driver’s runtime pm. If true, writing ON

and OFF to the vga_switcheroo debugfs interface is a no-op so as not to interfere with runtime pm
list client list
Description
Registered client. A client can be either a GPU or an audio device on a GPU. For audio clients, the fb_info,
active and driver_power_control members are bogus.

13.3 Handlers

13.3.1 apple-gmux Handler

gmux is a microcontroller built into the MacBook Pro to support dual GPUs: A Lattice XP2 on pre-retinas,
a Renesas R4F2113 on retinas.
(The MacPro6,1 2013 also has a gmux, however it is unclear why since it has dual GPUs but no built-in
display.)
gmux is connected to the LPC bus of the southbridge. Its I/O ports are accessed differently depending
on the microcontroller: Driver functions to access a pre-retina gmux are infixed _pio_, those for a retina
gmux are infixed _index_.
gmux is also connected to a GPIO pin of the southbridge and thereby is able to trigger an ACPI GPE. On
the MBP5 2008/09 it’s GPIO pin 22 of the Nvidia MCP79, on all following generations it’s GPIO pin 6 of
the Intel PCH. The GPE merely signals that an interrupt occurred, the actual type of event is identified by
reading a gmux register.

Graphics mux

On pre-retinas, the LVDS outputs of both GPUs feed into gmux which muxes either of them to the panel.
One of the tricks gmux has up its sleeve is to lengthen the blanking interval of its output during a switch
to synchronize it with the GPU switched to. This allows for a flicker-free switch that is imperceptible by
the user (US 8,687,007 B2).
On retinas, muxing is no longer done by gmux itself, but by a separate chip which is controlled by gmux.
The chip is triple sourced, it is either an NXP CBTL06142, TI HD3SS212 or Pericom PI3VDP12412. The
panel is driven with eDP instead of LVDS since the pixel clock required for retina resolution exceeds LVDS’
limits.

13.3. Handlers 417

http://www.latticesemi.com/en/Products/FPGAandCPLD/LatticeXP2.aspx
http://www.renesas.com/products/mpumcu/h8s/h8s2100/h8s2113/index.jsp
http://pimg-fpiw.uspto.gov/fdd/07/870/086/0.pdf
http://www.nxp.com/documents/data_sheet/CBTL06141.pdf
http://www.ti.com/lit/ds/symlink/hd3ss212.pdf
https://www.pericom.com/assets/Datasheets/PI3VDP12412.pdf

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Pre-retinas are able to switch the panel’s DDC pins separately. This is handled by a TI SN74LV4066A which
is controlled by gmux. The inactive GPU can thus probe the panel’s EDID without switching over the entire
panel. Retinas lack this functionality as the chips used for eDP muxing are incapable of switching the AUX
channel separately (see the linked data sheets, Pericom would be capable but this is unused). However
the retina panel has the NO_AUX_HANDSHAKE_LINK_TRAINING bit set in its DPCD, allowing the inactive
GPU to skip the AUX handshake and set up the output with link parameters pre-calibrated by the active
GPU.
The external DP port is only fully switchable on the first two unibody MacBook Pro generations, MBP5
2008/09 and MBP6 2010. This is done by an NXP CBTL06141 which is controlled by gmux. It’s the prede-
cessor of the eDP mux on retinas, the difference being support for 2.7 versus 5.4 Gbit/s.
The following MacBook Pro generations replaced the external DP port with a combined DP/Thunderbolt port
and lost the ability to switch it between GPUs, connecting it either to the discrete GPU or the Thunderbolt
controller. Oddly enough, while the full port is no longer switchable, AUX and HPD are still switchable by
way of an NXP CBTL03062 (on pre-retinas MBP8 2011 and MBP9 2012) or two TI TS3DS10224 (on retinas)
under the control of gmux. Since the integrated GPU is missing the main link, external displays appear to
it as phantoms which fail to link-train.
gmux receives the HPD signal of all display connectors and sends an interrupt on hotplug. On generations
which cannot switch external ports, the discrete GPU can then be woken to drive the newly connected
display. The ability to switch AUX on these generations could be used to improve reliability of hotplug
detection by having the integrated GPU poll the ports while the discrete GPU is asleep, but currently we
do not make use of this feature.
Our switching policy for the external port is that on those generations which are able to switch it fully,
the port is switched together with the panel when IGD / DIS commands are issued to vga_switcheroo. It
is thus possible to drive e.g. a beamer on battery power with the integrated GPU. The user may manually
switch to the discrete GPU if more performance is needed.
On all newer generations, the external port can only be driven by the discrete GPU. If a display is plugged
in while the panel is switched to the integrated GPU, both GPUs will be in use for maximum performance.
To decrease power consumption, the user may manually switch to the discrete GPU, thereby suspending
the integrated GPU.
gmux’ initial switch state on bootup is user configurable via the EFI variable gpu-power-prefs-fa4ce28d-
b62f-4c99-9cc3-6815686e30f9 (5th byte, 1 = IGD, 0 = DIS). Based on this setting, the EFI firmware tells
gmux to switch the panel and the external DP connector and allocates a framebuffer for the selected GPU.

Power control

gmux is able to cut power to the discrete GPU. It automatically takes care of the correct sequence to tear
down and bring up the power rails for core voltage, VRAM and PCIe.

Backlight control

On single GPU MacBooks, the PWM signal for the backlight is generated by the GPU. On dual GPU MacBook
Pros by contrast, either GPU may be suspended to conserve energy. Hence the PWM signal needs to be
generated by a separate backlight driver which is controlled by gmux. The earliest generation MBP5
2008/09 uses a TI LP8543 backlight driver. All newer models use a TI LP8545.

Public functions

bool apple_gmux_present(void)
detect if gmux is built into the machine

Parameters
void no arguments

418 Chapter 13. VGA Switcheroo

http://www.ti.com/lit/ds/symlink/sn74lv4066a.pdf
http://www.nxp.com/documents/data_sheet/CBTL06141.pdf
http://pdf.datasheetarchive.com/indexerfiles/Datasheets-SW16/DSASW00308511.pdf
http://www.ti.com/lit/ds/symlink/ts3ds10224.pdf
http://www.ti.com/lit/ds/symlink/lp8543.pdf
http://www.ti.com/lit/ds/symlink/lp8545.pdf

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Description
Drivers may use this to activate quirks specific to dual GPU MacBook Pros and Mac Pros, e.g. for deferred
probing, runtime pm and backlight.
Return
true if gmux is present and the kernel was configured with CONFIG_APPLE_GMUX, false otherwise.

13.3. Handlers 419

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

420 Chapter 13. VGA Switcheroo

CHAPTER

FOURTEEN

VGA ARBITER

Graphic devices are accessed through ranges in I/O or memory space. While most modern devices allow
relocation of such ranges, some “Legacy” VGA devices implemented on PCI will typically have the same
“hard-decoded” addresses as they did on ISA. For more details see “PCI Bus Binding to IEEE Std 1275-1994
Standard for Boot (Initialization Configuration) Firmware Revision 2.1” Section 7, Legacy Devices.
The Resource Access Control (RAC) module inside the X server [0] existed for the legacy VGA arbitra-
tion task (besides other bus management tasks) when more than one legacy device co-exists on the
same machine. But the problem happens when these devices are trying to be accessed by different
userspace clients (e.g. two server in parallel). Their address assignments conflict. Moreover, ideally,
being a userspace application, it is not the role of the X server to control bus resources. Therefore an arbi-
tration scheme outside of the X server is needed to control the sharing of these resources. This document
introduces the operation of the VGA arbiter implemented for the Linux kernel.

14.1 vgaarb kernel/userspace ABI

The vgaarb is a module of the Linux Kernel. When it is initially loaded, it scans all PCI devices and adds
the VGA ones inside the arbitration. The arbiter then enables/disables the decoding on different devices
of the VGA legacy instructions. Devices which do not want/need to use the arbiter may explicitly tell it by
calling vga_set_legacy_decoding().
The kernel exports a char device interface (/dev/vga_arbiter) to the clients, which has the following se-
mantics:
open Opens a user instance of the arbiter. By default, it’s attached to the default VGA device of the

system.
close Close a user instance. Release locks made by the user
read Return a string indicating the status of the target like:

“<card_ID>,decodes=<io_state>,owns=<io_state>,locks=<io_state> (ic,mc)”
An IO state string is of the form {io,mem,io+mem,none}, mc and ic are respectively mem and io
lock counts (for debugging/ diagnostic only). “decodes” indicate what the card currently decodes,
“owns” indicates what is currently enabled on it, and “locks” indicates what is locked by this card.
If the card is unplugged, we get “invalid” then for card_ID and an -ENODEV error is returned for any
command until a new card is targeted.

write Write a command to the arbiter. List of commands:
target <card_ID> switch target to card <card_ID> (see below)
lock <io_state> acquires locks on target (“none” is an invalid io_state)
trylock <io_state> non-blocking acquire locks on target (returns EBUSY if unsuccessful)
unlock <io_state> release locks on target
unlock all release all locks on target held by this user (not implemented yet)

421

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

decodes <io_state> set the legacy decoding attributes for the card
poll event if something changes on any card (not just the target)
card_ID is of the form “PCI:domain:bus:dev.fn”. It can be set to “default” to go back to the system
default card (TODO: not implemented yet). Currently, only PCI is supported as a prefix, but the
userland API may support other bus types in the future, even if the current kernel implementation
doesn’t.

Note about locks:
The driver keeps track of which user has which locks on which card. It supports stacking, like the kernel
one. This complexifies the implementation a bit, but makes the arbiter more tolerant to user space prob-
lems and able to properly cleanup in all cases when a process dies. Currently, a max of 16 cards can have
locks simultaneously issued from user space for a given user (file descriptor instance) of the arbiter.
In the case of devices hot-{un,}plugged, there is a hook - pci_notify() - to notify them being added/removed
in the system and automatically added/removed in the arbiter.
There is also an in-kernel API of the arbiter in case DRM, vgacon, or other drivers want to use it.

14.2 In-kernel interface

void vga_set_legacy_decoding(struct pci_dev * pdev, unsigned int decodes)
Parameters
struct pci_dev * pdev pci device of the VGA card
unsigned int decodes bit mask of what legacy regions the card decodes
Description

Indicates to the arbiter if the card decodes legacy VGA IOs, legacy VGA Memory, both, or none.
All cards default to both, the card driver (fbdev for example) should tell the arbiter if it has
disabled legacy decoding, so the card can be left out of the arbitration process (and can be safe
to take interrupts at any time.

