
Linux Kernel Development
Documentation

Release 4.13.0-rc4+

The kernel development community

Sep 05, 2017

CONTENTS

1 HOWTO do Linux kernel development 3

2 Code of Conflict 13

3 A guide to the Kernel Development Process 15

4 Submitting patches: the essential guide to getting your code into the kernel 43

5 Linux kernel coding style 55

6 Email clients info for Linux 69

7 Minimal requirements to compile the Kernel 75

8 Submitting Drivers For The Linux Kernel 83

9 The Linux Kernel Driver Interface 87

10Linux kernel management style 91

11Everything you ever wanted to know about Linux -stable releases 95

12Linux Kernel patch submission checklist 99

13Index of Documentation for People Interested in Writing and/or Understanding the Linux
Kernel 101

14Applying Patches To The Linux Kernel 113

15Adding a New System Call 119

16Linux magic numbers 129

17Why the “volatile” type class should not be used 133

i

ii

Linux Kernel Development Documentation, Release 4.13.0-rc4+

So you want to be a Linux kernel developer? Welcome! While there is a lot to be learned about the
kernel in a technical sense, it is also important to learn about how our community works. Reading these
documents will make it much easier for you to get your changes merged with a minimum of trouble.
Below are the essential guides that every developer should read.

CONTENTS 1

Linux Kernel Development Documentation, Release 4.13.0-rc4+

2 CONTENTS

CHAPTER

ONE

HOWTO DO LINUX KERNEL DEVELOPMENT

This is the be-all, end-all document on this topic. It contains instructions on how to become a Linux
kernel developer and how to learn to work with the Linux kernel development community. It tries to not
contain anything related to the technical aspects of kernel programming, but will help point you in the
right direction for that.
If anything in this document becomes out of date, please send in patches to the maintainer of this file,
who is listed at the bottom of the document.

* Introduction

So, you want to learn how to become a Linux kernel developer? Or you have been told by your manager,
“Go write a Linux driver for this device.” This document’s goal is to teach you everything you need to
know to achieve this by describing the process you need to go through, and hints on how to work with the
community. It will also try to explain some of the reasons why the community works like it does.
The kernel is written mostly in C, with some architecture-dependent parts written in assembly. A good
understanding of C is required for kernel development. Assembly (any architecture) is not required unless
you plan to do low-level development for that architecture. Though they are not a good substitute for a
solid C education and/or years of experience, the following books are good for, if anything, reference:
• “The C Programming Language” by Kernighan and Ritchie [Prentice Hall]
• “Practical C Programming” by Steve Oualline [O’Reilly]
• “C: A Reference Manual” by Harbison and Steele [Prentice Hall]

The kernel is written using GNU C and the GNU toolchain. While it adheres to the ISO C89 standard, it uses
a number of extensions that are not featured in the standard. The kernel is a freestanding C environment,
with no reliance on the standard C library, so some portions of the C standard are not supported. Arbitrary
long long divisions and floating point are not allowed. It can sometimes be difficult to understand the
assumptions the kernel has on the toolchain and the extensions that it uses, and unfortunately there is no
definitive reference for them. Please check the gcc info pages (info gcc) for some information on them.
Please remember that you are trying to learn how to work with the existing development community. It
is a diverse group of people, with high standards for coding, style and procedure. These standards have
been created over time based on what they have found to work best for such a large and geographically
dispersed team. Try to learn as much as possible about these standards ahead of time, as they are well
documented; do not expect people to adapt to you or your company’s way of doing things.

* Legal Issues

The Linux kernel source code is released under the GPL. Please see the file, COPYING, in the main directory
of the source tree, for details on the license. If you have further questions about the license, please contact
a lawyer, and do not ask on the Linux kernel mailing list. The people on the mailing lists are not lawyers,
and you should not rely on their statements on legal matters.

3

Linux Kernel Development Documentation, Release 4.13.0-rc4+

For common questions and answers about the GPL, please see:
https://www.gnu.org/licenses/gpl-faq.html

* Documentation

The Linux kernel source tree has a large range of documents that are invaluable for learning how to
interact with the kernel community. When new features are added to the kernel, it is recommended that
new documentation files are also added which explain how to use the feature. When a kernel change
causes the interface that the kernel exposes to userspace to change, it is recommended that you send
the information or a patch to the manual pages explaining the change to the manual pages maintainer at
mtk.manpages@gmail.com, and CC the list linux-api@vger.kernel.org.
Here is a list of files that are in the kernel source tree that are required reading:

README This file gives a short background on the Linux kernel and describes what is necessary
to do to configure and build the kernel. People who are new to the kernel should start here.

Documentation/process/changes.rst This file gives a list of the minimum levels of various
software packages that are necessary to build and run the kernel successfully.

Documentation/process/coding-style.rst This describes the Linux kernel coding style, and
some of the rationale behind it. All new code is expected to follow the guidelines in this
document. Most maintainers will only accept patches if these rules are followed, and many
people will only review code if it is in the proper style.

Documentation/process/submitting-patches.rst and Documentation/process/submitting-drivers.rst
These files describe in explicit detail how to successfully create and send a patch, including
(but not limited to):
• Email contents
• Email format
• Who to send it to
Following these rules will not guarantee success (as all patches are subject to scrutiny for
content and style), but not following them will almost always prevent it.
Other excellent descriptions of how to create patches properly are:

“The Perfect Patch” https://www.ozlabs.org/~akpm/stuff/tpp.txt
“Linux kernel patch submission format” http://linux.yyz.us/patch-format.

html
Documentation/process/stable-api-nonsense.rst This file describes the rationale behind

the conscious decision to not have a stable API within the kernel, including things like:
• Subsystem shim-layers (for compatibility?)
• Driver portability between Operating Systems.
• Mitigating rapid change within the kernel source tree (or preventing rapid change)
This document is crucial for understanding the Linux development philosophy and is very
important for people moving to Linux from development on other Operating Systems.

Documentation/admin-guide/security-bugs.rst If you feel you have found a security
problem in the Linux kernel, please follow the steps in this document to help notify the
kernel developers, and help solve the issue.

Documentation/process/management-style.rst This document describes how Linux ker-
nel maintainers operate and the shared ethos behind their methodologies. This is important

4 Chapter 1. HOWTO do Linux kernel development

https://www.gnu.org/licenses/gpl-faq.html
mailto:mtk.manpages@gmail.com
mailto:linux-api@vger.kernel.org
https://www.ozlabs.org/~akpm/stuff/tpp.txt
http://linux.yyz.us/patch-format.html
http://linux.yyz.us/patch-format.html

Linux Kernel Development Documentation, Release 4.13.0-rc4+

reading for anyone new to kernel development (or anyone simply curious about it), as it re-
solves a lot of common misconceptions and confusion about the unique behavior of kernel
maintainers.

Documentation/process/stable-kernel-rules.rst This file describes the rules on how the
stable kernel releases happen, and what to do if you want to get a change into one of these
releases.

Documentation/process/kernel-docs.rst A list of external documentation that pertains to
kernel development. Please consult this list if you do not find what you are looking for within
the in-kernel documentation.

Documentation/process/applying-patches.rst A good introduction describing exactly
what a patch is and how to apply it to the different development branches of the kernel.

The kernel also has a large number of documents that can be automatically generated from the source
code itself or from ReStructuredText markups (ReST), like this one. This includes a full description of the
in-kernel API, and rules on how to handle locking properly.
All such documents can be generated as PDF or HTML by running:

make pdfdocs
make htmldocs

respectively from the main kernel source directory.
The documents that uses ReST markup will be generated at Documentation/output. They can also be
generated on LaTeX and ePub formats with:

make latexdocs
make epubdocs

* Becoming A Kernel Developer

If you do not know anything about Linux kernel development, you should look at the Linux KernelNewbies
project:

https://kernelnewbies.org
It consists of a helpful mailing list where you can ask almost any type of basic kernel development question
(make sure to search the archives first, before asking something that has already been answered in the
past.) It also has an IRC channel that you can use to ask questions in real-time, and a lot of helpful
documentation that is useful for learning about Linux kernel development.
The website has basic information about code organization, subsystems, and current projects (both in-
tree and out-of-tree). It also describes some basic logistical information, like how to compile a kernel and
apply a patch.
If you do not know where you want to start, but you want to look for some task to start doing to join into
the kernel development community, go to the Linux Kernel Janitor’s project:

https://kernelnewbies.org/KernelJanitors
It is a great place to start. It describes a list of relatively simple problems that need to be cleaned up and
fixed within the Linux kernel source tree. Working with the developers in charge of this project, you will
learn the basics of getting your patch into the Linux kernel tree, and possibly be pointed in the direction
of what to go work on next, if you do not already have an idea.
If you already have a chunk of code that you want to put into the kernel tree, but need some help getting
it in the proper form, the kernel-mentors project was created to help you out with this. It is a mailing list,
and can be found at:

https://selenic.com/mailman/listinfo/kernel-mentors

*. Becoming A Kernel Developer 5

https://kernelnewbies.org
https://kernelnewbies.org/KernelJanitors
https://selenic.com/mailman/listinfo/kernel-mentors

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Before making any actual modifications to the Linux kernel code, it is imperative to understand how
the code in question works. For this purpose, nothing is better than reading through it directly (most
tricky bits are commented well), perhaps even with the help of specialized tools. One such tool that is
particularly recommended is the Linux Cross-Reference project, which is able to present source code in a
self-referential, indexed webpage format. An excellent up-to-date repository of the kernel code may be
found at:

http://lxr.free-electrons.com/

* The development process

Linux kernel development process currently consists of a few different main kernel “branches” and lots of
different subsystem-specific kernel branches. These different branches are:
• main 4.x kernel tree
• 4.x.y -stable kernel tree
• 4.x -git kernel patches
• subsystem specific kernel trees and patches
• the 4.x -next kernel tree for integration tests

* 4.x kernel tree

4.x kernels are maintained by Linus Torvalds, and can be found on https://kernel.org in the
pub/linux/kernel/v4.x/ directory. Its development process is as follows:
• As soon as a new kernel is released a two weeks window is open, during this period of time maintain-
ers can submit big diffs to Linus, usually the patches that have already been included in the -next
kernel for a few weeks. The preferred way to submit big changes is using git (the kernel’s source
management tool, more information can be found at https://git-scm.com/) but plain patches are also
just fine.

• After two weeks a -rc1 kernel is released and the focus is on making the new kernel as rock solid as
possible. Most of the patches at this point should fix a regression. Bugs that have always existed are
not regressions, so only push these kinds of fixes if they are important. Please note that a whole new
driver (or filesystem) might be accepted after -rc1 because there is no risk of causing regressions
with such a change as long as the change is self-contained and does not affect areas outside of the
code that is being added. git can be used to send patches to Linus after -rc1 is released, but the
patches need to also be sent to a public mailing list for review.

• A new -rc is released whenever Linus deems the current git tree to be in a reasonably sane state
adequate for testing. The goal is to release a new -rc kernel every week.

• Process continues until the kernel is considered “ready”, the process should last around 6 weeks.
It is worth mentioning what Andrew Morton wrote on the linux-kernel mailing list about kernel releases:

“Nobody knows when a kernel will be released, because it’s released according to perceived
bug status, not according to a preconceived timeline.”

* 4.x.y -stable kernel tree

Kernels with 3-part versions are -stable kernels. They contain relatively small and critical fixes for security
problems or significant regressions discovered in a given 4.x kernel.
This is the recommended branch for users who want the most recent stable kernel and are not interested
in helping test development/experimental versions.
If no 4.x.y kernel is available, then the highest numbered 4.x kernel is the current stable kernel.

6 Chapter 1. HOWTO do Linux kernel development

http://lxr.free-electrons.com/
https://kernel.org
https://git-scm.com/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

4.x.y are maintained by the “stable” team <stable@vger.kernel.org>, and are released as needs dictate.
The normal release period is approximately two weeks, but it can be longer if there are no pressing
problems. A security-related problem, instead, can cause a release to happen almost instantly.
The file Documentation/process/stable-kernel-rules.rst in the kernel tree documents what kinds of changes
are acceptable for the -stable tree, and how the release process works.

* 4.x -git patches

These are daily snapshots of Linus’ kernel tree which are managed in a git repository (hence the name.)
These patches are usually released daily and represent the current state of Linus’ tree. They are more
experimental than -rc kernels since they are generated automatically without even a cursory glance to
see if they are sane.

* Subsystem Specific kernel trees and patches

The maintainers of the various kernel subsystems — and also many kernel subsystem developers — ex-
pose their current state of development in source repositories. That way, others can see what is happening
in the different areas of the kernel. In areas where development is rapid, a developer may be asked to
base his submissions onto such a subsystem kernel tree so that conflicts between the submission and
other already ongoing work are avoided.
Most of these repositories are git trees, but there are also other SCMs in use, or patch queues being
published as quilt series. Addresses of these subsystem repositories are listed in the MAINTAINERS file.
Many of them can be browsed at https://git.kernel.org/.
Before a proposed patch is committed to such a subsystem tree, it is subject to review which primarily
happens on mailing lists (see the respective section below). For several kernel subsystems, this review
process is tracked with the tool patchwork. Patchwork offers a web interface which shows patch postings,
any comments on a patch or revisions to it, and maintainers can mark patches as under review, accepted,
or rejected. Most of these patchwork sites are listed at https://patchwork.kernel.org/.

* 4.x -next kernel tree for integration tests

Before updates from subsystem trees are merged into the mainline 4.x tree, they need to be integration-
tested. For this purpose, a special testing repository exists into which virtually all subsystem trees are
pulled on an almost daily basis:

https://git.kernel.org/?p=linux/kernel/git/next/linux-next.git
This way, the -next kernel gives a summary outlook onto what will be expected to go into the mainline
kernel at the next merge period. Adventurous testers are very welcome to runtime-test the -next kernel.

* Bug Reporting

https://bugzilla.kernel.org is where the Linux kernel developers track kernel bugs. Users are encouraged
to report all bugs that they find in this tool. For details on how to use the kernel bugzilla, please see:

https://bugzilla.kernel.org/page.cgi?id=faq.html
The file admin-guide/reporting-bugs.rst in the main kernel source directory has a good template for how
to report a possible kernel bug, and details what kind of information is needed by the kernel developers
to help track down the problem.

*. Bug Reporting 7

mailto:stable@vger.kernel.org
https://git.kernel.org/
https://patchwork.kernel.org/
https://git.kernel.org/?p=linux/kernel/git/next/linux-next.git
https://bugzilla.kernel.org
https://bugzilla.kernel.org/page.cgi?id=faq.html

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* Managing bug reports

One of the best ways to put into practice your hacking skills is by fixing bugs reported by other people.
Not only you will help to make the kernel more stable, you’ll learn to fix real world problems and you
will improve your skills, and other developers will be aware of your presence. Fixing bugs is one of the
best ways to get merits among other developers, because not many people like wasting time fixing other
people’s bugs.
To work in the already reported bug reports, go to https://bugzilla.kernel.org. If you want to be advised of
the future bug reports, you can subscribe to the bugme-new mailing list (only new bug reports are mailed
here) or to the bugme-janitor mailing list (every change in the bugzilla is mailed here)

https://lists.linux-foundation.org/mailman/listinfo/bugme-new
https://lists.linux-foundation.org/mailman/listinfo/bugme-janitors

* Mailing lists

As some of the above documents describe, the majority of the core kernel developers participate on the
Linux Kernel Mailing list. Details on how to subscribe and unsubscribe from the list can be found at:

http://vger.kernel.org/vger-lists.html#linux-kernel
There are archives of the mailing list on the web in many different places. Use a search engine to find
these archives. For example:

http://dir.gmane.org/gmane.linux.kernel
It is highly recommended that you search the archives about the topic you want to bring up, before you
post it to the list. A lot of things already discussed in detail are only recorded at the mailing list archives.
Most of the individual kernel subsystems also have their own separate mailing list where they do their
development efforts. See the MAINTAINERS file for a list of what these lists are for the different groups.
Many of the lists are hosted on kernel.org. Information on them can be found at:

http://vger.kernel.org/vger-lists.html
Please remember to follow good behavioral habits when using the lists. Though a bit cheesy, the following
URL has some simple guidelines for interacting with the list (or any list):

http://www.albion.com/netiquette/
If multiple people respond to your mail, the CC: list of recipients may get pretty large. Don’t remove
anybody from the CC: list without a good reason, or don’t reply only to the list address. Get used to
receiving the mail twice, one from the sender and the one from the list, and don’t try to tune that by
adding fancy mail-headers, people will not like it.
Remember to keep the context and the attribution of your replies intact, keep the “John Kernelhacker
wrote ...:” lines at the top of your reply, and add your statements between the individual quoted sections
instead of writing at the top of the mail.
If you add patches to your mail, make sure they are plain readable text as stated in
Documentation/process/submitting-patches.rst. Kernel developers don’t want to deal with attachments
or compressed patches; they may want to comment on individual lines of your patch, which works only
that way. Make sure you use a mail program that does not mangle spaces and tab characters. A good
first test is to send the mail to yourself and try to apply your own patch by yourself. If that doesn’t work,
get your mail program fixed or change it until it works.
Above all, please remember to show respect to other subscribers.

8 Chapter 1. HOWTO do Linux kernel development

https://bugzilla.kernel.org
https://lists.linux-foundation.org/mailman/listinfo/bugme-new
https://lists.linux-foundation.org/mailman/listinfo/bugme-janitors
http://vger.kernel.org/vger-lists.html#linux-kernel
http://dir.gmane.org/gmane.linux.kernel
http://vger.kernel.org/vger-lists.html
http://www.albion.com/netiquette/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* Working with the community

The goal of the kernel community is to provide the best possible kernel there is. When you submit a
patch for acceptance, it will be reviewed on its technical merits and those alone. So, what should you be
expecting?
• criticism
• comments
• requests for change
• requests for justification
• silence

Remember, this is part of getting your patch into the kernel. You have to be able to take criticism and
comments about your patches, evaluate them at a technical level and either rework your patches or
provide clear and concise reasoning as to why those changes should not bemade. If there are no responses
to your posting, wait a few days and try again, sometimes things get lost in the huge volume.
What should you not do?
• expect your patch to be accepted without question
• become defensive
• ignore comments
• resubmit the patch without making any of the requested changes

In a community that is looking for the best technical solution possible, there will always be differing
opinions on how beneficial a patch is. You have to be cooperative, and willing to adapt your idea to
fit within the kernel. Or at least be willing to prove your idea is worth it. Remember, being wrong is
acceptable as long as you are willing to work toward a solution that is right.
It is normal that the answers to your first patch might simply be a list of a dozen things you should correct.
This does not imply that your patch will not be accepted, and it is not meant against you personally.
Simply correct all issues raised against your patch and resend it.

* Differences between the kernel community and corporate struc-
tures

The kernel community works differently than most traditional corporate development environments. Here
are a list of things that you can try to do to avoid problems:

Good things to say regarding your proposed changes:
• “This solves multiple problems.”
• “This deletes 2000 lines of code.”
• “Here is a patch that explains what I am trying to describe.”
• “I tested it on 5 different architectures...”
• “Here is a series of small patches that...”
• “This increases performance on typical machines...”

Bad things you should avoid saying:
• “We did it this way in AIX/ptx/Solaris, so therefore it must be good...”
• “I’ve being doing this for 20 years, so...”
• “This is required for my company to make money”

*. Working with the community 9

Linux Kernel Development Documentation, Release 4.13.0-rc4+

• “This is for our Enterprise product line.”
• “Here is my 1000 page design document that describes my idea”
• “I’ve been working on this for 6 months...”
• “Here’s a 5000 line patch that...”
• “I rewrote all of the current mess, and here it is...”
• “I have a deadline, and this patch needs to be applied now.”

Another way the kernel community is different than most traditional software engineering work environ-
ments is the faceless nature of interaction. One benefit of using email and irc as the primary forms of
communication is the lack of discrimination based on gender or race. The Linux kernel work environment
is accepting of women and minorities because all you are is an email address. The international aspect
also helps to level the playing field because you can’t guess gender based on a person’s name. A man
may be named Andrea and a woman may be named Pat. Most women who have worked in the Linux
kernel and have expressed an opinion have had positive experiences.
The language barrier can cause problems for some people who are not comfortable with English. A good
grasp of the language can be needed in order to get ideas across properly on mailing lists, so it is recom-
mended that you check your emails to make sure they make sense in English before sending them.

* Break up your changes

The Linux kernel community does not gladly accept large chunks of code dropped on it all at once. The
changes need to be properly introduced, discussed, and broken up into tiny, individual portions. This is
almost the exact opposite of what companies are used to doing. Your proposal should also be introduced
very early in the development process, so that you can receive feedback on what you are doing. It also
lets the community feel that you are working with them, and not simply using them as a dumping ground
for your feature. However, don’t send 50 emails at one time to a mailing list, your patch series should be
smaller than that almost all of the time.
The reasons for breaking things up are the following:
1. Small patches increase the likelihood that your patches will be applied, since they don’t take much
time or effort to verify for correctness. A 5 line patch can be applied by a maintainer with barely a
second glance. However, a 500 line patch may take hours to review for correctness (the time it takes
is exponentially proportional to the size of the patch, or something).
Small patches also make it very easy to debug when something goes wrong. It’s much easier to back
out patches one by one than it is to dissect a very large patch after it’s been applied (and broken
something).

2. It’s important not only to send small patches, but also to rewrite and simplify (or simply re-order)
patches before submitting them.

Here is an analogy from kernel developer Al Viro:
“Think of a teacher grading homework from a math student. The teacher does not want to
see the student’s trials and errors before they came up with the solution. They want to see
the cleanest, most elegant answer. A good student knows this, and would never submit her
intermediate work before the final solution.

The same is true of kernel development. The maintainers and reviewers do not want to see the
thought process behind the solution to the problem one is solving. They want to see a simple
and elegant solution.”

It may be challenging to keep the balance between presenting an elegant solution and working together
with the community and discussing your unfinished work. Therefore it is good to get early in the process
to get feedback to improve your work, but also keep your changes in small chunks that they may get
already accepted, even when your whole task is not ready for inclusion now.

10 Chapter 1. HOWTO do Linux kernel development

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Also realize that it is not acceptable to send patches for inclusion that are unfinished and will be “fixed up
later.”

* Justify your change

Along with breaking up your patches, it is very important for you to let the Linux community know why
they should add this change. New features must be justified as being needed and useful.

* Document your change

When sending in your patches, pay special attention to what you say in the text in your email. This
information will become the ChangeLog information for the patch, and will be preserved for everyone to
see for all time. It should describe the patch completely, containing:
• why the change is necessary
• the overall design approach in the patch
• implementation details
• testing results

For more details on what this should all look like, please see the ChangeLog section of the document:
“The Perfect Patch” http://www.ozlabs.org/~akpm/stuff/tpp.txt

All of these things are sometimes very hard to do. It can take years to perfect these practices (if at all).
It’s a continuous process of improvement that requires a lot of patience and determination. But don’t give
up, it’s possible. Many have done it before, and each had to start exactly where you are now.

Thanks to Paolo Ciarrocchi who allowed the “Development Process” (https://lwn.net/Articles/94386/) sec-
tion to be based on text he had written, and to Randy Dunlap and Gerrit Huizenga for some of the list
of things you should and should not say. Also thanks to Pat Mochel, Hanna Linder, Randy Dunlap, Kay
Sievers, Vojtech Pavlik, Jan Kara, Josh Boyer, Kees Cook, Andrew Morton, Andi Kleen, Vadim Lobanov, Jes-
per Juhl, Adrian Bunk, Keri Harris, Frans Pop, David A. Wheeler, Junio Hamano, Michael Kerrisk, and Alex
Shepard for their review, comments, and contributions. Without their help, this document would not have
been possible.
Maintainer: Greg Kroah-Hartman <greg@kroah.com>

*. Justify your change 11

http://www.ozlabs.org/~akpm/stuff/tpp.txt
https://lwn.net/Articles/94386/
mailto:greg@kroah.com

Linux Kernel Development Documentation, Release 4.13.0-rc4+

12 Chapter 1. HOWTO do Linux kernel development

CHAPTER

TWO

CODE OF CONFLICT

The Linux kernel development effort is a very personal process compared to “traditional” ways of devel-
oping software. Your code and ideas behind it will be carefully reviewed, often resulting in critique and
criticism. The review will almost always require improvements to the code before it can be included in the
kernel. Know that this happens because everyone involved wants to see the best possible solution for the
overall success of Linux. This development process has been proven to create the most robust operating
system kernel ever, and we do not want to do anything to cause the quality of submission and eventual
result to ever decrease.
If however, anyone feels personally abused, threatened, or otherwise uncomfortable due to this pro-
cess, that is not acceptable. If so, please contact the Linux Foundation’s Technical Advisory Board at
<tab@lists.linux-foundation.org>, or the individual members, and they will work to resolve the issue to
the best of their ability. For more information on who is on the Technical Advisory Board and what their
role is, please see:
• http://www.linuxfoundation.org/projects/linux/tab

As a reviewer of code, please strive to keep things civil and focused on the technical issues involved. We
are all humans, and frustrations can be high on both sides of the process. Try to keep in mind the immortal
words of Bill and Ted, “Be excellent to each other.”

13

mailto:tab@lists.linux-foundation.org
http://www.linuxfoundation.org/projects/linux/tab

Linux Kernel Development Documentation, Release 4.13.0-rc4+

14 Chapter 2. Code of Conflict

CHAPTER

THREE

A GUIDE TO THE KERNEL DEVELOPMENT PROCESS

Contents:

* Introduction

* Executive summary

The rest of this section covers the scope of the kernel development process and the kinds of frustrations
that developers and their employers can encounter there. There are a great many reasons why kernel
code should be merged into the official (“mainline”) kernel, including automatic availability to users,
community support in many forms, and the ability to influence the direction of kernel development. Code
contributed to the Linux kernel must be made available under a GPL-compatible license.
How the development process works introduces the development process, the kernel release cycle, and
the mechanics of the merge window. The various phases in the patch development, review, and merging
cycle are covered. There is some discussion of tools and mailing lists. Developers wanting to get started
with kernel development are encouraged to track down and fix bugs as an initial exercise.
Early-stage planning covers early-stage project planning, with an emphasis on involving the development
community as soon as possible.
Getting the code right is about the coding process; several pitfalls which have been encountered by
other developers are discussed. Some requirements for patches are covered, and there is an introduction
to some of the tools which can help to ensure that kernel patches are correct.
Posting patches talks about the process of posting patches for review. To be taken seriously by the
development community, patches must be properly formatted and described, and they must be sent to
the right place. Following the advice in this section should help to ensure the best possible reception for
your work.
Followthrough covers what happens after posting patches; the job is far from done at that point. Working
with reviewers is a crucial part of the development process; this section offers a number of tips on how to
avoid problems at this important stage. Developers are cautioned against assuming that the job is done
when a patch is merged into the mainline.
Advanced topics introduces a couple of “advanced” topics: managing patches with git and reviewing
patches posted by others.
For more information concludes the document with pointers to sources for more information on kernel
development.

* What this document is about

The Linux kernel, at over 8 million lines of code and well over 1000 contributors to each release, is one of
the largest and most active free software projects in existence. Since its humble beginning in 1991, this
kernel has evolved into a best-of-breed operating system component which runs on pocket-sized digital

15

Linux Kernel Development Documentation, Release 4.13.0-rc4+

music players, desktop PCs, the largest supercomputers in existence, and all types of systems in between.
It is a robust, efficient, and scalable solution for almost any situation.
With the growth of Linux has come an increase in the number of developers (and companies) wishing
to participate in its development. Hardware vendors want to ensure that Linux supports their products
well, making those products attractive to Linux users. Embedded systems vendors, who use Linux as a
component in an integrated product, want Linux to be as capable and well-suited to the task at hand as
possible. Distributors and other software vendors who base their products on Linux have a clear interest
in the capabilities, performance, and reliability of the Linux kernel. And end users, too, will often wish to
change Linux to make it better suit their needs.
One of the most compelling features of Linux is that it is accessible to these developers; anybody with
the requisite skills can improve Linux and influence the direction of its development. Proprietary products
cannot offer this kind of openness, which is a characteristic of the free software process. But, if anything,
the kernel is even more open than most other free software projects. A typical three-month kernel devel-
opment cycle can involve over 1000 developers working for more than 100 different companies (or for no
company at all).
Working with the kernel development community is not especially hard. But, that notwithstanding, many
potential contributors have experienced difficulties when trying to do kernel work. The kernel community
has evolved its own distinct ways of operating which allow it to function smoothly (and produce a high-
quality product) in an environment where thousands of lines of code are being changed every day. So
it is not surprising that Linux kernel development process differs greatly from proprietary development
methods.
The kernel’s development process may come across as strange and intimidating to new developers, but
there are good reasons and solid experience behind it. A developer who does not understand the kernel
community’s ways (or, worse, who tries to flout or circumvent them) will have a frustrating experience in
store. The development community, while being helpful to those who are trying to learn, has little time
for those who will not listen or who do not care about the development process.
It is hoped that those who read this document will be able to avoid that frustrating experience. There is
a lot of material here, but the effort involved in reading it will be repaid in short order. The development
community is always in need of developers who will help to make the kernel better; the following text
should help you - or those who work for you - join our community.

* Credits

This document was written by Jonathan Corbet, corbet@lwn.net. It has been improved by comments
from Johannes Berg, James Berry, Alex Chiang, Roland Dreier, Randy Dunlap, Jake Edge, Jiri Kosina, Matt
Mackall, Arthur Marsh, Amanda McPherson, Andrew Morton, Andrew Price, Tsugikazu Shibata, and Jochen
Voß.
This work was supported by the Linux Foundation; thanks especially to Amanda McPherson, who saw the
value of this effort and made it all happen.

* The importance of getting code into the mainline

Some companies and developers occasionally wonder why they should bother learning how to work with
the kernel community and get their code into the mainline kernel (the “mainline” being the kernel main-
tained by Linus Torvalds and used as a base by Linux distributors). In the short term, contributing code
can look like an avoidable expense; it seems easier to just keep the code separate and support users
directly. The truth of the matter is that keeping code separate (“out of tree”) is a false economy.
As a way of illustrating the costs of out-of-tree code, here are a few relevant aspects of the kernel devel-
opment process; most of these will be discussed in greater detail later in this document. Consider:
• Code which has been merged into the mainline kernel is available to all Linux users. It will automat-
ically be present on all distributions which enable it. There is no need for driver disks, downloads,

16 Chapter 3. A guide to the Kernel Development Process

mailto:corbet@lwn.net

Linux Kernel Development Documentation, Release 4.13.0-rc4+

or the hassles of supporting multiple versions of multiple distributions; it all just works, for the de-
veloper and for the user. Incorporation into the mainline solves a large number of distribution and
support problems.

• While kernel developers strive to maintain a stable interface to user space, the internal kernel API
is in constant flux. The lack of a stable internal interface is a deliberate design decision; it allows
fundamental improvements to be made at any time and results in higher-quality code. But one result
of that policy is that any out-of-tree code requires constant upkeep if it is to work with new kernels.
Maintaining out-of-tree code requires significant amounts of work just to keep that code working.
Code which is in the mainline, instead, does not require this work as the result of a simple rule
requiring any developer who makes an API change to also fix any code that breaks as the result of
that change. So code which has been merged into the mainline has significantly lower maintenance
costs.

• Beyond that, code which is in the kernel will often be improved by other developers. Surprising
results can come from empowering your user community and customers to improve your product.

• Kernel code is subjected to review, both before and after merging into the mainline. No matter how
strong the original developer’s skills are, this review process invariably finds ways in which the code
can be improved. Often review finds severe bugs and security problems. This is especially true for
code which has been developed in a closed environment; such code benefits strongly from review
by outside developers. Out-of-tree code is lower-quality code.

• Participation in the development process is your way to influence the direction of kernel development.
Users who complain from the sidelines are heard, but active developers have a stronger voice - and
the ability to implement changes which make the kernel work better for their needs.

• When code is maintained separately, the possibility that a third party will contribute a different im-
plementation of a similar feature always exists. Should that happen, getting your code merged will
become much harder - to the point of impossibility. Then you will be faced with the unpleasant al-
ternatives of either (1) maintaining a nonstandard feature out of tree indefinitely, or (2) abandoning
your code and migrating your users over to the in-tree version.

• Contribution of code is the fundamental action which makes the whole process work. By contributing
your code you can add new functionality to the kernel and provide capabilities and examples which
are of use to other kernel developers. If you have developed code for Linux (or are thinking about
doing so), you clearly have an interest in the continued success of this platform; contributing code
is one of the best ways to help ensure that success.

All of the reasoning above applies to any out-of-tree kernel code, including code which is distributed in
proprietary, binary-only form. There are, however, additional factors which should be taken into account
before considering any sort of binary-only kernel code distribution. These include:
• The legal issues around the distribution of proprietary kernel modules are cloudy at best; quite a few
kernel copyright holders believe that most binary-only modules are derived products of the kernel
and that, as a result, their distribution is a violation of the GNU General Public license (about which
more will be said below). Your author is not a lawyer, and nothing in this document can possibly be
considered to be legal advice. The true legal status of closed-source modules can only be determined
by the courts. But the uncertainty which haunts those modules is there regardless.

• Binary modules greatly increase the difficulty of debugging kernel problems, to the point that most
kernel developers will not even try. So the distribution of binary-only modules will make it harder for
your users to get support from the community.

• Support is also harder for distributors of binary-only modules, who must provide a version of the
module for every distribution and every kernel version they wish to support. Dozens of builds of a
single module can be required to provide reasonably comprehensive coverage, and your users will
have to upgrade your module separately every time they upgrade their kernel.

• Everything that was said above about code review applies doubly to closed-source code. Since this
code is not available at all, it cannot have been reviewed by the community and will, beyond doubt,
have serious problems.

*. Introduction 17

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Makers of embedded systems, in particular, may be tempted to disregard much of what has been said in
this section in the belief that they are shipping a self-contained product which uses a frozen kernel version
and requires no more development after its release. This argument misses the value of widespread code
review and the value of allowing your users to add capabilities to your product. But these products, too,
have a limited commercial life, after which a new version must be released. At that point, vendors whose
code is in the mainline and well maintained will be much better positioned to get the new product ready
for market quickly.

* Licensing

Code is contributed to the Linux kernel under a number of licenses, but all code must be compatible with
version 2 of the GNUGeneral Public License (GPLv2), which is the license covering the kernel distribution as
a whole. In practice, that means that all code contributions are covered either by GPLv2 (with, optionally,
language allowing distribution under later versions of the GPL) or the three-clause BSD license. Any
contributions which are not covered by a compatible license will not be accepted into the kernel.
Copyright assignments are not required (or requested) for code contributed to the kernel. All code merged
into the mainline kernel retains its original ownership; as a result, the kernel now has thousands of owners.
One implication of this ownership structure is that any attempt to change the licensing of the kernel is
doomed to almost certain failure. There are few practical scenarios where the agreement of all copyright
holders could be obtained (or their code removed from the kernel). So, in particular, there is no prospect
of a migration to version 3 of the GPL in the foreseeable future.
It is imperative that all code contributed to the kernel be legitimately free software. For that reason, code
from anonymous (or pseudonymous) contributors will not be accepted. All contributors are required to
“sign off” on their code, stating that the code can be distributed with the kernel under the GPL. Code which
has not been licensed as free software by its owner, or which risks creating copyright-related problems
for the kernel (such as code which derives from reverse-engineering efforts lacking proper safeguards)
cannot be contributed.
Questions about copyright-related issues are common on Linux development mailing lists. Such questions
will normally receive no shortage of answers, but one should bear in mind that the people answering those
questions are not lawyers and cannot provide legal advice. If you have legal questions relating to Linux
source code, there is no substitute for talking with a lawyer who understands this field. Relying on answers
obtained on technical mailing lists is a risky affair.

* How the development process works

Linux kernel development in the early 1990’s was a pretty loose affair, with relatively small numbers of
users and developers involved. With a user base in the millions and with some 2,000 developers involved
over the course of one year, the kernel has since had to evolve a number of processes to keep development
happening smoothly. A solid understanding of how the process works is required in order to be an effective
part of it.