int vga_get_interruptible(struct pci_dev * pdev, unsigned int rsrc)
Parameters
struct pci_dev * pdev pci device of the VGA card or NULL for the system default
unsigned int rsrc bit mask of resources to acquire and lock
Description
Shortcut to vga_get with interruptible set to true.
On success, release the VGA resource again with vga_put().
int vga_get_uninterruptible(struct pci_dev * pdev, unsigned int rsrc)

shortcut to vga_get()
Parameters
struct pci_dev * pdev pci device of the VGA card or NULL for the system default
unsigned int rsrc bit mask of resources to acquire and lock
Description
Shortcut to vga_get with interruptible set to false.
On success, release the VGA resource again with vga_put().
struct pci_dev * vga_default_device(void)

return the default VGA device, for vgacon

422 Chapter 14. VGA Arbiter

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Parameters
void no arguments
Description
This can be defined by the platform. The default implementation is rather dumb and will probably only
work properly on single vga card setups and/or x86 platforms.
If your VGA default device is not PCI, you’ll have to return NULL here. In this case, I assume it will not
conflict with any PCI card. If this is not true, I’ll have to define two archs hooks for enabling/disabling the
VGA default device if that is possible. This may be a problem with real _ISA_ VGA cards, in addition to a
PCI one. I don’t know at this point how to deal with that card. Can theirs IOs be disabled at all ? If not,
then I suppose it’s a matter of having the proper arch hook telling us about it, so we basically never allow
anybody to succeed a vga_get()...
int vga_get(struct pci_dev * pdev, unsigned int rsrc, int interruptible)

acquire & locks VGA resources
Parameters
struct pci_dev * pdev pci device of the VGA card or NULL for the system default
unsigned int rsrc bit mask of resources to acquire and lock
int interruptible blocking should be interruptible by signals ?
Description
This function acquires VGA resources for the given card and mark those resources locked. If the resource
requested are “normal” (and not legacy) resources, the arbiter will first check whether the card is doing
legacy decoding for that type of resource. If yes, the lock is “converted” into a legacy resource lock.
The arbiter will first look for all VGA cards that might conflict and disable their IOs and/or Memory access,
including VGA forwarding on P2P bridges if necessary, so that the requested resources can be used. Then,
the card is marked as locking these resources and the IO and/or Memory accesses are enabled on the card
(including VGA forwarding on parent P2P bridges if any).
This function will block if some conflicting card is already locking one of the required resources (or any
resource on a different bus segment, since P2P bridges don’t differentiate VGA memory and IO afaik). You
can indicate whether this blocking should be interruptible by a signal (for userland interface) or not.
Must not be called at interrupt time or in atomic context. If the card already owns the resources, the
function succeeds. Nested calls are supported (a per-resource counter is maintained)
On success, release the VGA resource again with vga_put().
Return
0 on success, negative error code on failure.
int vga_tryget(struct pci_dev * pdev, unsigned int rsrc)

try to acquire & lock legacy VGA resources
Parameters
struct pci_dev * pdev pci devivce of VGA card or NULL for system default
unsigned int rsrc bit mask of resources to acquire and lock
Description
This function performs the same operation as vga_get(), but will return an error (-EBUSY) instead of
blocking if the resources are already locked by another card. It can be called in any context
On success, release the VGA resource again with vga_put().
Return
0 on success, negative error code on failure.

14.2. In-kernel interface 423

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

void vga_put(struct pci_dev * pdev, unsigned int rsrc)
release lock on legacy VGA resources

Parameters
struct pci_dev * pdev pci device of VGA card or NULL for system default
unsigned int rsrc but mask of resource to release
Description
This fuction releases resources previously locked by vga_get() or vga_tryget(). The resources aren’t
disabled right away, so that a subsequence vga_get() on the same card will succeed immediately. Re-
sources have a counter, so locks are only released if the counter reaches 0.
int vga_client_register(struct pci_dev * pdev, void * cookie, void (*irq_set_state) (void *cookie,

bool state, unsigned int (*set_vga_decode) (void *cookie, bool decode)
register or unregister a VGA arbitration client

Parameters
struct pci_dev * pdev pci device of the VGA client
void * cookie client cookie to be used in callbacks
void (*)(void *cookie,bool state) irq_set_state irq state change callback
unsigned int (*)(void *cookie,bool decode) set_vga_decode vga decode change callback
Description
Clients have two callback mechanisms they can use.
irq_set_state callback: If a client can’t disable its GPUs VGA resources, then we need to be able to ask
it to turn off its irqs when we turn off its mem and io decoding.
set_vga_decode callback: If a client can disable its GPU VGA resource, it will get a callback from this to
set the encode/decode state.
Rationale: we cannot disable VGA decode resources unconditionally some single GPU laptops seem to
require ACPI or BIOS access to the VGA registers to control things like backlights etc. Hopefully newer
multi-GPU laptops do something saner, and desktops won’t have any special ACPI for this. The driver will
get a callback when VGA arbitration is first used by userspace since some older X servers have issues.
This function does not check whether a client for pdev has been registered already.
To unregister just call this function with irq_set_state and set_vga_decode both set to NULL for the
same pdev as originally used to register them.
Return
0 on success, -1 on failure

14.3 libpciaccess

To use the vga arbiter char device it was implemented an API inside the libpciaccess library. One field was
added to struct pci_device (each device on the system):

/* the type of resource decoded by the device */
int vgaarb_rsrc;

Besides it, in pci_system were added:

int vgaarb_fd;
int vga_count;
struct pci_device *vga_target;
struct pci_device *vga_default_dev;

424 Chapter 14. VGA Arbiter

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

The vga_count is used to track how many cards are being arbitrated, so for instance, if there is only one
card, then it can completely escape arbitration.
These functions below acquire VGA resources for the given card and mark those resources as locked.
If the resources requested are “normal” (and not legacy) resources, the arbiter will first check whether
the card is doing legacy decoding for that type of resource. If yes, the lock is “converted” into a legacy
resource lock. The arbiter will first look for all VGA cards that might conflict and disable their IOs and/or
Memory access, including VGA forwarding on P2P bridges if necessary, so that the requested resources
can be used. Then, the card is marked as locking these resources and the IO and/or Memory access is
enabled on the card (including VGA forwarding on parent P2P bridges if any). In the case of vga_arb_lock(),
the function will block if some conflicting card is already locking one of the required resources (or any
resource on a different bus segment, since P2P bridges don’t differentiate VGA memory and IO afaik). If
the card already owns the resources, the function succeeds. vga_arb_trylock() will return (-EBUSY) instead
of blocking. Nested calls are supported (a per-resource counter is maintained).
Set the target device of this client.

int pci_device_vgaarb_set_target (struct pci_device *dev);

For instance, in x86 if two devices on the same bus want to lock different resources, both will succeed
(lock). If devices are in different buses and trying to lock different resources, only the first who tried
succeeds.

int pci_device_vgaarb_lock (void);
int pci_device_vgaarb_trylock (void);

Unlock resources of device.

int pci_device_vgaarb_unlock (void);

Indicates to the arbiter if the card decodes legacy VGA IOs, legacy VGA Memory, both, or none. All cards
default to both, the card driver (fbdev for example) should tell the arbiter if it has disabled legacy decoding,
so the card can be left out of the arbitration process (and can be safe to take interrupts at any time.

int pci_device_vgaarb_decodes (int new_vgaarb_rsrc);

Connects to the arbiter device, allocates the struct

int pci_device_vgaarb_init (void);

Close the connection

void pci_device_vgaarb_fini (void);

14.4 xf86VGAArbiter (X server implementation)

X server basically wraps all the functions that touch VGA registers somehow.

14.5 References

Benjamin Herrenschmidt (IBM?) started this work when he discussed such design with the Xorg community
in 2005 [1, 2]. In the end of 2007, Paulo Zanoni and Tiago Vignatti (both of C3SL/Federal University of
Paraná) proceeded his work enhancing the kernel code to adapt as a kernel module and also did the
implementation of the user space side [3]. Now (2009) Tiago Vignatti and Dave Airlie finally put this work
in shape and queued to Jesse Barnes’ PCI tree.
0. http://cgit.freedesktop.org/xorg/xserver/commit/?id=4b42448a2388d40f257774fbffdccaea87bd0347

14.4. xf86VGAArbiter (X server implementation) 425

http://cgit.freedesktop.org/xorg/xserver/commit/?id=4b42448a2388d40f257774fbffdccaea87bd0347

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

1. http://lists.freedesktop.org/archives/xorg/2005-March/006663.html
2. http://lists.freedesktop.org/archives/xorg/2005-March/006745.html
3. http://lists.freedesktop.org/archives/xorg/2007-October/029507.html

426 Chapter 14. VGA Arbiter

http://lists.freedesktop.org/archives/xorg/2005-March/006663.html
http://lists.freedesktop.org/archives/xorg/2005-March/006745.html
http://lists.freedesktop.org/archives/xorg/2007-October/029507.html

CHAPTER

FIFTEEN

DRM/BRIDGE/DW-HDMI SYNOPSYS DESIGNWARE HDMI
CONTROLLER

15.1 Synopsys DesignWare HDMI Controller

This section covers everything related to the Synopsys DesignWare HDMI Controller implemented as a
DRM bridge.

15.1.1 Supported Input Formats and Encodings

Depending on the Hardware configuration of the Controller IP, it supports a subset of the following input
formats and encodings on its internal 48bit bus.
Format
Name

Format Code Encodings

RGB 4:4:4
8bit

ME-
DIA_BUS_FMT_RGB888_1X24

V4L2_YCBCR_ENC_DEFAULT

RGB 4:4:4
10bits

ME-
DIA_BUS_FMT_RGB101010_1X30

V4L2_YCBCR_ENC_DEFAULT

RGB 4:4:4
12bits

ME-
DIA_BUS_FMT_RGB121212_1X36

V4L2_YCBCR_ENC_DEFAULT

RGB 4:4:4
16bits

ME-
DIA_BUS_FMT_RGB161616_1X48

V4L2_YCBCR_ENC_DEFAULT

YCbCr 4:4:4
8bit

ME-
DIA_BUS_FMT_YUV8_1X24

V4L2_YCBCR_ENC_601 or V4L2_YCBCR_ENC_709 or
V4L2_YCBCR_ENC_XV601 or V4L2_YCBCR_ENC_XV709

YCbCr 4:4:4
10bits

ME-
DIA_BUS_FMT_YUV10_1X30

V4L2_YCBCR_ENC_601 or V4L2_YCBCR_ENC_709 or
V4L2_YCBCR_ENC_XV601 or V4L2_YCBCR_ENC_XV709

YCbCr 4:4:4
12bits

ME-
DIA_BUS_FMT_YUV12_1X36

V4L2_YCBCR_ENC_601 or V4L2_YCBCR_ENC_709 or
V4L2_YCBCR_ENC_XV601 or V4L2_YCBCR_ENC_XV709

YCbCr 4:4:4
16bits

ME-
DIA_BUS_FMT_YUV16_1X48

V4L2_YCBCR_ENC_601 or V4L2_YCBCR_ENC_709 or
V4L2_YCBCR_ENC_XV601 or V4L2_YCBCR_ENC_XV709

YCbCr 4:2:2
8bit

ME-
DIA_BUS_FMT_UYVY8_1X16

V4L2_YCBCR_ENC_601 or V4L2_YCBCR_ENC_709

YCbCr 4:2:2
10bits

ME-
DIA_BUS_FMT_UYVY10_1X20

V4L2_YCBCR_ENC_601 or V4L2_YCBCR_ENC_709

YCbCr 4:2:2
12bits

ME-
DIA_BUS_FMT_UYVY12_1X24

V4L2_YCBCR_ENC_601 or V4L2_YCBCR_ENC_709

YCbCr 4:2:0
8bit

ME-
DIA_BUS_FMT_UYYVYY8_0_5X24

V4L2_YCBCR_ENC_601 or V4L2_YCBCR_ENC_709

YCbCr 4:2:0
10bits

ME-
DIA_BUS_FMT_UYYVYY10_0_5X30

V4L2_YCBCR_ENC_601 or V4L2_YCBCR_ENC_709

YCbCr 4:2:0
12bits

ME-
DIA_BUS_FMT_UYYVYY12_0_5X36

V4L2_YCBCR_ENC_601 or V4L2_YCBCR_ENC_709

YCbCr 4:2:0
16bits

ME-
DIA_BUS_FMT_UYYVYY16_0_5X48

V4L2_YCBCR_ENC_601 or V4L2_YCBCR_ENC_709

427

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

428 Chapter 15. drm/bridge/dw-hdmi Synopsys DesignWare HDMI Controller

CHAPTER

SIXTEEN

TODO LIST

This section contains a list of smaller janitorial tasks in the kernel DRM graphics subsystem useful as
newbie projects. Or for slow rainy days.

16.1 Subsystem-wide refactorings

16.1.1 De-midlayer drivers

With the recent drm_bus cleanup patches for 3.17 it is no longer required to have a drm_bus structure set
up. Drivers can directly set up the drm_device structure instead of relying on bus methods in drm_usb.c
and drm_pci.c. The goal is to get rid of the driver’s ->load / ->unload callbacks and open-code the
load/unload sequence properly, using the new two-stage drm_device setup/teardown.
Once all existing drivers are converted we can also remove those bus support files for USB and platform
devices.
All you need is a GPU for a non-converted driver (currently almost all of them, but also all the virtual ones
used by KVM, so everyone qualifies).
Contact: Daniel Vetter, Thierry Reding, respective driver maintainers

16.1.2 Switch from reference/unreference to get/put

For some reason DRM core uses reference/unreference suffixes for refcounting functions, but kernel
uses get/put (e.g. kref_get/put()). It would be good to switch over for consistency, and it’s shorter.
Needs to be done in 3 steps for each pair of functions:
• Create new get/put functions, define the old names as compatibility wrappers
• Switch over each file/driver using a cocci-generated spatch.
• Once all users of the old names are gone, remove them.

This way drivers/patches in the progress of getting merged won’t break.
Contact: Daniel Vetter

16.1.3 Convert existing KMS drivers to atomic modesetting

3.19 has the atomic modeset interfaces and helpers, so drivers can now be converted over. Modern
compositors like Wayland or Surfaceflinger on Android really want an atomic modeset interface, so this is
all about the bright future.
There is a conversion guide for atomic and all you need is a GPU for a non-converted driver (again virtual
HW drivers for KVM are still all suitable).

429

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

As part of this drivers also need to convert to universal plane (which means exposing primary & cursor
as proper plane objects). But that’s much easier to do by directly using the new atomic helper driver
callbacks.
Contact: Daniel Vetter, respective driver maintainers

16.1.4 Clean up the clipped coordination confusion around planes

We have a helper to get this right with drm_plane_helper_check_update(), but it’s not consistently used.
This should be fixed, preferrably in the atomic helpers (and drivers then moved over to clipped coordi-
nates). Probably the helper should also be moved from drm_plane_helper.c to the atomic helpers, to avoid
confusion - the other helpers in that file are all deprecated legacy helpers.
Contact: Ville Syrjälä, Daniel Vetter, driver maintainers

16.1.5 Implement deferred fbdev setup in the helper

Many (especially embedded drivers) want to delay fbdev setup until there’s a real screen plugged in. This
is to avoid the dreaded fallback to the low-res fbdev default. Many drivers have a hacked-up (and often
broken) version of this, better to do it once in the shared helpers. Thierry has a patch series, but that one
needs to be rebased and final polish applied.
Contact: Thierry Reding, Daniel Vetter, driver maintainers

16.1.6 Convert early atomic drivers to async commit helpers

For the first year the atomic modeset helpers didn’t support asynchronous / nonblocking commits, and
every driver had to hand-roll them. This is fixed now, but there’s still a pile of existing drivers that easily
could be converted over to the new infrastructure.
One issue with the helpers is that they require that drivers handle completion events for atomic commits
correctly. But fixing these bugs is good anyway.
Contact: Daniel Vetter, respective driver maintainers

16.1.7 Better manual-upload support for atomic

This would be especially useful for tinydrm:
• Add a struct drm_rect dirty_clip to drm_crtc_state. When duplicating the crtc state, clear that to the
max values, x/y = 0 and w/h = MAX_INT, in __drm_atomic_helper_crtc_duplicate_state().

• Move tinydrm_merge_clips into drm_framebuffer.c, dropping the tinydrm prefix ofc and using
drm_fb_. drm_framebuffer.c makes sense since this is a function useful to implement the fb->dirty
function.

• Create a new drm_fb_dirty function which does essentially what e.g. mipi_dbi_fb_dirty does. You can
use e.g. drm_atomic_helper_update_plane as the template. But instead of doing a simple full-screen
plane update, this new helper also sets crtc_state->dirty_clip to the right coordinates. And of course
it needs to check whether the fb is actually active (and maybe where), so there’s some book-keeping
involved. There’s also some good fun involved in scaling things appropriately. For that case we might
simply give up and declare the entire area covered by the plane as dirty.

Contact: Noralf Trønnes, Daniel Vetter

430 Chapter 16. TODO list

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

16.1.8 Fallout from atomic KMS

drm_atomic_helper.c provides a batch of functions which implement legacy IOCTLs on top of the new
atomic driver interface. Which is really nice for gradual conversion of drivers, but unfortunately the se-
mantic mismatches are a bit too severe. So there’s some follow-up work to adjust the function interfaces
to fix these issues:
• atomic needs the lock acquire context. At the moment that’s passed around implicitly with some
horrible hacks, and it’s also allocate with GFP_NOFAIL behind the scenes. All legacy paths need to
start allocating the acquire context explicitly on stack and then also pass it down into drivers explicitly
so that the legacy-on-atomic functions can use them.

• A bunch of the vtable hooks are now in the wrong place: DRM has a split between core vfunc tables
(named drm_foo_funcs), which are used to implement the userspace ABI. And then there’s the
optional hooks for the helper libraries (name drm_foo_helper_funcs), which are purely for internal
use. Some of these hooks should be move from _funcs to _helper_funcs since they are not part of
the core ABI. There’s a FIXME comment in the kerneldoc for each such case in drm_crtc.h.

• There’s a new helper drm_atomic_helper_best_encoder()which could be used by all atomic drivers
which don’t select the encoder for a given connector at runtime. That’s almost all of them, and would
allow us to get rid of a lot of best_encoder boilerplate in drivers.

Contact: Daniel Vetter

16.1.9 Get rid of dev->struct_mutex from GEM drivers

dev->struct_mutex is the Big DRM Lock from legacy days and infested everything. Nowadays in modern
drivers the only bit where it’s mandatory is serializing GEM buffer object destruction. Which unfortu-
nately means drivers have to keep track of that lock and either call unreference or unreference_locked
depending upon context.
Core GEM doesn’t have a need for struct_mutex any more since kernel 4.8, and there’s a
gem_free_object_unlocked callback for any drivers which are entirely struct_mutex free.
For drivers that need struct_mutex it should be replaced with a driver- private lock. The tricky part is the
BO free functions, since those can’t reliably take that lock any more. Instead state needs to be protected
with suitable subordinate locks or some cleanup work pushed to a worker thread. For performance-critical
drivers it might also be better to go with a more fine-grained per-buffer object and per-context lockings
scheme. Currently the following drivers still use struct_mutex: msm, omapdrm and udl.
Contact: Daniel Vetter, respective driver maintainers

16.2 Core refactorings

16.2.1 Use new IDR deletion interface to clean up drm_gem_handle_delete()

See the “This is gross” comment – apparently the IDR system now can return an error code instead of
oopsing.

16.2.2 Clean up the DRM header mess

Currently the DRM subsystem has only one global header, drmP.h. This is used both for functions exported
to helper libraries and drivers and functions only used internally in the drm.komodule. The goal would be
to move all header declarations not needed outside of drm.ko into drivers/gpu/drm/drm_*_internal.h
header files. EXPORT_SYMBOL also needs to be dropped for these functions.
This would nicely tie in with the below task to create kerneldoc after the API is cleaned up. Or with the
“hide legacy cruft better” task.

16.2. Core refactorings 431

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

Note that this is well in progress, but drmP.h is still huge. The updated plan is to switch to per-file driver API
headers, which will also structure the kerneldoc better. This should also allow more fine-grained #include
directives.
In the end no .c file should need to include drmP.h anymore.
Contact: Daniel Vetter

16.2.3 Add missing kerneldoc for exported functions

The DRM reference documentation is still lacking kerneldoc in a few areas. The task would be to clean up
interfaces like moving functions around between files to better group them and improving the interfaces
like dropping return values for functions that never fail. Then write kerneldoc for all exported functions
and an overview section and integrate it all into the drm book.
See https://dri.freedesktop.org/docs/drm/ for what’s there already.
Contact: Daniel Vetter

16.2.4 Hide legacy cruft better

Way back DRM supported only drivers which shadow-attached to PCI devices with userspace or fbdev
drivers setting up outputs. Modern DRM drivers take charge of the entire device, you can spot them with
the DRIVER_MODESET flag.
Unfortunately there’s still large piles of legacy code around which needs to be hidden so that driver writers
don’t accidentally end up using it. And to prevent security issues in those legacy IOCTLs from being
exploited on modern drivers. This has multiple possible subtasks:
• Extract support code for legacy features into a drm-legacy.ko kernel module and compile it only
when one of the legacy drivers is enabled.

This is mostly done, the only thing left is to split up drm_irq.c into legacy cruft and the parts needed by
modern KMS drivers.
Contact: Daniel Vetter

16.2.5 Make panic handling work

This is a really varied tasks with lots of little bits and pieces:
• The panic path can’t be tested currently, leading to constant breaking. The main issue here is that
panics can be triggered from hardirq contexts and hence all panic related callback can run in hardirq
context. It would be awesome if we could test at least the fbdev helper code and driver code by e.g.
trigger calls through drm debugfs files. hardirq context could be achieved by using an IPI to the local
processor.

• There’s a massive confusion of different panic handlers. DRM fbdev emulation helpers have one, but
on top of that the fbcon code itself also has one. We need to make sure that they stop fighting over
each another.

• drm_can_sleep() is a mess. It hides real bugs in normal operations and isn’t a full solution for panic
paths. We need to make sure that it only returns true if there’s a panic going on for real, and fix up
all the fallout.

• The panic handler must never sleep, which also means it can’t ever mutex_lock(). Also it can’t grab
any other lock unconditionally, not even spinlocks (because NMI and hardirq can panic too). We need
to either make sure to not call such paths, or trylock everything. Really tricky.

• For the above locking troubles reasons it’s pretty much impossible to attempt a synchronousmodeset
from panic handlers. The only thing we could try to achive is an atomic set_base of the primary
plane, and hope that it shows up. Everything else probably needs to be delayed to some worker or

432 Chapter 16. TODO list

https://dri.freedesktop.org/docs/drm/

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

something else which happens later on. Otherwise it just kills the box harder, prevent the panic from
going out on e.g. netconsole.

• There’s also proposal for a simplied DRM console instead of the full-blown fbcon and DRM fbdev
emulation. Any kind of panic handling tricks should obviously work for both console, in case we ever
get kmslog merged.

Contact: Daniel Vetter

16.2.6 Clean up the debugfs support

There’s a bunch of issues with it:
• The drm_info_list ->show() function doesn’t even bother to cast to the drm structure for you. This is
lazy.

• We probably want to have some support for debugfs files on crtc/connectors and maybe other kms
objects directly in core. There’s even drm_print support in the funcs for these objects to dump kms
state, so it’s all there. And then the ->show() functions should obviously give you a pointer to the
right object.

• The drm_info_list stuff is centered on drm_minor instead of drm_device. For anything we want to
print drm_device (or maybe drm_file) is the right thing.

• The drm_driver->debugfs_init hooks we have is just an artifact of the old midlayered load sequence.
DRM debugfs should work more like sysfs, where you can create properties/files for an object any-
time you want, and the core takes care of publishing/unpuplishing all the files at register/unregister
time. Drivers shouldn’t need to worry about these technicalities, and fixing this (together with the
drm_minor->drm_device move) would allow us to remove debugfs_init.

Contact: Daniel Vetter

16.3 Better Testing

16.3.1 Enable trinity for DRM

And fix up the fallout. Should be really interesting ...