* The big picture

The kernel developers use a loosely time-based release process, with a new major kernel release happen-
ing every two or three months. The recent release history looks like this:

2.6.38 March 14, 2011
2.6.37 January 4, 2011
2.6.36 October 20, 2010
2.6.35 August 1, 2010
2.6.34 May 15, 2010
2.6.33 February 24, 2010

18 Chapter 3. A guide to the Kernel Development Process

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Every 2.6.x release is a major kernel release with new features, internal API changes, and more. A typical
2.6 release can contain nearly 10,000 changesets with changes to several hundred thousand lines of code.
2.6 is thus the leading edge of Linux kernel development; the kernel uses a rolling development model
which is continually integrating major changes.
A relatively straightforward discipline is followed with regard to themerging of patches for each release. At
the beginning of each development cycle, the “merge window” is said to be open. At that time, code which
is deemed to be sufficiently stable (and which is accepted by the development community) is merged into
the mainline kernel. The bulk of changes for a new development cycle (and all of the major changes) will
be merged during this time, at a rate approaching 1,000 changes (“patches,” or “changesets”) per day.
(As an aside, it is worth noting that the changes integrated during the merge window do not come out
of thin air; they have been collected, tested, and staged ahead of time. How that process works will be
described in detail later on).
The merge window lasts for approximately two weeks. At the end of this time, Linus Torvalds will declare
that the window is closed and release the first of the “rc” kernels. For the kernel which is destined to be
2.6.40, for example, the release which happens at the end of the merge window will be called 2.6.40-rc1.
The -rc1 release is the signal that the time to merge new features has passed, and that the time to stabilize
the next kernel has begun.
Over the next six to ten weeks, only patches which fix problems should be submitted to the mainline. On
occasion a more significant change will be allowed, but such occasions are rare; developers who try to
merge new features outside of the merge window tend to get an unfriendly reception. As a general rule,
if you miss the merge window for a given feature, the best thing to do is to wait for the next development
cycle. (An occasional exception is made for drivers for previously-unsupported hardware; if they touch no
in-tree code, they cannot cause regressions and should be safe to add at any time).
As fixes make their way into the mainline, the patch rate will slow over time. Linus releases new -rc kernels
about once a week; a normal series will get up to somewhere between -rc6 and -rc9 before the kernel is
considered to be sufficiently stable and the final 2.6.x release is made. At that point the whole process
starts over again.
As an example, here is how the 2.6.38 development cycle went (all dates in 2011):

January 4 2.6.37 stable release
January 18 2.6.38-rc1, merge window closes
January 21 2.6.38-rc2
February 1 2.6.38-rc3
February 7 2.6.38-rc4
February 15 2.6.38-rc5
February 21 2.6.38-rc6
March 1 2.6.38-rc7
March 7 2.6.38-rc8
March 14 2.6.38 stable release

How do the developers decide when to close the development cycle and create the stable release? The
most significant metric used is the list of regressions from previous releases. No bugs are welcome, but
those which break systems which worked in the past are considered to be especially serious. For this
reason, patches which cause regressions are looked upon unfavorably and are quite likely to be reverted
during the stabilization period.
The developers’ goal is to fix all known regressions before the stable release is made. In the real world,
this kind of perfection is hard to achieve; there are just too many variables in a project of this size. There
comes a point where delaying the final release just makes the problem worse; the pile of changes waiting
for the next merge window will grow larger, creating even more regressions the next time around. So most
2.6.x kernels go out with a handful of known regressions though, hopefully, none of them are serious.
Once a stable release is made, its ongoing maintenance is passed off to the “stable team,” currently
consisting of Greg Kroah-Hartman. The stable team will release occasional updates to the stable release
using the 2.6.x.y numbering scheme. To be considered for an update release, a patch must (1) fix a
significant bug, and (2) already be merged into the mainline for the next development kernel. Kernels will

*. How the development process works 19

Linux Kernel Development Documentation, Release 4.13.0-rc4+

typically receive stable updates for a little more than one development cycle past their initial release. So,
for example, the 2.6.36 kernel’s history looked like:

October 10 2.6.36 stable release
November 22 2.6.36.1
December 9 2.6.36.2
January 7 2.6.36.3
February 17 2.6.36.4

2.6.36.4 was the final stable update for the 2.6.36 release.
Some kernels are designated “long term” kernels; they will receive support for a longer period. As of this
writing, the current long term kernels and their maintainers are:

2.6.27 Willy Tarreau (Deep-frozen stable kernel)
2.6.32 Greg Kroah-Hartman
2.6.35 Andi Kleen (Embedded flag kernel)

The selection of a kernel for long-term support is purely a matter of a maintainer having the need and the
time to maintain that release. There are no known plans for long-term support for any specific upcoming
release.

* The lifecycle of a patch

Patches do not go directly from the developer’s keyboard into the mainline kernel. There is, instead,
a somewhat involved (if somewhat informal) process designed to ensure that each patch is reviewed
for quality and that each patch implements a change which is desirable to have in the mainline. This
process can happen quickly for minor fixes, or, in the case of large and controversial changes, go on for
years. Much developer frustration comes from a lack of understanding of this process or from attempts
to circumvent it.
In the hopes of reducing that frustration, this document will describe how a patch gets into the kernel.
What follows below is an introduction which describes the process in a somewhat idealized way. A much
more detailed treatment will come in later sections.
The stages that a patch goes through are, generally:
• Design. This is where the real requirements for the patch - and the way those requirements will be
met - are laid out. Design work is often done without involving the community, but it is better to do
this work in the open if at all possible; it can save a lot of time redesigning things later.

• Early review. Patches are posted to the relevant mailing list, and developers on that list reply with
any comments they may have. This process should turn up any major problems with a patch if all
goes well.

• Wider review. When the patch is getting close to ready for mainline inclusion, it should be accepted
by a relevant subsystem maintainer - though this acceptance is not a guarantee that the patch will
make it all the way to the mainline. The patch will show up in the maintainer’s subsystem tree and
into the -next trees (described below). When the process works, this step leads to more extensive
review of the patch and the discovery of any problems resulting from the integration of this patch
with work being done by others.

• Please note that most maintainers also have day jobs, somerging your patchmay not be their highest
priority. If your patch is getting feedback about changes that are needed, you should either make
those changes or justify why they should not be made. If your patch has no review complaints but
is not being merged by its appropriate subsystem or driver maintainer, you should be persistent in
updating the patch to the current kernel so that it applies cleanly and keep sending it for review and
merging.

• Merging into the mainline. Eventually, a successful patch will be merged into the mainline repository
managed by Linus Torvalds. More comments and/or problemsmay surface at this time; it is important
that the developer be responsive to these and fix any issues which arise.

20 Chapter 3. A guide to the Kernel Development Process

Linux Kernel Development Documentation, Release 4.13.0-rc4+

• Stable release. The number of users potentially affected by the patch is now large, so, once again,
new problems may arise.

• Long-term maintenance. While it is certainly possible for a developer to forget about code after
merging it, that sort of behavior tends to leave a poor impression in the development community.
Merging code eliminates some of the maintenance burden, in that others will fix problems caused by
API changes. But the original developer should continue to take responsibility for the code if it is to
remain useful in the longer term.

One of the largest mistakes made by kernel developers (or their employers) is to try to cut the process
down to a single “merging into the mainline” step. This approach invariably leads to frustration for ev-
erybody involved.

* How patches get into the Kernel

There is exactly one person who can merge patches into the mainline kernel repository: Linus Torvalds.
But, of the over 9,500 patches which went into the 2.6.38 kernel, only 112 (around 1.3%) were directly
chosen by Linus himself. The kernel project has long since grown to a size where no single developer
could possibly inspect and select every patch unassisted. The way the kernel developers have addressed
this growth is through the use of a lieutenant system built around a chain of trust.
The kernel code base is logically broken down into a set of subsystems: networking, specific architecture
support, memory management, video devices, etc. Most subsystems have a designated maintainer, a
developer who has overall responsibility for the code within that subsystem. These subsystemmaintainers
are the gatekeepers (in a loose way) for the portion of the kernel they manage; they are the ones who will
(usually) accept a patch for inclusion into the mainline kernel.
Subsystem maintainers each manage their own version of the kernel source tree, usually (but certainly
not always) using the git source management tool. Tools like git (and related tools like quilt or mercurial)
allow maintainers to track a list of patches, including authorship information and other metadata. At any
given time, the maintainer can identify which patches in his or her repository are not found in the mainline.
When the merge window opens, top-level maintainers will ask Linus to “pull” the patches they have
selected for merging from their repositories. If Linus agrees, the stream of patches will flow up into his
repository, becoming part of the mainline kernel. The amount of attention that Linus pays to specific
patches received in a pull operation varies. It is clear that, sometimes, he looks quite closely. But, as a
general rule, Linus trusts the subsystem maintainers to not send bad patches upstream.
Subsystem maintainers, in turn, can pull patches from other maintainers. For example, the networking
tree is built from patches which accumulated first in trees dedicated to network device drivers, wireless
networking, etc. This chain of repositories can be arbitrarily long, though it rarely exceeds two or three
links. Since each maintainer in the chain trusts those managing lower-level trees, this process is known
as the “chain of trust.”
Clearly, in a system like this, getting patches into the kernel depends on finding the right maintainer.
Sending patches directly to Linus is not normally the right way to go.

* Next trees

The chain of subsystem trees guides the flow of patches into the kernel, but it also raises an interesting
question: what if somebody wants to look at all of the patches which are being prepared for the next
merge window? Developers will be interested in what other changes are pending to see whether there
are any conflicts to worry about; a patch which changes a core kernel function prototype, for example,
will conflict with any other patches which use the older form of that function. Reviewers and testers want
access to the changes in their integrated form before all of those changes land in the mainline kernel. One
could pull changes from all of the interesting subsystem trees, but that would be a big and error-prone
job.
The answer comes in the form of -next trees, where subsystem trees are collected for testing and review.
The older of these trees, maintained by Andrew Morton, is called “-mm” (for memory management, which

*. How the development process works 21

Linux Kernel Development Documentation, Release 4.13.0-rc4+

is how it got started). The -mm tree integrates patches from a long list of subsystem trees; it also has
some patches aimed at helping with debugging.
Beyond that, -mm contains a significant collection of patches which have been selected by Andrew directly.
These patches may have been posted on a mailing list, or they may apply to a part of the kernel for which
there is no designated subsystem tree. As a result, -mm operates as a sort of subsystem tree of last resort;
if there is no other obvious path for a patch into the mainline, it is likely to end up in -mm. Miscellaneous
patches which accumulate in -mm will eventually either be forwarded on to an appropriate subsystem
tree or be sent directly to Linus. In a typical development cycle, approximately 5-10% of the patches
going into the mainline get there via -mm.
The current -mm patch is available in the “mmotm” (-mm of the moment) directory at:

http://www.ozlabs.org/~akpm/mmotm/
Use of the MMOTM tree is likely to be a frustrating experience, though; there is a definite chance that it
will not even compile.
The primary tree for next-cycle patch merging is linux-next, maintained by Stephen Rothwell. The linux-
next tree is, by design, a snapshot of what the mainline is expected to look like after the next merge
window closes. Linux-next trees are announced on the linux-kernel and linux-next mailing lists when they
are assembled; they can be downloaded from:

http://www.kernel.org/pub/linux/kernel/next/
Linux-next has become an integral part of the kernel development process; all patches merged during
a given merge window should really have found their way into linux-next some time before the merge
window opens.

* Staging trees

The kernel source tree contains the drivers/staging/ directory, where many sub-directories for drivers or
filesystems that are on their way to being added to the kernel tree live. They remain in drivers/staging
while they still need more work; once complete, they can be moved into the kernel proper. This is a way
to keep track of drivers that aren’t up to Linux kernel coding or quality standards, but people may want
to use them and track development.
Greg Kroah-Hartman currently maintains the staging tree. Drivers that still need work are sent to him,
with each driver having its own subdirectory in drivers/staging/. Along with the driver source files, a TODO
file should be present in the directory as well. The TODO file lists the pending work that the driver needs
for acceptance into the kernel proper, as well as a list of people that should be Cc’d for any patches to the
driver. Current rules require that drivers contributed to staging must, at a minimum, compile properly.
Staging can be a relatively easy way to get new drivers into the mainline where, with luck, they will come
to the attention of other developers and improve quickly. Entry into staging is not the end of the story,
though; code in staging which is not seeing regular progress will eventually be removed. Distributors also
tend to be relatively reluctant to enable staging drivers. So staging is, at best, a stop on the way toward
becoming a proper mainline driver.

* Tools

As can be seen from the above text, the kernel development process depends heavily on the ability to
herd collections of patches in various directions. The whole thing would not work anywhere near as well
as it does without suitably powerful tools. Tutorials on how to use these tools are well beyond the scope
of this document, but there is space for a few pointers.
By far the dominant source code management system used by the kernel community is git. Git is one
of a number of distributed version control systems being developed in the free software community. It
is well tuned for kernel development, in that it performs quite well when dealing with large repositories
and large numbers of patches. It also has a reputation for being difficult to learn and use, though it has
gotten better over time. Some sort of familiarity with git is almost a requirement for kernel developers;

22 Chapter 3. A guide to the Kernel Development Process

http://www.ozlabs.org/~akpm/mmotm/
http://www.kernel.org/pub/linux/kernel/next/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

even if they do not use it for their own work, they’ll need git to keep up with what other developers (and
the mainline) are doing.
Git is now packaged by almost all Linux distributions. There is a home page at:

http://git-scm.com/
That page has pointers to documentation and tutorials.
Among the kernel developers who do not use git, the most popular choice is almost certainly Mercurial:

http://www.selenic.com/mercurial/
Mercurial shares many features with git, but it provides an interface which many find easier to use.
The other tool worth knowing about is Quilt:

http://savannah.nongnu.org/projects/quilt/
Quilt is a patch management system, rather than a source code management system. It does not track
history over time; it is, instead, oriented toward tracking a specific set of changes against an evolving
code base. Some major subsystem maintainers use quilt to manage patches intended to go upstream.
For the management of certain kinds of trees (-mm, for example), quilt is the best tool for the job.

* Mailing lists

A great deal of Linux kernel development work is done by way of mailing lists. It is hard to be a fully-
functioning member of the community without joining at least one list somewhere. But Linux mailing lists
also represent a potential hazard to developers, who risk getting buried under a load of electronic mail,
running afoul of the conventions used on the Linux lists, or both.
Most kernel mailing lists are run on vger.kernel.org; the master list can be found at:

http://vger.kernel.org/vger-lists.html
There are lists hosted elsewhere, though; a number of them are at lists.redhat.com.
The core mailing list for kernel development is, of course, linux-kernel. This list is an intimidating place to
be; volume can reach 500messages per day, the amount of noise is high, the conversation can be severely
technical, and participants are not always concerned with showing a high degree of politeness. But there
is no other place where the kernel development community comes together as a whole; developers who
avoid this list will miss important information.
There are a few hints which can help with linux-kernel survival:
• Have the list delivered to a separate folder, rather than your main mailbox. One must be able to
ignore the stream for sustained periods of time.

• Do not try to follow every conversation - nobody else does. It is important to filter on both the topic
of interest (though note that long-running conversations can drift away from the original subject
without changing the email subject line) and the people who are participating.

• Do not feed the trolls. If somebody is trying to stir up an angry response, ignore them.
• When responding to linux-kernel email (or that on other lists) preserve the Cc: header for all involved.
In the absence of a strong reason (such as an explicit request), you should never remove recipients.
Always make sure that the person you are responding to is in the Cc: list. This convention also makes
it unnecessary to explicitly ask to be copied on replies to your postings.

• Search the list archives (and the net as a whole) before asking questions. Some developers can get
impatient with people who clearly have not done their homework.

• Avoid top-posting (the practice of putting your answer above the quoted text you are responding to).
It makes your response harder to read and makes a poor impression.

• Ask on the correct mailing list. Linux-kernel may be the general meeting point, but it is not the best
place to find developers from all subsystems.

*. How the development process works 23

http://git-scm.com/
http://www.selenic.com/mercurial/
http://savannah.nongnu.org/projects/quilt/
http://vger.kernel.org/vger-lists.html

Linux Kernel Development Documentation, Release 4.13.0-rc4+

The last point - finding the correct mailing list - is a common place for beginning developers to go wrong.
Somebody who asks a networking-related question on linux-kernel will almost certainly receive a polite
suggestion to ask on the netdev list instead, as that is the list frequented by most networking developers.
Other lists exist for the SCSI, video4linux, IDE, filesystem, etc. subsystems. The best place to look for
mailing lists is in the MAINTAINERS file packaged with the kernel source.

* Getting started with Kernel development

Questions about how to get started with the kernel development process are common - from both individ-
uals and companies. Equally common are missteps which make the beginning of the relationship harder
than it has to be.
Companies often look to hire well-known developers to get a development group started. This can, in
fact, be an effective technique. But it also tends to be expensive and does not do much to grow the pool
of experienced kernel developers. It is possible to bring in-house developers up to speed on Linux kernel
development, given the investment of a bit of time. Taking this time can endow an employer with a group
of developers who understand the kernel and the company both, and who can help to train others as well.
Over the medium term, this is often the more profitable approach.
Individual developers are often, understandably, at a loss for a place to start. Beginning with a large
project can be intimidating; one often wants to test the waters with something smaller first. This is the
point where some developers jump into the creation of patches fixing spelling errors or minor coding
style issues. Unfortunately, such patches create a level of noise which is distracting for the development
community as a whole, so, increasingly, they are looked down upon. New developers wishing to introduce
themselves to the community will not get the sort of reception they wish for by these means.
Andrew Morton gives this advice for aspiring kernel developers

The #1 project for all kernel beginners should surely be "make sure
that the kernel runs perfectly at all times on all machines which
you can lay your hands on". Usually the way to do this is to work
with others on getting things fixed up (this can require
persistence!) but that's fine - it's a part of kernel development.

(http://lwn.net/Articles/283982/).
In the absence of obvious problems to fix, developers are advised to look at the current lists of regressions
and open bugs in general. There is never any shortage of issues in need of fixing; by addressing these
issues, developers will gain experience with the process while, at the same time, building respect with
the rest of the development community.

* Early-stage planning

When contemplating a Linux kernel development project, it can be tempting to jump right in and start
coding. As with any significant project, though, much of the groundwork for success is best laid before
the first line of code is written. Some time spent in early planning and communication can save far more
time later on.

* Specifying the problem

Like any engineering project, a successful kernel enhancement starts with a clear description of the prob-
lem to be solved. In some cases, this step is easy: when a driver is needed for a specific piece of hardware,
for example. In others, though, it is tempting to confuse the real problem with the proposed solution, and
that can lead to difficulties.
Consider an example: some years ago, developers working with Linux audio sought a way to run appli-
cations without dropouts or other artifacts caused by excessive latency in the system. The solution they
arrived at was a kernel module intended to hook into the Linux Security Module (LSM) framework; this

24 Chapter 3. A guide to the Kernel Development Process

http://lwn.net/Articles/283982/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

module could be configured to give specific applications access to the realtime scheduler. This module
was implemented and sent to the linux-kernel mailing list, where it immediately ran into problems.
To the audio developers, this security module was sufficient to solve their immediate problem. To the
wider kernel community, though, it was seen as a misuse of the LSM framework (which is not intended
to confer privileges onto processes which they would not otherwise have) and a risk to system stability.
Their preferred solutions involved realtime scheduling access via the rlimit mechanism for the short term,
and ongoing latency reduction work in the long term.
The audio community, however, could not see past the particular solution they had implemented; they
were unwilling to accept alternatives. The resulting disagreement left those developers feeling disillu-
sioned with the entire kernel development process; one of them went back to an audio list and posted
this:

There are a number of very good Linux kernel developers, but they tend to get outshouted by
a large crowd of arrogant fools. Trying to communicate user requirements to these people is a
waste of time. They are much too “intelligent” to listen to lesser mortals.

(http://lwn.net/Articles/131776/).
The reality of the situation was different; the kernel developers were far more concerned about system
stability, long-term maintenance, and finding the right solution to the problem than they were with a
specific module. The moral of the story is to focus on the problem - not a specific solution - and to discuss
it with the development community before investing in the creation of a body of code.
So, when contemplating a kernel development project, one should obtain answers to a short set of ques-
tions:
• What, exactly, is the problem which needs to be solved?
• Who are the users affected by this problem? Which use cases should the solution address?
• How does the kernel fall short in addressing that problem now?

Only then does it make sense to start considering possible solutions.

* Early discussion

When planning a kernel development project, it makes great sense to hold discussions with the community
before launching into implementation. Early communication can save time and trouble in a number of
ways:
• It may well be that the problem is addressed by the kernel in ways which you have not understood.
The Linux kernel is large and has a number of features and capabilities which are not immediately
obvious. Not all kernel capabilities are documented as well as one might like, and it is easy to miss
things. Your author has seen the posting of a complete driver which duplicated an existing driver
that the new author had been unaware of. Code which reinvents existing wheels is not only wasteful;
it will also not be accepted into the mainline kernel.

• There may be elements of the proposed solution which will not be acceptable for mainline merging.
It is better to find out about problems like this before writing the code.

• It’s entirely possible that other developers have thought about the problem; they may have ideas for
a better solution, and may be willing to help in the creation of that solution.

Years of experience with the kernel development community have taught a clear lesson: kernel code
which is designed and developed behind closed doors invariably has problems which are only revealed
when the code is released into the community. Sometimes these problems are severe, requiring months
or years of effort before the code can be brought up to the kernel community’s standards. Some examples
include:
• The Devicescape network stack was designed and implemented for single-processor systems. It
could not be merged into the mainline until it was made suitable for multiprocessor systems.
Retrofitting locking and such into code is a difficult task; as a result, the merging of this code (now
called mac80211) was delayed for over a year.

*. Early-stage planning 25

http://lwn.net/Articles/131776/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

• The Reiser4 filesystem included a number of capabilities which, in the core kernel developers’ opinion,
should have been implemented in the virtual filesystem layer instead. It also included features which
could not easily be implemented without exposing the system to user-caused deadlocks. The late
revelation of these problems - and refusal to address some of them - has caused Reiser4 to stay out
of the mainline kernel.

• The AppArmor security module made use of internal virtual filesystem data structures in ways which
were considered to be unsafe and unreliable. This concern (among others) kept AppArmor out of the
mainline for years.

In each of these cases, a great deal of pain and extra work could have been avoided with some early
discussion with the kernel developers.

* Who do you talk to?

When developers decide to take their plans public, the next question will be: where do we start? The
answer is to find the right mailing list(s) and the right maintainer. For mailing lists, the best approach is
to look in the MAINTAINERS file for a relevant place to post. If there is a suitable subsystem list, posting
there is often preferable to posting on linux-kernel; you are more likely to reach developers with expertise
in the relevant subsystem and the environment may be more supportive.
Finding maintainers can be a bit harder. Again, the MAINTAINERS file is the place to start. That file tends
to not always be up to date, though, and not all subsystems are represented there. The person listed in
the MAINTAINERS file may, in fact, not be the person who is actually acting in that role currently. So, when
there is doubt about who to contact, a useful trick is to use git (and “git log” in particular) to see who is
currently active within the subsystem of interest. Look at who is writing patches, and who, if anybody, is
attaching Signed-off-by lines to those patches. Those are the people who will be best placed to help with
a new development project.
The task of finding the right maintainer is sometimes challenging enough that the kernel developers have
added a script to ease the process:

.../scripts/get_maintainer.pl

This script will return the current maintainer(s) for a given file or directory when given the “-f” option. If
passed a patch on the command line, it will list the maintainers who should probably receive copies of the
patch. There are a number of options regulating how hard get_maintainer.pl will search for maintainers;
please be careful about using the more aggressive options as you may end up including developers who
have no real interest in the code you are modifying.
If all else fails, talking to Andrew Morton can be an effective way to track down a maintainer for a specific
piece of code.

* When to post?

If possible, posting your plans during the early stages can only be helpful. Describe the problem being
solved and any plans that have been made on how the implementation will be done. Any information you
can provide can help the development community provide useful input on the project.
One discouraging thing which can happen at this stage is not a hostile reaction, but, instead, little or
no reaction at all. The sad truth of the matter is (1) kernel developers tend to be busy, (2) there is no
shortage of people with grand plans and little code (or even prospect of code) to back them up, and (3)
nobody is obligated to review or comment on ideas posted by others. Beyond that, high-level designs
often hide problems which are only reviewed when somebody actually tries to implement those designs;
for that reason, kernel developers would rather see the code.
If a request-for-comments posting yields little in the way of comments, do not assume that it means there
is no interest in the project. Unfortunately, you also cannot assume that there are no problems with your
idea. The best thing to do in this situation is to proceed, keeping the community informed as you go.

26 Chapter 3. A guide to the Kernel Development Process

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* Getting official buy-in

If your work is being done in a corporate environment - as most Linux kernel work is - you must, obviously,
have permission from suitably empowered managers before you can post your company’s plans or code
to a public mailing list. The posting of code which has not been cleared for release under a GPL-compatible
license can be especially problematic; the sooner that a company’s management and legal staff can agree
on the posting of a kernel development project, the better off everybody involved will be.
Some readers may be thinking at this point that their kernel work is intended to support a product which
does not yet have an officially acknowledged existence. Revealing their employer’s plans on a public
mailing list may not be a viable option. In cases like this, it is worth considering whether the secrecy is
really necessary; there is often no real need to keep development plans behind closed doors.
That said, there are also cases where a company legitimately cannot disclose its plans early in the devel-
opment process. Companies with experienced kernel developers may choose to proceed in an open-loop
manner on the assumption that they will be able to avoid serious integration problems later. For compa-
nies without that sort of in-house expertise, the best option is often to hire an outside developer to review
the plans under a non-disclosure agreement. The Linux Foundation operates an NDA program designed
to help with this sort of situation; more information can be found at:

http://www.linuxfoundation.org/en/NDA_program
This kind of review is often enough to avoid serious problems later on without requiring public disclosure
of the project.

* Getting the code right

While there is much to be said for a solid and community-oriented design process, the proof of any kernel
development project is in the resulting code. It is the code which will be examined by other developers and
merged (or not) into the mainline tree. So it is the quality of this code which will determine the ultimate
success of the project.
This section will examine the coding process. We’ll start with a look at a number of ways in which kernel
developers can go wrong. Then the focus will shift toward doing things right and the tools which can help
in that quest.

* Pitfalls

Coding style

The kernel has long had a standard coding style, described in Documentation/process/coding-style.rst .
For much of that time, the policies described in that file were taken as being, at most, advisory. As a result,
there is a substantial amount of code in the kernel which does not meet the coding style guidelines. The
presence of that code leads to two independent hazards for kernel developers.
The first of these is to believe that the kernel coding standards do not matter and are not enforced. The
truth of the matter is that adding new code to the kernel is very difficult if that code is not coded according
to the standard; many developers will request that the code be reformatted before they will even review
it. A code base as large as the kernel requires some uniformity of code to make it possible for developers
to quickly understand any part of it. So there is no longer room for strangely-formatted code.
Occasionally, the kernel’s coding style will run into conflict with an employer’s mandated style. In such
cases, the kernel’s style will have to win before the code can be merged. Putting code into the kernel
means giving up a degree of control in a number of ways - including control over how the code is formatted.
The other trap is to assume that code which is already in the kernel is urgently in need of coding style
fixes. Developers may start to generate reformatting patches as a way of gaining familiarity with the
process, or as a way of getting their name into the kernel changelogs - or both. But pure coding style
fixes are seen as noise by the development community; they tend to get a chilly reception. So this type of

*. Getting the code right 27

http://www.linuxfoundation.org/en/NDA_program

Linux Kernel Development Documentation, Release 4.13.0-rc4+

patch is best avoided. It is natural to fix the style of a piece of code while working on it for other reasons,
but coding style changes should not be made for their own sake.
The coding style document also should not be read as an absolute law which can never be transgressed.
If there is a good reason to go against the style (a line which becomes far less readable if split to fit within
the 80-column limit, for example), just do it.

Abstraction layers

Computer Science professors teach students to make extensive use of abstraction layers in the name
of flexibility and information hiding. Certainly the kernel makes extensive use of abstraction; no project
involving several million lines of code could do otherwise and survive. But experience has shown that
excessive or premature abstraction can be just as harmful as premature optimization. Abstraction should
be used to the level required and no further.
At a simple level, consider a function which has an argument which is always passed as zero by all callers.
One could retain that argument just in case somebody eventually needs to use the extra flexibility that it
provides. By that time, though, chances are good that the code which implements this extra argument
has been broken in some subtle way which was never noticed - because it has never been used. Or, when
the need for extra flexibility arises, it does not do so in a way which matches the programmer’s early
expectation. Kernel developers will routinely submit patches to remove unused arguments; they should,
in general, not be added in the first place.
Abstraction layers which hide access to hardware - often to allow the bulk of a driver to be used with
multiple operating systems - are especially frowned upon. Such layers obscure the code and may impose
a performance penalty; they do not belong in the Linux kernel.
On the other hand, if you find yourself copying significant amounts of code from another kernel subsystem,
it is time to ask whether it would, in fact, make sense to pull out some of that code into a separate library or
to implement that functionality at a higher level. There is no value in replicating the same code throughout
the kernel.

#ifdef and preprocessor use in general

The C preprocessor seems to present a powerful temptation to some C programmers, who see it as a way
to efficiently encode a great deal of flexibility into a source file. But the preprocessor is not C, and heavy
use of it results in code which is much harder for others to read and harder for the compiler to check for
correctness. Heavy preprocessor use is almost always a sign of code which needs some cleanup work.
Conditional compilation with #ifdef is, indeed, a powerful feature, and it is used within the kernel. But
there is little desire to see code which is sprinkled liberally with #ifdef blocks. As a general rule, #ifdef
use should be confined to header files whenever possible. Conditionally-compiled code can be confined
to functions which, if the code is not to be present, simply become empty. The compiler will then quietly
optimize out the call to the empty function. The result is far cleaner code which is easier to follow.
C preprocessor macros present a number of hazards, including possible multiple evaluation of expressions
with side effects and no type safety. If you are tempted to define a macro, consider creating an inline
function instead. The code which results will be the same, but inline functions are easier to read, do
not evaluate their arguments multiple times, and allow the compiler to perform type checking on the
arguments and return value.

Inline functions

Inline functions present a hazard of their own, though. Programmers can become enamored of the per-
ceived efficiency inherent in avoiding a function call and fill a source file with inline functions. Those
functions, however, can actually reduce performance. Since their code is replicated at each call site, they
end up bloating the size of the compiled kernel. That, in turn, creates pressure on the processor’s mem-
ory caches, which can slow execution dramatically. Inline functions, as a rule, should be quite small and

28 Chapter 3. A guide to the Kernel Development Process

Linux Kernel Development Documentation, Release 4.13.0-rc4+

relatively rare. The cost of a function call, after all, is not that high; the creation of large numbers of inline
functions is a classic example of premature optimization.
In general, kernel programmers ignore cache effects at their peril. The classic time/space tradeoff taught
in beginning data structures classes often does not apply to contemporary hardware. Space is time, in
that a larger program will run slower than one which is more compact.
More recent compilers take an increasingly active role in deciding whether a given function should actually
be inlined or not. So the liberal placement of “inline” keywords may not just be excessive; it could also
be irrelevant.

Locking

In May, 2006, the “Devicescape” networking stack was, with great fanfare, released under the GPL and
made available for inclusion in the mainline kernel. This donation was welcome news; support for wireless
networking in Linux was considered substandard at best, and the Devicescape stack offered the promise
of fixing that situation. Yet, this code did not actually make it into the mainline until June, 2007 (2.6.22).
What happened?
This code showed a number of signs of having been developed behind corporate doors. But one large
problem in particular was that it was not designed to work on multiprocessor systems. Before this net-
working stack (now called mac80211) could be merged, a locking scheme needed to be retrofitted onto
it.
Once upon a time, Linux kernel code could be developed without thinking about the concurrency issues
presented bymultiprocessor systems. Now, however, this document is being written on a dual-core laptop.
Even on single-processor systems, work being done to improve responsiveness will raise the level of
concurrency within the kernel. The days when kernel code could be written without thinking about locking
are long past.
Any resource (data structures, hardware registers, etc.) which could be accessed concurrently by more
than one thread must be protected by a lock. New code should be written with this requirement in mind;
retrofitting locking after the fact is a rather more difficult task. Kernel developers should take the time
to understand the available locking primitives well enough to pick the right tool for the job. Code which
shows a lack of attention to concurrency will have a difficult path into the mainline.

Regressions

One final hazard worth mentioning is this: it can be tempting to make a change (which may bring big
improvements) which causes something to break for existing users. This kind of change is called a “re-
gression,” and regressions have become most unwelcome in the mainline kernel. With few exceptions,
changes which cause regressions will be backed out if the regression cannot be fixed in a timely manner.
Far better to avoid the regression in the first place.
It is often argued that a regression can be justified if it causes things to work for more people than it
creates problems for. Why not make a change if it brings new functionality to ten systems for each one it
breaks? The best answer to this question was expressed by Linus in July, 2007:

So we don't fix bugs by introducing new problems. That way lies
madness, and nobody ever knows if you actually make any real
progress at all. Is it two steps forwards, one step back, or one
step forward and two steps back?

(http://lwn.net/Articles/243460/).
An especially unwelcome type of regression is any sort of change to the user-space ABI. Once an interface
has been exported to user space, it must be supported indefinitely. This fact makes the creation of user-
space interfaces particularly challenging: since they cannot be changed in incompatible ways, they must
be done right the first time. For this reason, a great deal of thought, clear documentation, and wide review
for user-space interfaces is always required.

*. Getting the code right 29

http://lwn.net/Articles/243460/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* Code checking tools

For now, at least, the writing of error-free code remains an ideal that few of us can reach. What we can
hope to do, though, is to catch and fix as many of those errors as possible before our code goes into the
mainline kernel. To that end, the kernel developers have put together an impressive array of tools which
can catch a wide variety of obscure problems in an automated way. Any problem caught by the computer
is a problem which will not afflict a user later on, so it stands to reason that the automated tools should
be used whenever possible.
The first step is simply to heed the warnings produced by the compiler. Contemporary versions of gcc
can detect (and warn about) a large number of potential errors. Quite often, these warnings point to
real problems. Code submitted for review should, as a rule, not produce any compiler warnings. When
silencing warnings, take care to understand the real cause and try to avoid “fixes” which make the warning
go away without addressing its cause.
Note that not all compiler warnings are enabled by default. Build the kernel with “make EXTRA_CFLAGS=-
W” to get the full set.
The kernel provides several configuration options which turn on debugging features; most of these are
found in the “kernel hacking” submenu. Several of these options should be turned on for any kernel used
for development or testing purposes. In particular, you should turn on:
• ENABLE_WARN_DEPRECATED, ENABLE_MUST_CHECK, and FRAME_WARN to get an extra set of warn-
ings for problems like the use of deprecated interfaces or ignoring an important return value from
a function. The output generated by these warnings can be verbose, but one need not worry about
warnings from other parts of the kernel.

• DEBUG_OBJECTS will add code to track the lifetime of various objects created by the kernel and
warn when things are done out of order. If you are adding a subsystem which creates (and exports)
complex objects of its own, consider adding support for the object debugging infrastructure.

• DEBUG_SLAB can find a variety of memory allocation and use errors; it should be used on most
development kernels.

• DEBUG_SPINLOCK, DEBUG_ATOMIC_SLEEP, and DEBUG_MUTEXES will find a number of common lock-
ing errors.

There are quite a few other debugging options, some of which will be discussed below. Some of them have
a significant performance impact and should not be used all of the time. But some time spent learning
the available options will likely be paid back many times over in short order.
One of the heavier debugging tools is the locking checker, or “lockdep.” This tool will track the acquisition
and release of every lock (spinlock or mutex) in the system, the order in which locks are acquired relative to
each other, the current interrupt environment, andmore. It can then ensure that locks are always acquired
in the same order, that the same interrupt assumptions apply in all situations, and so on. In other words,
lockdep can find a number of scenarios in which the system could, on rare occasion, deadlock. This kind
of problem can be painful (for both developers and users) in a deployed system; lockdep allows them to
be found in an automated manner ahead of time. Code with any sort of non-trivial locking should be run
with lockdep enabled before being submitted for inclusion.
As a diligent kernel programmer, you will, beyond doubt, check the return status of any operation (such as
a memory allocation) which can fail. The fact of the matter, though, is that the resulting failure recovery
paths are, probably, completely untested. Untested code tends to be broken code; you could be much
more confident of your code if all those error-handling paths had been exercised a few times.
The kernel provides a fault injection framework which can do exactly that, especially where memory al-
locations are involved. With fault injection enabled, a configurable percentage of memory allocations
will be made to fail; these failures can be restricted to a specific range of code. Running with fault
injection enabled allows the programmer to see how the code responds when things go badly. See
Documentation/fault-injection/fault-injection.txt for more information on how to use this facility.
Other kinds of errors can be found with the “sparse” static analysis tool. With sparse, the programmer
can be warned about confusion between user-space and kernel-space addresses, mixture of big-endian
and small-endian quantities, the passing of integer values where a set of bit flags is expected, and so on.

30 Chapter 3. A guide to the Kernel Development Process

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Sparsemust be installed separately (it can be found at https://sparse.wiki.kernel.org/index.php/Main_Page
if your distributor does not package it); it can then be run on the code by adding “C=1” to your make
command.
The “Coccinelle” tool (http://coccinelle.lip6.fr/) is able to find a wide variety of potential coding problems; it
can also propose fixes for those problems. Quite a few “semantic patches” for the kernel have been pack-
aged under the scripts/coccinelle directory; running “make coccicheck” will run through those semantic
patches and report on any problems found. See Documentation/coccinelle.txt for more information.
Other kinds of portability errors are best found by compiling your code for other architectures. If you do
not happen to have an S/390 system or a Blackfin development board handy, you can still perform the
compilation step. A large set of cross compilers for x86 systems can be found at

http://www.kernel.org/pub/tools/crosstool/
Some time spent installing and using these compilers will help avoid embarrassment later.

* Documentation

Documentation has often been more the exception than the rule with kernel development. Even so,
adequate documentation will help to ease the merging of new code into the kernel, make life easier for
other developers, and will be helpful for your users. In many cases, the addition of documentation has
become essentially mandatory.
The first piece of documentation for any patch is its associated changelog. Log entries should describe
the problem being solved, the form of the solution, the people who worked on the patch, any relevant
effects on performance, and anything else that might be needed to understand the patch. Be sure that
the changelog says why the patch is worth applying; a surprising number of developers fail to provide
that information.
Any code which adds a new user-space interface - including new sysfs or /proc files - should include
documentation of that interface which enables user-space developers to know what they are working
with. See Documentation/ABI/README for a description of how this documentation should be formatted
and what information needs to be provided.
The file Documentation/admin-guide/kernel-parameters.rst describes all of the kernel’s boot-time pa-
rameters. Any patch which adds new parameters should add the appropriate entries to this file.
Any new configuration options must be accompanied by help text which clearly explains the options and
when the user might want to select them.
Internal API information for many subsystems is documented by way of specially-formatted comments;
these comments can be extracted and formatted in a number of ways by the “kernel-doc” script. If you are
working within a subsystem which has kerneldoc comments, you should maintain them and add them,
as appropriate, for externally-available functions. Even in areas which have not been so documented,
there is no harm in adding kerneldoc comments for the future; indeed, this can be a useful activity for
beginning kernel developers. The format of these comments, along with some information on how to
create kerneldoc templates can be found at Documentation/doc-guide/ .
Anybody who reads through a significant amount of existing kernel code will note that, often, comments
are most notable by their absence. Once again, the expectations for new code are higher than they were
in the past; merging uncommented code will be harder. That said, there is little desire for verbosely-
commented code. The code should, itself, be readable, with comments explaining the more subtle as-
pects.
Certain things should always be commented. Uses of memory barriers should be accompanied by a line
explaining why the barrier is necessary. The locking rules for data structures generally need to be ex-
plained somewhere. Major data structures need comprehensive documentation in general. Non-obvious
dependencies between separate bits of code should be pointed out. Anything which might tempt a code
janitor to make an incorrect “cleanup” needs a comment saying why it is done the way it is. And so on.

*. Getting the code right 31

https://sparse.wiki.kernel.org/index.php/Main_Page
http://coccinelle.lip6.fr/
http://www.kernel.org/pub/tools/crosstool/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* Internal API changes

The binary interface provided by the kernel to user space cannot be broken except under the most severe
circumstances. The kernel’s internal programming interfaces, instead, are highly fluid and can be changed
when the need arises. If you find yourself having to work around a kernel API, or simply not using a specific
functionality because it does not meet your needs, that may be a sign that the API needs to change. As
a kernel developer, you are empowered to make such changes.
There are, of course, some catches. API changes can be made, but they need to be well justified. So
any patch making an internal API change should be accompanied by a description of what the change is
and why it is necessary. This kind of change should also be broken out into a separate patch, rather than
buried within a larger patch.
The other catch is that a developer who changes an internal API is generally charged with the task of
fixing any code within the kernel tree which is broken by the change. For a widely-used function, this duty
can lead to literally hundreds or thousands of changes - many of which are likely to conflict with work
being done by other developers. Needless to say, this can be a large job, so it is best to be sure that the
justification is solid. Note that the Coccinelle tool can help with wide-ranging API changes.
When making an incompatible API change, one should, whenever possible, ensure that code which has
not been updated is caught by the compiler. This will help you to be sure that you have found all in-tree
uses of that interface. It will also alert developers of out-of-tree code that there is a change that they need
to respond to. Supporting out-of-tree code is not something that kernel developers need to be worried
about, but we also do not have to make life harder for out-of-tree developers than it needs to be.

* Posting patches

Sooner or later, the time comes when your work is ready to be presented to the community for review
and, eventually, inclusion into the mainline kernel. Unsurprisingly, the kernel development community
has evolved a set of conventions and procedures which are used in the posting of patches; following them
will make life much easier for everybody involved. This document will attempt to cover these expecta-
tions in reasonable detail; more information can also be found in the files process/submitting-patches.rst,
process/submitting-drivers.rst, and process/submit-checklist.rst in the kernel documentation directory.

* When to post

There is a constant temptation to avoid posting patches before they are completely “ready.” For simple
patches, that is not a problem. If the work being done is complex, though, there is a lot to be gained
by getting feedback from the community before the work is complete. So you should consider posting
in-progress work, or even making a git tree available so that interested developers can catch up with your
work at any time.
When posting code which is not yet considered ready for inclusion, it is a good idea to say so in the posting
itself. Also mention any major work which remains to be done and any known problems. Fewer people
will look at patches which are known to be half-baked, but those who do will come in with the idea that
they can help you drive the work in the right direction.

* Before creating patches

There are a number of things which should be done before you consider sending patches to the develop-
ment community. These include:
• Test the code to the extent that you can. Make use of the kernel’s debugging tools, ensure that the
kernel will build with all reasonable combinations of configuration options, use cross-compilers to
build for different architectures, etc.

• Make sure your code is compliant with the kernel coding style guidelines.

32 Chapter 3. A guide to the Kernel Development Process

Linux Kernel Development Documentation, Release 4.13.0-rc4+

• Does your change have performance implications? If so, you should run benchmarks showing what
the impact (or benefit) of your change is; a summary of the results should be included with the patch.

• Be sure that you have the right to post the code. If this work was done for an employer, the employer
likely has a right to the work and must be agreeable with its release under the GPL.

As a general rule, putting in some extra thought before posting code almost always pays back the effort
in short order.

* Patch preparation

The preparation of patches for posting can be a surprising amount of work, but, once again, attempting
to save time here is not generally advisable even in the short term.
Patches must be prepared against a specific version of the kernel. As a general rule, a patch should
be based on the current mainline as found in Linus’s git tree. When basing on mainline, start with a
well-known release point - a stable or -rc release - rather than branching off the mainline at an arbitrary
spot.
It may become necessary to make versions against -mm, linux-next, or a subsystem tree, though, to
facilitate wider testing and review. Depending on the area of your patch and what is going on elsewhere,
basing a patch against these other trees can require a significant amount of work resolving conflicts and
dealing with API changes.
Only the most simple changes should be formatted as a single patch; everything else should be made
as a logical series of changes. Splitting up patches is a bit of an art; some developers spend a long time
figuring out how to do it in the way that the community expects. There are a few rules of thumb, however,
which can help considerably:
• The patch series you post will almost certainly not be the series of changes found in your working
revision control system. Instead, the changes you have made need to be considered in their final
form, then split apart in ways which make sense. The developers are interested in discrete, self-
contained changes, not the path you took to get to those changes.

• Each logically independent change should be formatted as a separate patch. These changes can
be small (“add a field to this structure”) or large (adding a significant new driver, for example), but
they should be conceptually small and amenable to a one-line description. Each patch should make
a specific change which can be reviewed on its own and verified to do what it says it does.

• As a way of restating the guideline above: do not mix different types of changes in the same patch.
If a single patch fixes a critical security bug, rearranges a few structures, and reformats the code,
there is a good chance that it will be passed over and the important fix will be lost.

• Each patch should yield a kernel which builds and runs properly; if your patch series is interrupted
in the middle, the result should still be a working kernel. Partial application of a patch series is a
common scenario when the “git bisect” tool is used to find regressions; if the result is a broken
kernel, you will make life harder for developers and users who are engaging in the noble work of
tracking down problems.

• Do not overdo it, though. One developer once posted a set of edits to a single file as 500 separate
patches - an act which did not make him the most popular person on the kernel mailing list. A single
patch can be reasonably large as long as it still contains a single logical change.

• It can be tempting to add a whole new infrastructure with a series of patches, but to leave that
infrastructure unused until the final patch in the series enables the whole thing. This temptation
should be avoided if possible; if that series adds regressions, bisection will finger the last patch as
the one which caused the problem, even though the real bug is elsewhere. Whenever possible, a
patch which adds new code should make that code active immediately.

Working to create the perfect patch series can be a frustrating process which takes quite a bit of time and
thought after the “real work” has been done. When done properly, though, it is time well spent.

*. Posting patches 33

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* Patch formatting and changelogs

So now you have a perfect series of patches for posting, but the work is not done quite yet. Each patch
needs to be formatted into a message which quickly and clearly communicates its purpose to the rest of
the world. To that end, each patch will be composed of the following:
• An optional “From” line naming the author of the patch. This line is only necessary if you are passing
on somebody else’s patch via email, but it never hurts to add it when in doubt.

• A one-line description of what the patch does. This message should be enough for a reader who sees
it with no other context to figure out the scope of the patch; it is the line that will show up in the
“short form” changelogs. This message is usually formatted with the relevant subsystem name first,
followed by the purpose of the patch. For example:

gpio: fix build on CONFIG_GPIO_SYSFS=n

• A blank line followed by a detailed description of the contents of the patch. This description can be
as long as is required; it should say what the patch does and why it should be applied to the kernel.

• One or more tag lines, with, at a minimum, one Signed-off-by: line from the author of the patch. Tags
will be described in more detail below.

The items above, together, form the changelog for the patch. Writing good changelogs is a crucial but
often-neglected art; it’s worth spending another moment discussing this issue. When writing a changelog,
you should bear in mind that a number of different people will be reading your words. These include sub-
system maintainers and reviewers who need to decide whether the patch should be included, distributors
and other maintainers trying to decide whether a patch should be backported to other kernels, bug hunters
wondering whether the patch is responsible for a problem they are chasing, users who want to know how
the kernel has changed, and more. A good changelog conveys the needed information to all of these
people in the most direct and concise way possible.
To that end, the summary line should describe the effects of and motivation for the change as well as
possible given the one-line constraint. The detailed description can then amplify on those topics and
provide any needed additional information. If the patch fixes a bug, cite the commit which introduced the
bug if possible (and please provide both the commit ID and the title when citing commits). If a problem is
associated with specific log or compiler output, include that output to help others searching for a solution
to the same problem. If the change is meant to support other changes coming in later patch, say so. If
internal APIs are changed, detail those changes and how other developers should respond. In general,
the more you can put yourself into the shoes of everybody who will be reading your changelog, the better
that changelog (and the kernel as a whole) will be.
Needless to say, the changelog should be the text used when committing the change to a revision control
system. It will be followed by:
• The patch itself, in the unified (“-u”) patch format. Using the “-p” option to diff will associate function
names with changes, making the resulting patch easier for others to read.

You should avoid including changes to irrelevant files (those generated by the build process, for example,
or editor backup files) in the patch. The file “dontdiff” in the Documentation directory can help in this
regard; pass it to diff with the “-X” option.
The tags mentioned above are used to describe how various developers have been associated with the
development of this patch. They are described in detail in the process/submitting-patches.rst document;
what follows here is a brief summary. Each of these lines has the format:

tag: Full Name <email address> optional-other-stuff

The tags in common use are:
• Signed-off-by: this is a developer’s certification that he or she has the right to submit the patch for
inclusion into the kernel. It is an agreement to the Developer’s Certificate of Origin, the full text of
which can be found in Documentation/process/submitting-patches.rst. Code without a proper signoff
cannot be merged into the mainline.

34 Chapter 3. A guide to the Kernel Development Process

Linux Kernel Development Documentation, Release 4.13.0-rc4+

• Acked-by: indicates an agreement by another developer (often a maintainer of the relevant code)
that the patch is appropriate for inclusion into the kernel.

• Tested-by: states that the named person has tested the patch and found it to work.
• Reviewed-by: the named developer has reviewed the patch for correctness; see the reviewer’s state-
ment in Documentation/process/submitting-patches.rst for more detail.

• Reported-by: names a user who reported a problem which is fixed by this patch; this tag is used to
give credit to the (often underappreciated) people who test our code and let us know when things
do not work correctly.

• Cc: the named person received a copy of the patch and had the opportunity to comment on it.
Be careful in the addition of tags to your patches: only Cc: is appropriate for addition without the explicit
permission of the person named.

* Sending the patch

Before you mail your patches, there are a couple of other things you should take care of:
• Are you sure that your mailer will not corrupt the patches? Patches which have had gratuitous white-
space changes or line wrapping performed by the mail client will not apply at the other end, and
often will not be examined in any detail. If there is any doubt at all, mail the patch to yourself and
convince yourself that it shows up intact.
Documentation/process/email-clients.rst has some helpful hints on making specific mail clients work
for sending patches.

• Are you sure your patch is free of silly mistakes? You should always run patches through
scripts/checkpatch.pl and address the complaints it comes up with. Please bear in mind that check-
patch.pl, while being the embodiment of a fair amount of thought about what kernel patches should
look like, is not smarter than you. If fixing a checkpatch.pl complaint would make the code worse,
don’t do it.

Patches should always be sent as plain text. Please do not send them as attachments; that makes it much
harder for reviewers to quote sections of the patch in their replies. Instead, just put the patch directly into
your message.
When mailing patches, it is important to send copies to anybody who might be interested in it. Unlike
some other projects, the kernel encourages people to err on the side of sending too many copies; don’t
assume that the relevant people will see your posting on the mailing lists. In particular, copies should go
to:
• The maintainer(s) of the affected subsystem(s). As described earlier, the MAINTAINERS file is the
first place to look for these people.

• Other developers who have been working in the same area - especially those who might be working
there now. Using git to see who else has modified the files you are working on can be helpful.

• If you are responding to a bug report or a feature request, copy the original poster as well.
• Send a copy to the relevant mailing list, or, if nothing else applies, the linux-kernel list.
• If you are fixing a bug, think about whether the fix should go into the next stable update. If so,
stable@vger.kernel.org should get a copy of the patch. Also add a “Cc: stable@vger.kernel.org” to
the tags within the patch itself; that will cause the stable team to get a notification when your fix
goes into the mainline.

When selecting recipients for a patch, it is good to have an idea of who you think will eventually accept
the patch and get it merged. While it is possible to send patches directly to Linus Torvalds and have him
merge them, things are not normally done that way. Linus is busy, and there are subsystem maintainers
who watch over specific parts of the kernel. Usually you will be wanting that maintainer to merge your
patches. If there is no obvious maintainer, Andrew Morton is often the patch target of last resort.
Patches need good subject lines. The canonical format for a patch line is something like:

*. Posting patches 35

mailto:stable@vger.kernel.org
mailto:stable@vger.kernel.org

Linux Kernel Development Documentation, Release 4.13.0-rc4+

[PATCH nn/mm] subsys: one-line description of the patch

where “nn” is the ordinal number of the patch, “mm” is the total number of patches in the series, and
“subsys” is the name of the affected subsystem. Clearly, nn/mm can be omitted for a single, standalone
patch.
If you have a significant series of patches, it is customary to send an introductory description as part
zero. This convention is not universally followed though; if you use it, remember that information in the
introduction does not make it into the kernel changelogs. So please ensure that the patches, themselves,
have complete changelog information.
In general, the second and following parts of a multi-part patch should be sent as a reply to the first part
so that they all thread together at the receiving end. Tools like git and quilt have commands to mail out a
set of patches with the proper threading. If you have a long series, though, and are using git, please stay
away from the –chain-reply-to option to avoid creating exceptionally deep nesting.

* Followthrough

At this point, you have followed the guidelines given so far and, with the addition of your own engineering
skills, have posted a perfect series of patches. One of the biggest mistakes that even experienced kernel
developers can make is to conclude that their work is now done. In truth, posting patches indicates a
transition into the next stage of the process, with, possibly, quite a bit of work yet to be done.
It is a rare patch which is so good at its first posting that there is no room for improvement. The kernel
development process recognizes this fact, and, as a result, is heavily oriented toward the improvement
of posted code. You, as the author of that code, will be expected to work with the kernel community to
ensure that your code is up to the kernel’s quality standards. A failure to participate in this process is
quite likely to prevent the inclusion of your patches into the mainline.

* Working with reviewers

A patch of any significance will result in a number of comments from other developers as they review
the code. Working with reviewers can be, for many developers, the most intimidating part of the kernel
development process. Life can be made much easier, though, if you keep a few things in mind:
• If you have explained your patch well, reviewers will understand its value and why you went to the
trouble of writing it. But that value will not keep them from asking a fundamental question: what will
it be like to maintain a kernel with this code in it five or ten years later? Many of the changes you may
be asked to make - from coding style tweaks to substantial rewrites - come from the understanding
that Linux will still be around and under development a decade from now.

• Code review is hard work, and it is a relatively thankless occupation; people remember who wrote
kernel code, but there is little lasting fame for those who reviewed it. So reviewers can get grumpy,
especially when they see the same mistakes being made over and over again. If you get a review
which seems angry, insulting, or outright offensive, resist the impulse to respond in kind. Code review
is about the code, not about the people, and code reviewers are not attacking you personally.

• Similarly, code reviewers are not trying to promote their employers’ agendas at the expense of
your own. Kernel developers often expect to be working on the kernel years from now, but they
understand that their employer could change. They truly are, almost without exception, working
toward the creation of the best kernel they can; they are not trying to create discomfort for their
employers’ competitors.

What all of this comes down to is that, when reviewers send you comments, you need to pay attention
to the technical observations that they are making. Do not let their form of expression or your own pride
keep that from happening. When you get review comments on a patch, take the time to understand what
the reviewer is trying to say. If possible, fix the things that the reviewer is asking you to fix. And respond
back to the reviewer: thank them, and describe how you will answer their questions.

36 Chapter 3. A guide to the Kernel Development Process

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Note that you do not have to agree with every change suggested by reviewers. If you believe that the
reviewer has misunderstood your code, explain what is really going on. If you have a technical objection
to a suggested change, describe it and justify your solution to the problem. If your explanations make
sense, the reviewer will accept them. Should your explanation not prove persuasive, though, especially
if others start to agree with the reviewer, take some time to think things over again. It can be easy to
become blinded by your own solution to a problem to the point that you don’t realize that something is
fundamentally wrong or, perhaps, you’re not even solving the right problem.
Andrew Morton has suggested that every review comment which does not result in a code change should
result in an additional code comment instead; that can help future reviewers avoid the questions which
came up the first time around.
One fatal mistake is to ignore review comments in the hope that they will go away. They will not go away.
If you repost code without having responded to the comments you got the time before, you’re likely to
find that your patches go nowhere.
Speaking of reposting code: please bear in mind that reviewers are not going to remember all the details
of the code you posted the last time around. So it is always a good idea to remind reviewers of previously
raised issues and how you dealt with them; the patch changelog is a good place for this kind of information.
Reviewers should not have to search through list archives to familiarize themselves with what was said
last time; if you help them get a running start, they will be in a better mood when they revisit your code.
What if you’ve tried to do everything right and things still aren’t going anywhere? Most technical dis-
agreements can be resolved through discussion, but there are times when somebody simply has to make
a decision. If you honestly believe that this decision is going against you wrongly, you can always try
appealing to a higher power. As of this writing, that higher power tends to be Andrew Morton. Andrew
has a great deal of respect in the kernel development community; he can often unjam a situation which
seems to be hopelessly blocked. Appealing to Andrew should not be done lightly, though, and not before
all other alternatives have been explored. And bear in mind, of course, that he may not agree with you
either.

* What happens next

If a patch is considered to be a good thing to add to the kernel, and once most of the review issues have
been resolved, the next step is usually entry into a subsystem maintainer’s tree. How that works varies
from one subsystem to the next; each maintainer has his or her own way of doing things. In particular,
there may bemore than one tree - one, perhaps, dedicated to patches planned for the next merge window,
and another for longer-term work.
For patches applying to areas for which there is no obvious subsystem tree (memory management
patches, for example), the default tree often ends up being -mm. Patches which affect multiple sub-
systems can also end up going through the -mm tree.
Inclusion into a subsystem tree can bring a higher level of visibility to a patch. Now other developers work-
ing with that tree will get the patch by default. Subsystem trees typically feed linux-next as well, making
their contents visible to the development community as a whole. At this point, there’s a good chance that
you will get more comments from a new set of reviewers; these comments need to be answered as in the
previous round.
What may also happen at this point, depending on the nature of your patch, is that conflicts with work
being done by others turn up. In the worst case, heavy patch conflicts can result in some work being put on
the back burner so that the remaining patches can be worked into shape andmerged. Other times, conflict
resolution will involve working with the other developers and, possibly, moving some patches between
trees to ensure that everything applies cleanly. This work can be a pain, but count your blessings: before
the advent of the linux-next tree, these conflicts often only turned up during the merge window and had
to be addressed in a hurry. Now they can be resolved at leisure, before the merge window opens.
Some day, if all goes well, you’ll log on and see that your patch has been merged into the mainline kernel.
Congratulations! Once the celebration is complete (and you have added yourself to the MAINTAINERS
file), though, it is worth remembering an important little fact: the job still is not done. Merging into the
mainline brings its own challenges.

*. Followthrough 37

Linux Kernel Development Documentation, Release 4.13.0-rc4+

To begin with, the visibility of your patch has increased yet again. There may be a new round of comments
from developers who had not been aware of the patch before. It may be tempting to ignore them, since
there is no longer any question of your code being merged. Resist that temptation, though; you still need
to be responsive to developers who have questions or suggestions.
More importantly, though: inclusion into the mainline puts your code into the hands of a much larger
group of testers. Even if you have contributed a driver for hardware which is not yet available, you will
be surprised by how many people will build your code into their kernels. And, of course, where there are
testers, there will be bug reports.
The worst sort of bug reports are regressions. If your patch causes a regression, you’ll find an uncomfort-
able number of eyes upon you; regressions need to be fixed as soon as possible. If you are unwilling or
unable to fix the regression (and nobody else does it for you), your patch will almost certainly be removed
during the stabilization period. Beyond negating all of the work you have done to get your patch into the
mainline, having a patch pulled as the result of a failure to fix a regression could well make it harder for
you to get work merged in the future.
After any regressions have been dealt with, there may be other, ordinary bugs to deal with. The stabi-
lization period is your best opportunity to fix these bugs and ensure that your code’s debut in a mainline
kernel release is as solid as possible. So, please, answer bug reports, and fix the problems if at all possible.
That’s what the stabilization period is for; you can start creating cool new patches once any problems with
the old ones have been taken care of.
And don’t forget that there are other milestones which may also create bug reports: the next mainline
stable release, when prominent distributors pick up a version of the kernel containing your patch, etc.
Continuing to respond to these reports is a matter of basic pride in your work. If that is insufficient
motivation, though, it’s also worth considering that the development community remembers developers
who lose interest in their code after it’s merged. The next time you post a patch, they will be evaluating
it with the assumption that you will not be around to maintain it afterward.

* Other things that can happen

One day, you may open your mail client and see that somebody has mailed you a patch to your code.
That is one of the advantages of having your code out there in the open, after all. If you agree with the
patch, you can either forward it on to the subsystem maintainer (be sure to include a proper From: line
so that the attribution is correct, and add a signoff of your own), or send an Acked-by: response back and
let the original poster send it upward.
If you disagree with the patch, send a polite response explaining why. If possible, tell the author what
changes need to be made to make the patch acceptable to you. There is a certain resistance to merging
patches which are opposed by the author and maintainer of the code, but it only goes so far. If you are
seen as needlessly blocking good work, those patches will eventually flow around you and get into the
mainline anyway. In the Linux kernel, nobody has absolute veto power over any code. Except maybe
Linus.
On very rare occasion, you may see something completely different: another developer posts a different
solution to your problem. At that point, chances are that one of the two patches will not be merged, and
“mine was here first” is not considered to be a compelling technical argument. If somebody else’s patch
displaces yours and gets into the mainline, there is really only one way to respond: be pleased that your
problem got solved and get on with your work. Having one’s work shoved aside in this manner can be
hurtful and discouraging, but the community will remember your reaction long after they have forgotten
whose patch actually got merged.

* Advanced topics

At this point, hopefully, you have a handle on how the development process works. There is still more to
learn, however! This section will cover a number of topics which can be helpful for developers wanting to
become a regular part of the Linux kernel development process.

38 Chapter 3. A guide to the Kernel Development Process

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* Managing patches with git

The use of distributed version control for the kernel began in early 2002, when Linus first started playing
with the proprietary BitKeeper application. While BitKeeper was controversial, the approach to software
version management it embodied most certainly was not. Distributed version control enabled an imme-
diate acceleration of the kernel development project. In current times, there are several free alternatives
to BitKeeper. For better or for worse, the kernel project has settled on git as its tool of choice.
Managing patches with git can make life much easier for the developer, especially as the volume of those
patches grows. Git also has its rough edges and poses certain hazards; it is a young and powerful tool
which is still being civilized by its developers. This document will not attempt to teach the reader how to
use git; that would be sufficient material for a long document in its own right. Instead, the focus here will
be on how git fits into the kernel development process in particular. Developers who wish to come up to
speed with git will find more information at:

http://git-scm.com/
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html

and on various tutorials found on the web.
The first order of business is to read the above sites and get a solid understanding of how git works before
trying to use it to make patches available to others. A git-using developer should be able to obtain a copy
of the mainline repository, explore the revision history, commit changes to the tree, use branches, etc.
An understanding of git’s tools for the rewriting of history (such as rebase) is also useful. Git comes with
its own terminology and concepts; a new user of git should know about refs, remote branches, the index,
fast-forward merges, pushes and pulls, detached heads, etc. It can all be a little intimidating at the outset,
but the concepts are not that hard to grasp with a bit of study.
Using git to generate patches for submission by email can be a good exercise while coming up to speed.
When you are ready to start putting up git trees for others to look at, you will, of course, need a server
that can be pulled from. Setting up such a server with git-daemon is relatively straightforward if you have
a system which is accessible to the Internet. Otherwise, free, public hosting sites (Github, for example)
are starting to appear on the net. Established developers can get an account on kernel.org, but those are
not easy to come by; see http://kernel.org/faq/ for more information.
The normal git workflow involves the use of a lot of branches. Each line of development can be separated
into a separate “topic branch” andmaintained independently. Branches in git are cheap, there is no reason
to not make free use of them. And, in any case, you should not do your development in any branch which
you intend to ask others to pull from. Publicly-available branches should be created with care; merge in
patches from development branches when they are in complete form and ready to go - not before.
Git provides some powerful tools which can allow you to rewrite your development history. An inconvenient
patch (one which breaks bisection, say, or which has some other sort of obvious bug) can be fixed in
place or made to disappear from the history entirely. A patch series can be rewritten as if it had been
written on top of today’s mainline, even though you have been working on it for months. Changes can be
transparently shifted from one branch to another. And so on. Judicious use of git’s ability to revise history
can help in the creation of clean patch sets with fewer problems.
Excessive use of this capability can lead to other problems, though, beyond a simple obsession for the
creation of the perfect project history. Rewriting history will rewrite the changes contained in that history,
turning a tested (hopefully) kernel tree into an untested one. But, beyond that, developers cannot easily
collaborate if they do not have a shared view of the project history; if you rewrite history which other
developers have pulled into their repositories, you will make life much more difficult for those developers.
So a simple rule of thumb applies here: history which has been exported to others should generally be
seen as immutable thereafter.
So, once you push a set of changes to your publicly-available server, those changes should not be rewrit-
ten. Git will attempt to enforce this rule if you try to push changes which do not result in a fast-forward
merge (i.e. changes which do not share the same history). It is possible to override this check, and there
may be times when it is necessary to rewrite an exported tree. Moving changesets between trees to avoid
conflicts in linux-next is one example. But such actions should be rare. This is one of the reasons why

*. Advanced topics 39

http://git-scm.com/
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
http://kernel.org/faq/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

development should be done in private branches (which can be rewritten if necessary) and only moved
into public branches when it’s in a reasonably advanced state.
As the mainline (or other tree upon which a set of changes is based) advances, it is tempting to merge
with that tree to stay on the leading edge. For a private branch, rebasing can be an easy way to keep up
with another tree, but rebasing is not an option once a tree is exported to the world. Once that happens, a
full merge must be done. Merging occasionally makes good sense, but overly frequent merges can clutter
the history needlessly. Suggested technique in this case is to merge infrequently, and generally only at
specific release points (such as a mainline -rc release). If you are nervous about specific changes, you
can always perform test merges in a private branch. The git “rerere” tool can be useful in such situations;
it remembers how merge conflicts were resolved so that you don’t have to do the same work twice.
One of the biggest recurring complaints about tools like git is this: the mass movement of patches from
one repository to another makes it easy to slip in ill-advised changes which go into the mainline below the
review radar. Kernel developers tend to get unhappy when they see that kind of thing happening; putting
up a git tree with unreviewed or off-topic patches can affect your ability to get trees pulled in the future.
Quoting Linus:

You can send me patches, but for me to pull a git patch from you, I
need to know that you know what you're doing, and I need to be able
to trust things *without* then having to go and check every
individual change by hand.

(http://lwn.net/Articles/224135/).
To avoid this kind of situation, ensure that all patches within a given branch stick closely to the associated
topic; a “driver fixes” branch should not be making changes to the core memory management code. And,
most importantly, do not use a git tree to bypass the review process. Post an occasional summary of the
tree to the relevant list, and, when the time is right, request that the tree be included in linux-next.
If and when others start to send patches for inclusion into your tree, don’t forget to review them. Also
ensure that you maintain the correct authorship information; the git “am” tool does its best in this regard,
but you may have to add a “From:” line to the patch if it has been relayed to you via a third party.
When requesting a pull, be sure to give all the relevant information: where your tree is, what branch
to pull, and what changes will result from the pull. The git request-pull command can be helpful in this
regard; it will format the request as other developers expect, and will also check to be sure that you have
remembered to push those changes to the public server.

* Reviewing patches

Some readers will certainly object to putting this section with “advanced topics” on the grounds that even
beginning kernel developers should be reviewing patches. It is certainly true that there is no better way
to learn how to program in the kernel environment than by looking at code posted by others. In addition,
reviewers are forever in short supply; by looking at code you can make a significant contribution to the
process as a whole.
Reviewing code can be an intimidating prospect, especially for a new kernel developer who may well feel
nervous about questioning code - in public - which has been posted by those with more experience. Even
code written by the most experienced developers can be improved, though. Perhaps the best piece of
advice for reviewers (all reviewers) is this: phrase review comments as questions rather than criticisms.
Asking “how does the lock get released in this path?” will always work better than stating “the locking
here is wrong.”
Different developers will review code from different points of view. Some are mostly concerned with
coding style and whether code lines have trailing white space. Others will focus primarily on whether
the change implemented by the patch as a whole is a good thing for the kernel or not. Yet others will
check for problematic locking, excessive stack usage, possible security issues, duplication of code found
elsewhere, adequate documentation, adverse effects on performance, user-space ABI changes, etc. All
types of review, if they lead to better code going into the kernel, are welcome and worthwhile.

40 Chapter 3. A guide to the Kernel Development Process

http://lwn.net/Articles/224135/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* For more information

There are numerous sources of information on Linux kernel development and related topics. First among
those will always be the Documentation directory found in the kernel source distribution. The top-level pro-
cess/howto.rst file is an important starting point; process/submitting-patches.rst and process/submitting-
drivers.rst are also something which all kernel developers should read. Many internal kernel APIs are
documented using the kerneldoc mechanism; “make htmldocs” or “make pdfdocs” can be used to gen-
erate those documents in HTML or PDF format (though the version of TeX shipped by some distributions
runs into internal limits and fails to process the documents properly).
Various web sites discuss kernel development at all levels of detail. Your author would like to humbly
suggest http://lwn.net/ as a source; information on many specific kernel topics can be found via the LWN
kernel index at:

http://lwn.net/Kernel/Index/
Beyond that, a valuable resource for kernel developers is:

http://kernelnewbies.org/
And, of course, one should not forget http://kernel.org/, the definitive location for kernel release informa-
tion.
There are a number of books on kernel development:

Linux Device Drivers, 3rd Edition (Jonathan Corbet, Alessandro Rubini, and Greg Kroah-
Hartman). Online at http://lwn.net/Kernel/LDD3/.
Linux Kernel Development (Robert Love).
Understanding the Linux Kernel (Daniel Bovet and Marco Cesati).

All of these books suffer from a common fault, though: they tend to be somewhat obsolete by the time
they hit the shelves, and they have been on the shelves for a while now. Still, there is quite a bit of good
information to be found there.
Documentation for git can be found at:

http://www.kernel.org/pub/software/scm/git/docs/
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html

* Conclusion

Congratulations to anybody who has made it through this long-winded document. Hopefully it has pro-
vided a helpful understanding of how the Linux kernel is developed and how you can participate in that
process.
In the end, it’s the participation that matters. Any open source software project is no more than the sum of
what its contributors put into it. The Linux kernel has progressed as quickly and as well as it has because it
has been helped by an impressively large group of developers, all of whom are working to make it better.
The kernel is a premier example of what can be done when thousands of people work together toward a
common goal.
The kernel can always benefit from a larger developer base, though. There is always more work to do.
But, just as importantly, most other participants in the Linux ecosystem can benefit through contributing
to the kernel. Getting code into the mainline is the key to higher code quality, lower maintenance and
distribution costs, a higher level of influence over the direction of kernel development, and more. It is
a situation where everybody involved wins. Fire up your editor and come join us; you will be more than
welcome.
The purpose of this document is to help developers (and their managers) work with the development
community with a minimum of frustration. It is an attempt to document how this community works in
a way which is accessible to those who are not intimately familiar with Linux kernel development (or,

*. For more information 41

http://lwn.net/
http://lwn.net/Kernel/Index/
http://kernelnewbies.org/
http://kernel.org/
http://lwn.net/Kernel/LDD3/
http://www.kernel.org/pub/software/scm/git/docs/
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html

Linux Kernel Development Documentation, Release 4.13.0-rc4+

indeed, free software development in general). While there is some technical material here, this is very
much a process-oriented discussion which does not require a deep knowledge of kernel programming to
understand.

42 Chapter 3. A guide to the Kernel Development Process

CHAPTER

FOUR

SUBMITTING PATCHES: THE ESSENTIAL GUIDE TO GETTING
YOUR CODE INTO THE KERNEL

For a person or company who wishes to submit a change to the Linux kernel, the process can sometimes
be daunting if you’re not familiar with “the system.” This text is a collection of suggestions which can
greatly increase the chances of your change being accepted.
This document contains a large number of suggestions in a relatively terse format. For detailed in-
formation on how the kernel development process works, see Documentation/process . Also, read
Documentation/process/submit-checklist.rst for a list of items to check before submitting code. If you
are submitting a driver, also read Documentation/process/submitting-drivers.rst ; for device tree binding
patches, read Documentation/devicetree/bindings/submitting-patches.txt.
Many of these steps describe the default behavior of the git version control system; if you use git to
prepare your patches, you’ll find much of the mechanical work done for you, though you’ll still need to
prepare and document a sensible set of patches. In general, use of git will make your life as a kernel
developer easier.

* 0) Obtain a current source tree

If you do not have a repository with the current kernel source handy, use git to obtain one. You’ll want
to start with the mainline repository, which can be grabbed with:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

Note, however, that you may not want to develop against the mainline tree directly. Most subsystem
maintainers run their own trees and want to see patches prepared against those trees. See the T: entry
for the subsystem in the MAINTAINERS file to find that tree, or simply ask the maintainer if the tree is not
listed there.
It is still possible to download kernel releases via tarballs (as described in the next section), but that is the
hard way to do kernel development.

* 1) diff -up

If you must generate your patches by hand, use diff -up or diff -uprN to create patches. Git generates
patches in this form by default; if you’re using git, you can skip this section entirely.
All changes to the Linux kernel occur in the form of patches, as generated by diff(1). When creating your
patch, make sure to create it in “unified diff” format, as supplied by the -u argument to diff(1). Also,
please use the -p argument which shows which C function each change is in - that makes the resultant
diff a lot easier to read. Patches should be based in the root kernel source directory, not in any lower
subdirectory.
To create a patch for a single file, it is often sufficient to do:

43

Linux Kernel Development Documentation, Release 4.13.0-rc4+

SRCTREE= linux
MYFILE= drivers/net/mydriver.c

cd $SRCTREE
cp $MYFILE $MYFILE.orig
vi $MYFILE # make your change
cd ..
diff -up $SRCTREE/$MYFILE{.orig,} > /tmp/patch

To create a patch for multiple files, you should unpack a “vanilla”, or unmodified kernel source tree, and
generate a diff against your own source tree. For example:

MYSRC= /devel/linux

tar xvfz linux-3.19.tar.gz
mv linux-3.19 linux-3.19-vanilla
diff -uprN -X linux-3.19-vanilla/Documentation/dontdiff \

linux-3.19-vanilla $MYSRC > /tmp/patch

dontdiff is a list of files which are generated by the kernel during the build process, and should be ignored
in any diff(1)-generated patch.
Make sure your patch does not include any extra files which do not belong in a patch submission. Make
sure to review your patch -after- generating it with diff(1), to ensure accuracy.
If your changes produce a lot of deltas, you need to split them into individual patches which modify things
in logical stages; see 3) Separate your changes . This will facilitate review by other kernel developers,
very important if you want your patch accepted.
If you’re using git, git rebase -i can help you with this process. If you’re not using git, quilt <http:
//savannah.nongnu.org/projects/quilt> is another popular alternative.

* 2) Describe your changes

Describe your problem. Whether your patch is a one-line bug fix or 5000 lines of a new feature, there
must be an underlying problem that motivated you to do this work. Convince the reviewer that there is a
problem worth fixing and that it makes sense for them to read past the first paragraph.
Describe user-visible impact. Straight up crashes and lockups are pretty convincing, but not all bugs are
that blatant. Even if the problem was spotted during code review, describe the impact you think it can
have on users. Keep inmind that themajority of Linux installations run kernels from secondary stable trees
or vendor/product-specific trees that cherry-pick only specific patches from upstream, so include anything
that could help route your change downstream: provoking circumstances, excerpts from dmesg, crash
descriptions, performance regressions, latency spikes, lockups, etc.
Quantify optimizations and trade-offs. If you claim improvements in performance, memory consumption,
stack footprint, or binary size, include numbers that back them up. But also describe non-obvious costs.
Optimizations usually aren’t free but trade-offs between CPU, memory, and readability; or, when it comes
to heuristics, between different workloads. Describe the expected downsides of your optimization so that
the reviewer can weigh costs against benefits.
Once the problem is established, describe what you are actually doing about it in technical detail. It’s
important to describe the change in plain English for the reviewer to verify that the code is behaving as
you intend it to.
The maintainer will thank you if you write your patch description in a form which can be easily pulled into
Linux’s source code management system, git, as a “commit log”. See 15) Explicit In-Reply-To headers .
Solve only one problem per patch. If your description starts to get long, that’s a sign that you probably
need to split up your patch. See 3) Separate your changes .