16.3.2 Make KMS tests in i-g-t generic

The i915 driver team maintains an extensive testsuite for the i915 DRM driver, including tons of testcases
for corner-cases in the modesetting API. It would be awesome if those tests (at least the ones not relying
on Intel-specific GEM features) could be made to run on any KMS driver.
Basic work to run i-g-t tests on non-i915 is done, what’s now missing is mass- converting things over. For
modeset tests we also first need a bit of infrastructure to use dumb buffers for untiled buffers, to be able
to run all the non-i915 specific modeset tests.
Contact: Daniel Vetter

16.3.3 Create a virtual KMS driver for testing (vkms)

With all the latest helpers it should be fairly simple to create a virtual KMS driver useful for testing, or for
running X or similar on headless machines (to be able to still use the GPU). This would be similar to vgem,
but aimed at the modeset side.
Once the basics are there there’s tons of possibilities to extend it.
Contact: Daniel Vetter

16.3. Better Testing 433

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

16.4 Driver Specific

16.4.1 tinydrm

Tinydrm is the helper driver for really simple fb drivers. The goal is to make those drivers as simple as
possible, so lots of room for refactoring:
• backlight helpers, probably best to put them into a new drm_backlight.c. This is be-
cause drivers/video is de-facto unmaintained. We could also move drivers/video/backlight to
drivers/gpu/backlight and take it all over within drm-misc, but that’s more work.

• spi helpers, probably best put into spi core/helper code. Thierry said the spi maintainer is
fast&reactive, so shouldn’t be a big issue.

• extract the mipi-dbi helper (well, the non-tinydrm specific parts at least) into a separate helper, like
we have for mipi-dsi already. Or follow one of the ideas for having a shared dsi/dbi helper, abstracting
away the transport details more.

• tinydrm_lastclose could be drm_fb_helper_lastclose. Only thing we need for that is to store the
drm_fb_helper pointer somewhere in drm_device->mode_config. And then we could roll that out
to all the drivers.

• tinydrm_gem_cma_prime_import_sg_table should probably go into the cma helpers, as a _vmapped
variant (since not every driver needs the vmap). And tinydrm_gem_cma_free_object could the be
merged into drm_gem_cma_free_object().

• tinydrm_fb_create we could move into drm_simple_pipe, only need to add the fb_create hook to
drm_simple_pipe_funcs, which would again simplify a bunch of things (since it gives you a one-stop
vfunc for simple drivers).

• Quick aside: The unregister devm stuff is kinda getting the lifetimes of a drm_device wrong. Doesn’t
matter, since everyone else gets it wrong too :-)

• With the fbdev pointer in dev->mode_config we could also make suspend/resume helpers entirely
generic, at least if we add a dev->mode_config.suspend_state. We could even provide a generic
pm_ops structure with those.

• also rework the drm_framebuffer_funcs->dirty hook wire-up, see above.
Contact: Noralf Trønnes, Daniel Vetter

16.5 Outside DRM

434 Chapter 16. TODO list

INDEX

Symbols
__drm_atomic_get_current_plane_state (C func-

tion), 79
__drm_atomic_helper_connector_destroy_state (C

function), 213
__drm_atomic_helper_connector_duplicate_state (C

function), 212
__drm_atomic_helper_connector_reset (C function),

211
__drm_atomic_helper_crtc_destroy_state (C func-

tion), 210
__drm_atomic_helper_crtc_duplicate_state (C func-

tion), 210
__drm_atomic_helper_plane_destroy_state (C func-

tion), 211
__drm_atomic_helper_plane_duplicate_state (C

function), 211
__drm_atomic_state_free (C function), 85
__drm_gem_object_put (C function), 29
__drm_gem_object_unreference (C function), 30
__for_each_private_obj (C function), 83
__i915_guc_submit (C function), 357
__intel_display_power_is_enabled (C function), 307
__intel_fbc_disable (C function), 329
__intel_wait_for_register_fw (C function), 312

A
append_oa_sample (C function), 370
append_oa_status (C function), 369
apple_gmux_present (C function), 418

B
bdb_header (C type), 336
bxt_init_cdclk (C function), 337
bxt_uninit_cdclk (C function), 337

C
cnl_init_cdclk (C function), 337
cnl_uninit_cdclk (C function), 338

D
DEFINE_DRM_GEM_CMA_FOPS (C function), 35
DEFINE_DRM_GEM_FOPS (C function), 29
devm_tinydrm_init (C function), 394
devm_tinydrm_register (C function), 395
drm_accurate_vblank_count (C function), 176

drm_add_edid_modes (C function), 275
drm_add_modes_noedid (C function), 275
drm_atomic_add_affected_connectors (C function),

89
drm_atomic_add_affected_planes (C function), 89
drm_atomic_check_only (C function), 89
drm_atomic_clean_old_fb (C function), 90
drm_atomic_commit (C function), 90
drm_atomic_connector_set_property (C function),

87
drm_atomic_crtc_for_each_plane (C function), 197
drm_atomic_crtc_needs_modeset (C function), 83
drm_atomic_crtc_set_property (C function), 86
drm_atomic_crtc_state_for_each_plane (C function),

197
drm_atomic_crtc_state_for_each_plane_state (C

function), 197
drm_atomic_get_connector_state (C function), 87
drm_atomic_get_crtc_state (C function), 85
drm_atomic_get_existing_connector_state (C func-

tion), 78
drm_atomic_get_existing_crtc_state (C function), 77
drm_atomic_get_existing_plane_state (C function),

78
drm_atomic_get_mst_topology_state (C function),

258
drm_atomic_get_new_connector_state (C function),

79
drm_atomic_get_new_crtc_state (C function), 77
drm_atomic_get_new_plane_state (C function), 78
drm_atomic_get_old_connector_state (C function),

79
drm_atomic_get_old_crtc_state (C function), 77
drm_atomic_get_old_plane_state (C function), 78
drm_atomic_get_plane_state (C function), 86
drm_atomic_get_private_obj_state (C function), 87
drm_atomic_helper_best_encoder (C function), 210
drm_atomic_helper_check (C function), 199
drm_atomic_helper_check_modeset (C function),

198
drm_atomic_helper_check_planes (C function), 199
drm_atomic_helper_cleanup_planes (C function),

204
drm_atomic_helper_commit (C function), 201
drm_atomic_helper_commit_cleanup_done (C func-

tion), 203

435

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

drm_atomic_helper_commit_duplicated_state (C
function), 207

drm_atomic_helper_commit_hw_done (C function),
202

drm_atomic_helper_commit_modeset_disables (C
function), 200

drm_atomic_helper_commit_modeset_enables (C
function), 200

drm_atomic_helper_commit_planes (C function),
203

drm_atomic_helper_commit_planes_on_crtc (C
function), 204

drm_atomic_helper_commit_tail (C function), 201
drm_atomic_helper_connector_destroy_state (C

function), 213
drm_atomic_helper_connector_dpms (C function),

209
drm_atomic_helper_connector_duplicate_state (C

function), 212
drm_atomic_helper_connector_reset (C function),

212
drm_atomic_helper_connector_set_property (C

function), 208
drm_atomic_helper_crtc_destroy_state (C function),

210
drm_atomic_helper_crtc_duplicate_state (C func-

tion), 210
drm_atomic_helper_crtc_reset (C function), 210
drm_atomic_helper_crtc_set_property (C function),

208
drm_atomic_helper_disable_all (C function), 206
drm_atomic_helper_disable_plane (C function), 206
drm_atomic_helper_disable_planes_on_crtc (C func-

tion), 204
drm_atomic_helper_duplicate_state (C function),

212
drm_atomic_helper_legacy_gamma_set (C func-

tion), 213
drm_atomic_helper_page_flip (C function), 209
drm_atomic_helper_page_flip_target (C function),

209
drm_atomic_helper_plane_destroy_state (C func-

tion), 211
drm_atomic_helper_plane_duplicate_state (C func-

tion), 211
drm_atomic_helper_plane_reset (C function), 211
drm_atomic_helper_plane_set_property (C func-

tion), 208
drm_atomic_helper_prepare_planes (C function),

203
drm_atomic_helper_resume (C function), 207
drm_atomic_helper_set_config (C function), 206
drm_atomic_helper_setup_commit (C function), 201
drm_atomic_helper_shutdown (C function), 207
drm_atomic_helper_suspend (C function), 207
drm_atomic_helper_swap_state (C function), 205
drm_atomic_helper_update_legacy_modeset_state

(C function), 199

drm_atomic_helper_update_plane (C function), 205
drm_atomic_helper_wait_for_dependencies (C func-

tion), 202
drm_atomic_helper_wait_for_fences (C function),

200
drm_atomic_helper_wait_for_vblanks (C function),

201
drm_atomic_legacy_backoff (C function), 89
drm_atomic_nonblocking_commit (C function), 90
drm_atomic_normalize_zpos (C function), 165
drm_atomic_plane_disabling (C function), 198
drm_atomic_plane_set_property (C function), 86
drm_atomic_set_crtc_for_connector (C function), 88
drm_atomic_set_crtc_for_plane (C function), 88
drm_atomic_set_fb_for_plane (C function), 88
drm_atomic_set_fence_for_plane (C function), 88
drm_atomic_set_mode_for_crtc (C function), 85
drm_atomic_set_mode_prop_for_crtc (C function),

85
drm_atomic_state (C type), 76
drm_atomic_state_alloc (C function), 84
drm_atomic_state_clear (C function), 84
drm_atomic_state_default_clear (C function), 84
drm_atomic_state_default_release (C function), 84
drm_atomic_state_get (C function), 77
drm_atomic_state_init (C function), 84
drm_atomic_state_put (C function), 77
drm_av_sync_delay (C function), 274
drm_bridge (C type), 234
drm_bridge_add (C function), 235
drm_bridge_attach (C function), 235
drm_bridge_disable (C function), 236
drm_bridge_enable (C function), 237
drm_bridge_funcs (C type), 232
drm_bridge_mode_fixup (C function), 235
drm_bridge_mode_set (C function), 237
drm_bridge_mode_valid (C function), 236
drm_bridge_post_disable (C function), 236
drm_bridge_pre_enable (C function), 237
drm_bridge_remove (C function), 235
drm_bus_flags_from_videomode (C function), 125
drm_calc_timestamping_constants (C function), 177
drm_calc_vbltimestamp_from_scanoutpos (C func-

tion), 177
drm_class_device_register (C function), 305
drm_class_device_unregister (C function), 305
drm_clflush_pages (C function), 56
drm_clflush_sg (C function), 56
drm_clflush_virt_range (C function), 56
drm_color_lut_extract (C function), 166
drm_compat_ioctl (C function), 302
drm_connector (C type), 136
drm_connector_attach_scaling_mode_property (C

function), 143
drm_connector_cleanup (C function), 141
drm_connector_funcs (C type), 133
drm_connector_get (C function), 139
drm_connector_helper_add (C function), 193