44 Chapter 4. Submitting patches: the essential guide to getting your code into the kernel

http://savannah.nongnu.org/projects/quilt
http://savannah.nongnu.org/projects/quilt

Linux Kernel Development Documentation, Release 4.13.0-rc4+

When you submit or resubmit a patch or patch series, include the complete patch description and jus-
tification for it. Don’t just say that this is version N of the patch (series). Don’t expect the subsystem
maintainer to refer back to earlier patch versions or referenced URLs to find the patch description and
put that into the patch. I.e., the patch (series) and its description should be self-contained. This benefits
both the maintainers and reviewers. Some reviewers probably didn’t even receive earlier versions of the
patch.
Describe your changes in imperative mood, e.g. “make xyzzy do frotz” instead of “[This patch] makes
xyzzy do frotz” or “[I] changed xyzzy to do frotz”, as if you are giving orders to the codebase to change
its behaviour.
If the patch fixes a logged bug entry, refer to that bug entry by number and URL. If the patch follows from
a mailing list discussion, give a URL to the mailing list archive; use the https://lkml.kernel.org/ redirector
with a Message-Id, to ensure that the links cannot become stale.
However, try to make your explanation understandable without external resources. In addition to giving a
URL to a mailing list archive or bug, summarize the relevant points of the discussion that led to the patch
as submitted.
If you want to refer to a specific commit, don’t just refer to the SHA-1 ID of the commit. Please also include
the oneline summary of the commit, to make it easier for reviewers to know what it is about. Example:

Commit e21d2170f36602ae2708 ("video: remove unnecessary
platform_set_drvdata()") removed the unnecessary
platform_set_drvdata(), but left the variable "dev" unused,
delete it.

You should also be sure to use at least the first twelve characters of the SHA-1 ID. The kernel repository
holds a lot of objects, making collisions with shorter IDs a real possibility. Bear in mind that, even if there
is no collision with your six-character ID now, that condition may change five years from now.
If your patch fixes a bug in a specific commit, e.g. you found an issue using git bisect, please use the
‘Fixes:’ tag with the first 12 characters of the SHA-1 ID, and the one line summary. For example:

Fixes: e21d2170f366 ("video: remove unnecessary platform_set_drvdata()")

The following git config settings can be used to add a pretty format for outputting the above style in
the git log or git show commands:

[core]
abbrev = 12

[pretty]
fixes = Fixes: %h (\"%s\")

* 3) Separate your changes

Separate each logical change into a separate patch.
For example, if your changes include both bug fixes and performance enhancements for a single driver,
separate those changes into two or more patches. If your changes include an API update, and a new driver
which uses that new API, separate those into two patches.
On the other hand, if you make a single change to numerous files, group those changes into a single
patch. Thus a single logical change is contained within a single patch.
The point to remember is that each patch should make an easily understood change that can be verified
by reviewers. Each patch should be justifiable on its own merits.
If one patch depends on another patch in order for a change to be complete, that is OK. Simply note “this
patch depends on patch X” in your patch description.

*. 3) Separate your changes 45

https://lkml.kernel.org/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

When dividing your change into a series of patches, take special care to ensure that the kernel builds and
runs properly after each patch in the series. Developers using git bisect to track down a problem can
end up splitting your patch series at any point; they will not thank you if you introduce bugs in the middle.
If you cannot condense your patch set into a smaller set of patches, then only post say 15 or so at a time
and wait for review and integration.

* 4) Style-check your changes

Check your patch for basic style violations, details of which can be found in
Documentation/process/coding-style.rst . Failure to do so simply wastes the reviewers time and
will get your patch rejected, probably without even being read.
One significant exception is when moving code from one file to another – in this case you should not
modify the moved code at all in the same patch which moves it. This clearly delineates the act of moving
the code and your changes. This greatly aids review of the actual differences and allows tools to better
track the history of the code itself.
Check your patches with the patch style checker prior to submission (scripts/checkpatch.pl). Note, though,
that the style checker should be viewed as a guide, not as a replacement for human judgment. If your
code looks better with a violation then its probably best left alone.
The checker reports at three levels:

• ERROR: things that are very likely to be wrong
• WARNING: things requiring careful review
• CHECK: things requiring thought

You should be able to justify all violations that remain in your patch.

* 5) Select the recipients for your patch

You should always copy the appropriate subsystemmaintainer(s) on any patch to code that they maintain;
look through the MAINTAINERS file and the source code revision history to see who those maintainers are.
The script scripts/get_maintainer.pl can be very useful at this step. If you cannot find a maintainer for the
subsystem you are working on, Andrew Morton (akpm@linux-foundation.org) serves as a maintainer of
last resort.
You should also normally choose at least one mailing list to receive a copy of your patch set. linux-
kernel@vger.kernel.org functions as a list of last resort, but the volume on that list has caused a number
of developers to tune it out. Look in the MAINTAINERS file for a subsystem-specific list; your patch will
probably get more attention there. Please do not spam unrelated lists, though.
Many kernel-related lists are hosted on vger.kernel.org; you can find a list of them at http://vger.kernel.
org/vger-lists.html. There are kernel-related lists hosted elsewhere as well, though.
Do not send more than 15 patches at once to the vger mailing lists!!!
Linus Torvalds is the final arbiter of all changes accepted into the Linux kernel. His e-mail address is
<torvalds@linux-foundation.org>. He gets a lot of e-mail, and, at this point, very few patches go through
Linus directly, so typically you should do your best to -avoid- sending him e-mail.
If you have a patch that fixes an exploitable security bug, send that patch to security@kernel.org. For
severe bugs, a short embargo may be considered to allow distributors to get the patch out to users; in
such cases, obviously, the patch should not be sent to any public lists.
Patches that fix a severe bug in a released kernel should be directed toward the stable maintainers by
putting a line like this:

46 Chapter 4. Submitting patches: the essential guide to getting your code into the kernel

mailto:akpm@linux-foundation.org
mailto:linux-kernel@vger.kernel.org
mailto:linux-kernel@vger.kernel.org
http://vger.kernel.org/vger-lists.html
http://vger.kernel.org/vger-lists.html
mailto:torvalds@linux-foundation.org
mailto:security@kernel.org

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Cc: stable@vger.kernel.org

into the sign-off area of your patch (note, NOT an email recipient). You should also read
Documentation/process/stable-kernel-rules.rst in addition to this file.
Note, however, that some subsystemmaintainers want to come to their own conclusions on which patches
should go to the stable trees. The networking maintainer, in particular, would rather not see individual
developers adding lines like the above to their patches.
If changes affect userland-kernel interfaces, please send the MAN-PAGESmaintainer (as listed in the MAIN-
TAINERS file) a man-pages patch, or at least a notification of the change, so that some information makes
its way into themanual pages. User-space API changes should also be copied to linux-api@vger.kernel.org.
For small patches you may want to CC the Trivial Patch Monkey trivial@kernel.org which collects “trivial”
patches. Have a look into the MAINTAINERS file for its current manager.
Trivial patches must qualify for one of the following rules:
• Spelling fixes in documentation
• Spelling fixes for errors which could break grep(1)
• Warning fixes (cluttering with useless warnings is bad)
• Compilation fixes (only if they are actually correct)
• Runtime fixes (only if they actually fix things)
• Removing use of deprecated functions/macros
• Contact detail and documentation fixes
• Non-portable code replaced by portable code (even in arch-specific, since people copy, as long as
it’s trivial)

• Any fix by the author/maintainer of the file (ie. patch monkey in re-transmission mode)

* 6) No MIME, no links, no compression, no attachments. Just
plain text

Linus and other kernel developers need to be able to read and comment on the changes you are sub-
mitting. It is important for a kernel developer to be able to “quote” your changes, using standard e-mail
tools, so that they may comment on specific portions of your code.
For this reason, all patches should be submitted by e-mail “inline”.

Warning:

Be wary of your editor’s word-wrap corrupting your patch, if you choose to cut-n-paste your patch.

Do not attach the patch as a MIME attachment, compressed or not. Many popular e-mail applications will
not always transmit a MIME attachment as plain text, making it impossible to comment on your code.
A MIME attachment also takes Linus a bit more time to process, decreasing the likelihood of your MIME-
attached change being accepted.
Exception: If your mailer is mangling patches then someone may ask you to re-send them using MIME.
See Documentation/process/email-clients.rst for hints about configuring your e-mail client so that it sends
your patches untouched.

*. 6) No MIME, no links, no compression, no attachments. Just plain text 47

mailto:linux-api@vger.kernel.org
mailto:trivial@kernel.org

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* 7) E-mail size

Large changes are not appropriate for mailing lists, and some maintainers. If your patch, uncompressed,
exceeds 300 kB in size, it is preferred that you store your patch on an Internet-accessible server, and
provide instead a URL (link) pointing to your patch. But note that if your patch exceeds 300 kB, it almost
certainly needs to be broken up anyway.

* 8) Respond to review comments

Your patch will almost certainly get comments from reviewers on ways in which the patch can be improved.
You must respond to those comments; ignoring reviewers is a good way to get ignored in return. Review
comments or questions that do not lead to a code change should almost certainly bring about a comment
or changelog entry so that the next reviewer better understands what is going on.
Be sure to tell the reviewers what changes you are making and to thank them for their time. Code review
is a tiring and time-consuming process, and reviewers sometimes get grumpy. Even in that case, though,
respond politely and address the problems they have pointed out.

* 9) Don’t get discouraged - or impatient

After you have submitted your change, be patient and wait. Reviewers are busy people and may not get
to your patch right away.
Once upon a time, patches used to disappear into the void without comment, but the development process
works more smoothly than that now. You should receive comments within a week or so; if that does not
happen, make sure that you have sent your patches to the right place. Wait for a minimum of one week
before resubmitting or pinging reviewers - possibly longer during busy times like merge windows.

* 10) Include PATCH in the subject

Due to high e-mail traffic to Linus, and to linux-kernel, it is common convention to prefix your subject
line with [PATCH]. This lets Linus and other kernel developers more easily distinguish patches from other
e-mail discussions.

* 11) Sign your work - the Developer’s Certificate of Origin

To improve tracking of who did what, especially with patches that can percolate to their final resting place
in the kernel through several layers of maintainers, we’ve introduced a “sign-off” procedure on patches
that are being emailed around.
The sign-off is a simple line at the end of the explanation for the patch, which certifies that you wrote it
or otherwise have the right to pass it on as an open-source patch. The rules are pretty simple: if you can
certify the below:

* Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:
1. The contribution was created in whole or in part by me and I have the right to submit it under the
open source license indicated in the file; or

48 Chapter 4. Submitting patches: the essential guide to getting your code into the kernel

Linux Kernel Development Documentation, Release 4.13.0-rc4+

2. The contribution is based upon previous work that, to the best of my knowledge, is covered under
an appropriate open source license and I have the right under that license to submit that work with
modifications, whether created in whole or in part by me, under the same open source license (unless
I am permitted to submit under a different license), as indicated in the file; or

3. The contribution was provided directly to me by some other person who certified (a), (b) or (c) and I
have not modified it.

4. I understand and agree that this project and the contribution are public and that a record of the
contribution (including all personal information I submit with it, including my sign-off) is maintained
indefinitely and may be redistributed consistent with this project or the open source license(s) in-
volved.

then you just add a line saying:

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name (sorry, no pseudonyms or anonymous contributions.)
Some people also put extra tags at the end. They’ll just be ignored for now, but you can do this to mark
internal company procedures or just point out some special detail about the sign-off.
If you are a subsystem or branch maintainer, sometimes you need to slightly modify patches you receive
in order to merge them, because the code is not exactly the same in your tree and the submitters’. If
you stick strictly to rule (c), you should ask the submitter to rediff, but this is a totally counter-productive
waste of time and energy. Rule (b) allows you to adjust the code, but then it is very impolite to change one
submitter’s code and make him endorse your bugs. To solve this problem, it is recommended that you
add a line between the last Signed-off-by header and yours, indicating the nature of your changes. While
there is nothing mandatory about this, it seems like prepending the description with your mail and/or
name, all enclosed in square brackets, is noticeable enough to make it obvious that you are responsible
for last-minute changes. Example:

Signed-off-by: Random J Developer <random@developer.example.org>
[lucky@maintainer.example.org: struct foo moved from foo.c to foo.h]
Signed-off-by: Lucky K Maintainer <lucky@maintainer.example.org>

This practice is particularly helpful if you maintain a stable branch and want at the same time to credit
the author, track changes, merge the fix, and protect the submitter from complaints. Note that under no
circumstances can you change the author’s identity (the From header), as it is the one which appears in
the changelog.
Special note to back-porters: It seems to be a common and useful practice to insert an indication of the
origin of a patch at the top of the commit message (just after the subject line) to facilitate tracking. For
instance, here’s what we see in a 3.x-stable release:

Date: Tue Oct 7 07:26:38 2014 -0400

libata: Un-break ATA blacklist

commit 1c40279960bcd7d52dbdf1d466b20d24b99176c8 upstream.

And here’s what might appear in an older kernel once a patch is backported:

Date: Tue May 13 22:12:27 2008 +0200

wireless, airo: waitbusy() won't delay

[backport of 2.6 commit b7acbdfbd1f277c1eb23f344f899cfa4cd0bf36a]

Whatever the format, this information provides a valuable help to people tracking your trees, and to people
trying to troubleshoot bugs in your tree.

*. 11) Sign your work - the Developer’s Certificate of Origin 49

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* 12) When to use Acked-by: and Cc:

The Signed-off-by: tag indicates that the signer was involved in the development of the patch, or that
he/she was in the patch’s delivery path.
If a person was not directly involved in the preparation or handling of a patch but wishes to signify and
record their approval of it then they can ask to have an Acked-by: line added to the patch’s changelog.
Acked-by: is often used by the maintainer of the affected code when that maintainer neither contributed
to nor forwarded the patch.
Acked-by: is not as formal as Signed-off-by:. It is a record that the acker has at least reviewed the patch
and has indicated acceptance. Hence patch mergers will sometimes manually convert an acker’s “yep,
looks good to me” into an Acked-by: (but note that it is usually better to ask for an explicit ack).
Acked-by: does not necessarily indicate acknowledgement of the entire patch. For example, if a patch
affects multiple subsystems and has an Acked-by: from one subsystem maintainer then this usually indi-
cates acknowledgement of just the part which affects that maintainer’s code. Judgement should be used
here. When in doubt people should refer to the original discussion in the mailing list archives.
If a person has had the opportunity to comment on a patch, but has not provided such comments, you
may optionally add a Cc: tag to the patch. This is the only tag which might be added without an explicit
action by the person it names - but it should indicate that this person was copied on the patch. This tag
documents that potentially interested parties have been included in the discussion.

* 13) Using Reported-by:, Tested-by:, Reviewed-by:, Suggested-
by: and Fixes:

The Reported-by tag gives credit to people who find bugs and report them and it hopefully inspires them
to help us again in the future. Please note that if the bug was reported in private, then ask for permission
first before using the Reported-by tag.
A Tested-by: tag indicates that the patch has been successfully tested (in some environment) by the
person named. This tag informs maintainers that some testing has been performed, provides a means to
locate testers for future patches, and ensures credit for the testers.
Reviewed-by:, instead, indicates that the patch has been reviewed and found acceptable according to the
Reviewer’s Statement:

* Reviewer’s statement of oversight

By offering my Reviewed-by: tag, I state that:
1. I have carried out a technical review of this patch to evaluate its appropriateness and readiness for
inclusion into the mainline kernel.

2. Any problems, concerns, or questions relating to the patch have been communicated back to the
submitter. I am satisfied with the submitter’s response to my comments.

3. While there may be things that could be improved with this submission, I believe that it is, at this
time, (1) a worthwhile modification to the kernel, and (2) free of known issues which would argue
against its inclusion.

4. While I have reviewed the patch and believe it to be sound, I do not (unless explicitly stated else-
where) make any warranties or guarantees that it will achieve its stated purpose or function properly
in any given situation.

A Reviewed-by tag is a statement of opinion that the patch is an appropriate modification of the kernel
without any remaining serious technical issues. Any interested reviewer (who has done the work) can
offer a Reviewed-by tag for a patch. This tag serves to give credit to reviewers and to inform maintainers

50 Chapter 4. Submitting patches: the essential guide to getting your code into the kernel

Linux Kernel Development Documentation, Release 4.13.0-rc4+

of the degree of review which has been done on the patch. Reviewed-by: tags, when supplied by review-
ers known to understand the subject area and to perform thorough reviews, will normally increase the
likelihood of your patch getting into the kernel.
A Suggested-by: tag indicates that the patch idea is suggested by the person named and ensures credit to
the person for the idea. Please note that this tag should not be added without the reporter’s permission,
especially if the idea was not posted in a public forum. That said, if we diligently credit our idea reporters,
they will, hopefully, be inspired to help us again in the future.
A Fixes: tag indicates that the patch fixes an issue in a previous commit. It is used to make it easy to
determine where a bug originated, which can help review a bug fix. This tag also assists the stable kernel
team in determining which stable kernel versions should receive your fix. This is the preferred method for
indicating a bug fixed by the patch. See 2) Describe your changes for more details.

* 14) The canonical patch format

This section describes how the patch itself should be formatted. Note that, if you have your patches stored
in a git repository, proper patch formatting can be had with git format-patch. The tools cannot create
the necessary text, though, so read the instructions below anyway.
The canonical patch subject line is:

Subject: [PATCH 001/123] subsystem: summary phrase

The canonical patch message body contains the following:
• A from line specifying the patch author (only needed if the person sending the patch is not the
author).

• An empty line.
• The body of the explanation, line wrapped at 75 columns, which will be copied to the permanent
changelog to describe this patch.

• The Signed-off-by: lines, described above, which will also go in the changelog.
• A marker line containing simply ---.
• Any additional comments not suitable for the changelog.
• The actual patch (diff output).

The Subject line format makes it very easy to sort the emails alphabetically by subject line - pretty much
any email reader will support that - since because the sequence number is zero-padded, the numerical
and alphabetic sort is the same.
The subsystem in the email’s Subject should identify which area or subsystem of the kernel is being
patched.
The summary phrase in the email’s Subject should concisely describe the patch which that email contains.
The summary phrase should not be a filename. Do not use the same summary phrase for every patch in
a whole patch series (where a patch series is an ordered sequence of multiple, related patches).
Bear in mind that the summary phrase of your email becomes a globally-unique identifier for that patch.
It propagates all the way into the git changelog. The summary phrase may later be used in developer
discussions which refer to the patch. People will want to google for the summary phrase to read discussion
regarding that patch. It will also be the only thing that people may quickly see when, two or three months
later, they are going through perhaps thousands of patches using tools such as gitk or git log --
oneline.
For these reasons, the summary must be no more than 70-75 characters, and it must describe both what
the patch changes, as well as why the patch might be necessary. It is challenging to be both succinct and
descriptive, but that is what a well-written summary should do.

*. 14) The canonical patch format 51

Linux Kernel Development Documentation, Release 4.13.0-rc4+

The summary phrase may be prefixed by tags enclosed in square brackets: “Subject: [PATCH <tag>...]
<summary phrase>”. The tags are not considered part of the summary phrase, but describe how the
patch should be treated. Common tags might include a version descriptor if the multiple versions of the
patch have been sent out in response to comments (i.e., “v1, v2, v3”), or “RFC” to indicate a request
for comments. If there are four patches in a patch series the individual patches may be numbered like
this: 1/4, 2/4, 3/4, 4/4. This assures that developers understand the order in which the patches should be
applied and that they have reviewed or applied all of the patches in the patch series.
A couple of example Subjects:

Subject: [PATCH 2/5] ext2: improve scalability of bitmap searching
Subject: [PATCH v2 01/27] x86: fix eflags tracking

The from line must be the very first line in the message body, and has the form:
From: Original Author <author@example.com>

The from line specifies who will be credited as the author of the patch in the permanent changelog. If
the from line is missing, then the From: line from the email header will be used to determine the patch
author in the changelog.
The explanation body will be committed to the permanent source changelog, so should make sense to a
competent reader who has long since forgotten the immediate details of the discussion that might have
led to this patch. Including symptoms of the failure which the patch addresses (kernel log messages, oops
messages, etc.) is especially useful for people who might be searching the commit logs looking for the
applicable patch. If a patch fixes a compile failure, it may not be necessary to include _all_ of the compile
failures; just enough that it is likely that someone searching for the patch can find it. As in the summary
phrase, it is important to be both succinct as well as descriptive.
The ---marker line serves the essential purpose of marking for patch handling tools where the changelog
message ends.
One good use for the additional comments after the ---marker is for a diffstat, to show what files have
changed, and the number of inserted and deleted lines per file. A diffstat is especially useful on bigger
patches. Other comments relevant only to the moment or the maintainer, not suitable for the permanent
changelog, should also go here. A good example of such comments might be patch changelogs which
describe what has changed between the v1 and v2 version of the patch.
If you are going to include a diffstat after the --- marker, please use diffstat options -p 1 -w 70 so
that filenames are listed from the top of the kernel source tree and don’t use too much horizontal space
(easily fit in 80 columns, maybe with some indentation). (git generates appropriate diffstats by default.)
See more details on the proper patch format in the following references.

* 15) Explicit In-Reply-To headers

It can be helpful to manually add In-Reply-To: headers to a patch (e.g., when using git send-email) to
associate the patch with previous relevant discussion, e.g. to link a bug fix to the email with the bug
report. However, for a multi-patch series, it is generally best to avoid using In-Reply-To: to link to older
versions of the series. This way multiple versions of the patch don’t become an unmanageable forest of
references in email clients. If a link is helpful, you can use the https://lkml.kernel.org/ redirector (e.g., in
the cover email text) to link to an earlier version of the patch series.

* 16) Sending git pull requests

If you have a series of patches, it may be most convenient to have the maintainer pull them directly
into the subsystem repository with a git pull operation. Note, however, that pulling patches from a
developer requires a higher degree of trust than taking patches from a mailing list. As a result, many
subsystem maintainers are reluctant to take pull requests, especially from new, unknown developers. If

52 Chapter 4. Submitting patches: the essential guide to getting your code into the kernel

mailto:author@example.com
https://lkml.kernel.org/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

in doubt you can use the pull request as the cover letter for a normal posting of the patch series, giving
the maintainer the option of using either.
A pull request should have [GIT] or [PULL] in the subject line. The request itself should include the repos-
itory name and the branch of interest on a single line; it should look something like:

Please pull from

git://jdelvare.pck.nerim.net/jdelvare-2.6 i2c-for-linus

to get these changes:

A pull request should also include an overall message saying what will be included in the request, a
git shortlog listing of the patches themselves, and a diffstat showing the overall effect of the patch
series. The easiest way to get all this information together is, of course, to let git do it for you with the
git request-pull command.
Some maintainers (including Linus) want to see pull requests from signed commits; that increases their
confidence that the request actually came from you. Linus, in particular, will not pull from public hosting
sites like GitHub in the absence of a signed tag.
The first step toward creating such tags is to make a GNUPG key and get it signed by one or more core
kernel developers. This step can be hard for new developers, but there is no way around it. Attending
conferences can be a good way to find developers who can sign your key.
Once you have prepared a patch series in git that you wish to have somebody pull, create a signed
tag with git tag -s. This will create a new tag identifying the last commit in the series and containing
a signature created with your private key. You will also have the opportunity to add a changelog-style
message to the tag; this is an ideal place to describe the effects of the pull request as a whole.
If the tree the maintainer will be pulling from is not the repository you are working from, don’t forget to
push the signed tag explicitly to the public tree.
When generating your pull request, use the signed tag as the target. A command like this will do the trick:

git request-pull master git://my.public.tree/linux.git my-signed-tag

* References

Andrew Morton, “The perfect patch” (tpp). <http://www.ozlabs.org/~akpm/stuff/tpp.txt>
Jeff Garzik, “Linux kernel patch submission format”. <http://linux.yyz.us/patch-format.html>
Greg Kroah-Hartman, “How to piss off a kernel subsystem maintainer”. <http://www.kroah.

com/log/linux/maintainer.html>
<http://www.kroah.com/log/linux/maintainer-02.html>
<http://www.kroah.com/log/linux/maintainer-03.html>
<http://www.kroah.com/log/linux/maintainer-04.html>
<http://www.kroah.com/log/linux/maintainer-05.html>
<http://www.kroah.com/log/linux/maintainer-06.html>

NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people! <https://lkml.org/
lkml/2005/7/11/336>

Kernel Documentation/process/coding-style.rst: Documentation/process/coding-style.rst

Linus Torvalds’s mail on the canonical patch format: <http://lkml.org/lkml/2005/4/7/183>
Andi Kleen, “On submitting kernel patches” Some strategies to get difficult or controversial

changes in.

*. References 53

http://www.ozlabs.org/~akpm/stuff/tpp.txt
http://linux.yyz.us/patch-format.html
http://www.kroah.com/log/linux/maintainer.html
http://www.kroah.com/log/linux/maintainer.html
http://www.kroah.com/log/linux/maintainer-02.html
http://www.kroah.com/log/linux/maintainer-03.html
http://www.kroah.com/log/linux/maintainer-04.html
http://www.kroah.com/log/linux/maintainer-05.html
http://www.kroah.com/log/linux/maintainer-06.html
mailto:linux-kernel@vger.kernel.org
https://lkml.org/lkml/2005/7/11/336
https://lkml.org/lkml/2005/7/11/336
http://lkml.org/lkml/2005/4/7/183

Linux Kernel Development Documentation, Release 4.13.0-rc4+

http://halobates.de/on-submitting-patches.pdf

54 Chapter 4. Submitting patches: the essential guide to getting your code into the kernel

http://halobates.de/on-submitting-patches.pdf

CHAPTER

FIVE

LINUX KERNEL CODING STYLE

This is a short document describing the preferred coding style for the linux kernel. Coding style is very
personal, and I won’t forcemy views on anybody, but this is what goes for anything that I have to be able
to maintain, and I’d prefer it for most other things too. Please at least consider the points made here.
First off, I’d suggest printing out a copy of the GNU coding standards, and NOT read it. Burn them, it’s a
great symbolic gesture.
Anyway, here goes:

* 1) Indentation

Tabs are 8 characters, and thus indentations are also 8 characters. There are heretic movements that try
to make indentations 4 (or even 2!) characters deep, and that is akin to trying to define the value of PI to
be 3.
Rationale: The whole idea behind indentation is to clearly define where a block of control starts and ends.
Especially when you’ve been looking at your screen for 20 straight hours, you’ll find it a lot easier to see
how the indentation works if you have large indentations.
Now, some people will claim that having 8-character indentations makes the code move too far to the
right, and makes it hard to read on a 80-character terminal screen. The answer to that is that if you need
more than 3 levels of indentation, you’re screwed anyway, and should fix your program.
In short, 8-char indents make things easier to read, and have the added benefit of warning you when
you’re nesting your functions too deep. Heed that warning.
The preferred way to ease multiple indentation levels in a switch statement is to align the switch and its
subordinate case labels in the same column instead of double-indenting the case labels. E.g.:

switch (suffix) {
case 'G':
case 'g':

mem <<= 30;
break;

case 'M':
case 'm':

mem <<= 20;
break;

case 'K':
case 'k':

mem <<= 10;
/* fall through */

default:
break;

}

Don’t put multiple statements on a single line unless you have something to hide:

55

Linux Kernel Development Documentation, Release 4.13.0-rc4+

if (condition) do_this;
do_something_everytime;

Don’t put multiple assignments on a single line either. Kernel coding style is super simple. Avoid tricky
expressions.
Outside of comments, documentation and except in Kconfig, spaces are never used for indentation, and
the above example is deliberately broken.
Get a decent editor and don’t leave whitespace at the end of lines.

* 2) Breaking long lines and strings

Coding style is all about readability and maintainability using commonly available tools.
The limit on the length of lines is 80 columns and this is a strongly preferred limit.
Statements longer than 80 columns will be broken into sensible chunks, unless exceeding 80 columns
significantly increases readability and does not hide information. Descendants are always substantially
shorter than the parent and are placed substantially to the right. The same applies to function headers
with a long argument list. However, never break user-visible strings such as printk messages, because
that breaks the ability to grep for them.

* 3) Placing Braces and Spaces

The other issue that always comes up in C styling is the placement of braces. Unlike the indent size, there
are few technical reasons to choose one placement strategy over the other, but the preferred way, as
shown to us by the prophets Kernighan and Ritchie, is to put the opening brace last on the line, and put
the closing brace first, thusly:

if (x is true) {
we do y

}

This applies to all non-function statement blocks (if, switch, for, while, do). E.g.:

switch (action) {
case KOBJ_ADD:

return "add";
case KOBJ_REMOVE:

return "remove";
case KOBJ_CHANGE:

return "change";
default:

return NULL;
}

However, there is one special case, namely functions: they have the opening brace at the beginning of
the next line, thus:

int function(int x)
{

body of function
}

Heretic people all over the world have claimed that this inconsistency is ... well ... inconsistent, but all
right-thinking people know that (a) K&R are right and (b) K&R are right. Besides, functions are special
anyway (you can’t nest them in C).

56 Chapter 5. Linux kernel coding style

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Note that the closing brace is empty on a line of its own, except in the cases where it is followed by a
continuation of the same statement, ie a while in a do-statement or an else in an if-statement, like this:

do {
body of do-loop

} while (condition);

and

if (x == y) {
..

} else if (x > y) {
...

} else {
....

}

Rationale: K&R.
Also, note that this brace-placement also minimizes the number of empty (or almost empty) lines, without
any loss of readability. Thus, as the supply of new-lines on your screen is not a renewable resource (think
25-line terminal screens here), you have more empty lines to put comments on.
Do not unnecessarily use braces where a single statement will do.

if (condition)
action();

and

if (condition)
do_this();

else
do_that();

This does not apply if only one branch of a conditional statement is a single statement; in the latter case
use braces in both branches:

if (condition) {
do_this();
do_that();

} else {
otherwise();

}

* 3.1) Spaces

Linux kernel style for use of spaces depends (mostly) on function-versus-keyword usage. Use a space
after (most) keywords. The notable exceptions are sizeof, typeof, alignof, and __attribute__, which look
somewhat like functions (and are usually used with parentheses in Linux, although they are not required
in the language, as in: sizeof info after struct fileinfo info; is declared).
So use a space after these keywords:

if, switch, case, for, do, while

but not with sizeof, typeof, alignof, or __attribute__. E.g.,

s = sizeof(struct file);

Do not add spaces around (inside) parenthesized expressions. This example is bad:

*. 3) Placing Braces and Spaces 57

Linux Kernel Development Documentation, Release 4.13.0-rc4+

s = sizeof(struct file);

When declaring pointer data or a function that returns a pointer type, the preferred use of * is adjacent
to the data name or function name and not adjacent to the type name. Examples:

char *linux_banner;
unsigned long long memparse(char *ptr, char **retptr);
char *match_strdup(substring_t *s);

Use one space around (on each side of) most binary and ternary operators, such as any of these:

= + - < > * / % | & ^ <= >= == != ? :

but no space after unary operators:

& * + - ~ ! sizeof typeof alignof __attribute__ defined

no space before the postfix increment & decrement unary operators:

++ --

no space after the prefix increment & decrement unary operators:

++ --

and no space around the . and -> structure member operators.
Do not leave trailing whitespace at the ends of lines. Some editors with smart indentation will insert
whitespace at the beginning of new lines as appropriate, so you can start typing the next line of code
right away. However, some such editors do not remove the whitespace if you end up not putting a line
of code there, such as if you leave a blank line. As a result, you end up with lines containing trailing
whitespace.
Git will warn you about patches that introduce trailing whitespace, and can optionally strip the trailing
whitespace for you; however, if applying a series of patches, this may make later patches in the series
fail by changing their context lines.

* 4) Naming

C is a Spartan language, and so should your naming be. Unlike Modula-2 and Pascal programmers, C
programmers do not use cute names like ThisVariableIsATemporaryCounter. A C programmer would call
that variable tmp, which is much easier to write, and not the least more difficult to understand.
HOWEVER, while mixed-case names are frowned upon, descriptive names for global variables are a must.
To call a global function foo is a shooting offense.
GLOBAL variables (to be used only if you really need them) need to have descriptive names, as do
global functions. If you have a function that counts the number of active users, you should call that
count_active_users() or similar, you should not call it cntusr().
Encoding the type of a function into the name (so-called Hungarian notation) is brain damaged - the
compiler knows the types anyway and can check those, and it only confuses the programmer. No wonder
MicroSoft makes buggy programs.
LOCAL variable names should be short, and to the point. If you have some random integer loop counter,
it should probably be called i. Calling it loop_counter is non-productive, if there is no chance of it being
mis-understood. Similarly, tmp can be just about any type of variable that is used to hold a temporary
value.
If you are afraid to mix up your local variable names, you have another problem, which is called the
function-growth-hormone-imbalance syndrome. See chapter 6 (Functions).

58 Chapter 5. Linux kernel coding style

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* 5) Typedefs

Please don’t use things like vps_t. It’s a mistake to use typedef for structures and pointers. When you
see a

vps_t a;

in the source, what does it mean? In contrast, if it says

struct virtual_container *a;

you can actually tell what a is.
Lots of people think that typedefs help readability. Not so. They are useful only for:
1. totally opaque objects (where the typedef is actively used to hide what the object is).
Example: pte_t etc. opaque objects that you can only access using the proper accessor functions.

Note:

Opaqueness and accessor functions are not good in themselves. The reason we have them
for things like pte_t etc. is that there really is absolutely zero portably accessible information
there.

2. Clear integer types, where the abstraction helps avoid confusion whether it is int or long.
u8/u16/u32 are perfectly fine typedefs, although they fit into category (d) better than here.

Note:

Again - there needs to be a reason for this. If something is unsigned long, then there’s no
reason to do

typedef unsigned long myflags_t;

but if there is a clear reason for why it under certain circumstances might be an unsigned int and
under other configurations might be unsigned long, then by all means go ahead and use a typedef.

3. when you use sparse to literally create a new type for type-checking.
4. New types which are identical to standard C99 types, in certain exceptional circumstances.
Although it would only take a short amount of time for the eyes and brain to become accustomed to
the standard types like uint32_t, some people object to their use anyway.
Therefore, the Linux-specific u8/u16/u32/u64 types and their signed equivalents which are identical
to standard types are permitted – although they are not mandatory in new code of your own.
When editing existing code which already uses one or the other set of types, you should conform to
the existing choices in that code.

5. Types safe for use in userspace.
In certain structures which are visible to userspace, we cannot require C99 types and cannot use
the u32 form above. Thus, we use __u32 and similar types in all structures which are shared with
userspace.

Maybe there are other cases too, but the rule should basically be to NEVER EVER use a typedef unless
you can clearly match one of those rules.
In general, a pointer, or a struct that has elements that can reasonably be directly accessed should never
be a typedef.

*. 5) Typedefs 59

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* 6) Functions

Functions should be short and sweet, and do just one thing. They should fit on one or two screenfuls of
text (the ISO/ANSI screen size is 80x24, as we all know), and do one thing and do that well.
The maximum length of a function is inversely proportional to the complexity and indentation level of that
function. So, if you have a conceptually simple function that is just one long (but simple) case-statement,
where you have to do lots of small things for a lot of different cases, it’s OK to have a longer function.
However, if you have a complex function, and you suspect that a less-than-gifted first-year high-school
student might not even understand what the function is all about, you should adhere to the maximum
limits all the more closely. Use helper functions with descriptive names (you can ask the compiler to in-line
them if you think it’s performance-critical, and it will probably do a better job of it than you would have
done).
Another measure of the function is the number of local variables. They shouldn’t exceed 5-10, or you’re
doing something wrong. Re-think the function, and split it into smaller pieces. A human brain can generally
easily keep track of about 7 different things, anything more and it gets confused. You know you’re brilliant,
but maybe you’d like to understand what you did 2 weeks from now.
In source files, separate functions with one blank line. If the function is exported, the EXPORT macro for
it should follow immediately after the closing function brace line. E.g.:

int system_is_up(void)
{

return system_state == SYSTEM_RUNNING;
}
EXPORT_SYMBOL(system_is_up);

In function prototypes, include parameter names with their data types. Although this is not required by
the C language, it is preferred in Linux because it is a simple way to add valuable information for the
reader.

* 7) Centralized exiting of functions

Albeit deprecated by some people, the equivalent of the goto statement is used frequently by compilers
in form of the unconditional jump instruction.
The goto statement comes in handy when a function exits from multiple locations and some common
work such as cleanup has to be done. If there is no cleanup needed then just return directly.
Choose label names which say what the goto does or why the goto exists. An example of a good name
could be out_free_buffer: if the goto frees buffer. Avoid using GW-BASIC names like err1: and err2:,
as you would have to renumber them if you ever add or remove exit paths, and they make correctness
difficult to verify anyway.
The rationale for using gotos is:
• unconditional statements are easier to understand and follow
• nesting is reduced
• errors by not updating individual exit points when making modifications are prevented
• saves the compiler work to optimize redundant code away ;)

int fun(int a)
{

int result = 0;
char *buffer;

buffer = kmalloc(SIZE, GFP_KERNEL);

60 Chapter 5. Linux kernel coding style

Linux Kernel Development Documentation, Release 4.13.0-rc4+

if (!buffer)
return -ENOMEM;

if (condition1) {
while (loop1) {

...
}
result = 1;
goto out_free_buffer;

}
...

out_free_buffer:
kfree(buffer);
return result;

}

A common type of bug to be aware of is one err bugs which look like this:

err:
kfree(foo->bar);
kfree(foo);
return ret;

The bug in this code is that on some exit paths foo is NULL. Normally the fix for this is to split it up into
two error labels err_free_bar: and err_free_foo::

err_free_bar:
kfree(foo->bar);

err_free_foo:
kfree(foo);
return ret;

Ideally you should simulate errors to test all exit paths.

* 8) Commenting

Comments are good, but there is also a danger of over-commenting. NEVER try to explain HOW your code
works in a comment: it’s much better to write the code so that the working is obvious, and it’s a waste
of time to explain badly written code.
Generally, you want your comments to tell WHAT your code does, not HOW. Also, try to avoid putting
comments inside a function body: if the function is so complex that you need to separately comment
parts of it, you should probably go back to chapter 6 for a while. You can make small comments to note
or warn about something particularly clever (or ugly), but try to avoid excess. Instead, put the comments
at the head of the function, telling people what it does, and possibly WHY it does it.
When commenting the kernel API functions, please use the kernel-doc format. See the files at
Documentation/doc-guide/ and scripts/kernel-doc for details.
The preferred style for long (multi-line) comments is:

/*
* This is the preferred style for multi-line
* comments in the Linux kernel source code.
* Please use it consistently.
*
* Description: A column of asterisks on the left side,
* with beginning and ending almost-blank lines.
*/

*. 8) Commenting 61

Linux Kernel Development Documentation, Release 4.13.0-rc4+

For files in net/ and drivers/net/ the preferred style for long (multi-line) comments is a little different.

/* The preferred comment style for files in net/ and drivers/net
* looks like this.
*
* It is nearly the same as the generally preferred comment style,
* but there is no initial almost-blank line.
*/

It’s also important to comment data, whether they are basic types or derived types. To this end, use just
one data declaration per line (no commas for multiple data declarations). This leaves you room for a small
comment on each item, explaining its use.

* 9) You’ve made a mess of it

That’s OK, we all do. You’ve probably been told by your long-time Unix user helper that GNU emacs auto-
matically formats the C sources for you, and you’ve noticed that yes, it does do that, but the defaults it
uses are less than desirable (in fact, they are worse than random typing - an infinite number of monkeys
typing into GNU emacs would never make a good program).
So, you can either get rid of GNU emacs, or change it to use saner values. To do the latter, you can stick
the following in your .emacs file:

(defun c-lineup-arglist-tabs-only (ignored)
"Line up argument lists by tabs, not spaces"
(let* ((anchor (c-langelem-pos c-syntactic-element))

(column (c-langelem-2nd-pos c-syntactic-element))
(offset (- (1+ column) anchor))
(steps (floor offset c-basic-offset)))

(* (max steps 1)
c-basic-offset)))

(add-hook 'c-mode-common-hook
(lambda ()

;; Add kernel style
(c-add-style
"linux-tabs-only"
'("linux" (c-offsets-alist

(arglist-cont-nonempty
c-lineup-gcc-asm-reg
c-lineup-arglist-tabs-only))))))

(add-hook 'c-mode-hook
(lambda ()

(let ((filename (buffer-file-name)))
;; Enable kernel mode for the appropriate files
(when (and filename

(string-match (expand-file-name "~/src/linux-trees")
filename))

(setq indent-tabs-mode t)
(setq show-trailing-whitespace t)
(c-set-style "linux-tabs-only")))))

This will make emacs go better with the kernel coding style for C files below ~/src/linux-trees.
But even if you fail in getting emacs to do sane formatting, not everything is lost: use indent.
Now, again, GNU indent has the same brain-dead settings that GNU emacs has, which is why you need
to give it a few command line options. However, that’s not too bad, because even the makers of GNU
indent recognize the authority of K&R (the GNU people aren’t evil, they are just severely misguided in

62 Chapter 5. Linux kernel coding style

Linux Kernel Development Documentation, Release 4.13.0-rc4+

this matter), so you just give indent the options -kr -i8 (stands for K&R,8 character indents), or use
scripts/Lindent, which indents in the latest style.
indent has a lot of options, and especially when it comes to comment re-formatting you may want to take
a look at the man page. But remember: indent is not a fix for bad programming.

* 10) Kconfig configuration files

For all of the Kconfig* configuration files throughout the source tree, the indentation is somewhat different.
Lines under a config definition are indented with one tab, while help text is indented an additional two
spaces. Example:

config AUDIT
bool "Auditing support"
depends on NET
help

Enable auditing infrastructure that can be used with another
kernel subsystem, such as SELinux (which requires this for
logging of avc messages output). Does not do system-call
auditing without CONFIG_AUDITSYSCALL.

Seriously dangerous features (such as write support for certain filesystems) should advertise this promi-
nently in their prompt string:

config ADFS_FS_RW
bool "ADFS write support (DANGEROUS)"
depends on ADFS_FS
...

For full documentation on the configuration files, see the file Documentation/kbuild/kconfig-language.txt.

* 11) Data structures

Data structures that have visibility outside the single-threaded environment they are created and de-
stroyed in should always have reference counts. In the kernel, garbage collection doesn’t exist (and
outside the kernel garbage collection is slow and inefficient), which means that you absolutely have to
reference count all your uses.
Reference counting means that you can avoid locking, and allows multiple users to have access to the
data structure in parallel - and not having to worry about the structure suddenly going away from under
them just because they slept or did something else for a while.
Note that locking is not a replacement for reference counting. Locking is used to keep data structures
coherent, while reference counting is a memory management technique. Usually both are needed, and
they are not to be confused with each other.
Many data structures can indeed have two levels of reference counting, when there are users of different
classes. The subclass count counts the number of subclass users, and decrements the global count just
once when the subclass count goes to zero.
Examples of this kind of multi-level-reference-counting can be found in memory management
(struct mm_struct: mm_users and mm_count), and in filesystem code (struct super_block: s_count
and s_active).
Remember: if another thread can find your data structure, and you don’t have a reference count on it,
you almost certainly have a bug.

*. 10) Kconfig configuration files 63

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* 12) Macros, Enums and RTL

Names of macros defining constants and labels in enums are capitalized.

#define CONSTANT 0x12345

Enums are preferred when defining several related constants.
CAPITALIZEDmacro names are appreciated but macros resembling functions may be named in lower case.
Generally, inline functions are preferable to macros resembling functions.
Macros with multiple statements should be enclosed in a do - while block:

#define macrofun(a, b, c) \
do { \

if (a == 5) \
do_this(b, c); \

} while (0)

Things to avoid when using macros:
1. macros that affect control flow:

#define FOO(x) \
do { \

if (blah(x) < 0) \
return -EBUGGERED; \

} while (0)

is a very bad idea. It looks like a function call but exits the calling function; don’t break the internal
parsers of those who will read the code.
2. macros that depend on having a local variable with a magic name:

#define FOO(val) bar(index, val)

might look like a good thing, but it’s confusing as hell when one reads the code and it’s prone to breakage
from seemingly innocent changes.
3) macros with arguments that are used as l-values: FOO(x) = y; will bite you if somebody e.g. turns FOO
into an inline function.
4) forgetting about precedence: macros defining constants using expressionsmust enclose the expression
in parentheses. Beware of similar issues with macros using parameters.

#define CONSTANT 0x4000
#define CONSTEXP (CONSTANT | 3)

5) namespace collisions when defining local variables in macros resembling functions:

#define FOO(x) \
({ \

typeof(x) ret; \
ret = calc_ret(x); \
(ret); \

})

ret is a common name for a local variable - __foo_ret is less likely to collide with an existing variable.
The cpp manual deals with macros exhaustively. The gcc internals manual also covers RTL which is used
frequently with assembly language in the kernel.

64 Chapter 5. Linux kernel coding style

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* 13) Printing kernel messages

Kernel developers like to be seen as literate. Do mind the spelling of kernel messages to make a good
impression. Do not use crippled words like dont; use do not or don't instead. Make the messages
concise, clear, and unambiguous.
Kernel messages do not have to be terminated with a period.
Printing numbers in parentheses (%d) adds no value and should be avoided.
There are a number of driver model diagnostic macros in <linux/device.h> which you should use to
make sure messages are matched to the right device and driver, and are tagged with the right level:
dev_err(), dev_warn(), dev_info(), and so forth. For messages that aren’t associated with a particular
device, <linux/printk.h> defines pr_notice(), pr_info(), pr_warn(), pr_err(), etc.
Coming up with good debugging messages can be quite a challenge; and once you have them, they can
be a huge help for remote troubleshooting. However debug message printing is handled differently than
printing other non-debug messages. While the other pr_XXX() functions print unconditionally, pr_debug()
does not; it is compiled out by default, unless either DEBUG is defined or CONFIG_DYNAMIC_DEBUG is
set. That is true for dev_dbg() also, and a related convention uses VERBOSE_DEBUG to add dev_vdbg()
messages to the ones already enabled by DEBUG.
Many subsystems have Kconfig debug options to turn on -DDEBUG in the corresponding Makefile; in other
cases specific files #define DEBUG. And when a debug message should be unconditionally printed, such
as if it is already inside a debug-related #ifdef section, printk(KERN_DEBUG ...) can be used.

* 14) Allocating memory

The kernel provides the following general purpose memory allocators: kmalloc(), kzalloc(), kmal-
loc_array(), kcalloc(), vmalloc(), and vzalloc(). Please refer to the API documentation for further infor-
mation about them.
The preferred form for passing a size of a struct is the following:

p = kmalloc(sizeof(*p), ...);

The alternative form where struct name is spelled out hurts readability and introduces an opportunity for
a bug when the pointer variable type is changed but the corresponding sizeof that is passed to a memory
allocator is not.
Casting the return value which is a void pointer is redundant. The conversion from void pointer to any
other pointer type is guaranteed by the C programming language.
The preferred form for allocating an array is the following:

p = kmalloc_array(n, sizeof(...), ...);

The preferred form for allocating a zeroed array is the following:

p = kcalloc(n, sizeof(...), ...);

Both forms check for overflow on the allocation size n * sizeof(...), and return NULL if that occurred.

* 15) The inline disease

There appears to be a common misperception that gcc has a magic “make me faster” speedup option
called inline. While the use of inlines can be appropriate (for example as a means of replacing macros,
see Chapter 12), it very often is not. Abundant use of the inline keyword leads to a much bigger kernel,
which in turn slows the system as a whole down, due to a bigger icache footprint for the CPU and simply

*. 13) Printing kernel messages 65

Linux Kernel Development Documentation, Release 4.13.0-rc4+

because there is less memory available for the pagecache. Just think about it; a pagecache miss causes
a disk seek, which easily takes 5 milliseconds. There are a LOT of cpu cycles that can go into these 5
milliseconds.
A reasonable rule of thumb is to not put inline at functions that have more than 3 lines of code in them.
An exception to this rule are the cases where a parameter is known to be a compiletime constant, and as
a result of this constantness you know the compiler will be able to optimize most of your function away
at compile time. For a good example of this later case, see the kmalloc() inline function.
Often people argue that adding inline to functions that are static and used only once is always a win since
there is no space tradeoff. While this is technically correct, gcc is capable of inlining these automatically
without help, and the maintenance issue of removing the inline when a second user appears outweighs
the potential value of the hint that tells gcc to do something it would have done anyway.

* 16) Function return values and names

Functions can return values of many different kinds, and one of the most common is a value indicating
whether the function succeeded or failed. Such a value can be represented as an error-code integer (-Exxx
= failure, 0 = success) or a succeeded boolean (0 = failure, non-zero = success).
Mixing up these two sorts of representations is a fertile source of difficult-to-find bugs. If the C language
included a strong distinction between integers and booleans then the compiler would find these mistakes
for us... but it doesn’t. To help prevent such bugs, always follow this convention:

If the name of a function is an action or an imperative command,
the function should return an error-code integer. If the name
is a predicate, the function should return a "succeeded" boolean.

For example, add work is a command, and the add_work() function returns 0 for success or -EBUSY for
failure. In the same way, PCI device present is a predicate, and the pci_dev_present() function returns
1 if it succeeds in finding a matching device or 0 if it doesn’t.
All EXPORTed functions must respect this convention, and so should all public functions. Private (static)
functions need not, but it is recommended that they do.
Functions whose return value is the actual result of a computation, rather than an indication of whether
the computation succeeded, are not subject to this rule. Generally they indicate failure by returning
some out-of-range result. Typical examples would be functions that return pointers; they use NULL or the
ERR_PTR mechanism to report failure.

* 17) Don’t re-invent the kernel macros

The header file include/linux/kernel.h contains a number of macros that you should use, rather than ex-
plicitly coding some variant of them yourself. For example, if you need to calculate the length of an array,
take advantage of the macro

#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))

Similarly, if you need to calculate the size of some structure member, use

#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))

There are also min() and max() macros that do strict type checking if you need them. Feel free to peruse
that header file to see what else is already defined that you shouldn’t reproduce in your code.

66 Chapter 5. Linux kernel coding style

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* 18) Editor modelines and other cruft

Some editors can interpret configuration information embedded in source files, indicated with special
markers. For example, emacs interprets lines marked like this:

-*- mode: c -*-

Or like this:

/*
Local Variables:
compile-command: "gcc -DMAGIC_DEBUG_FLAG foo.c"
End:
*/

Vim interprets markers that look like this:

/* vim:set sw=8 noet */

Do not include any of these in source files. People have their own personal editor configurations, and your
source files should not override them. This includes markers for indentation and mode configuration.
People may use their own custom mode, or may have some other magic method for making indentation
work correctly.

* 19) Inline assembly

In architecture-specific code, you may need to use inline assembly to interface with CPU or platform
functionality. Don’t hesitate to do so when necessary. However, don’t use inline assembly gratuitously
when C can do the job. You can and should poke hardware from C when possible.
Consider writing simple helper functions that wrap common bits of inline assembly, rather than repeatedly
writing them with slight variations. Remember that inline assembly can use C parameters.
Large, non-trivial assembly functions should go in .S files, with corresponding C prototypes defined in C
header files. The C prototypes for assembly functions should use asmlinkage.
You may need to mark your asm statement as volatile, to prevent GCC from removing it if GCC doesn’t
notice any side effects. You don’t always need to do so, though, and doing so unnecessarily can limit
optimization.
When writing a single inline assembly statement containing multiple instructions, put each instruction on
a separate line in a separate quoted string, and end each string except the last with \n\t to properly
indent the next instruction in the assembly output:

asm ("magic %reg1, #42\n\t"
"more_magic %reg2, %reg3"
: /* outputs */ : /* inputs */ : /* clobbers */);

* 20) Conditional Compilation

Wherever possible, don’t use preprocessor conditionals (#if, #ifdef) in .c files; doing so makes code harder
to read and logic harder to follow. Instead, use such conditionals in a header file defining functions for
use in those .c files, providing no-op stub versions in the #else case, and then call those functions uncon-
ditionally from .c files. The compiler will avoid generating any code for the stub calls, producing identical
results, but the logic will remain easy to follow.

*. 18) Editor modelines and other cruft 67

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Prefer to compile out entire functions, rather than portions of functions or portions of expressions. Rather
than putting an ifdef in an expression, factor out part or all of the expression into a separate helper function
and apply the conditional to that function.
If you have a function or variable which may potentially go unused in a particular configuration, and the
compiler would warn about its definition going unused, mark the definition as __maybe_unused rather
than wrapping it in a preprocessor conditional. (However, if a function or variable always goes unused,
delete it.)
Within code, where possible, use the IS_ENABLED macro to convert a Kconfig symbol into a C boolean
expression, and use it in a normal C conditional:

if (IS_ENABLED(CONFIG_SOMETHING)) {
...

}

The compiler will constant-fold the conditional away, and include or exclude the block of code just as with
an #ifdef, so this will not add any runtime overhead. However, this approach still allows the C compiler to
see the code inside the block, and check it for correctness (syntax, types, symbol references, etc). Thus,
you still have to use an #ifdef if the code inside the block references symbols that will not exist if the
condition is not met.
At the end of any non-trivial #if or #ifdef block (more than a few lines), place a comment after the #endif
on the same line, noting the conditional expression used. For instance:

#ifdef CONFIG_SOMETHING
...
#endif /* CONFIG_SOMETHING */

* Appendix I) References

The C Programming Language, Second Edition by Brian W. Kernighan and Dennis M. Ritchie. Prentice Hall,
Inc., 1988. ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback).
The Practice of Programming by Brian W. Kernighan and Rob Pike. Addison-Wesley, Inc., 1999. ISBN
0-201-61586-X.
GNU manuals - where in compliance with K&R and this text - for cpp, gcc, gcc internals and indent, all
available from http://www.gnu.org/manual/
WG14 is the international standardization working group for the programming language C, URL: http:
//www.open-std.org/JTC1/SC22/WG14/
Kernel process/coding-style.rst, by greg@kroah.com at OLS 2002: http://www.kroah.com/linux/talks/ols_
2002_kernel_codingstyle_talk/html/

68 Chapter 5. Linux kernel coding style

http://www.gnu.org/manual/
http://www.open-std.org/JTC1/SC22/WG14/
http://www.open-std.org/JTC1/SC22/WG14/
mailto:greg@kroah.com
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/

CHAPTER

SIX

EMAIL CLIENTS INFO FOR LINUX

* Git

These days most developers use git send-email instead of regular email clients. The man page for this
is quite good. On the receiving end, maintainers use git am to apply the patches.
If you are new to git then send your first patch to yourself. Save it as raw text including all the headers.
Run git am raw_email.txt and then review the changelog with git log. When that works then send
the patch to the appropriate mailing list(s).

* General Preferences

Patches for the Linux kernel are submitted via email, preferably as inline text in the body of the email.
Some maintainers accept attachments, but then the attachments should have content-type text/plain.
However, attachments are generally frowned upon because it makes quoting portions of the patch more
difficult in the patch review process.
Email clients that are used for Linux kernel patches should send the patch text untouched. For example,
they should not modify or delete tabs or spaces, even at the beginning or end of lines.
Don’t send patches with format=flowed. This can cause unexpected and unwanted line breaks.
Don’t let your email client do automatic word wrapping for you. This can also corrupt your patch.
Email clients should not modify the character set encoding of the text. Emailed patches should be in ASCII
or UTF-8 encoding only. If you configure your email client to send emails with UTF-8 encoding, you avoid
some possible charset problems.
Email clients should generate and maintain References: or In-Reply-To: headers so that mail threading is
not broken.
Copy-and-paste (or cut-and-paste) usually does not work for patches because tabs are converted to
spaces. Using xclipboard, xclip, and/or xcutsel may work, but it’s best to test this for yourself or just
avoid copy-and-paste.
Don’t use PGP/GPG signatures in mail that contains patches. This breaks many scripts that read and apply
the patches. (This should be fixable.)
It’s a good idea to send a patch to yourself, save the received message, and successfully apply it with
‘patch’ before sending patches to Linux mailing lists.

* Some email client (MUA) hints

Here are some specific MUA configuration hints for editing and sending patches for the Linux kernel. These
are not meant to be complete software package configuration summaries.
Legend:

69

Linux Kernel Development Documentation, Release 4.13.0-rc4+

• TUI = text-based user interface
• GUI = graphical user interface

* Alpine (TUI)

Config options:
In the Sending Preferences section:
• Do Not Send Flowed Text must be enabled
• Strip Whitespace Before Sending must be disabled

When composing the message, the cursor should be placed where the patch should appear, and then
pressing CTRL-R let you specify the patch file to insert into the message.

* Claws Mail (GUI)

Works. Some people use this successfully for patches.
To insert a patch use Message→Insert File (CTRL-I) or an external editor.
If the inserted patch has to be edited in the Claws composition window “Auto wrapping” in
Configuration→Preferences→Compose→Wrapping should be disabled.

* Evolution (GUI)

Some people use this successfully for patches.
When composing mail select: Preformat from Format→Paragraph Style→Preformatted (CTRL-7) or

the toolbar
Then use: Insert→Text File... (ALT-N x) to insert the patch.
You can also diff -Nru old.c new.c | xclip, select Preformat, then paste with the middle button.

* Kmail (GUI)

Some people use Kmail successfully for patches.
The default setting of not composing in HTML is appropriate; do not enable it.
When composing an email, under options, uncheck “word wrap”. The only disadvantage is any text you
type in the email will not be word-wrapped so you will have to manually word wrap text before the patch.
The easiest way around this is to compose your email with word wrap enabled, then save it as a draft.
Once you pull it up again from your drafts it is now hard word-wrapped and you can uncheck “word wrap”
without losing the existing wrapping.
At the bottom of your email, put the commonly-used patch delimiter before inserting your patch: three
hyphens (---).
Then from the Message menu item, select insert file and choose your patch. As an added bonus you can
customise the message creation toolbar menu and put the insert file icon there.
Make the composer window wide enough so that no lines wrap. As of KMail 1.13.5 (KDE 4.5.4), KMail
will apply word wrapping when sending the email if the lines wrap in the composer window. Having word
wrapping disabled in the Options menu isn’t enough. Thus, if your patch has very long lines, you must
make the composer window very wide before sending the email. See: https://bugs.kde.org/show_bug.
cgi?id=174034

70 Chapter 6. Email clients info for Linux

https://bugs.kde.org/show_bug.cgi?id=174034
https://bugs.kde.org/show_bug.cgi?id=174034

Linux Kernel Development Documentation, Release 4.13.0-rc4+

You can safely GPG sign attachments, but inlined text is preferred for patches so do not GPG sign them.
Signing patches that have been inserted as inlined text will make them tricky to extract from their 7-bit
encoding.
If you absolutely must send patches as attachments instead of inlining them as text, right click on the
attachment and select properties, and highlight Suggest automatic display to make the attachment inlined
to make it more viewable.
When saving patches that are sent as inlined text, select the email that contains the patch from the
message list pane, right click and select save as. You can use the whole email unmodified as a patch if it
was properly composed. There is no option currently to save the email when you are actually viewing it
in its own window – there has been a request filed at kmail’s bugzilla and hopefully this will be addressed.
Emails are saved as read-write for user only so you will have to chmod them to make them group and
world readable if you copy them elsewhere.

* Lotus Notes (GUI)

Run away from it.

* IBM Verse (Web GUI)

See Lotus Notes.

* Mutt (TUI)

Plenty of Linux developers use mutt, so it must work pretty well.
Mutt doesn’t come with an editor, so whatever editor you use should be used in a way that there are no
automatic linebreaks. Most editors have an insert file option that inserts the contents of a file unaltered.
To use vim with mutt:

set editor="vi"

If using xclip, type the command:

:set paste

before middle button or shift-insert or use:

:r filename

if you want to include the patch inline. (a)ttach works fine without set paste.
You can also generate patches with git format-patch and then use Mutt to send them:

$ mutt -H 0001-some-bug-fix.patch

Config options:
It should work with default settings. However, it’s a good idea to set the send_charset to:

set send_charset="us-ascii:utf-8"

Mutt is highly customizable. Here is a minimum configuration to start using Mutt to send patches through
Gmail:

*. Some email client (MUA) hints 71

Linux Kernel Development Documentation, Release 4.13.0-rc4+

.muttrc
================ IMAP ====================
set imap_user = 'yourusername@gmail.com'
set imap_pass = 'yourpassword'
set spoolfile = imaps://imap.gmail.com/INBOX
set folder = imaps://imap.gmail.com/
set record="imaps://imap.gmail.com/[Gmail]/Sent Mail"
set postponed="imaps://imap.gmail.com/[Gmail]/Drafts"
set mbox="imaps://imap.gmail.com/[Gmail]/All Mail"

================ SMTP ====================
set smtp_url = "smtp://username@smtp.gmail.com:587/"
set smtp_pass = $imap_pass
set ssl_force_tls = yes # Require encrypted connection

================ Composition ====================
set editor = `echo \$EDITOR`
set edit_headers = yes # See the headers when editing
set charset = UTF-8 # value of $LANG; also fallback for send_charset
Sender, email address, and sign-off line must match
unset use_domain # because joe@localhost is just embarrassing
set realname = "YOUR NAME"
set from = "username@gmail.com"
set use_from = yes

The Mutt docs have lots more information:
http://dev.mutt.org/trac/wiki/UseCases/Gmail
http://dev.mutt.org/doc/manual.html

* Pine (TUI)

Pine has had some whitespace truncation issues in the past, but these should all be fixed now.
Use alpine (pine’s successor) if you can.
Config options:
• quell-flowed-text is needed for recent versions
• the no-strip-whitespace-before-send option is needed

* Sylpheed (GUI)

• Works well for inlining text (or using attachments).
• Allows use of an external editor.
• Is slow on large folders.
• Won’t do TLS SMTP auth over a non-SSL connection.
• Has a helpful ruler bar in the compose window.
• Adding addresses to address book doesn’t understand the display name properly.

* Thunderbird (GUI)

Thunderbird is an Outlook clone that likes to mangle text, but there are ways to coerce it into behaving.

72 Chapter 6. Email clients info for Linux

http://dev.mutt.org/trac/wiki/UseCases/Gmail
http://dev.mutt.org/doc/manual.html

Linux Kernel Development Documentation, Release 4.13.0-rc4+

• Allow use of an external editor: The easiest thing to do with Thunderbird and patches is to use an
“external editor” extension and then just use your favorite $EDITOR for reading/merging patches
into the body text. To do this, download and install the extension, then add a button for it using
View→Toolbars→Customize... and finally just click on it when in the Compose dialog.
Please note that “external editor” requires that your editor must not fork, or in other words, the
editor must not return before closing. You may have to pass additional flags or change the settings
of your editor. Most notably if you are using gvim then you must pass the -f option to gvim by putting
/usr/bin/gvim -f (if the binary is in /usr/bin) to the text editor field in external editor settings. If
you are using some other editor then please read its manual to find out how to do this.

To beat some sense out of the internal editor, do this:
• Edit your Thunderbird config settings so that it won’t use format=flowed. Go to
edit→preferences→advanced→config editor to bring up the thunderbird’s registry editor.

• Set mailnews.send_plaintext_flowed to false
• Set mailnews.wraplength from 72 to 0
• View→Message Body As→Plain Text

• View→Character Encoding→Unicode (UTF-8)

* TkRat (GUI)

Works. Use “Insert file...” or external editor.

* Gmail (Web GUI)

Does not work for sending patches.
Gmail web client converts tabs to spaces automatically.
At the same time it wraps lines every 78 chars with CRLF style line breaks although tab2space problem
can be solved with external editor.
Another problem is that Gmail will base64-encode any message that has a non-ASCII character. That
includes things like European names.
Other guides to the community that are of interest to most developers are:

*. Some email client (MUA) hints 73

Linux Kernel Development Documentation, Release 4.13.0-rc4+

74 Chapter 6. Email clients info for Linux

CHAPTER

SEVEN

MINIMAL REQUIREMENTS TO COMPILE THE KERNEL

* Intro

This document is designed to provide a list of the minimum levels of software necessary to run the 4.x
kernels.
This document is originally based on my “Changes” file for 2.0.x kernels and therefore owes credit to the
same people as that file (Jared Mauch, Axel Boldt, Alessandro Sigala, and countless other users all over
the ‘net).

* Current Minimal Requirements

Upgrade to at least these software revisions before thinking you’ve encountered a bug! If you’re unsure
what version you’re currently running, the suggested command should tell you.
Again, keep in mind that this list assumes you are already functionally running a Linux kernel. Also, not
all tools are necessary on all systems; obviously, if you don’t have any ISDN hardware, for example, you
probably needn’t concern yourself with isdn4k-utils.

75

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Program Minimal version Command to check the version
GNU C 3.2 gcc –version
GNU make 3.81 make –version
binutils 2.20 ld -v
util-linux 2.10o fdformat –version
module-init-tools 0.9.10 depmod -V
e2fsprogs 1.41.4 e2fsck -V
jfsutils 1.1.3 fsck.jfs -V
reiserfsprogs 3.6.3 reiserfsck -V
xfsprogs 2.6.0 xfs_db -V
squashfs-tools 4.0 mksquashfs -version
btrfs-progs 0.18 btrfsck
pcmciautils 004 pccardctl -V
quota-tools 3.09 quota -V
PPP 2.4.0 pppd –version
isdn4k-utils 3.1pre1 isdnctrl 2>&1|grep version
nfs-utils 1.0.5 showmount –version
procps 3.2.0 ps –version
oprofile 0.9 oprofiled –version
udev 081 udevd –version
grub 0.93 grub –version || grub-install –version
mcelog 0.6 mcelog –version
iptables 1.4.2 iptables -V
openssl & libcrypto 1.0.0 openssl version
bc 1.06.95 bc –version
Sphinx1 1.3 sphinx-build –version

* Kernel compilation

GCC

The gcc version requirements may vary depending on the type of CPU in your computer.

Make

You will need GNU make 3.81 or later to build the kernel.

Binutils

The build system has, as of 4.13, switched to using thin archives (ar T) rather than incremental linking (ld
-r) for built-in.o intermediate steps. This requires binutils 2.20 or newer.

Perl

You will need perl 5 and the following modules: Getopt::Long, Getopt::Std, File::Basename, and
File::Find to build the kernel.

BC

You will need bc to build kernels 3.10 and higher
1 Sphinx is needed only to build the Kernel documentation

76 Chapter 7. Minimal requirements to compile the Kernel

Linux Kernel Development Documentation, Release 4.13.0-rc4+

OpenSSL

Module signing and external certificate handling use the OpenSSL program and crypto library to do key
creation and signature generation.
You will need openssl to build kernels 3.7 and higher if module signing is enabled. You will also need
openssl development packages to build kernels 4.3 and higher.

* System utilities

Architectural changes

DevFS has been obsoleted in favour of udev (http://www.kernel.org/pub/linux/utils/kernel/hotplug/)
32-bit UID support is now in place. Have fun!
Linux documentation for functions is transitioning to inline documentation via specially-formatted com-
ments near their definitions in the source. These comments can be combined with ReST files the Docu-
mentation/ directory to make enriched documentation, which can then be converted to PostScript, HTML,
LaTex, ePUB and PDF files. In order to convert from ReST format to a format of your choice, you’ll need
Sphinx.

Util-linux

New versions of util-linux provide fdisk support for larger disks, support new options to mount, recognize
more supported partition types, have a fdformat which works with 2.4 kernels, and similar goodies. You’ll
probably want to upgrade.

Ksymoops

If the unthinkable happens and your kernel oopses, you may need the ksymoops tool to decode it, but
in most cases you don’t. It is generally preferred to build the kernel with CONFIG_KALLSYMS so that it
produces readable dumps that can be used as-is (this also produces better output than ksymoops). If for
some reason your kernel is not build with CONFIG_KALLSYMS and you have no way to rebuild and reproduce
the Oops with that option, then you can still decode that Oops with ksymoops.

Module-Init-Tools

A new module loader is now in the kernel that requires module-init-tools to use. It is backward com-
patible with the 2.4.x series kernels.

Mkinitrd

These changes to the /lib/modules file tree layout also require that mkinitrd be upgraded.

E2fsprogs

The latest version of e2fsprogs fixes several bugs in fsck and debugfs. Obviously, it’s a good idea to
upgrade.

*. Intro 77

http://www.kernel.org/pub/linux/utils/kernel/hotplug/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

JFSutils

The jfsutils package contains the utilities for the file system. The following utilities are available:
• fsck.jfs - initiate replay of the transaction log, and check and repair a JFS formatted partition.
• mkfs.jfs - create a JFS formatted partition.
• other file system utilities are also available in this package.

Reiserfsprogs

The reiserfsprogs package should be used for reiserfs-3.6.x (Linux kernels 2.4.x). It is a combined package
and contains working versions of mkreiserfs, resize_reiserfs, debugreiserfs and reiserfsck. These
utils work on both i386 and alpha platforms.

Xfsprogs

The latest version of xfsprogs contains mkfs.xfs, xfs_db, and the xfs_repair utilities, among others,
for the XFS filesystem. It is architecture independent and any version from 2.0.0 onward should work
correctly with this version of the XFS kernel code (2.6.0 or later is recommended, due to some significant
improvements).

PCMCIAutils

PCMCIAutils replaces pcmcia-cs. It properly sets up PCMCIA sockets at system startup and loads the
appropriate modules for 16-bit PCMCIA devices if the kernel is modularized and the hotplug subsystem is
used.

Quota-tools

Support for 32 bit uid’s and gid’s is required if you want to use the newer version 2 quota format. Quota-
tools version 3.07 and newer has this support. Use the recommended version or newer from the table
above.

Intel IA32 microcode

A driver has been added to allow updating of Intel IA32 microcode, accessible as a normal (misc) character
device. If you are not using udev you may need to:

mkdir /dev/cpu
mknod /dev/cpu/microcode c 10 184
chmod 0644 /dev/cpu/microcode

as root before you can use this. You’ll probably also want to get the user-space microcode_ctl utility to
use with this.

udev

udev is a userspace application for populating /dev dynamically with only entries for devices actually
present. udev replaces the basic functionality of devfs, while allowing persistent device naming for de-
vices.

78 Chapter 7. Minimal requirements to compile the Kernel

Linux Kernel Development Documentation, Release 4.13.0-rc4+

FUSE

Needs libfuse 2.4.0 or later. Absolute minimum is 2.3.0 but mount options direct_io and kernel_cache
won’t work.

* Networking

General changes

If you have advanced network configuration needs, you should probably consider using the network tools
from ip-route2.

Packet Filter / NAT

The packet filtering and NAT code uses the same tools like the previous 2.4.x kernel series (iptables). It
still includes backwards-compatibility modules for 2.2.x-style ipchains and 2.0.x-style ipfwadm.

PPP

The PPP driver has been restructured to support multilink and to enable it to operate over diverse media
layers. If you use PPP, upgrade pppd to at least 2.4.0.
If you are not using udev, you must have the device file /dev/ppp which can be made by:

mknod /dev/ppp c 108 0

as root.

Isdn4k-utils

Due to changes in the length of the phone number field, isdn4k-utils needs to be recompiled or (preferably)
upgraded.

NFS-utils

In ancient (2.4 and earlier) kernels, the nfs server needed to know about any client that expected to be
able to access files via NFS. This information would be given to the kernel by mountd when the client
mounted the filesystem, or by exportfs at system startup. exportfs would take information about active
clients from /var/lib/nfs/rmtab.
This approach is quite fragile as it depends on rmtab being correct which is not always easy, particularly
when trying to implement fail-over. Even when the system is working well, rmtab suffers from getting lots
of old entries that never get removed.
With modern kernels we have the option of having the kernel tell mountd when it gets a request from
an unknown host, and mountd can give appropriate export information to the kernel. This removes the
dependency on rmtab and means that the kernel only needs to know about currently active clients.
To enable this new functionality, you need to:

mount -t nfsd nfsd /proc/fs/nfsd

before running exportfs or mountd. It is recommended that all NFS services be protected from the internet-
at-large by a firewall where that is possible.

*. Intro 79

Linux Kernel Development Documentation, Release 4.13.0-rc4+

mcelog

On x86 kernels the mcelog utility is needed to process and log machine check events when CON-
FIG_X86_MCE is enabled. Machine check events are errors reported by the CPU. Processing them is strongly
encouraged.

* Kernel documentation

Sphinx

Please see sphinx_install in Documentation/doc-guide/sphinx.rst for details about Sphinx require-
ments.