436 Index

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

drm_connector_helper_funcs (C type), 191
drm_connector_init (C function), 141
drm_connector_list_iter (C type), 140
drm_connector_list_iter_begin (C function), 142
drm_connector_list_iter_end (C function), 142
drm_connector_list_iter_next (C function), 142
drm_connector_lookup (C function), 139
drm_connector_put (C function), 139
drm_connector_reference (C function), 139
drm_connector_register (C function), 141
drm_connector_state (C type), 133
drm_connector_status (C type), 130
drm_connector_unreference (C function), 140
drm_connector_unregister (C function), 141
drm_crtc (C type), 97
drm_crtc_add_crc_entry (C function), 303
drm_crtc_arm_vblank_event (C function), 178
drm_crtc_check_viewport (C function), 102
drm_crtc_cleanup (C function), 101
drm_crtc_commit (C type), 74
drm_crtc_commit_get (C function), 76
drm_crtc_commit_put (C function), 77
drm_crtc_enable_color_mgmt (C function), 167
drm_crtc_find (C function), 100
drm_crtc_force_disable (C function), 100
drm_crtc_force_disable_all (C function), 101
drm_crtc_from_index (C function), 100
drm_crtc_funcs (C type), 93
drm_crtc_handle_vblank (C function), 181
drm_crtc_helper_add (C function), 188
drm_crtc_helper_funcs (C type), 183
drm_crtc_helper_set_config (C function), 215
drm_crtc_helper_set_mode (C function), 215
drm_crtc_index (C function), 100
drm_crtc_init (C function), 292
drm_crtc_init_with_planes (C function), 101
drm_crtc_mask (C function), 100
drm_crtc_send_vblank_event (C function), 179
drm_crtc_state (C type), 91
drm_crtc_vblank_count (C function), 178
drm_crtc_vblank_count_and_time (C function), 178
drm_crtc_vblank_get (C function), 179
drm_crtc_vblank_off (C function), 180
drm_crtc_vblank_on (C function), 180
drm_crtc_vblank_put (C function), 179
drm_crtc_vblank_reset (C function), 180
drm_crtc_vblank_waitqueue (C function), 177
drm_crtc_wait_one_vblank (C function), 180
drm_cvt_mode (C function), 123
drm_debug_printer (C function), 21
drm_debugfs_create_files (C function), 304
drm_default_rgb_quant_range (C function), 275
drm_detect_hdmi_monitor (C function), 274
drm_detect_monitor_audio (C function), 275
drm_dev_alloc (C function), 10
drm_dev_fini (C function), 9
drm_dev_init (C function), 9
drm_dev_ref (C function), 10

drm_dev_register (C function), 10
drm_dev_set_unique (C function), 11
drm_dev_unref (C function), 10
drm_dev_unregister (C function), 11
drm_display_info (C type), 131
drm_display_info_set_bus_formats (C function), 143
drm_display_mode (C type), 119
drm_display_mode_from_videomode (C function),

125
drm_display_mode_to_videomode (C function), 125
drm_do_get_edid (C function), 272
drm_dp_atomic_find_vcpi_slots (C function), 256
drm_dp_atomic_release_vcpi_slots (C function), 256
drm_dp_aux (C type), 242
drm_dp_aux_init (C function), 246
drm_dp_aux_msg (C type), 242
drm_dp_aux_register (C function), 246
drm_dp_aux_unregister (C function), 247
drm_dp_calc_pbn_mode (C function), 257
drm_dp_check_act_status (C function), 257
drm_dp_desc (C type), 243
drm_dp_downstream_debug (C function), 246
drm_dp_downstream_id (C function), 246
drm_dp_downstream_max_bpc (C function), 246
drm_dp_downstream_max_clock (C function), 245
drm_dp_dpcd_read (C function), 244
drm_dp_dpcd_read_link_status (C function), 245
drm_dp_dpcd_readb (C function), 243
drm_dp_dpcd_write (C function), 244
drm_dp_dpcd_writeb (C function), 243
drm_dp_dual_mode_detect (C function), 248
drm_dp_dual_mode_get_tmds_output (C function),

249
drm_dp_dual_mode_max_tmds_clock (C function),

249
drm_dp_dual_mode_read (C function), 248
drm_dp_dual_mode_set_tmds_output (C function),

249
drm_dp_dual_mode_type (C type), 248
drm_dp_dual_mode_write (C function), 248
drm_dp_find_vcpi_slots (C function), 256
drm_dp_get_dual_mode_type_name (C function),

250
drm_dp_has_quirk (C function), 244
drm_dp_link_configure (C function), 245
drm_dp_link_power_down (C function), 245
drm_dp_link_power_up (C function), 245
drm_dp_link_probe (C function), 245
drm_dp_mst_allocate_vcpi (C function), 257
drm_dp_mst_branch (C type), 252
drm_dp_mst_deallocate_vcpi (C function), 257
drm_dp_mst_detect_port (C function), 255
drm_dp_mst_dump_topology (C function), 257
drm_dp_mst_get_edid (C function), 256
drm_dp_mst_hpd_irq (C function), 255
drm_dp_mst_port (C type), 251
drm_dp_mst_port_has_audio (C function), 256
drm_dp_mst_reset_vcpi_slots (C function), 257

Index 437

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

drm_dp_mst_topology_mgr (C type), 253
drm_dp_mst_topology_mgr_destroy (C function),

258
drm_dp_mst_topology_mgr_init (C function), 258
drm_dp_mst_topology_mgr_resume (C function),

255
drm_dp_mst_topology_mgr_set_mst (C function),

254
drm_dp_mst_topology_mgr_suspend (C function),

255
drm_dp_psr_setup_time (C function), 247
drm_dp_quirk (C type), 244
drm_dp_read_desc (C function), 247
drm_dp_start_crc (C function), 247
drm_dp_stop_crc (C function), 247
drm_dp_update_payload_part1 (C function), 254
drm_dp_update_payload_part2 (C function), 254
drm_dp_vcpi (C type), 250
drm_driver (C type), 5
drm_edid_block_valid (C function), 271
drm_edid_duplicate (C function), 273
drm_edid_get_monitor_name (C function), 273
drm_edid_header_is_valid (C function), 271
drm_edid_is_valid (C function), 272
drm_edid_to_eld (C function), 273
drm_edid_to_sad (C function), 274
drm_edid_to_speaker_allocation (C function), 274
drm_eld_calc_baseline_block_size (C function), 271
drm_eld_get_conn_type (C function), 271
drm_eld_get_spk_alloc (C function), 271
drm_eld_mnl (C function), 270
drm_eld_sad (C function), 270
drm_eld_sad_count (C function), 270
drm_eld_size (C function), 271
drm_encoder (C type), 147
drm_encoder_cleanup (C function), 149
drm_encoder_crtc_ok (C function), 148
drm_encoder_find (C function), 148
drm_encoder_funcs (C type), 146
drm_encoder_helper_add (C function), 191
drm_encoder_helper_funcs (C type), 188
drm_encoder_index (C function), 148
drm_encoder_init (C function), 149
drm_event_cancel_free (C function), 20
drm_event_reserve_init (C function), 19
drm_event_reserve_init_locked (C function), 19
drm_fb_cma_create (C function), 229
drm_fb_cma_create_with_funcs (C function), 229
drm_fb_cma_debugfs_show (C function), 230
drm_fb_cma_get_gem_addr (C function), 230
drm_fb_cma_get_gem_obj (C function), 230
drm_fb_cma_prepare_fb (C function), 230
drm_fb_helper (C type), 221
drm_fb_helper_alloc_fbi (C function), 223
drm_fb_helper_blank (C function), 223
drm_fb_helper_cfb_copyarea (C function), 225
drm_fb_helper_cfb_fillrect (C function), 225
drm_fb_helper_cfb_imageblit (C function), 226

drm_fb_helper_check_var (C function), 227
drm_fb_helper_debug_enter (C function), 222
drm_fb_helper_debug_leave (C function), 222
DRM_FB_HELPER_DEFAULT_OPS (C function), 222
drm_fb_helper_deferred_io (C function), 224
drm_fb_helper_fill_fix (C function), 227
drm_fb_helper_fill_var (C function), 227
drm_fb_helper_fini (C function), 224
drm_fb_helper_funcs (C type), 220
drm_fb_helper_hotplug_event (C function), 228
drm_fb_helper_init (C function), 223
drm_fb_helper_initial_config (C function), 228
drm_fb_helper_ioctl (C function), 226
drm_fb_helper_pan_display (C function), 227
drm_fb_helper_prepare (C function), 223
drm_fb_helper_restore_fbdev_mode_unlocked (C

function), 223
drm_fb_helper_set_par (C function), 227
drm_fb_helper_set_suspend (C function), 226
drm_fb_helper_set_suspend_unlocked (C function),

226
drm_fb_helper_setcmap (C function), 226
drm_fb_helper_single_add_all_connectors (C func-

tion), 222
drm_fb_helper_surface_size (C type), 220
drm_fb_helper_sys_copyarea (C function), 225
drm_fb_helper_sys_fillrect (C function), 225
drm_fb_helper_sys_imageblit (C function), 225
drm_fb_helper_sys_read (C function), 224
drm_fb_helper_sys_write (C function), 225
drm_fb_helper_unlink_fbi (C function), 224
drm_fb_helper_unregister_fbi (C function), 224
drm_fbdev_cma_fini (C function), 231
drm_fbdev_cma_hotplug_event (C function), 231
drm_fbdev_cma_init (C function), 231
drm_fbdev_cma_init_with_funcs (C function), 231
drm_fbdev_cma_restore_mode (C function), 231
drm_fbdev_cma_set_suspend (C function), 231
drm_fbdev_cma_set_suspend_unlocked (C func-

tion), 232
drm_file (C type), 15
drm_flip_task (C type), 287
drm_flip_work (C type), 287
drm_flip_work_allocate_task (C function), 287
drm_flip_work_cleanup (C function), 288
drm_flip_work_commit (C function), 288
drm_flip_work_init (C function), 288
drm_flip_work_queue (C function), 288
drm_flip_work_queue_task (C function), 288
drm_for_each_connector_iter (C function), 140
drm_for_each_crtc (C function), 100
drm_for_each_encoder (C function), 149
drm_for_each_encoder_mask (C function), 148
drm_for_each_legacy_plane (C function), 115
drm_for_each_plane (C function), 116
drm_for_each_plane_mask (C function), 115
drm_format_horz_chroma_subsampling (C func-

tion), 109

438 Index

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

drm_format_info (C function), 108
drm_format_info (C type), 107
drm_format_name_buf (C type), 107
drm_format_num_planes (C function), 108
drm_format_plane_cpp (C function), 108
drm_format_plane_height (C function), 109
drm_format_plane_width (C function), 109
drm_format_vert_chroma_subsampling (C func-

tion), 109
drm_framebuffer (C type), 103
drm_framebuffer_assign (C function), 105
drm_framebuffer_cleanup (C function), 106
drm_framebuffer_funcs (C type), 102
drm_framebuffer_get (C function), 104
drm_framebuffer_init (C function), 105
drm_framebuffer_lookup (C function), 105
drm_framebuffer_plane_height (C function), 107
drm_framebuffer_plane_width (C function), 106
drm_framebuffer_put (C function), 104
drm_framebuffer_read_refcount (C function), 105
drm_framebuffer_reference (C function), 104
drm_framebuffer_remove (C function), 106
drm_framebuffer_unreference (C function), 105
drm_framebuffer_unregister_private (C function),

106
drm_gem_cma_create (C function), 35
drm_gem_cma_describe (C function), 37
drm_gem_cma_dumb_create (C function), 36
drm_gem_cma_dumb_create_internal (C function),

35
drm_gem_cma_dumb_map_offset (C function), 36
drm_gem_cma_free_object (C function), 35
drm_gem_cma_get_unmapped_area (C function),

37
drm_gem_cma_mmap (C function), 36
drm_gem_cma_object (C type), 34
drm_gem_cma_prime_get_sg_table (C function), 37
drm_gem_cma_prime_import_sg_table (C function),