* Getting updated software

* Kernel compilation

gcc

• <ftp://ftp.gnu.org/gnu/gcc/>

Make

• <ftp://ftp.gnu.org/gnu/make/>

Binutils

• <https://www.kernel.org/pub/linux/devel/binutils/>

OpenSSL

• <https://www.openssl.org/>

* System utilities

Util-linux

• <https://www.kernel.org/pub/linux/utils/util-linux/>

Ksymoops

• <https://www.kernel.org/pub/linux/utils/kernel/ksymoops/v2.4/>

Module-Init-Tools

• <https://www.kernel.org/pub/linux/utils/kernel/module-init-tools/>

Mkinitrd

• <https://code.launchpad.net/initrd-tools/main>

80 Chapter 7. Minimal requirements to compile the Kernel

ftp://ftp.gnu.org/gnu/gcc/
ftp://ftp.gnu.org/gnu/make/
https://www.kernel.org/pub/linux/devel/binutils/
https://www.openssl.org/
https://www.kernel.org/pub/linux/utils/util-linux/
https://www.kernel.org/pub/linux/utils/kernel/ksymoops/v2.4/
https://www.kernel.org/pub/linux/utils/kernel/module-init-tools/
https://code.launchpad.net/initrd-tools/main

Linux Kernel Development Documentation, Release 4.13.0-rc4+

E2fsprogs

• <http://prdownloads.sourceforge.net/e2fsprogs/e2fsprogs-1.29.tar.gz>

JFSutils

• <http://jfs.sourceforge.net/>

Reiserfsprogs

• <http://www.kernel.org/pub/linux/utils/fs/reiserfs/>

Xfsprogs

• <ftp://oss.sgi.com/projects/xfs/>

Pcmciautils

• <https://www.kernel.org/pub/linux/utils/kernel/pcmcia/>

Quota-tools

• <http://sourceforge.net/projects/linuxquota/>

Intel P6 microcode

• <https://downloadcenter.intel.com/>

udev

• <http://www.freedesktop.org/software/systemd/man/udev.html>

FUSE

• <http://sourceforge.net/projects/fuse>

mcelog

• <http://www.mcelog.org/>

* Networking

PPP

• <ftp://ftp.samba.org/pub/ppp/>

Isdn4k-utils

• <ftp://ftp.isdn4linux.de/pub/isdn4linux/utils/>

*. Getting updated software 81

http://prdownloads.sourceforge.net/e2fsprogs/e2fsprogs-1.29.tar.gz
http://jfs.sourceforge.net/
http://www.kernel.org/pub/linux/utils/fs/reiserfs/
ftp://oss.sgi.com/projects/xfs/
https://www.kernel.org/pub/linux/utils/kernel/pcmcia/
http://sourceforge.net/projects/linuxquota/
https://downloadcenter.intel.com/
http://www.freedesktop.org/software/systemd/man/udev.html
http://sourceforge.net/projects/fuse
http://www.mcelog.org/
ftp://ftp.samba.org/pub/ppp/
ftp://ftp.isdn4linux.de/pub/isdn4linux/utils/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

NFS-utils

• <http://sourceforge.net/project/showfiles.php?group_id=14>

Iptables

• <http://www.iptables.org/downloads.html>

Ip-route2

• <https://www.kernel.org/pub/linux/utils/net/iproute2/>

OProfile

• <http://oprofile.sf.net/download/>

NFS-Utils

• <http://nfs.sourceforge.net/>

* Kernel documentation

Sphinx

• <http://www.sphinx-doc.org/>

82 Chapter 7. Minimal requirements to compile the Kernel

http://sourceforge.net/project/showfiles.php?group_id=14
http://www.iptables.org/downloads.html
https://www.kernel.org/pub/linux/utils/net/iproute2/
http://oprofile.sf.net/download/
http://nfs.sourceforge.net/
http://www.sphinx-doc.org/

CHAPTER

EIGHT

SUBMITTING DRIVERS FOR THE LINUX KERNEL

This document is intended to explain how to submit device drivers to the various kernel trees. Note that
if you are interested in video card drivers you should probably talk to XFree86 (http://www.xfree86.org/)
and/or X.Org (http://x.org/) instead.

Note:

This document is old and has seen little maintenance in recent years; it should probably be updated or,
perhaps better, just deleted. Most of what is here can be found in the other development documents
anyway.
Oh, and we don’t really recommend submitting changes to XFree86 :)

Also read the Documentation/process/submitting-patches.rst document.

* Allocating Device Numbers

Major and minor numbers for block and character devices are allocated by the Linux assigned name and
number authority (currently this is Torben Mathiasen). The site is http://www.lanana.org/. This also deals
with allocating numbers for devices that are not going to be submitted to the mainstream kernel. See
Documentation/admin-guide/devices.rst for more information on this.
If you don’t use assigned numbers then when your device is submitted it will be given an assigned number
even if that is different from values you may have shipped to customers before.

* Who To Submit Drivers To

Linux 2.0: No new drivers are accepted for this kernel tree.
Linux 2.2: No new drivers are accepted for this kernel tree.
Linux 2.4: If the code area has a general maintainer then please submit it to the maintainer listed in

MAINTAINERS in the kernel file. If the maintainer does not respond or you cannot find the appropriate
maintainer then please contact Willy Tarreau <w@1wt.eu>.

Linux 2.6 and upper: The same rules apply as 2.4 except that you should follow linux-kernel to track
changes in API’s. The final contact point for Linux 2.6+ submissions is Andrew Morton.

* What Criteria Determine Acceptance

Licensing: The code must be released to us under the GNU General Public License. We don’t insist
on any kind of exclusive GPL licensing, and if you wish the driver to be useful to other communi-

83

http://www.xfree86.org/
http://x.org/
http://www.lanana.org/
mailto:w@1wt.eu

Linux Kernel Development Documentation, Release 4.13.0-rc4+

ties such as BSD you may well wish to release under multiple licenses. See accepted licenses at
include/linux/module.h

Copyright: The copyright owner must agree to use of GPL. It’s best if the submitter and copyright owner
are the same person/entity. If not, the name of the person/entity authorizing use of GPL should be
listed in case it’s necessary to verify the will of the copyright owner.

Interfaces: If your driver uses existing interfaces and behaves like other drivers in the same class it will
be much more likely to be accepted than if it invents gratuitous new ones. If you need to implement
a common API over Linux and NT drivers do it in userspace.

Code: Please use the Linux style of code formatting as documented in Documentation/process/coding-
style.rst . If you have sections of code that need to be in other formats, for example because they
are shared with a windows driver kit and you want to maintain them just once separate them out
nicely and note this fact.

Portability: Pointers are not always 32bits, not all computers are little endian, people do not all have
floating point and you shouldn’t use inline x86 assembler in your driver without careful thought. Pure
x86 drivers generally are not popular. If you only have x86 hardware it is hard to test portability but
it is easy to make sure the code can easily be made portable.

Clarity: It helps if anyone can see how to fix the driver. It helps you because you get patches not bug
reports. If you submit a driver that intentionally obfuscates how the hardware works it will go in the
bitbucket.

PM support: Since Linux is used on many portable and desktop systems, your driver is likely to be used
on such a system and therefore it should support basic power management by implementing, if nec-
essary, the .suspend and .resume methods used during the system-wide suspend and resume transi-
tions. You should verify that your driver correctly handles the suspend and resume, but if you are un-
able to ensure that, please at least define the .suspend method returning the -ENOSYS (“Function not
implemented”) error. You should also try to make sure that your driver uses as little power as possible
when it’s not doing anything. For the driver testing instructions see Documentation/power/drivers-
testing.txt and for a relatively complete overview of the power management issues related to drivers
see Documentation/power/admin-guide/devices.rst .

Control: In general if there is active maintenance of a driver by the author then patches will be redirected
to them unless they are totally obvious and without need of checking. If you want to be the contact
and update point for the driver it is a good idea to state this in the comments, and include an entry
in MAINTAINERS for your driver.

* What Criteria Do Not Determine Acceptance

Vendor: Being the hardware vendor and maintaining the driver is often a good thing. If there is a stable
working driver from other people already in the tree don’t expect ‘we are the vendor’ to get your
driver chosen. Ideally work with the existing driver author to build a single perfect driver.

Author: It doesn’t matter if a large Linux company wrote the driver, or you did. Nobody has any special
access to the kernel tree. Anyone who tells you otherwise isn’t telling the whole story.

* Resources

Linux kernel master tree: ftp.country_code.kernel.org:/pub/linux/kernel/...
where country_code == your country code, such as us, uk, fr, etc.
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git

Linux kernel mailing list: linux-kernel@vger.kernel.org [mail majordomo@vger.kernel.org to sub-
scribe]

Linux Device Drivers, Third Edition (covers 2.6.10): http://lwn.net/Kernel/LDD3/ (free version)

84 Chapter 8. Submitting Drivers For The Linux Kernel

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git
mailto:linux-kernel@vger.kernel.org
mailto:majordomo@vger.kernel.org
http://lwn.net/Kernel/LDD3/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

LWN.net: Weekly summary of kernel development activity - http://lwn.net/
2.6 API changes:

http://lwn.net/Articles/2.6-kernel-api/
Porting drivers from prior kernels to 2.6:

http://lwn.net/Articles/driver-porting/
KernelNewbies: Documentation and assistance for new kernel programmers

http://kernelnewbies.org/
Linux USB project: http://www.linux-usb.org/
How to NOT write kernel driver by Arjan van de Ven: http://www.fenrus.org/

how-to-not-write-a-device-driver-paper.pdf
Kernel Janitor: http://kernelnewbies.org/KernelJanitors
GIT, Fast Version Control System: http://git-scm.com/

*. Resources 85

http://lwn.net/
http://lwn.net/Articles/2.6-kernel-api/
http://lwn.net/Articles/driver-porting/
http://kernelnewbies.org/
http://www.linux-usb.org/
http://www.fenrus.org/how-to-not-write-a-device-driver-paper.pdf
http://www.fenrus.org/how-to-not-write-a-device-driver-paper.pdf
http://kernelnewbies.org/KernelJanitors
http://git-scm.com/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

86 Chapter 8. Submitting Drivers For The Linux Kernel

CHAPTER

NINE

THE LINUX KERNEL DRIVER INTERFACE

(all of your questions answered and then some)
Greg Kroah-Hartman <greg@kroah.com>
This is being written to try to explain why Linux does not have a binary kernel interface, nor does
it have a stable kernel interface.

Note:

Please realize that this article describes the in kernel interfaces, not the kernel to userspace inter-
faces.
The kernel to userspace interface is the one that application programs use, the syscall interface. That
interface is very stable over time, and will not break. I have old programs that were built on a pre
0.9something kernel that still work just fine on the latest 2.6 kernel release. That interface is the one
that users and application programmers can count on being stable.

* Executive Summary

You think you want a stable kernel interface, but you really do not, and you don’t even know it. What you
want is a stable running driver, and you get that only if your driver is in the main kernel tree. You also get
lots of other good benefits if your driver is in the main kernel tree, all of which has made Linux into such
a strong, stable, and mature operating system which is the reason you are using it in the first place.

* Intro

It’s only the odd person who wants to write a kernel driver that needs to worry about the in-kernel inter-
faces changing. For the majority of the world, they neither see this interface, nor do they care about it at
all.
First off, I’m not going to address any legal issues about closed source, hidden source, binary blobs,
source wrappers, or any other term that describes kernel drivers that do not have their source code
released under the GPL. Please consult a lawyer if you have any legal questions, I’m a programmer and
hence, I’m just going to be describing the technical issues here (not to make light of the legal issues, they
are real, and you do need to be aware of them at all times.)
So, there are two main topics here, binary kernel interfaces and stable kernel source interfaces. They
both depend on each other, but we will discuss the binary stuff first to get it out of the way.

87

mailto:greg@kroah.com

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* Binary Kernel Interface

Assuming that we had a stable kernel source interface for the kernel, a binary interface would naturally
happen too, right? Wrong. Please consider the following facts about the Linux kernel:
• Depending on the version of the C compiler you use, different kernel data structures will contain
different alignment of structures, and possibly include different functions in different ways (putting
functions inline or not.) The individual function organization isn’t that important, but the different
data structure padding is very important.

• Depending on what kernel build options you select, a wide range of different things can be assumed
by the kernel:
– different structures can contain different fields
– Some functions may not be implemented at all, (i.e. some locks compile away to nothing for
non-SMP builds.)

– Memory within the kernel can be aligned in different ways, depending on the build options.
• Linux runs on a wide range of different processor architectures. There is no way that binary drivers
from one architecture will run on another architecture properly.

Now a number of these issues can be addressed by simply compiling your module for the exact specific
kernel configuration, using the same exact C compiler that the kernel was built with. This is sufficient if
you want to provide a module for a specific release version of a specific Linux distribution. But multiply
that single build by the number of different Linux distributions and the number of different supported
releases of the Linux distribution and you quickly have a nightmare of different build options on different
releases. Also realize that each Linux distribution release contains a number of different kernels, all tuned
to different hardware types (different processor types and different options), so for even a single release
you will need to create multiple versions of your module.
Trust me, you will go insane over time if you try to support this kind of release, I learned this the hard way
a long time ago...

* Stable Kernel Source Interfaces

This is a much more “volatile” topic if you talk to people who try to keep a Linux kernel driver that is not
in the main kernel tree up to date over time.
Linux kernel development is continuous and at a rapid pace, never stopping to slow down. As such,
the kernel developers find bugs in current interfaces, or figure out a better way to do things. If they do
that, they then fix the current interfaces to work better. When they do so, function names may change,
structures may grow or shrink, and function parameters may be reworked. If this happens, all of the
instances of where this interface is used within the kernel are fixed up at the same time, ensuring that
everything continues to work properly.
As a specific examples of this, the in-kernel USB interfaces have undergone at least three different reworks
over the lifetime of this subsystem. These reworks were done to address a number of different issues:
• A change from a synchronous model of data streams to an asynchronous one. This reduced the
complexity of a number of drivers and increased the throughput of all USB drivers such that we are
now running almost all USB devices at their maximum speed possible.

• A change was made in the way data packets were allocated from the USB core by USB drivers so that
all drivers now needed to provide more information to the USB core to fix a number of documented
deadlocks.

This is in stark contrast to a number of closed source operating systems which have had to maintain their
older USB interfaces over time. This provides the ability for new developers to accidentally use the old
interfaces and do things in improper ways, causing the stability of the operating system to suffer.

88 Chapter 9. The Linux Kernel Driver Interface

Linux Kernel Development Documentation, Release 4.13.0-rc4+

In both of these instances, all developers agreed that these were important changes that needed to be
made, and they were made, with relatively little pain. If Linux had to ensure that it will preserve a stable
source interface, a new interface would have been created, and the older, broken one would have had to
be maintained over time, leading to extra work for the USB developers. Since all Linux USB developers do
their work on their own time, asking programmers to do extra work for no gain, for free, is not a possibility.
Security issues are also very important for Linux. When a security issue is found, it is fixed in a very short
amount of time. A number of times this has caused internal kernel interfaces to be reworked to prevent
the security problem from occurring. When this happens, all drivers that use the interfaces were also
fixed at the same time, ensuring that the security problem was fixed and could not come back at some
future time accidentally. If the internal interfaces were not allowed to change, fixing this kind of security
problem and insuring that it could not happen again would not be possible.
Kernel interfaces are cleaned up over time. If there is no one using a current interface, it is deleted. This
ensures that the kernel remains as small as possible, and that all potential interfaces are tested as well
as they can be (unused interfaces are pretty much impossible to test for validity.)

* What to do

So, if you have a Linux kernel driver that is not in themain kernel tree, what are you, a developer, supposed
to do? Releasing a binary driver for every different kernel version for every distribution is a nightmare,
and trying to keep up with an ever changing kernel interface is also a rough job.
Simple, get your kernel driver into the main kernel tree (remember we are talking about GPL released
drivers here, if your code doesn’t fall under this category, good luck, you are on your own here, you leech
<insert link to leech comment from Andrew and Linus here>.) If your driver is in the tree, and a kernel
interface changes, it will be fixed up by the person who did the kernel change in the first place. This
ensures that your driver is always buildable, and works over time, with very little effort on your part.
The very good side effects of having your driver in the main kernel tree are:
• The quality of the driver will rise as the maintenance costs (to the original developer) will decrease.
• Other developers will add features to your driver.
• Other people will find and fix bugs in your driver.
• Other people will find tuning opportunities in your driver.
• Other people will update the driver for you when external interface changes require it.
• The driver automatically gets shipped in all Linux distributions without having to ask the distros to
add it.

As Linux supports a larger number of different devices “out of the box” than any other operating system,
and it supports these devices on more different processor architectures than any other operating system,
this proven type of development model must be doing something right :)

Thanks to Randy Dunlap, Andrew Morton, David Brownell, Hanna Linder, Robert Love, and Nishanth Ar-
avamudan for their review and comments on early drafts of this paper.

*. What to do 89

Linux Kernel Development Documentation, Release 4.13.0-rc4+

90 Chapter 9. The Linux Kernel Driver Interface

CHAPTER

TEN

LINUX KERNEL MANAGEMENT STYLE

This is a short document describing the preferred (or made up, depending on who you ask) management
style for the linux kernel. It’s meant to mirror the process/coding-style.rst document to some degree, and
mainly written to avoid answering 1 the same (or similar) questions over and over again.
Management style is very personal and much harder to quantify than simple coding style rules, so this
document may or may not have anything to do with reality. It started as a lark, but that doesn’t mean
that it might not actually be true. You’ll have to decide for yourself.
Btw, when talking about “kernel manager”, it’s all about the technical lead persons, not the people who
do traditional management inside companies. If you sign purchase orders or you have any clue about the
budget of your group, you’re almost certainly not a kernel manager. These suggestions may or may not
apply to you.
First off, I’d suggest buying “Seven Habits of Highly Effective People”, and NOT read it. Burn it, it’s a great
symbolic gesture.
Anyway, here goes:

* 1) Decisions

Everybody thinks managers make decisions, and that decision-making is important. The bigger and more
painful the decision, the bigger the manager must be to make it. That’s very deep and obvious, but it’s
not actually true.
The name of the game is to avoid having to make a decision. In particular, if somebody tells you “choose
(a) or (b), we really need you to decide on this”, you’re in trouble as a manager. The people you manage
had better know the details better than you, so if they come to you for a technical decision, you’re screwed.
You’re clearly not competent to make that decision for them.
(Corollary:if the people you manage don’t know the details better than you, you’re also screwed, although
for a totally different reason. Namely that you are in the wrong job, and that they should be managing
your brilliance instead).
So the name of the game is to avoid decisions, at least the big and painful ones. Making small and non-
consequential decisions is fine, and makes you look like you know what you’re doing, so what a kernel
manager needs to do is to turn the big and painful ones into small things where nobody really cares.
It helps to realize that the key difference between a big decision and a small one is whether you can fix
your decision afterwards. Any decision can be made small by just always making sure that if you were
wrong (and you will be wrong), you can always undo the damage later by backtracking. Suddenly, you
get to be doubly managerial for making two inconsequential decisions - the wrong one and the right one.
And people will even see that as true leadership (cough bullshit cough).

1 This document does so not so much by answering the question, but by making it painfully obvious to the questioner that we
don’t have a clue to what the answer is.

91

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Thus the key to avoiding big decisions becomes to just avoiding to do things that can’t be undone. Don’t
get ushered into a corner from which you cannot escape. A cornered rat may be dangerous - a cornered
manager is just pitiful.
It turns out that since nobody would be stupid enough to ever really let a kernel manager have huge fiscal
responsibility anyway, it’s usually fairly easy to backtrack. Since you’re not going to be able to waste
huge amounts of money that you might not be able to repay, the only thing you can backtrack on is a
technical decision, and there back-tracking is very easy: just tell everybody that you were an incompetent
nincompoop, say you’re sorry, and undo all the worthless work you had people work on for the last year.
Suddenly the decision you made a year ago wasn’t a big decision after all, since it could be easily undone.
It turns out that some people have trouble with this approach, for two reasons:
• admitting you were an idiot is harder than it looks. We all like to maintain appearances, and coming
out in public to say that you were wrong is sometimes very hard indeed.

• having somebody tell you that what you worked on for the last year wasn’t worthwhile after all can
be hard on the poor lowly engineers too, and while the actualwork was easy enough to undo by just
deleting it, you may have irrevocably lost the trust of that engineer. And remember: “irrevocable”
was what we tried to avoid in the first place, and your decision ended up being a big one after all.

Happily, both of these reasons can be mitigated effectively by just admitting up-front that you don’t have
a friggin’ clue, and telling people ahead of the fact that your decision is purely preliminary, and might be
the wrong thing. You should always reserve the right to change your mind, and make people very aware
of that. And it’s much easier to admit that you are stupid when you haven’t yet done the really stupid
thing.
Then, when it really does turn out to be stupid, people just roll their eyes and say “Oops, he did it again”.
This preemptive admission of incompetence might also make the people who actually do the work also
think twice about whether it’s worth doing or not. After all, if they aren’t certain whether it’s a good idea,
you sure as hell shouldn’t encourage them by promising them that what they work on will be included.
Make them at least think twice before they embark on a big endeavor.
Remember: they’d better know more about the details than you do, and they usually already think they
have the answer to everything. The best thing you can do as a manager is not to instill confidence, but
rather a healthy dose of critical thinking on what they do.
Btw, another way to avoid a decision is to plaintively just whine “can’t we just do both?” and look pitiful.
Trust me, it works. If it’s not clear which approach is better, they’ll eventually figure it out. The answer
may end up being that both teams get so frustrated by the situation that they just give up.
That may sound like a failure, but it’s usually a sign that there was something wrong with both projects,
and the reason the people involved couldn’t decide was that they were both wrong. You end up coming
up smelling like roses, and you avoided yet another decision that you could have screwed up on.

* 2) People

Most people are idiots, and being a manager means you’ll have to deal with it, and perhaps more impor-
tantly, that they have to deal with you.
It turns out that while it’s easy to undo technical mistakes, it’s not as easy to undo personality disorders.
You just have to live with theirs - and yours.
However, in order to prepare yourself as a kernel manager, it’s best to remember not to burn any bridges,
bomb any innocent villagers, or alienate too many kernel developers. It turns out that alienating people
is fairly easy, and un-alienating them is hard. Thus “alienating” immediately falls under the heading of
“not reversible”, and becomes a no-no according to 1) Decisions .
There’s just a few simple rules here:
1. don’t call people d*ckheads (at least not in public)
2. learn how to apologize when you forgot rule (1)

92 Chapter 10. Linux kernel management style

Linux Kernel Development Documentation, Release 4.13.0-rc4+

The problem with #1 is that it’s very easy to do, since you can say “you’re a d*ckhead” in millions of
different ways 2, sometimes without even realizing it, and almost always with a white-hot conviction that
you are right.
And the more convinced you are that you are right (and let’s face it, you can call just about anybody a
d*ckhead, and you often will be right), the harder it ends up being to apologize afterwards.
To solve this problem, you really only have two options:
• get really good at apologies
• spread the “love” out so evenly that nobody really ends up feeling like they get unfairly targeted.
Make it inventive enough, and they might even be amused.

The option of being unfailingly polite really doesn’t exist. Nobody will trust somebody who is so clearly
hiding his true character.

* 3) People II - the Good Kind

While it turns out that most people are idiots, the corollary to that is sadly that you are one too, and that
while we can all bask in the secure knowledge that we’re better than the average person (let’s face it,
nobody ever believes that they’re average or below-average), we should also admit that we’re not the
sharpest knife around, and there will be other people that are less of an idiot than you are.
Some people react badly to smart people. Others take advantage of them.
Make sure that you, as a kernel maintainer, are in the second group. Suck up to them, because they are
the people who will make your job easier. In particular, they’ll be able to make your decisions for you,
which is what the game is all about.
So when you find somebody smarter than you are, just coast along. Your management responsibilities
largely become ones of saying “Sounds like a good idea - go wild”, or “That sounds good, but what about
xxx?”. The second version in particular is a great way to either learn something new about “xxx” or seem
extra managerial by pointing out something the smarter person hadn’t thought about. In either case,
you win.
One thing to look out for is to realize that greatness in one area does not necessarily translate to other
areas. So you might prod people in specific directions, but let’s face it, they might be good at what they
do, and suck at everything else. The good news is that people tend to naturally gravitate back to what
they are good at, so it’s not like you are doing something irreversible when you do prod them in some
direction, just don’t push too hard.

* 4) Placing blame

Things will go wrong, and people want somebody to blame. Tag, you’re it.
It’s not actually that hard to accept the blame, especially if people kind of realize that it wasn’t all your
fault. Which brings us to the best way of taking the blame: do it for another guy. You’ll feel good for taking
the fall, he’ll feel good about not getting blamed, and the guy who lost his whole 36GB porn-collection
because of your incompetence will grudgingly admit that you at least didn’t try to weasel out of it.
Then make the developer who really screwed up (if you can find him) know in_private that he screwed
up. Not just so he can avoid it in the future, but so that he knows he owes you one. And, perhaps even
more importantly, he’s also likely the person who can fix it. Because, let’s face it, it sure ain’t you.
Taking the blame is also why you get to be manager in the first place. It’s part of what makes people trust
you, and allow you the potential glory, because you’re the one who gets to say “I screwed up”. And if
you’ve followed the previous rules, you’ll be pretty good at saying that by now.

2 Paul Simon sang “Fifty Ways to Leave Your Lover”, because quite frankly, “A Million Ways to Tell a Developer He Is a D*ckhead”
doesn’t scan nearly as well. But I’m sure he thought about it.

*. 3) People II - the Good Kind 93

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* 5) Things to avoid

There’s one thing people hate even more than being called “d*ckhead”, and that is being called a
“d*ckhead” in a sanctimonious voice. The first you can apologize for, the second one you won’t really get
the chance. They likely will no longer be listening even if you otherwise do a good job.
We all think we’re better than anybody else, which means that when somebody else puts on airs, it really
rubs us the wrong way. You may be morally and intellectually superior to everybody around you, but don’t
try to make it too obvious unless you really intend to irritate somebody 3.
Similarly, don’t be too polite or subtle about things. Politeness easily ends up going overboard and hiding
the problem, and as they say, “On the internet, nobody can hear you being subtle”. Use a big blunt object
to hammer the point in, because you can’t really depend on people getting your point otherwise.
Some humor can help pad both the bluntness and the moralizing. Going overboard to the point of being
ridiculous can drive a point home without making it painful to the recipient, who just thinks you’re being
silly. It can thus help get through the personal mental block we all have about criticism.

* 6) Why me?

Since your main responsibility seems to be to take the blame for other peoples mistakes, and make it
painfully obvious to everybody else that you’re incompetent, the obvious question becomes one of why
do it in the first place?
First off, while you may or may not get screaming teenage girls (or boys, let’s not be judgmental or sexist
here) knocking on your dressing room door, you will get an immense feeling of personal accomplishment
for being “in charge”. Never mind the fact that you’re really leading by trying to keep up with everybody
else and running after them as fast as you can. Everybody will still think you’re the person in charge.
It’s a great job if you can hack it.

3 Hint: internet newsgroups that are not directly related to your work are great ways to take out your frustrations at other people.
Write insulting posts with a sneer just to get into a good flame every once in a while, and you’ll feel cleansed. Just don’t crap too
close to home.

94 Chapter 10. Linux kernel management style

CHAPTER

ELEVEN

EVERYTHING YOU EVER WANTED TO KNOW ABOUT LINUX
-STABLE RELEASES

Rules on what kind of patches are accepted, and which ones are not, into the “-stable” tree:
• It must be obviously correct and tested.
• It cannot be bigger than 100 lines, with context.
• It must fix only one thing.
• It must fix a real bug that bothers people (not a, “This could be a problem...” type thing).
• It must fix a problem that causes a build error (but not for things marked CONFIG_BROKEN), an oops,
a hang, data corruption, a real security issue, or some “oh, that’s not good” issue. In short, something
critical.

• Serious issues as reported by a user of a distribution kernel may also be considered if they fix a
notable performance or interactivity issue. As these fixes are not as obvious and have a higher risk
of a subtle regression they should only be submitted by a distribution kernel maintainer and include
an addendum linking to a bugzilla entry if it exists and additional information on the user-visible
impact.

• New device IDs and quirks are also accepted.
• No “theoretical race condition” issues, unless an explanation of how the race can be exploited is also
provided.

• It cannot contain any “trivial” fixes in it (spelling changes, whitespace cleanups, etc).
• It must follow the Documentation/process/submitting-patches.rst rules.
• It or an equivalent fix must already exist in Linus’ tree (upstream).

* Procedure for submitting patches to the -stable tree

• If the patch covers files in net/ or drivers/net please follow netdev stable submission guidelines as
described in Documentation/networking/netdev-FAQ.txt

• Security patches should not be handled (solely) by the -stable review process but should follow the
procedures in Documentation/admin-guide/security-bugs.rst .

* For all other submissions, choose one of the following proce-
dures

* Option 1

To have the patch automatically included in the stable tree, add the tag

95

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Cc: stable@vger.kernel.org

in the sign-off area. Once the patch is merged it will be applied to the stable tree without anything else
needing to be done by the author or subsystem maintainer.

* Option 2

After the patch has been merged to Linus’ tree, send an email to stable@vger.kernel.org containing the
subject of the patch, the commit ID, why you think it should be applied, and what kernel version you wish
it to be applied to.

* Option 3

Send the patch, after verifying that it follows the above rules, to stable@vger.kernel.org. You must note
the upstream commit ID in the changelog of your submission, as well as the kernel version you wish it to
be applied to.
Option 1 is strongly preferred, is the easiest and most common. Option 2 and Option 3 are more
useful if the patch isn’t deemed worthy at the time it is applied to a public git tree (for instance, because
it deserves more regression testing first). Option 3 is especially useful if the patch needs some special
handling to apply to an older kernel (e.g., if API’s have changed in the meantime).
Note that for Option 3 , if the patch deviates from the original upstream patch (for example because it
had to be backported) this must be very clearly documented and justified in the patch description.
The upstream commit ID must be specified with a separate line above the commit text, like this:

commit <sha1> upstream.

Additionally, some patches submitted via Option 1 may have additional patch prerequisites which can be
cherry-picked. This can be specified in the following format in the sign-off area:

Cc: <stable@vger.kernel.org> # 3.3.x: a1f84a3: sched: Check for idle
Cc: <stable@vger.kernel.org> # 3.3.x: 1b9508f: sched: Rate-limit newidle
Cc: <stable@vger.kernel.org> # 3.3.x: fd21073: sched: Fix affinity logic
Cc: <stable@vger.kernel.org> # 3.3.x
Signed-off-by: Ingo Molnar <mingo@elte.hu>

The tag sequence has the meaning of:

git cherry-pick a1f84a3
git cherry-pick 1b9508f
git cherry-pick fd21073
git cherry-pick <this commit>

Also, some patches may have kernel version prerequisites. This can be specified in the following format
in the sign-off area:

Cc: <stable@vger.kernel.org> # 3.3.x

The tag has the meaning of:

git cherry-pick <this commit>

For each “-stable” tree starting with the specified version.
Following the submission:
• The sender will receive an ACK when the patch has been accepted into the queue, or a NAK if the
patch is rejected. This response might take a few days, according to the developer’s schedules.

96 Chapter 11. Everything you ever wanted to know about Linux -stable releases

mailto:stable@vger.kernel.org
mailto:stable@vger.kernel.org

Linux Kernel Development Documentation, Release 4.13.0-rc4+

• If accepted, the patch will be added to the -stable queue, for review by other developers and by the
relevant subsystem maintainer.

* Review cycle

• When the -stable maintainers decide for a review cycle, the patches will be sent to the review com-
mittee, and the maintainer of the affected area of the patch (unless the submitter is the maintainer
of the area) and CC: to the linux-kernel mailing list.

• The review committee has 48 hours in which to ACK or NAK the patch.
• If the patch is rejected by a member of the committee, or linux-kernel members object to the patch,
bringing up issues that the maintainers and members did not realize, the patch will be dropped from
the queue.

• At the end of the review cycle, the ACKed patches will be added to the latest -stable release, and a
new -stable release will happen.

• Security patches will be accepted into the -stable tree directly from the security kernel team, and
not go through the normal review cycle. Contact the kernel security team for more details on this
procedure.

* Trees

• The queues of patches, for both completed versions and in progress versions can be found at:
https://git.kernel.org/pub/scm/linux/kernel/git/stable/stable-queue.git

• The finalized and tagged releases of all stable kernels can be found in separate branches per version
at:

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

* Review committee

• This is made up of a number of kernel developers who have volunteered for this task, and a few that
haven’t.

*. Review cycle 97

https://git.kernel.org/pub/scm/linux/kernel/git/stable/stable-queue.git
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

Linux Kernel Development Documentation, Release 4.13.0-rc4+

98 Chapter 11. Everything you ever wanted to know about Linux -stable releases

CHAPTER

TWELVE

LINUX KERNEL PATCH SUBMISSION CHECKLIST

Here are some basic things that developers should do if they want to see their kernel patch submissions
accepted more quickly.
These are all above and beyond the documentation that is provided in
Documentation/process/submitting-patches.rst and elsewhere regarding submitting Linux kernel
patches.
1. If you use a facility then #include the file that defines/declares that facility. Don’t depend on other
header files pulling in ones that you use.

2. Builds cleanly:
1. with applicable or modified CONFIG options =y, =m, and =n. No gcc warnings/errors, no linker warn-
ings/errors.

2. Passes allnoconfig, allmodconfig
3. Builds successfully when using O=builddir
3. Builds on multiple CPU architectures by using local cross-compile tools or some other build farm.
4. ppc64 is a good architecture for cross-compilation checking because it tends to use unsigned long
for 64-bit quantities.

5. Check your patch for general style as detailed in Documentation/process/coding-style.rst . Check
for trivial violations with the patch style checker prior to submission (scripts/checkpatch.pl). You
should be able to justify all violations that remain in your patch.

6. Any new or modified CONFIG options don’t muck up the config menu.
7. All new Kconfig options have help text.
8. Has been carefully reviewed with respect to relevant Kconfig combinations. This is very hard to get
right with testing – brainpower pays off here.

9. Check cleanly with sparse.
10. Use make checkstack and make namespacecheck and fix any problems that they find.

Note:

checkstack does not point out problems explicitly, but any one function that uses more than 512
bytes on the stack is a candidate for change.

11. Include kernel-doc to document global kernel APIs. (Not required for static functions, but OK there
also.) Use make htmldocs or make pdfdocs to check the kernel-doc and fix any issues.

12. Has been tested with CONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT, CONFIG_DEBUG_SLAB,
CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES, CONFIG_DEBUG_SPINLOCK, CON-
FIG_DEBUG_ATOMIC_SLEEP, CONFIG_PROVE_RCU and CONFIG_DEBUG_OBJECTS_RCU_HEAD all si-
multaneously enabled.

99

Linux Kernel Development Documentation, Release 4.13.0-rc4+

13. Has been build- and runtime tested with and without CONFIG_SMP and CONFIG_PREEMPT.
14. If the patch affects IO/Disk, etc: has been tested with and without CONFIG_LBDAF.
15. All codepaths have been exercised with all lockdep features enabled.
16. All new /proc entries are documented under Documentation/
17. All new kernel boot parameters are documented in Documentation/admin-guide/kernel-

parameters.rst.
18. All new module parameters are documented with MODULE_PARM_DESC()
19. All new userspace interfaces are documented in Documentation/ABI/. See Documenta-

tion/ABI/README for more information. Patches that change userspace interfaces should be CCed
to linux-api@vger.kernel.org.

20. Check that it all passes make headers_check.
21. Has been checked with injection of at least slab and page-allocation failures. See Documenta-

tion/fault-injection/.
If the new code is substantial, addition of subsystem-specific fault injection might be appropriate.

22. Newly-added code has been compiled with gcc -W (use make EXTRA_CFLAGS=-W). This will generate
lots of noise, but is good for finding bugs like “warning: comparison between signed and unsigned”.

23. Tested after it has been merged into the -mm patchset to make sure that it still works with all of the
other queued patches and various changes in the VM, VFS, and other subsystems.

24. All memory barriers {e.g., barrier(), rmb(), wmb()} need a comment in the source code that ex-
plains the logic of what they are doing and why.

25. If any ioctl’s are added by the patch, then also update Documentation/ioctl/ioctl-number.txt.
26. If your modified source code depends on or uses any of the kernel APIs or features that are related

to the following Kconfig symbols, then test multiple builds with the related Kconfig symbols dis-
abled and/or =m (if that option is available) [not all of these at the same time, just various/random
combinations of them]:
CONFIG_SMP, CONFIG_SYSFS, CONFIG_PROC_FS, CONFIG_INPUT, CONFIG_PCI, CONFIG_BLOCK, CON-
FIG_PM, CONFIG_MAGIC_SYSRQ, CONFIG_NET, CONFIG_INET=n (but latter with CONFIG_NET=y).

100 Chapter 12. Linux Kernel patch submission checklist

mailto:linux-api@vger.kernel.org

CHAPTER

THIRTEEN

INDEX OF DOCUMENTATION FOR PEOPLE INTERESTED IN
WRITING AND/OR UNDERSTANDING THE LINUX KERNEL

Juan-Mariano de Goyeneche <jmseyas@dit.upm.es>
The need for a document like this one became apparent in the linux-kernel mailing list as the same ques-
tions, asking for pointers to information, appeared again and again.
Fortunately, as more and more people get to GNU/Linux, more and more get interested in the Kernel. But
reading the sources is not always enough. It is easy to understand the code, but miss the concepts, the
philosophy and design decisions behind this code.
Unfortunately, not many documents are available for beginners to start. And, even if they exist, there
was no “well-known” place which kept track of them. These lines try to cover this lack. All documents
available on line known by the author are listed, while some reference books are also mentioned.
PLEASE, if you know any paper not listed here or write a new document, send me an e-mail, and I’ll include
a reference to it here. Any corrections, ideas or comments are also welcomed.
The papers that follow are listed in no particular order. All are cataloged with the following fields: the
document’s “Title”, the “Author”/s, the “URL” where they can be found, some “Keywords” helpful when
searching for specific topics, and a brief “Description” of the Document.
Enjoy!

Note:

The documents on each section of this document are ordered by its published date, from the newest
to the oldest.

* Docs at the Linux Kernel tree

The Sphinx books should be built with make {htmldocs | pdfdocs | epubdocs}.
• Name: linux/Documentation

Author Many.
Location Documentation/
Keywords text files, Sphinx.
Description Documentation that comes with the kernel sources, inside the Documentation

directory. Some pages from this document (including this document itself) have been
moved there, and might be more up to date than the web version.

101

mailto:jmseyas@dit.upm.es

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* On-line docs

• Title: Linux Kernel Mailing List Glossary
Author various
URL http://kernelnewbies.org/glossary/
Date rolling version
Keywords glossary, terms, linux-kernel.
Description From the introduction: “This glossary is intended as a brief description of some

of the acronyms and terms you may hear during discussion of the Linux kernel”.
• Title: Tracing the Way of Data in a TCP Connection through the Linux Kernel

Author Richard Sailer
URL https://archive.org/details/linux_kernel_data_flow_short_paper
Date 2016
Keywords Linux Kernel Networking, TCP, tracing, ftrace
Description A seminar paper explaining ftrace and how to use it for understanding linux

kernel internals, illustrated at tracing the way of a TCP packet through the kernel.
Abstract This short paper outlines the usage of ftrace a tracing framework as a tool to un-

derstand a running Linux system. Having obtained a trace-log a kernel hacker can read
and understand source code more determined and with context. In a detailed exam-
ple this approach is demonstrated in tracing and the way of data in a TCP Connection
through the kernel. Finally this trace-log is used as base for more a exact conceptual
exploration and description of the Linux TCP/IP implementation.