37
drm_gem_cma_prime_mmap (C function), 38
drm_gem_cma_prime_vmap (C function), 38
drm_gem_cma_prime_vunmap (C function), 38
drm_gem_create_mmap_offset (C function), 31
drm_gem_create_mmap_offset_size (C function), 31
drm_gem_dmabuf_export (C function), 45
drm_gem_dmabuf_release (C function), 45
drm_gem_dumb_destroy (C function), 31
drm_gem_free_mmap_offset (C function), 31
drm_gem_get_pages (C function), 32
drm_gem_handle_create (C function), 31
drm_gem_handle_delete (C function), 30
drm_gem_mmap (C function), 34
drm_gem_mmap_obj (C function), 33
drm_gem_object (C type), 27
drm_gem_object_free (C function), 33
drm_gem_object_get (C function), 29
drm_gem_object_init (C function), 30
drm_gem_object_lookup (C function), 32

drm_gem_object_put (C function), 33
drm_gem_object_put_unlocked (C function), 33
drm_gem_object_reference (C function), 29
drm_gem_object_release (C function), 32
drm_gem_object_unreference (C function), 30
drm_gem_object_unreference_unlocked (C func-

tion), 30
drm_gem_prime_export (C function), 45
drm_gem_prime_fd_to_handle (C function), 46
drm_gem_prime_handle_to_fd (C function), 45
drm_gem_prime_import (C function), 46
drm_gem_prime_import_dev (C function), 46
drm_gem_private_object_init (C function), 30
drm_gem_put_pages (C function), 32
drm_gem_vm_close (C function), 33
drm_gem_vm_open (C function), 33
drm_get_cea_aspect_ratio (C function), 273
drm_get_connector_status_name (C function), 142
drm_get_edid (C function), 272
drm_get_edid_switcheroo (C function), 273
drm_get_format_info (C function), 108
drm_get_format_name (C function), 108
drm_get_pci_dev (C function), 13
drm_get_subpixel_order_name (C function), 142
drm_global_item_ref (C function), 24
drm_global_item_unref (C function), 24
drm_gtf_mode (C function), 124
drm_gtf_mode_complex (C function), 124
drm_handle_vblank (C function), 181
drm_hdmi_avi_infoframe_from_display_mode (C

function), 276
drm_hdmi_avi_infoframe_quant_range (C function),

276
drm_hdmi_info (C type), 130
drm_hdmi_vendor_infoframe_from_display_mode

(C function), 276
drm_helper_connector_dpms (C function), 216
drm_helper_crtc_in_use (C function), 214
drm_helper_crtc_mode_set (C function), 216
drm_helper_crtc_mode_set_base (C function), 217
drm_helper_disable_unused_functions (C function),

214
drm_helper_encoder_in_use (C function), 214
drm_helper_hpd_irq_event (C function), 270
drm_helper_mode_fill_fb_struct (C function), 292
drm_helper_move_panel_connectors_to_head (C

function), 292
drm_helper_probe_detect (C function), 268
drm_helper_probe_single_connector_modes (C

function), 268
drm_helper_resume_force_mode (C function), 216
drm_info_list (C type), 304
drm_info_node (C type), 304
drm_info_printer (C function), 21
drm_invalid_op (C function), 301
drm_ioctl (C function), 301
drm_ioctl_compat_t (C function), 299
DRM_IOCTL_DEF_DRV (C function), 301

Index 439

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

drm_ioctl_desc (C type), 300
drm_ioctl_flags (C function), 302
drm_ioctl_flags (C type), 300
drm_ioctl_permit (C function), 301
drm_ioctl_t (C function), 299
drm_irq_install (C function), 11
drm_irq_uninstall (C function), 12
drm_is_control_client (C function), 17
drm_is_current_master (C function), 296
drm_is_primary_client (C function), 17
drm_is_render_client (C function), 17
drm_kms_helper_hotplug_event (C function), 269
drm_kms_helper_poll_disable (C function), 269
drm_kms_helper_poll_enable (C function), 267
drm_kms_helper_poll_fini (C function), 270
drm_kms_helper_poll_init (C function), 269
drm_link_status (C type), 131
drm_lspcon_get_mode (C function), 250
drm_lspcon_mode (C type), 248
drm_lspcon_set_mode (C function), 250
drm_master (C type), 297
drm_master_get (C function), 296
drm_master_put (C function), 296
drm_match_cea_mode (C function), 273
drm_minor (C type), 15
drm_mm (C type), 49
drm_mm_clean (C function), 52
drm_mm_for_each_hole (C function), 51
drm_mm_for_each_node (C function), 51
drm_mm_for_each_node_in_range (C function), 52
drm_mm_for_each_node_safe (C function), 51
drm_mm_hole_follows (C function), 50
drm_mm_hole_node_end (C function), 50
drm_mm_hole_node_start (C function), 50
drm_mm_init (C function), 55
drm_mm_initialized (C function), 50
drm_mm_insert_mode (C type), 48
drm_mm_insert_node (C function), 52
drm_mm_insert_node_generic (C function), 52
drm_mm_insert_node_in_range (C function), 53
drm_mm_node (C type), 48
drm_mm_node_allocated (C function), 49
drm_mm_nodes (C function), 51
drm_mm_print (C function), 56
drm_mm_remove_node (C function), 54
drm_mm_replace_node (C function), 54
drm_mm_reserve_node (C function), 53
drm_mm_scan (C type), 49
drm_mm_scan_add_block (C function), 54
drm_mm_scan_color_evict (C function), 55
drm_mm_scan_init (C function), 53
drm_mm_scan_init_with_range (C function), 54
drm_mm_scan_remove_block (C function), 55
drm_mm_takedown (C function), 55
DRM_MODE_ARG (C function), 122
drm_mode_config (C type), 64
drm_mode_config_cleanup (C function), 69
drm_mode_config_funcs (C type), 62

drm_mode_config_helper_funcs (C type), 195
drm_mode_config_init (C function), 69
drm_mode_config_reset (C function), 69
drm_mode_connector_attach_encoder (C function),

141
drm_mode_connector_list_update (C function), 129
drm_mode_connector_set_link_status_property (C

function), 145
drm_mode_connector_set_path_property (C func-

tion), 144
drm_mode_connector_set_tile_property (C func-

tion), 144
drm_mode_connector_update_edid_property (C

function), 145
drm_mode_copy (C function), 127
drm_mode_create (C function), 123
drm_mode_create_aspect_ratio_property (C func-

tion), 144
drm_mode_create_dvi_i_properties (C function),

143
drm_mode_create_from_cmdline_mode (C func-

tion), 129
drm_mode_create_scaling_mode_property (C func-

tion), 143
drm_mode_create_suggested_offset_properties (C

function), 144
drm_mode_create_tile_group (C function), 146
drm_mode_create_tv_properties (C function), 143
drm_mode_crtc_set_gamma_size (C function), 167
drm_mode_debug_printmodeline (C function), 122
drm_mode_destroy (C function), 123
drm_mode_duplicate (C function), 127
drm_mode_equal (C function), 127
drm_mode_equal_no_clocks (C function), 127
drm_mode_equal_no_clocks_no_stereo (C function),

127
DRM_MODE_FMT (C function), 122
drm_mode_get_hv_timing (C function), 126
drm_mode_get_tile_group (C function), 145
drm_mode_hsync (C function), 126
drm_mode_is_stereo (C function), 122
drm_mode_legacy_fb_format (C function), 107
drm_mode_object (C type), 70
drm_mode_object_find (C function), 72
drm_mode_object_get (C function), 72
drm_mode_object_put (C function), 72
drm_mode_object_reference (C function), 71
drm_mode_object_unreference (C function), 71
drm_mode_parse_command_line_for_connector (C

function), 129
drm_mode_plane_set_obj_prop (C function), 117
drm_mode_probed_add (C function), 123
drm_mode_prune_invalid (C function), 128
drm_mode_put_tile_group (C function), 145
drm_mode_set (C type), 99
drm_mode_set_config_internal (C function), 101
drm_mode_set_crtcinfo (C function), 126
drm_mode_set_name (C function), 126

440 Index

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

drm_mode_sort (C function), 128
drm_mode_status (C type), 118
drm_mode_validate_basic (C function), 128
drm_mode_validate_size (C function), 128
drm_mode_vrefresh (C function), 126
drm_modeset_acquire_ctx (C type), 151
drm_modeset_acquire_fini (C function), 153
drm_modeset_acquire_init (C function), 153
drm_modeset_backoff (C function), 153
drm_modeset_backoff_interruptible (C function),

153
drm_modeset_drop_locks (C function), 153
drm_modeset_is_locked (C function), 152
drm_modeset_lock (C function), 153
drm_modeset_lock (C type), 152
drm_modeset_lock_all (C function), 152
drm_modeset_lock_all_ctx (C function), 154
drm_modeset_lock_fini (C function), 152
drm_modeset_lock_init (C function), 153
drm_modeset_lock_interruptible (C function), 154
drm_modeset_unlock (C function), 154
drm_modeset_unlock_all (C function), 152
drm_noop (C function), 301
drm_object_attach_property (C function), 72
drm_object_properties (C type), 71
drm_object_property_get_value (C function), 73
drm_object_property_set_value (C function), 72
drm_open (C function), 18
drm_panel (C type), 239
drm_panel_add (C function), 240
drm_panel_attach (C function), 241
drm_panel_bridge_add (C function), 238
drm_panel_bridge_remove (C function), 238
drm_panel_detach (C function), 241
drm_panel_disable (C function), 239
drm_panel_enable (C function), 240
drm_panel_funcs (C type), 238
drm_panel_get_modes (C function), 240
drm_panel_init (C function), 240
drm_panel_prepare (C function), 240
drm_panel_remove (C function), 241
drm_panel_unprepare (C function), 239
drm_pci_alloc (C function), 12
drm_pci_exit (C function), 14
drm_pci_free (C function), 13
drm_pci_init (C function), 13
drm_pending_event (C type), 15
drm_pending_vblank_event (C type), 175
drm_plane (C type), 114
drm_plane_cleanup (C function), 117
drm_plane_create_rotation_property (C function),

164
drm_plane_create_zpos_immutable_property (C

function), 165
drm_plane_create_zpos_property (C function), 165
drm_plane_find (C function), 115
drm_plane_force_disable (C function), 117
drm_plane_from_index (C function), 117

drm_plane_funcs (C type), 111
drm_plane_helper_add (C function), 195
drm_plane_helper_check_state (C function), 289
drm_plane_helper_check_update (C function), 289
drm_plane_helper_disable (C function), 292
drm_plane_helper_funcs (C type), 193
drm_plane_helper_update (C function), 291
drm_plane_index (C function), 115
drm_plane_init (C function), 116
drm_plane_state (C type), 110
drm_plane_type (C type), 113
drm_poll (C function), 19
drm_primary_helper_destroy (C function), 291
drm_primary_helper_disable (C function), 291
drm_primary_helper_update (C function), 290
drm_prime_file_private (C type), 44
drm_prime_gem_destroy (C function), 47
drm_prime_pages_to_sg (C function), 46
drm_prime_sg_to_page_addr_arrays (C function),

46
drm_printer (C type), 21
drm_printf (C function), 22
drm_private_state_funcs (C type), 75
drm_probe_ddc (C function), 272
drm_property (C type), 155
drm_property_add_enum (C function), 160
drm_property_blob (C type), 156
drm_property_blob_get (C function), 161
drm_property_blob_put (C function), 161
drm_property_create (C function), 158
drm_property_create_bitmask (C function), 158
drm_property_create_blob (C function), 161
drm_property_create_bool (C function), 160
drm_property_create_enum (C function), 158
drm_property_create_object (C function), 160
drm_property_create_range (C function), 159
drm_property_create_signed_range (C function),

159
drm_property_destroy (C function), 161
drm_property_enum (C type), 155
drm_property_find (C function), 157
drm_property_lookup_blob (C function), 161
drm_property_reference_blob (C function), 157
drm_property_replace_global_blob (C function), 162
drm_property_type_is (C function), 157
drm_property_unreference_blob (C function), 157
drm_put_dev (C function), 9
drm_read (C function), 18
drm_rect (C type), 279
drm_rect_adjust_size (C function), 280
DRM_RECT_ARG (C function), 280
drm_rect_calc_hscale (C function), 282
drm_rect_calc_hscale_relaxed (C function), 282
drm_rect_calc_vscale (C function), 282
drm_rect_calc_vscale_relaxed (C function), 283
drm_rect_clip_scaled (C function), 281
drm_rect_debug_print (C function), 283
drm_rect_downscale (C function), 280

Index 441

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

drm_rect_equals (C function), 281
DRM_RECT_FMT (C function), 279
DRM_RECT_FP_ARG (C function), 280
DRM_RECT_FP_FMT (C function), 280
drm_rect_height (C function), 281
drm_rect_intersect (C function), 281
drm_rect_rotate (C function), 283
drm_rect_rotate_inv (C function), 283
drm_rect_translate (C function), 280
drm_rect_visible (C function), 281
drm_rect_width (C function), 280
drm_release (C function), 18
drm_rgb_quant_range_selectable (C function), 275
drm_rotation_simplify (C function), 164
drm_scdc_get_scrambling_status (C function), 278
drm_scdc_read (C function), 278
drm_scdc_readb (C function), 277
drm_scdc_set_high_tmds_clock_ratio (C function),

277, 279
drm_scdc_set_scrambling (C function), 277, 278
drm_scdc_write (C function), 278
drm_scdc_writeb (C function), 277
drm_scrambling (C type), 130
drm_send_event (C function), 20
drm_send_event_locked (C function), 20
drm_seq_file_printer (C function), 21
drm_set_preferred_mode (C function), 276
drm_simple_display_pipe (C type), 218
drm_simple_display_pipe_attach_bridge (C func-

tion), 218
drm_simple_display_pipe_funcs (C type), 217
drm_simple_display_pipe_init (C function), 219
drm_state_dump (C function), 90
drm_syncobj (C type), 56
drm_syncobj_find (C function), 57
drm_syncobj_free (C function), 57
drm_syncobj_get (C function), 57
drm_syncobj_put (C function), 57
drm_syncobj_replace_fence (C function), 57
drm_sysfs_hotplug_event (C function), 305
drm_tile_group (C type), 140
drm_tv_connector_state (C type), 132
drm_universal_plane_init (C function), 116
drm_vblank_cleanup (C function), 177
drm_vblank_crtc (C type), 175
drm_vblank_init (C function), 177
drm_vma_node_allow (C function), 43
drm_vma_node_is_allowed (C function), 43
drm_vma_node_offset_addr (C function), 40
drm_vma_node_reset (C function), 40
drm_vma_node_revoke (C function), 43
drm_vma_node_size (C function), 40
drm_vma_node_start (C function), 40
drm_vma_node_unmap (C function), 40
drm_vma_node_verify_access (C function), 41
drm_vma_offset_add (C function), 42
drm_vma_offset_exact_lookup_locked (C function),

39

drm_vma_offset_lock_lookup (C function), 39
drm_vma_offset_lookup_locked (C function), 41
drm_vma_offset_manager_destroy (C function), 41
drm_vma_offset_manager_init (C function), 41
drm_vma_offset_remove (C function), 42
drm_vma_offset_unlock_lookup (C function), 39
drm_wait_one_vblank (C function), 180
drm_warn_on_modeset_not_all_locked (C function),

153

F
for_each_connector_in_state (C function), 80
for_each_crtc_in_state (C function), 81
for_each_new_connector_in_state (C function), 80
for_each_new_crtc_in_state (C function), 81
for_each_new_plane_in_state (C function), 83
for_each_old_connector_in_state (C function), 80
for_each_old_crtc_in_state (C function), 81
for_each_old_plane_in_state (C function), 82
for_each_oldnew_connector_in_state (C function),

80
for_each_oldnew_crtc_in_state (C function), 81
for_each_oldnew_plane_in_state (C function), 82
for_each_plane_in_state (C function), 82
for_each_private_obj (C function), 83

G
gen6_reset_engines (C function), 311
gen7_append_oa_reports (C function), 371
gen7_oa_read (C function), 371
gen8_append_oa_reports (C function), 370
gen8_oa_read (C function), 371
guc_client_alloc (C function), 357

H
hdmi_audio_infoframe_init (C function), 285
hdmi_audio_infoframe_pack (C function), 285
hdmi_avi_infoframe_init (C function), 284
hdmi_avi_infoframe_pack (C function), 284
hdmi_infoframe (C type), 284
hdmi_infoframe_log (C function), 286
hdmi_infoframe_pack (C function), 286
hdmi_infoframe_unpack (C function), 286
hdmi_spd_infoframe_init (C function), 285
hdmi_spd_infoframe_pack (C function), 285
hdmi_vendor_infoframe_init (C function), 286
hdmi_vendor_infoframe_pack (C function), 286
host1x_client (C type), 386
host1x_client_ops (C type), 385
host1x_client_register (C function), 387
host1x_client_unregister (C function), 387
host1x_device_exit (C function), 387
host1x_device_init (C function), 386
host1x_driver (C type), 386
host1x_driver_register_full (C function), 387
host1x_driver_unregister (C function), 387
host1x_syncpt_base_id (C function), 389
host1x_syncpt_free (C function), 388

442 Index

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

host1x_syncpt_get (C function), 389
host1x_syncpt_get_base (C function), 389
host1x_syncpt_id (C function), 388
host1x_syncpt_incr (C function), 388
host1x_syncpt_incr_max (C function), 388
host1x_syncpt_read (C function), 389
host1x_syncpt_read_max (C function), 389
host1x_syncpt_read_min (C function), 389
host1x_syncpt_request (C function), 388
host1x_syncpt_wait (C function), 388

I
i915_audio_component (C type), 325
i915_audio_component_audio_ops (C type), 325
i915_audio_component_cleanup (C function), 324
i915_audio_component_init (C function), 324
i915_audio_component_ops (C type), 324
i915_check_vgpu (C function), 314
i915_cmd_parser_get_version (C function), 344
i915_gem_batch_pool_fini (C function), 345
i915_gem_batch_pool_get (C function), 345
i915_gem_batch_pool_init (C function), 344
i915_gem_detect_bit_6_swizzle (C function), 350
i915_gem_evict_for_node (C function), 353
i915_gem_evict_something (C function), 353
i915_gem_evict_vm (C function), 354
i915_gem_fence_alignment (C function), 352
i915_gem_fence_size (C function), 352
i915_gem_get_tiling_ioctl (C function), 352
i915_gem_gtt_insert (C function), 348
i915_gem_gtt_reserve (C function), 348
i915_gem_object_do_bit_17_swizzle (C function),

350
i915_gem_object_save_bit_17_swizzle (C function),

350
i915_gem_restore_fences (C function), 350
i915_gem_revoke_fences (C function), 350
i915_gem_set_tiling_ioctl (C function), 352
i915_gem_shrink (C function), 354
i915_gem_shrink_all (C function), 354
i915_gem_shrinker_cleanup (C function), 355
i915_gem_shrinker_init (C function), 355
i915_gem_track_fb (C function), 318
i915_ggtt_cleanup_hw (C function), 348
i915_ggtt_init_hw (C function), 348
i915_ggtt_probe_hw (C function), 348
i915_guc_wq_reserve (C function), 356
i915_oa_ops (C type), 366
i915_oa_poll_wait (C function), 368, 372
i915_oa_read (C function), 367, 372
i915_oa_stream_disable (C function), 368, 373
i915_oa_stream_enable (C function), 368, 373
i915_oa_stream_init (C function), 367, 373
i915_oa_wait_unlocked (C function), 368, 372
i915_perf_destroy_locked (C function), 364, 376
i915_perf_disable_locked (C function), 365, 375
i915_perf_enable_locked (C function), 365, 375
i915_perf_fini (C function), 361, 378

i915_perf_init (C function), 361, 378
i915_perf_ioctl (C function), 365, 376
i915_perf_ioctl_locked (C function), 375
i915_perf_open_ioctl (C function), 361, 377
i915_perf_open_ioctl_locked (C function), 364, 376
i915_perf_poll (C function), 365, 375
i915_perf_poll_locked (C function), 366, 374
i915_perf_read (C function), 364, 374
i915_perf_read_locked (C function), 374
i915_perf_register (C function), 361, 378
i915_perf_release (C function), 362, 376
i915_perf_stream (C type), 362
i915_perf_stream_ops (C type), 363
i915_perf_unregister (C function), 361, 378
i915_vma_get_fence (C function), 349
i915_vma_put_fence (C function), 349
intel_audio_codec_disable (C function), 323
intel_audio_codec_enable (C function), 323
intel_audio_deinit (C function), 324
intel_audio_init (C function), 324
intel_bios_init (C function), 334
intel_bios_is_dsi_present (C function), 335
intel_bios_is_lspcon_present (C function), 335
intel_bios_is_lvds_present (C function), 335
intel_bios_is_port_edp (C function), 335
intel_bios_is_port_hpd_inverted (C function), 335
intel_bios_is_port_present (C function), 335
intel_bios_is_tv_present (C function), 334
intel_bios_is_valid_vbt (C function), 334
intel_cdclk_state_compare (C function), 338
intel_check_cpu_fifo_underruns (C function), 319
intel_check_pch_fifo_underruns (C function), 319
intel_cpu_fifo_underrun_irq_handler (C function),

319
intel_create_plane_state (C function), 320
intel_csr_load_program (C function), 333
intel_csr_ucode_fini (C function), 334
intel_csr_ucode_init (C function), 333
intel_csr_ucode_resume (C function), 333
intel_csr_ucode_suspend (C function), 333
intel_disable_shared_dpll (C function), 340
intel_display_power_get (C function), 308
intel_display_power_get_if_enabled (C function),

308
intel_display_power_is_enabled (C function), 307
intel_display_power_put (C function), 308
intel_display_set_init_power (C function), 308
intel_dp_drrs_init (C function), 331
intel_dp_set_drrs_state (C function), 330
intel_dpll_dump_hw_state (C function), 341
intel_dpll_id (C type), 341
intel_edp_drrs_disable (C function), 331
intel_edp_drrs_enable (C function), 331
intel_edp_drrs_flush (C function), 331
intel_edp_drrs_invalidate (C function), 331
intel_enable_shared_dpll (C function), 339
intel_engine_cleanup_cmd_parser (C function), 343
intel_engine_cmd_parser (C function), 344

Index 443

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

intel_engine_init_cmd_parser (C function), 343
intel_fb_obj_flush (C function), 317
intel_fb_obj_invalidate (C function), 316
intel_fbc_choose_crtc (C function), 328
intel_fbc_disable (C function), 329
intel_fbc_enable (C function), 329
intel_fbc_global_disable (C function), 329
intel_fbc_handle_fifo_underrun_irq (C function), 329
intel_fbc_init (C function), 330
intel_fbc_init_pipe_state (C function), 330
intel_fbc_is_active (C function), 328
intel_frontbuffer_flip (C function), 317
intel_frontbuffer_flip_complete (C function), 317
intel_frontbuffer_flip_prepare (C function), 317
intel_frontbuffer_flush (C function), 317
intel_get_shared_dpll (C function), 340
intel_get_shared_dpll_by_id (C function), 339
intel_get_shared_dpll_id (C function), 339
intel_guc_allocate_vma (C function), 357
intel_guc_init_hw (C function), 355
intel_guc_resume (C function), 358
intel_guc_select_fw (C function), 356
intel_guc_suspend (C function), 357
intel_gvt_cleanup (C function), 315
intel_gvt_init (C function), 315
intel_gvt_sanitize_options (C function), 315
intel_hpd_init (C function), 322
intel_hpd_irq_handler (C function), 322
intel_hpd_irq_storm_detect (C function), 322
intel_hpd_poll_init (C function), 322
intel_init_audio_hooks (C function), 323
intel_init_cdclk_hooks (C function), 339
intel_irq_init (C function), 313
intel_logical_ring_cleanup (C function), 347
intel_lpe_audio_init (C function), 326
intel_lpe_audio_irq_handler (C function), 326
intel_lpe_audio_notify (C function), 326
intel_lpe_audio_teardown (C function), 326
intel_lr_context_descriptor_update (C function), 346
intel_pch_fifo_underrun_irq_handler (C function),