• Title: On submitting kernel Patches
Author Andi Kleen
URL http://halobates.de/on-submitting-kernel-patches.pdf
Date 2008
Keywords patches, review process, types of submissions, basic rules, case studies
Description This paper gives several experience values on what types of patches there

are and how likley they get merged.
Abstract [...]. This paper examines some common problems for submitting larger changes

and some strategies to avoid problems.
• Title: Overview of the Virtual File System

Author Richard Gooch.
URL http://www.mjmwired.net/kernel/Documentation/filesystems/vfs.txt
Date 2007
Keywords VFS, File System, mounting filesystems, opening files, dentries, dcache.
Description Brief introduction to the Linux Virtual File System. What is it, how it works,

operations taken when opening a file or mounting a file system and description of im-
portant data structures explaining the purpose of each of their entries.

• Title: Linux Device Drivers, Third Edition
Author Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman
URL http://lwn.net/Kernel/LDD3/
Date 2005

102Chapter 13. Index of Documentation for People Interested in Writing and/or Understanding
the Linux Kernel

http://kernelnewbies.org/glossary/
https://archive.org/details/linux_kernel_data_flow_short_paper
http://halobates.de/on-submitting-kernel-patches.pdf
http://www.mjmwired.net/kernel/Documentation/filesystems/vfs.txt
http://lwn.net/Kernel/LDD3/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Description A 600-page book covering the (2.6.10) driver programming API and kernel
hacking in general. Available under the Creative Commons Attribution-ShareAlike 2.0
license.

note You can also purchase a copy from O’Reilly or elsewhere .
• Title: Writing an ALSA Driver

Author Takashi Iwai <tiwai@suse.de>
URL http://www.alsa-project.org/~iwai/writing-an-alsa-driver/index.html
Date 2005
Keywords ALSA, sound, soundcard, driver, lowlevel, hardware.
Description Advanced Linux Sound Architecture for developers, both at kernel and user-

level sides. ALSA is the Linux kernel sound architecture in the 2.6 kernel version.
• Title: Linux PCMCIA Programmer’s Guide

Author David Hinds.
URL http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-PROG.html
Date 2003
Keywords PCMCIA.
Description “This document describes how to write kernel device drivers for the Linux

PCMCIA Card Services interface. It also describes how to write user-mode utilities for
communicating with Card Services.

• Title: Linux Kernel Module Programming Guide
Author Ori Pomerantz.
URL http://tldp.org/LDP/lkmpg/2.6/html/index.html
Date 2001
Keywords modules, GPL book, /proc, ioctls, system calls, interrupt handlers .
Description Very nice 92 pages GPL book on the topic of modules programming. Lots of

examples.
• Title: Global spinlock list and usage

Author Rick Lindsley.
URL http://lse.sourceforge.net/lockhier/global-spin-lock
Date 2001
Keywords spinlock.
Description This is an attempt to document both the existence and usage of the spinlocks

in the Linux 2.4.5 kernel. Comprehensive list of spinlocks showing when they are used,
which functions access them, how each lock is acquired, under what conditions it is held,
whether interrupts can occur or not while it is held...

• Title: A Linux vm README
Author Kanoj Sarcar.
URL http://kos.enix.org/pub/linux-vmm.html
Date 2001
Keywords virtual memory, mm, pgd, vma, page, page flags, page cache, swap cache,

kswapd.
Description Telegraphic, short descriptions and definitions relating the Linux virtual mem-

ory implementation.

*. On-line docs 103

mailto:tiwai@suse.de
http://www.alsa-project.org/~iwai/writing-an-alsa-driver/index.html
http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-PROG.html
http://tldp.org/LDP/lkmpg/2.6/html/index.html
http://lse.sourceforge.net/lockhier/global-spin-lock
http://kos.enix.org/pub/linux-vmm.html

Linux Kernel Development Documentation, Release 4.13.0-rc4+

• Title: Video4linux Drivers, Part 1: Video-Capture Device
Author Alan Cox.
URL http://www.linux-mag.com/id/406
Date 2000
Keywords video4linux, driver, video capture, capture devices, camera driver.
Description The title says it all.

• Title: Video4linux Drivers, Part 2: Video-capture Devices
Author Alan Cox.
URL http://www.linux-mag.com/id/429
Date 2000
Keywords video4linux, driver, video capture, capture devices, camera driver, control,

query capabilities, capability, facility.
Description The title says it all.

• Title: Linux IP Networking. A Guide to the Implementation and Modification of the Linux
Protocol Stack.

Author Glenn Herrin.
URL http://www.cs.unh.edu/cnrg/gherrin
Date 2000
Keywords network, networking, protocol, IP, UDP, TCP, connection, socket, receiving,

transmitting, forwarding, routing, packets, modules, /proc, sk_buff, FIB, tags.
Description Excellent paper devoted to the Linux IP Networking, explaining anything from

the kernel’s to the user space configuration tools’ code. Very good to get a general
overview of the kernel networking implementation and understand all steps packets
follow from the time they are received at the network device till they are delivered to
applications. The studied kernel code is from 2.2.14 version. Provides code for a working
packet dropper example.

• Title: How To Make Sure Your Driver Will Work On The Power Macintosh
Author Paul Mackerras.
URL http://www.linux-mag.com/id/261
Date 1999
Keywords Mac, Power Macintosh, porting, drivers, compatibility.
Description The title says it all.

• Title: An Introduction to SCSI Drivers
Author Alan Cox.
URL http://www.linux-mag.com/id/284
Date 1999
Keywords SCSI, device, driver.
Description The title says it all.

• Title: Advanced SCSI Drivers And Other Tales
Author Alan Cox.
URL http://www.linux-mag.com/id/307
Date 1999

104Chapter 13. Index of Documentation for People Interested in Writing and/or Understanding
the Linux Kernel

http://www.linux-mag.com/id/406
http://www.linux-mag.com/id/429
http://www.cs.unh.edu/cnrg/gherrin
http://www.linux-mag.com/id/261
http://www.linux-mag.com/id/284
http://www.linux-mag.com/id/307

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Keywords SCSI, device, driver, advanced.
Description The title says it all.

• Title: Writing Linux Mouse Drivers
Author Alan Cox.
URL http://www.linux-mag.com/id/330
Date 1999
Keywords mouse, driver, gpm.
Description The title says it all.

• Title: More on Mouse Drivers
Author Alan Cox.
URL http://www.linux-mag.com/id/356
Date 1999
Keywords mouse, driver, gpm, races, asynchronous I/O.
Description The title still says it all.

• Title: Writing Video4linux Radio Driver
Author Alan Cox.
URL http://www.linux-mag.com/id/381
Date 1999
Keywords video4linux, driver, radio, radio devices.
Description The title says it all.

• Title: I/O Event Handling Under Linux
Author Richard Gooch.
URL http://web.mit.edu/~yandros/doc/io-events.html
Date 1999
Keywords IO, I/O, select(2), poll(2), FDs, aio_read(2), readiness event queues.
Description From the Introduction: “I/O Event handling is about how your Operating Sys-

tem allows you to manage a large number of open files (file descriptors in UNIX/POSIX,
or FDs) in your application. You want the OS to notify you when FDs become active (have
data ready to be read or are ready for writing). Ideally you want a mechanism that is
scalable. This means a large number of inactive FDs cost very little in memory and CPU
time to manage”.

• Title: (nearly) Complete Linux Loadable Kernel Modules. The definitive guide for hackers,
virus coders and system administrators.

Author pragmatic/THC.
URL http://packetstormsecurity.org/docs/hack/LKM_HACKING.html
Date 1999
Keywords syscalls, intercept, hide, abuse, symbol table.
Description Interesting paper on how to abuse the Linux kernel in order to intercept

and modify syscalls, make files/directories/processes invisible, become root, hijack ttys,
write kernel modules based virus... and solutions for admins to avoid all those abuses.

Notes For 2.0.x kernels. Gives guidances to port it to 2.2.x kernels.
• Name: Linux Virtual File System

*. On-line docs 105

http://www.linux-mag.com/id/330
http://www.linux-mag.com/id/356
http://www.linux-mag.com/id/381
http://web.mit.edu/~yandros/doc/io-events.html
http://packetstormsecurity.org/docs/hack/LKM_HACKING.html

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Author Peter J. Braam.
URL http://www.coda.cs.cmu.edu/doc/talks/linuxvfs/
Date 1998
Keywords slides, VFS, inode, superblock, dentry, dcache.
Description Set of slides, presumably from a presentation on the Linux VFS layer. Covers

version 2.1.x, with dentries and the dcache.
• Title: The Venus kernel interface

Author Peter J. Braam.
URL http://www.coda.cs.cmu.edu/doc/html/kernel-venus-protocol.html
Date 1998
Keywords coda, filesystem, venus, cache manager.
Description “This document describes the communication between Venus and kernel level

file system code needed for the operation of the Coda filesystem. This version document
is meant to describe the current interface (version 1.0) as well as improvements we
envisage”.

• Title: Design and Implementation of the Second Extended Filesystem
Author Rémy Card, Theodore Ts’o, Stephen Tweedie.
URL http://web.mit.edu/tytso/www/linux/ext2intro.html
Date 1998
Keywords ext2, linux fs history, inode, directory, link, devices, VFS, physical structure,

performance, benchmarks, ext2fs library, ext2fs tools, e2fsck.
Description Paper written by three of the top ext2 hackers. Covers Linux filesystems his-

tory, ext2 motivation, ext2 features, design, physical structure on disk, performance,
benchmarks, e2fsck’s passes description... A must read!

Notes This paper was first published in the Proceedings of the First Dutch International
Symposium on Linux, ISBN 90-367-0385-9.

• Title: The Linux RAID-1, 4, 5 Code
Author Ingo Molnar, Gadi Oxman and Miguel de Icaza.
URL http://www.linuxjournal.com/article.php?sid=2391
Date 1997
Keywords RAID, MD driver.
Description Linux Journal Kernel Korner article. Here is its
Abstract A description of the implementation of the RAID-1, RAID-4 and RAID-5 personali-

ties of the MD device driver in the Linux kernel, providing users with high performance
and reliable, secondary-storage capability using software.

• Title: Linux Kernel Hackers’ Guide
Author Michael K. Johnson.
URL http://www.tldp.org/LDP/khg/HyperNews/get/khg.html
Date 1997
Keywords device drivers, files, VFS, kernel interface, character vs block devices, hardware

interrupts, scsi, DMA, access to user memory, memory allocation, timers.
Description A guide designed to help you get up to speed on the concepts that are not

intuitevly obvious, and to document the internal structures of Linux.

106Chapter 13. Index of Documentation for People Interested in Writing and/or Understanding
the Linux Kernel

http://www.coda.cs.cmu.edu/doc/talks/linuxvfs/
http://www.coda.cs.cmu.edu/doc/html/kernel-venus-protocol.html
http://web.mit.edu/tytso/www/linux/ext2intro.html
http://www.linuxjournal.com/article.php?sid=2391
http://www.tldp.org/LDP/khg/HyperNews/get/khg.html

Linux Kernel Development Documentation, Release 4.13.0-rc4+

• Title: Dynamic Kernels: Modularized Device Drivers
Author Alessandro Rubini.
URL http://www.linuxjournal.com/article.php?sid=1219
Date 1996
Keywords device driver, module, loading/unloading modules, allocating resources.
Description Linux Journal Kernel Korner article. Here is its
Abstract This is the first of a series of four articles co-authored by Alessandro Rubini and

Georg Zezchwitz which present a practical approach to writing Linux device drivers as
kernel loadable modules. This installment presents an introduction to the topic, prepar-
ing the reader to understand next month’s installment.

• Title: Dynamic Kernels: Discovery
Author Alessandro Rubini.
URL http://www.linuxjournal.com/article.php?sid=1220
Date 1996
Keywords character driver, init_module, clean_up module, autodetection, mayor number,

minor number, file operations, open(), close().
Description Linux Journal Kernel Korner article. Here is its
Abstract This article, the second of four, introduces part of the actual code to create cus-

tom module implementing a character device driver. It describes the code for module
initialization and cleanup, as well as the open() and close() system calls.

• Title: The Devil’s in the Details
Author Georg v. Zezschwitz and Alessandro Rubini.
URL http://www.linuxjournal.com/article.php?sid=1221
Date 1996
Keywords read(), write(), select(), ioctl(), blocking/non blocking mode, interrupt handler.
Description Linux Journal Kernel Korner article. Here is its
Abstract This article, the third of four on writing character device drivers, introduces con-

cepts of reading, writing, and using ioctl-calls.
• Title: Dissecting Interrupts and Browsing DMA

Author Alessandro Rubini and Georg v. Zezschwitz.
URL http://www.linuxjournal.com/article.php?sid=1222
Date 1996
Keywords interrupts, irqs, DMA, bottom halves, task queues.
Description Linux Journal Kernel Korner article. Here is its
Abstract This is the fourth in a series of articles about writing character device drivers

as loadable kernel modules. This month, we further investigate the field of interrupt
handling. Though it is conceptually simple, practical limitations and constraints make
this an ‘’interesting” part of device driver writing, and several different facilities have
been provided for different situations. We also investigate the complex topic of DMA.

• Title: Device Drivers Concluded
Author Georg v. Zezschwitz.
URL http://www.linuxjournal.com/article.php?sid=1287
Date 1996

*. On-line docs 107

http://www.linuxjournal.com/article.php?sid=1219
http://www.linuxjournal.com/article.php?sid=1220
http://www.linuxjournal.com/article.php?sid=1221
http://www.linuxjournal.com/article.php?sid=1222
http://www.linuxjournal.com/article.php?sid=1287

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Keywords address spaces, pages, pagination, page management, demand loading, swap-
ping, memory protection, memory mapping, mmap, virtual memory areas (VMAs),
vremap, PCI.

Description Finally, the above turned out into a five articles series. This latest one’s in-
troduction reads: “This is the last of five articles about character device drivers. In
this final section, Georg deals with memory mapping devices, beginning with an overall
description of the Linux memory management concepts”.

• Title: Network Buffers And Memory Management
Author Alan Cox.
URL http://www.linuxjournal.com/article.php?sid=1312
Date 1996
Keywords sk_buffs, network devices, protocol/link layer variables, network devices flags,

transmit, receive, configuration, multicast.
Description Linux Journal Kernel Korner.
Abstract Writing a network device driver for Linux is fundamentally simple—most of the

complexity (other than talking to the hardware) involves managing network packets in
memory.

• Title: Analysis of the Ext2fs structure
Author Louis-Dominique Dubeau.
URL http://teaching.csse.uwa.edu.au/units/CITS2002/fs-ext2/
Date 1994
Keywords ext2, filesystem, ext2fs.
Description Description of ext2’s blocks, directories, inodes, bitmaps, invariants...

* Published books

• Title: Linux Treiber entwickeln
Author Jürgen Quade, Eva-Katharina Kunst
Publisher dpunkt.verlag
Date Oct 2015 (4th edition)
Pages 688
ISBN 978-3-86490-288-8
Note German. The third edition from 2011 is much cheaper and still quite up-to-date.

• Title: Linux Kernel Networking: Implementation and Theory
Author Rami Rosen
Publisher Apress
Date December 22, 2013
Pages 648
ISBN 978-1430261964

• Title: Embedded Linux Primer: A practical Real-World Approach, 2nd Edition
Author Christopher Hallinan
Publisher Pearson

108Chapter 13. Index of Documentation for People Interested in Writing and/or Understanding
the Linux Kernel

http://www.linuxjournal.com/article.php?sid=1312
http://teaching.csse.uwa.edu.au/units/CITS2002/fs-ext2/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Date November, 2010
Pages 656
ISBN 978-0137017836

• Title: Linux Kernel Development, 3rd Edition
Author Robert Love
Publisher Addison-Wesley
Date July, 2010
Pages 440
ISBN 978-0672329463

• Title: Essential Linux Device Drivers
Author Sreekrishnan Venkateswaran
Published Prentice Hall
Date April, 2008
Pages 744
ISBN 978-0132396554

• Title: Linux Device Drivers, 3rd Edition
Authors Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman
Publisher O’Reilly & Associates
Date 2005
Pages 636
ISBN 0-596-00590-3
Notes Further information in http://www.oreilly.com/catalog/linuxdrive3/ PDF format, URL:

http://lwn.net/Kernel/LDD3/
• Title: Linux Kernel Internals

Author Michael Beck
Publisher Addison-Wesley
Date 1997
ISBN 0-201-33143-8 (second edition)

• Title: Programmation Linux 2.0 API systeme et fonctionnement du noyau
Author Remy Card, Eric Dumas, Franck Mevel
Publisher Eyrolles
Date 1997
Pages 520
ISBN 2-212-08932-5
Notes French

• Title: The Design and Implementation of the 4.4 BSD UNIX Operating System
Author Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, John S. Quarterman
Publisher Addison-Wesley
Date 1996

*. Published books 109

http://www.oreilly.com/catalog/linuxdrive3/
http://lwn.net/Kernel/LDD3/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

ISBN 0-201-54979-4
• Title: Unix internals – the new frontiers

Author Uresh Vahalia
Publisher Prentice Hall
Date 1996
Pages 600
ISBN 0-13-101908-2

• Title: Programming for the real world - POSIX.4
Author Bill O. Gallmeister
Publisher O’Reilly & Associates, Inc
Date 1995
Pages 552
ISBN I-56592-074-0
Notes Though not being directly about Linux, Linux aims to be POSIX. Good reference.

• Title: UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching
for Kernel Programmers

Author Curt Schimmel
Publisher Addison Wesley
Date June, 1994
Pages 432
ISBN 0-201-63338-8

• Title: The Design and Implementation of the 4.3 BSD UNIX Operating System
Author Samuel J. Leffler, Marshall Kirk McKusick, Michael J Karels, John S. Quarterman
Publisher Addison-Wesley
Date 1989 (reprinted with corrections on October, 1990)
ISBN 0-201-06196-1

• Title: The Design of the UNIX Operating System
Author Maurice J. Bach
Publisher Prentice Hall
Date 1986
Pages 471
ISBN 0-13-201757-1

* Miscellaneous

• Name: Cross-Referencing Linux
URL http://lxr.free-electrons.com/
Keywords Browsing source code.
Description Another web-based Linux kernel source code browser. Lots of cross references

to variables and functions. You can see where they are defined and where they are used.

110Chapter 13. Index of Documentation for People Interested in Writing and/or Understanding
the Linux Kernel

http://lxr.free-electrons.com/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

• Name: Linux Weekly News
URL http://lwn.net
Keywords latest kernel news.
Description The title says it all. There’s a fixed kernel section summarizing developers’

work, bug fixes, new features and versions produced during the week. Published every
Thursday.

• Name: The home page of Linux-MM
Author The Linux-MM team.
URL http://linux-mm.org/
Keywords memory management, Linux-MM, mm patches, TODO, docs, mailing list.
Description Site devoted to Linux Memory Management development. Memory related

patches, HOWTOs, links, mm developers... Don’t miss it if you are interested in memory
management development!

• Name: Kernel Newbies IRC Channel and Website
URL http://www.kernelnewbies.org
Keywords IRC, newbies, channel, asking doubts.
Description #kernelnewbies on irc.oftc.net. #kernelnewbies is an IRC network dedicated

to the ‘newbie’ kernel hacker. The audience mostly consists of people who are learning
about the kernel, working on kernel projects or professional kernel hackers that want
to help less seasoned kernel people. #kernelnewbies is on the OFTC IRC Network. Try
irc.oftc.net as your server and then /join #kernelnewbies. The kernelnewbies website
also hosts articles, documents, FAQs...

• Name: linux-kernel mailing list archives and search engines
URL http://vger.kernel.org/vger-lists.html
URL http://www.uwsg.indiana.edu/hypermail/linux/kernel/index.html
URL http://groups.google.com/group/mlist.linux.kernel
Keywords linux-kernel, archives, search.
Description Some of the linux-kernel mailing list archivers. If you have a better/another

one, please let me know.

Document last updated on Tue 2016-Sep-20
This document is based on: http://www.dit.upm.es/~jmseyas/linux/kernel/hackers-docs.html
These are some overall technical guides that have been put here for now for lack of a better place.

*. Miscellaneous 111

http://lwn.net
http://linux-mm.org/
http://www.kernelnewbies.org
http://vger.kernel.org/vger-lists.html
http://www.uwsg.indiana.edu/hypermail/linux/kernel/index.html
http://groups.google.com/group/mlist.linux.kernel
http://www.dit.upm.es/~jmseyas/linux/kernel/hackers-docs.html

Linux Kernel Development Documentation, Release 4.13.0-rc4+

112Chapter 13. Index of Documentation for People Interested in Writing and/or Understanding
the Linux Kernel

CHAPTER

FOURTEEN

APPLYING PATCHES TO THE LINUX KERNEL

Original by: Jesper Juhl, August 2005

Note:

This document is obsolete. In most cases, rather than using patch manually, you’ll almost certainly
want to look at using Git instead.

A frequently asked question on the Linux Kernel Mailing List is how to apply a patch to the kernel or, more
specifically, what base kernel a patch for one of the many trees/branches should be applied to. Hopefully
this document will explain this to you.
In addition to explaining how to apply and revert patches, a brief description of the different kernel trees
(and examples of how to apply their specific patches) is also provided.

* What is a patch?

A patch is a small text document containing a delta of changes between two different versions of a source
tree. Patches are created with the diff program.
To correctly apply a patch you need to know what base it was generated from and what new version the
patch will change the source tree into. These should both be present in the patch file metadata or be
possible to deduce from the filename.

* How do I apply or revert a patch?

You apply a patch with the patch program. The patch program reads a diff (or patch) file and makes the
changes to the source tree described in it.
Patches for the Linux kernel are generated relative to the parent directory holding the kernel source dir.
This means that paths to files inside the patch file contain the name of the kernel source directories it was
generated against (or some other directory names like “a/” and “b/”).
Since this is unlikely to match the name of the kernel source dir on your local machine (but is often useful
info to see what version an otherwise unlabeled patch was generated against) you should change into
your kernel source directory and then strip the first element of the path from filenames in the patch file
when applying it (the -p1 argument to patch does this).
To revert a previously applied patch, use the -R argument to patch. So, if you applied a patch like this:

patch -p1 < ../patch-x.y.z

You can revert (undo) it like this:

113

Linux Kernel Development Documentation, Release 4.13.0-rc4+

patch -R -p1 < ../patch-x.y.z

* How do I feed a patch/diff file to patch?

This (as usual with Linux and other UNIX like operating systems) can be done in several different ways.
In all the examples below I feed the file (in uncompressed form) to patch via stdin using the following
syntax:

patch -p1 < path/to/patch-x.y.z

If you just want to be able to follow the examples below and don’t want to know of more than one way to
use patch, then you can stop reading this section here.
Patch can also get the name of the file to use via the -i argument, like this:

patch -p1 -i path/to/patch-x.y.z

If your patch file is compressed with gzip or xz and you don’t want to uncompress it before applying it,
then you can feed it to patch like this instead:

xzcat path/to/patch-x.y.z.xz | patch -p1
bzcat path/to/patch-x.y.z.gz | patch -p1

If you wish to uncompress the patch file by hand first before applying it (what I assume you’ve done in
the examples below), then you simply run gunzip or xz on the file – like this:

gunzip patch-x.y.z.gz
xz -d patch-x.y.z.xz

Which will leave youwith a plain text patch-x.y.z file that you can feed to patch via stdin or the -i argument,
as you prefer.
A few other nice arguments for patch are -s which causes patch to be silent except for errors which is nice
to prevent errors from scrolling out of the screen too fast, and --dry-run which causes patch to just print
a listing of what would happen, but doesn’t actually make any changes. Finally --verbose tells patch to
print more information about the work being done.

* Common errors when patching

When patch applies a patch file it attempts to verify the sanity of the file in different ways.
Checking that the file looks like a valid patch file and checking the code around the bits being modified
matches the context provided in the patch are just two of the basic sanity checks patch does.
If patch encounters something that doesn’t look quite right it has two options. It can either refuse to apply
the changes and abort or it can try to find a way to make the patch apply with a few minor changes.
One example of something that’s not ‘quite right’ that patch will attempt to fix up is if all the context
matches, the lines being changedmatch, but the line numbers are different. This can happen, for example,
if the patch makes a change in the middle of the file but for some reasons a few lines have been added or
removed near the beginning of the file. In that case everything looks good it has just moved up or down
a bit, and patch will usually adjust the line numbers and apply the patch.
Whenever patch applies a patch that it had to modify a bit to make it fit it’ll tell you about it by saying
the patch applied with fuzz. You should be wary of such changes since even though patch probably got
it right it doesn’t /always/ get it right, and the result will sometimes be wrong.

114 Chapter 14. Applying Patches To The Linux Kernel

Linux Kernel Development Documentation, Release 4.13.0-rc4+

When patch encounters a change that it can’t fix up with fuzz it rejects it outright and leaves a file with
a .rej extension (a reject file). You can read this file to see exactly what change couldn’t be applied, so
you can go fix it up by hand if you wish.
If you don’t have any third-party patches applied to your kernel source, but only patches from kernel.org
and you apply the patches in the correct order, and have made no modifications yourself to the source
files, then you should never see a fuzz or reject message from patch. If you do see suchmessages anyway,
then there’s a high risk that either your local source tree or the patch file is corrupted in some way. In
that case you should probably try re-downloading the patch and if things are still not OK then you’d be
advised to start with a fresh tree downloaded in full from kernel.org.
Let’s look a bit more at some of the messages patch can produce.
If patch stops and presents a File to patch: prompt, then patch could not find a file to be patched.
Most likely you forgot to specify -p1 or you are in the wrong directory. Less often, you’ll find patches that
need to be applied with -p0 instead of -p1 (reading the patch file should reveal if this is the case – if so,
then this is an error by the person who created the patch but is not fatal).
If you get Hunk #2 succeeded at 1887 with fuzz 2 (offset 7 lines). or a message similar to that,
then it means that patch had to adjust the location of the change (in this example it needed to move 7
lines from where it expected to make the change to make it fit).
The resulting file may or may not be OK, depending on the reason the file was different than expected.
This often happens if you try to apply a patch that was generated against a different kernel version than
the one you are trying to patch.
If you get a message like Hunk #3 FAILED at 2387., then it means that the patch could not be applied
correctly and the patch program was unable to fuzz its way through. This will generate a .rej file with the
change that caused the patch to fail and also a .orig file showing you the original content that couldn’t
be changed.
If you get Reversed (or previously applied) patch detected! Assume -R? [n] then patch de-
tected that the change contained in the patch seems to have already been made.
If you actually did apply this patch previously and you just re-applied it in error, then just say [n]o and
abort this patch. If you applied this patch previously and actually intended to revert it, but forgot to specify
-R, then you can say [y]es here to make patch revert it for you.
This can also happen if the creator of the patch reversed the source and destination directories when
creating the patch, and in that case reverting the patch will in fact apply it.
A message similar to patch: **** unexpected end of file in patch or patch unexpectedly ends
in middle of linemeans that patch could make no sense of the file you fed to it. Either your download
is broken, you tried to feed patch a compressed patch file without uncompressing it first, or the patch file
that you are using has beenmangled by amail client or mail transfer agent along the way somewhere, e.g.,
by splitting a long line into two lines. Often these warnings can easily be fixed by joining (concatenating)
the two lines that had been split.
As I already mentioned above, these errors should never happen if you apply a patch from kernel.org to
the correct version of an unmodified source tree. So if you get these errors with kernel.org patches then
you should probably assume that either your patch file or your tree is broken and I’d advise you to start
over with a fresh download of a full kernel tree and the patch you wish to apply.

* Are there any alternatives to patch?

Yes there are alternatives.
You can use the interdiff program (http://cyberelk.net/tim/patchutils/) to generate a patch representing
the differences between two patches and then apply the result.

*. Are there any alternatives to patch? 115

http://cyberelk.net/tim/patchutils/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

This will let you move from something like 4.7.2 to 4.7.3 in a single step. The -z flag to interdiff will even
let you feed it patches in gzip or bzip2 compressed form directly without the use of zcat or bzcat or manual
decompression.
Here’s how you’d go from 4.7.2 to 4.7.3 in a single step:

interdiff -z ../patch-4.7.2.gz ../patch-4.7.3.gz | patch -p1

Although interdiff may save you a step or two you are generally advised to do the additional steps since
interdiff can get things wrong in some cases.
Another alternative is ketchup, which is a python script for automatic downloading and applying of patches
(http://www.selenic.com/ketchup/).
Other nice tools are diffstat, which shows a summary of changes made by a patch; lsdiff, which displays
a short listing of affected files in a patch file, along with (optionally) the line numbers of the start of each
patch; and grepdiff, which displays a list of the files modified by a patch where the patch contains a given
regular expression.

* Where can I download the patches?

The patches are available at http://kernel.org/ Most recent patches are linked from the front page, but
they also have specific homes.
The 4.x.y (-stable) and 4.x patches live at

https://www.kernel.org/pub/linux/kernel/v4.x/
The -rc patches live at

https://www.kernel.org/pub/linux/kernel/v4.x/testing/

* The 4.x kernels

These are the base stable releases released by Linus. The highest numbered release is the most recent.
If regressions or other serious flaws are found, then a -stable fix patch will be released (see below) on top
of this base. Once a new 4.x base kernel is released, a patch is made available that is a delta between
the previous 4.x kernel and the new one.
To apply a patch moving from 4.6 to 4.7, you’d do the following (note that such patches do NOT apply on
top of 4.x.y kernels but on top of the base 4.x kernel – if you need to move from 4.x.y to 4.x+1 you need
to first revert the 4.x.y patch).
Here are some examples:

moving from 4.6 to 4.7

$ cd ~/linux-4.6 # change to kernel source dir
$ patch -p1 < ../patch-4.7 # apply the 4.7 patch
$ cd ..
$ mv linux-4.6 linux-4.7 # rename source dir

moving from 4.6.1 to 4.7

$ cd ~/linux-4.6.1 # change to kernel source dir
$ patch -p1 -R < ../patch-4.6.1 # revert the 4.6.1 patch

source dir is now 4.6
$ patch -p1 < ../patch-4.7 # apply new 4.7 patch
$ cd ..
$ mv linux-4.6.1 linux-4.7 # rename source dir

116 Chapter 14. Applying Patches To The Linux Kernel

http://www.selenic.com/ketchup/
http://kernel.org/
https://www.kernel.org/pub/linux/kernel/v4.x/
https://www.kernel.org/pub/linux/kernel/v4.x/testing/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* The 4.x.y kernels

Kernels with 3-digit versions are -stable kernels. They contain small(ish) critical fixes for security problems
or significant regressions discovered in a given 4.x kernel.
This is the recommended branch for users who want the most recent stable kernel and are not interested
in helping test development/experimental versions.
If no 4.x.y kernel is available, then the highest numbered 4.x kernel is the current stable kernel.

Note:

The -stable team usually do make incremental patches available as well as patches against the latest
mainline release, but I only cover the non-incremental ones below. The incremental ones can be found
at https://www.kernel.org/pub/linux/kernel/v4.x/incr/

These patches are not incremental, meaning that for example the 4.7.3 patch does not apply on top of
the 4.7.2 kernel source, but rather on top of the base 4.7 kernel source.
So, in order to apply the 4.7.3 patch to your existing 4.7.2 kernel source you have to first back out the
4.7.2 patch (so you are left with a base 4.7 kernel source) and then apply the new 4.7.3 patch.
Here’s a small example:

$ cd ~/linux-4.7.2 # change to the kernel source dir
$ patch -p1 -R < ../patch-4.7.2 # revert the 4.7.2 patch
$ patch -p1 < ../patch-4.7.3 # apply the new 4.7.3 patch
$ cd ..
$ mv linux-4.7.2 linux-4.7.3 # rename the kernel source dir

* The -rc kernels

These are release-candidate kernels. These are development kernels released by Linus whenever he
deems the current git (the kernel’s source management tool) tree to be in a reasonably sane state ade-
quate for testing.
These kernels are not stable and you should expect occasional breakage if you intend to run them. This
is however the most stable of the main development branches and is also what will eventually turn into
the next stable kernel, so it is important that it be tested by as many people as possible.
This is a good branch to run for people who want to help out testing development kernels but do not want
to run some of the really experimental stuff (such people should see the sections about -next and -mm
kernels below).
The -rc patches are not incremental, they apply to a base 4.x kernel, just like the 4.x.y patches described
above. The kernel version before the -rcN suffix denotes the version of the kernel that this -rc kernel will
eventually turn into.
So, 4.8-rc5 means that this is the fifth release candidate for the 4.8 kernel and the patch should be applied
on top of the 4.7 kernel source.
Here are 3 examples of how to apply these patches:

first an example of moving from 4.7 to 4.8-rc3

$ cd ~/linux-4.7 # change to the 4.7 source dir
$ patch -p1 < ../patch-4.8-rc3 # apply the 4.8-rc3 patch
$ cd ..
$ mv linux-4.7 linux-4.8-rc3 # rename the source dir

*. The 4.x.y kernels 117

https://www.kernel.org/pub/linux/kernel/v4.x/incr/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

now let's move from 4.8-rc3 to 4.8-rc5

$ cd ~/linux-4.8-rc3 # change to the 4.8-rc3 dir
$ patch -p1 -R < ../patch-4.8-rc3 # revert the 4.8-rc3 patch
$ patch -p1 < ../patch-4.8-rc5 # apply the new 4.8-rc5 patch
$ cd ..
$ mv linux-4.8-rc3 linux-4.8-rc5 # rename the source dir

finally let's try and move from 4.7.3 to 4.8-rc5

$ cd ~/linux-4.7.3 # change to the kernel source dir
$ patch -p1 -R < ../patch-4.7.3 # revert the 4.7.3 patch
$ patch -p1 < ../patch-4.8-rc5 # apply new 4.8-rc5 patch
$ cd ..
$ mv linux-4.7.3 linux-4.8-rc5 # rename the kernel source dir

* The -mm patches and the linux-next tree

The -mm patches are experimental patches released by Andrew Morton.
In the past, -mm tree were used to also test subsystem patches, but this function is now done via the
linux-next <https://www.kernel.org/doc/man-pages/linux-next.html> tree. The Subsystem maintainers
push their patches first to linux-next, and, during the merge window, sends them directly to Linus.
The -mm patches serve as a sort of proving ground for new features and other experimental patches that
aren’t merged via a subsystem tree. Once such patches has proved its worth in -mm for a while Andrew
pushes it on to Linus for inclusion in mainline.
The linux-next tree is daily updated, and includes the -mm patches. Both are in constant flux and contains
many experimental features, a lot of debugging patches not appropriate for mainline etc., and is the most
experimental of the branches described in this document.
These patches are not appropriate for use on systems that are supposed to be stable and they are more
risky to run than any of the other branches (make sure you have up-to-date backups – that goes for any
experimental kernel but even more so for -mm patches or using a Kernel from the linux-next tree).
Testing of -mm patches and linux-next is greatly appreciated since the whole point of those are to weed out
regressions, crashes, data corruption bugs, build breakage (and any other bug in general) before changes
are merged into the more stable mainline Linus tree.
But testers of -mm and linux-next should be aware that breakages are more common than in any other
tree.
This concludes this list of explanations of the various kernel trees. I hope you are now clear on how to
apply the various patches and help testing the kernel.
Thank you’s to Randy Dunlap, Rolf Eike Beer, Linus Torvalds, Bodo Eggert, Johannes Stezenbach, Grant
Coady, Pavel Machek and others that I may have forgotten for their reviews and contributions to this
document.

118 Chapter 14. Applying Patches To The Linux Kernel

CHAPTER

FIFTEEN

ADDING A NEW SYSTEM CALL

This document describes what’s involved in adding a new system call to the Linux kernel, over and above
the normal submission advice in Documentation/process/submitting-patches.rst .

* System Call Alternatives

The first thing to consider when adding a new system call is whether one of the alternatives might be
suitable instead. Although system calls are the most traditional and most obvious interaction points
between userspace and the kernel, there are other possibilities – choose what fits best for your interface.
• If the operations involved can be made to look like a filesystem-like object, it may make more sense
to create a new filesystem or device. This also makes it easier to encapsulate the new functionality
in a kernel module rather than requiring it to be built into the main kernel.
– If the new functionality involves operations where the kernel notifies userspace that something
has happened, then returning a new file descriptor for the relevant object allows userspace to
use poll/select/epoll to receive that notification.

– However, operations that don’t map to read(2)/write(2)-like operations have to be imple-
mented as ioctl(2) requests, which can lead to a somewhat opaque API.

• If you’re just exposing runtime system information, a new node in sysfs (see Documenta-
tion/filesystems/sysfs.txt) or the /proc filesystem may be more appropriate. However, access
to these mechanisms requires that the relevant filesystem is mounted, which might not always be
the case (e.g. in a namespaced/sandboxed/chrooted environment). Avoid adding any API to debugfs,
as this is not considered a ‘production’ interface to userspace.