319
intel_plane_atomic_get_property (C function), 320
intel_plane_atomic_set_property (C function), 321
intel_plane_destroy_state (C function), 320
intel_plane_duplicate_state (C function), 320
intel_power_domains_fini (C function), 309
intel_power_domains_init (C function), 309
intel_power_domains_init_hw (C function), 309
intel_power_domains_suspend (C function), 309
intel_power_domains_verify_state (C function), 309
intel_prepare_shared_dpll (C function), 339
intel_psr_disable (C function), 327
intel_psr_enable (C function), 327
intel_psr_flush (C function), 328
intel_psr_init (C function), 328
intel_psr_invalidate (C function), 327
intel_psr_single_frame_update (C function), 327
intel_release_shared_dpll (C function), 340

intel_runtime_pm_disable_interrupts (C function),
313

intel_runtime_pm_enable (C function), 310
intel_runtime_pm_enable_interrupts (C function),

313
intel_runtime_pm_get (C function), 310
intel_runtime_pm_get_if_in_use (C function), 310
intel_runtime_pm_get_noresume (C function), 310
intel_runtime_pm_put (C function), 310
intel_sanitize_enable_execlists (C function), 346
intel_set_cdclk (C function), 338
intel_set_cpu_fifo_underrun_reporting (C function),

318
intel_set_pch_fifo_underrun_reporting (C function),

318
intel_shared_dpll (C type), 342
intel_shared_dpll_funcs (C type), 342
intel_shared_dpll_init (C function), 340
intel_shared_dpll_state (C type), 341
intel_shared_dpll_swap_state (C function), 340
intel_uncore_forcewake_for_reg (C function), 313
intel_uncore_forcewake_get (C function), 311
intel_uncore_forcewake_get__locked (C function),

311
intel_uncore_forcewake_put (C function), 311
intel_uncore_forcewake_put__locked (C function),

311
intel_update_cdclk (C function), 338
intel_update_max_cdclk (C function), 338
intel_update_rawclk (C function), 338
intel_vgt_balloon (C function), 314
intel_vgt_deballoon (C function), 314
intel_wait_for_register (C function), 312

M
mipi_dbi (C type), 400
mipi_dbi_command (C function), 400
mipi_dbi_command_buf (C function), 401
mipi_dbi_command_read (C function), 401
mipi_dbi_debugfs_init (C function), 403
mipi_dbi_display_is_on (C function), 402
mipi_dbi_hw_reset (C function), 402
mipi_dbi_init (C function), 401
mipi_dbi_pipe_disable (C function), 401
mipi_dbi_pipe_enable (C function), 401
mipi_dbi_spi_init (C function), 402
mipi_dsi_attach (C function), 262
mipi_dsi_create_packet (C function), 262
mipi_dsi_dcs_enter_sleep_mode (C function), 265
mipi_dsi_dcs_exit_sleep_mode (C function), 265
mipi_dsi_dcs_get_display_brightness (C function),

267
mipi_dsi_dcs_get_pixel_format (C function), 265
mipi_dsi_dcs_get_power_mode (C function), 265
mipi_dsi_dcs_nop (C function), 264
mipi_dsi_dcs_read (C function), 264
mipi_dsi_dcs_set_column_address (C function), 265

444 Index

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

mipi_dsi_dcs_set_display_brightness (C function),
267

mipi_dsi_dcs_set_display_off (C function), 265
mipi_dsi_dcs_set_display_on (C function), 265
mipi_dsi_dcs_set_page_address (C function), 266
mipi_dsi_dcs_set_pixel_format (C function), 266
mipi_dsi_dcs_set_tear_off (C function), 266
mipi_dsi_dcs_set_tear_on (C function), 266
mipi_dsi_dcs_set_tear_scanline (C function), 266
mipi_dsi_dcs_soft_reset (C function), 264
mipi_dsi_dcs_tear_mode (C type), 261
mipi_dsi_dcs_write (C function), 264
mipi_dsi_dcs_write_buffer (C function), 264
mipi_dsi_detach (C function), 262
mipi_dsi_device (C type), 260
mipi_dsi_device_info (C type), 260
mipi_dsi_device_register_full (C function), 261
mipi_dsi_device_unregister (C function), 262
mipi_dsi_driver (C type), 261
mipi_dsi_driver_register_full (C function), 267
mipi_dsi_driver_unregister (C function), 267
mipi_dsi_generic_read (C function), 263
mipi_dsi_generic_write (C function), 263
mipi_dsi_host (C type), 260
mipi_dsi_host_ops (C type), 259
mipi_dsi_msg (C type), 258
mipi_dsi_packet (C type), 259
mipi_dsi_packet_format_is_long (C function), 262
mipi_dsi_packet_format_is_short (C function), 262
mipi_dsi_pixel_format_to_bpp (C function), 261
mipi_dsi_shutdown_peripheral (C function), 263
mipi_dsi_turn_on_peripheral (C function), 263

O
oa_buffer_check_unlocked (C function), 369
oa_get_render_ctx_id (C function), 372
oa_put_render_ctx_id (C function), 373
of_drm_find_bridge (C function), 237
of_drm_find_panel (C function), 241
of_find_mipi_dsi_device_by_node (C function), 261
of_find_mipi_dsi_host_by_node (C function), 262
of_get_drm_display_mode (C function), 125

P
perf_open_properties (C type), 369

R
read_properties_unlocked (C function), 363, 377

S
skl_init_cdclk (C function), 337
skl_uninit_cdclk (C function), 337

T
tinydrm_dbg_spi_message (C function), 397
tinydrm_device (C type), 393
tinydrm_disable_backlight (C function), 398

tinydrm_display_pipe_init (C function), 396
tinydrm_display_pipe_prepare_fb (C function), 396
tinydrm_display_pipe_update (C function), 395
tinydrm_enable_backlight (C function), 398
tinydrm_gem_cma_free_object (C function), 394
tinydrm_gem_cma_prime_import_sg_table (C func-

tion), 394
TINYDRM_GEM_DRIVER_OPS (C function), 393
tinydrm_lastclose (C function), 394
tinydrm_machine_little_endian (C function), 396
tinydrm_memcpy (C function), 397
tinydrm_merge_clips (C function), 397
TINYDRM_MODE (C function), 393
tinydrm_of_find_backlight (C function), 398
tinydrm_resume (C function), 395
tinydrm_shutdown (C function), 395
tinydrm_spi_bpw_supported (C function), 399
tinydrm_spi_max_transfer_size (C function), 398
tinydrm_spi_transfer (C function), 399
tinydrm_suspend (C function), 395
tinydrm_swab16 (C function), 397
tinydrm_xrgb8888_to_rgb565 (C function), 397

V
vbt_header (C type), 336
vga_client_register (C function), 424
vga_default_device (C function), 422
vga_get (C function), 423
vga_get_interruptible (C function), 422
vga_get_uninterruptible (C function), 422
vga_put (C function), 423
vga_set_legacy_decoding (C function), 422
vga_switcheroo_client (C type), 416
vga_switcheroo_client_fb_set (C function), 412
vga_switcheroo_client_id (C type), 415
vga_switcheroo_client_ops (C type), 414
vga_switcheroo_client_probe_defer (C function),

412
vga_switcheroo_get_client_state (C function), 412
vga_switcheroo_handler (C type), 414
vga_switcheroo_handler_flags (C function), 411
vga_switcheroo_handler_flags_t (C type), 415
vga_switcheroo_init_domain_pm_ops (C function),

413
vga_switcheroo_init_domain_pm_optimus_hdmi_audio

(C function), 414
vga_switcheroo_lock_ddc (C function), 412
vga_switcheroo_process_delayed_switch (C func-

tion), 413
vga_switcheroo_register_audio_client (C function),

411
vga_switcheroo_register_client (C function), 411
vga_switcheroo_register_handler (C function), 410
vga_switcheroo_set_dynamic_switch (C function),

413
vga_switcheroo_state (C type), 415
vga_switcheroo_unlock_ddc (C function), 413
vga_switcheroo_unregister_client (C function), 412

Index 445

Linux GPU Driver Developer’s Guide, Release 4.13.0-rc4+

vga_switcheroo_unregister_handler (C function),
411

vga_tryget (C function), 423
vgasr_priv (C type), 416

446 Index

	Introduction
	Style Guidelines
	Getting Started
	Contribution Process

	DRM Internals
	Driver Initialization
	Open/Close, File Operations and IOCTLs
	Misc Utilities
	Legacy Support Code

	DRM Memory Management
	The Translation Table Manager (TTM)
	The Graphics Execution Manager (GEM)
	VMA Offset Manager
	PRIME Buffer Sharing
	DRM MM Range Allocator
	DRM Cache Handling
	DRM Sync Objects

	Kernel Mode Setting (KMS)
	Overview
	KMS Core Structures and Functions
	Modeset Base Object Abstraction
	Atomic Mode Setting
	CRTC Abstraction
	Frame Buffer Abstraction
	DRM Format Handling
	Dumb Buffer Objects
	Plane Abstraction
	Display Modes Function Reference
	Connector Abstraction
	Encoder Abstraction
	KMS Initialization and Cleanup
	KMS Locking
	KMS Properties
	Vertical Blanking

	Mode Setting Helper Functions
	Modeset Helper Reference for Common Vtables
	Atomic Modeset Helper Functions Reference
	Legacy CRTC/Modeset Helper Functions Reference
	Simple KMS Helper Reference
	fbdev Helper Functions Reference
	Framebuffer CMA Helper Functions Reference
	Bridges
	Panel Helper Reference
	Display Port Helper Functions Reference
	Display Port Dual Mode Adaptor Helper Functions Reference
	Display Port MST Helper Functions Reference
	MIPI DSI Helper Functions Reference
	Output Probing Helper Functions Reference
	EDID Helper Functions Reference
	SCDC Helper Functions Reference
	Rectangle Utilities Reference
	HDMI Infoframes Helper Reference
	Flip-work Helper Reference
	Plane Helper Reference
	Auxiliary Modeset Helpers

	Userland interfaces
	libdrm Device Lookup
	Primary Nodes, DRM Master and Authentication
	Open-Source Userspace Requirements
	Render nodes
	IOCTL Support on Device Nodes
	Testing and validation
	Sysfs Support
	VBlank event handling

	drm/i915 Intel GFX Driver
	Core Driver Infrastructure
	Display Hardware Handling
	Memory Management and Command Submission
	GuC
	Tracing
	Perf

	drm/meson AmLogic Meson Video Processing Unit
	Video Processing Unit
	Video Input Unit
	Video Post Processing
	Video Encoder
	Video Canvas Management
	Video Clocks
	HDMI Video Output

	drm/pl111 ARM PrimeCell PL111 CLCD Driver
	drm/tegra NVIDIA Tegra GPU and display driver
	Driver Infrastructure
	KMS driver
	Userspace Interface

	drm/tinydrm Driver library
	Core functionality
	Additional helpers
	MIPI DBI Compatible Controllers

	drm/vc4 Broadcom VC4 Graphics Driver
	Display Hardware Handling
	Memory Management and 3D Command Submission

	VGA Switcheroo
	Modes of Use
	API
	Handlers

	VGA Arbiter
	vgaarb kernel/userspace ABI
	In-kernel interface
	libpciaccess
	xf86VGAArbiter (X server implementation)
	References

	drm/bridge/dw-hdmi Synopsys DesignWare HDMI Controller
	Synopsys DesignWare HDMI Controller

	TODO list
	Subsystem-wide refactorings
	Core refactorings
	Better Testing
	Driver Specific
	Outside DRM

	Index