• If the operation is specific to a particular file or file descriptor, then an additional fcntl(2) command
option may be more appropriate. However, fcntl(2) is a multiplexing system call that hides a lot of
complexity, so this option is best for when the new function is closely analogous to existing fcntl(2)
functionality, or the new functionality is very simple (for example, getting/setting a simple flag related
to a file descriptor).

• If the operation is specific to a particular task or process, then an additional prctl(2) command
option may be more appropriate. As with fcntl(2), this system call is a complicated multiplexor
so is best reserved for near-analogs of existing prctl() commands or getting/setting a simple flag
related to a process.

* Designing the API: Planning for Extension

A new system call forms part of the API of the kernel, and has to be supported indefinitely. As such, it’s a
very good idea to explicitly discuss the interface on the kernel mailing list, and it’s important to plan for
future extensions of the interface.

119

Linux Kernel Development Documentation, Release 4.13.0-rc4+

(The syscall table is littered with historical examples where this wasn’t done, together with the correspond-
ing follow-up system calls – eventfd/eventfd2, dup2/dup3, inotify_init/inotify_init1, pipe/pipe2,
renameat/renameat2 – so learn from the history of the kernel and plan for extensions from the start.)
For simpler system calls that only take a couple of arguments, the preferred way to allow for future ex-
tensibility is to include a flags argument to the system call. To make sure that userspace programs can
safely use flags between kernel versions, check whether the flags value holds any unknown flags, and
reject the system call (with EINVAL) if it does:

if (flags & ~(THING_FLAG1 | THING_FLAG2 | THING_FLAG3))
return -EINVAL;

(If no flags values are used yet, check that the flags argument is zero.)
For more sophisticated system calls that involve a larger number of arguments, it’s preferred to encapsu-
late the majority of the arguments into a structure that is passed in by pointer. Such a structure can cope
with future extension by including a size argument in the structure:

struct xyzzy_params {
u32 size; /* userspace sets p->size = sizeof(struct xyzzy_params) */
u32 param_1;
u64 param_2;
u64 param_3;

};

As long as any subsequently added field, say param_4, is designed so that a zero value gives the previous
behaviour, then this allows both directions of version mismatch:
• To cope with a later userspace program calling an older kernel, the kernel code should check that any
memory beyond the size of the structure that it expects is zero (effectively checking that param_4
== 0).

• To cope with an older userspace program calling a newer kernel, the kernel code can zero-extend a
smaller instance of the structure (effectively setting param_4 = 0).

See perf_event_open(2) and the perf_copy_attr() function (in kernel/events/core.c) for an exam-
ple of this approach.

* Designing the API: Other Considerations

If your new system call allows userspace to refer to a kernel object, it should use a file descriptor as the
handle for that object – don’t invent a new type of userspace object handle when the kernel already has
mechanisms and well-defined semantics for using file descriptors.
If your new xyzzy(2) system call does return a new file descriptor, then the flags argument should include
a value that is equivalent to setting O_CLOEXEC on the new FD. This makes it possible for userspace to close
the timing window between xyzzy() and calling fcntl(fd,F_SETFD,FD_CLOEXEC), where an unexpected
fork() and execve() in another thread could leak a descriptor to the exec’ed program. (However, resist
the temptation to re-use the actual value of the O_CLOEXEC constant, as it is architecture-specific and is
part of a numbering space of O_* flags that is fairly full.)
If your system call returns a new file descriptor, you should also consider what it means to use the poll(2)
family of system calls on that file descriptor. Making a file descriptor ready for reading or writing is the
normal way for the kernel to indicate to userspace that an event has occurred on the corresponding kernel
object.
If your new xyzzy(2) system call involves a filename argument:

int sys_xyzzy(const char __user *path, ..., unsigned int flags);

you should also consider whether an xyzzyat(2) version is more appropriate:

120 Chapter 15. Adding a New System Call

Linux Kernel Development Documentation, Release 4.13.0-rc4+

int sys_xyzzyat(int dfd, const char __user *path, ..., unsigned int flags);

This allows more flexibility for how userspace specifies the file in question; in particular it allows userspace
to request the functionality for an already-opened file descriptor using the AT_EMPTY_PATH flag, effectively
giving an fxyzzy(3) operation for free:

- xyzzyat(AT_FDCWD, path, ..., 0) is equivalent to xyzzy(path,...)
- xyzzyat(fd, "", ..., AT_EMPTY_PATH) is equivalent to fxyzzy(fd, ...)

(For more details on the rationale of the *at() calls, see the openat(2) man page; for an example of
AT_EMPTY_PATH, see the fstatat(2) man page.)
If your new xyzzy(2) system call involves a parameter describing an offset within a file, make its type
loff_t so that 64-bit offsets can be supported even on 32-bit architectures.
If your new xyzzy(2) system call involves privileged functionality, it needs to be governed by the ap-
propriate Linux capability bit (checked with a call to capable()), as described in the capabilities(7)
man page. Choose an existing capability bit that governs related functionality, but try to avoid combin-
ing lots of only vaguely related functions together under the same bit, as this goes against capabilities’
purpose of splitting the power of root. In particular, avoid adding new uses of the already overly-general
CAP_SYS_ADMIN capability.
If your new xyzzy(2) system call manipulates a process other than the calling process, it should be
restricted (using a call to ptrace_may_access()) so that only a calling process with the same permissions
as the target process, or with the necessary capabilities, can manipulate the target process.
Finally, be aware that some non-x86 architectures have an easier time if system call parameters that are
explicitly 64-bit fall on odd-numbered arguments (i.e. parameter 1, 3, 5), to allow use of contiguous pairs
of 32-bit registers. (This concern does not apply if the arguments are part of a structure that’s passed in
by pointer.)

* Proposing the API

To make new system calls easy to review, it’s best to divide up the patchset into separate chunks. These
should include at least the following items as distinct commits (each of which is described further below):
• The core implementation of the system call, together with prototypes, generic numbering, Kconfig
changes and fallback stub implementation.

• Wiring up of the new system call for one particular architecture, usually x86 (including all of x86_64,
x86_32 and x32).

• A demonstration of the use of the new system call in userspace via a selftest in
tools/testing/selftests/.

• A draft man-page for the new system call, either as plain text in the cover letter, or as a patch to the
(separate) man-pages repository.

New system call proposals, like any change to the kernel’s API, should always be cc’ed to linux-
api@vger.kernel.org.

* Generic System Call Implementation

The main entry point for your new xyzzy(2) system call will be called sys_xyzzy(), but you add this entry
point with the appropriate SYSCALL_DEFINEn()macro rather than explicitly. The ‘n’ indicates the number
of arguments to the system call, and the macro takes the system call name followed by the (type, name)
pairs for the parameters as arguments. Using this macro allows metadata about the new system call to
be made available for other tools.

*. Proposing the API 121

mailto:linux-api@vger.kernel.org
mailto:linux-api@vger.kernel.org

Linux Kernel Development Documentation, Release 4.13.0-rc4+

The new entry point also needs a corresponding function prototype, in include/linux/syscalls.h,
marked as asmlinkage to match the way that system calls are invoked:

asmlinkage long sys_xyzzy(...);

Some architectures (e.g. x86) have their own architecture-specific syscall tables, but several other archi-
tectures share a generic syscall table. Add your new system call to the generic list by adding an entry to
the list in include/uapi/asm-generic/unistd.h:

#define __NR_xyzzy 292
__SYSCALL(__NR_xyzzy, sys_xyzzy)

Also update the __NR_syscalls count to reflect the additional system call, and note that if multiple new
system calls are added in the same merge window, your new syscall number may get adjusted to resolve
conflicts.
The file kernel/sys_ni.c provides a fallback stub implementation of each system call, returning -ENOSYS.
Add your new system call here too:

cond_syscall(sys_xyzzy);

Your new kernel functionality, and the system call that controls it, should normally be optional, so add a
CONFIG option (typically to init/Kconfig) for it. As usual for new CONFIG options:
• Include a description of the new functionality and system call controlled by the option.
• Make the option depend on EXPERT if it should be hidden from normal users.
• Make any new source files implementing the function dependent on the CONFIG option in the Makefile
(e.g. obj-$(CONFIG_XYZZY_SYSCALL) += xyzzy.c).

• Double check that the kernel still builds with the new CONFIG option turned off.
To summarize, you need a commit that includes:
• CONFIG option for the new function, normally in init/Kconfig
• SYSCALL_DEFINEn(xyzzy,...) for the entry point
• corresponding prototype in include/linux/syscalls.h
• generic table entry in include/uapi/asm-generic/unistd.h
• fallback stub in kernel/sys_ni.c

* x86 System Call Implementation

To wire up your new system call for x86 platforms, you need to update the master syscall tables. Assuming
your new system call isn’t special in some way (see below), this involves a “common” entry (for x86_64
and x32) in arch/x86/entry/syscalls/syscall_64.tbl:

333 common xyzzy sys_xyzzy

and an “i386” entry in arch/x86/entry/syscalls/syscall_32.tbl:

380 i386 xyzzy sys_xyzzy

Again, these numbers are liable to be changed if there are conflicts in the relevant merge window.

122 Chapter 15. Adding a New System Call

Linux Kernel Development Documentation, Release 4.13.0-rc4+

* Compatibility System Calls (Generic)

Formost system calls the same 64-bit implementation can be invoked even when the userspace program is
itself 32-bit; even if the system call’s parameters include an explicit pointer, this is handled transparently.
However, there are a couple of situations where a compatibility layer is needed to cope with size differ-
ences between 32-bit and 64-bit.
The first is if the 64-bit kernel also supports 32-bit userspace programs, and so needs to parse areas of
(__user) memory that could hold either 32-bit or 64-bit values. In particular, this is needed whenever a
system call argument is:
• a pointer to a pointer
• a pointer to a struct containing a pointer (e.g. struct iovec __user *)
• a pointer to a varying sized integral type (time_t, off_t, long, ...)
• a pointer to a struct containing a varying sized integral type.

The second situation that requires a compatibility layer is if one of the system call’s arguments has a type
that is explicitly 64-bit even on a 32-bit architecture, for example loff_t or __u64. In this case, a value
that arrives at a 64-bit kernel from a 32-bit application will be split into two 32-bit values, which then need
to be re-assembled in the compatibility layer.
(Note that a system call argument that’s a pointer to an explicit 64-bit type does not need a compati-
bility layer; for example, splice(2)‘s arguments of type loff_t __user * do not trigger the need for a
compat_ system call.)
The compatibility version of the system call is called compat_sys_xyzzy(), and is added with the COM-
PAT_SYSCALL_DEFINEn() macro, analogously to SYSCALL_DEFINEn. This version of the implementation
runs as part of a 64-bit kernel, but expects to receive 32-bit parameter values and does whatever is
needed to deal with them. (Typically, the compat_sys_ version converts the values to 64-bit versions and
either calls on to the sys_ version, or both of them call a common inner implementation function.)
The compat entry point also needs a corresponding function prototype, in include/linux/compat.h,
marked as asmlinkage to match the way that system calls are invoked:

asmlinkage long compat_sys_xyzzy(...);

If the system call involves a structure that is laid out differently on 32-bit and 64-bit systems, say struct
xyzzy_args, then the include/linux/compat.h header file should also include a compat version of the
structure (struct compat_xyzzy_args) where each variable-size field has the appropriate compat_ type
that corresponds to the type in struct xyzzy_args. The compat_sys_xyzzy() routine can then use this
compat_ structure to parse the arguments from a 32-bit invocation.
For example, if there are fields:

struct xyzzy_args {
const char __user *ptr;
__kernel_long_t varying_val;
u64 fixed_val;
/* ... */

};

in struct xyzzy_args, then struct compat_xyzzy_args would have:

struct compat_xyzzy_args {
compat_uptr_t ptr;
compat_long_t varying_val;
u64 fixed_val;
/* ... */

};

*. Compatibility System Calls (Generic) 123

Linux Kernel Development Documentation, Release 4.13.0-rc4+

The generic system call list also needs adjusting to allow for the compat version; the entry in in-
clude/uapi/asm-generic/unistd.h should use __SC_COMP rather than __SYSCALL:

#define __NR_xyzzy 292
__SC_COMP(__NR_xyzzy, sys_xyzzy, compat_sys_xyzzy)

To summarize, you need:
• a COMPAT_SYSCALL_DEFINEn(xyzzy,...) for the compat entry point
• corresponding prototype in include/linux/compat.h
• (if needed) 32-bit mapping struct in include/linux/compat.h
• instance of __SC_COMP not __SYSCALL in include/uapi/asm-generic/unistd.h

* Compatibility System Calls (x86)

To wire up the x86 architecture of a system call with a compatibility version, the entries in the syscall
tables need to be adjusted.
First, the entry in arch/x86/entry/syscalls/syscall_32.tbl gets an extra column to indicate that a
32-bit userspace program running on a 64-bit kernel should hit the compat entry point:

380 i386 xyzzy sys_xyzzy compat_sys_xyzzy

Second, you need to figure out what should happen for the x32 ABI version of the new system call. There’s
a choice here: the layout of the arguments should either match the 64-bit version or the 32-bit version.
If there’s a pointer-to-a-pointer involved, the decision is easy: x32 is ILP32, so the layout should match the
32-bit version, and the entry in arch/x86/entry/syscalls/syscall_64.tbl is split so that x32 programs
hit the compatibility wrapper:

333 64 xyzzy sys_xyzzy
...
555 x32 xyzzy compat_sys_xyzzy

If no pointers are involved, then it is preferable to re-use the 64-bit system call for the x32 ABI (and
consequently the entry in arch/x86/entry/syscalls/syscall_64.tbl is unchanged).
In either case, you should check that the types involved in your argument layout do indeed map exactly
from x32 (-mx32) to either the 32-bit (-m32) or 64-bit (-m64) equivalents.

* System Calls Returning Elsewhere

For most system calls, once the system call is complete the user program continues exactly where it left
off – at the next instruction, with the stack the same and most of the registers the same as before the
system call, and with the same virtual memory space.
However, a few system calls do things differently. Theymight return to a different location (rt_sigreturn)
or change the memory space (fork/vfork/clone) or even architecture (execve/execveat) of the program.
To allow for this, the kernel implementation of the system call may need to save and restore additional
registers to the kernel stack, allowing complete control of where and how execution continues after the
system call.
This is arch-specific, but typically involves defining assembly entry points that save/restore additional
registers and invoke the real system call entry point.
For x86_64, this is implemented as a stub_xyzzy entry point in arch/x86/entry/entry_64.S, and the
entry in the syscall table (arch/x86/entry/syscalls/syscall_64.tbl) is adjusted to match:

124 Chapter 15. Adding a New System Call

Linux Kernel Development Documentation, Release 4.13.0-rc4+

333 common xyzzy stub_xyzzy

The equivalent for 32-bit programs running on a 64-bit kernel is normally called stub32_xyzzy and im-
plemented in arch/x86/entry/entry_64_compat.S, with the corresponding syscall table adjustment in
arch/x86/entry/syscalls/syscall_32.tbl:

380 i386 xyzzy sys_xyzzy stub32_xyzzy

If the system call needs a compatibility layer (as in the previous section) then the stub32_ version needs
to call on to the compat_sys_ version of the system call rather than the native 64-bit version. Also, if the
x32 ABI implementation is not common with the x86_64 version, then its syscall table will also need to
invoke a stub that calls on to the compat_sys_ version.
For completeness, it’s also nice to set up a mapping so that user-mode Linux still works – its syscall
table will reference stub_xyzzy, but the UML build doesn’t include arch/x86/entry/entry_64.S im-
plementation (because UML simulates registers etc). Fixing this is as simple as adding a #define to
arch/x86/um/sys_call_table_64.c:

#define stub_xyzzy sys_xyzzy

* Other Details

Most of the kernel treats system calls in a generic way, but there is the occasional exception that may
need updating for your particular system call.
The audit subsystem is one such special case; it includes (arch-specific) functions that classify some
special types of system call – specifically file open (open/openat), program execution (execve/exeveat)
or socket multiplexor (socketcall) operations. If your new system call is analogous to one of these, then
the audit system should be updated.
More generally, if there is an existing system call that is analogous to your new system call, it’s worth
doing a kernel-wide grep for the existing system call to check there are no other special cases.

* Testing

A new system call should obviously be tested; it is also useful to provide reviewers with a demonstration
of how user space programs will use the system call. A good way to combine these aims is to include a
simple self-test program in a new directory under tools/testing/selftests/.
For a new system call, there will obviously be no libc wrapper function and so the test will need to invoke
it using syscall(); also, if the system call involves a new userspace-visible structure, the corresponding
header will need to be installed to compile the test.
Make sure the selftest runs successfully on all supported architectures. For example, check that it works
when compiled as an x86_64 (-m64), x86_32 (-m32) and x32 (-mx32) ABI program.
For more extensive and thorough testing of new functionality, you should also consider adding tests to
the Linux Test Project, or to the xfstests project for filesystem-related changes.
• https://linux-test-project.github.io/
• git://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git

* Man Page

All new system calls should come with a complete man page, ideally using groff markup, but plain text
will do. If groff is used, it’s helpful to include a pre-rendered ASCII version of the man page in the cover

*. Other Details 125

https://linux-test-project.github.io/

Linux Kernel Development Documentation, Release 4.13.0-rc4+

email for the patchset, for the convenience of reviewers.
The man page should be cc’ed to linux-man@vger.kernel.org For more details, see https://www.kernel.
org/doc/man-pages/patches.html

* References and Sources

• LWN article from Michael Kerrisk on use of flags argument in system calls: https://lwn.net/Articles/
585415/

• LWN article from Michael Kerrisk on how to handle unknown flags in a system call: https://lwn.net/
Articles/588444/

• LWN article from Jake Edge describing constraints on 64-bit system call arguments: https://lwn.net/
Articles/311630/

• Pair of LWN articles from David Drysdale that describe the system call implementation paths in detail
for v3.14:
– https://lwn.net/Articles/604287/
– https://lwn.net/Articles/604515/

• Architecture-specific requirements for system calls are discussed in the syscall(2)man-page: http:
//man7.org/linux/man-pages/man2/syscall.2.html#NOTES

• Collated emails from Linus Torvalds discussing the problems with ioctl(): http://yarchive.net/comp/
linux/ioctl.html

• “How to not invent kernel interfaces”, Arnd Bergmann, http://www.ukuug.org/events/linux2007/
2007/papers/Bergmann.pdf

• LWN article from Michael Kerrisk on avoiding new uses of CAP_SYS_ADMIN: https://lwn.net/Articles/
486306/

• Recommendation from Andrew Morton that all related information for a new system call should come
in the same email thread: https://lkml.org/lkml/2014/7/24/641

• Recommendation from Michael Kerrisk that a new system call should come with a man page: https:
//lkml.org/lkml/2014/6/13/309

• Suggestion from Thomas Gleixner that x86 wire-up should be in a separate commit: https://lkml.org/
lkml/2014/11/19/254

• Suggestion from Greg Kroah-Hartman that it’s good for new system calls to come with a man-page
& selftest: https://lkml.org/lkml/2014/3/19/710

• Discussion from Michael Kerrisk of new system call vs. prctl(2) extension: https://lkml.org/lkml/
2014/6/3/411

• Suggestion from Ingo Molnar that system calls that involve multiple arguments should encapsulate
those arguments in a struct, which includes a size field for future extensibility: https://lkml.org/lkml/
2015/7/30/117

• Numbering oddities arising from (re-)use of O_* numbering space flags:
– commit 75069f2b5bfb (“vfs: renumber FMODE_NONOTIFY and add to uniqueness check”)
– commit 12ed2e36c98a (“fanotify: FMODE_NONOTIFY and __O_SYNC in sparc conflict”)
– commit bb458c644a59 (“Safer ABI for O_TMPFILE”)

• Discussion from Matthew Wilcox about restrictions on 64-bit arguments: https://lkml.org/lkml/2008/
12/12/187

• Recommendation from Greg Kroah-Hartman that unknown flags should be policed: https://lkml.org/
lkml/2014/7/17/577

126 Chapter 15. Adding a New System Call

mailto:linux-man@vger.kernel.org
https://www.kernel.org/doc/man-pages/patches.html
https://www.kernel.org/doc/man-pages/patches.html
https://lwn.net/Articles/585415/
https://lwn.net/Articles/585415/
https://lwn.net/Articles/588444/
https://lwn.net/Articles/588444/
https://lwn.net/Articles/311630/
https://lwn.net/Articles/311630/
https://lwn.net/Articles/604287/
https://lwn.net/Articles/604515/
http://man7.org/linux/man-pages/man2/syscall.2.html#NOTES
http://man7.org/linux/man-pages/man2/syscall.2.html#NOTES
http://yarchive.net/comp/linux/ioctl.html
http://yarchive.net/comp/linux/ioctl.html
http://www.ukuug.org/events/linux2007/2007/papers/Bergmann.pdf
http://www.ukuug.org/events/linux2007/2007/papers/Bergmann.pdf
https://lwn.net/Articles/486306/
https://lwn.net/Articles/486306/
https://lkml.org/lkml/2014/7/24/641
https://lkml.org/lkml/2014/6/13/309
https://lkml.org/lkml/2014/6/13/309
https://lkml.org/lkml/2014/11/19/254
https://lkml.org/lkml/2014/11/19/254
https://lkml.org/lkml/2014/3/19/710
https://lkml.org/lkml/2014/6/3/411
https://lkml.org/lkml/2014/6/3/411
https://lkml.org/lkml/2015/7/30/117
https://lkml.org/lkml/2015/7/30/117
https://lkml.org/lkml/2008/12/12/187
https://lkml.org/lkml/2008/12/12/187
https://lkml.org/lkml/2014/7/17/577
https://lkml.org/lkml/2014/7/17/577

Linux Kernel Development Documentation, Release 4.13.0-rc4+

• Recommendation from Linus Torvalds that x32 system calls should prefer compatibility with 64-bit
versions rather than 32-bit versions: https://lkml.org/lkml/2011/8/31/244

*. References and Sources 127

https://lkml.org/lkml/2011/8/31/244

Linux Kernel Development Documentation, Release 4.13.0-rc4+

128 Chapter 15. Adding a New System Call

CHAPTER

SIXTEEN

LINUX MAGIC NUMBERS

This file is a registry of magic numbers which are in use. When you add a magic number to a structure,
you should also add it to this file, since it is best if the magic numbers used by various structures are
unique.
It is a very good idea to protect kernel data structures with magic numbers. This allows you to check
at run time whether (a) a structure has been clobbered, or (b) you’ve passed the wrong structure to a
routine. This last is especially useful — particularly when you are passing pointers to structures via a void
* pointer. The tty code, for example, does this frequently to pass driver-specific and line discipline-specific
structures back and forth.
The way to use magic numbers is to declare then at the beginning of the structure, like so:

struct tty_ldisc {
int magic;
...

};

Please follow this discipline when you are adding future enhancements to the kernel! It has saved me
countless hours of debugging, especially in the screwy cases where an array has been overrun and struc-
tures following the array have been overwritten. Using this discipline, these cases get detected quickly
and safely.
Changelog:

Theodore Ts'o
31 Mar 94

The magic table is current to Linux 2.1.55.

Michael Chastain
<mailto:mec@shout.net>
22 Sep 1997

Now it should be up to date with Linux 2.1.112. Because
we are in feature freeze time it is very unlikely that
something will change before 2.2.x. The entries are
sorted by number field.

Krzysztof G. Baranowski
<mailto: kgb@knm.org.pl>
29 Jul 1998

Updated the magic table to Linux 2.5.45. Right over the feature freeze,
but it is possible that some new magic numbers will sneak into the
kernel before 2.6.x yet.

Petr Baudis
<pasky@ucw.cz>
03 Nov 2002

129

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Updated the magic table to Linux 2.5.74.

Fabian Frederick
<ffrederick@users.sourceforge.net>
09 Jul 2003

Magic Name Number Structure File
PG_MAGIC ‘P’ pg_{read,write}_hdr include/linux/pg.h
CMAGIC 0x0111 user include/linux/a.out.h
MKISS_DRIVER_MAGIC 0x04bf mkiss_channel drivers/net/mkiss.h
HDLC_MAGIC 0x239e n_hdlc drivers/char/n_hdlc.c
APM_BIOS_MAGIC 0x4101 apm_user arch/x86/kernel/apm_32.c
CYCLADES_MAGIC 0x4359 cyclades_port include/linux/cyclades.h
DB_MAGIC 0x4442 fc_info drivers/net/iph5526_novram.c
DL_MAGIC 0x444d fc_info drivers/net/iph5526_novram.c
FASYNC_MAGIC 0x4601 fasync_struct include/linux/fs.h
FF_MAGIC 0x4646 fc_info drivers/net/iph5526_novram.c
ISICOM_MAGIC 0x4d54 isi_port include/linux/isicom.h
PTY_MAGIC 0x5001 drivers/char/pty.c
PPP_MAGIC 0x5002 ppp include/linux/if_pppvar.h
SERIAL_MAGIC 0x5301 async_struct include/linux/serial.h
SSTATE_MAGIC 0x5302 serial_state include/linux/serial.h
SLIP_MAGIC 0x5302 slip drivers/net/slip.h
STRIP_MAGIC 0x5303 strip drivers/net/strip.c
X25_ASY_MAGIC 0x5303 x25_asy drivers/net/x25_asy.h
SIXPACK_MAGIC 0x5304 sixpack drivers/net/hamradio/6pack.h
AX25_MAGIC 0x5316 ax_disp drivers/net/mkiss.h
TTY_MAGIC 0x5401 tty_struct include/linux/tty.h
MGSL_MAGIC 0x5401 mgsl_info drivers/char/synclink.c
TTY_DRIVER_MAGIC 0x5402 tty_driver include/linux/tty_driver.h
MGSLPC_MAGIC 0x5402 mgslpc_info drivers/char/pcmcia/synclink_cs.c
TTY_LDISC_MAGIC 0x5403 tty_ldisc include/linux/tty_ldisc.h
USB_SERIAL_MAGIC 0x6702 usb_serial drivers/usb/serial/usb-serial.h
FULL_DUPLEX_MAGIC 0x6969 drivers/net/ethernet/dec/tulip/de2104x.c
USB_BLUETOOTH_MAGIC 0x6d02 usb_bluetooth drivers/usb/class/bluetty.c
RFCOMM_TTY_MAGIC 0x6d02 net/bluetooth/rfcomm/tty.c
USB_SERIAL_PORT_MAGIC 0x7301 usb_serial_port drivers/usb/serial/usb-serial.h
CG_MAGIC 0x00090255 ufs_cylinder_group include/linux/ufs_fs.h
RPORT_MAGIC 0x00525001 r_port drivers/char/rocket_int.h
LSEMAGIC 0x05091998 lse drivers/fc4/fc.c
GDTIOCTL_MAGIC 0x06030f07 gdth_iowr_str drivers/scsi/gdth_ioctl.h
RIEBL_MAGIC 0x09051990 drivers/net/atarilance.c
NBD_REQUEST_MAGIC 0x12560953 nbd_request include/linux/nbd.h
RED_MAGIC2 0x170fc2a5 (any) mm/slab.c
BAYCOM_MAGIC 0x19730510 baycom_state drivers/net/baycom_epp.c
ISDN_X25IFACE_MAGIC 0x1e75a2b9 isdn_x25iface_proto_data drivers/isdn/isdn_x25iface.h
ECP_MAGIC 0x21504345 cdkecpsig include/linux/cdk.h
LSOMAGIC 0x27091997 lso drivers/fc4/fc.c
LSMAGIC 0x2a3b4d2a ls drivers/fc4/fc.c
WANPIPE_MAGIC 0x414C4453 sdla_{dump,exec} include/linux/wanpipe.h
CS_CARD_MAGIC 0x43525553 cs_card sound/oss/cs46xx.c
LABELCL_MAGIC 0x4857434c labelcl_info_s include/asm/ia64/sn/labelcl.h
ISDN_ASYNC_MAGIC 0x49344C01 modem_info include/linux/isdn.h
CTC_ASYNC_MAGIC 0x49344C01 ctc_tty_info drivers/s390/net/ctctty.c

Continued on next page

130 Chapter 16. Linux magic numbers

Linux Kernel Development Documentation, Release 4.13.0-rc4+

Table 16.1 – continued from previous page
Magic Name Number Structure File
ISDN_NET_MAGIC 0x49344C02 isdn_net_local_s drivers/isdn/i4l/isdn_net_lib.h
SAVEKMSG_MAGIC2 0x4B4D5347 savekmsg arch/*/amiga/config.c
CS_STATE_MAGIC 0x4c4f4749 cs_state sound/oss/cs46xx.c
SLAB_C_MAGIC 0x4f17a36d kmem_cache mm/slab.c
COW_MAGIC 0x4f4f4f4d cow_header_v1 arch/um/drivers/ubd_user.c
I810_CARD_MAGIC 0x5072696E i810_card sound/oss/i810_audio.c
TRIDENT_CARD_MAGIC 0x5072696E trident_card sound/oss/trident.c
ROUTER_MAGIC 0x524d4157 wan_device [in wanrouter.h pre 3.9]
SAVEKMSG_MAGIC1 0x53415645 savekmsg arch/*/amiga/config.c
GDA_MAGIC 0x58464552 gda arch/mips/include/asm/sn/gda.h
RED_MAGIC1 0x5a2cf071 (any) mm/slab.c
EEPROM_MAGIC_VALUE 0x5ab478d2 lanai_dev drivers/atm/lanai.c
HDLCDRV_MAGIC 0x5ac6e778 hdlcdrv_state include/linux/hdlcdrv.h
PCXX_MAGIC 0x5c6df104 channel drivers/char/pcxx.h
KV_MAGIC 0x5f4b565f kernel_vars_s arch/mips/include/asm/sn/klkernvars.h
I810_STATE_MAGIC 0x63657373 i810_state sound/oss/i810_audio.c
TRIDENT_STATE_MAGIC 0x63657373 trient_state sound/oss/trident.c
M3_CARD_MAGIC 0x646e6f50 m3_card sound/oss/maestro3.c
FW_HEADER_MAGIC 0x65726F66 fw_header drivers/atm/fore200e.h
SLOT_MAGIC 0x67267321 slot drivers/hotplug/cpqphp.h
SLOT_MAGIC 0x67267322 slot drivers/hotplug/acpiphp.h
LO_MAGIC 0x68797548 nbd_device include/linux/nbd.h
OPROFILE_MAGIC 0x6f70726f super_block drivers/oprofile/oprofilefs.h
M3_STATE_MAGIC 0x734d724d m3_state sound/oss/maestro3.c
VMALLOC_MAGIC 0x87654320 snd_alloc_track sound/core/memory.c
KMALLOC_MAGIC 0x87654321 snd_alloc_track sound/core/memory.c
PWC_MAGIC 0x89DC10AB pwc_device drivers/usb/media/pwc.h
NBD_REPLY_MAGIC 0x96744668 nbd_reply include/linux/nbd.h
ENI155_MAGIC 0xa54b872d midway_eprom drivers/atm/eni.h
CODA_MAGIC 0xC0DAC0DA coda_file_info fs/coda/coda_fs_i.h
DPMEM_MAGIC 0xc0ffee11 gdt_pci_sram drivers/scsi/gdth.h
YAM_MAGIC 0xF10A7654 yam_port drivers/net/hamradio/yam.c
CCB_MAGIC 0xf2691ad2 ccb drivers/scsi/ncr53c8xx.c
QUEUE_MAGIC_FREE 0xf7e1c9a3 queue_entry drivers/scsi/arm/queue.c
QUEUE_MAGIC_USED 0xf7e1cc33 queue_entry drivers/scsi/arm/queue.c
HTB_CMAGIC 0xFEFAFEF1 htb_class net/sched/sch_htb.c
NMI_MAGIC 0x48414d4d455201 nmi_s arch/mips/include/asm/sn/nmi.h

Note that there are also defined special per-driver magic numbers in sound memory management. See
include/sound/sndmagic.h for complete list of them. Many OSS sound drivers have their magic numbers
constructed from the soundcard PCI ID - these are not listed here as well.
IrDA subsystem also uses large number of own magic numbers, see include/net/irda/irda.h for a
complete list of them.
HFS is another larger user of magic numbers - you can find them in fs/hfs/hfs.h.

131

Linux Kernel Development Documentation, Release 4.13.0-rc4+

132 Chapter 16. Linux magic numbers

CHAPTER

SEVENTEEN

WHY THE “VOLATILE” TYPE CLASS SHOULD NOT BE USED

C programmers have often taken volatile to mean that the variable could be changed outside of the
current thread of execution; as a result, they are sometimes tempted to use it in kernel code when shared
data structures are being used. In other words, they have been known to treat volatile types as a sort of
easy atomic variable, which they are not. The use of volatile in kernel code is almost never correct; this
document describes why.
The key point to understand with regard to volatile is that its purpose is to suppress optimization, which is
almost never what one really wants to do. In the kernel, one must protect shared data structures against
unwanted concurrent access, which is very much a different task. The process of protecting against
unwanted concurrency will also avoid almost all optimization-related problems in a more efficient way.
Like volatile, the kernel primitives which make concurrent access to data safe (spinlocks, mutexes, mem-
ory barriers, etc.) are designed to prevent unwanted optimization. If they are being used properly, there
will be no need to use volatile as well. If volatile is still necessary, there is almost certainly a bug in the
code somewhere. In properly-written kernel code, volatile can only serve to slow things down.
Consider a typical block of kernel code:

spin_lock(&the_lock);
do_something_on(&shared_data);
do_something_else_with(&shared_data);
spin_unlock(&the_lock);

If all the code follows the locking rules, the value of shared_data cannot change unexpectedly while
the_lock is held. Any other code which might want to play with that data will be waiting on the lock. The
spinlock primitives act as memory barriers - they are explicitly written to do so - meaning that data ac-
cesses will not be optimized across them. So the compiler might think it knows what will be in shared_data,
but the spin_lock() call, since it acts as a memory barrier, will force it to forget anything it knows. There
will be no optimization problems with accesses to that data.
If shared_data were declared volatile, the locking would still be necessary. But the compiler would also be
prevented from optimizing access to shared_data _within_ the critical section, when we know that nobody
else can be working with it. While the lock is held, shared_data is not volatile. When dealing with shared
data, proper locking makes volatile unnecessary - and potentially harmful.
The volatile storage class was originally meant for memory-mapped I/O registers. Within the kernel,
register accesses, too, should be protected by locks, but one also does not want the compiler “optimizing”
register accesses within a critical section. But, within the kernel, I/O memory accesses are always done
through accessor functions; accessing I/O memory directly through pointers is frowned upon and does not
work on all architectures. Those accessors are written to prevent unwanted optimization, so, once again,
volatile is unnecessary.
Another situation where one might be tempted to use volatile is when the processor is busy-waiting on
the value of a variable. The right way to perform a busy wait is:

while (my_variable != what_i_want)
cpu_relax();

133

Linux Kernel Development Documentation, Release 4.13.0-rc4+

The cpu_relax() call can lower CPU power consumption or yield to a hyperthreaded twin processor; it also
happens to serve as a compiler barrier, so, once again, volatile is unnecessary. Of course, busy- waiting
is generally an anti-social act to begin with.
There are still a few rare situations where volatile makes sense in the kernel:
• The above-mentioned accessor functionsmight use volatile on architectures where direct I/Omemory
access does work. Essentially, each accessor call becomes a little critical section on its own and
ensures that the access happens as expected by the programmer.

• Inline assembly code which changes memory, but which has no other visible side effects, risks being
deleted by GCC. Adding the volatile keyword to asm statements will prevent this removal.

• The jiffies variable is special in that it can have a different value every time it is referenced, but it can
be read without any special locking. So jiffies can be volatile, but the addition of other variables of
this type is strongly frowned upon. Jiffies is considered to be a “stupid legacy” issue (Linus’s words)
in this regard; fixing it would be more trouble than it is worth.

• Pointers to data structures in coherent memory which might be modified by I/O devices can, some-
times, legitimately be volatile. A ring buffer used by a network adapter, where that adapter changes
pointers to indicate which descriptors have been processed, is an example of this type of situation.

For most code, none of the above justifications for volatile apply. As a result, the use of volatile is likely
to be seen as a bug and will bring additional scrutiny to the code. Developers who are tempted to use
volatile should take a step back and think about what they are truly trying to accomplish.
Patches to remove volatile variables are generally welcome - as long as they come with a justification
which shows that the concurrency issues have been properly thought through.

* References

[1] http://lwn.net/Articles/233481/
[2] http://lwn.net/Articles/233482/

* Credits

Original impetus and research by Randy Dunlap
Written by Jonathan Corbet
Improvements via comments from Satyam Sharma, Johannes Stezenbach, Jesper Juhl, Heikki Orsila, H.
Peter Anvin, Philipp Hahn, and Stefan Richter.

134 Chapter 17. Why the “volatile” type class should not be used

http://lwn.net/Articles/233481/
http://lwn.net/Articles/233482/

	HOWTO do Linux kernel development
	Code of Conflict
	A guide to the Kernel Development Process
	Submitting patches: the essential guide to getting your code into the kernel
	Linux kernel coding style
	Email clients info for Linux
	Minimal requirements to compile the Kernel
	Submitting Drivers For The Linux Kernel
	The Linux Kernel Driver Interface
	Linux kernel management style
	Everything you ever wanted to know about Linux -stable releases
	Linux Kernel patch submission checklist
	Index of Documentation for People Interested in Writing and/or Understanding the Linux Kernel
	Applying Patches To The Linux Kernel
	Adding a New System Call
	Linux magic numbers
	Why the ``volatile'' type class should not be used

